Neap

Final Examination 2022

NSW Year 11 Mathematics Advanced

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1 B	MA–F1 Working with Functions
B is correct. This graph represents a one-to-many relationship.	MA11–2 Bands 2–3
A is incorrect. This graph represents a one-to-one relationship.	
C and D are incorrect. These graphs both represent many-to-one relationships.	
Question 2 B	MA-F1 Working with Functions
(x-2)(x+3) = 0	MA11–2 Bands 2–3
$x^2 + x - 6 = 0$	
Question 3 C	MA-S1 Probability and Discrete
C is correct. This Venn diagram represents $A \cup \overline{B}$.	Probability Distributions
A is incorrect. This Venn diagram represents A only;	MATI-/ Bands 3-4
that is, $A \cap \overline{B}$.	
B is incorrect. This Venn diagram represents not B ; that is, \overline{B} .	
D is incorrect. This Venn diagram represents $\overline{A} \cap \overline{B}$.	
Question 4 C	MA-T1 Trigonometry and Measure
C is correct.	of Angles
$\sin A \sin 53^{\circ}$	MA11–3 Bands 4–5
$\frac{15}{15} = \frac{25}{25}$	
$\sin A = \frac{15\sin 53^{\circ}}{25}$	
$\angle A = 28^{\circ}37'55''$	
$\approx 29^{\circ}$	
$\angle C = 180^{\circ} - (53^{\circ} + 29^{\circ})$	
≈ 98°	
$\frac{AB}{\sin 98^\circ} = \frac{25}{\sin 53^\circ}$	
$25\sin 98^\circ$	
$AB = \frac{1}{\sin 53^{\circ}}$	
= 30.9987	
$\approx 31 \text{ cm}$	
perimeter $\approx 25 + 15 + 31$	
≈ 71 cm	
A is incorrect. The longest side is opposite the largest angle. Therefore, <i>AB</i> is the longest side as <i>C</i> is the largest angle.	
B is incorrect. The triangle is an obtuse-angled triangle.	
D is incorrect.	
area $\approx \frac{1}{2} \times 31 \times 15 \times \sin 53^{\circ}$	
$\approx 185.7 \text{ cm}^2$	

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 5 D	MA–F1 Working with Functions
Substituting (1, 15) into the equation gives:	MA11–1, 11–2 Bands 3–4
15 = ka (1)	
Substituting (2, 90) into the equation gives:	
$90 = ka^2$ (2)	
Substituting (1) into (2) gives: 90 = 15a	
<i>a</i> = 6	
Substituting $a = 6$ into (1) gives:	
6k = 15	
$k = \frac{5}{2}$	
= 2.5	
Question 6 A	MA-S1 Probability and Discrete
If <i>A</i> and <i>B</i> are mutually exclusive, then $P(A) + P(B) \le 1$.	Probability Distributions
As $P(B) + P(\overline{B}) = 1$, $P(B) = 1 - P(\overline{B})$.	MA11-7, 11-9 Bands 4-3
$P(A) + 1 - P(\overline{B}) \le 1$	
$P(A) - P(\overline{B}) \le 0$	
$P(A) \le P(\overline{B})$	
Question 7 C	MA-F1 Working with Functions
C is correct. For odd functions, the points need to have point symmetry about the origin. Option C has point symmetry about the origin and satisfies $f(x) = f(-x)$. Therefore, it represents an odd function.	MA11–2, 11–9 Bands 4–5
A and D are incorrect. These options do not have point symmetry about the origin.	
B is incorrect. This option is symmetrical about the <i>y</i> -axis and satisfies $f(x) = f(-x)$. Therefore, it represents an even function.	
Question 8 C	MA-F1 Working with Functions
As this is an upper half semicircle with its centre at the origin and a radius of 4 units, the equation of the semicircle is	MA11–1, 11–2 Bands 2–3
$y = \sqrt{16 - x^2}.$	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 9 C	MA–C1 Introduction to Differentiation
C is not a true statement and is therefore the required	MA11–5 Bands 4–5
response.	
$\Delta = (-8)^2 - 4 \times 2 \times 6$ $= 16$	
Δ is a perfect square, so there are two real solutions;	
displacement is zero at these times.	
A is a true statement and is therefore not the required	
response. As the equation of displacement produces a	
concave up parabola, displacement increases after 2 seconds.	
At times, displacement is not only zero but also negative	
(between the two real roots).	
