Neap

Final Examination 2021

NSW Year 11 Chemistry

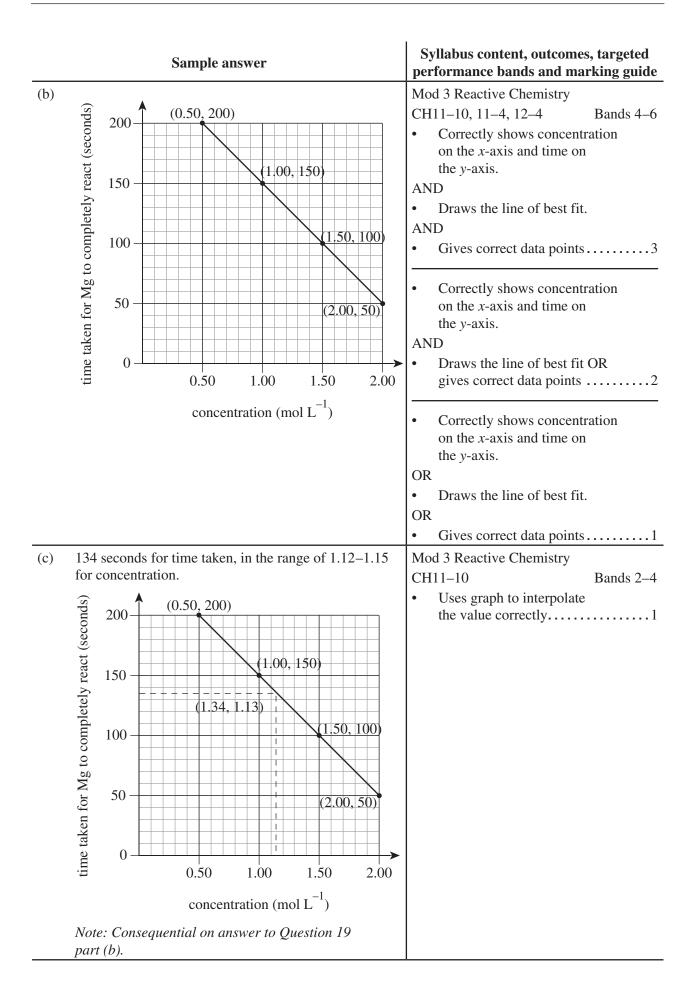
Solutions and marking guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Section	
Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1CC is correct. Tap water, milk and brass are all homogeneous mixtures as the components of these mixtures are not easily seen due to their uniform composition. A, B and D are incorrect as they contain examples that are not homogeneous (soil, air, blood and wood are heterogeneous).	Mod 1 Properties and Structure of Matter CH11–4 Bands 2–4
Question 2CC is correct. The amount of gas generated depends (the dependent variable) on the mass of the reactants. The variable being tested is the mass of the reactants. Their mass is changed, thus mass is the independent variable. The 	Mod 3 Reactive Chemistry CH11–2 Bands 2–4
Question 3AA is correct. Li_2O is the compound formed. As lithiumis a metal, it loses an electron to form a positively chargedcation, and as oxygen is a non-metal, it gains two electronsto form a negatively charged ion. B is incorrect. It showsthe correct formula, but cations do not gain electrons andanions do not lose electrons. C and D are incorrect as theyshow incorrect formulas.	Mod 1 Properties and Structure of Matter CH11–7 Bands 2–4
Question 4BB is correct. It identifies the calcium ion that has lostthe two 4s electrons and the chloride ion that has gainedthe 3p electron. A is incorrect. It identifies the atoms butnot the ions. C and D are incorrect. They have not createdthe correct cation and anion.	Mod 1 Properties and Structure of Matter CH11–7 Bands 2–4
Question 5 B $CuCO_3(s) \rightarrow CuO(s) + CO_2(g)$ 95% of 12.95 g = 12.3025 g n. $CuCO_3 = \frac{12.3025}{(63.55 + 3 \times 16.00 + 12.01)}$ = 0.099567 moles 1 : 1 ratio, thus 0.0995 moles CuO. Mass CuO = 0.099567 × (63.55 + 16.00) = 7.92 g	Mod 2 Introduction to Quantitative Chemistry CH11–6 Bands 4–6
Question 6D $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ Using Gay-Lussac's Law:ratio 1 : 3 : 224.00 L : 72.00 L : 48.00 L	Mod 2 Introduction to Quantitative Chemistry CH11–6 Bands 2–4

