

**Final Examination 2022** 

# **NSW Year 11 Chemistry**

| General      | Reading time – 5 minutes                                                                 |
|--------------|------------------------------------------------------------------------------------------|
| Instructions | • Working time – 2 hours                                                                 |
|              | Write using black pen                                                                    |
|              | Draw diagrams using pencil                                                               |
|              | Calculators approved by NESA may be used                                                 |
|              | • A formulae sheet, data sheet and Periodic Table are provided at the back of this paper |
| Total Marks: | SECTION I – 15 marks (pages 2–4)                                                         |
| 75           | Attempt Questions 1–15                                                                   |
|              | Allow about 30 minutes for this section                                                  |
|              | SECTION II – 60 marks (pages 5–20)                                                       |
|              | Attempt Questions 16–28                                                                  |
|              | • Allow about 1 hour and 30 minutes for this section                                     |

Neap<sup>®</sup> Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

#### **SECTION I**

**15 marks** Attempt Questions 1–15 Allow about 30 minutes for this section Use the multiple-choice answer sheet for Questions 1–15.

- 1 Which of the following techniques would be used to obtain sodium chloride from sea water?
  - A. distillation
  - B. evaporation
  - C. gravity filtration
  - D. vacuum filtration
- 2 The molecular formula of glucose is  $C_6H_{12}O_6$ . What is the empirical formula of glucose?
  - A. CH<sub>2</sub>O
  - B.  $C_2H_4O_2$
  - C. C<sub>3</sub>H<sub>6</sub>O<sub>3</sub>
  - D.  $C_6H_{12}O_6$

**3** Which of the following gases will occupy 22.71 L at 100 kPa and 0°C (273.15 K)?

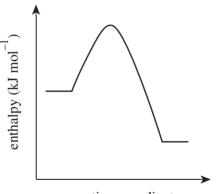
- A. 5.0 g of H<sub>2</sub>
- B.  $20 \text{ g of } O_2$
- C.  $50 \text{ g of NO}_2$
- D. 64 g of SO<sub>2</sub>

4 What is the molar mass of  $KAl(SO_4)_2 \times 12H_2O$ ?

- A.  $258.22 \text{ g mol}^{-1}$
- B. 378.34 g mol<sup>-1</sup>
- C.  $447.40 \text{ g mol}^{-1}$
- D. 474.46 g mol<sup>-1</sup>

5 Which of the following chemical equations is balanced?

- A.  $\operatorname{Fe}(\operatorname{OH})_3(aq) + 2\operatorname{H}_2\operatorname{SO}_4(aq) \rightarrow \operatorname{Fe}_2(\operatorname{SO}_4)_3(aq) + 3\operatorname{H}_2\operatorname{O}(l)$
- B.  $\operatorname{Zn}(s) + 2\operatorname{HCl}(aq) \rightarrow \operatorname{ZnCl}_2(aq) + \operatorname{H}_2(g)$
- C.  $C_3H_7OH(l) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$
- D.  $\text{KNO}_3(s) \rightarrow \text{KNO}_2(s) + \text{O}_2(g)$


6 How many chloride ions are in 0.100 mol of magnesium chloride?

A.  $6.02 \times 10^{22}$ B.  $1.20 \times 10^{23}$ C.  $6.02 \times 10^{23}$ D.  $1.20 \times 10^{24}$ 

7 Which row of the table correctly identifies a typical physical property of a metal element and a typical physical property of a non-metal element?

|    | Physical property of metal | Physical property of non-metal |
|----|----------------------------|--------------------------------|
| A. | low boiling point          | poor conductor of electricity  |
| B. | low density                | malleable                      |
| C. | high density               | low melting point              |
| D. | malleable                  | high density                   |

- 8 Which of the following pairs of aqueous solutions will produce a precipitate when mixed?
  - A.  $BaCl_2$  and  $Zn(NO_3)_2$
  - B. CH<sub>3</sub>COOAg and CaCl<sub>2</sub>
  - C. MgSO<sub>4</sub> and KBr
  - D. NaOH and HNO<sub>3</sub>
- 9 An energy profile diagram for a reaction is shown.



reaction coordinate

Which of the following statements is correct?

- A. The energy of the reactants is lower than the energy of the products.
- B. The energy of the reactants is the same as the energy of the products.
- C. The diagram represents the enthalpy change of an exothermic reaction.
- D. The diagram represents the enthalpy change of an endothermic reaction.
- 10 Which of the following correctly lists the metals from most reactive to least reactive?
  - A. potassium, iron, nickel, silver
  - B. zinc, iron, copper, lead
  - C. potassium, magnesium, barium, aluminium
  - D. silver, copper, lead, sodium

11 Zinc metal reacts with sulfuric acid to produce zinc sulfate and hydrogen gas according to the following chemical equation.

$$\mathrm{Zn}(s) + \mathrm{H}_2\mathrm{SO}_4(aq) \to \mathrm{ZnSO}_4(aq) + \mathrm{H}_2(g)$$

What type of reaction is this?

- A. redox
- B. precipitation
- C. decomposition
- D. combustion
- 12 A solution is prepared by dissolving 2.43 g of sodium hydroxide in enough water to make a 500 mL solution.

What is the concentration of hydroxide ions in the solution?

- A.  $0.0122 \text{ mol L}^{-1}$
- B.  $0.0608 \text{ mol L}^{-1}$
- C.  $0.1215 \text{ g mol}^{-1}$
- D.  $0.1215 \text{ mol L}^{-1}$
- **13** Which of the following synthesis reactions shows the formation of sodium hydroxide in its standard state?
  - A.  $\operatorname{Na}(l) + \operatorname{O}_2(g) + \operatorname{H}_2(g) \to \operatorname{NaOH}(aq)$

B. 
$$\operatorname{Na}(s) + \frac{1}{2}O_2(g) + \frac{1}{2}H_2(g) \rightarrow \operatorname{NaOH}(aq)$$

C. 
$$\operatorname{Na}(s) + \operatorname{O}_2(g) + \operatorname{H}_2(g) \to 2\operatorname{NaOH}(s)$$

D. 
$$\operatorname{Na}(s) + \frac{1}{2}\operatorname{O}_2(g) + \frac{1}{2}\operatorname{H}_2(g) \to \operatorname{NaOH}(s)$$

- 14 Thorium-232 is a radioactive isotope that undergoes β-decay.Which of the following equations shows the products of this reaction?
  - A.  $^{230}_{90}$ Th  $\rightarrow ^{226}_{88}$ Ra +  $^{4}_{2}$ He
  - B.  ${}^{232}_{90}$ Th  $\rightarrow {}^{232}_{89}$ Ac  $+ {}^{0}_{1}$ e
  - C.  ${}^{232}_{90}$ Th  $\rightarrow {}^{232}_{91}$ Pa  $+ {}^{0}_{-1}$ e
  - D.  ${}^{232}_{90}$ Th  $\rightarrow {}^{228}_{88}$ Ra +  ${}^{4}_{2}$ He
- 15 Which of the following has the highest entropy?
  - A. ice at  $-15^{\circ}C$
  - B. ice at 0°C
  - C. water at 25°C
  - D. steam at 100°C

# **NSW Year 11 Chemistry**

# **Section II Answer Booklet**

Section II

60 marks Attempt Questions 16–28 Allow about 1 hour and 30 minutes for this section

Instructions

• Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.

