

**HSC Trial Examination 2020** 

## Chemistry

Solutions and marking guidelines

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

## Section I

| Answer and explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Syllabus content, outcomes and targeted performance bands         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Question 1AThe procedure shows a reversible reaction, as loss of water can be<br>reversed. It is not an equilibrium reaction because it is an open system,<br>so <b>B</b> is incorrect. There is no information given about bonding, so <b>C</b> is<br>incorrect. As there is no decomposition occurring, <b>D</b> is also incorrect.                                                                                                               | Mod 5 Static and Dynamic Equilibrium<br>CH12–5, CH12–12 Bands 2–3 |  |
| Question 2 B                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mod 6 Using Brønsted–Lowry Theory                                 |  |
| Conjugate acid–base pairs only differ by a proton ( $H^+$ ). In the reaction going left to right: CH <sub>3</sub> COOH (ethanoic acid) has donated a proton to H <sub>2</sub> O (water), so ethanoic acid is an acid and water is a base. In the reaction going right to left: H <sub>3</sub> O <sup>+</sup> (the hydronium ion) is an acid because it has donated a proton to CH <sub>3</sub> COO <sup>-</sup> (the ethanoate ion).                | CH12–6, CH12–12 Bands 3–4                                         |  |
| CH <sub>3</sub> COOH and CH <sub>3</sub> COO <sup>-</sup> are a conjugate acid–base pair, acid 1 and base 1 respectively. The other conjugate acid–base pair is $H_3O^+/H_2O$ , acid 2 and base 2 respectively.                                                                                                                                                                                                                                     |                                                                   |  |
| Question 3DEthanoic acid is a weak acid, and hydrochloric acid is a strong acid.Hydrochloric acid is more dissociated than ethanoic acid; hence, it will<br>have a greater concentration of $H_3O^+$ ions, so C is incorrect. Because of<br>this, hydrochloric acid will react faster with magnesium ribbon and will<br>also have a higher conductivity; A and B are incorrect. Each solution<br>                                                   |                                                                   |  |
| Question 4 C                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mad 5 Static and Demonsis Equilibrium                             |  |
| Entropy can be thought of as randomness or disorder. In combustion<br>reactions, a system becomes more disordered; hence, entropy increases.<br>In photosynthesis, a system becomes more ordered; hence,<br>entropy decreases.<br>Enthalpy is the heat content of a system. If a system loses/gives out<br>heat, it is described as exothermic. If a system gains/takes in heat,<br>it is endothermic. Combustion causes an increase in entropy and | Mod 5 Static and Dynamic Equilibrium<br>CH12–12 Bands 3–4         |  |
| is exothermic. Photosynthesis causes a decrease in entropy and is endothermic.                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |  |
| Question 5 B                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mod 5 Calculating the Equilibrium Constant                        |  |
| The ratios in the equation mean that 0.5 mol of hydrogen and 0.5 mol of chlorine will be formed, and 1 mol of hydrogen chloride will remain. Therefore, 2 moles of gas are present in the equilibrium mixture in total.                                                                                                                                                                                                                             | CH12–12 Bands 3–4                                                 |  |
| Question 6C                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mod 5 Static and Dynamic Equilibrium                              |  |
| The statement 'the rate of exchange between reactants and products<br>is steady' only applies to dynamic equilibrium reactions.                                                                                                                                                                                                                                                                                                                     | CH12–12 Band 3                                                    |  |
| Question 7 C                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mod 6 Properties of Acids and Bases                               |  |
| As the bromophenol blue turned blue, the pH is 4.5 or higher. Methyl red turned yellow, so the pH is 6.3 or higher. The alizarin is yellow, so the pH is 10.2 or lower. Distilled water is the only option with a pH between 6.3 and 10.2.                                                                                                                                                                                                          | CH12–6, CH12–13 Band 4                                            |  |