Section I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 7AA is correct. K conducts in a molten state only and has a relatively high boiling point; thus, it is ionic. L has a low boiling point and does not conduct electricity; thus, it is covalent molecular. M does not conduct electricity and has the highest boiling point, so it is also covalent and a network. N conducts electricity in both molten and solid states and so is metallic. B, C and D are incorrect. K could not be metallic as it does not conduct in a solid state and it could not be covalent given its electrical conductivity in a molten state. N could not be ionic as it conduct electricity in a molten state.	Mod 1 Properties and Structure of Matter CH11–5 Bands 2–4
Question 8 D Fe has an oxidation state of +2 in FeCl ₂ . FeCl ₂ = 0 Fe× $(2 \times -1) = 0$	Mod 1 Properties and Structure of Matter CH11–6 Bands 2–4
Fe = +2 (green) Fe has an oxidation state of +3 in FeCl _{3.} FeCl ₃ = 0 Fe × $(3 \times -1) = 0$	
Fe = +3 (yellow)	
Question 9CC is correct. X is the most active metal, as it displaces both Y and Z. Z then displaces Y, so Y is the least active metal. A, B, and D are incorrect. These options do not give the required response.	Mod 3 Reactive Chemistry CH11–5 Bands 2–4
Question 10BB is correct. The order of the bond energies is 565, 432, 299.Thus, as the bond energies decrease it would be easiestto decompose them in this descending order. A is incorrect.It arranges the bond energies from lowest to highest. Thisorder would be an ascending order of energy requiredto decompose the molecules. C is incorrect as it shows theorder 498, 242, 436. D is incorrect as it shows the order 436, 242, 498.	Mod 4 Drivers of Reactions CH11–4 Bands 4–6
Question 11AA is correct. According to the results, copper would precipitate in carbonate but not chloride or sulfate. B is incorrect. According to the table, potassium does not produce precipitates. C is incorrect. Strontium would produce a precipitate in sulfate. D is incorrect. Barium would produce a precipitate with sulfate.	Mod 3 Reactive Chemistry CH11–5 Bands 2–4


Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 12CC is correct. Hydrogen peroxide does not decompose as quickly when at room temperature because of the activation energy needed by the particles. A is incorrect. Heat is released during decomposition, so the reaction is exothermic, meaning negative change in enthalpy. B is incorrect. As disorder increases with the decomposition more gas molecules are produced. Thus, change in entropy is positive. D is incorrect. It can be inferred from the enthalpy and entropy changes that the Gibbs free energy would be negative.	Mod 4 Drivers of Reactions CH11–4 Bands 4–6
Question 13 D $(1 \times \Delta H_{f}^{\circ} \operatorname{Na_{2}CO_{3}}(s)) + (1 \times \Delta H_{f}^{\circ} \operatorname{H_{2}O}(g))$ $+ (1 \times \Delta_{f}^{\circ} \operatorname{CO_{2}}(g)) - (2 \times \Delta H_{f}^{\circ} \operatorname{NaHCO_{3}}(s))$ $= -1131 + (-241.8) + (-393.5) - (2 \times -947.7)$ $= +129.1 \text{ kJ mol}^{-1}$	Mod 4 Drivers of Reactions CH11–4 Bands 4–6
Question 14AA is correct. I has 0 moles gas to 3 moles of gas, so the equation has increasing entropy. II has 2 moles of gas to 1 mole of gas, so the equation has decreasing entropy.III has 6 moles of gas to 7 moles of gas, so the equation has increasing entropy. B, C, and D are incorrect. These options do not give the required response.	Mod 4 Drivers of Reactions CH11–4 Bands 4–6
Question 15C $P_1V_1 = P_2V_2$ $P_1 = P_2 (V_2 / V_1)$ $= 1.0 \text{ atm} \left(\frac{42.00 \text{ mL}}{11 \text{ mL}}\right) \text{ OR } 1.0 \text{ atm} \left(\frac{0.042 \text{ L}}{0.011 \text{ L}}\right)$ $= 3.818 \text{ atm}$ Boyle's Law states that for a given quantity of gas at a constant temperature, the product of its volume and its pressure is constant.	Mod 2 Introduction to Quantitative Chemistry CH11–4 Bands 4–6

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 16	
(a)	% sand = $\frac{13.35 - 0.85}{17.59} \times \frac{100}{1}$ = 71.06% % salt = $\frac{37.98 - 34.02}{17.59} \times \frac{100}{1}$ = 22.51%	Mod 1 Properties and Structure of Matter CH11-6 Bands 2-4 • Calculates the percentage of sand. AND • Calculates the percentage of salt
(b)	The calculations show that the percentages do not equal 100. Some mass (salt) has been lost and, thus, the mass of salt measured is lower than the correct value and the results are not accurate. Hence, the experiment is not valid.	Mod 1 Properties and Structure of Matter CH11–3 Bands 2–4 • Provides concise judgement of the validity of the experiment. AND • Provides reasoning