${f B}$ is a true statement and is therefore not the required	
response. The particle's displacement is modelled using a	
concave up quadratic function, so it has a minimum turning	
point. Therefore, the particle changes direction once. The	
axis of symmetry when $t = -\frac{-8}{2 \times 2}$ is 2.	
\mathbf{D} is a true statement and is therefore not the required	
response.	
$s = 2t^2 - 8t + 6$	
v = 4t - 8	
<i>a</i> = 4	
Question 10 D	MA–F1 Working with Functions
2x + 3y + 4 = 0	MA11–2 Bands 3–4
3y = -2x - 4	
$y = -\frac{2}{3}x - \frac{4}{3}$	
$m = \tan \theta$	
$\tan\theta = -\frac{2}{3}$	
$\theta \approx -33.69$	
≈146°	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 11	
$\frac{x}{2} + 4 = 2 - 3x$ $x + 8 = 4 - 6x$ $7x = -4$ $x = -\frac{4}{7}$	 MA-F1 Working with Functions MA11-2 Bands 2-3 Provides the correct solution 2 Shows progress towards eliminating the denominator OR equivalent merit 1
Question 12	
$y = -(x - 3)^{2} + 2$ is in vertex form with the following features. • concave down parabola • vertex at (3, 2) Finding the x-intercepts using $y = 0$: $-(x - 3)^{2} + 2 = 0$ $(x - 3)^{2} + 2 = 0$ $(x - 3)^{2} + 2 = 0$ $(x - 3)^{2} + 2 = 2$ $x - 3 = \pm\sqrt{2}$ $x = 3 \pm\sqrt{2}$ $x = 3 \pm\sqrt{2}$ $x = 3 \pm\sqrt{2}$ $x = 4.41, 1.59$ Finding the y-intercept using $x = 0$: $y = -(0 - 3)^{2} + 2 = -7$ $y = -(x - 3)^{2} + 2 = -7$ $y = -(x - 3)^{2} + 2 = -7$	 MA-F1 Working with Functions MA11-2 Bands 3-4 Determines the vertex. AND Determines the <i>x</i>-intercepts. AND Sketches the correct graph that shows the: vertex x- and y-intercepts Any TWO of the above points1

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 13	
When $x = 1$: $6(1) - 8y + 15 = 0$ $8y = 21$ $y = \frac{21}{8}$ Therefore, the point has the coordinates $\left(1, \frac{21}{8}\right)$. $6x - 8y + 15 = 0$ $8y = 6x + 15$ $y = \frac{3}{4}x + \frac{15}{8}$ $m_1 = \frac{3}{4}$ $m_2 = \frac{-1}{\frac{3}{4}}$	 MA-F1 Working with Functions MA11-2 Bands 3-4 Provides the correct solution 3 Finds the coordinates of the point of intersection. AND Calculates the gradient of the line 2 Finds the coordinates of the point of intersection. OR Calculates the gradient of the line 1
$=-\frac{4}{3}$ Finding the equation of the line using $m = -\frac{4}{3}$ and the point $\left(1, \frac{21}{8}\right)$: $y - \frac{21}{8} = -\frac{4}{3}(x-1)$ Multiplying both sides by the lowest common multiple of 24: 24y - 63 = -32(x-1) 24y - 63 = -32x + 32 32x + 24y - 95 = 0	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 14	
$y = x^{2} - 2x$ (1) $y = 6x - x^{2}$ (2) Subtracting (2) from (1) gives: $0 = 2x^{2} - 8x$ 2x(x - 4) = 0 x = 0, 4 When $x = 0$: $y = 0^{2} - 2(0)$ = 0 When $x = 4$: $y = 4^{2} - 2(4)$ = 8	MA-F1 Working with Functions MA11-2 Bands 3-4 • Provides the correct solution 3 • Provides the x-coordinates. AND • Provides ONE of the y-coordinates
Ouestion 15	
(a) $\begin{array}{c c} S \checkmark & A \\ \hline T \checkmark & C \\ 2 \cos \theta = -\sqrt{3} \\ \cos \theta = -\frac{\sqrt{3}}{2} \\ \text{related angle} = \frac{\pi}{6} \\ \theta = \pi - \frac{\pi}{6}, -\pi + \frac{\pi}{6} \\ = \frac{5\pi}{6}, -\frac{5\pi}{6} \end{array}$	MA-T2 Trigonometric Functions and Identities MA11-4 Bands 4-5 • Provides the correct solution in radians
(b) $y = \tan x$ is undefined for: $x = 90^{\circ}, 270^{\circ}, 360^{\circ} + 90^{\circ}, 720^{\circ} - 90^{\circ}$ $= 90^{\circ}, 270^{\circ}, 450^{\circ}, 630^{\circ}$	MA-T2 Trigonometric Functions and Identities MA11-1, 11-4 Bands 4-5 • Provides the correct solution in degrees

