Neap

Final Examination 2022

NSW Year 11 Mathematics Extension 1

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1 B	ME–F1 Further Work with Functions
2x-1 > 5	ME11–2 Band E2
2x - 1 < -5	
2x < -4	
x < -2	
2x - 1 > 5	
2x > 6	
<i>x</i> > 3	
$\therefore x < -2, \ x > 3$	
Question 2 D	ME-F2 Polynomials
$4x^3 - 2x^2 + 8x - 1 = 0$	ME11–2 Band E2
$\alpha + \beta + \gamma = \frac{2}{4}$ $= \frac{1}{4}$	
$2 \\ \alpha\beta\gamma = \frac{1}{4}$	
$\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma}$	
$=\frac{\frac{1}{2}}{\frac{1}{4}}$ $=2$	
Question 3 C	ME–F1 Further Work with Functions
$x = 2\cos\theta - 1$	ME11–2 Band E2
$\cos\theta = \frac{x+1}{2}$	
$y = 4\sin\theta + 1$	
$\sin\theta = \frac{y-1}{4}$	
$\left(\frac{x+1}{2}\right)^2 + \left(\frac{y-1}{4}\right)^2 = \cos^2\theta + \sin^2\theta$	
$\frac{(x+1)^2}{4} + \frac{(y-1)^2}{16} = 1$	
$4(x+1)^2 + (y-1)^2 = 16$	

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 4DSelecting eight students from twelve total Year 12 studentsand six students from ten total Year 11 students isrepresented by ${}^{12}C_8 \times {}^{10}C_6$.	ME–A1 Working with Combinatorics ME11–5 Band E3
Question 5 C Since there are double roots at $x = -2$ and $x = 3$, either A or C is correct. As the graph shown is a negative polynomial of degree 7, the correct equation is $y = -2x^3(x+2)^2(x-3)^2$. Therefore, C is correct.	ME–F2 Polynomials ME11–2 Band E3
Question 6 B $\cos(\alpha + \beta) \text{ if } \cos \alpha = \frac{12}{13} \text{ and } \cos \beta = \frac{4}{5}$ $13 \qquad 5 \qquad 5 \qquad 3$ $3 \qquad 12 \qquad 5 \qquad 4 \qquad 3$ $\sin \alpha = \frac{5}{13}$ $\sin \beta = \frac{3}{5}$ $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $= \frac{12}{13} \times \frac{4}{5} - \frac{5}{13} \times \frac{3}{5}$ $= \frac{33}{65}$	ME–T2 Further Trigonometric Identities ME11–3 Band E2
Question 7 A $f(x) = \sqrt{9 - x^2} \text{ for } -3 \le x \le 0$ $y = f(x)$ $y = f(x)$ $y = f(x)$ $y = f(x)$ $y = f^{-1}(x)$ Reading from the graph gives the inverse function as $f^{-1}(x) = -\sqrt{9 - x^2} \text{ for } 0 \le x \le 3.$	ME–F1 Further Work with Functions ME11–2 Band E2

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 8 D	ME–T1 Inverse Trigonometric Functions
Method 1:	ME11–3 Band E3
Domain:	
$-2 \le x \le 2$	
$-1 \le \frac{1}{2}x \le 1$	
Therefore, either C or D is correct.	
Since $x = 0$:	
$y = 2\pi - 2\pi \cos^{-1}(0)$	
$=2\pi-2\pi\left(rac{\pi}{2} ight)$	
$=2\pi-\pi^2$	
$\therefore y = 2\pi - 2\cos^{-1}\frac{1}{2}x$	
Therefore, D is correct.	
Method 2:	
Starting with $y = \cos^{-1} x$:	
Increasing the horizontal dilation factor by 2 gives	
$y = \cos^{-1}\left(\frac{x}{2}\right).$	
Increasing the vertical dilation factor by 2 gives	
$y = 2\cos^{-1}\left(\frac{x}{2}\right).$	
Reflecting about the y-axis gives $y = 2\cos^{-1}\left(-\frac{x}{2}\right)$.	
