Neap

Final Examination 2023

NSW Year 11 Chemistry

General	Reading time - 5 minutes
Instructions	Working time – 2 hours
	Write using black pen
	Draw diagrams using pencil
	Calculators approved by NESA may be used
	• A formulae sheet, data sheet and Periodic Table are provided at the back of this paper
Total Marks:	Section I – 15 marks (pages 2–6)
75	Attempt Questions 1–15
	Allow about 30 minutes for this section
	Section II – 60 marks (pages 7–20)
	• Attempt Questions 16–25

• Allow about 1 hour and 30 minutes for this section

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION I

15 marks Attempt Questions 1–15 Allow about 30 minutes for this section

Use the multiple-choice answer sheet for Questions 1–15.

1 How many protons, neutrons and electrons are in an iron-56 atom?

	Protons	Neutrons	Electrons
A.	26	26	26
B.	26	30	26
C.	26	26	30
D	26	25	26

2 Consider the following equation.

$$2\mathrm{NO}_2(g) \rightarrow 2\mathrm{O}_2(g) + \mathrm{N}_2(g)$$

What type of reaction does the equation represent?

- A. decomposition
- B. combustion
- C. precipitation
- D. acid/base

3 What is the oxidation number of sulfur in the ion $S_2 O_6^{2-}$?

- А. –5
- B. +5
- C. +6
- D. +12

4 The diagram shows a piece of glassware that is used in the separation of liquids.

The liquids in this glassware are separated based on which of the following properties?

- A. gravity
- B. boiling point
- C. melting point
- D. density

5 The heat of combustion of propane (C_3H_8) is -2220 kJ mol⁻¹. What is the value of the heat of combustion in kJ g⁻¹?

- A. 50.38
- B. 97.82
- C. 131.34
- D. 195.65
- **6** Which of the following statements is correct?
 - A. When aluminium reacts with cold water, the reaction occurs according to the equation Al(s) + H₂O(l) \rightarrow AlO(aq) + H₂(g).
 - B. When aluminium reacts with cold water, the reaction occurs according to the equation Al(s) + 2H₂O(l) \rightarrow AlO₃(s) + 2H₂(g).
 - C. When aluminium reacts with cold water, the reaction occurs according to the equation $2Al(s) + 3H_2O(l) \rightarrow AlO_3(aq) + 3H_2(g).$
 - D. No reaction occurs between aluminium and cold water.

7 A flame test can be used to determine the identity of a metal in a sample.A student performs a flame test and observes a lilac colour in the flame. Their test is shown in the diagram.

Which of the following metals could be present in the sample?

- A. sodium
- B. potassium
- C. copper
- D. barium

8 What mass of aluminium chloride is required to prepare a 500 mL solution with a concentration of 0.050 mol L^{-1} ?

- A. 1.6 g
- B. 2.4 g
- C. 3.3 g
- D. 4.9 g
- 9 Sulfur reacts with oxygen to produce sulfur dioxide according to the following equation.

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

What volume of sulfur dioxide gas is produced when 11.35 g of sulfur is combusted at a temperature of 25°C and under 100 kPa pressure?

- A. 8.774 mL
- B. 10.53 mL
- C. 8.774 L
- D. 10.53 L

- 10 Which of the following statements about catalysts is NOT true?
 - A. A catalyst provides an alternative reaction pathway.
 - B. A catalyst alters the overall enthalpy change, ΔH , of a reaction.
 - C. A catalyst reduces the activation energy, E_a , of a reaction.
 - D. A catalyst is not consumed during a reaction.
- 11 When calcium carbonate is heated, it decomposes into calcium oxide and carbon dioxide according to the following equation.

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g) \quad \Delta H = +178.3 \text{ kJ}$

How much energy is required to decompose 21.34 g of CaCO₃?

- A. 178.3 J
- B. 17.83 kJ
- C. 38.02 kJ
- D. 89.00 kJ

12 Strips of magnesium metal are placed in a beaker with dilute nitric acid. Which of the following will increase the rate of the reaction?

- A. increasing the pressure
- B. decreasing the volume of the nitric acid
- C. increasing the size of the magnesium metal strips
- D. increasing the concentration of the nitric acid
- **13** Analysis has shown that caffeine contains 49.5% carbon, 5.2% hydrogen, 28.7% nitrogen and 16.6% oxygen by mass.

If the molar mass of caffeine is $194.19 \text{ g mol}^{-1}$, what is its molecular formula?