| Answer and explanation                                                                                                                                                                                                                                                                                                       | Syllabus content, outcomes and targeted performance bands |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Question 8ABuffers can be made from a weak acid and its salt or a weak base<br>and its salt. Buffer solutions are not necessarily neutral; they can be<br>formulated to a wide variety of pHs. Buffer solutions resist changes<br>in pH when small amounts of acids (H <sup>+</sup> ) or bases (OH <sup>-</sup> ) are added. | Mod 6 Quantitative Analysis<br>CH12–13 Band 3             |  |
| Question 9 D                                                                                                                                                                                                                                                                                                                 | Mod 5 Calculating the Equilibrium Constant                |  |
| The equilibrium expression is a mathematical ratio that shows                                                                                                                                                                                                                                                                | CH12–16, CH12–12 Bands 3–4                                |  |
| the concentrations (in moles per litre) of the products over the                                                                                                                                                                                                                                                             |                                                           |  |
| reactants at equilibrium, all raised to their stoichiometric powers.                                                                                                                                                                                                                                                         |                                                           |  |
| The balanced equation described in the question is                                                                                                                                                                                                                                                                           |                                                           |  |
| $\operatorname{Fe}^{3+}(aq) + \operatorname{SCN}^{-}(aq) \rightleftharpoons \operatorname{Fe}(\operatorname{SCN})^{2+}(aq).$                                                                                                                                                                                                 |                                                           |  |
| The resulting equilibrium constant is $\frac{[\text{Fe}(\text{SCN})^{2+}(aq)]}{[\text{Fe}^{3+}(aq)] \times [\text{SCN}^{-}(aq)]}.$                                                                                                                                                                                           |                                                           |  |
| Question 10 D                                                                                                                                                                                                                                                                                                                | Mod 6 Using Brønsted–Lowry Theory                         |  |
| $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$                                                                                                                                                                                                                                                                          | CH12–6, CH12–13 Band 6                                    |  |
| mol of OH <sup>-</sup> added:                                                                                                                                                                                                                                                                                                |                                                           |  |
| $\frac{250}{1000} \times 0.1 = 0.025$                                                                                                                                                                                                                                                                                        |                                                           |  |
| mol of H <sup>+</sup> added:                                                                                                                                                                                                                                                                                                 |                                                           |  |
| $\frac{100}{1000} \times 0.4 = 0.04$                                                                                                                                                                                                                                                                                         |                                                           |  |
| Hence, there is $0.040 - 0.025 = 0.015$ mol of H <sup>+</sup> in excess.                                                                                                                                                                                                                                                     |                                                           |  |
| There is 350 mL of solution in total.                                                                                                                                                                                                                                                                                        |                                                           |  |
| molarity:                                                                                                                                                                                                                                                                                                                    |                                                           |  |
| $\frac{0.015}{350} \times 1000 = 0.043$                                                                                                                                                                                                                                                                                      |                                                           |  |
| $pH = -log_{10}[0.43]$                                                                                                                                                                                                                                                                                                       |                                                           |  |
| = 1.4                                                                                                                                                                                                                                                                                                                        |                                                           |  |
| pOH = 14 - 1.4 = 12.6                                                                                                                                                                                                                                                                                                        |                                                           |  |
| Question 11BHexan-3-one contains six carbons and a carbonyl group (C=O)on the third carbon from the end, as in B. The structuralformula in C represents pentan-3-ol. The structural formulain A represents 1-propyl propanoate. The structural formulain D represents heptan-4-one.                                          | Mod 7 Nomenclature<br>CH12–7, CH12–14 Bands 2–3           |  |

| Answer and explanation                                                                                                                                                | Syllabus content, outcomes and targeted performance bands            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Question 12AThe Beer–Lambert law relates absorbance and concentration:                                                                                                | Mod 8 Analysis of Inorganic Substances<br>CH12–17 Band 3             |  |
| $A = \varepsilon l c$                                                                                                                                                 |                                                                      |  |
| $c = \frac{A}{\varepsilon l}$                                                                                                                                         |                                                                      |  |
| $=\frac{0.552}{(3.91\times10^3\times1)}$                                                                                                                              |                                                                      |  |
| $= 1.41 \times 10^{-4} \text{ mol L}^{-1}$                                                                                                                            |                                                                      |  |
| The tablet was dissolved into 10.0 mL, so there was $1.41 \times 10^{-4} \times 0.0100 = 1.41 \times 10^{-6}$ mol of sodium penicillin G                              |                                                                      |  |
| in the tablet.                                                                                                                                                        |                                                                      |  |
| Question 13 B                                                                                                                                                         | Mod 7 Alcohols<br>CH12–5, CH12–4 Bands 5–6                           |  |
| $CH_3CH_2CH_2CH_2OH$ is butan-1-ol.                                                                                                                                   | Cili2-5, Cili2-4 Danus 5-0                                           |  |
| molar mass of butan-1-ol:                                                                                                                                             |                                                                      |  |
| $4 \times 12.01 + 10 \times 1.008 + 16.00 = 74.12$                                                                                                                    |                                                                      |  |
| $\Delta T = 100.0 - 25.00 = 75.0^{\circ} \text{C}$                                                                                                                    |                                                                      |  |
| $q_{\text{water}} = mC\Delta T$                                                                                                                                       |                                                                      |  |
| $= 1.00 \times 4.18 \times 10^3 \times (75.0)$                                                                                                                        |                                                                      |  |
| = 313 500 J                                                                                                                                                           |                                                                      |  |
| $n_{\text{butan-1-ol}} = -\frac{q}{\Delta H}$                                                                                                                         |                                                                      |  |
| $= \frac{-313\ 500\ \mathrm{J}}{-2670 \times 10^3\ \mathrm{J\ mol}^{-1}}$                                                                                             |                                                                      |  |
| = 0.1174  mol                                                                                                                                                         |                                                                      |  |
| mass of butan-1-ol = $0.1174 \times 74.12$                                                                                                                            |                                                                      |  |
| = 8.70 g                                                                                                                                                              |                                                                      |  |
| Question 14 A                                                                                                                                                         | Mod 7 Reactions of Organic Acids and Bases                           |  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH is butan-1-ol. Acid-catalysed dehydration                                                          | CH12–5, 6, 7, 14 Bands 5–6                                           |  |
| of butan-1-ol yields but-1-ene, X. Esterification of butan-1-ol                                                                                                       |                                                                      |  |
| with acetic acid yields the ester (1-butyl) ethanoate (also named                                                                                                     |                                                                      |  |
| butyl acetate), Y. Oxidation of primary alcohols with acidified                                                                                                       |                                                                      |  |
| permanganate yields acids, so Z is butanoic acid.           Question 15         C                                                                                     | Mod 9 Analysis of Inorgania Sylatoness                               |  |
| Atomic absorption spectroscopy allows the analysis of many metal<br>ions in complex mixtures with minimal interference from other<br>metal ions or organic compounds. | Mod 8 Analysis of Inorganic Substances<br>CH12–4, 5, 6, 7, 14 Band 4 |  |
| Question 16 B                                                                                                                                                         | Mod 8 Analysis of Inorganic Substances                               |  |
| A precipitate with sulfate ion is likely for calcium or barium ions.<br>Barium gives a green flame, and calcium gives an orange/red flame.                            | CH12–3, CH12–5, CH12–6 Band 3                                        |  |

