Neap

Final Examination 2022

NSW Year 11 Mathematics Standard

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

MS–A2 Linear Relationships MS11–6 MS–M1 Applications of Meas MS11–3	Bands 1–2 surement Bands 1–2
~ ~	
MS–F1 Money Matters MS11–5	Bands 1–2
MS–S2 Relative Frequency an Probability MS11–8	nd Bands 1–2
MS–M2 Working with Time MS11–3	Bands 2–3
MS–A2 Linear Relationships MS11–6	Bands 2–3
	MS11–5 MS–S2 Relative Frequency ar Probability MS11–8 MS–M2 Working with Time MS11–3 MS–A2 Linear Relationships

SECTION I

Answer and explanation	Syllabus content, outc and targeted performance	
Question 7CC is correct. Comprehensive insurance covers damage to the car of the person at fault in an accident.A is incorrect. Compulsory third-party insurance covers injury to the people involved in the accident other than the person at fault.B is incorrect. Non-compulsory third-party insurance covers 	MS–F1 Money Matters MS11–5	Bands 2–3
 Question 8 C C is correct. The shading of the letter S on the keyboard is similar to the shading of the letter T. As the letter T has a frequency of 41, the letter S must be similar in frequency to the letter T. Hence, the closest option is C with a frequency of 38. A is incorrect. For the letter S to have a frequency of 18, its shading on the keyboard would need to be lighter than the letter I. B is incorrect. The frequency of the letter S is significantly higher than the letter I as seen in the darker shading. D is incorrect. The frequency of the letter S is not greater than the frequency of the letter E. 	MS–S1 Data Analysis MS11–7	Bands 3–4
Question 9AA is correct. The graph is a straight line and increasing in value, as would be seen for a savings account that earns simple interest.B is incorrect. A graph showing compound interest would not show the behaviour of a linear function.C and D are incorrect. The value of the products in these options are depreciating, whereas the graph is increasing.	MS–F1 Money Matters MS11–6	Bands 3–4
Question 10 A gradient = $\frac{-6-3}{-3-6}$ = $\frac{-9}{-9}$ =1 The equation is $y = x + c$. Substituting (6, 3) gives: 3 = 6 + c c = -3 Therefore, the equation is $y = x - 3$.	MS–A2 Linear Relationships MS11–2	Bands 3–4

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 11DPanama City is located (9°N, 80°W). To move 12° south,first moving 9° south to the equator and then another 3° southgives 3°S.Moving 30° west from 80°W gives $80 + 30 = 110^{\circ}W$.	MS–M2 Working with Time MS11–3 Bands 4–5
Therefore, the coordinates are $(3^{\circ}S, 110^{\circ}W)$.	
Question 12B $n = \frac{8-l}{m} + p$ $nm = 8 - l + pm$ $l = 8 + pm - mn$	MS–A1 Formulae and Equations MS11–1 Bands 4–5
Question 13DThe probability that Sarina wins her first match is 0.3.Therefore, the probability that she does not win her first match is $1 - 0.3 = 0.7$.	MS–S2 Relative Frequency and Probability MS11–8 Bands 5–6
If Sarina wins her first match, the probability of her winning her second match is 0.7. Therefore, the probability of her not winning her second match is $1 - 0.7 = 0.3$.	
If Sarina does not win her first match, the probability of her winning her second match is 0.2. Therefore, the probability that she does not win her second match is $1 - 0.2 = 0.8$.	
This information is best represented in the probability tree diagram below.	
first match second match	
$0.3 \qquad W \qquad 0.7 \qquad W \qquad 0.3 \qquad NW \qquad 0.3 \qquad NW \qquad 0.7 \qquad W \qquad 0.7 \qquad W \qquad 0.7 \qquad W \qquad 0.7 \qquad W \qquad 0.8 \qquad NW \qquad 0.8 \qquad W \qquad 0.8 \qquad W$	
The probability that Sarina will win at least one game is the complement to her not winning two games. $1 - 0.7 \times 0.8 = 0.44$	