- Show all relevant working in questions involving calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Please turn over

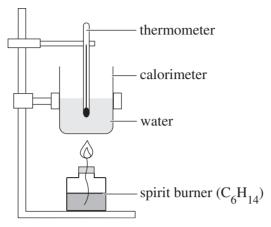
#### Question 16 (4 marks)

Anhydrous sodium hydrogen carbonate (NaHCO<sub>3</sub>) is used as a primary standard to make a standard solution. 4

Describe a method that can be used to prepare a standard solution of  $NaHCO_3$  in a school laboratory. In your answer, refer to the glassware and equipment required in each step.

| ••  | ••  | •• | ••• | ••• | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••• | • • | •   | ••  | •• | •• | ••  | ••  | • • | ••• | ••  | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | ••• | ••• | •• | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••• | •••          | ••• | •••          | ••• | ••  |
|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|--------------|-----|--------------|-----|-----|
| ••  | ••  | •• | ••• | ••• | ••• | ••• | ••• | ••  | ••  | ••• | ••  | ••• | • • | •   | ••• | •• | •• | ••  | ••• | • • | ••• | ••  | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | ••• | ••• | •• | ••  | ••• | ••• | ••  | ••  | ••  | ••  | ••• |              | ••• |              | ••• | ••  |
| ••• | ••  | •• | ••• | ••• | ••• | ••• | ••• | ••  | ••• | ••• | ••  | • • | ••• | •   | ••• | •• | •• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• |     | •• | ••  |     | ••• | ••• | ••• | ••• | ••• |     |              | ••• |              | ••• | ••  |
| ••  | ••  | •• | ••• |     |     | ••• | ••  | ••  | ••  | ••• | ••  | • • | ••• | • • | ••• | •• | •• | ••  | ••• | ••• | ••  | ••  | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | ••• |     | •• | ••  | ••• | ••• | ••  | ••  | ••• | ••  | ••• |              | ••• |              | ••• | ••  |
| ••• | ••• | •• | ••• |     |     |     | ••• | ••• | ••• |     | ••• | • • | ••• |     |     | •• | •• | ••  |     | ••• | ••• | ••• |     | ••  | ••• | ••• |     | ••• | ••• | ••• |     |     | •• | ••• |     |     |     | ••• | ••• |     |     |              | ••• | •••          |     | ••  |
|     |     |    |     |     |     |     |     |     |     |     |     |     |     |     |     |    |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |              |     |              |     |     |
|     |     |    |     |     |     |     |     |     |     |     |     |     |     |     |     |    |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |     |     |     |     |     | ••• |     |     |              |     |              |     |     |
| ••  | ••  | •• | ••• | ••• | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••• | ••  | ••  | •• | •• | ••  | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | ••• | ••• | •• | ••  | ••• | ••• | ••  | ••  | ••  | ••  | ••• | •••          | ••• | •••          | ••• | •   |
| ••  | ••  | •• | ••• | ••• | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••• | • • | •   | ••• | •• | •• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | ••• | ••• | •• | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••• | , <b>.</b> . | ••• | , <b>.</b> . | ••• | • • |

#### Question 17 (3 marks)


Butane  $(C_4H_{10})$  is one of the components of liquefied petroleum gas (LPG). It undergoes complete **3** combustion in excess oxygen.

A sample of butane undergoes complete combustion in excess oxygen at 200°C and 1.8 atm, producing 35.0 L of carbon dioxide.

Calculate the mass of butane reacted. Include a balanced chemical equation in your answer.

#### Question 18 (4 marks)

A student sets up the following experiment to determine the amount of energy that would be released by the combustion of a sample of hexane  $(C_6H_{14})$ .



The following data was recorded at the start of the experiment.

| Mass of hexane burned        | 2.38 g |
|------------------------------|--------|
| Mass of water heated         | 600 mL |
| Initial temperature of water | 23.0°C |

If the heat of combustion of hexane is  $-4163 \text{ kJ mol}^{-1}$ , calculate the final temperature of the water.

| ••• | ••• | ••• | ••• | ••  | ••• | ••• | •••   | ••  | •••   | ••  | ••• | ••  | ••  | ••• | ••• | ••• | ••  | •• | ••  | ••• | ••  | ••  | ••• | ••  | ••• | ••• | •• | ••• | ••• | •• | ••• | ••• | •• | ••• | ••  | ••  | •• | ••• | • • |
|-----|-----|-----|-----|-----|-----|-----|-------|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|----|-----|-----|----|-----|-----|-----|----|-----|-----|
|     |     |     |     |     |     |     |       |     |       |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |    |     |     |    |     |     |    |     |     |     |    |     |     |
|     |     |     |     |     |     |     |       |     |       |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |    |     |     |    |     |     |    |     |     |     |    |     |     |
| ••• | ••• | ••• | ••• | ••• | ••• | ••• | •••   | ••• | •••   | ••  | ••• | ••  | ••  | ••• | ••• | ••• | ••  | •• | ••• | ••• | ••  | ••  | ••• | ••  | ••• | ••• | •• | ••• | ••• | •• | ••• | ••• | •• | ••• | ••  | ••  | •• | ••• | • • |
| ••• |     |     | ••• | ••  | ••• |     | • • • |     | • • • | ••• |     | ••• | ••• | ••• |     |     | ••• | •• | ••• |     | ••• | • • |     | ••• | ••• |     | •• | ••• |     | •• | ••• | ••• | •• |     | ••• | ••• | •• | ••• | ••  |
|     |     |     |     |     |     |     |       |     |       |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |    |     |     |    |     |     |    |     |     |     |    |     |     |
|     |     |     |     |     |     |     |       |     |       |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |    |     |     |    |     |     |    |     |     |     |    |     |     |
| ••• | ••• | ••• | ••• | ••• | ••• | ••• | •••   | ••• | •••   | ••  | ••• | ••• | ••  | ••• | ••• | ••• | ••  | •• | ••• | ••• | ••• | ••  | ••• | ••• | ••• | ••• | •• | ••• | ••• | •• | ••• | ••• | •• | ••• | ••  | ••• | •• | ••• |     |
| ••• |     |     |     |     |     |     |       |     |       |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |    |     |     |    |     |     |    |     |     |     |    |     |     |
|     |     |     |     |     |     |     |       |     |       |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |    |     |     |    |     |     |    |     |     |     |    |     |     |
| ••• | ••• | ••• | ••• | ••• | ••• | ••• | •••   | ••• | •••   | ••  | ••• | ••  | ••  | ••• |     | ••• | ••  | •• | ••  | ••• | ••  | ••  | ••• | ••  | ••  | ••• | •• | ••• | ••• | •• | ••• | ••• | •• | ••• | ••  | ••  | •• | ••• | ••  |