| Answer and explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Syllabus content, outcomes and targeted performance bands         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Question 17CTertiary alcohols are alcohols in which the OH functional group<br>is attached to a carbon that is directly attached to three other<br>carbon atoms.                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mod 7 Alcohols<br>CH12–5, CH12–15 Bands 2–3                       |  |
| <b>Question 18</b> C<br>$A = \log \frac{I_o}{I}$ where $I_o$ is the intensity of the incident radiation<br>at the measured wavelength ( $I_b$ in the diagram) and $I$ is the intensity<br>of the transmitted radiation through the flame ( $I_c$ in the diagram).                                                                                                                                                                                                                                                                                                                                              | Mod 7 Polymers<br>CH12–6, CH12–15 Bands 3–4                       |  |
| Question 19DThe number of peaks in a signal equals $n + 1$ where $n$ is the number<br>of hydrogens on adjacent carbons.Protons for $z$ (CH2-CH-(OCH3)2) have two hydrogens on the adjacent<br>carbon and will appear as a triplet. D is correct.Protons for $w$ (CH3-C=O) have no hydrogens on the adjacent carbons<br>and will appear as a singlet. A is incorrect.Protons for $x$ (O=C-CH2-CH) have a single hydrogen on the adjacent<br>carbons and will appear as a doublet. B is incorrect.Protons for $y$ (CH3-O) have no hydrogens on adjacent carbons<br>and will appear as a singlet. C is incorrect. |                                                                   |  |
| Question 20AThe strong peak at 1780 indicates the presence of a carbonyl group;<br>hence, the unknown sample is most likely either butanoic acid or<br>butanal. The lack of a broad OH absorbance between 3200–3500 cm <sup>-1</sup><br>rules out butanoic acid, leaving butanal as the only option that would<br>fit this IR spectrum.                                                                                                                                                                                                                                                                        | Mod 8 Analysis of Organic Substances<br>CH12–6, CH12–15 Bands 4–5 |  |

## Section II

|             |                                                                                                                                                                                                                                                    | Samp                     | le answer                                                                                                                                                                              | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Que         | stion 21                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                        |                                                                                                                                                                                                              |
|             |                                                                                                                                                                                                                                                    | Colour                   | Justification                                                                                                                                                                          | Mod 5 Factors that Affect Equilibrium<br>CH12–5, CH12–6, CH12–12 Band 5                                                                                                                                      |
|             | Ylighter brown<br>(lighter than X)The system has shifted to<br>the right (fewer gas molecules),<br>decreasing the amount<br>                                                                                                                       |                          | $N_2O_4$ and brown $NO_2$ gives a light brown                                                                                                                                          | <ul> <li>Correctly completes all SIX cells<br/>of the table</li></ul>                                                                                                                                        |
|             |                                                                                                                                                                                                                                                    |                          | the right (fewer gas molecules),<br>decreasing the amount<br>of brown $NO_2$ in the                                                                                                    | Correctly completes FOUR cells<br>of the table                                                                                                                                                               |
|             | Ζ                                                                                                                                                                                                                                                  | brown<br>(darker than X) | The forward reaction<br>is exothermic. Increasing<br>temperature shifts the reaction<br>to the left, increasing the<br>amount of brown $NO_2$ in the<br>resulting equilibrium mixture. | <ul> <li>Correctly completes TWO cells<br/>of the table</li></ul>                                                                                                                                            |
| Ques<br>(a) | The sy increas                                                                                                                                                                                                                                     | stem would compen        | bromomethane would increase.<br>hsate for the removal of product by<br>ction (production of CH <sub>3</sub> Br), as in                                                                 | Mod 5 Factors that Affect Equilibrium<br>CH12–6, CH12–12 Bands 3–4<br>• Gives the correct prediction.<br>AND<br>• Cives a suitable justification                                                             |
| (b)         | (b) The rate of production of bromomethane would increase.<br>Collision theory tells us that increasing the temperature<br>increases the average kinetic energy of reactant molecules.<br>This results in more collisions that have energy greater |                          | at increasing the temperature<br>tic energy of reactant molecules.<br>ions that have energy greater                                                                                    | Gives a suitable justification2     Gives the correct prediction1     Mod 5 Static and Dynamic Equilibrium     Mod 5 Factors that Affect Equilibrium     CH12–12 Bands 3–4     Gives the correct prediction. |
|             | than the activation energy needed, so the proportion<br>of collisions that are successful increases.                                                                                                                                               |                          |                                                                                                                                                                                        | <ul> <li>AND</li> <li>Gives a suitable explanation<br/>using collision theory</li></ul>                                                                                                                      |

