Neap

Trial Examination 2021

HSC Year 12 Mathematics Extension 2

Solutions and marking guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1 B $2a - b = 2(3i - 4j + k) - (-i + 2j - 3k)$ $= 6i - 8j + 2k + i - 2j + 3k$ $= 7i - 10j + 5k$	MEX–V1 Further Work with Vectors MEX12–3 Bands E2–E3
Question 2 C	MEX–N1 Introduction to Complex
$z = \frac{\sqrt{3} - i}{1 + i}$ $ z = \frac{\sqrt{(\sqrt{3})^2 + (-1)^2}}{\sqrt{1^2 + (-1)^2}}$	MEX12–4 Bands E2–E3
$=\frac{2}{\sqrt{2}}$ $=\sqrt{2}$	
$\operatorname{arg}\left(\frac{\sqrt{3}-i}{1+i}\right) = \operatorname{arg}\left(\sqrt{3}-i\right) - \operatorname{arg}\left(1+i\right)$	
$= -\frac{\pi}{6} - \frac{\pi}{4}$ $= -\frac{5\pi}{12}$	
Question 3 A The parametric equations are $x = -5 + 2\lambda$ and $y = 6 - 3\lambda$.	MEX–V1 Further Work with Vectors MEX12–3 Bands E2–E3
$x = -5 + 2\lambda \Longrightarrow \lambda = \frac{x+5}{2}$	
Substituting $\lambda = \frac{x+5}{2}$ into $y = 6 - 3\lambda$ gives	
$y = 6 - 3\left(\frac{x+5}{2}\right).$	
Multiply all terms by 2:	
2y = 12 - 3(x+5)	
2y = 12 - 3x - 15	
Rearranging gives $2y + 3x = -3$.	

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 4 B The centre of C is the midpoint of AB, which is given by $\frac{1-5i+3-i}{2} = 2-3i.$ $AB = \sqrt{(3-1)^2 + (-1+5)^2}$ $= \sqrt{2^2 + 4^2}$ $= \sqrt{20}$ $= 2\sqrt{5}$ So the radius of C is $\sqrt{5}$. The equation of C is $ z - (2-3i) = \sqrt{5}, \text{ and so } z - 2 + 3i = \sqrt{5}.$	targeted performance bands MEX–N2 Using Complex Numbers MEX12–4 Bands E2–E3
Question 5 B $\frac{2\pi}{n} = \pi \Rightarrow n = 2$ Using $v^2 = n^2 (a^2 - x^2)$ with $v = 2.40$, $n = 2$ and $x = 0.50$: $2.40^2 = 4(a^2 - 0.50^2)$ $a^2 = \frac{2.40^2}{4} + 0.50^2$ $a = \sqrt{1.69}$ = 1.3 (m) Let the maximum speed be v_{max} , which occurs at the centre of motion (where $\ddot{x} = 0$). Using $v_{\text{max}} = na$ with $n = 2$ and $a = 1.30$:	MEX–M1 Applications of Calculus to Mechanics MEX12–6 Bands E3–E4
$v_{\text{max}} = 2 \times 1.30$ = 2.60 (m/s) Question 6 D $\int \frac{8x+1}{x^2+9} dx = 4 \int \frac{2x}{x^2+9} dx + \int \frac{1}{x^2+9} dx$ = $4 \ln (x^2+9) + \frac{1}{3} \tan^{-1} \frac{x}{3} + c$	MEX–C1 Further Integration MEX12–5 Bands E2–E3

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 7 C	MEX–P1 The Nature of Proof	
C is correct. When $x = 1, y = \frac{1}{3}$, which is not a natural	MEX12–2 Bands E3–E4	
number, and so this counterexample demonstrates that C		
is a false statement. A is incorrect. For all x there exists		
a y such that $x - y = 0$. Consider $y = x$. B is incorrect. For		
all x there exists a y such that $3x - y = 0$. Consider $y = 3x$.		
D is incorrect. For example, $x = 2$ and $y = 6$.		
Question 8 D D is correct. In a negation of the statement, the phrases 'for all' and 'there exists' must be interchanged, and '=' must change to ' \neq '. The negation of the given statement will therefore be: 'There exists odd primes $p < q$ such that for all positive non-primes $r < s$, $p^2 + q^2 \neq r^2 + s^2$ '. A , B and C are incorrect. These options do not show an accurate negation of the statement.	MEX–V1 The Nature of Proof MEX12–2 Bands E3–E4	
Question 9 D	MEX–N1 Introduction to Complex	
D is correct. Let the square roots of z be z_1 and z_2 .	Numbers MEX12–4 Bands E3–E4	
$z = r\left(\cos\theta + i\sin\theta\right) \text{ and so } \sqrt{z} = \pm\sqrt{r}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right).$ Hence, $z_1 = \sqrt{r}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)$ and $z_2 = -\sqrt{r}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right).$		
If z_1 has coordinates (x_1, y_1) , then z_2 has coordinates		
$(-x_1, -y_1)$, where $x_1 = \sqrt{r} \cos \frac{\theta}{2}$ and $y_1 = \sqrt{r} \sin \frac{\theta}{2}$. Points		
C and E satisfy this condition. A , B and C are incorrect.		
These options do not satisfy the above condition.		

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 10 A	MEX–M1 Applications of Calculus to Mechanics
A is correct. As $a = vx$ and $v \frac{dv}{dx} = a$, we have $\frac{dv}{dx} = x$. Thus,	MEX12–6 Bands E3–E4
$\int \frac{dv}{dx} dx = \int x dx$ and so $v = \frac{x^2}{2} + c$. The graph of v against	
x must be a parabola. B , C and D are incorrect. These options	
do not show a parabola as required.	

