Neap

Trial Examination 2021

HSC Year 12 Chemistry

Solutions and marking guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1 B	Mod 5 Calculating the Equilibrium
B is correct. For a reaction such as $aA + bB \rightleftharpoons cC + dD$,	Constant CH12–6, 12–12 Band 2
the equilibrium expression is $K_{eq} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$. Hence, for	
the reaction $2H_2O(g) + CH_4(g) \rightleftharpoons CO_2(g) + 4H_2(g)$,	
$K_{eq} = \frac{[\text{CO}_2][\text{H}_2]^4}{[\text{H}_2\text{O}]^2[\text{CH}_4]}$. A , C and D are incorrect. These	
options do not show suitable equilibrium expressions.	
Question 2CC is correct. Increased reaction rate is caused by heat increasing the kinetic energy of reactant molecules, causing them to collide more frequently and with more energy. Hence, there are more collisions that create the product. A and B are incorrect. Collision of product molecules cannot produce any more product. D is incorrect. Reactant molecules collide more frequently when heated.	Mod 5 Factors that Affect Equilibrium CH12–12 Band 3
Question 3 A A is correct. The diagram shows an ionic lattice being broken down, with polar water molecules being attracted to anions (negative) and cations (positive). B is incorrect. An acid would produce hydronium ions (H_3O^+) , which is not shown in the diagram. C is incorrect. Hydroxide ions are not produced. D is incorrect. Precipitation involves oppositely charged ions coming together and forming an insoluble compound.	Mod 5 Solution Equilibria CH12–12 Band 3
Question 4CC is correct. The only changes that meet the criteria for an increase in product (hydrogen iodide) are II and IV. The reaction is exothermic (H is less than zero) and a decrease in temperature would favour formation of products. Adding hydrogen, a reactant, will increase formation of products. A and B are incorrect. As this reaction involves two volumes of gas on each side of the equation, changing volume or pressure will have no effect on position of equilibrium. D is incorrect. Adding an inert gas while changing the volume will have no effect on the position of equilibrium.	Mod 5 Factors that Affect Equilibrium CH12–6, 12–12 Bands 4–5

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 5 A	Mod 5 Factors that Affect Equilibrium	
A is correct. From the commencement of the process,		
both forward and reverse reactions are taking place.		
At t_1 , the first equilibrium has been reached and forward		
and reverse reactions are occurring at the same rate.		
At t_2 , there is a sharp increase in reactant concentration.		
Immediately after t_2 , the system favours the forward reaction,		
as indicated by the slow rise in products and simultaneous		
slow decrease in reactants. At t_3 , a new equilibrium		
has been reached with forward and reverse reactions		
occurring at the same rate. B , C and D are incorrect.		
These options do not reflect the criteria above.		
Question 6 A	Mod 6 Using Brønsted–Lowry Theory	
A is correct. Neutralisation goes to completion with the same	CH12–6, 12–13 Band 4	
stoichiometric ratio between hydrochloric acid and sodium		
hydroxide as acetic acid and sodium hydroxide because they		
are both monoprotic acids. Hydrochloric acid is a strong acid		
and ethanoic acid is a weak acid. B , C and D are incorrect.		
Hydrochloric acid will have a greater electrical conductivity,		
will react more vigorously with magnesium ribbon and will		
have more hydrated hydrogen (H_3O^+) ions present.		
Question 7 C	Mod 6 Quantitative Analysis	
C is correct. As the mixture consists of a weak base	CH12–6, 12–13 Bands 3–4	
(ammonia solution) and its salt (ammonium chloride),		
it is a buffer. A is incorrect. The mixture is weakly basic.		
B is incorrect. The mixture has a pH above 7. D is incorrect. Being a buffer, the mixture will resist changes in pH		
but this may change depending on what solution is added.		
Question 8 C	Mod 6 Quantitative Analysis	
	CH12–6, 12–13 Bands 4–5	
C is correct. Because pH is a logarithmic scale, + -2 -1 $+$ -4 -1		
$[\mathrm{H}^{+}]_{\mathrm{X}} = 10^{-2} \text{ mol } \mathrm{L}^{-1} \text{ and } [\mathrm{H}^{+}]_{\mathrm{Y}} = 10^{-4} \text{ mol } \mathrm{L}^{-1},$		
giving $[H^+]_X = 100[H^+]_Y$. A is incorrect. As solution X		
has the lower pH, it is the stronger acid (both solutions		
are of equal concentration). B is incorrect. $[H^+]_X = 100[H^+]_Y$.		
D is incorrect. As $pOH = 14 - pH$, the pOH of solution		
X = 12 and the pOH of solution $Y = 10$. Hence, [OH ⁻]		
in solution X is 10^{-12} mol L^{-1} and [OH ⁻] in solution Y		
is 10^{-10} mol L ⁻¹ . This means that [OH ⁻] in solution X		
is 100 times that of [OH ⁻] in solution Y.		