|     | Sample answer                                                                                                                                                                                                                                                                                                                                                                    | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) | <b>^</b>                                                                                                                                                                                                                                                                                                                                                                         | Mod 5 Factors that Affect EquilibriumCH12-6, CH12-12Bands 4-5• Correctly shows changes over<br>time for all THREE species 3                                                 |
|     | $\begin{array}{c} \neg \\ \neg $                                                                                                                                                                                                                                                                                 | Correctly shows changes over<br>time for TWO species                                                                                                                        |
|     | CH <sub>3</sub> Br<br>CH <sub>3</sub> OH<br>HBr                                                                                                                                                                                                                                                                                                                                  | Correctly shows changes over<br>time for ONE species 1                                                                                                                      |
|     | time (s)<br>Note: All three lines should level out at the same time,<br>and the three concentration changes should be the same.<br>The $CH_3Br$ line should rise gradually and level out.<br>The $CH_3OH$ line should rise sharply vertically, fall<br>gradually, then level out higher than its original<br>concentration. The HBr line should fall gradually<br>and level out. |                                                                                                                                                                             |
| Que | tion 23                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |
| (a) | The two compounds are relatively insoluble (low solubility constants). The solubility constant for calcium sulfate is related to its molar solubility by the following equation:<br>$K_{sp} = [\text{Ca}^{2+}][\text{SO}_4^{2-}]$<br>$= 4.93 \times 10^{-5}$                                                                                                                     | Mod 5 Calculating the Equilibrium Constant<br>CH12-5, CH12-12Band 3• Discusses the solubilities<br>of each compound.AND• Links the discussion to<br>the solubility constant |
|     | The solubility constant for calcium carbonate is related<br>to its molar solubility by the following equation:                                                                                                                                                                                                                                                                   | Gives details of solubilities 1                                                                                                                                             |
|     | $K_{sp} = [\mathrm{Ca}^{2+}][\mathrm{SO}_4^{2-}]$                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |
|     | $= 3.39 \times 10^{-9}$                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |
|     | It therefore follows that calcium sulfate is more<br>soluble because it has a higher solubility constant<br>than calcium carbonate.                                                                                                                                                                                                                                              |                                                                                                                                                                             |

7

|     | Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | $CaSO_{4}(s) \stackrel{\text{H}_{2}\text{O}}{\longleftrightarrow} Ca^{2+}(aq) + SO_{4}^{2-}(aq)$ $K_{sp} = [Ca^{2+}][SO_{4}^{2-}]$ $= 4.93 \times 10^{-5}$ $\sqrt{K_{sp}} = \sqrt{4.93 \times 10^{-5}}$ $= 7.02 \times 10^{-3} \text{ mol } \text{L}^{-1}$                                                                                                                                                                                                                                         | Mod 5 Calculating the Equilibrium Constant<br>CH12-6, CH12-12Bands 4-5• Derives correct equilibrium expression.<br>AND• Calculates solubility                                             |
| (c) | Some Aboriginal and Torres Strait Islander groups in<br>northern Australia use the seeds of cycad plants as a food<br>source. These seeds contain toxins and are poisonous if eaten<br>untreated. The solubility of these toxins in water is much<br>greater than the solubility of the nutriments in the cycad seeds.<br>Prolonged soaking of the cycad seeds in water leaches<br>(removes) the toxins. This process depends upon the toxins<br>being more soluble than the non-toxic nutriments. | Mod 5 Solution Equilibria         CH12–3, CH12–12       Band 4         • Gives an appropriate example.         AND         • Gives an outline with at least         THREE relevant points |
| Que | stion 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                           |
| (a) | $Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mod 6 Properties of Acids and BasesCH12–3, CH12–12Band 5• Gives correct balanced equation<br>with states                                                                                  |
| (b) | (i) The enthalpy of neutralisation is the enthalpy change $(\Delta H_n)$ that occurs when an acid and a base undergo a neutralisation reaction to form water and a salt. Values are usually given per mole of water formed.                                                                                                                                                                                                                                                                        | Mod 6 Properties of Acids and BasesCH12–13Band 3• Gives an appropriate definition                                                                                                         |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Syllabus content, outcomes, targeted performance bands and marking guide                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| (ii) Select appropriate acid and alkali solutions – for<br>example, hydrochloric acid and sodium hydroxide.<br>HCl(aq) + NaOH(aq) $\rightarrow$ NaCl(aq) + H <sub>2</sub> O(l)<br>There is a 1 : 1 mol ratio.<br>Measure the initial temperature of these solutions.<br>In this example, there is 50 mL of 1.0 mol L <sup>-1</sup><br>hydrochloric acid solution and 50 mL of 1.0 mol L <sup>-1</sup><br>sodium hydroxide solution.<br>Place the solutions in a calorimeter, such as<br>a polystyrene cup with a lid, and measure the<br>increase in temperature.<br>thermometer<br>lid<br>polystyrene cup<br>acid and alkali solutions<br>Calculate the enthalpy change involved in this reaction<br>using the equation $\Delta H = mCp\Delta T$ , where $\Delta H$ is the<br>enthalpy change (in J), <i>m</i> is the mass of the mixture<br>(in kg), <i>Cp</i> is the specific heat of the mixture (in J kg <sup>-1</sup> )<br>and $\Delta T$ is the temperature change (in K). Then calculate<br>the enthalpy of neutralisation per mol for the reaction<br>between hydrochloric acid and sodium hydroxide.<br><i>Note: Responses do not require a diagram</i> . | • Gives a description with some details 1                                                                                 |
| Question 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |
| <ul> <li>(a) To account for the characteristic properties of acids and bases, Arrhenius suggested that all aqueous solutions of acids contain an excess of H<sup>+</sup> ions and all aqueous solutions of bases (alkalis) contain an excess of hydroxide (hydroxyl) OH<sup>-</sup> ions. His proposals were: <ul> <li>Acidic properties are those associated with the H<sup>+</sup> ion.</li> <li>Basic properties are those associated with the OH<sup>-</sup> ion.</li> <li>H<sup>+</sup> and OH<sup>-</sup> ions are formed when an acid or base ionises as it dissolves in water.</li> </ul> </li> <li>For nitric acid and sodium hydroxide: <ul> <li>HNO<sub>3</sub>(l) → H<sup>+</sup>(aq) + NO<sub>3</sub><sup>-</sup>(aq)</li> <li>NaOH(s) → Na<sup>+</sup>(aq) + OH<sup>-</sup>(aq)</li> </ul> </li> <li><i>Note: We now know that the H<sup>+</sup> ion (a proton) cannot exist by itself in aqueous solution, but is always combined with a molecule of water to form the hydronium (H<sub>3</sub>O<sup>+</sup>) ion.</i></li> </ul>                                                                                                                    | <ul> <li>AND</li> <li>Gives ONE appropriate equation 2</li> <li>Gives the principles of<br/>the Arrhenius model</li></ul> |
| (b) amphiprotic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mod 6 Using Brønsted–Lowry TheoryCH12–13Band 3• Gives the appropriate term1                                               |