SECTION II

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 11	
(a)	The other root is $\sqrt{5} + i$. The sum of roots is $(\sqrt{5} - i) + (\sqrt{5} + i) = 2\sqrt{5}$. The product of roots is $(\sqrt{5} - i)(\sqrt{5} + i) = 6$. So, $p = -2\sqrt{5}$ and $q = 6$.	MEX-N1 Introduction to Complex Numbers MEX12-4 Bands E2-E3 • Gives the correct solution2 • Attempts to find the sum and product of roots OR equivalent merit1
(b)	Integration by parts takes the form $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx.$ Let $u = \sin^{-1}x$ and $\frac{dv}{dx} = 1$. So, $\frac{du}{dx} = \frac{1}{\sqrt{1-x^2}}$ and $v = x$. $\int_0^1 \sin^{-1}x dx = \left[x \sin^{-1}x\right]_0^1 - \int_0^1 \frac{x}{\sqrt{1-x^2}} dx$ $= \left(\frac{\pi}{2} - 0\right) + \frac{1}{2} \int_0^1 \frac{-2x}{\sqrt{1-x^2}} dx$ $= \frac{\pi}{2} + \frac{1}{2} \left[2\sqrt{1-x^2}\right]_0^1$ $= \frac{\pi}{2} + (0-1)$ $= \frac{\pi}{2} - 1$	MEX-C1 Further Integration MEX12-5 Bands E2-E3 • Gives the correct solution 3 • Correctly applies integration by parts OR equivalent merit 2 • Correctly identifies the two functions to be used in integration by parts OR equivalent merit