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 9BB is correct. The equivalence point is the midpoint of the vertical section of the titration curve. A line drawn from this point to the pH axis gives the pH of the equivalence point, which, in this case, is approximately 5.	Mod 6 Quantitative Analysis CH12–6, 12–13 Bands 3–4	
E H		
A, C and D are incorrect. These options are not supported by the graph.		
Question 10AA is correct. An acid and its conjugate base differby a single proton. In this reaction, the conjugateacid/base pairs are HCN/CN ⁻ and H2O/OH ⁻ . $CN^- + H_2O \rightleftharpoons HCN + OH^-$ baseacidacidbasebaseacidbasebase	Mod 6 Using Brønsted–Lowry Theory CH12–6, 12–13 Band 4	
by a transferable hydrogen ion.		
Question 11 D D is correct. The 'one' suffix identifies the highest priority functional group, which is the C=O. The longest carbon chain to include the C=O group contains seven carbons, so it is a heptanone. The OH group is indicated by the prefix 'hydroxy'. The number system starts at the end of the carbon chain closest to the ketone functional, placing the C=O group at carbon-3 and the OH group at carbon-6, giving the correct name as 6-hydroxyheptan-3-one. A is incorrect. The number system should start at the end of the carbon chain closest to the most important functional group (C=O). B is incorrect. In IUPAC naming, the C=O functional group is of higher priority than the OH functional group and the suffix is therefore 'one' not 'ol'. C is incorrect. When both the OH and C=O groups are present, the lower priority OH group is identified by the prefix 'hydroxy'.	Mod 7 Nomenclature CH12–7, 12–14 Bands 2–3	

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 12 A A is correct. Butanoic acid is the most polar molecule (as it contains two oxygen atoms) so it will form stronger dipole–dipole forces and stronger H-bonds, giving it the highest boiling point. The only non-polar molecule, 2-methylbutane, will only have dispersion forces, resulting in it having the lowest boiling point. Ethyl ethanoate and butan-1-ol are both polar and will both form dipole–dipole forces. However, only butan-1-ol can form H-bonds. So, butan-1-ol will have the higher boiling point. B , C and D are incorrect. These options do not show the compounds arranged in order of increasing boiling points.	Mod 7 Alcohols Mod 7 Reactions of Organic Acids and Bases CH12–6, 12–14 Bands 4–5	
Question 13BThe mass of one mole of C_4H_9OH is 74.12 g.	Mod 7 AlcoholsCH12-6, 12-14Bands 2-3	
heat released = $\frac{2676}{74.12}$ $= 36.1 \text{ kJ}$		
Question 14AA is correct. The broad band at approximately $3200 \mathrm{cm}^{-1}$ is characteristic for an OH group, so the compound couldbe either hexan-1-ol or hexanoic acid. The absenceof a strong sharp absorbance between $1700 \mathrm{cm}^{-1}$ and $1800 \mathrm{cm}^{-1}$ rules out the presence of C=O, which leaveshexan-1-ol as the only possibility. B , C and D are incorrect.These compounds are not supported by the infrared spectrum.	Mod 8 Analysis of Organic Substances CH12–6, 2, 3, 4, 15 Bands 4–5	
Question 15DD is correct. Each compound would produce an easy-to-identify pattern of peaks in their ${}^{1}H$ NMR spectrum. A is incorrect. Atomic absorption spectroscopy is a technique used to detect low amounts of metal ions in a solution and would not be applicable for analysing the carbon compounds listed. B and C are incorrect.All four compounds are isomeric alcohols and will have similar absorbances in ultraviolet-visible spectrophotometry and infrared spectroscopy.	Mod 8 Analysis of Organic Substances CH12–1, 2, 3, 4, 15 Bands 5–6	