Answer and explanation	Syllabus content, or and targeted perform	
Question 14 D	MS–S1 Data Analysis	
D is correct. The mean number of goals can be found using the following formula.	MS11-7	Bands 5–6
$\frac{3 \times 3 + 4 \times 7 + 5 \times 5 + 6 \times 1 + 7 \times x + 8 \times 4}{3 + 7 + 5 + 1 + x + 4} = 5.4$		
3+7+5+1+x+4		
If Sarah scored seven goals in five games, the mean would be:		
$\frac{3 \times 3 + 4 \times 7 + 5 \times 5 + 6 \times 1 + 7 \times 5 + 8 \times 4}{3 + 7 + 5 + 1 + 5 + 4} = 5.4$		
A is incorrect. If Sarah scored seven goals in two games, the mean would be:		
$\frac{3 \times 3 + 4 \times 7 + 5 \times 5 + 6 \times 1 + 7 \times 2 + 8 \times 4}{3 + 7 + 5 + 1 + 2 + 4} = 5.1818$		
B is incorrect. If Sarah scored seven goals in three games, the mean would be:		
$\frac{3 \times 3 + 4 \times 7 + 5 \times 5 + 6 \times 1 + 7 \times 3 + 8 \times 4}{3 + 7 + 5 + 1 + 3 + 4} = 5.2609$		
C is incorrect. If Sarah scored seven goals in four games, the mean would be:		
$\frac{3 \times 3 + 4 \times 7 + 5 \times 5 + 6 \times 1 + 7 \times 4 + 8 \times 4}{3 + 7 + 5 + 1 + 4 + 4} = 5.3333$		
$\frac{3+7+5+1+4+4}{3+7+5+1+4+4} = 3.5555$		
Question 15 C	MS–M1 Applications of M	Aeasurement
The area of larger circle is πR^2 , and the area of the smaller circle is πr^2 .	MS11-4	Bands 5–6
shaded area = $\pi R^2 - \pi r^2$		
$=\pi(R^2-r^2)$		
Using the right-angled triangle gives:		
$R^2 = r^2 + 8^2$		
$R^2 - r^2 = 8^2$		
Substituting $R^2 - r^2 = 8^2$ into the formula for the shaded area gives:		
shaded area = $\pi \times 8^2$		
$= 201.0619 \text{ cm}^2$		
$\approx 201 \text{ cm}^2$		