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	(i)	$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$ $= x + 3 \text{ with } t = 0, x = 0 \text{ and } v = 3$ $\frac{1}{2}v^2 = \int (x+3)dx$ $v^2 = 2\left(\frac{x^2}{2} + 3x\right) + c$ $= x^2 + 6x + c$ Applying the initial condition $x = 0 \text{ and } v = 3 \text{ gives } c = 9.$ $v^2 = x^2 + 6x + 9$ $= (x+3)^2$ $v = \pm (x+3)$ As $v = 3$ when $t = 0, v = x + 3$ (taking the positive root as $v > 0$).	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E3 • Gives the correct solution2 • Attempts to use $\frac{d}{dx} \left(\frac{1}{2}v^2\right)$ to find an expression for v^2 OR equivalent merit1
	(ii)	$v = \frac{dx}{dt} = x + 3 \text{ with } t = 0, x = 0$ $\frac{dt}{dx} = \frac{1}{x+3}$ $\Rightarrow t = \int \frac{1}{x+3} dx$ $t = \ln(x+3) + d$ $e^{t-d} = x + 3$ $x = Ae^{t} - 3, \text{ where } A = e^{-d}$ Applying the condition $t = 0, x = 0$ gives $A = 3$. So $x = 3e^{t} - 3$. Note: The value of the constant can be determined immediately after integrating.	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E3 • Gives the correct solution2 • Attempts to integrate a correct expression for $\frac{dt}{dx}$ OR equivalent merit1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(d)	Given $\hat{u} = x\hat{i} + y\hat{j} + z\hat{k}$, form three equations involving <i>x</i> , <i>y</i> and <i>z</i> .	MEX–V1 Further Work with Vectors MEX12–3 Bands E2–E3 • Gives the correct solution3
	$ \begin{aligned} & \hat{y} = 0 \Longrightarrow 2x + 3y - z = 0 (1) \\ & \hat{y} = 0 \Longrightarrow 4x - y + 5z = 0 (2) \\ & \left \hat{y} \right = 1 \Longrightarrow x^2 + y^2 + z^2 = 1 (3) \end{aligned} $	• Finds $\hat{u} = \frac{1}{\sqrt{3}} (\underline{i} - \underline{j} - \underline{k}) \dots 2$ • Attempts to form three equations in <i>x</i> , <i>y</i> and <i>z</i> 1
	For example, $2 \times (1) - (2)$ gives $y = z$. Substituting $z = y$ into (1) and solving gives $x = -y$.	
	Substituting $y = z$ and $x = -y$ into (3) and solving $3x^2 = 1$ for x gives $x = \frac{1}{\sqrt{3}}$ since $x > 0$.	
	So, $y = -\frac{1}{\sqrt{3}}$ and $z = -\frac{1}{\sqrt{3}}$. Hence, $\hat{y} = \frac{1}{\sqrt{3}}(i - i - k)$.	
	Hence, $\hat{u} = \sqrt{3} (\hat{v}, \hat{v}, \hat{v})$. As $\hat{u} = \sqrt{3} \hat{u}, \hat{u}$ is perpendicular to both \hat{b} and \hat{c} . Hence, \hat{u}, \hat{b} and \hat{c} are mutually perpendicular.	
	Hence, $\underline{a}, \underline{b}$ and \underline{c} are mutually perpendicular.	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(e)	Method 1: $1 - e^{2i\theta} = (1 - \cos 2\theta) - i \sin 2\theta.$ $\overline{1 - e^{2i\theta}} = (1 - \cos 2\theta) + i \sin 2\theta$ $\frac{2}{1 - e^{2i\theta}} = \frac{2((1 - \cos 2\theta) + i \sin 2\theta)}{(1 - \cos 2\theta)^2 + \sin^2 2\theta}$ $= \frac{2((1 - \cos 2\theta) + i \sin 2\theta)}{2(1 - \cos 2\theta)}$ (since sin ² 2\theta + cos ² 2\theta = 1) $= 1 + \frac{i \sin 2\theta}{1 - \cos 2\theta}$ $= 1 + \frac{2i \sin \theta \cos \theta}{1 - (1 - 2 \sin^2 \theta)}$ (use of double-angle formula) $= 1 + \frac{i \cos \theta}{\sin \theta}$ So $z = 1 + i \cot \theta.$ Method 2: $\frac{2}{1 - e^{2i\theta}} = \frac{2}{e^{i\theta} (e^{-i\theta} - e^{i\theta})}$ $= \frac{2e^{-i\theta}}{e^{-i\theta} - e^{i\theta}}$ $= \frac{2(\cos \theta - i \sin \theta)}{(\cos \theta - i \sin \theta) - (\cos \theta + i \sin \theta)}$ $= 1 - \frac{1}{i} \cot \theta$ $= 1 + i \cot \theta$	performance bands and marking guideMEX-N2 Using Complex NumbersMEX12-4Bands E2-E4• Gives the correct solution3• Uses $\sin^2 2\theta + \cos^2 2\theta = 1$ and appropriate double-angle formulae OR equivalent merit2• Multiplies and divides by $\overline{1-e^{2i\theta}} = (1-\cos 2\theta) + i \sin 2\theta$ OR equivalent merit1
		1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 12	
(a) The equation of motion has the form $x = a\cos nt$. $a = 4$ and $\frac{2\pi}{n} = \frac{\pi}{3}$, so $n = 6$. $x = 4\cos 6t$ and so $v = -24\sin 6t$. The maximum speed is 24 m/s and so half the maximum speed is 12 m/s. Find the first two values of t such that $12 = 24\sin 6t$. $\sin 6t = \frac{1}{2}$ $6t = \frac{\pi}{6}, \frac{5\pi}{6}$ So, $t = \frac{\pi}{36}, \frac{5\pi}{36}$.	MEX-M1 Applications of Calculus to Mechanics MEX12-6Bands E2-E4• Gives the correct solution
(b) (i) The equation of motion for particle A is: $5mg - T = \frac{5mg}{4}$ $T = 5mg - \frac{5mg}{4}$ $= \frac{15mg}{4} \text{ (newtons)}$	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E4 • Gives the correct solution2 • Attempts to apply Newton's second law OR equivalent merit1
(ii) The equation of motion for particle <i>B</i> is: $T - kmg = \frac{kmg}{4}$ $\frac{15mg}{4} = kmg + \frac{kmg}{4}$ $\frac{15mg}{4} = \frac{5kmg}{4}$ Therefore, $k = 3$.	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E4 • Gives the correct solution2 • Attempts to apply Newton's second law OR equivalent merit1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iii)	Sample answer (continued) Now consider the ascending motion of particle <i>B</i> under gravity: $\frac{d}{dx} \left(\frac{1}{2}v^2\right) = -g$ $\frac{1}{2}v^2 = -gx + d$ When $x = 0, v = \frac{g}{4}$ and so $d = \frac{g^2}{32}$. So, $\frac{1}{2}v^2 = -gx + \frac{g^2}{32}$. When $v = 0, x = s_2$ and so $s_2 = \frac{g}{32}$ (m). Substituting $s_1 = \frac{g}{8}$ and $s_2 = \frac{g}{32}$ into $h = 2s_1 + s_2$ gives: $h = 2\left(\frac{g}{8}\right) + \frac{g}{32}$	Syllabus content, outcomes, targeted performance bands and marking guide
	$=\frac{98}{32}$ So, the greatest height reached by particle <i>B</i> is $\frac{9g}{32}$ m.	
(c) (i)	$2\sqrt{2}$ C C $2\sqrt{2}$ x	MEX–N2 Using Complex Numbers MEX12–4 Bands E2–E3 • Correctly sketches the relation1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) Let <i>d</i> be the distance from <i>O</i> to the centre of the circle <i>C</i> . $d = \sqrt{\left(2\sqrt{2}\right)^2 + \left(2\sqrt{2}\right)^2}$ $= 4$ The radius of the circle is 2. So, the minimum value of $ z $ is $4-2=2$ and the maximum value of $ z $ is $4+2=6$.	MEX-N2 Using Complex Numbers MEX12-4Bands E2-E3• Finds the minimum AND maximum value of $ z $ 2• Finds the minimum OR maximum value of $ z $ 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iii) <i>OC</i> makes an angle of $\frac{\pi}{4}$ with the <i>x</i> -axis. Either: $\sin \angle COT = \frac{2}{4}$ $= \frac{1}{2}$ $\Rightarrow \angle COT = \frac{\pi}{6}$ Or: Form a right-angled triangle with <i>OC</i> , the radius of the circle, and <i>T</i> , the point of tangency to the circle. $OT = \sqrt{4^2 - 2^2}$ $= 2\sqrt{3}$ $\tan \angle COT = \frac{2}{2\sqrt{3}}$ $= \frac{1}{\sqrt{3}}$ $\Rightarrow \angle COT = \frac{\pi}{6}$ Then: y $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 4 $2\sqrt{2}$ 5 So, the minimum value of Arg z is $\frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12}$. By similar considerations, the maximum value of Arg z is $\frac{\pi}{4} + \frac{\pi}{6} = \frac{5\pi}{12}$.	MEX-N2 Using Complex Numbers MEX12-4 Bands E3-E4 • Finds the minimum AND maximum value of Arg z 2 • Finds the minimum OR maximum value of Arg z 1

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 1	3	
(a)	(i)	If x is even, then $x^2 - 6x + 5$ is odd.	MEX-P1 The Nature of Proof MEX12-2 Bands E2-E3 • Gives the correct contrapositive1
	(ii)	Suppose that x is even. Let $x = 2k$ for integer k. Substituting $x = 2k$ into $x^2 - 6x + 5$ gives $(2k)^2 - 6(2k) + 5$. $(2k)^2 - 6(2k) + 5 = 4k^2 - 12k + 5$ $= 2(2k^2 - 6k + 2) + 1$ Therefore, $x^2 - 6x + 5 = 2b + 1$, where b is the integer $2k^2 - 6k + 2$. Hence, $x^2 - 6x + 5$ is odd and the statement	MEX-P1 The Nature of Proof MEX12-2 Bands E2-E3 • Proves the contrapositive2 • Substitutes $x = 2k$ into $x^2 - 6x + 5$ AND attempts to express it in the form $2b + 1 \dots 1$