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 16	
$\frac{d}{dx}((x^2-5)(9x-2x^3)) = \frac{d}{dx}(9x^3-2x^5-45x+10x^3)$ $= 27x^2-10x^4-45+30x^2$ $= -10x^4+57x^2-45$ Question 17	MA-C1 Introduction to Differentiation MA11-5 Bands 3-4 • Provides the correct solution 2 • Attempts to use the product rule. OR • Expands the binomial product 1
$f(x+h) = (x+h)^{2} + 5(x+h)$ = $x^{2} + 2xh + h^{2} + 5x + 5h$ $f'(x) = \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} + 5x + 5h - (x^{2} + 5x)}{h}$ = $\lim_{h \to 0} \frac{2xh + h^{2} + 5h}{h}$ = $\lim_{h \to 0} \frac{h(2x+h+5)}{h}$ = $\lim_{h \to 0} 2x + h + 5$ = $2x + 5$	MA-C1 Introduction to Differentiation MA11-5 Bands 4-5 • Provides the correct solution 2 • Substitutes into the definition OR equivalent merit 1
Question 18	
$\frac{dy}{dx} = 5(2x^2 - 3)^4 \times 4x$ = 20x (2x ² - 3) ⁴	MA-C1 Introduction to Differentiation MA11-5 Bands 3-4 • Provides the correct solution 2 • Substitutes into the definition OR equivalent merit 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 19	
$LHS = \frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta}$ $= \frac{\sin^2\theta + (1+\cos\theta)^2}{\sin\theta(1+\cos\theta)}$ $= \frac{\sin^2\theta + 1+2\cos\theta + \cos^2\theta}{\sin\theta(1+\cos\theta)}$ $= \frac{2+2\cos\theta}{\sin\theta(1+\cos\theta)}$ $= \frac{2(1+\cos\theta)}{\sin\theta(1+\cos\theta)}$ $= \frac{2(1+\cos\theta)}{\sin\theta(1+\cos\theta)}$ $= \frac{2}{\sin\theta}$ $= 2\csc\theta$ $= RHS$ $\therefore \frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2\csc\theta$	 MA-T2 Trigonometric Functions and Identities MA11-4 Bands 4-5 Provides the correct solution 3 Shows substantial progress by simplifying the numerator 2 Writes the expression under a common denominator 1
Ouestion 20	
u = 5x + 2 $\frac{du}{dx} = 5$ v = 3x + 1 $\frac{dv}{dx} = 3$ $\frac{dy}{dx} = \frac{5(3x + 1) - 3(5x + 2)}{(3x + 1)^2}$ $= \frac{15x + 5 - 15x - 6}{(3x + 1)^2}$ $= \frac{-1}{(3x + 1)^2}$	MA-C1 Introduction to Differentiation MA11-5 Bands 4-5 • Provides the correct solution 3 • Finds the derivative 2 • Attempts to use the quotient rule OR equivalent merit 1
When $x = 1$: $\frac{dy}{dx} = \frac{-1}{(3 \times 1 + 1)^2}$ $= -\frac{1}{16}$	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 21	
$y = \ln x - 2$ is the graph of $y = \ln x$ translated two units down. Finding the x-intercept using $y = 0$: $\ln x - 2 = 0$ $\ln x = 2$ $x = e^2$ y x = 0 $y = \ln x - 2$ e^2 x	 MA-E1 Logarithms and Exponentials MA11-6 Bands 3-4 Sketches the correct graph that shows the: x-intercept vertical asymptote

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 22	
r l $l + 2r = 120$ $\frac{100^{\circ}}{360^{\circ}} \times 2\pi r + 2r = 120$ $\frac{5\pi r}{9} + 2r = 120$ $r\left(\frac{5\pi}{9} + 2\right) = 120$ $r = \frac{120}{\frac{5\pi}{9} + 2}$ $= \frac{1080}{5\pi + 18} \text{ cm}$ $A = \frac{5}{18} \times \pi \times \left(\frac{1080}{5\pi + 18}\right)^{2}$ $= 895.8387 \text{ cm}^{2}$ $\approx 896 \text{ cm}^{2}$	MA-T1 Trigonometry and Measure of Angles MA11-3 Bands 4-5 • Provides the correct solution 4 • Shows progress towards calculating the area
Question 23 (a) 90 minutes = 1.5 hours	MA_E1 Logarithms and Exponentials
When $t = 1.5$:	MA11-6 Bands 2–3
$P = 1000e^{-0.15 \times 1.5} + 300e^{0.04 \times 1.5}$	• Provides the correct solution 2