Recall that $\cos^{-1}(-x) = \pi - \cos^{-1} x$.	
Hence, $\cos^{-1}\left(-\frac{x}{2}\right) = \pi - \cos^{-1}\left(\frac{x}{2}\right).$	
$y = 2\cos^{-1}\left(-\frac{x}{2}\right)$	
$=2\left[\pi-\cos^{-1}\left(\frac{x}{2}\right)\right]$	
$=2\pi - 2\cos^{-1}\left(\frac{x}{2}\right)$	
Therefore, D is correct.	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 9 C $dA = 2$	ME-C1 Rates of Change ME11-4 Band E3
Given that $\frac{dt}{dt} = 20 \text{ cm}^2/\text{s}$:	
$\frac{dv}{dt} = \frac{dA}{dt} \times \frac{dv}{dA}$	
$=\frac{dA}{dt} \times \frac{dV}{dr} \times \frac{dA}{dA}$	
$V = \frac{4\pi r^3}{3}$	
$\frac{dV}{dr} = 4\pi r^2$	
$A = 4\pi r^2$ $dA = 8\pi r$	
$\frac{dr}{dr} = -6\pi r$	
$\frac{dt}{dt} = 20 \times 4\pi r^2 \times \frac{8\pi r}{8\pi r}$ $= 10r$	
Since $r = 5$, $\frac{dV}{dt} = 50 \text{ cm}^3/\text{s}$.	
Question 10 A $\left(x+\frac{2}{x}\right)\left(x^2-2x+1\right)^4$	ME–A1 Working with Combinatorics ME11–5 Band E4
$=\left(x+\frac{2}{x}\right)\left(x-1\right)^{8}$	
$= \left(x + \frac{2}{x}\right) \left(\begin{array}{c} x^8 - \binom{8}{1}x^7 + \binom{8}{2}x^6 - \binom{8}{3}x^5 \\ + \binom{8}{4}x^4 - \binom{8}{5}x^3 + \dots \end{array}\right)$	
coefficient of $x^4 = 1 \times -\binom{8}{5} + 2 \times -\binom{8}{3}$	
=-168	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Ques	stion 11	
(a)	$\left(\frac{x^2+6}{x} \ge 5\right) \times x^2, x \ne 0$ $x(x^2+6) \ge 5x^2$ $x^3-5x^2+6x \ge 0$ $x(x^2-5x+6) \ge 0$ $x(x-2)(x-3) \ge 0$ Sketching a graph of $y = x(x-2)(x-3)$ gives: y	ME-F1 Further Work with Functions ME11-2Bands E2-E3• Provides the correct solution 3• Provides the solution but concludes $0 \le x \le 2, x \ge 3$
(b)	$(2-\sqrt{3})^{4} = 2^{4} - {\binom{4}{1}}(2^{3})(\sqrt{3}) + {\binom{4}{2}}(2^{2})(\sqrt{3})^{2}$ $- {\binom{4}{3}}(2^{1})(\sqrt{3})^{3} + (\sqrt{3})^{4}$ $= 16 - 32\sqrt{3} + 72 - 24\sqrt{3} + 9$ $= 97 - 56\sqrt{3}$ $\therefore a = 97, b = -56$	ME-A1 Working with Combinatorics ME11-5 Bands E2-E3 • Provides the correct solution 2 • Uses the binomial theorem OR equivalent merit

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) $P(x) = 2x^{3} + x^{2} + ax + 6 \text{ has the roots } \alpha, \frac{1}{\alpha} \text{ and } \beta.$ $\alpha \left(\frac{1}{\alpha}\right) (\beta) = -\frac{6}{2}$ $\beta = -3$ $\alpha + \frac{1}{\alpha} + \beta = -\frac{1}{2}$ $\alpha + \frac{1}{\alpha} - 3 = -\frac{1}{2}$ $2\alpha^{2} - 5\alpha + 2 = 0$ $(2\alpha - 1)(\alpha - 2) = 0$ $\alpha = \frac{1}{2}, \ \alpha = 2$ Therefore, the roots are 2, $\frac{1}{2}$ and -3. $\left(\frac{1}{2}\right) (2) + \left(\frac{1}{2}\right) (-3) + (2)(-3) = \frac{a}{2}$ $a = -13$	ME-F2 Polynomials ME11-2 Bands E2-E3 Provides the correct solution