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	(i)	Let \overrightarrow{OP} be the point of intersection of	MEX-V1 Further Work with Vectors MEX12-3 Bands E2-E4
		\overrightarrow{OC} and \overrightarrow{MB} .	• Gives the correct solution3
		$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ $= \underline{a} + \underline{b}$ The equation of line <i>OC</i> is $\underline{r} = \lambda(\underline{a} + \underline{b})$. The equation of line <i>MB</i> is $\underline{r} = \overrightarrow{OM} + \mu(\overrightarrow{OB} - \overrightarrow{OM})$. $\underline{r} = \frac{1}{5}\underline{a} + \mu\left(-\frac{1}{5}\underline{a} + \underline{b}\right)$ Equating: $\lambda \underline{a} + \lambda \underline{b} = \frac{1}{5}\underline{a} - \frac{\mu}{5}\underline{a} + \mu \underline{b}$ $\lambda = \frac{1-\mu}{5}$ and $\lambda = \mu \Longrightarrow \lambda = \frac{1}{6}$ The point of intersection is $\overrightarrow{OP} = \frac{1}{6}(\underline{a} + \underline{b})$. So, $\overrightarrow{OP} = \frac{1}{6}\overrightarrow{OC}$ and <i>P</i> is a common point of <i>OC</i>	 Equates equations of lines OC and MB. AND Attempts to solve. OR Attempts to write OP as a multiple of OC = a + b. OR Equivalent merit
		and <i>MB</i> . Hence, <i>P</i> lies on <i>OC</i> .	
	(ii)	$\overrightarrow{OP} = \frac{1}{6}\overrightarrow{OC}$ $OP : PC = 1:5$	MEX–V1 Further Work with Vectors MEX12–3 Bands E2–E4 • Gives the correct solution1
(c)	(i)	$e^{in\theta} + e^{-in\theta} = (\cos n\theta + i\sin n\theta) + (\cos n\theta - i\sin n\theta)$ $= 2\cos n\theta$	MEX–N2 Using Complex Numbers MEX12–4 Bands E2–E3 • Gives the correct solution1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) $\left(e^{i\theta} + e^{-i\theta}\right)^5 = e^{5i\theta} + 5\left(e^{4i\theta}\right)\left(e^{-i\theta}\right) + 10\left(e^{3i\theta}\right)\left(e^{-2i\theta}\right)$	MEX-N2 Using Complex Numbers MEX12-4 Bands E2-E4 • Gives the correct solution3
$+10(e^{2i\theta})(e^{-3i\theta})$ $+5(e^{i\theta})(e^{-4i\theta}) + e^{-5i\theta}$ $=(e^{5i\theta} + e^{-5i\theta}) + 5(e^{3i\theta} + e^{-3i\theta})$ $+10(e^{i\theta} + e^{-i\theta})$ $= 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$ Also, $(e^{i\theta} + e^{-i\theta})^5 = 2^5\cos^5\theta$. So, $\cos^5\theta = \frac{1}{2}(\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$.	• Correctly uses binomial theorem and groups conjugate pairs OR equivalent merit2 • Obtains $(e^{i\theta} + e^{-i\theta})^5 = 32\cos^5\theta$ OR attempts to use binomial theorem OR equivalent merit1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iii) Method 1: $\int_{0}^{\frac{\pi}{2}} \cos^{5}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \frac{1}{16} (\cos 5\theta + 5\cos 3\theta)$	MEX–N2 Using Complex Numbers MEX12–7 Bands E2–E4 • Gives the correct solution2
$\int_{0}^{\frac{\pi}{2}} \cos^{5} \theta d\theta = \int_{0}^{\frac{\pi}{2}} \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta) d\theta$ $= \frac{1}{16} \left[\frac{1}{5} \sin 5\theta + \frac{5}{3} \sin 3\theta + 10\sin \theta \right]_{0}^{\frac{\pi}{2}}$ $= \frac{1}{16} \left(\frac{1}{5} \sin \frac{5\pi}{2} + \frac{5}{3} \sin \frac{3\pi}{2} + 10\sin \frac{\pi}{2} - (0 + 0 + 0) \right)$ $= \frac{1}{16} \left(\frac{1}{5} - \frac{5}{3} + 10 \right)$ $= \frac{8}{15}$ Note: Consequential on answer to Question 13 part (c)(ii). Method 2: $\int_{0}^{\frac{\pi}{2}} \cos^{5} \theta d\theta = \int_{0}^{\frac{\pi}{2}} \left(\cos^{2} \theta \right)^{2} \cos \theta d\theta$ $= \int_{0}^{\frac{\pi}{2}} \left(1 - \sin^{2} \theta \right)^{2} \cos \theta d\theta$ Let $u = \sin \theta$ and so $\frac{du}{d\theta} = \cos \theta$. When $\theta = 0, u = 0$ and when $\theta = \frac{\pi}{2}, u = 1$. $\int_{0}^{1} \left(1 - u^{2} \right)^{2} du = \int_{0}^{1} \left(1 - 2u^{2} + u^{4} \right) du$	MEX12-7 Bands E2-E4 • Gives the correct solution2 • Uses part (c)(ii) and attempts to integrate OR equivalent merit1
$= \left[u - \frac{2}{3}u^{3} + \frac{1}{5}u^{3} \right]_{0}$ $= \left(1 - \frac{2}{3} + \frac{1}{3} \right) - (0 - 0 + 0)$	
$\frac{\begin{pmatrix} 3 & 5 \end{pmatrix}}{=\frac{8}{15}}$	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iv)	$16\cos^{5}\theta = \cos 5\theta + 5\cos 3\theta + 10\cos \theta$ $16\cos^{5}\theta - \cos \theta = \cos 5\theta + 5\cos 3\theta + 9\cos \theta$ Hence, to solve the given equation we solve the equation $16\cos^{5}\theta - \cos\theta = 0$. $\cos \theta = 0, \pm \frac{1}{2}$ $\cos \theta = 0, \pm \frac{1}{2}$ $\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2} \text{ and } \cos \theta = \pm \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}, \frac{2\pi}{3}$ $\theta = \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}$	MEX-N2 Using Complex Numbers MEX12-7 Bands E2-E4 • Gives the correct solution2 • Determines that $16\cos^5 \theta - \cos \theta = 0$ 1
Question 1	4	
(a) (i)	Method 1: Since squares cannot be negative, $(\sqrt{a} - \sqrt{b})^2 \ge 0.$ Expanding the LHS gives: $a - 2\sqrt{ab} + b \ge 0$ $a + b \ge 2\sqrt{ab}$ So $\frac{a+b}{2} \ge \sqrt{ab}$. Method 2: Consider: $\frac{a+b}{2} - \sqrt{ab} = \frac{1}{2}(a+b-2\sqrt{ab})$ $= \frac{1}{2}((\sqrt{a})^2 + (\sqrt{b})^2 - 2\sqrt{ab})$ $= \frac{1}{2}(\sqrt{a} - \sqrt{b})^2$ ≥ 0 So $\frac{a+b}{2} \ge \sqrt{ab}$.	MEX-P1 The Nature of Proof MEX12-2 Bands E2-E3 • Gives the correct solution1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) From the AM–GM inequality: $\frac{a+b}{2} \ge \sqrt{ab}, \frac{b+c}{2} \ge \sqrt{bc} \text{ and } \frac{c+a}{2} \ge \sqrt{ca}.$ Multiply together: $\left(\frac{a+b}{2}\right) \left(\frac{b+c}{2}\right) \left(\frac{c+a}{2}\right) \ge \left(\sqrt{ab}\right) \left(\sqrt{bc}\right) \left(\sqrt{ca}\right)$ $\frac{1}{8} (a+b)(b+c)(c+a) \ge \left(\sqrt{a^2b^2c^2}\right)$ So, $(a+b)(b+c)(c+a) \ge 8abc.$	MEX-P1 The Nature of Proof MEX12-2 Bands E2-E3 • Gives the correct solution1
(iii) Let $a+b=z, b+c=x$ and $c+a=y$. $a = \frac{y+z-x}{2}, b = \frac{z+x-y}{2}$ and $c = \frac{x+y-z}{2}$. Using the result $(a+b)(b+c)(c+a) \ge 8abc$ with the above substitutions: $zxy \ge 8\left(\frac{y+z-x}{2}\right)\left(\frac{z+x-y}{2}\right)\left(\frac{x+y-z}{2}\right)$ So, $xyz \ge (y+z-x)(z+x-y)(x+y-z)$.	MEX-P1 The Nature of Proof MEX12-2 Bands E3-E4 • Gives the correct solution2 • Correctly uses the result $(a+b)(b+c)(c+a) \ge 8abc$ 1
(b) Assume there exists an $x \in \left[0, \frac{\pi}{2}\right]$ for which $\sin \theta + \cos \theta < 1$. Since $x \in \left[0, \frac{\pi}{2}\right]$, neither $\sin \theta$ nor $\cos \theta$ is negative, so $0 \le \sin \theta + \cos \theta < 1$. $0^2 \le (\sin \theta + \cos \theta)^2 < 1^2$ $0^2 \le \sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta < 1^2$ As $\sin^2 \theta + \cos^2 \theta = 1$, this becomes $0 \le 1 + 2\sin \theta \cos \theta < 1$. So, $1 + 2\sin \theta \cos \theta < 1$. Hence, $2\sin \theta \cos \theta < 0$. This contradicts the fact that neither $\sin \theta$ nor $\cos \theta$ is negative. So, $\sin \theta + \cos \theta \ge 1$ for $0 \le \theta \le \frac{\pi}{2}$.	MEX-P1 The Nature of Proof MEX12-2Bands E3-E4• Gives the correct solution3• Attempts to establish that the assumption leads to $2 \sin \theta \cos \theta < 0$ OR equivalent merit2• Assumes there exists an $x \in \left[0, \frac{\pi}{2}\right]$ for which $\sin \theta + \cos \theta < 1$ OR equivalent merit1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) (i)	$\frac{d\dot{x}}{dt} = -k\dot{x}$ Separating variables gives: $\int \frac{1}{\dot{x}} d\dot{x} = -k \int dt$ $\ln \dot{x} = -kt + c_1$ $\dot{x} = Ae^{-kt}, \text{ where } A = e^{c_1}$ When $t = 0, \dot{x} = v_1$ and so $A = v_1$. $\dot{x} = v_1 e^{-kt}$ $x = \int v_1 e^{-kt} dt$ $= -\frac{v_1}{k} e^{-kt} + d_1$ When $t = 0, x = 0$ and so $d_1 = \frac{v_1}{k}$.	 performance bands and marking guide MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E4 Gives the correct solution2 Correctly separates variables, attempts to integrate to find <i>x</i> as a function of <i>t</i> and evaluates the constant OR equivalent merit1
	So, $x = \frac{v_1}{k} \left(1 - e^{-kt} \right)$.	