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 16DD is correct. Butanoic acid and methyl propanoate are similar sized molecules and will have similar sized dispersion forces. Both are polar molecules and will form dipole–dipole forces. However, the OH group present in butanoic acid enables 	Mod 7 Reactions of Organic Acids and Bases CH12–6, 12–7 Band 3	
Question 17DD is correct. The polymer is a type of nylon – a condensation polymer formed by the reaction between, in this example, a diacid and a diamine. A is incorrect. Alkanes do not react with HCNO. B is incorrect. Alcohols do not react with amides. C is incorrect. Alkenes do not react with amides.	Mod 8 Polymers CH12–14 Bands 3–4	
Question 18CC is correct. Ethyne has a triple-bond and the shape around a triple-bond is linear with a bond angle of 180°.A and B are incorrect. Carbons bonded to four other atoms are tetrahedral in shape with a bond angle of 109.5°.D is incorrect. The shape around an alkene double-bond is triangular (trigonal) planar with a bond angle of 120°.	Mod 7 Hydrocarbons CH12–6, 14, 15 Bands 5–6	
Question 19BB is correct. The compound shown in B contains an NH2functional group, an amine, which is basic because hydrolysisresults in the formation of hydroxide ions. A and Care incorrect. A is an alcohol and C is an ester; both thesefunctional groups are neutral when dissolved in water.D is incorrect. D is an alkanoic acid and will be the leastbasic of the compounds.	Mod 7 Reactions of Organic Acids and Bases CH12–5, 12–7 Band 3	
Question 20CC is correct. The 1,2-dichloroethane (ClCH2CH2Cl)is symmetrical and contains only one unique typeof carbon atom. Therefore, its 13 C NMR will displaya single peak. A is incorrect. The 13 C NMR for chloroethane(ClCH2CH3) will show two peaks. B is incorrect.The 13 C NMR for 1-chloropropane (ClCH2CH2CH3)will show three peaks. D is incorrect. The 13 C NMRfor 1,3-dichloropropane (ClCH2CH2CH2Cl) will showtwo peaks.	Mod 8 Analysis of Organic Substances CH12–1, 3, 4, 15 Band 4	

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 21	
<i>For example:</i> The combustion of octane is an example of a non-equilibrium reaction. The rate of the forward reaction does not equal the rate of the reverse reaction.	 Mod 5 Static and Dynamic Equilibrium CH12–7, 12–12 Bands 5–6 Describes enthalpy changes for the named reaction.
$C_8H_{18}(l) + 12\frac{1}{2}O_2(g) \rightarrow 8CO_2(g) + 9H_2O(l)$ The Gibbs free energy (G), enthalpy (H), temperature (T) and entropy (S) are related by the equation $\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$. G is negative for all spontaneous reactions (reactions that strongly favour the forward direction). It is negative for non-spontaneous reactions (reactions that strongly favour the reverse direction). Enthalpy is a measure of the energy content of a system and reactions favour the forward direction, which is at a lower energy. The combustion of octane is an exothermic reaction (ΔH is negative) because heat is released. Therefore, the forward reaction is strongly favoured	 Describes entropy changes for the named reaction. AND Discusses the Gibbs free energy changes of the named reaction. AND Identifies that equilibrium can only be achieved in a closed system
The entropy change is positive as the system becomes more disordered (more gas molecules produced). Reactions will spontaneously favour the direction of reaction in which the system is most disordered. The forward reaction in the combustion of octane contains more gas molecules and is more disordered. Therefore, entropy also strongly favours the forward reaction. Both enthalpy and entropy considerations favour the forward reaction, so the combustion of octane does not reach an equilibrium state as neither enthalpy nor entropy changes favour the reverse reaction. An engine is an open system in which octane is drawn from a fuel tank and oxygen is taken from the air. Hence, the forward reaction can occur as long as fuel remains. In addition, carbon dioxide is 'lost' to the surroundings, making the possibility of a reverse reaction impossible.	• Any ONE of the above points 1