Section II

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Ques	tion 17	
(a)	collect nuts cook nuts	Mod 3 Reactive ChemistryCH11–10, 11–4, 12–4Bands 2–4• Draws the products and processes correctly.AND• Summarises the processes
	crack nuts	Provides some appropriate information1
	grind nuts into a paste place paste in dillybag rinse with water	
(b)	retort stand filter paper residue filter funnel	 Mod 1 Properties and Structure of Matter CH11–8, 11–3, 12–3 Bands 3–4 Draws a clear diagram with all major components: retort stand mixture filter paper residue filter funnel filtrate AND Labels diagram appropriately2 Draws a diagram with at least FOUR of the above components1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 18	
(a)	Acetic acid and glucose have the same empirical formula of CH_2O . An empirical formula only gives the ratio of the atoms present in simple whole numbers, whereas a molecular formula provides the actual number of each atom present.	Mod 2 Introduction to Quantitative Chemistry CH11–6, 12–7 Bands 4–6 • Provides the empirical formula for acetic acid and glucose. AND • Explains the difference between empirical and molecular formulae2 • Provides the empirical formula for acetic acid and glucose. OR
		Explains the difference between empirical and molecular formulae1
(b)	$C_{5}H_{4}O_{2}$ mass = 5×12.01 + 4×1.008 + 2×16 = 96.082 $\frac{288}{96.082}$ = 3.00 Thus, the molecular formula is $C_{5}H_{4}O_{2} \times 3 = C_{15}H_{12}O_{6}$.	Mod 2 Introduction to Quantitative Chemistry CH11–6 Bands 4–6 • Calculates molar mass from empirical formula. AND • Determines the molar mass is three times larger. AND • Multiplies subscripts by three to correctly identify the molecular formula
Que	stion 19	
(a)	$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$	Mod 3 Reactive Chemistry CH11–10 Bands 4–6 • Gives the correct balanced equation AND includes states1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(d)	As concentration of the hydrochloric acid increases, the time taken for the magnesium ribbon to react decreases. This is because there are more acid particles present, and thus the likelihood of collisions between the acid particles and the magnesium increases and the reaction rate increases. <i>Note: Consequential on answer to Question 19</i> <i>part (b).</i>	Mod 3 Reactive ChemistryCH 11–10Bands 2–4• Identifies that, as concentration increases, reaction time decreases.AND• Explains the links between the increased concentration and an increase in particles, and the increased likelihood of collisions
		 Identifies that, as concentration increases, reaction time decreases. OR Explains the links between the increased concentration and an increase in particles, and the increased likelihood of collisions
(e)	The student should wash a 200.00 mL volumetric flask with distilled water only, as if any hydrochloric acid were in the flask, they would not know the final concentration. A 20.00 mL bulb pipette should be rinsed with distilled water to remove impurities and then rinsed with the 2.00 M hydrochloric acid to be diluted, as if any water were left in the pipette it would dilute the acid by an unknown factor. $C_1V_1 = C_2V_2$ $C_1 = 2.00$ M $V_1 = ?$ $C_2 = 0.20$ $V_2 = 200.00$ mL (0.2 L) $V_1 = 0.2 \times \frac{0.2}{2}$ = 0.02 L or 20.00 mL Thus, the student would pipette 20.00 mL of the 2.00 M acid and empty it into the 200.00 mL volumetric flask, increasing the volume up to the 200.00 mL line. This would make 0.2 M or a 1-in-10 dilution.	 Mod 2 Introduction to Quantitative Chemistry CH 11–6 Bands 2–4 Identifies the correct volumetric glassware. AND Explains the reasons for rinsing the volumetric glassware. AND Gives correct equations. AND Calculates volume correctly4 Any THREE of the above points2 Any TWO of the above points1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 20	
 5 g samples of each solid should be dissolved in 50 mL of water in a small beaker. Then place graphite electrodes in the solutions connected in a circuit to a light globe; if the light globe turns on, the solution conducts electricity and is sodium chloride. Being ionic, it conducts electricity in solution, as when it dissolves the ions become mobile charge carriers and allow the electrons in the current to flow through. Sucrose, being covalent, is not able to conduct electricity as there are no free electrons (they are all in covalent bonds shared between the atoms). Thus, the light globe will not turn on when placed in the sucrose solution. OR A small spoonful of each substance could be placed in a beaker and heated over a Bunsen burner on a tripod with a pipe clay triangle. The sample would be heated in a crucible. The sample that melts most easily is sucrose, as it has a low melting point due to the weaker intermolecular forces between its molecules. This is because the forces require less energy to overcome than the ionic attraction in sodium chloride. The positive and negative ions are held together in a three-dimensional lattice by strong electrostatic attraction. This holds them in a regular geometric arrangement, which requires a lot more energy to overcome. Thus, it will not melt over a Bunsen burner at all. 	 Mod 1 Properties and Structure of Matter CH11–8 Bands 2–4 Identifies sucrose as covalent molecular AND sodium chloride as ionic. AND Outlines ONE method to distinguish the white soluble solids based upon differences in physical properties. AND Links the test to the physical properties and intermolecular forces within each substance. AND References equipment and sensible quantities in a school laboratory4 Any THREE of the above points2 Gives some relevant information1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 21	
The first ionisation energy for period 3 graph shows a general increase in the first ionisation energy of the elements from the left-hand side to the right-hand side. Sodium has the lowest ionisation energy at approximately 500 kJ mol ⁻¹ and is a very active metal with only one electron in its outer shell. It does not take as much energy to remove this one outer electron as it does to remove the valence electrons from atoms like chlorine and argon on the right-hand side of the period. Argon has the highest ionisation energy and requires a lot more energy to remove valence electrons, as they are very attracted to the protons in the nucleus due to strong electrostatic attraction. Argon does not react and is not found in compounds as a result. The Atomic radii of period 3 elements graph also explains the properties of the elements in period 3, as from the left-hand side to the right-hand side the atomic radius decreases. Electrons are in the same shell, but as the electrostatic attraction between the valence electrons and the nucleus increases, the radius decreases. Thus, elements on the right-hand side such as chlorine and argon have the smallest radii and the outer electrons are held strongly (when chlorine reacts it gains electrons). Electronegativity is the affinity of a nucleus to hold its electrons, and as the atomic radius decreases and the number of valance electrons during reactions. On the right-hand side of the row, the non-metal chlorine gains electrons very easily in chemical reactions. It can be found in ionic substances where it gains electrons or in forming covalent bonds in substances due to its very high electronegativity. As atomic radii decreases, electronegativity increases and first ionisation energy; thus, energy increases.	 Mod 1 Properties and Structure of Matter CH11–8, 11–7, 12–7 Bands 2–4 Analyses the data in the first ionisation energy for period 3 graph. AND Analyses the data in the Atomic radii of period 3 elements graph. AND Analyses the data in the Electronegativity in period 3 graph. AND Describes the properties of the elements across period 3. AND Shows that the trends are linked to each other