Sample answer performa	nce bands and marking guide
(ii) $\frac{dy}{dt} = -k\dot{y} - g$ Separating variables gives: $\int \frac{1}{\dot{y} + \frac{g}{k}} d\dot{y} = -k \int dt$ $\ln\left(\dot{y} + \frac{g}{k}\right) = -kt + c_2$ $\dot{y} + \frac{g}{k} = Be^{-kt}, \text{ where } B = e^{c_2}$ When $t = 0, \dot{y} = v_2$ and so $B = v_2 + \frac{g}{k}$. $\dot{y} = \left(v_2 + \frac{g}{k}\right)e^{-kt} - \frac{g}{k}$ $y = \int \left(\left(v_2 + \frac{g}{k}\right)e^{-kt} - \frac{g}{k}\right)dt$ $= -\frac{1}{k}\left(v_2 + \frac{g}{k}\right)e^{-kt} - \frac{g}{k}t + d_2$ When $t = 0, y = 0$ and so $d_2 = \frac{1}{k}\left(v_2 + \frac{g}{k}\right)$. $y = -\frac{1}{k}\left(v_2 + \frac{g}{k}\right)e^{-kt} - \frac{g}{k}t + \frac{1}{k}\left(v_2 + \frac{g}{k}\right)$ $= \frac{1}{k}\left(v_2 + \frac{g}{k}\right)\left(1 - e^{-kt}\right) - \frac{g}{k}t$ So, $y = \frac{kv_2 + g}{k^2}\left(1 - e^{-kt}\right) - \frac{g}{k}t$.	Applications of Calculus ics Bands E2–E4 the correct solution