Sample answer		Syllabus content, outcomes, targeted performance bands and marking guide	
Que	stion 22		
(a)	There are two gas molecules on the left-hand side of the equation, and one gas molecule on the right-hand side. Le Châtelier's principle states that the system will shift in such a way to minimise the change; that is, it will shift to minimise the increase in pressure. The pressure is due to gas molecules and so the minimum pressure is achieved by shifting the reaction from the left (two moles of gas) to the right (one mole of gas), resulting in a decrease in reactants and an increase in products.	Mod 5 Factors that Affect Equilibrium CH12-6, 12-12 Band 3 • Correctly states what will happen to the position of equilibrium. AND • Gives a suitable explanation2 • Correctly states what will be a suitable what will be a suitable explanation	
(b)	The activation energy of the forward reaction is approximately 115 kJ mol^{-1} . The activation	will happen to the position of equilibriumMod 5 Factors that Affect Equilibrium CH12-6, 12-12Bands 2-3	
	energy of the reverse reaction is approximately $(115 + 52) = 167 \text{ kJ mol}^{-1}$.	Correctly determines the TWO activation energies2	
	120 120	• Correctly determines ONE activation energy1	
	Note: Accept responses that correctly represent the activation energies on the diagram.		

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	 For example: Increasing temperature increases the rate of both forward and reverse reactions, so an equilibrium position will be reached more rapidly at a higher temperature. Le Châtelier's principle predicts the system will shift to minimise the effect of increasing temperature. The system minimises the increase in heat content that occurs when increasing temperature by favouring the endothermic reaction, as this shift absorbs heat. The reverse reaction is the endothermic reaction, so the equilibrium shifts to the left-hand side and there will be a greater proportion of reactants in the new equilibrium mixture that forms at the higher temperature. The equilibrium constant changes when temperature is changed and, in this case, as the new equilibrium position has an increased proportion of reactants 	 Mod 5 Factors that Affect Equilibrium CH12-6, 12-12 Bands 2-3 Explains the effect of temperature on reaction rates. AND Uses Le Châtelier's theory to predict the effect of temperature on the equilibrium position. AND Explains the effect of temperature on the magnitude of the equilibrium constant
	the equilibrium constant decreases when temperature is increased.	• Any ONE of the above points 1
	Note: A suitable alternative answer may include references to the Gibbs free energy.	

Sample answer
Question 23
initial total volume $= 20.0 \text{ mL}$
= 0.0200 L
initial moles of $Fe^{3+} = 0.0100 \times 0.00200$
= 0.0000200
$= 2.00 \times 10^{-5}$ mol
initial $[Fe^{3+}] = \frac{2.00 \times 10^{-5}}{0.0200}$
$= 0.0100 \text{ mol } \text{L}^{-1}$
$[SCN^{-}] = 0.0100 \text{ mol } L^{-1}$
initial moles of $FeSCN^{2+} = 0$ mol

final $[FeSCN^{2+}] = 1.45 \times 10^{-4} \text{ mol } \text{L}^{-1}$

	Fe^{3+}	SCN ⁻	FeSCN ²⁺
Initial number of moles	2×10^{-5}	2×10^{-5}	0
Change	-2.9×10^{-6}	-2.9×10^{-5}	$+2.9 \times 10^{-6}$
Final number of moles	1.71×10^{-5}	1.71×10^{-5}	2.9×10^{-6}
Final concentration	8.55×10^{-4}	8.55×10^{-4}	1.45×10^{-4}

$$Q = \frac{[FeSCN^{2+}]}{[Fe^{3+}][SCN^{-}]}$$
$$= \frac{[1.45 \times 10^{-4}]}{[8.55 \times 10^{-4}][8.55 \times 10^{-4}]}$$
$$= 198$$

In this case, $Q = 1.98 \times 10^2$ is less than $K = 2.05 \times 10^2$. Therefore, the reaction must shift to the right to reach equilibrium.

Syllabus content, outcomes, targeted performance bands and marking guide Mod 5 Calculating the Equilibrium Constant CH12-6. 12-12 Band 6 Correctly calculates the reaction quotient. AND • Shows ALL relevant working. AND • Compares equilibrium constant to reaction quotient. AND • Determines the direction Correctly calculates the reaction quotient. AND Shows SOME relevant working. • AND Compares equilibrium • constant to reaction quotient. OR Determines the direction • of the reaction 4 Correctly calculates the reaction quotient. AND Shows SOME relevant working. • AND • Refers to equilibrium constant AND reaction quotient. OR • Determines the direction Shows SOME relevant working. • AND • Refers to equilibrium constant • Shows SOME relevant working. OR •