- A. $C_2H_{10}N_2O$
- B. $C_4H_4NO_2$
- C. C₄H₅N₂O
- D. $C_8H_{10}N_4O_2$

14 The dashed lines in the diagram illustrate the bonds between some molecules.

What type of bonding do the dashed lines represent?

- A. hydrogen bonding
- B. dispersion forces
- C. intramolecular forces
- D. ion-dipole forces
- 15 In which of the following reactions does entropy decrease (that is, $\Delta S < 0$)?
 - A. $\operatorname{NH}_4\operatorname{Cl}(s) \to \operatorname{NH}_3(g) + \operatorname{HCl}(g)$
 - B. NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq)
 - C. $N_2(g) + 2H_2(g) \rightarrow N_2H_4(l)$
 - D. $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$

NSW Year 11 Chemistry

Section II Answer Booklet

60 marks Attempt Questions 16–25 Allow about 1 hours and 30 minutes for this section

Instructions

- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Show all relevant working in questions involving calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Please turn over

Question 16 (3 marks)

Hydrogen gas and chlorine gas react to form hydrogen chloride gas according to the following equation. 3

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

Calculate the mass of Cl_2 that would be required to produce 267 g of HCl.

Question 17 (5 marks)

The energy profile diagram of the reaction between an aqueous solution of sodium hydroxide and sulfuric acid is shown.

Question 18 (8 marks)

Define and describe the trends in the periodic table relating to the reactivity of metals and non-metals, **8** electronegativity, atomic radii and first ionisation energy.

.....

Question 19 (10 marks)

A student conducted an experiment using a galvanic cell. One half-cell comprised an aluminium strip dipped in aluminium nitrate solution. The second half-cell comprised an iron strip dipped in an iron(II) nitrate solution.

(a) Identify the species that is oxidised and the species that is reduced, and write the oxidation and reduction half-equations.

4

5

Species that is oxidised and oxidation half-equation	Species that is reduced and reduction half-equation

(b) Draw a fully labelled diagram of the galvanic cell used by the student and write a balanced chemical equation for the net ionic reaction that occurs in the cell.

(c) Calculate the cell potential of the galvanic cell.

Question 20 (6 marks)

Modern cars are equipped with multiple airbags to protect occupants from sustaining injuries during a collision. On collision, the airbags are filled with nitrogen gas, which is produced by the reaction between sodium azide and iron(III) oxide. The reaction occurs according to the following equation.

$$6\text{NaN}_3(s) + \text{Fe}_2\text{O}_3(s) \rightarrow 3\text{Na}_2\text{O}(s) + 2\text{Fe}(s) + 9\text{N}_2(g)$$

The diagram illustrates an airbag.

(a) Calculate the mass of NaN₃, in grams, that is required to produce enough N₂ to fill an airbag that has a volume of 65 L. Assume that the conditions are at 25°C and 100 kPa. 4

(b) Calculate the volume of N₂ that would be produced by the amount of NaN₃ found in part (b) at 35°C.

Question 21 (7 marks)

Chemical bonds are forces that hold atoms together.

Complete the table. Use IUPAC naming conventions.

Substance name	Substance formula	Bonding present in substance
gold		
	N ₂ O ₅	
nitrogen gas		
	(NH ₄) ₂ SO ₄	
aluminium carbonate		
	SO3	
silicon dioxide		

Question 22 (4 marks)

When some metals react with dilute acids, hydrogen gas (H_2) is produced. The names and chemical 4 symbols of some metals are shown in the table.

Name	Chemical symbol
silver	Ag
aluminium	Al
barium	Ba
copper	Cu
sodium	Na
nickel	Ni

Identify which metals in the table would react with dilute sulfuric acid (H_2SO_4) to produce H_2 . Explain your answer and include relevant balanced chemical equations.

•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••			•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	 •••	•••	•••	•••	•••
•••	•••	••	•••		••	•••	••	••	•••	••	••	••	••			•••	••	•••	•••	•••	••	••	••	••	•••	••	••	•••		••	•••	•••	•••	••	•••	••	 •••	•••	••	••	••
••	••	••	•••		•••	•••	••	•••	•••	•••	••	••	••	•••	•••	•••	•••	•••	•••	••	••	••	••	••	•••	•••	••	•••		•••	••	•••	•••	••	•••	••	 ••	••	••	••	••
•••	•••	•••	•••		•••	•••	•••	•••	• • •	•••	•••	•••	•••				•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••	•••	 •••	•••	•••	•••	•••
•••	•••	••	•••		•••	•••	•••	•••	•••	•••	•••	••	•••				•••	•••	•••	•••	•••	•••	••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••	•••	 •••	•••	•••	•••	••

Question 23 (6 marks)

The reaction between urea and water occurs according to the following equation.

$$CO(NH_2)_2(aq) + H_2O(l) \rightarrow CO_2(g) + 2NH_3(g)$$

Data about the reactants and products is shown in the table.