=1117 microbes	• Substitutes <i>t</i> = 1.5 into the expression
(b) $\frac{dP}{dt} = -150e^{-0.15t} + 12e^{0.04t}$ When $t = 12$: $\frac{dP}{dt} = -150e^{-0.15 \times 12} + 12e^{0.04 \times 12}$ = -5.4 microbes per hour	 MA-E1 Logarithms and Exponentials MA11-6 Bands 3-4 Provides the correct solution. AND Includes a negative sign OR indicates that the rate of change is a decrease

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 24	
(a) $f(x) - g(x) = 4x^2 - 9 - (2x^2 - x - 3)$ = $4x^2 - 9 - 2x^2 + x + 3$ = $2x^2 + x - 6$	MA–F1 Working with Functions MA11–2 Bands 2–3 • Provides the correct solution 1
(b) $f(x)g(x) = (4x^2 - 9)(2x^2 - x - 3)$ = $8x^4 - 4x^3 - 12x^2 - 18x^2 + 9x + 27$ = $8x^4 - 4x^3 - 30x^2 + 9x + 27$	MA-F1 Working with Functions MA11-2Bands 2-3• Provides the correct solution 2• Shows substantial progress towards expanding the product 1
(c) $\frac{f(x)}{g(x)} = \frac{4x^2 - 9}{2x^2 - x - 3}$ $= \frac{(2x + 3)(2x - 3)}{(2x - 3)(x + 1)}$ $= \frac{2x + 3}{x + 1}$	MA-F1 Working with Functions MA11-2 Bands 3-4 • Provides the correct solution 2 • Factorises the numerator AND denominator 1
(d) $f(h(x)) = 4(3x + 1)^2 - 9$ = $4(9x^2 + 6x + 1) - 9$ = $36x^2 + 24x - 5$ = $[2(3x + 1) + 3][2(3x + 1) - 3]$ = $(6x + 5)(6x - 1)$	MA-F1 Working with Functions MA11-2 Bands 4-5 • Provides the correct solution 2 • Shows progress towards expanding the brackets 1
Question 25	
$\frac{\log_3 x}{\log_x 3} = 4$ $\log_3 x = 4 \log_x 3$ $= \frac{4 \log_3 3}{\log_3 x}$ $= \frac{4}{\log_3 x}$	 MA-E1 Logarithms and Exponentials MA11-6 Bands 4-6 Provides the correct solution 3 Finds the solution(s) for log₃x 2 Uses the logarithm laws for change of base OR
Let $m = \log_3 x$:	equivalent merit 1
$m = \frac{4}{m}$ $m^{2} = 4$ $m = \pm 2$ $\log_{3} x = 2, \log_{3} x = -2$ $x = 9, \frac{1}{9}$	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 26	
(a)	$\frac{\frac{1}{6}}{\frac{5}{6}} = \frac{W}{\frac{1}{6}} = \frac{W}{\frac{1}{6}} = \frac{W}{\frac{5}{6}} = \frac{1}{216}$	MA–S1 Probability and Discrete Probability Distributions MA11–7 Bands 4–5 • Provides the correct solution 2 • Draws a tree diagram OR equivalent merit 1
(b)	$P(\text{no more than 3 rolls}) = P(W) + P(LW) + P(LLW)$ $= \frac{1}{6} + \frac{5}{6} \times \frac{1}{6} + \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}$ $= \frac{91}{216}$ Note: Consequential on answer to Question 26(a).	 MA–S1 Probability and Discrete Probability Distributions MA11–7 Bands 3–4 Provides the correct solution 1
Que	stion 27	
(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MA-S1 Probability and Discrete Probability Distributions MA11-7 Bands 2-3 • Provides the correct solution 2 • Draws a one-stage tree diagram OR equivalent merit 1
(b)	$P(\text{second tails given first tails}) = \frac{P(TT)}{P(T \text{ first})}$ $= \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2}}$ $= \frac{1}{3}$ Note: Consequential on answer to Question 27(a).	MA-S1 Probability and Discrete Probability Distributions MA11-7 Bands 4-5 • Provides the correct solution 2 • Demonstrates an understanding of conditional probability OR equivalent merit 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 28	
$\begin{array}{c} y \\ & & \\ &$	MA-F1 Working with Functions MA11-1, 11-2 Bands 3-4 • Provides the correct solution 3 • Provides the solutions for x 2 • Graphs $y = 2x - 1 $ OR equivalent merit 1
The solutions are $x = 2.5$ and $x = -1.5$.	