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 22	
(a)	Mod 3 Reactive Chemistry CH11–4, 11–6 Bands 4–6 • Draws a clear diagram. AND • Correctly labels all of: – electrolytes – aluminium anode – tin cathode – electron flow from anode to cathode – anions to anode – cations to cathode – salt bridge – voltmeter
(b) $2Al(s) + 3Sn^{2+}(aq) \rightarrow 2Al^{3+}(aq) + Sn(s)$ $2Al(s) \rightarrow 2Al^{3+}(aq) + 6e^{-}$ oxidation $3Sn^{2+}(aq) + 6e^{-} \rightarrow 3Sn(s)$ reduction From the data sheet (standard potentials): reduction - oxidation = -0.14 V - (-1.68 V) = 1.54 V OR 1.68 + (-0.14) = 1.54 V	 Mod 3 Reactive Chemistry CH11-4, 11-6 Bands 2-4 Gives the correct redox equation. AND Identifies the correct values from data sheet. AND Gives correct calculation for emf of this cell

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 23	
^(b) :Ö: H H :Ö::C::Ö:	OR • States that sulfur dioxide is the limiting reagent. OR • Correctly calculates the mass of sulfur trioxide. AND • Gives answer to three significant figures1 Mod 1 Properties and Structure of Matter CH11–7 Bands 2–4 • Draws a Lewis dot diagram for water. AND • Draws a Lewis dot diagram for carbon dioxide
	 OR Draws a Lewis dot diagram for carbon dioxide