# Question 19 (4 marks)

| (a) | Write a balanced chemical equation for the reaction between aluminium and hydrochloric acid.                            | 1 |
|-----|-------------------------------------------------------------------------------------------------------------------------|---|
|     | •••••••••••••••••••••••••••••••••••••••                                                                                 |   |
| (b) | Write a balanced chemical equation for the decomposition of hydrogen peroxide.                                          | 1 |
|     |                                                                                                                         |   |
| (c) | Write a balanced chemical equation for the INCOMPLETE combustion of propane $(C_3H_8)$ with a limited amount of oxygen. | 1 |
|     |                                                                                                                         |   |
| (d) | Write a balanced chemical equation for the reaction between the aqueous solutions of barium hydroxide and nitric acid.  | 1 |
|     | •••••••••••••••••••••••••••••••••••••••                                                                                 |   |

## Question 20 (5 marks)

13.00 g of hydrogen gas is reacted with 11.68 g of solid iodine to produce hydrogen iodine gas.

| (a) | Identify the limiting reagent and the excess reagent.      | 2 |
|-----|------------------------------------------------------------|---|
|     |                                                            |   |
|     |                                                            |   |
|     |                                                            |   |
|     | •••••••••••••••••••••••••••••••••••••••                    |   |
| (b) | Calculate the amount that the excess reagent is in excess. | 1 |
|     | •••••••••••••••••••••••••••••••••••••••                    |   |
|     | •••••••••••••••••••••••••••••••••••••••                    |   |
| (c) | Calculate the mass of the hydrogen iodide gas produced.    | 2 |
|     |                                                            |   |
|     |                                                            |   |
|     |                                                            |   |
|     |                                                            |   |
|     |                                                            |   |

#### Question 21 (3 marks)

Dichloromethane and water are liquids that are immiscible with each other. Some of their properties **3** are shown in the table.

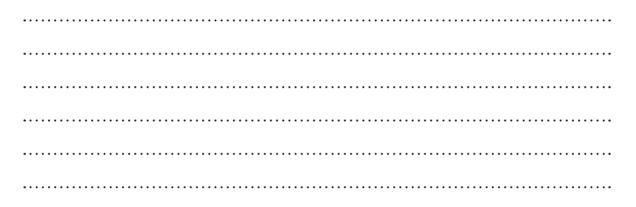
|                 | Boiling point ( $^{\circ}C$ ) | Density $(g m L^{-1})$ |
|-----------------|-------------------------------|------------------------|
| Dichloromethane | 39.6                          | 1.33                   |
| Water           | 100                           | 1.00                   |

A chemist finds a bottle containing dichloromethane and water and needs to determine whether she should use a separating funnel or distillation to separate the liquids.

Assess the effectiveness of the two techniques when separating dichloromethane and water.

#### Question 22 (4 marks)

Different isotopes of an element contain the same number of protons but have different atomic masses. 4 Complete the table. Use spdf notation.


| Isotope                        | Number of<br>protons | Number of<br>neutrons | Electron configuration |
|--------------------------------|----------------------|-----------------------|------------------------|
| <sup>13</sup> <sub>6</sub> C   |                      |                       |                        |
| <sup>20</sup> <sub>10</sub> Ne |                      |                       |                        |
| <sup>24</sup> 11 Na            |                      |                       |                        |
| <sup>81</sup> <sub>35</sub> Br |                      |                       |                        |

#### Question 23 (3 marks)

The table shows some information about the compounds dichloromethane  $(CH_2Cl_2)$ , propane  $(C_3H_8)$ , **3** water  $(H_2O)$  and tetrafluoromethane  $(CF_4)$ .

| Compound                        | Molar mass $(g mol^{-1})$ | Boiling point (°C) | Molar heat of vaporisation $(kJ mol^{-1})$ |
|---------------------------------|---------------------------|--------------------|--------------------------------------------|
| CH <sub>2</sub> Cl <sub>2</sub> | 84.9                      | 39.60              | 28.60                                      |
| C <sub>3</sub> H <sub>8</sub>   | 44.0                      | -42.00             | 15.70                                      |
| H <sub>2</sub> O                | 18.0                      | 100.00             | 40.65                                      |
| CF <sub>4</sub>                 | 88.8                      | -127.80            | 12.00                                      |

Explain why water has the highest boiling point and molar heat of vaporisation out of the four compounds despite having the smallest molar mass. Refer to the polarity of the compounds in your answer.



#### Question 24 (7 marks)

A group of students were investigating the use of different metals and their solutions in galvanic cells. They were provided with strips of magnesium, lead and silver and solutions of magnesium nitrate, lead nitrate and silver nitrate. All the solutions had  $1.0 \text{ mol } \text{L}^{-1}$  concentration.

| (a) | Which combination of metals has the highest potential difference?                                                                                                                                                                                                                                | 1 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                          |   |
| (b) | Draw a diagram of a galvanic cell that uses the metals identified in part (a) and write<br>a balanced chemical equation for the net ionic reaction that occurs in the cell. In your<br>diagram, identify and label the electrodes, electrolytes and salt bridge, and label the<br>electron flow. | 5 |

| (c) | Calculate the cell potential of the galvanic cell. |
|-----|----------------------------------------------------|
|     |                                                    |
|     |                                                    |

#### Question 25 (8 marks)

In photosynthesis, plants use carbon dioxide and water to produce glucose and oxygen.