_

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
	(iii)	Rearranging $x = \frac{v_1}{k} (1 - e^{-kt})$ gives:	MEX–M1 Applications of Calculus to Mechanics MEX12–6 Bands E2–E4
		$1 - e^{-kt} = \frac{kx}{v_1}$	Gives the correct solution2 Attempts to solve
		Solving for t gives: $1 - \left(- kr \right)$	$x = \frac{v_1}{k} \left(1 - e^{-kt} \right) \text{ for } t \dots \dots$
		$t = -\frac{1}{k} \ln \left(1 - \frac{\kappa x}{v_1} \right)$	
		Substituting $t = -\frac{1}{k} \ln \left(1 - \frac{\kappa x}{v_1} \right)$ into y gives:	
		$y = \frac{kv_2 + g}{k^2} \left(1 - \left(1 - \frac{kx}{v_1} \right) \right) + \frac{g}{k^2} \ln \left(1 - \frac{kx}{v_1} \right)$	
		So, $y = \left(\frac{kv_2 + g}{kv_1}\right)x + \frac{g}{k^2}\ln\left(1 - \frac{kx}{v_1}\right).$	
	(iv)	Substituting $x = 6, v_1 = v_2 = 10, k = 0.1$ and $g = 9.8$ into y gives: y = 4.1621 (m) Hence, the particle will clear the wall	MEX-M1 Applications of Calculus to Mechanics MEX12-7 Bands E2-E3 • Gives the correct solution1
0110	stion 1	5	
(a)	(i)	Equating components: $1+2\lambda_{1} = 4 + \lambda_{2} \qquad (1)$ $2\lambda_{1} = -2 + 2\lambda_{2} \qquad (2)$ $2-3\lambda_{1} = 9 - 2\lambda_{2} \qquad (3)$ $(1) - (2) \text{ gives:}$	MEX–V1 Further Work with Vectors MEX12–3• Gives the correct solution3• Correctly finds λ_1 and λ_2 OR equivalent merit2
		$1 = 6 - \lambda_2 \Rightarrow \lambda_2 = 5$ Substituting $\lambda_2 = 5$ into (1) and solving gives: $1 + 2\lambda_1 = 9 \Rightarrow \lambda_1 = 4$ Substituting $\lambda_1 = 4$ and $\lambda_2 = 5$ into (3) gives: $-10 \neq -1$ Since the equations are inconsistent, the lines	• Finds at least one equation linking λ_1 and λ_2 OR equivalent merit
		l_1 and l_2 do not intersect.	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) $d = \sqrt{\frac{\left(3 - 2\lambda_1 + \lambda_2\right)^2 + \left(-2 - 2\lambda_1 + 2\lambda_2\right)^2}{+ \left(7 + 3\lambda_1 - 2\lambda_2\right)^2}}$	MEX–V1 Further Work with Vectors MEX12–3 Bands E2–E4 • Gives the correct solution4
$= \sqrt{\frac{17\lambda_{1}^{2} + 9\lambda_{2}^{2} - 24\lambda_{1}\lambda_{2} + 38\lambda_{1}}{-30\lambda_{2} + 62}}$	• Attempts to factorise an expression for <i>d</i> into the required form
$= \sqrt{\frac{(9\lambda_2^2 - 24\lambda_1\lambda_2 + 16\lambda_1^2 + 40\lambda_1)}{-30\lambda_2 + 25) + (\lambda_1^2 - 2\lambda_1 + 1) + 36}}$	• Attempts to find an expression for <i>d</i> in expanded form2
$9\lambda_{2}^{2} - 24\lambda_{1}\lambda_{2} + 16\lambda_{1}^{2} + 40\lambda_{1} - 30\lambda_{2} + 25$ = $(3\lambda_{2})^{2} - 2(3\lambda_{2})(4\lambda_{1} + 5) + (4\lambda_{1} + 5)^{2}$ = $(3\lambda_{2} - 4\lambda_{1} - 5)^{2}$	• Finds a correct expression for <i>d</i> in terms of λ_1 and λ_2 1
So $d = \sqrt{(3\lambda_2 - 4\lambda_1 - 5)^2 + (\lambda_1 - 1)^2 + 36}.$	
Note: The result	
$a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(ab+ac+bc)$	
can be used where $a = 3 - 2\lambda_1 + \lambda_2$,	
$b = -2 - 2\lambda_1 + 2\lambda_2$ and $c = 7 + 3\lambda_1 - 2\lambda_2$.	
(iii) $(3\lambda_2 - 4\lambda_1 - 5)^2 \ge 0$ and $(\lambda_1 - 1)^2 \ge 0$ for all λ_1, λ_2 .	MEX–V1 Further Work with Vectors MEX12–3 Bands E3–E4 • Gives the correct solution1
The minimum value of d is obtained by setting	
$3\lambda_2 - 4\lambda_1 - 5 = 0$ and $\lambda_1 - 1 = 0$.	
$\lambda_1 - 1 = 0$	
$\lambda_1 = 1$	
$3\lambda_2 - 4 \times 1 - 5 = 0$	
$3\lambda_2 = 9$	
$\lambda_2 = 3$	
So, the minimum value of d is 6.	