(d) (i) Since $x = 2$ is a double root of $P(x)$: P(2) = P'(2) = 0 $P(x) = x^4 - 5x^3 + ax^2 + bx - 48$ $P'(x) = 4x^3 - 15x^2 + 2ax + b$ $P(2) = 2^4 - 5(2^3) + a(2^2) + 2b - 48$ = 0 4a + 2b = 72 2a + b = 36 (1) $P'(2) = 4(2^3) - 15(2^2) + 2a(2) + b$ = 0 4a + b = 28 (2) (2) - (1) gives: 4a + b - 2a + b = 28 - 36 2a = -8 a = -4 Inserting $a = -4$ into (1) gives: 2(-4) + b = 36 b = 44	ME-F2 Polynomials ME11-2 Bands E2-E3 • Provides the correct solution 2 • Obtains ONE correct equation OR equivalent merit

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) Since $x = 2$ is a double root of $P(x)$, $(x - is a factor of P(x).P(x) = x^{4} - 5x^{3} - 4x^{2} + 44x - 48 = (x^{2} - 4x + 4)(x^{2} - x - 12) (by inspection)= (x - 2)^{2}(x - 4)(x + 3) Note: Consequential on answer to Queenergy of the second secon$	$ \begin{array}{c} -2)^2 \\ \hline ME-F2 \ Polynomials \\ ME11-2 \\ \bullet \ Provides the correct solution \dots 2 \\ \hline \\ \bullet \ Obtains (x-2)^2 \ as \ a \ factor \\ of \ P(x) \ OR \ equivalent \ merit \ \dots 1 \\ \end{array} $
(e) (i) $y = -x^{2} + 2x + 3$ = -(x + 1)(x - 3) x-intercepts (at y = 0): 0 = -(x + 1)(x - 3) x = -1, 3 y-intercept (at x = 0): y = -(0 + 1)(0 - 3) = 3 Vertex: $x = \frac{-1 + 3}{2}$ = 1 $y = -(1)^{2} + 2(1) + 3$ = 4 Therefore, the vertex is (1, 4). Sketching the graph gives: y 4 3 2 1 1 2 3 x x	ME-F1 Further Work with Functions ME11-2 Band E2 • Provides the correct sketch2 • Provides some correct features of the graph OR equivalent merit1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) Let $f(x) = -x^2 + 2x + 3$. $y = - x ^2 + 2 x + 3$ = f(x) Sketching the graph gives:	ME-F1 Further Work with Functions ME11-2 Bands E2-E3 • Provides the correct sketch 1
Question 12 (a) (i) Sketching the graph of $y = \frac{1}{f(x)}$ gives: $y = \frac{1}{f(x)}$ gives: $0.5 = \frac{0.5}{-2} = 100$ 1 x	ME–F1 Further Work with Functions ME11–2 Band E2 • Provides the correct sketch2 • Provides some correct features of the graph OR equivalent merit1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii)	Sketching the graph of $y = f(-x) $ gives: y = x + 1 $y = x + 1$ $y = x + 1$ $x = 1$ $y = -x - 1$	 ME-F1 Further Work with Functions ME11-2 Bands E2-E3 Provides the correct sketch2 Provides some correct features of the graph OR equivalent merit1
(b) (i)	$f(x) = \sin^{-1} (3 - 2x)$ Domain: $-1 \le 3 - 2x \le 1$ $-4 \le -2x \le -2$ $1 \le x \le 2$ Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$	ME-T1 Inverse Trigonometric Functions ME11-3 Bands E2-E3 • Provides the correct solution 2 • Provides the domain OR range 1