Substance	Standard enthalpy of formation, $\Delta H_f^{\circ} (kJ mol^{-1})$	Standard entropy at $25^{\circ}C$ and 100 kPa, $\Delta S^{\circ} (J mol^{-1}K^{-1})$
carbon dioxide $(CO_2(g))$	-393.5	213.6
urea ($CO(NH_2)_2(aq)$)	-319.2	173.8
water $(H_2O(l))$	-285.9	69.96
ammonia $(NH_3(g))$	-46.19	192.5

(a) Calculate the Gibbs free energy, ΔG° , of the reaction.

..... (b) Calculate the temperature at which the reaction will be spontaneous. 4

Question 24 (6 marks)

Cryolite is an ore of aluminium and its formula is Na_3AlF_6 . It is used as a solvent in the extraction of aluminium from bauxite, which is another aluminium ore, by electrolysis.

(a)	Calculate the molar mass of Na_3AlF_6 .	1
(b)	Calculate the percentage composition by mass of Na_3AlF_6 .	3
(c)	Calculate the mass of aluminium, in kilograms, that could be obtained from 50 kg of Na_3AlF_6 .	2

Question 25 (5 marks)

The heat of combustion of different alcohols are shown in the table.

Alcohol	<i>Heat of combustion</i> , $\Delta_c H (kJ mol^{-1})$
methanol (CH ₃ OH)	-726
ethanol (C ₂ H ₅ OH)	-1367
propan-1-ol (C ₃ H ₇ OH)	-2021
pentan-1-ol (C ₅ H ₁₁ OH)	-3331

(a) Using data from the table, plot a graph showing the relationship between the molar mass and $\Delta_c H$ of the alcohols. Include a title, axis labels, a line of best fit and appropriate scales.

3

Question 25 continues on page 18

Question 25 (continued)

(b)	Using the graph from part (a), estimate the $\Delta_c H$ of butan-1-ol, $C_4 H_9 OH$.	1
(c)	What is the $\Delta_c H$ of $C_4 H_9 OH$ in kilojoules per gram?	1

End of paper

Section II extra writing space

If you use this space, clearly indicate which question you are answering.

•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	,
•••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••	••••••
•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	••••••
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	

Section II extra writing space

If you use this space, clearly indicate which question you are answering.

••••••	
••••••	
••••••	
••••••	•••••••••••••••••••••••••••••••••••••••
••••••	
••••••	
•••••••••••••••••••••••••••••••••••••••	
	• • • • • • • • • • • • • • • • • • • •
••••••	
••••••	
••••••	
••••••	
••••••	
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •

FORMULAE SHEET

$n = \frac{m}{MM}$	$c = \frac{n}{V}$	PV = nRT
$q = mc\Delta T$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$\mathrm{pH} = -\log_{10} \left[\mathrm{H}^{+}\right]$
$pK_a = -\log_{10}[K_a]$	$A = \varepsilon lc = \log_{10} \frac{I_o}{I}$	
Avogadro constant, N_A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas:	at 100 kPa and	
	at 0°C (273.15 K)	22.71 L
	at 25°C (298.15 K)	24.79 L
Gas constant		$8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
Ionisation constant for water	at 25°C (298.15 K), K_w	1.0×10^{-14}
Specific heat capacity of wat	ter	$4.18 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$