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
	(iv)	When $\lambda_1 = 1$, $r = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}$ and so the corresponding point is $(3, 2, -1)$.	MEX–V1 Further Work with Vectors MEX12–3 Bands E2–E3 • Gives the correct solution1
		When $\lambda_2 = 3$, $r = \begin{pmatrix} 4 \\ -2 \\ 9 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ and so the corresponding point is $(7, 4, 3)$.	
		The points that are the minimum distance apart	
		are (3, 2, -1) and (7, 4, 3).	
(b)	(i)	The parametric equations are: $x = vt \cos \theta$ (1) $y = vt \sin \theta - \frac{1}{2}gt^2$ (2)	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E3 • Gives the correct solution2
		From (1), $t = \frac{x}{v \cos \theta}$.	• Attempts to eliminate <i>t</i> OR equivalent merit1
		Substituting $t = \frac{x}{v \cos \theta}$ into (2) gives:	
		$y = \frac{vx\sin\theta}{v\cos\theta} - \frac{1}{2}g\left(\frac{x^2}{v^2\cos^2\theta}\right)$	
		So, $y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$.	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) $y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$ (1)	MEX–M1 Applications of Calculus to Mechanics MEX12–6 Bands E3–E4
Substituting $x = d_1$ and $y = d_2$ into (1) gives:	• Gives the correct solution4
$d_2 = d_1 \tan \theta - \frac{g d_1^2}{2v^2 \cos^2 \theta} $ (2)	• Factorises $d_2^3 - d_1^3 \dots \dots 3$
Substituting $x = d_2$ and $y = d_1$ into (1) gives:	• Attempts to form an equation involving d_1, d_2 and $\tan \theta$ only
$d_1 = d_2 \tan \theta - \frac{g d_2^2}{2v^2 \cos^2 \theta} $ (3)	OR equivalent merit
Rearranging (2) and (3) gives:	• Substitutes into the Cartesian equation
$\frac{gd_1^2}{2v^2\cos^2\theta} = d_1\tan\theta - d_2 (4)$	to form two equations OR equivalent merit 1
$\frac{gd_2^2}{2v^2\cos^2\theta} = d_2\tan\theta - d_1 (5)$	
Multiplying (4) by d_2^2 , multiplying (5) by d_1^2	
and equating the RHSs gives:	
$(d_1 \tan \theta - d_2) d_2^2 = (d_2 \tan \theta - d_1) d_1^2$	
Expanding gives:	
$d_1 d_2^2 \tan \theta - d_2^3 = d_1^2 d_2 \tan \theta - d_1^3$	
$(d_1d_2^2 - d_1^2d_2)\tan\theta = d_2^3 - d_1^3$	
(continues on page 27)	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii)	(continued)	
	Factorising the LHS and applying the result	
	$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$ to the	
	RHS gives:	
	$d_1 d_2 (d_2 - d_1) \tan \theta = (d_2 - d_1) (d_2^2 + d_1 d_2 + d_1^2)$	
	Dividing by $d_1d_2(d_2-d_1)(\neq 0)$ gives:	
	$\tan \theta = \frac{d_1^2 + d_1 d_2 + d_2^2}{d_1 d_2}$	
	So, $\theta = \tan^{-1} \left(\frac{d_1^2 + d_1 d_2 + d_2^2}{d_1 d_2} \right).$	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 16	
Question 16 (a) Let $P(n)$ be the given proposition. Consider $P(4)$: If $n = 4$, the polygon is a quadrilateral, which has two diagonals. Also, for $n = 4, \frac{1}{2}n(n-3) = \frac{1}{2}(4)(1) = 2$. So, $P(4)$ is true. Suppose $P(n)$ is true for $n = k$. A convex polygon with k vertices has $\frac{1}{2}k(k-3)$ diagonals for $k \ge 4$. It is required to show that $P(k+1)$ is true. That is, a convex polygon with $(k + 1)$ vertices has $\frac{1}{2}(k+1)((k+1)-3) = \frac{1}{2}(k+1)(k-2)$ diagonals. When another vertex is added, we have $\frac{1}{2}k(k-3)$ existing diagonals + $(k-2)$ extra diagonals (formed from the added vertex to all other vertices except the two adjacent vertices) + 1 diagonal (formerly a side of the polygon that is now a diagonal). Hence, we have $\frac{1}{2}k(k-3) + (k-2) + 1$ diagonals. $\frac{1}{2}k(k-3) + (k-2) + 1 = \frac{1}{2}(k(k-3)+2k-2)$ $= \frac{1}{2}(k^2-k-2)$ $= \frac{1}{2}(k+1)(k-2)$ Hence, $P(k+1)$ is true. Some $P(k+1)$ is true.	performance bands and marking guide MEX-P2 Further Proof by Mathematical Induction MEX12-2, 12-8 Bands E2-E4 • Gives the correct solution4 • Determines that there are $\frac{1}{2}k(k-3)+(k-2)+1$ diagonals3 • Assumes true for $n = k$ and attempts to prove true for $n = k + 1$ initial case $(n = 4)$