(ii)	Sketching the graph of $y = f(x)$ gives: $\frac{\frac{\pi}{2}}{0}$ 1 1 1 $\frac{1}{2}$ x $\frac{\pi}{2}$	ME-T1 Inverse Trigonometric Functions ME11-3 E2 • Provides the correct sketch1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) Prove $\cos\left(2\sin^{-1}\left(\frac{4}{5}\right)\right) = -\frac{7}{25}$. Let $\theta = \sin^{-1}\left(\frac{4}{5}\right)$.	ME-T1 Inverse Trigonometric Functions ME11-3 Band E3 • Provides the correct solution 2 • Shows some understanding of the problem
$\Rightarrow \sin \theta = \frac{1}{5}$ LHS = $\cos \left(2 \sin^{-1} \left(\frac{4}{5} \right) \right)$ = $1 - 2 \sin^2 \theta$ = $1 - 2 \times \left(\frac{4}{5} \right)^2$ = $1 - \frac{32}{25}$ = $-\frac{7}{25}$ = RHS	
(d) LHS = $\frac{2\cos\theta + 1 + \cos 2\theta}{2\cos\theta - 1 - \cos 2\theta}$ = $\frac{2\cos\theta + 1 + 2\cos^2\theta - 1}{2\cos\theta - 1 - (2\cos^2\theta - 1)}$ = $\frac{2\cos\theta + 2\cos^2\theta}{2\cos\theta - 2\cos^2\theta}$ = $\frac{2\cos\theta(1 + \cos\theta)}{2\cos\theta(1 - \cos\theta)}$ = $\frac{1 + 2\cos^2\frac{\theta}{2} - 1}{1 - (1 - 2\sin^2\frac{\theta}{2})}$ = $\frac{\cos^2\frac{\theta}{2}}{\sin^2\frac{\theta}{2}}$ = $\cot^2\frac{\theta}{2}$ = RHS	 ME-T2 Further Trigonometric Identities ME11-3 Bands E3-E4 Provides the correct solution 3 Makes substantial progress applying the double angle formulae involving 2 cos θ 2 Makes some progress applying the double angle formulae involving cos 2θ 1

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(e)	(i)	TRIGONOMETRY There are the letters T, T, R, R, G, M, N, Y, I, O, O and E. The repetitions are two of the letter T, two of the letter R and two of the letter O. There are 12 letters in total. number of permutations $=\frac{12!}{2!2!2!}$ $=\frac{12!}{8}$	 ME-A1 Working with Combinatorics ME11-5 Bands E2-E3 Provides the correct solution 1
	(ii)	TRIGONOMETRY There are the letters T, T, R, R, G, M, N, Y, I, O, O and E. There are eight consonants and four vowels, and the repetitions are two of the letter T, two of the letter R and two of the letter O. Without considering the repetitions, the four vowels can occupy any six positions and the eight consonants can occupy eight positions. $\Rightarrow {}^{6}P_{4}$ for the vowels and 8! for the consonants. Hence, the total number of permutations by including the repetitions: $= \frac{{}^{6}P_{4} \times 8!}{2!2!2!2!}$ $= {}^{6}P_{4} \times 7!$	 ME-A1 Working with Combinatorics ME11-5 Bands E3-E4 Provides the correct solution 2 Provides the number of arrangements for the vowels OR consonants OR equivalent merit 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 13	
