Neap

Final Examination 2021

NSW Year 11 Mathematics Advanced

Solutions and marking guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION	
---------	--

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1AUsing the quadratic formula:	MA-F1 Working with Functions MA11–1 Band 2
$x = \frac{-3 \pm \sqrt{3^2 - 4 \times 2 \times (-4)}}{2 \times 2}$ $= \frac{-3 \pm \sqrt{41}}{4}$	
Question 2CC is correct. This is a many-to-one relation as two students have the same teacher and no student has more than one teacher. A, B and D are incorrect. The relations specified in these options do not reflect the information shown 	MA-F1 Working with Functions MA11–2 Bands 2–3
Question 3DDomain: $2-x \ge 0$ $2 \ge x$ $x \le 2$ $\therefore (-\infty, 2]$ Range: $f(x) \ge 0$ $\therefore [0, \infty)$	MA-F1 Working with Functions MA11–1 Bands 3–4
Question 4 B $\frac{d}{dx}\left(\left(5x^{2}+2\right)^{4}\right) = 4\left(5x^{2}+2\right)^{3} \times 10x$ $= 40x\left(5x^{2}+2\right)^{3}$	MA-C1 Introduction to Differentiation MA11–5 Bands 3–4
Question 5DD is correct. The tangent is vertical at point D. A, B and Care incorrect. A function is said to be differentiable at point $x = a$ if it is smooth and continuous at $x = a$.Note: A function is differentiable at point $x = a$ if, and only if,a non-vertical tangent exists at $x = a$.	MA-C1 Introduction to Differentiation MA11–5 Bands 3–5
Question 6 B If P, Q and R are collinear, then $m_{PQ} = m_{PR} = m_{QR}$. $\frac{2-4}{1-3} = \frac{b-4}{a-3}$ $1 = \frac{b-4}{a-3}$ a-3 = b-4 a-b = -1	MA-F1 Working with Functions MA11–1 Bands 3–5

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 7 B	MA-S1 Probability and Discrete
P(different colours) = P(BR) + P(RB)	Probability Distributions
$= \frac{26}{52} \times \frac{26}{51} + \frac{26}{52} \times \frac{26}{51}$ $= \frac{26}{51}$	MATI-7 Bands 3–4
Question 8 D	MA-T1 Trigonometry and Measure
$50^{\circ}24' = 50^{\circ}24' \times \frac{\pi}{180^{\circ}}$	of Angles MA11–3 Bands 2–3
= 0.87964594 radians	
≈ 0.880 radians (to 3 significant figures)	
Question 9 A	MA-T1 Trigonometry and Measure
sector angle = $2\pi - \frac{\pi}{3}$	of Angles MA11–3 Bands 4–5
$=\frac{5\pi}{3}$	
$A_{\text{sector}} = \frac{1}{2} \times 12^2 \times \frac{5\pi}{3}$	
$= 120\pi \text{ cm}^2$	
$A_{\text{triangle}} = \frac{1}{2} \times 12^2 \times \sin\left(\frac{\pi}{3}\right)$	
$=36\sqrt{3}$ cm ²	
\therefore total area = $120\pi + 36\sqrt{3}$ cm ²	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 10COdd functions have point symmetry about the origin	MA-F1 Working with Functions MA-C1 Introduction to Differentiation
Examine the complete graph of $y = f(x)$.	MA11–2, MA11–5 Bands 4–6
y = 1 $y = -1$ (4, 6) (4, 6	
C is correct. As the gradient of the tangent at $x = -3$	
appears to be positive, C is possible. Through the process of elimination C is the correct answer A is incorrect	
As $y = f(x)$ has two horizontal asymptotes, A is not possible.	
B is incorrect. B is not possible, as $f = (-4) = -6$.	
D is incorrect. D is not possible, as $f(x)$ is decreasing for $x > 4$ but increasing for $-4 < x < 0$.	
Note: Options A , B and D would be correct if $y = f(x)$ had been an even function, which would have been the case if the graph had been symmetrical about the y-axis.	