Refers to equilibrium constant AND reaction quotient.....1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide	
Question 24		
NaOH(aq) + CH ₃ COOH(aq) \rightarrow CH ₃ COONa (aq) + H ₂ O(l)	 Mod 6 Quantitative Analysis CH12–4, 12–6, 12–12 Band 6 Correctly graphs the data showing lines of best fit. AND Extrapolates equivalence point. AND Calculates concentration accurately. AND Shows working. AND Makes the correct conclusion based on concentration	
end point = 8.5 mL = 0.0085 L NaOH For dilute solution: moles of NaOH = 0.0085×0.12 = 0.00102 mol	 Correctly graphs the data showing lines of best fit. AND Extrapolates equivalence point. AND 	
moles of $CH_3COOH = 0.00102$ mol	Calculates concentration accurately OR shows working.	
For original sample: moles of CH ₃ COOH = $0.00102 \times \frac{250}{25}$	AND Makes a conclusion based on concentration4–5	
= 0.0102 mol molar mass of $CH_3COOH = 2 \times 12.01 + 4 \times 1.008 + 2 \times 16.00$ = 60.052 g mol ⁻¹	 Correctly graphs the data showing lines of best fit. AND Extrapolates equivalence point 	
mass of CH ₃ COOH = 0.0102×60.052 = 0.613 g % CH ₃ COOH = $\frac{0.613}{25.00} \times 100$	 OR calculates concentration accurately OR shows working. AND Makes a conclusion based on concentration2–3 	
= 2.45 = 2.5% The concentration of the vinegar is less than the 7% minimum required concentration to be an effective cleaning agent.	Provides some relevant information1	

Note: Accept responses within reasonable ranges that vary due to the endpoint read from the drawn graph. End point values between 8.3 and 8.7 are acceptable.

Sample answer		Syllabus content, outcomes, targeted performance bands and marking guide	
Question 25			
(a)	Equation for reaction: $2HNO_{3}(aq) + Ca(OH)_{2}(aq) \rightarrow Ca(NO_{3})_{2}(aq) + 2H_{2}O(l)$ molar mass = 40.08 + 2(16.00 + 1.008) = 74.10 g initial moles of Ca(OH)_{2} = \frac{mass}{molar mass} $= \frac{1.78}{74.10}$ $= 0.0240 \text{ mol}$ \therefore initial moles of OH ⁻ = 0.0480 mol initial moles of OH ⁻ = 0.0480 mol initial moles of nitric acid (HNO_{3}) = 0.250 \times 0.200 $= 0.0500 \text{ mol}$ Nitric acid is in excess; therefore, the final number of moles of HNO_{3} (0.0500 - 0.0480) = 0.002 mol. [HNO_{3}] in excess = $\frac{0.002}{0.250}$ $= 0.008 \text{ mol L}^{-1}$ pH = $-\log[H^{+}]$ $= -\log[0.008]$ = 2.097 = 2.10	Mod 6 Properties of Acids and Bases Mod 6 Using Brønsted–Lowry Theory CH12–6, 12–13 Bands 5–6 • Uses correct stoichiometry. AND • Shows relevant calculations. AND • Calculates pH correctly	
(b)	Nitric acid can be regarded as both an Arrhenius acid and a Brønsted–Lowry acid. An Arrhenius acid is a substance that dissociates in solution to produce hydrogen ion. For nitric acid: $HNO_3(aq) \rightarrow H^+(aq) + NO_3^-(aq)$ A Brønsted–Lowry acid is a substance that undergoes a hydrolysis reaction to produce $H_3O^+(aq)$. For nitric acid: $HNO_3(aq) + H_2O(l) \rightarrow H_3O^+(aq) + NO_3^-(aq)$ acid base conugate conugate acid base	Mod 6 Properties of Acids and Bases CH12–13 Band 3 • Explains how nitric acid can be regarded as an Arrhenius acid. AND • Explains how nitric acid can be regarded as a Brønsted–Lowry acid	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 26	
(a)	$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$	Mod 6 Properties of Acids and BasesCH12–13Band 2• Writes an appropriate equation1
(b)	The stoichiometry of the equation shows one mole of hydrogen gas is generated for one mole of magnesium reacted. moles of magnesium $=$ $\frac{\text{actual mass}}{\text{molar mass}}$ $= \frac{0.361}{24.31}$ = 0.01485 mol volume of H ₂ = moles × molar volume $= 0.01485 \times 24.79$ = 0.368 or 368 mL (to 3 significant figures)	Mod 6 Properties of Acids and Bases CH12-6, 12-13 Band 3 • Uses correct stoichiometry. AND • Shows relevant calculations. AND • Calculates volume correctly
(c)	 Any one of: Standard conditions (25°C and 100 kPa) might not be in place. That is, it may be warmer than 25°C and/or the pressure may be less than 100 kPa. 	Mod 6 Properties of Acids and Bases CH12–6, 12–13 Band 4 • Gives ONE appropriate reason1
	 Heat might be generated in the exothermic reaction, causing the gas to expand. The sample of hydrogen collected might not have been pure (for example, if some of the sample was not hydrogen, but water vapour). 	