|      | Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                                    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ques | tion 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |
| (a)  | The 'equivalence point' occurs when the reaction has reached<br>a specific stoichiometric ratio of reactants. In acids and bases<br>the equivalence point is reached when the number of $H^+$ ions<br>equals the number of $OH^-$ ions (equal mole ratio).<br>The 'end point' is when a physical change can be detected.<br>In this case, it is when the indicator changes colour.<br>The end point is not necessarily exactly the same as the<br>equivalence point. In this case, the end point (colour change)<br>for titration 1 does not match with the end points for the other<br>titrations, suggesting that the end point for titration 1 does not<br>occur at the equivalence point.<br>In an accurate titration, the indicator should change colour<br>as close to the equivalence point as possible. | Mod 6 Quantitative Analysis         CH12-13       Band 3         • Clearly explains the difference between the two terms.         AND         • Uses the titration as an example                                                                                                            |
| (b)  | $\text{HNO}_3(aq) + \text{NH}_3(aq) \rightarrow \text{NH}_4\text{NO}_3(aq)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mod 6 Quantitative Analysis         CH12–13       Band 3         • Gives correct equation with states                                                                                                                                                                                       |
| (c)  | Ignoring titration 1 (rough), the average of titrations 2–4<br>is 36.1 mL.<br>Stoichiometry is 1 : 1 (acid : base). Hence the number of moles<br>of acid equals the number of moles of base.<br>n = cV, where $n =$ number of moles (mol), $c =$ concentration<br>(mol L <sup>-1</sup> ) and $V =$ volume (L).<br>$n = 1.01 \times \frac{25.0}{1000}$<br>= 0.02525 mol<br>For the concentration of the acid:<br>$0.02525 = x \times \frac{36.1}{1000}$<br>$x = \frac{0.02525}{36.1} \times 1000$<br>$= 0.699 \text{ mol L}^{-1}$<br>OR<br>$c_1V_1 = c_2V_2$<br>$1.01 \times 25.0 = c_2 \times 36.1$<br>$c_2 = 1.01 \times \frac{25}{36.1}$<br>$= 0.699 \text{ mol L}^{-1}$                                                                                                                                      | Mod 6 Quantitative Analysis         CH12-4, CH12-6, CH12-13       Bands 5-6         • Obtains correct value for the end point.         AND         • Explains how the value was obtained.         AND         • Correctly calculates the concentration.         AND         • Shows working |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d)<br>$14 \int_{pH}^{14} pH 7 \int_{0}^{1} pH 7 \int_{0}^{1}$ | Mod 6 Quantitative Analysis         CH12–3, CH12–13       Band 4         • Draws an appropriate graph<br>showing the correct shape         AND         • Labels axes appropriately                                                                                                                     |
| Question 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                        |
| The sodium salts of long chain fatty acids consist of two parts:<br>a non-polar hydrophobic 'tail' consisting of fatty acids; and a<br>polar, hydrophilic, charged 'head' consisting of the sodium salt<br>of the alkanoic acid, as shown below.<br>$\begin{array}{r} \hline CH_3 - CH_2 - CH_$                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Mod 7 Reactions of Organic Acids and Bases<br/>CH12–6, CH12–7, CH12–13 Band 4</li> <li>Provides a detailed explanation<br/>of the surfactant properties of<br/>the sodium salts of long chained<br/>fatty acids.</li> <li>AND</li> <li>Includes a detailed diagram<br/>of a micelle</li></ul> |
| The hydrophobic tails embed themselves in the grease. The hydrophilic heads are attracted to the water and lift the grease off the dirty dishes to reform a micelle that then remains suspended in water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
| $\underbrace{{}_{}}_{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}\overset{}{}}\overset{}{}\overset{}{}\overset{}{}\overset{}{}}\overset{}{}\overset{}{}\overset{}{}}\overset{}{}\overset{}{}\overset{}{}}\overset{}{}\overset{}{}}\overset{}{}\overset{}{}}{}\overset{}{}}\overset{}{}\overset{}{}}\overset{}{}}\overset{}{}}\overset{}{}}\overset{}{}\overset{}{}}\overset{}{}}\overset{}{}}\overset{}{}}{}\overset{}{}}\overset{}{}}\overset{}{}}\overset{}{}}{}}{}}\overset{}{}}\overset{}{}}{}{}}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}}{}}{}}{}{}}{}}{}}{}{}}{}}{}}{}{}}{}{}}{}}{}}{}}{}{}}{}}{}{}}{}{}}{}{}}{}}{}}{}{}}{}{}}{}{}}{}}{}}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}}{}{}}{}{}}{}}{}{}}{}}{}}{}{}}{}{}}{}}{}}{}{}}{}}{}}{}}{}}{}}{}{}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                        |
| Note: While the question requires a diagram of only a single micelle,<br>diagrams of micelle formation or action such as those above may help<br>to develop high-quality responses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |