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	(i)	Method 1:	MEX-C1 Further Integration
			MEX12–5 Bands E2–E3
		$t = \tan \frac{x}{2} \Rightarrow \frac{dt}{dx} = \frac{1}{2}\sec^2 \frac{x}{2}$	• Gives the correct solution1
		The identity $\sec^2 \frac{x}{2} = 1 + \tan^2 \frac{x}{2}$. $t = \tan \frac{x}{2}$ gives	
		$\frac{dt}{dx} = \frac{1}{2} \left(1 + t^2 \right).$	
		So, $\frac{dx}{dt} = \frac{2}{1+t^2}$.	
		Method 2:	
		$t = \tan\frac{x}{2} \Longrightarrow x = 2\tan^{-1}t$	
		So, $\frac{dx}{dt} = \frac{2}{1+t^2}$.	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) Method 1 (starting on the LHS):	MEX-C1 Further Integration
$LHS = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}$	• Gives the correct solution1
$=\frac{2\tan\frac{x}{2}}{\sec^2\frac{x}{2}}$	
$=\frac{2\sin\frac{x}{2}\cos^2\frac{x}{2}}{\cos\frac{x}{2}}$	
$= 2\sin\frac{x}{2}\cos\frac{x}{2}$ $= \sin x$	
= RHS Method 2 (starting on the RHS):	
$RHS = \sin x$	
$=2\sin\frac{x}{2}\cos\frac{x}{2}$	
$=2\left(\frac{t}{\sqrt{1+t^2}}\right)\left(\frac{1}{\sqrt{1+t^2}}\right)$	
$=\frac{2t}{1+t^2}$	
As $t = \tan \frac{x}{2}, \frac{2t}{1+t^2} = \frac{2\tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}} = LHS.$	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iii) When $x = \frac{\pi}{2}, t = 1$ and when $x = 0, t = 0$.	MEX-C1 Further Integration MEX12-5 Bands E3-E4 • Gives the correct solution4
$\int_0^{\frac{\pi}{2}} \frac{1}{1+k\sin x} dx = \int_0^1 \frac{\frac{2}{1+t^2}}{1+\frac{2kt}{1+t^2}} dt$	• Applies $A - B = \tan^{-1} \left(\frac{\tan A - \tan B}{1 + \tan A \tan B} \right) \dots 3$
$= \int_{0}^{1} \frac{2}{t^{2} + 2kt + 1} dt$ $= \int_{0}^{1} \frac{2}{(1 - k^{2}) + (k + t)^{2}} dt$	• Obtains $\frac{2}{\sqrt{1-k^2}} \left[\tan^{-1} \left(\frac{k+t}{\sqrt{1-k^2}} \right) \right]_0^1$ OR equivalent merit
$= \frac{2}{\sqrt{1-k^{2}}} \left[\tan^{-1} \left(\frac{k+t}{\sqrt{1-k^{2}}} \right) \right]_{0}^{1}$	 Makes a substitution to convert to a definite integral involving <i>t</i> OR
$=\frac{2}{\sqrt{1-k^2}}\left(\tan^{-1}\left(\frac{k+t}{\sqrt{1-k^2}}\right)\right)$	equivalent merit
$-\tan^{-1}\left(\frac{k}{\sqrt{1-k^2}}\right)$	
$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$	
$\Rightarrow A - B = \tan^{-1} \left(\frac{\tan A - \tan B}{1 + \tan A \tan B} \right):$	
(continues on page 32)	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iii)	(continued)	
	$\int_0^{\frac{\pi}{2}} \frac{1}{1+k\sin x} dx = \frac{2}{\sqrt{1-k^2}}$	
	$\times \tan^{-1} \left(\frac{\frac{k+1-k}{\sqrt{1-k^2}}}{1+\frac{k(k+1)}{1-k^2}} \right)$	
	$=\frac{2}{\sqrt{1-k^2}}$	
	$\times \tan^{-1}\left(\frac{\sqrt{1-k^2}}{1-k^2+k+k^2}\right)$	
	$=\frac{2}{\sqrt{1-k^2}}$	
	$\times \tan^{-1}\left(\frac{\sqrt{1-k}\sqrt{1+k}}{1+k}\right)$	
	So, $\int_0^{\frac{\pi}{2}} \frac{1}{1+k\sin x} = \frac{2}{\sqrt{1-k^2}} \tan^{-1} \sqrt{\frac{1-k}{1+k}}.$	
(iv)	$I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^{n+1}x}{2+\sin x} dx + 2\int_0^{\frac{\pi}{2}} \frac{\sin^n x}{2+\sin x} dx$	MEX-C1 Further Integration MEX12-5 Bands E2-E4 • Gives the correct solution1
	$= \int_0^{\frac{\pi}{2}} \frac{\sin^{n+1}x + 2\sin^n x}{2 + \sin x} dx$	
	$= \int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} x (\sin x + 2)}{2 + \sin x} dx$	
	So, $I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$.	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(v) Using $I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$ with $n = 0$	MEX-C1 Further Integration MEX12-5 Bands E2-E4 • Gives the correct solution4
gives: $I_{1} + 2I_{0} = \int_{0}^{\frac{\pi}{2}} 1dx$ $= \frac{\pi}{2}$ $I_{0} = \int_{0}^{\frac{\pi}{2}} \frac{1}{2 + \sin x} dx$ $= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \frac{1}{2} \sin x} dx$ $= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \frac{1}{2} \sin x} dx$ $= \frac{1}{2} \frac{2}{\sqrt{1 - (\frac{1}{2})^{2}}} \tan^{-1} \sqrt{\frac{1 - \frac{1}{2}}{1 + \frac{1}{2}}}$ (using result from part (b)(iii) with $k = \frac{1}{2}$) $= \frac{2}{\sqrt{3}} \tan^{-1} \frac{1}{\sqrt{3}}$ So, $I_{0} = \frac{\pi}{3\sqrt{3}}$. Using $I_{1} = \frac{\pi}{2} - 2I_{0}$ with $I_{0} = \frac{\pi}{3\sqrt{3}}$ gives $I_{1} = \frac{\pi}{2} - 2\left(\frac{\pi}{3\sqrt{3}}\right)$.	• Correctly uses $I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$ with $n = 1$ OR equivalent merit3 • Correctly applies the part (b)(iii) result to find I_0 OR equivalent merit
(continues on page 34)	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(v)	(continued)	
	Using $I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$ with $n = 1$	
	gives:	
	$I_2 + 2I_1 = \int_0^{\frac{\pi}{2}} \sin x dx$	
	$I_2 = -\left[\cos x\right]_0^{\frac{\pi}{2}} - 2I_1$	
	$= -\left(0-1\right) - 2\left(\frac{\pi}{2} - 2\left(\frac{\pi}{3\sqrt{3}}\right)\right)$	
	So, $I_2 = \pi \left(\frac{4\sqrt{3}}{9} - 1 \right) + 1.$	