Sample answer			Syllabus content, outcomes, targeted performance bands and marking guide		
Question 27					
(a)	Equation for reaction: HCOOH(aq) H ₂ O(l) \rightleftharpoons HCOO ⁻ (aq) + H ₃ O ⁺ (aq) Equilibrium expression: $K_a = \frac{[\text{HCOOH}^{-}][\text{H}_3\text{O}^{+}]}{[\text{HCOOH}]}$ pH = 2.38 $= -\log[\text{H}_3\text{O}^{+}]$ Hence $[\text{H}_3\text{O}^{+}]$		Mod 6 Quantitative Analysis CH12-6, 12-13 Bands 4-5 • Uses correct equilibrium expression. AND • Shows relevant calculations. AND • Calculates dissociation constant correctly		
	Init	ial (I), change (C), ec	uilibrium (E) ta	ible:	• Uses correct equilibrium expression. AND
		HCOOH(aq)	HCOO ⁻ (aq)	$H_3O^+(aq)$	Shows relevant calculations.
	Ι	0.100	0	0	ORCalculates dissociation
	С	$0.100 - 4.169 \times 10^{-3}$	$+4.169 \times 10^{-3}$	$+4.169 \times 10^{-3}$	constant correctly2
	E	0.0958	4.169×10^{-3}	4.169×10^{-3}	Uses correct
	Not of h of v Bec app to th K_a	The: Water is omitted final field of the second se	from the table as ed by the self-ic ation takes place ncentration of for 69×10^{-3}]	<i>the number</i> <i>misation</i> e, we can ormic acid	 equilibrium expression. OR Shows relevant calculations. OR Calculates dissociation constant correctly1
(b)	As the value of the dissociation constant calculated in part (a) is very small, the strength of this acid is weak. <i>Note: Consequential on answer to Question 27(a).</i>		Mod 6 Quantitative Analysis CH12–6, 12–13 Band 2 • Correctly identifies		
Ouestion 28					
(a)	(a) $C_6H_5NO_3(aq) + H_2O(l) \rightleftharpoons C_6H_4NO_3^-(aq) + H_3O^+(aq)$			Mod 6 Quantitative Analysis CH12–6, 12–13 Band 2 • Correctly completes the equilibrium equation1	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	The Beer–Lambert law relates absorbance and concentration. $A = \varepsilon lc$ $0.433 = 18600 \times c \times 1.00$ $c = 2.32 \times 10^{-5} \text{ mol L}^{-1}$	 Mod 8 Analysis of Inorganic Substances CH12–4 Bands 3–4 Correctly determines the value of the concentration. AND Expresses the answer to the correct number of significant figures
		Provides some relevant information1
Que	stion 29	
(a)	(i) The electric field accelerates all ions to the same speed.	 Mod 8 Analysis of Organic Substances CH12–7, 12–15 Bands 3–4 Correctly identifies the purpose of the electric field 1
	(ii) The magnetic field sorts ions according to the mass-to-charge ratio.	Mod 8 Analysis of Organic Substances CH12–7, 12–15 Bands 3–4 • Correctly identifies the purpose of the magnetic field1
(b)	The element that has an atomic mass of 74.92 amu is arsenic. As there is only one peak at this point, arsenic consists of a single isotope. The two peaks at 106.9 amu and 108.9 amu suggest an element with two isotopes. The element that has an average atomic mass between these two values is silver.	Mod 8 Analysis of Organic Substances CH12-6, 12-7, 12-14 Bands 4-5 • Identifies both elements present in the mixture. AND • Correctly determines the number of isotopes for each element
(c)	Hexane and hexan-1-ol both contain C–H and C–C bonds. However, hexan-1-ol contains C–O and O–H bonds. The O–H bond shows a broad absorbance between 3200 cm^{-1} and 3600 cm^{-1} and the C–O bond shows a strong absorbance at approximately 1100 cm ⁻¹ .	 Mod 8 Analysis of Organic Substances CH12–6, 12–7, 12–14 Bands 4–5 Identifies that hexan-1-ol contains C–O and O–H bonds AND Correctly identifies the relevant absorption peaks2 Any ONE of the above points