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	 (c) Water has a much higher boiling point due to its polar nature and the presence of hydrogen bonds between its molecules. These bonds are stronger than the dispersion forces between carbon dioxide molecules and thus they require more energy to overcome. Note: Students may also draw the hydrogen bonds between water molecules to support their response. 	 Mod 1 Properties and Structure of Matter CH11–7 Bands 2–4 Identifies that water has a higher boiling point because it is polar and has hydrogen bonds. AND Identifies that carbon dioxide has a lower boiling point because it has dispersion forces between molecules
		 Identifies that water has a higher boiling point because it is polar and has hydrogen bonds. OR Identifies that carbon dioxide has a lower boiling point because it has dispersion forces between molecules

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 24	
(a) Calculate Δ entropy for the reaction: $\Delta S^{\Theta} = \left(S^{\Theta}CO_{2}(g) + 2S^{\Theta}NH_{3}(g)\right) \\ -\left(S^{\Theta}CO(NH_{2})_{2}(s) + S^{\Theta}H_{2}O(l)\right) \\ = \left[(1 \times 213.6) + (2 \times 192.5)\right] \\ -\left[(1 \times 104.6) + (1 \times 69.96)\right] \\ = 598.6 - 174.6 \\ = 424.0 \text{ J mol}^{-1}\text{K}^{-1} \\ Positive entropy indicates an increase in entropy, which is to be expected as 3 moles of gas have been formed from liquid reactants. The positive entropy drive favours the reaction as written. Calculate \Delta enthalpy for the reaction:\Delta H^{\Theta} = \left(\Delta H^{\Theta}CO_{2}(g) + 2\Delta H^{\Theta}NH_{3}(g)\right) - \left(\Delta H^{\Theta}CO(NH_{2})_{2}(s) + \Delta H^{\Theta}H_{2}O(l)\right) \\ = \left[(1 \times -393.5) + (2 \times -46.19)\right] \\ -\left[(1 \times -393.5) + (2 \times -46.19)\right] \\ = (-485.88) - (-619.09) \\ = +133.21 \text{ kJ mol}^{-1} \\ Positive enthalpy indicates an endothermic reaction. Calculate standard Gibbs free energy: \Delta G^{\Theta} = \Delta H^{\Theta} - T\Delta s^{\Theta} \\ = 133.2 \times 10^{3} - \left[(25 + 273.15) \times (424.0)\right] \\ = 133.2 - 126.4 \\ = 6.8 \text{ kJ mol}^{-1} \\ \Delta G^{\circ} is positive, suggesting that the reaction is not spontaneous as given. However, as the entropy drive is larger, it is likely to occur if the mixture is continually heated, as increased temperature would provide the energy needed for the reaction to continue given it is endothermic in the direction as written. The reactants require energy to overcome the activation energy and react; an input of energy would provide this. \\$	 Mod 4 Drivers of Reactions CH11–7 Bands 4–6 Correctly calculates S^Θ. AND Correctly calculates H^Θ. AND Correctly calculates G^Θ. AND States that the increase in entropy favours the reaction. AND States that the positive enthalpy indicates an endothermic reaction. AND States that the positive Gibbs free energy indicates the reaction would not be spontaneous as written

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) (b) (c)	Mod 4 Drivers of Reactions CH11–7 Bands 4–6 • Labels the reactants and products. AND • Labels the activation energy. AND • Draws a smooth, clean line demonstrating endothermic reaction. AND • Labels the axes
Question 25 (a) $\operatorname{Cu}(s) + 2\operatorname{Ag}^+(aq) \rightarrow \operatorname{Cu}^{2+}(aq) + 2\operatorname{Ag}(s)$	Mod 3 Reactive Chemistry CH 11–10 Bands 2–4 • Gives correct, balanced net

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	The copper is a more active metal than silver and has thus displaced the silver ions from the $AgCH_3COO$ solution. As the Cu ²⁺ ions went into the solution, it became blue in colour and the Ag^+ ions came out of the solution and deposited as $Ag(s)$ on the copper wire, giving it a shiny silver appearance.	 Mod 3 Reactive Chemistry CH 11–10 Bands 2–4 Explains the displacement reaction. AND Identifies the deposition of silver metal. AND Identifies that the formation of the copper ions is the source of the blue colour2 Gives some relevant information1
(c)	moles of copper = $\frac{5.15 - 4.50}{63.55}$ = 0.010228 moles of silver = 2 × 0.010228 = 0.020456 solution concentration in 100.00 mL = $\frac{0.020456}{0.1}$ = 0.2046 mol L ⁻¹	Mod 2 Introduction to Quantitative Chemistry CH 11–9 Bands 4–6 • Calculates moles of copper correctly. AND • Calculates moles of silver correctly. AND • Calculates the concentration of the solution in 100.00 mL3 • Any TWO of the above points1