$A = \frac{1}{2}bh$ $= \frac{1}{2} \times 4 \times 4$ $= 8 \text{ units}^2$	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 29	
Sample answer Question 29 $mx + 5 = x^{2} - 5x + 14$ $x^{2} + (-5 - m)x + 9 = 0$ $\Delta = (-5 - m)^{2} - 4 \times 1 \times 9$ $= 25 + 10m + m^{2} - 36$ $= m^{2} + 10m - 11$ $= (m + 11)(m - 1)$ For the tangent, $\Delta = 0$. (m + 11)(m - 1) = 0 m = -11, 1 When $m = -11$: $x^{2} + (-5 + 11)x + 0 = 0$ $x^{2} + 6x + 9 = 0$ $(x + 3)^{2} = 0$ x = -3 $y = (-3)^{2} - 5(-3) + 14$	Syllabus content, outcomes, targeted performance bands and marking guide MA-F1 Working with Functions MA11-2 Bands 4-6 • Provides the correct solution 5 • Provides ONE of the points 4 • Finds the correct solutions for m 3 • Provides an expression for the discriminant 2 • Shows progress towards equating the equations 1
= 38 When $m = 1$: $x^{2} + (-5-1)x + 9 = 0$	
$x^{2}-6x+9=0$ $(x-3)^{2}=0$ $x=3$ $y = (3)^{2}-5(3)+14$ $=8$ Therefore:	
If $m = -11$, the point is (-3, 38). If $m = 1$, the point is (3, 8).	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 30	
After three hours: ship $A = 24 \times 3$ = 72 km ship $B = 20 \times 3$ = 60 km A B 60 km 45° 65° 72 km	 MA-T1 Trigonometry and Measure of Angles MA11-3 Bands 4-5 Provides the correct solution 3 Shows progress towards finding the length of <i>AB</i> 2 Draws a diagram with relevant information OR equivalent merit 1
$AB^{2} = 60^{2} + 72^{2} - 2 \times 60 \times 72 \times \cos 110^{\circ}$	
$AB^2 = 11739.05$	
AB = 108.3469 km	
≈108 km	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 31	
Question 31 $P(1) = \frac{3}{8}$ $P(2) = \frac{5}{8} \times \frac{3}{7}$ $= \frac{15}{56}$ $P(3) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$ $= \frac{5}{28}$ $P(4) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}$ $= \frac{3}{28}$ $P(5) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{3}{4}$ $= \frac{3}{56}$	MA-S1 Probability and Discrete Probability Distributions MA11-7Bands 5-6• Provides the correct solution 5• Shows progress towards calculating $Var(X)$ 4• Shows progress towards
$P(6) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} \times \frac{3}{3}$ $= \frac{1}{56}$	
X 1 2 3 4 5 6	
$P(X)$ $\frac{3}{8}$ $\frac{15}{56}$ $\frac{5}{28}$ $\frac{3}{28}$ $\frac{3}{56}$ $\frac{1}{56}$	
$E(X) = 1 \times \frac{3}{8} + 2 \times \frac{15}{56} + 3 \times \frac{5}{28} + 4 \times \frac{3}{28} + 5 \times \frac{3}{56} + 6 \times \frac{1}{56}$ = 2.25	
$Var(X) = 1^{2} \times \frac{3}{8} + 2^{2} \times \frac{15}{56} + 3^{2} \times \frac{5}{28} + 4^{2} \times \frac{3}{28} + 5^{2} \times \frac{3}{56}$	
$+6^2 \times \frac{1}{56} - 2.25^2$	
$=\frac{27}{16}$ = 1.6875	