| Sample answer |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                     |                                                                                                                         |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Que           | stion 28                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                         |
| (a)           | $ \begin{array}{ccc} H & CH_{3} \\                                    $                                                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                                                                                                                                                              | Mod 7 Polymers<br>CH12–7, CH12–14 Band 4<br>• Draws structural formula<br>of polypropene                                |
| (b)           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                                                                                                                                              | Mod 7 Polymers<br>CH12–7, CH12–14 Band 4                                                                                |
|               | Name                                                                                                                                                                                                                                                                                                                          | Polymer A<br>low-density<br>polypropylene<br>(LDPP)                                                                                                                                 | Polymer B<br>high-density<br>polypropylene<br>(HDPP)                                                                                                                                                                                         | Correctly identifies     polymer A as low-density     polypropylene and polymer B     as high density polymerane.       |
|               | Properties                                                                                                                                                                                                                                                                                                                    | <ul> <li>Any two of:</li> <li>amorphous<br/>polymer</li> <li>lots of<br/>side chains</li> <li>flexible</li> <li>lower<br/>melting point</li> <li>weaker</li> <li>cheaper</li> </ul> | Any two of:<br>• crystalline<br>polymer<br>• fewer<br>side chains<br>• rigid<br>• higher<br>melting point<br>• stronger<br>• more expensive                                                                                                  | <ul> <li>as high-density polypropene.</li> <li>AND</li> <li>Lists at least TWO properties<br/>of each polymer</li></ul> |
| Que           | stion 29                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                                              | Provides some relevant information 1                                                                                    |
| (a)           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     | CH12–5, CH12–7, CH12–15 Bands 2–3<br>• Identifies isomers as having                                                                                                                                                                          |                                                                                                                         |
| (b)           | b) There will be no visible change when sodium bicarbonate<br>is added to the solution of methyl ethanoate.<br>Adding sodium bicarbonate to the test tube containing<br>the solution of propanoic acid will produce bubbles of gas.<br>$CH_3CH_2COOH(aq) + HCO_3^{-}(aq) \rightarrow CH_3CH_2COO^{-}(aq) + CO_2(g) + H_2O(l)$ |                                                                                                                                                                                     | <ul> <li>Any ONE of the above points1</li> <li>Mod 7 Reactions of Organic Acids and Bases</li> <li>Mod 8 Analysis of Organic Substances</li> <li>CH12–2, 3, 7, 14</li> <li>Bands 3–4</li> <li>Describes the observations expected</li> </ul> |                                                                                                                         |
|               |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     | <ul> <li>for the methyl ethanoate test tube.</li> <li>AND</li> <li>Describes the observations expected<br/>for the propanoic acid test tube.</li> <li>AND</li> <li>Provides a net ionic equation</li></ul>                                   |                                                                                                                         |