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 11	
$\sqrt{x} = 6\sqrt{2} + \sqrt{128} - 3\sqrt{32}$ $= 6\sqrt{2} + 8\sqrt{2} - 12\sqrt{2}$ $= 2\sqrt{2}$ $= \sqrt{8}$ $x = 8$	MA-F1 Working with Functions MA11–1 Bands 2–4 • Gives the correct solution2 • Makes progress by writing all surds as like surds OR equivalent merit1
Question 12	
3x - 2y + 4 = 0 2y = 3x + 4 $y = \frac{3}{2}x + 2$ $\therefore m = \frac{3}{2}$ Equation of line using $m = \frac{3}{2}$ and point (4, -5): $y - (-5) = \frac{3}{2}(x - 4)$ 2(y + 5) = 3(x - 4) 2y + 10 = 3x - 12 3x - 2y - 22 = 0	MA-F1 Working with Functions MA11–1 Bands 2–3 • Gives the correct solution2 • Calculates the gradient OR equivalent merit1
Question 13	
(a) $ 3x + 4 = 7$ 3x + 4 = 7 3x = 3 x = 1 $x = 1, -\frac{11}{3}$ 3x = 4 = -7 3x = -11 $x = -\frac{11}{3}$	MA-F1 Working with Functions MA11–1 Bands 3–4 • Gives the correct solution2 • Attempts to deal with the absolute value OR equivalent merit1
(b) When taking the absolute value, you cannot have a negative result; that is, $ 3x + 4 \ge 0$ for all values of x. $ 3x + 4 = -7$ has no solutions, so it is not true that it is the same as $ 3x + 4 = 7$.	MA-F1 Working with Functions MA11–9 Bands 3–5 • Gives the correct solution1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 14	
The function has x-intercepts of -1 and 3. So the equation is in the form $y = a(x + 1)(x - 3)$. Substituting the y-intercept into this equation gives: -6 = a(0+1)(0-3) -6 = -3a a = 2 $\therefore y = 2(x + 1)(x - 3)$	MA-F1 Working with Functions MA11–1 Bands 2–4 • Gives the correct solution2 • Provides a quadratic equation with the zeros1
Question 15	
(a) $2\cos\theta = -\sqrt{2}$ $\cos\theta = -\frac{\sqrt{2}}{2}$ related angle $\theta = \frac{\pi}{4}$ As $\cos < 0$, angles are in the second and third quadrants. $\theta = \pi - \frac{\pi}{4}, \ \pi + \frac{\pi}{4}$ $= \frac{3\pi}{4}, \ \frac{5\pi}{4}$	MA-T1 Trigonometry and Measure of Angles MA11–3 Bands 3–4 • Gives the correct solution2 • Finds the related angle in radians OR equivalent merit1
(b) As $-180^{\circ} \le x \le -180^{\circ}$, then $-360^{\circ} \le 2x \le -360^{\circ}$. $\sin^{2} 2x = \frac{1}{4}$ $\sin 2x = \pm \frac{1}{2}$ related angle $2x = 30^{\circ}$ Angles are in all four quadrants: $2x = 30^{\circ}, 180^{\circ} - 30^{\circ}, 180^{\circ} + 30^{\circ}, 360^{\circ} - 30^{\circ},$ $-30^{\circ}, -180^{\circ} + 30^{\circ}, -180^{\circ} - 30^{\circ}, -360^{\circ} + 30^{\circ}$ $= 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ},$ $-30^{\circ}, -150^{\circ}, -210^{\circ}, -330^{\circ}$ $x = \pm 15^{\circ}, \pm 75^{\circ}, \pm 105^{\circ}, \pm 165^{\circ}$	MA-T1 Trigonometry and Measure of Angles MA11-3Bands 3-4• Gives the correct solution3• Finds the angles for $2x$ in the domain $-360^{\circ} \le 2x \le -360^{\circ}$ 2• Finds the related angle $2x$ in degrees OR equivalent merit1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 16	