(a) Let x and y be lengths as shown in the diagram. $ \begin{array}{c} y \\ z \\ x^2 + y^2 = 15^2 \\ y = \sqrt{225 - x^2} \\ \frac{dx}{dt} = 2 \text{ m/s} \\ \frac{dy}{dt} = \frac{dx}{dt} \times \frac{dy}{dx} \\ y = (225 - x^2)^{\frac{1}{2}} \\ \frac{dy}{dt} = \frac{1}{2}(225 - x^2)^{-\frac{1}{2}} \times (-2x) \\ = -\frac{x}{\sqrt{225 - x^2}} \\ \frac{dy}{dt} = 2 \times -\frac{x}{\sqrt{225 - x^2}} \\ = -\frac{2x}{\sqrt{225 - x^2}} \\ \text{Since } x = 8: \\ \frac{dy}{dt} = -\frac{2(8)}{\sqrt{225 - 8^2}} \\ = -\frac{16}{\sqrt{161}} \text{ m/s} \\ \text{The rate at which the top of the ladder is sliding down the wall is } \frac{16}{\sqrt{161}} \text{ m/s}. \end{array} $	ME-C1 Rates of Change ME11-4 Bands E2-E3 • Provides the correct solution 2 • Correctly finds $\frac{dy}{dx}$ OR equivalent merit

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	$\begin{split} \text{LHS} &= {}^{n}P_{k} - {}^{n-1}P_{k} \\ &= \frac{n!}{(n-k)!} - \frac{(n-1)!}{(n-1-k)!} \\ &= \frac{n! - (n-k)(n-1)!}{(n-k)!} \\ &= \frac{(n-1)! \left[n - (n-k)\right]}{(n-k)!} \\ &= \frac{(n-1)! \times k}{(n-k)!} \\ &= \frac{(n-1)! \times k}{(n-k)!} \\ &= k \times \frac{(n-1)!}{(n-1-(k-1))!} \\ &= k \times {}^{n-1}P_{k-1} \\ &= \text{RHS} \end{split}$	 ME-A1 Working with Combinatorics ME11-5 Band E3 Provides the correct solution 2 Shows some understanding of the problem
(c)	$(4+x)^{n} = 4^{n} + {\binom{n}{1}} 4^{n-1}x + {\binom{n}{2}} 4^{n-2}x^{2} + {\binom{n}{3}} 4^{n-3}x^{3} + {\binom{n}{4}} 4^{n-4}x^{4} + \dots$ coefficient of x^{3} = coefficient of x^{4} ${\binom{n}{3}} 4^{n-3} = {\binom{n}{4}} 4^{n-4}$ $\frac{n!}{(n-3)!3!} \times 4^{n-3} = \frac{n!}{(n-4)!4!} \times 4^{n-4}$ $\frac{1}{(n-3)(n-4)!3!} \times 4 = \frac{1}{(n-4)!4 \times 3!}$ n-3 = 16 n = 19	ME-A1 Working with Combinatorics ME11-5 Band E3 • Provides the correct solution 2 • Shows some understanding of the problem
(d)	From 2 pink, 3 white, 4 black, 10 green, 12 yellow, 15 orange, 16 brown and 18 red jelly beans, selecting a maximum of 7 from each colour gives: 2 pink, 3 white, 4 black, 7 green, 7 yellow, 7 orange, 7 brown and 7 red total = $2+3+4+7+7+7+7+7$ = 44 Using the pigeonhole principle: 44 + 1 = 45. Hence, the least number of jelly beans that can be selected is 45 to ensure that 8 of the selected jelly beans are the same colour.	ME-A1 Working with Combinatorics ME11-5 Bands E3-E4 • Provides the correct solution 2 • Shows some understanding of the problem

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(e) (i)	$T = 25 + Ae^{-kt}$ $\frac{dT}{dt} = -kAe^{-kt}$ $= -k(T - 25), \text{ since } T = 25 + Ae^{-kt}$	ME-C1 Rates of Change ME11-4 Bands E2-E3 • Provides the correct solution 1