DATA SHEET Solubility constants at 25°C

Compound	K_{sp}	Compound	K_{sp}
Barium carbonate	2.58×10^{-9}	Lead(II) bromide	6.60×10^{-6}
Barium hydroxide	2.55×10^{-4}	Lead(II) chloride	1.70×10^{-5}
Barium phosphate	1.3×10^{-29}	Lead(II) iodide	9.8×10^{-9}
Barium sulfate	1.08×10^{-10}	Lead(II) carbonate	7.40×10^{-14}
Calcium carbonate	3.36×10^{-9}	Lead(II) hydroxide	1.43×10^{-15}
Calcium hydroxide	5.02×10^{-6}	Lead(II) phosphate	8.0×10^{-43}
Calcium phosphate	2.07×10^{-29}	Lead(II) sulfate	2.53×10^{-8}
Calcium sulfate	4.93×10^{-5}	Magnesium carbonate	6.82×10^{-6}
Copper(II) carbonate	1.4×10^{-10}	Magnesium hydroxide	5.61×10^{-12}
Copper(II) hydroxide	2.2×10^{-20}	Magnesium phosphate	1.04×10^{-24}
Copper(II) phosphate	1.40×10^{-37}	Silver bromide	5.35×10^{-13}
Iron(II) carbonate	3.13×10^{-11}	Silver chloride	1.77×10^{-10}
Iron(II) hydroxide	4.87×10^{-17}	Silver carbonate	8.46×10^{-12}
Iron(III) hydroxide	2.79×10^{-39}	Silver hydroxide	2.0×10^{-8}
Iron(III) phosphate	9.91×10^{-16}	Silver iodide	8.52×10^{-17}
		Silver phosphate	8.89×10^{-17}
		Silver sulfate	1.20×10^{-5}

Infrared	absor	ption	data
----------	-------	-------	------

Bond	Wavenumber/cm ⁻¹
N—H (amines)	3300-3500
O—H (alcohols)	3230–3550 (broad)
С—Н	2850-3300
O—H (acids)	2500–3000 (very broad)
C≡N	2220-2260
C=0	1680–1750
C=C	1620–1680
с—о	1000-1300
С—С	750–1100

¹³ C NMR	chemical	shift	data
	cincinicai	SIIII	uata

Type of carbon	δ /ppm
	5-40
$\begin{array}{ c c } R - C - Cl \text{ or } Br \\ \hline \end{array}$	10–70
$ \begin{array}{c c} R - C - C - \\ \parallel \\ O \end{array} $	20–50
	25-60
-C-O - alcohols, ethers or esters	50-90
C=C	90–150
$R - C \equiv N$	110–125
	110–160
$ \begin{array}{c} R - C - \\ \parallel \\ O \end{array} $ esters or acids	160–185
$ \begin{array}{ c c c } R - C - & aldehydes \\ \parallel & or \ ketones \end{array} $	190–220

UV absorption (*This is not a definitive list and is approximate.*)

Chromophore	bre λ_{\max} (nm)		Chromophore	λ_{\max} (nm)
С—Н	112		C≡C	173 178 196 222
с—с	135		C—Cl	173
C=C	162		C—Br	208

Some standard potentials

$K^+ + e^-$		$\mathbf{K}(s)$	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	-2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g) + OH ⁻	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	–0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V
${\rm Sn}^{2+} + 2e^{-}$	\rightleftharpoons	$\operatorname{Sn}(s)$	–0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	–0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	20H ⁻	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}$ I ₂ (s) + e ⁻	\rightleftharpoons	Ī	0.54 V
$\frac{1}{2}$ I ₂ (<i>aq</i>) + e ⁻	\rightleftharpoons	ſ	0.62 V
$\mathrm{Fe}^{3+} + \mathrm{e}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\operatorname{Br}_2(l) + e^{-}$	\rightleftharpoons	Br	1.08 V
$\frac{1}{2}\operatorname{Br}_2(aq) + e^{-}$	\rightleftharpoons	Br	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H ₂ O	1.23 V
$\frac{1}{2}$ Cl ₂ (g) + e ⁻	\rightleftharpoons	Cl	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}$ Cl ₂ (<i>aq</i>) + e ⁻	\rightleftharpoons	Cl	1.40 V
$MnO_4^{-} + 8H^{+} + 5e^{-}$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	\rightleftharpoons	F^{-}	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for the standard potentials. Some data may have been modified for examination purposes.