The table shows the standard enthalpies of formation of the reactants and products in photosynthesis.

| Substance          | $\Delta H^{\circ}f(kJ mol^{-1})$ | $S^{\circ}(J mol^{-1}K^{-1})$ |
|--------------------|----------------------------------|-------------------------------|
| carbon dioxide (g) | -393.5                           | +213.8                        |
| glucose (s)        | -1271                            | +209.2                        |
| oxygen (g)         | 0                                | +205.0                        |
| water ( <i>l</i> ) | -285.8                           | +70.00                        |

(a) Using the information in the table, calculate the enthalpy change during the photosynthesis reaction. Include a balanced chemical equation in your answer.

..... ..... ..... Calculate the amount of energy a plant would require to produce 65.0 g of glucose. 2 (b) ..... ..... ..... 3 Using the information in the table, determine whether the reaction is spontaneous at 25°C. (c) \_\_\_\_\_ ..... ..... ..... ..... ..... ..... ..... .....

#### Question 26 (8 marks)

A catalyst can increase the rate of a chemical reaction.

Identify FOUR other factors that can increase the rate of a reaction and explain, using collision theory, how these factors influence the rate of the reaction.

| ••  | •• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••• | ••  | ••  | • • | ••  | ••  | ••  | • • | ••  | ••  | • • | ••  | •• | ••  | • • | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | •• | ••  | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••  | ••  | ••  | •••   | ••  |
|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|
| ••  | •• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | • • | ••  | ••  | • • | ••  | •• | ••  | •   | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | •• | ••  | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••  | ••  | ••  | •••   | ••  |
| ••  | •• | ••  | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••• | ••  | ••  | ••  | ••  | • • | ••  | ••  | • • | ••• | •• | ••• | •   | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | •• | ••  | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••  | ••  | ••  | •••   | ••  |
| ••  | •• | ••  | ••  | ••• | ••  | ••  | ••• | ••  | ••  | ••• | ••• | ••  | ••• | ••• | ••• | ••  | ••• | ••• | ••  | ••  | • • | ••• | •• | ••• | •   | ••  | ••• | ••• | ••  | ••• | ••  | ••  | ••  | ••• | •• | ••• | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••• | ••• | ••  | • • • | ••  |
| ••  | •• | ••  | ••  | ••• | ••  | ••  | ••• | ••  | ••  | ••  | ••• | ••  | ••• | ••• | ••  | ••  | ••  | • • | ••  | ••  | • • | ••  | •• | ••• | • • | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | •• | ••  | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••  | ••  | ••  | •••   | ••  |
| ••  | •• | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••• | ••  | ••• | ••• | ••  | ••  | ••  | ••• | ••  | ••  | • • | ••  | •• | ••  | ••• | ••  | ••• | ••  | ••• | ••  | ••  | ••  | ••  | ••• | •• | ••  | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••  | ••  | ••  | •••   | ••  |
| ••  | •• | ••• | ••• | ••• | ••  | ••• | ••• | ••• | ••  | ••• | ••• | ••• | ••• | ••• | ••• | ••  | ••• | • • | ••• | ••• | • • | ••• | •• | ••• | •   | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••  | ••• | •• | ••• | •• | ••• | ••• | ••• |     | ••• | ••  | ••• | ••• | ••  | •••   | ••• |
| ••  | •• | ••  | ••• | ••• | ••  | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | • • | ••  | ••  | • • | ••  | •• | ••  | • • | ••  | ••• | ••  | ••  | ••• | ••  | ••  | ••  | ••  | •• | ••  | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••  | ••  | ••  | •••   | ••  |
| ••  | •• | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | ••• | ••  | ••  | • • | ••  | •• | ••  | ••  | ••  | ••• | ••  | ••• | ••  | ••  | ••  | ••  | ••• | •• | ••  | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••  | ••  | ••  | •••   | ••  |
| ••  | •• | ••• | ••• | ••• | ••  | ••• | ••• | ••  | ••• | ••• | ••• | ••• | ••• | ••• | ••  | ••  | ••  | ••• | ••  | ••• | • • | ••• | •• | ••  | • • | ••• | ••• | ••  | ••  | ••• | ••  | ••  | ••• | ••• | •• | ••• | •• | ••  | ••  | ••• | ••• | ••• | ••• | ••• | ••• | ••• | •••   | ••  |
| ••  | •• | ••  | ••• | ••• | ••  | ••• | ••• | ••  | ••  | ••• | ••• | ••  | ••• | ••• | ••• | ••  | ••  | • • | ••  | ••  | • • | ••  | •• | ••• | •   | ••  | ••• | ••  | ••  | ••• | ••• | ••  | ••  | ••• | •• | ••• | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••• | ••• | ••  | •••   | ••  |
| ••  | •• | ••  | ••  | ••  | ••  | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••• | ••  | ••• | ••  | ••  | • • | ••  | ••  | • • | ••  | •• | ••• | •   | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••• | •• | ••• | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••  | ••• | ••  | •••   | ••  |
| ••  | •• | ••• | ••• | ••• | ••  | ••• | ••• | ••  | ••  | ••  | ••• | ••• | ••• | ••• | ••  | ••  | ••  | ••• | ••  | ••• | • • | ••• | •• | ••  | • • | ••• | ••• | ••  | ••  | ••• | ••  | ••  | ••• | ••• | •• | ••  | •• | ••  | ••  | ••• | ••• | ••• | ••• | ••• | ••• | ••  | •••   | ••  |
| ••  | •• | ••  | ••• | ••• | ••  | ••• | ••• | ••  | ••  | ••• | ••  | ••  | ••• | ••• | ••  | ••  | ••  | • • | ••  | ••• | • • | ••• | •• | ••• | • • | ••  | ••• | ••  | ••  | ••• | ••  | ••  | ••• | ••• | •• | ••• | •• | ••  | ••  | ••• | ••• | ••• | ••  | ••• | ••• | ••  | •••   | ••  |
| ••  | •• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••  | ••• | ••  | ••  | ••  | ••  | • • | ••  | ••  | • • | ••• | •• | ••• | •   | ••  | ••• | ••  | ••  | ••  | ••  | ••  | ••  | ••  | •• | ••  | •• | ••  | ••  | ••  | ••• | ••• | ••  | ••  | ••  | ••  | •••   | ••  |
| ••• |    |     |     |     | ••• |     |     |     |     | ••• |     |     |     | ••• |     | ••• |     |     |     |     | • • |     |    |     | • • |     |     | ••• |     |     |     | ••• |     |     |    |     |    |     |     |     |     |     |     |     |     |     |       | ••  |