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 30	
As compound X is insoluble, it is unlikely to be a nitrate salt. As compound X is a white solid, it is unlikely to be a transition metal salt. A colourless gas is produced when nitric acid is added to compound X, suggesting that it is a carbonate. Solution Y is the nitrate salt of the cation present in compound X. Solution Y does not form a precipitate with NaCl(<i>aq</i>), so the cation is not Ag ⁺ or Pb ²⁺ . Solution Y forms a precipitate with Na ₂ SO ₄ , so the cation could be either Ba ²⁺ or Ca ²⁺ . As solution Y does not precipitate with NaOH, the cation is not Ca ²⁺ . Therefore, compound X is barium carbonate. The relevant net ionic equations are: BaCO ₃ (<i>s</i>) + 2H ⁺ (<i>aq</i>) \rightarrow Ba ²⁺ (<i>aq</i>) + H ₂ O(<i>l</i>) + CO ₂ (<i>g</i>) Ba ²⁺ (<i>aq</i>) + SO ₄ ²⁻ \rightarrow BaSO ₄ (<i>s</i>)	 Mod 5 Solubility Equilibria Mod 8 Analysis of Inorganic Substances CH12–3, 4, 5, 6 Bands 5–6 Correctly identifies compound X. AND Provides detailed reasons drawn from the information provided. AND Provides relevant net ionic equations
	relevant information1

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion	31	
(a)	(i)	The oxidation product, compound B, contains two oxygen atoms, which suggests that compound B is an acid. Oxidation of primary alcohols yields acids, indicating that compound A must be a primary alcohol.	Mod 7 Alcohols CH12-6, 12-14Band 4• Correctly identifies that compound A is a primary alcohol.Band 4• Provides a suitable supporting explanation
			• Correctly identifies that compound A is a primary alcohol1
	(ii)	 For example, any one of: acidified potassium dichromate solution acidified potassium permanganate solution 	Mod 7 Hydrocarbons CH12–6, 12–14 Bands 2–3 • Identifies an appropriate oxidising agent
(b)	buta H—	noic acid H H H O C-C-C-C-C H H H O H H H O-H	Mod 7 Alcohols CH12-6, 12-14Bands 3-4• Correctly names compound B. AND• Draws an appropriate structural formula.OR• Equivalent merit
(c)	1-ы	ityl butanoate H H H O C-C-C-C-C H H H H H H H H O-C-C-C-C-H H H H H H H H H H	Mod 7 Alcohols CH12-6, 12-14Bands 3-4• Correctly names compound C. AND• Draws an appropriate structural formula.OR• Equivalent merit

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 32	
Que:	stion 32 The peak at m/z = 88 is the molecular ion. molar mass $C_4H_8O_2 = 4 \times 12.01 + 8 \times 1.008 + 2 \times 16.00$ = 88.10 Compound X is methyl propanoate, $CH_3CH_2COOCH_3$. The infrared spectrum shows a strong peak at around 1700 cm^{-1} , which suggests a carbonyl (C=O) group. The lack of a broad band between 3000 cm ⁻¹ and 3500 cm ⁻¹ indicates that the compound does not contain an OH group. Therefore, the compound is not an alkanoic acid. The compound could be an ester, aldehyde or ketone. The quartet signal in the ¹ H NMR is due to hydrogens on a carbon adjacent to CH_3 (giving a partial structure of CH_xCH_2). The triplet signal is due to hydrogens on a carbon adjacent to CH_2 (giving a partial structure of CH_xCH_2). A quartet and triplet combination indicates the compound contains the CH_3CH_2 partial structure. Methyl propanoate, $CH_3CH_2COOCH_3$, contains the CH_CH_ partial structure indicated by the proton	Mod 8 Analysis of Organic Substances CH12-4, 12-7, 12-15 Bands 2-3 • Correctly identifies the peak at m/z = 881 Mod 8 Analysis of Organic Substance CH12-4, 12-7, 12-15 Bands 5-6 • Correctly identifies compound X. AND • Provides a detailed justification with reference to ALL of the data
	NMR. In addition, the singlet for the CH_3O hydrogens is present, as would be expected. The ester function agrees with the IR data. The parent ion in the mass spectrum would appear at m/z = 88 amu and this ester would be expected lose a CH_3O fragment with a peak then appearing at m/z = 88 – 81 = 57 amu in the mass spectrum, as is the case. The other possible ester, ethyl ethanoate, would lose a CH_3CH_2O fragment with a peak showing at m/z = 45 amu.	 Correctly identifies compound X. OR Justifies a partially correct structure with reference to some of the data1