(ii)	$T = 25 + Ae^{-kt}$ t = 0, T = 125 $125 = 25 + Ae^{0}$ A = 100 $T = 25 + 100e^{-kt}$ t = 8, T = 85 $85 = 25 + 100e^{-8k}$ $100e^{-8k} = 60$ $e^{8k} = \frac{100}{60} = \frac{5}{3}$ $8k = \ln\left(\frac{5}{3}\right)$ $k = \frac{1}{8}\ln\left(\frac{5}{3}\right)$ = 0.0639 (correct to 4 decimal places)	ME-C1 Rates of Change ME11-4 Bands E2-E3 • Provides the correct solution 2 • Finds <i>A</i> OR equivalent merit 1
(iii	$T = 25 + 100e^{-0.0639t}$ $60 = 25 + 100e^{-0.0639t}$ $e^{-0.0639t} = \frac{35}{100}$ $= \frac{7}{20}$ $t = \frac{\ln\left(\frac{7}{20}\right)}{-0.0639}$ = 16.4 min (correct to 1 decimal place) <i>Note: Consequential on answer to Question</i> 13(e)(ii).	ME-C1 Rates of Change ME11-4 Bands E2-E3 • Provides the correct solution 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(f) LHS = $\sin 7x \cos 2x + \cos 6x \sin x$ = $\frac{1}{2} (\sin(7x + 2x) + \sin(7x - 2x))$ $+ \frac{1}{2} (\sin(6x + x) - \sin(6x - x))$ = $\frac{1}{2} (\sin 9x + \sin 5x) + \frac{1}{2} (\sin 7x - \sin 5x)$ = $\frac{1}{2} (\sin 9x + \sin 7x)$ = $\frac{1}{2} (\sin(8x + x) + \sin(8x - x))$ = $\frac{1}{2} (2\sin 8x \cos x)$ (since $2\sin A \cos B$) = $\sin(A + B) + \sin(A - B)$ = $\sin 8x \cos x$	 ME-T2 Further Trigonometric Identities ME11-3 Bands E3-E4 Provides the correct solution 3 Makes substantial progress applying the product-to-sum formulae and the sum-to-product formula
= RHS	
(a) (i) Sketching the curve of $f(x) = (2x - 1)^2 - 3$ gives: y y y y y y y y y	ME–F1 Further Work with Functions ME11–2 Bands E2–E3 • Provides the correct solution 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) domain $f(x): x \le \frac{1}{2} \Rightarrow \operatorname{range} f^{-1}(x): y \le \frac{1}{2}$	ME–F1 Further Work with Functions ME11–2 Bands E2–E3
range $f(x): y \ge -3 \Longrightarrow \operatorname{domain} f^{-1}(x): x \ge -3$	• Provides the correct solution 2
$y = \left(2x - 1\right)^2 - 3$	Shows some understanding
Interchanging <i>x</i> and <i>y</i> :	of the problem1
$x = \left(2y - 1\right)^2 - 3$	
$\left(2y-1\right)^2 = x+3$	
$2y - 1 = \pm \sqrt{x + 3}$	
$y = \frac{1 \pm \sqrt{x+3}}{2}$	
: $f^{-1}(x) = \frac{1 - \sqrt{x+3}}{2}$, since range $f^{-1}(x) : y \le \frac{1}{2}$	
Note: Consequential on answer to Question 14(a)(i).	
(iii) $f(x) = f^{-1}(x)$	ME–F1 Further Work with Functions
=x	 Provides the correct solution 2
$\left(2x-1\right)^2-3=x$	
$4x^2 - 4x + 1 - 3 = x$	• Shows some understanding of the problem
$4x^2 - 5x - 2 = 0$	
$x = \frac{5 \pm \sqrt{(-5)^2 - 4(4)(-2)}}{2(4)}$	
$=\frac{5\pm\sqrt{57}}{8}$	
$\therefore x = \frac{5 - \sqrt{57}}{8}, \text{ since } x \le \frac{1}{2}$	
The point of intersection is $\left(\frac{5-\sqrt{57}}{8}, \frac{5-\sqrt{57}}{8}\right)$.	