#### Question 27 (4 marks)

Potassium chloride is a water-soluble ionic salt. When 1.45 g of potassium chloride is dissolved in 50.0 mL of water, the temperature of the water decreases by 1.60°C.

| (a) | Name the process of separating positive and negative ions from a solid ionic salt in water. | 1 |
|-----|---------------------------------------------------------------------------------------------|---|
|     |                                                                                             |   |
| (b) | Calculate the molar enthalpy of the reaction.                                               | 3 |
|     |                                                                                             |   |
|     |                                                                                             |   |
|     |                                                                                             |   |
|     |                                                                                             |   |

#### Question 28 (3 marks)

A bottle of oven-cleaning solution contains sodium hydroxide. The volume of the bottle is 1.50 L and the concentration of sodium hydroxide in the solution is 2.65 mol L<sup>-1</sup>.

| (a) | Calculate the mass of sodium hydroxide in the bottle.                                                                                                                         | 2 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |                                                                                                                                                                               |   |
|     |                                                                                                                                                                               |   |
|     |                                                                                                                                                                               |   |
|     |                                                                                                                                                                               |   |
| (b) | Some of the solution is used and the remaining volume of solution in the bottle is 0.50 L. Water is added to the bottle so that the volume of the solution returns to 1.50 L. |   |
|     | Calculate the molar concentration of sodium hydroxide in the dilute solution.                                                                                                 | 1 |
|     |                                                                                                                                                                               |   |
|     |                                                                                                                                                                               |   |
|     |                                                                                                                                                                               |   |

# End of paper

# Section II extra writing space

If you use this space, clearly indicate which question you are answering.

| ••••••••••••••••••••••••••••••••••••••• | • • • • • • • • • • • •   |
|-----------------------------------------|---------------------------|
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
| ••••••••••••••••••••••••••••••••••••••• | • • • • • • • • • • • • • |
| ••••••••••••••••••••••••••••••••••••••• | • • • • • • • • • • • •   |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
|                                         |                           |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • • •   |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • • •   |
|                                         | • • • • • • • • • • •     |
|                                         | • • • • • • • • • • • •   |
|                                         | • • • • • • • • • • • •   |
|                                         | •••••                     |
|                                         |                           |
| ••••••••••••••••••••••••••••••••••••••• | • • • • • • • • • • • • • |
|                                         | • • • • • • • • • • • •   |

## Section II extra writing space

If you use this space, clearly indicate which question you are answering.

|                                         | •••     |
|-----------------------------------------|---------|
|                                         | • • •   |
|                                         | • • •   |
| ••••••••••••••••••••••••••••••••••••••• | •••     |
|                                         | •••     |
| ••••••••••••••••••••••••••••••••••••••• | •••     |
| ••••••••••••••••••••••••••••••••••••••• | •••     |
|                                         | •••     |
|                                         | •••     |
|                                         | •••     |
|                                         |         |
|                                         |         |
|                                         |         |
|                                         |         |
|                                         |         |
|                                         |         |
|                                         | •••     |
|                                         |         |
|                                         | • • •   |
|                                         | • • • • |
|                                         | • • •   |
|                                         | • • •   |
|                                         | • • • • |
|                                         | • • •   |

# **FORMULAE SHEET**

| $n = \frac{m}{MM}$                     | $c = \frac{n}{V}$                                          | PV = nRT                                                |
|----------------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| $q = mc\Delta T$                       | $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ | $\mathrm{pH} = -\log_{10} \left[\mathrm{H}^{+}\right]$  |
| $pK_a = -\log_{10} \left[ K_a \right]$ | $A = \varepsilon lc = \log_{10} \frac{I_o}{I}$             |                                                         |
| Avogadro constant, $N_A$               |                                                            | $6.022 \times 10^{23} \text{ mol}^{-1}$                 |
| Volume of 1 mole ideal gas:            | at 100 kPa and                                             |                                                         |
|                                        | at 0°C (273.15 K)                                          | 22.71 L                                                 |
|                                        | at 25°C (298.15 K)                                         | 24.79 L                                                 |
| Gas constant                           |                                                            | $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$               |
| Ionisation constant for water          | at 25°C (298.15 K), K <sub>w</sub>                         | $1.0 \times 10^{-14}$                                   |
| Specific heat capacity of wat          | rer                                                        | $4.18 \times 10^3 \mathrm{J \ kg}^{-1} \mathrm{K}^{-1}$ |

DATA SHEET Solubility constants at 25°C

| Compound             | K <sub>sp</sub>        | Compound            | K <sub>sp</sub>        |
|----------------------|------------------------|---------------------|------------------------|
| Barium carbonate     | $2.58 \times 10^{-9}$  | Lead(II) bromide    | $6.60 \times 10^{-6}$  |
| Barium hydroxide     | $2.55 \times 10^{-4}$  | Lead(II) chloride   | $1.70 \times 10^{-5}$  |
| Barium phosphate     | $1.3 \times 10^{-29}$  | Lead(II) iodide     | $9.8 \times 10^{-9}$   |
| Barium sulfate       | $1.08 \times 10^{-10}$ | Lead(II) carbonate  | $7.40 \times 10^{-14}$ |
| Calcium carbonate    | $3.36 \times 10^{-9}$  | Lead(II) hydroxide  | $1.43 \times 10^{-15}$ |
| Calcium hydroxide    | $5.02 \times 10^{-6}$  | Lead(II) phosphate  | $8.0 \times 10^{-43}$  |
| Calcium phosphate    | $2.07 \times 10^{-29}$ | Lead(II) sulfate    | $2.53 \times 10^{-8}$  |
| Calcium sulfate      | $4.93 \times 10^{-5}$  | Magnesium carbonate | $6.82 \times 10^{-6}$  |
| Copper(II) carbonate | $1.4 \times 10^{-10}$  | Magnesium hydroxide | $5.61 \times 10^{-12}$ |
| Copper(II) hydroxide | $2.2 \times 10^{-20}$  | Magnesium phosphate | $1.04 \times 10^{-24}$ |
| Copper(II) phosphate | $1.40 \times 10^{-37}$ | Silver bromide      | $5.35 \times 10^{-13}$ |
| Iron(II) carbonate   | $3.13 \times 10^{-11}$ | Silver chloride     | $1.77 \times 10^{-10}$ |
| Iron(II) hydroxide   | $4.87 \times 10^{-17}$ | Silver carbonate    | $8.46 \times 10^{-12}$ |
| Iron(III) hydroxide  | $2.79 \times 10^{-39}$ | Silver hydroxide    | $2.0 \times 10^{-8}$   |
| Iron(III) phosphate  | $9.91 \times 10^{-16}$ | Silver iodide       | $8.52 \times 10^{-17}$ |
|                      |                        | Silver phosphate    | $8.89 \times 10^{-17}$ |
|                      |                        | Silver sulfate      | $1.20 \times 10^{-5}$  |