| Sample answer                                                                                                                                                                                                                                                                                                                    | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) Boiling points for both alkanoic acids and their<br>methyl esters increase with the increasing numb<br>atoms. This is the result of dispersion forces (w<br>between all molecules) increasing with increasing                                                                                                                | ber of carbon<br>hich act CH12–5, 6, 7, 14 Bands 5–6<br>• Comprehensively explains                                                                                                                                                                                       |
| Both alkanoic acids and their isomeric methyl e<br>polar compounds, and dipole–dipole forces act<br>these molecules (in addition to dispersion force                                                                                                                                                                             | • Explains most of the trends<br>of the boiling points                                                                                                                                                                                                                   |
| only alkanoic acids can form hydrogen bonds ()<br>The presence of the additional strong intermole<br>means the boiling points of alkanoic acids are a                                                                                                                                                                            | cular H bonds of the boiling points.                                                                                                                                                                                                                                     |
| than their isomeric methyl esters.<br>The difference between the boiling points of all<br>and their isomeric methyl esters decreases as th                                                                                                                                                                                       | e chain length                                                                                                                                                                                                                                                           |
| (number of carbons in the molecule) increases.<br>result of the dispersion forces (present in both is<br>increasing as the chain length increases.                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |
| Question 30                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          |
| (a)<br>$H - C - C O CH_{3}$ $H O - C - H$ $H O - C - H$ $CH_{3}$                                                                                                                                                                                                                                                                 | <ul> <li>Mod 8 Analysis of Organic Substances<br/>CH12-4, 5, 6, 7, 15 Bands 4-6</li> <li>Draws a correct structure.<br/>AND</li> <li>Identifies functional group information<br/>provided by the IR spectra to justify<br/>the chosen structure.</li> </ul>              |
| OR<br>H = C = C = C = C = H $H = C = C = H$ $H = C = H$                                                                                                                                                                                                                                                                          | <ul> <li>AND</li> <li>Analyses chemical shift data from<br/>BOTH the <sup>13</sup>C and <sup>1</sup>H NMR spectra<br/>to justify chosen structure.</li> <li>AND</li> </ul>                                                                                               |
| The infrared spectrum shows a strong carbonyl at $1780 \text{ cm}^{-1}$ . The absence of a broad OH band                                                                                                                                                                                                                         | between the chosen structure                                                                                                                                                                                                                                             |
| 2500–3300 cm <sup>-1</sup> indicates that the compound is<br>acid, but could be an aldehyde, ketone or ester.<br>The <sup>13</sup> C NMR shows four different carbon envi<br>and the peak at 170 ppm confirms the presence<br>group. The peak at 68 ppm suggests a carbon at<br>oxygen or nitrogen, providing evidence of an est | <ul> <li>Draws a correct structure AND justifies the structure using the chemical reactivity AND refers to BOTH spectra.</li> <li>OR</li> <li>Draws a correct structure AND justifies the structure using the chemical reactivity AND refers to BOTH spectra.</li> </ul> |
| The <sup>1</sup> H NMR shows a 1H septet, consistent wit<br>neighbouring H atoms ( $CH_3CHCH_3$ ). The 6H of<br>is consistent with one neighbouring H atom (CI<br>The final <sup>1</sup> H NMR signal is a 3H singlet ( $CH_3C$<br>shift of around 5.0 ppm for the septet suggests t                                             | <ul> <li>h six spectroscopic data 4–5</li> <li>h six spectroscopic data 4–5</li> <li>h signal</li> <li>Draws a substantially correct structure AND some give correct analysis. OR</li> </ul>                                                                             |
| is for a H atom on a carbon bonded to an oxyge<br>The singlet at 2.0 for 3H suggests $CH_3$ adjacent<br>carbonyl group. The <sup>1</sup> H NMR suggests 10 H ato                                                                                                                                                                 | t to a correct analysis                                                                                                                                                                                                                                                  |

|      | Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                          | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)  | The molecular (parent) ion occurs at $m/z = 102$ , in agreement<br>with the formula of $C_5H_{10}O_2$ .<br>The splitting pattern provides further evidence of structure:<br>• The peak at M-15 = 87 suggests loss of a methyl group.<br>• The peak at M-41 = 59 suggests loss of a $CH_3CO_2$ group.<br>• The peak base, $m/z = 43$ , is consistent with a                                                                             | Mod 8 Analysis of Organic SubstancesCH12-2, 6, 15Bands 3• Identifies the molecular ion.AND• Explains how the splitting pattern<br>provides supporting evidence for<br>structure determination                                                                                         |
|      | CH <sub>3</sub> CHCH <sub>3</sub> group.                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Identifies the molecular ion.<br/>OR</li> <li>Provides some relevant information<br/>regarding the splitting pattern1</li> </ul>                                                                                                                                             |
| Ques | tion 31                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                       |
| (a)  | 0.700<br>0.600<br>0.500<br>0.400<br>0.300<br>0.200<br>0.100<br>0.100<br>0.00 200.0 300.0 400.0 500.0 600.0<br>concentration of Cu <sup>2+</sup> (mg L <sup>-1</sup> )                                                                                                                                                                                                                                                                  | Mod 8 Analysis of Inorganic Substances         CH12–1, 4, 5, 6, 7, 15       Bands 3–4         • Plots points.         AND         • Labels graph.         AND         • Draws line of best fit                                                                                        |
| (b)  | From the graph, an absorbance of 0.150 gives a concentration<br>of 120 mg L <sup>-1</sup> .<br><i>Note: Accept responses in the 110–130 range.</i><br>The brass sample was dissolved in 100 mL; hence, it contains<br>12.0 mg of Cu <sup>2+</sup> .<br>% of Cu = $\frac{\text{mass of Cu}}{\text{mass of the sample}} \times 100$<br>= $\frac{12.0}{19.8} \times 100$<br>= 60.6%<br><i>Note: Accept responses in the 55–66% range.</i> | <ul> <li>Mod 8 Analysis of Inorganic Substances<br/>CH12–1, 4, 5, 6, 7, 15 Band 3</li> <li>Accurately reads the graph.<br/>AND</li> <li>Correctly determines the mass<br/>of Cu in the sample.<br/>AND</li> <li>Correctly determines the percentage<br/>of Cu in the sample</li></ul> |
|      | incorporates in the option funger                                                                                                                                                                                                                                                                                                                                                                                                      | • Provides some relevant calculations1                                                                                                                                                                                                                                                |
| (c)  | The hollow cathode lamp that is used in the atomic absorption<br>spectrometer (AAS) analysis of copper contains a copper<br>cathode that produces wavelengths of light uniquely<br>characteristic for copper. Zinc does not absorb light<br>at the same wavelengths as copper.                                                                                                                                                         | Mod 8 Analysis of Inorganic SubstancesCH12-2, 4, 6, 15Bands 4-5Provides a detailed explanation 2Provides some relevant information 1                                                                                                                                                  |