$\frac{5x}{5x+3} = \frac{u}{v}$ $u = 5x$ $v = 5x+3$ $\frac{du}{dx} = 5$ $\frac{dv}{dx} = 5$ $\frac{d}{dx} \left(\frac{5x}{5x+3}\right) = \frac{5(5x+3)-5(5x)}{(5x+3)^2}$ $= \frac{25x+15-25x}{(5x+3)^2}$ $= \frac{15}{(5x+3)^2}$	MA-C1 Introduction to Differentiation MA11–5 Bands 2–3 • Gives the correct solution2 • Attempts to use the quotient rule OR equivalent merit1
Question 17	
$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) - (x^2 - 3x)}{h}$ = $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 3x - 3h - x^2 + 3x}{h}$ = $\lim_{h \to 0} \frac{2xh + h^2 - 3h}{h}$ = $\lim_{h \to 0} \frac{h(2x+h-3)}{h}$ = $\lim_{h \to 0} 2x + h - 3$ = $2x + 0 - 3$ = $2x - 3$	MA-C1 Introduction to Differentiation MA11–5 Bands 4–5 • Gives the correct solution2 • Correctly substitutes into the definition OR equivalent merit1
Question 18	
$\angle QRP = 180^{\circ} - (39^{\circ} + 65^{\circ})$ = 76° The longest side, PQ, is opposite the largest angle, $\angle QRP$. $\frac{PQ}{\sin 76^{\circ}} = \frac{94}{\sin 39^{\circ}}$ $PQ = \frac{94 \sin 76^{\circ}}{\sin 39^{\circ}}$ = 144.93 cm ≈ 145 cm (to the nearest cm)	MA-T1 Trigonometry and Measure of Angles MA11–5 Bands 4–5 • Gives the correct solution2 • Correctly substitutes into the sine rule OR equivalent merit1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 19	
$\frac{dy}{dx} = 3e^x - 3ex^2$ At $x = -1$: $m_{\text{tangent}} = 3e^{-1} - 3e(-1)^2$ $= \frac{3}{e} - 3e$ $m_{\text{normal}} = \frac{-1}{\frac{3}{e} - 3e}$ $= \frac{-e}{3 - 3e^2} \text{ or } \frac{e}{3e^2 - 3}$	 MA-C1 Introduction to Differentiation MA-E1 Logarithms and Exponentials MA11–5 Bands 3–5 Gives the correct solution3 Calculates the gradient of the tangent OR equivalent merit2 Calculates the derivative1
Question 20	
LHS = $\frac{\tan A}{1 + \sec A} - \frac{\tan A}{1 - \sec A}$ = $\frac{\tan A (1 - \sec A) - \tan A (1 + \sec A)}{(1 + \sec A)(1 - \sec A)}$ = $\frac{\tan A - \tan A \sec A - \tan A - \tan A \sec A}{1 - \sec^2 A}$ = $\frac{-2 \tan A \sec A}{1 - (1 + \tan^2 A)}$ = $\frac{\frac{1}{2} \tan^2 A \sec A}{\frac{1}{2} \tan^2 A}$ = $\frac{2 \sec A}{\frac{1}{2} \tan^2 A}$ = $\frac{2 \sec A}{\frac{1}{2} \tan A}$ = $\frac{2}{\frac{\cos A}{\frac{\sin A}{\cos A}}}$ = $\frac{2}{\frac{\sin A}{\cos A}}$ = $2 \csc A$ = RHS $\therefore \frac{\tan A}{1 + \sec A} - \frac{\tan A}{1 - \sec A} = 2 \csc A$	MA-T2 Trigonometric Functions and Identities MA11-1, 11-4 Bands 4-6 • Gives the correct solution3 • Makes substantial progress by cancelling common factors2 • Writes the expression under a common denominator1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 21	
Equate RHS of both equations: $mx - 4 = \frac{x^2}{2}$ $2mx - 8 = x^2$ $x^2 - 2mx + 8 = 0$ $\Delta = (-2m)^2 - 4 \times 1 \times 8$ $= 4m^2 - 32$ If the line is a tangent, then $\Delta = 0$. $4m^2 - 32 = 0$ $4m^2 - 32 = 0$ $4m^2 = 32$ $m^2 = 8$ $m = \pm \sqrt{8}$	MA-F1 Working with Functions MA-C1 Introduction to Differentiation MA11-1, MA11-5 Bands 4-5 • Gives the correct solution • Calculates the determinant. • Constructs a correct quadratic equation OR equivalent merit.