| Bond              | Wavenumber/cm <sup>-1</sup> |
|-------------------|-----------------------------|
| N—H<br>(amines)   | 3300-3500                   |
| O—H<br>(alcohols) | 3230–3550<br>(broad)        |
| С—Н               | 2850-3300                   |
| O—H<br>(acids)    | 2500–3000<br>(very broad)   |
| C≡N               | 2220-2260                   |
| C=O               | 1680–1750                   |
| C=C               | 1620–1680                   |
| С—О               | 1000-1300                   |
| с—с               | 750–1100                    |

| Type of carbon                                                                           | δ <b>/ppm</b> |
|------------------------------------------------------------------------------------------|---------------|
|                                                                                          | 5-40          |
| $\begin{bmatrix} R - C \\ - C \end{bmatrix} - C l \text{ or } Br$                        | 10–70         |
| $\begin{vmatrix} \mathbf{R} - \mathbf{C} - \mathbf{C} \\ \  \\ \mathbf{O} \end{vmatrix}$ | 20–50         |
|                                                                                          | 25-60         |
| -C-O- alcohols,<br>ethers or<br>esters                                                   | 50–90         |
| C=C                                                                                      | 90–150        |
| $R-C\equiv N$                                                                            | 110–125       |
|                                                                                          | 110–160       |

esters or

aldehydes

or ketones

acids

# <sup>13</sup>C NMR chemical shift data

**UV absorption** (*This is not a definitive list and is approximate.*)

R - C -

 $\frac{O}{R-C-}$ 

 $_{\rm O}^{\parallel}$ 

| Chromophore | $\lambda_{\max}$ (nm) | Chromophore | $\lambda_{\max}$ (nm) |
|-------------|-----------------------|-------------|-----------------------|
| С—Н         | 112                   | C≡C         | 173 178<br>196 222    |
| С—С         | 135                   | C—Cl        | 173                   |
| C=C         | 162                   | C—Br        | 208                   |

160-185

190-220

|                                                                                                |                                          | -                                                  |         |
|------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|---------|
| $K^+ + e^-$                                                                                    | $\rightleftharpoons$                     | $\mathbf{K}(s)$                                    | -2.94 V |
| $Ba^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Ba(s)                                              | -2.91 V |
| $Ca^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Ca(s)                                              | -2.87 V |
| $Na^+ + e^-$                                                                                   | $\rightleftharpoons$                     | Na(s)                                              | -2.71 V |
| $Mg^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Mg(s)                                              | -2.36 V |
| $Al^{3+} + 3e^{-}$                                                                             | $\rightleftharpoons$                     | Al(s)                                              | -1.68 V |
| $Mn^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Mn(s)                                              | -1.18 V |
| $H_2O + e^-$                                                                                   | $\rightleftharpoons$                     | $\frac{1}{2}$ H <sub>2</sub> (g) + OH <sup>-</sup> | -0.83 V |
| $Zn^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Zn(s)                                              | –0.76 V |
| $Fe^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Fe(s)                                              | -0.44 V |
| $Ni^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Ni(s)                                              | -0.24 V |
| ${\rm Sn}^{2+} + 2{\rm e}^{-}$                                                                 | $\rightleftharpoons$                     | Sn(s)                                              | –0.14 V |
| $Pb^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Pb(s)                                              | -0.13 V |
| $H^+ + e^-$                                                                                    | $\stackrel{\longrightarrow}{\leftarrow}$ | $\frac{1}{2}$ H <sub>2</sub> (g)                   | 0.00 V  |
| $SO_4^{2-} + 4H^+ + 2e^-$                                                                      | $\stackrel{\longrightarrow}{\leftarrow}$ | $SO_2(aq) + 2H_2O$                                 | 0.16 V  |
| $Cu^{2+} + 2e^{-}$                                                                             | $\rightleftharpoons$                     | Cu(s)                                              | 0.34 V  |
| $\frac{1}{2}$ O <sub>2</sub> (g) + H <sub>2</sub> O + 2e <sup>-</sup>                          | $\stackrel{\longrightarrow}{\leftarrow}$ | 20H <sup>-</sup>                                   | 0.40 V  |
| $Cu^+ + e^-$                                                                                   | $\stackrel{\longrightarrow}{\leftarrow}$ | Cu(s)                                              | 0.52 V  |
| $\frac{1}{2}$ I <sub>2</sub> (s) + e <sup>-</sup>                                              | $\stackrel{\longrightarrow}{\leftarrow}$ | ſ                                                  | 0.54 V  |
| $\frac{1}{2}$ I <sub>2</sub> ( <i>aq</i> ) + e <sup>-</sup>                                    |                                          | Ī                                                  | 0.62 V  |
| $\mathrm{Fe}^{3+} + \mathrm{e}$                                                                |                                          | Fe <sup>2+</sup>                                   | 0.77 V  |
| $Ag^+ + e^-$                                                                                   |                                          | Ag(s)                                              | 0.80 V  |
| $\frac{1}{2}$ Br <sub>2</sub> ( <i>l</i> ) + e <sup>-</sup>                                    |                                          | $\mathrm{Br}^-$                                    | 1.08 V  |
| $\frac{1}{2}$ Br <sub>2</sub> ( <i>aq</i> ) + e <sup>-</sup>                                   |                                          | $\mathrm{Br}^-$                                    | 1.10 V  |
| $\frac{1}{2}O_2(g) + 2H^+ + 2e^-$                                                              |                                          | H <sub>2</sub> O                                   | 1.23 V  |
| $\frac{1}{2}$ Cl <sub>2</sub> (g) + e <sup>-</sup>                                             |                                          | Cl                                                 | 1.36 V  |
| $\frac{1}{2}$ Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> + 7H <sup>+</sup> + 3e <sup>-</sup> |                                          | $Cr^{3+} + \frac{7}{2}H_2O$                        | 1.36 V  |
| $\frac{1}{2}$ Cl <sub>2</sub> ( <i>aq</i> ) + e <sup>-</sup>                                   | $\rightarrow$                            | Cl                                                 | 1.40 V  |
| $MnO_4^{-} + 8H^{+} + 5e^{-}$                                                                  | $\rightarrow$                            | $Mn^{2+} + 4H_2O$                                  | 1.51 V  |
| $\frac{1}{2}$ F <sub>2</sub> (g) + e <sup>-</sup>                                              | $\rightleftharpoons$                     | F                                                  | 2.89 V  |
|                                                                                                |                                          |                                                    |         |