| <ul> <li>with concentrated sulfuric acid as a catalyst.</li> <li>Step 2: Addition of water using dilute sulfuric acid will yield<br/>a mixture of isomeric propanols.</li> <li>Step 3: Propan-1-ol can be oxidised using acidified<br/>potassium dichromate.</li> <li>Step 4: Propanamide can be obtained through an elimination<br/>reaction by heating ammonia and propanoic acid together.</li> <li>The <sup>13</sup>C NMR spectrum for propan-2-ol (compound M) will show<br/>two peaks for its two carbon environments. Propan-1-ol (compound O)<br/>will show three peaks for its three carbon environments.</li> <li>The <sup>1</sup>H NMR spectrum for each isomeric alcohol will show a broad<br/>exchangeable peak for the OH hydrogen. The <sup>1</sup>H NMR for propan-2-ol<br/>will show a doublet integrating to 6H for the two methyl groups<br/>and a heptet integrating to 1H for the CH hydrogen.</li> <li>The <sup>1</sup>H NMR for propan-2-ol will show a triplet integrating</li> </ul> | od 7 Products of Reactions Involving<br>drocarbons<br>od 7 Alcohols<br>od 7 Reactions of Organic Acids and Bases<br>od 8 Analysis of Organic Substances<br>I12–4, 5, 6, 7, 14, 15 Bands 4–6<br>Provides a detailed discussion of the<br>appropriate reagents and conditions.                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>with concentrated sulfuric acid as a catalyst.</li> <li>Step 2: Addition of water using dilute sulfuric acid will yield<br/>a mixture of isomeric propanols.</li> <li>Step 3: Propan-1-ol can be oxidised using acidified<br/>potassium dichromate.</li> <li>Step 4: Propanamide can be obtained through an elimination<br/>reaction by heating ammonia and propanoic acid together.</li> <li>The <sup>13</sup>C NMR spectrum for propan-2-ol (compound M) will show<br/>two peaks for its two carbon environments. Propan-1-ol (compound O)<br/>will show three peaks for its three carbon environments.</li> <li>The <sup>1</sup>H NMR spectrum for each isomeric alcohol will show a broad<br/>exchangeable peak for the OH hydrogen. The <sup>1</sup>H NMR for propan-2-ol<br/>will show a doublet integrating to 6H for the two methyl groups<br/>and a heptet integrating to 1H for the CH hydrogen.</li> <li>The <sup>1</sup>H NMR for propan-2-ol will show a triplet integrating</li> </ul> | drocarbons<br>od 7 Alcohols<br>od 7 Reactions of Organic Acids and Bases<br>od 8 Analysis of Organic Substances<br>I12–4, 5, 6, 7, 14, 15 Bands 4–6<br>Provides a detailed discussion of the<br>appropriate reagents and conditions.                                                                                                                                                                                                                                                          |
| integrating to 2H for one of the $CH_2$ groups (at about $\delta 2.00$ ppm)<br>and a triplet integrating to 2H for the $CH_2OH$ group (at around<br>$\delta 3.50$ ppm).<br>The mass spectra for both alcohols will have the same molecular<br>ion (at m/z = 60.0), but the splitting patterns will be different.<br>Propan-2-ol, $CH_3CHOHCH_3$ , will show a strong peak at M <sup>+</sup> -15<br>for the loss of a $CH_3$ group. Propan-1-ol, $CH_3CH_2CH_3OH$ , would<br>be expected to show a strong peak at M <sup>+</sup> -15 for the loss of a<br>CH CH group                                                                                                                                                                                                                                                                                                                                                                                                                                          | Provides a detailed explanation<br>of how NMR AND mass<br>spectroscopic techniques<br>could be used for identification 7<br>Outlines the appropriate reagents<br>and conditions.<br>ND<br>Provides a detailed explanation<br>of how NMR OR mass<br>spectroscopic techniques<br>could be used for identification 5–6<br>Outlines the appropriate reagents<br>and conditions.<br>ND<br>Explains some relevant<br>spectroscopic data 3–4<br>Outlines the appropriate reagents<br>and conditions. |