$=\pm 2\sqrt{2}$	
Question 22	
y = f(x) has been reflected on the <i>x</i> -axis, and translated two units right and one unit up.	MA-E1 Logarithms and Exponentials MA11–6 Bands 3–5 • Gives the correct solution2 • Correctly references reflection OR translation1
Question 23	
(a) $0.01 R = 1.000 R = 1.0000 R = 1.000 R = $	MA-S1 Probability and Discrete Probability Distributions MA11–7 Bands 3–4 • Draws the correct probability tree diagram
(b) $P(\text{rotten}) = P(AR) + P(BR) + P(CR)$ = 45%×0.01 + 35%×0.03 + 20%×0.04 = 0.023	 MA-S1 Probability and Discrete Probability Distributions MA11–7 Bands 3–4 Gives the correct solution2 Calculates some of the probabilities, demonstrating an understanding of the addition rule OR equivalent merit1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) $P(B \overline{\text{rotten}}) = \frac{P(B \cap \overline{R})}{P(\overline{\text{rotten}})}$ = $\frac{35\% \times 0.97}{1 - 0.023}$ = $\frac{679}{1954}$	 MA-S1 Probability and Discrete Probability Distributions MA11–7 Bands 4–5 Gives the correct solution2 Demonstrates an understanding of conditional probability OR equivalent merit1
Question 24	
Let θ be the acute angle that interval <i>AB</i> makes with the <i>x</i> -axis. Then $\angle ABC = \theta + 90^{\circ}$, as <i>BC</i> is perpendicular to the <i>x</i> -axis. $m_{AB} = \frac{2-0}{2+4}$ $= \frac{1}{3}$ $\tan \theta = \frac{1}{3}$ $\theta = \tan^{-1}\left(\frac{1}{3}\right)$ $\approx 18^{\circ}$ (to the nearest degree) $\angle ABC \approx 18^{\circ} + 90^{\circ}$ $\approx 108^{\circ}$	MA-F1 Working with Functions MA-C1 Introduction to Differentiation MA11-1 Bands 3-4 • Gives the correct solution2 • Calculates the gradient of AB OR equivalent merit1
Question 25	
(a) $\log_7 63 = \log_7 (7 \times 9)$ = $\log_7 7 + \log_7 9$ = $1 + 2 \log_7 3$ = $1 + 2a$	MA-E1 Logarithms and Exponentials MA11–6 Bands 3–4 • Gives the correct solution2 • Uses logarithm laws OR equivalent merit1
(b) $\log_7 \frac{16}{27} = \log_7 16 - \log_7 27$ = $\log_7 2^4 - \log_7 3^3$ = $\log_7 \left(2^3\right)^{\frac{4}{3}} - 3\log_7 3$	 MA-E1 Logarithms and Exponentials MA11-6 Bands 4-5 Gives the correct solution3 Obtains an expression for log₇16, in terms
$=\frac{4}{3}\log_7 8 - 3\log_7 3$ $=\frac{4}{3}b - 3a$	ot log ₇ 82 Uses logarithm laws OR equivalent merit1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 26	
y y	MA-F1 Working with Functions MA11–1 Bands 3–4 • Gives the correct solution2
(1,2) $(4,6)$ $(1,2$	• Calculates the radius1
Using Pythagoras' theorem:	
$r = \sqrt{3^2 + 4^2}$	
= 5	
Equation of circle with centre $(1, 2)$ and radius 5 units:	
$(x-1)^2 + (y-2)^2 = 5^2$	
$x^2 - 2x + 1 + y^2 - 4y + 4 = 25$	
$x^2 - 2x + y^2 - 4y - 20 = 0$	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 27	
Let <i>h</i> be the plane's altitude above <i>M</i> . $I = \frac{h}{26^{\circ}} = \frac{h}{70^{\circ}} = \frac{h}{25^{\circ}} = \frac{h}{6.5 \text{ km}} = \frac{h}{70^{\circ}} = \frac{h}{25^{\circ}} = \frac{h}{100000000000000000000000000000000000$	 MA-T1 Trigonometry and Measure of Angles MA11–1, MA11–3 Bands 4–6 Gives the correct solution4 Obtains a correct expression for h² OR equivalent merit3 Uses the cosine rule correctly to write a valid equation in triangle <i>XMY</i> OR equivalent merit2 Provides an expression for <i>XM</i> or <i>YM</i> OR equivalent merit1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 28	