# Some standard potentials

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for the standard potentials. Some data may have been modified for examination purposes.

|                                | He<br>4.003<br>helium | 10<br>Ne<br><sup>20.18</sup>                      | <b>Ar</b><br>39.95<br>argon                                     | <b>36</b><br>83.80<br>krypton                          | 54<br>Xe<br>131.3<br>xenon                           | 86<br>Rn<br>radon                                              | 118<br>0g            | oganesson                |                                                              |                                                          | .(r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|--------------------------------|-----------------------|---------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------|--------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Į                              |                       | <b>6 П</b> 0.01                                   | 35.45<br>C <b>11</b>                                            | 35<br>Br<br>79.90<br>bromine                           | <b>53</b><br>126.9<br>iodine                         | 85<br>At<br>astatine                                           | 117<br>Ts            | tennessine               | <b>71</b><br><b>Lu</b><br>175.0                              | 103<br>Lr<br>lawrencium                                  | Standard atomic weights are abridged to four significant figures.<br>Elements with no reported values in the table have no stable nuclides.<br>Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version).<br>The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified. |                             |
|                                |                       | 8<br>0<br>16.00<br>oxygen                         | 8<br>0<br>0.00<br>0.00<br>0.07<br>32.07<br>S<br>32.07<br>Sulfur | 8<br>0.00<br>0xygen<br>32.07<br>sulfur                 | 34<br>Se<br>78.96<br>selenium                        | 52<br>Te<br>127.6<br>tellurium                                 | PO<br>PO<br>Polonium | 116<br>Lv                | livermorium                                                  | 70<br>Yb<br>173.1<br>Vtterbium                           | 102<br>No<br>nobelium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | its (Novembe<br>may have be |
|                                |                       | <b>N</b><br>14.01                                 | <b>15</b><br>30.97<br>phosphorus                                | <b>33</b><br>As<br>74.92<br>arsenic                    | 51<br>Sb<br>121.8<br>antimony                        | <b>83</b><br><b>Bi</b><br><sup>209.0</sup><br>bismuth          | 115<br>Mc            | moscovium                | t <sup>ta</sup><br>t <sup>168.9</sup><br>t <sup>tulium</sup> | 101<br>Md<br>mendelevium                                 | of the Elemer<br>a. Some data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|                                |                       | <b>C</b> 6                                        | 28.09<br>silicon                                                | 32<br>Ge<br>72.64<br>germanium                         | <b>50</b><br>Sn<br>tin                               | <b>82</b><br><b>Pb</b><br><sup>207.2</sup><br>lead             | 114<br>FI            | flerovium                | <b>68</b><br><b>Er</b><br>167.3<br>erbium                    | Fermium                                                  | iodic Table .<br>all other dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|                                |                       | 10.81<br>10.81                                    | Doron<br><b>13</b><br>Al<br>26.98<br>aluminium                  | 31<br>Ga<br><sup>69.72</sup><br>gallium                | <b>49</b><br>11<br>114.8<br>indium                   | 81<br>TI<br>204.4<br>thallium                                  | 113<br>Nh            | nihonium                 | 67<br>Ho<br>holmium                                          | 99<br>ES<br>einsteinium                                  | hemistry Per<br>al source of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|                                |                       |                                                   |                                                                 | <b>30</b><br>Zn<br><sup>65.38</sup><br><sup>zinc</sup> | 48<br>Cd<br>112.4<br>cadmium                         | 80<br>Hg<br><sup>200.6</sup><br>mercury                        | 112<br>Cn            | copernicium              | <b>66</b><br>DV<br>dysprosium                                | 98<br>Cf<br>californium                                  | nd Applied C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
| IENTC                          |                       |                                                   |                                                                 | 29<br>Cu<br>63.55<br>copper                            | <b>47</b><br><b>Ag</b><br><sup>107.9</sup><br>silver | <b>79</b><br><b>Au</b><br><sup>197.0</sup>                     | 111<br>Rg            | roentgenium              | <b>65</b><br>158.9<br>terbium                                | 97<br>Bk                                                 | on of Pure ar<br>10 version) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| DERIODIC TARIE DE THE ELEMENTS |                       |                                                   |                                                                 | 28<br>Ni<br><sup>58.69</sup><br>nickel                 | 46<br>Pd<br>106.4<br>palladium                       | <b>78</b><br><b>Pt</b><br><sup>195.1</sup><br>platinum         | 110<br>Ds            | darmstadtium roentgenium | 64<br>Gd<br>157.3<br>gadolinium                              | <b>Gm</b><br>curium                                      | national Unic<br>(February 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|                                | KEY C                 | <b>79</b><br><b>Au</b><br><sup>197.0</sup>        | gold                                                            | <b>27</b><br><b>Co</b><br>58.93<br>cobalt              | <b>45</b><br><b>Rh</b><br>102.9<br>rhodium           | <b>77</b><br>Ir<br>192.2<br>iridium                            | 109<br>Mt            | meitnerium               | <b>63</b><br>Eu<br>152.0<br>europium                         | 95<br>Am<br>americium                                    | om the Inter<br>le Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|                                |                       | atomic number<br>symbol<br>atomic weight          | name                                                            | <b>26</b><br>55.85<br>iron                             | <b>Ru</b><br>101.1<br>ruthenium                      | <b>76</b><br><b>0</b><br><sup>190.2</sup><br><sup>osmium</sup> | 108<br>Hs            | hassium                  | <b>62</b><br><b>52</b><br>150.4<br>samarium                  | 94<br>Pu<br>plutonium                                    | es.<br>nuclides.<br>is sourced fr<br>ic Table of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
| DEBIO                          |                       | atomic number<br>symbol<br>standard atomic weight |                                                                 | 25<br>Mn<br>54.94<br>manganese                         | 43<br>Tc<br>technetium                               | <b>75<br/>Re</b><br>186.2<br>rhenium                           | 107<br>Bh            | bohrium                  | 61<br>Promethium                                             | 93<br>Np<br>neptunium                                    | nificant figur<br>e no stable n<br>3 and above i<br>nistry Periodi                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                                |                       | stan                                              |                                                                 | 24<br>Cr<br>52.00<br>chromium                          | 42<br>Mo<br><sup>95.96</sup><br>molybdenum           | <b>74</b><br><b>V</b><br>183.9<br>tungsten                     | 106<br>Sg            | seaborgium               | 60<br>Nd<br>neodymium                                        | <b>92</b><br>U<br><sup>238.0</sup><br><sup>uranium</sup> | d to four sign<br>he table hav<br>numbers 113<br>\pplied Chem                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|                                |                       |                                                   |                                                                 | <b>23</b><br>V<br>50.94<br>vanadium                    | <b>41</b><br><b>Nb</b><br>92.91<br>niobium           | 73<br>Ta<br>180.9<br>tantalum                                  | 105<br>Db            | dubnium                  | <b>59</b><br>Pr<br>140.9<br>praseodymium                     | 91<br>Pa<br>231.0<br>protactinium                        | s are abridge<br>ed values in t<br>with atomic<br>of Pure and <i>l</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|                                |                       |                                                   |                                                                 | <b>11</b><br>47.87<br>titanium                         | <b>40</b><br><b>2r</b><br>91.22<br>zir conium        | Hf<br>Hf <sup>178.5</sup>                                      | 104<br>Rf            | rutherfordium            | <b>58</b><br><b>Ce</b><br><sup>140.1</sup>                   | <b>30</b><br>232.0<br>thorium                            | mic weights<br>th no reporte<br>on elements<br>ional Union c                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|                                |                       |                                                   |                                                                 | 21<br>Sc<br>44.96<br>scandium                          | <b>39</b><br>88.91<br>yttrium                        | <b>57–71</b><br>lanthanoids                                    | 89–103               | actinoids                | Lanthanoids<br>57<br>La<br>138.9<br>Ianthanum                | Actinoids<br>89<br>Ac<br>actinium                        | Standard atomic weights are abridged to four significant figures.<br>Elements with no reported values in the table have no stable nuclides.<br>Information on elements with atomic numbers 113 and above is source<br>The International Union of Pure and Applied Chemistry Periodic Table                                                                                                                                                                                                                                          |                             |
|                                |                       | <b>4</b><br><b>Be</b><br><sup>9.012</sup>         | Derylluum<br>Ng<br>24.31<br>magnesium                           | 20<br>Ca<br>40.08<br>calcium                           | 38<br>Sr<br>87.61<br>strontium                       | <b>56</b><br><b>Ba</b><br>137.3<br>barium                      | 88<br>Ra             | radium                   |                                                              | -                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|                                | <b>1.008</b>          | <b>Li</b><br>6941                                 | <b>11</b><br>22.99<br>sodium                                    | 19<br>K<br><sup>39.10</sup><br>potassium               | 37<br>85.47<br>rubidium                              | 55<br>Cs<br>132.9<br>caesium                                   | 87<br>Fr             | francium                 |                                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |

# Neap Final Examination 2022 NSW Year 11 Chemistry

#### **DIRECTIONS:**

Write your name in the space provided.

Write your student number in the boxes provided below. Then, in the columns of digits below each box, fill in the oval which has the same number as you have written in the box. Fill in **one** oval only in each column.

Read each question and its suggested answers. Select the alternative A, B, C, or D that best answers the question. Fill in the response oval completely, using blue or black pen. Mark only **one oval** per question.

 $A \bigcirc B \bullet C \bigcirc D \bigcirc$ 

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A 🔴 B

B 💓 C O D O

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and draw an arrow as follows.

|   |             |   | correct     |   |            |   |            |
|---|-------------|---|-------------|---|------------|---|------------|
| А | $\varkappa$ | В | $\varkappa$ | C | $\bigcirc$ | D | $\bigcirc$ |

STUDENT NAME: \_\_\_\_\_\_

| STUDENT | NUMBER: |
|---------|---------|
|         |         |
|         |         |

| 1          | 1 | 1          | 1 | 1          | 1 | 1          | 1 | 1          |
|------------|---|------------|---|------------|---|------------|---|------------|
| 2          | 2 | 2          | 2 | 2          | 2 | 2          | 2 | 2          |
| 3          | 3 | 3          | 3 | 3          | 3 | 3          | 3 | 3          |
| 4          | 4 | 4          | 4 | 4          | 4 | 4          | 4 | 4          |
| 5          | 5 | 5          | 5 | 5          | 5 | 5          | 5 | 5          |
| 6          | 6 | 6          | 6 | 6          | 6 | 6          | 6 | 6          |
| $\bigcirc$ | 7 | $\bigcirc$ |   | $\bigcirc$ | 7 | $\bigcirc$ | 7 | $\bigcirc$ |
| 8          | 8 | 8          | 8 | 8          | 8 | 8          | 8 | 8          |
| 9          | 9 | 9          | 9 | 9          | 9 | 9          | 9 | 9          |
| 0          | 0 | 0          | 0 | 0          | 0 | 0          | 0 | 0          |

| SECTION I                    |  |  |  |  |  |  |
|------------------------------|--|--|--|--|--|--|
| MULTIPLE-CHOICE ANSWER SHEET |  |  |  |  |  |  |

| 1.                           | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
|------------------------------|---|------------|---|------------|---|------------|---|------------|--|--|
| 2.                           | А | $\bigcirc$ | В | $\bigcirc$ | С | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 3.                           | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 4.                           | А | $\bigcirc$ | В | $\bigcirc$ | С | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 5.                           | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 6.                           | А | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 7.                           | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 8.                           | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 9.                           | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 10.                          | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 11.                          | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 12.                          | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 13.                          | А | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 14.                          | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| 15.                          | Α | $\bigcirc$ | В | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |  |  |
| STUDENTS SHOULD NOW CONTINUE |   |            |   |            |   |            |   |            |  |  |

TUDENTS SHOULD NOW CONTINUI

WITH SECTION II

Neap<sup>®</sup> Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.