	Sample answer		Syllabus content, outcomes, targeted performance bands and marking guide	
Ques	stion 33			
(a)	Systematic name 1-chloroprop-1-ene OR 1-chloropropene	Structural formula H H H $H-C-C=C-Cl$ $H H H$	 Mod 7 Organic Chemistry CH12-4, 12-7, 12-15 Bands 2-3 Correctly identifies THREE isomeric chloroalkenes. AND Correctly draws all THREE isomeric chloroalkenes. 	
	2-chloroprop-1-ene OR 2-chloropropene	H = C = C = C = H $H = C = C = H$ $H = C = H$	Equivalent merit3 Correctly identifies THREE isomeric chloroalkenes. OR	
	3-chloroprop-1-ene OR 3-chloropropene	$\begin{array}{c} H\\ CI-C-C=C-H\\ I\\ H\\ H\\ H\end{array}$	 Correctly draws TWO isomeric chloroalkenes. OR Equivalent merit	
(b)	The reagent is acidified permanganate solution. It would be expected that cyclohexanol (a secondary alcohol) would decolourise permanganate solutions. There would be no visible reaction with 1-methylcyclohexanol (a tertiary alcohol).		Mod 7 Alcohols CH12–6, 12–14 Bands 3–4 • Identifies the appropriate test reagent. AND • Describes the test results2 • Provides some relevant information1	

Sample answer Syllabus content, outco and marking guide	Syllabus content, outcomes, targeted performance bands and marking guide	
stion 34		
 <i>three of:</i> <i>The two reagents (propene and benzene) are reacted in high yield to produce two valuable products (acetone and phenol).</i> <i>The design process includes two recycle loops that ensure no loss of starting materials.</i> <i>Two of the three chemical steps use a cheap catalyst of phosphoric acid (H₃PO₄) to reduce the temperature and pressure, which is needed to make these steps occur at a reasonable rate.</i> <i>Makes specific reference to the information provide of the industrial provide is harmless nitrogen gas, so no environmental pollutants are produced.</i> <i>The reaction conditions are low temperature and low pressure, so the capital cost of building the plant will be low.</i> <i>The plant could be located near sources of benzene and propene to reduce transport to target markets.</i> <i>Gives THREE relevant factors in limited detail with limited reference to the information provide OR</i> <i>Outlines ONE relevant faw with specific reference to the information provide ot the information provi</i>	bstances Bands 2–3 d4 on on 3 d. etor d2	
to the inf	Sormation provide	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 35	
 A and C represent covalent bonds. B and D represent dispersion forces. The covalent bonding between a carbon and a hydrogen atom within a methane molecule is similar to the covalent bonding between the C and H atoms in an ethane molecule. The dispersion force between these non-polar molecules is related to molecular size. Therefore, dispersion force D is stronger than dispersion force B. The physical properties of members of the homologous series of alkanes represented in the diagram is determined by the strength of the dispersion forces. 	 Mod 8 Hydrocarbons CH12–6, 12–14 Bands 3–4 Correctly compares the strength of the covalent bonds <i>A</i> and <i>C</i>. AND Correctly compares the strength of the dispersion forces <i>B</i> and <i>D</i>. AND Relates physical properties to the strength of the intermolecular forces 4–5 Correctly compares the
	 strength of the covalent bonds A and C. AND Correctly compares the strength of the dispersion forces B and D. OR Relates physical properties to the strength of the intermolecular forces