	He 4.003 helium	10 20.18 ^{20.18}	18 Ar 39.95 argon	36 Kr 83.80 krypton	54 Xe 131.3 xenon	86 Rn radon	118 0g oganesson					
l		19.00 fluorine	CI 35.45 chlorine	35 Br 79.90 bromine	53 1 126.9 iodine	85 At astatine	117 Ts tennessine	E3	175.0 Iutetium		103 Lr	lawrencium
		8 0 16.00 oxygen	16 S 32.07 sulfur	34 Se 78.96 selenium	52 Te 127.6 tellurium	84 Po polonium	116 Lv livermorium	70 70	173.1 ytterbium		102 No	nobelium
		7 14.01 nitrogen	15 P 30.97 phosphorus	33 As 74.92 arsenic	51 Sb 121.8 antimony	83 Bi ^{209.0} bismuth	115 Mc moscovium	69 L	168.9 thulium		101 Md	mendelevium
		G C 12.01 carbon	14 Si silicon	32 Ge 72.64 germanium	50 Sn ^{118.7}	82 207.2 lead	114 Fl	68 F	167.3 erbium		6 T E	fermium
		والمعالية المحالية ال المحالية المحالية الم	13 Al ^{26,98} ^{aluminium}	31 Ga 69.72 gallium	49 In 114.8 indium	81 TI 204.4 thallium	113 Nh nihonium	67 Ho	164.9 holmium		66 Es	einsteinium
				30 Zn ^{65.38} ^{zinc}	48 Cd 112.4 cadmium	80 Hg 200.6 mercury	112 Cn copernicium	00 00	162.5 dysprosium		85 85	californium
JENTC				29 Cu 63.55 copper	47 Ag 107.9 silver	79 Au 197.0 gold	111 Rg roentgenium	65 Tb	158.9 terbium		97 Bk	berkelium
				28 58.69 nickel	46 Pd 106.4 palladium	78 Pt 195.1 platinum	110 Ds darmstadtium	64 64	157.3 gadolinium		96 Cm	curium
	KEY	79 Au 197.0 gold		27 Co 58.93 cobalt	45 Rh 102.9 rhodium	77 1 1 192.2 iridium	109 Mt meitnerium	Eu 63	152.0 europium		95 Am	americium
		: number symbol ic weight name		26 Fe 55.85 iron	44 Ru 101.1 ruthenium	76 0s ^{190.2} ^{osmium}	108 Hs hassium	62 Sm	150.4 samarium		94 Pu	plutonium
DEDIO		atomic ndard atomi		25 Mn 54.94 manganese	43 Tc technetium	75 Re 186.2 rhenium	107 Bh bohrium	61 Bm	promethium	1	93 Np	neptunium
		star		24 Cr 52.00 chromium	42 Mo 95.36 molybdenum	74 V 183.9 tungsten	106 Sg seaborgium	09 09	144.2 neodymium	1	92 N	238.0 uranium
				23 V 50.94 vanadium	41 Nb 92.91 niobium	73 Ta 180.9 tantalum	105 Db dubnium	59 P. 29	140.9 praseodymium		91 Pa	231.0 protactinium
				22 T 47.87 titanium	40 Zr 91.22 zirconium	72 Hf 178.5 hafnium	104 Rf rutherfordium	28 28	140.1 cerium		96 L §	232.0 thorium
				21 Sc 44.96 scandium	39 Y 88.91 yttrium	57–71 lanthanoids	89–103 actinoids	Lanthanoic 57 La	138.9 lanthanum	Actinolas	89 Ac	actinium
		4 Be 9.012 beryllium	12 Mg 24.31 magnesium	20 Ca 40.08 calcium	38 Sr ^{87,61} strontium	56 Ba 137.3 barium	88 Ra radium					
	1 1.008 hydrogen	Li 6.941 lithium	11 Na ^{22.99} sodium	19 K ^{39.10} potassium	37 85.47 rubidium	55 Cs 132.9 caesium	87 Fr					

Standard atomic weights are abridged to four significant figures. Elements with no reported values in the table have no stable nuclides. Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version). The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.

Neap NSW Year 11 Chemistry

DIRECTIONS:

Write your name in the space provided.

Write your student number in the boxes provided below. Then, in the columns of digits below each box, fill in the oval which has the same number as you have written in the box. Fill in **one** oval only in each column.

Read each question and its suggested answers. Select the alternative A, B, C, or D that best answers the question. Fill in the response oval completely, using blue or black pen. Mark only **one** oval per question.

 $A \bigcirc B \bullet C \bigcirc D \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A 🔴 B 💓 C 🔿 D 🔿

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and draw an arrow as follows.

	correct		
A 💓	в 💌	C ()	D \bigcirc

STUDENT NAME: _____

STUDENT NUMBER:

	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
\bigcirc	7	\bigcirc	7	\bigcirc	7	\bigcirc	7	\bigcirc
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9
0	0	0	0	0	0	0	0	0

SECTION I Multiple-choice answer sheet

1.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
2.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
3.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
4.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
5.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
6.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
7.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
8.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
9.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
10.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
11.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
12.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
13.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
14.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc
15.	А	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc

STUDENTS SHOULD NOW CONTINUE WITH SECTION II

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.