(a) When $t = 10, M = 62$: $62 = 75e^{-10k}$ $\frac{62}{75} = e^{-10k}$ $-10k = \ln\left(\frac{62}{75}\right)$ $k = -\frac{1}{10}\ln\left(\frac{62}{75}\right)$	 MA-E1 Logarithms and Exponentials MA11-6 Bands 3-4 Gives the correct solution2 Substitutes the given values into the equation OR equivalent merit1
(b) When $t = 5$: $M = 75e^{-\left(-\frac{1}{10}\ln\left(\frac{62}{75}\right)\right) \times 5}$ = 68.190 g reduction = 75 g - 68.190 g = 6.809 g $\approx 6.8 \text{ g (to 1 decimal place)}$	MA-E1 Logarithms and Exponentials MA11-6 Band 3 • Gives the correct solution2 • Calculates mass when $t = 51$
Question 29	
(a) $g(f(x)) = (\sqrt{2x+4})^2 - 1$ = 2x + 4 - 1 = 2x + 3	 MA-F1 Working with Functions MA11-1 Bands 3-4 Gives the correct solution2 Attempts to work with the correct composite function OR equivalent merit1
(b) $2x + 4 \ge 0$ $2x \ge -4$ $x \ge -2$ domain: $[-2,\infty)$	MA-F1 Working with Functions MA11–1 Bands 4–5 • Gives the correct solution1

MA-F1 Working with Functions
MA11–1 Bands 3–4 • Draws the correct graph without domain restrictions or intercepts
MA-T1 Trigonometry and Measure of Angles MA11-3 Bands 3-4 • Gives the correct solution3 • Calculates the arc length OR equivalent merit2 • Calculates the sector angle OR equivalent merit1
MA-T2 Trigonometric Functions and Identities MA11–4 Bands 3–4 • Gives the correct solution2 • Makes progress with drawing the correct graph OR correct points plotted1

Sample answer						Syllabus content, outcomes, targeted performance bands and marking guide		
(b) $x = 45, 225$						MA-F1 Working with Functions MA-T2 Trigonometric Functions and Identities MA11–1, MA11–4 Band 4 • Gives the correct solution1		
Question 32	2							
For discrete	probability	, distributio	on:			MA-S1 Probability and Discrete		
$k + k^2 + 2k^2 + k = 1$						Probability Distributions MA-F1 Working with Functions MA11–7, MA11–9 Bands 4–6		
$3k^2 + 2k = 1$								
$3k^2 + 2k - 1 = 0$						• Gives the correct solution5		
(3k-1)(k-1)	(k+1) = 0					Substitutes values		
	$k = \frac{1}{2}, -$	-1				to calculate variance		
$0 \le P(X = x)$	$(z) \le 1$					• Solves for <i>a</i>		
$\therefore k = \frac{1}{3}$ only	у					Calculates the probabilities		
X	а	2 <i>a</i>	3 <i>a</i>	4 <i>a</i>		using $k = \frac{1}{3}$		
P(X=x)	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{3}$	-	Constructs the correct quadratic equation in terms of <i>k</i>		
$E(X) = a \times \frac{23a}{9}$ $= \frac{23a}{9}$	$\frac{1}{3} + 2a \times \frac{1}{9} +$	$-3a \times \frac{2}{9} + 4a$	$n \times \frac{1}{3}$		-			
$\frac{23a}{9} = \frac{23}{18}$ $a = \frac{1}{2}$								
X	0.5	1	1.5	2				
P(X = x)	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{3}$				
$\operatorname{Var}(X) = \left(0 \right)$	$\left(0.5-\frac{23}{18}\right)^2$	$\times \frac{1}{3} + \left(1 - \frac{2}{1}\right)$	$\left(\frac{3}{8}\right)^2 \times \frac{1}{9} + \left(\frac{3}{8}\right)^2 \times $	$\left(1.5 - \frac{23}{18}\right)^2$	$\times \frac{2}{9}$			
= 32	$+\left(2-\frac{23}{18}\right)$	$\left(\frac{3}{3}\right)^2 \times \frac{1}{3}$						
8	1							