<i>Note: Consequential on answer to Question</i> 14(a)(i) .	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(i	v) $y = f(x)$ $\frac{1}{2}$ $y = x$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $y = x$ $y = x$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $y = f^{-1}(x)$ $\frac{5 - \sqrt{57}}{8}, \frac{5 - \sqrt{57}}{8}$ Note: Consequential on answers to Questions 14(a)(i), (ii) and (iii).	ME-F1 Further Work with Functions ME11-2 Bands E2-E3 • Provides the correct sketch1
(b) (i	$\cos(x + \theta) = k \cos(x - \theta)$ $\cos x \cos \theta - \sin x \sin \theta = k (\cos x \cos \theta + \sin x \sin \theta)$ $(1 - k) \cos x \cos \theta = (k + 1) \sin x \sin \theta$ $\frac{1 - k}{k + 1} = \frac{\sin x \sin \theta}{\cos x \cos \theta}$ $= \tan x \tan \theta$ $(1 - k) \cot \theta = (k + 1) \tan x$	ME-T2 Further Trigonometric Identities ME11-3 Band E3 • Provides the correct solution 2 • Shows some understanding of the problem
(i	i) $\cos(x + 30^\circ) = 2\cos(x - 30^\circ)$ $3\tan x = -\cot 30^\circ \text{ (from part (i))}$ $3\tan x = -\sqrt{3}$ $\tan x = -\frac{\sqrt{3}}{3}$ $\therefore x = 150^\circ, 330^\circ, \text{ since } 0 \le x \le 360^\circ$ <i>Note: Consequential on answer to</i> <i>Question 14(b)(i).</i>	ME-T2 Further Trigonometric Identities ME11-3 Bands E2-E3 • Provides the correct solution 2 • Provides ONE correct answer OR equivalent merit

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	(i)	$x = 100e^{-0.2t} + 20t - 80$ $v = \frac{dx}{dt}$ $= -20e^{-0.2t} + 20$ $a = \frac{dv}{dt}$ $= 4e^{-0.2t}$ When $t = 0$: $v = -20e^{0} + 20$ $= 0 \text{ m/s}$ When $t = 0$: $a = 4e^{0}$ $= 4 \text{ m/s}^{2}$	ME-C1 Rates of Change ME11-4 Bands E2-E3 • Provides the correct solution 2 • Provides velocity OR acceleration. OR • Equivalent merit
	(ii)	$v = 20 - 20e^{-0.2t}$ $t \to \infty, e^{-0.2t} \to 0$ $v \to 20$ $\therefore v = 20 \text{ m/s}$ When $v = 10 \text{ m/s}, t = ?$ $20 - 20e^{-0.2t} = 10$ $20e^{-0.2t} = 10$ $e^{-0.2t} = \frac{10}{20}$ $= \frac{1}{2}$ $t = \frac{\ln(\frac{1}{2})}{-0.2}$ = 3.5 s (correct to 1 decimal place)	 ME-C1 Rates of Change ME11-4 Bands E2-E3 Provides the correct solution2 Finds v = 20 m/s AND makes substantial progress finding t when v = 10 m/s1
	(iii)	$a = 4e^{-0.2t}$ Since $e^{-0.2t} > 0$, $a = 4e^{-0.2t} > 0$. $v = 20(1 - e^{-0.2t})$ For $t > 0$, $e^{-0.2t} < 1$. $\therefore 1 - e^{-0.2t} > 0$ $\therefore v = 20(1 - e^{-0.2t}) > 0$ Since $v > 0$ and $a > 0$, the particle is always speeding up.	ME-C1 Rates of Change ME11-4 Band E3 • Provides the correct solution 1