SECTION II

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 16	
(a)	$mean = \frac{3+5+7+9+11}{5} = 7$	MS–S1 Data Analysis MS11–7 Bands 1–2 • Provides the correct solution 1
(b)	highest score = 11 lower score = 3 range = $11 - 3 = 8$	MS–S1 Data Analysis MS11–7 Bands 1–2 • Provides the correct solution 1
Que	stion 17	
(a)	Using the straight-line method of depreciation formula gives: $S = V_0 - Dn$ $= 7500 - 500 \times 4$ = 5500 Therefore, the value of the camera after four years is \$5500.	MS-F1 Money Matters MS11-6 Bands 1-2 • Provides the correct solution 1
(b)	Determining the value of <i>n</i> when $S = 4500$ gives: $S = V_0 - Dn$ $4500 = 7500 - 500 \times n$ 500n = 7500 - 4500 $n = \frac{3000}{500}$ = 6 Therefore, it will take six years for the camera to be worth \$4500.	MS-F1 Money Matters MS11-6 Bands 2-3 • Provides the correct solution 1
(c)	value of the camera after eight years: $S = 7500 - 500 \times 8$ $= 3500$ value of <i>n</i> when the salvage value is \$0: $0 = 3500 - 350n$ $350n = 3500$ $n = \frac{3500}{350}$ $= 10$ $8 + 10 = 18$ Therefore, the camera will be worth \$0 after 18 years.	MS-F1 Money Matters MS11-6 Bands 4-5 • Provides the correct solution 2 • Makes significant progress 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 18	
(a)	The coffee cup sizes are categorised as categorical ordinal as the data is expressed in words and an order can be given to the data.	MS-S1 Data AnalysisMS11-10Bands 1-2Provides the correct explanation1
(b)	total number of coffees sold in the one-hour period = $86 + 204 + 90$ = 380	MS–S1 Data Analysis MS11–7 Bands 2–3 • Provides the correct solution 1
	number of small coffee cups required = $\frac{86}{380} \times 1900$ = 430	
	Therefore, Viki should order 430 small coffee cups.	
(c)	$\frac{514}{4.184} = 122.8489$	MS-M1 Applications of Measurement MS11-3 Bands 2-3
	≈123 kcal	• Provides the correct solution 1
Que	stion 19	
BAG	$C = \frac{10 \times 4 - 7.5 \times 2}{6.8 \times 82}$ = 0.04484 \approx 0.0448	MS-A1 Formulae and Equations MS11-1 Bands 2-3 • Provides the correct solution 2 • Makes some progress
Que	stion 20	
(a)	precision = 0.1 metres absolute error = $\frac{1}{2} \times 0.1$ = 0.05 metres lower bound = 30.5 - 0.05 = 30.45 metres	MS-M1 Applications of Measurement MS11-3 Bands 2-3 • Provides the correct solution 2 • Finds the absolute error
(b)	percentage error = $\frac{\text{absolute error}}{\text{measurement}} \times 100$ = $\frac{0.05}{30.5} \times 100$ = 0.1639 $\approx 0.16\%$	MS-M1 Applications of Measurement MS11-3 Bands 2-3 • Provides the correct rounded solution with percentage sign2 • Makes some progress1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 21	
$\frac{2 \text{ hours}}{3 \text{ boats}} = 0.6667 \text{ hours}$ $= 40 \text{ minutes}$ $13:43 + 40 \text{ minutes} = 14:23$	MS-M2 Working with Time MS11-3 Bands 2-3 • Provides the correct solution
Question 22	
(a) total amount paid = cost of car + on road costs + stamp duty = $50\ 000 + 450 + 3\% \times 45\ 000 + 5\% \times 5000$ = $52\ 050$	MS-F1 Money Matters MS11-6 Bands 2-3 • Provides the correct solution 2 • Makes some progress
(b) amount of fuel consumed in one week $=\frac{420}{100} \times 7.9$ = 33.18 L	MS-F1 Money Matters MS11-6 Bands 2-3 • Provides the correct solution 3
amount of fuel consumed in one year = 33.18×52 = 1725.36 L amount spent on fuel each year = 1725.36×\$1.659 = \$2862.37224 = \$2862.37	Makes significant progress2 Completes ONE relevant calculation1
Question 23	
There are nine edges in the solid. total length of edges = $5 + 5 + 4 + 4 + 3 + 3 + 5 + 5 + 5$ = 39 metres All edges represent poles that cost \$2 per metre. cost of poles = 39×2 = $$78$ There are five faces in the solid. total area of faces = $\frac{1}{2} \times 3 \times 4 + \frac{1}{2} \times 3 \times 4 + 5 \times 4 + 5 \times 3 + 5 \times 5$ = 72 m^2 cost of synthetic material = 72×15 = $$1080$ total cost = $1080 + 78$	MS-M1 Applications of Measurement MS11-4 Bands 3-4 • Provides the correct solution 5 • Provides the correct solution with ONE error
= \$1158	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 24	
amount of income greater than $$452 = 520 - 452$ = $$68$ amount that payment is reduced by = $0.50 \times 68 = $$34.00$ Hamish's fornightly Austudy payment = $530.40 - 34.00$ = $$496.40$	MS-F1 Money Matters MS11-6 Bands 3-4 • Provides the correct solution 2 • Makes significant progress 1
Question 25	
Using similar triangles gives: $\frac{x}{5} = \frac{16}{4}$ $x = \frac{16}{4} \times 5$ $= 20 \text{ cm}$	MS-M1 Applications of Measurement MS11-4 Bands 3-4 • Provides the correct solution 2 • Makes significant progress 1
Question 26	
taxable income = $60\ 970 - 3020$ = $$57\ 950$ income tax payable = $5092 + 0.325 \times (57\ 950 - 45\ 000)$ = $$9300.75$ Medicare levy = $2\% \times 57\ 950$ = $$1159.00$ total tax payable = $9300.75 + 1159$ = $$10\ 459.75$ Sandra paid \$12\ 550 in PAYG tax. Sandra will receive a tax	MS-F1 Money Matters MS11-6 Bands 3-4 • Provides the correct solution 5 • Makes significant progress 4 • Makes significant progress with up to TWO errors
refund. tax refund = $12550 - 10459.75$ = $$2090.75$	• Finds the taxable income 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 27	
(a) negative skew	MS-S1 Data AnalysisMS11-7Bands 3-4• Provides the correct solution 1
(b) 200 100 100 100 200 100 100 100	MS–S1 Data Analysis MS11–7 Bands 3–4 • Provides the correct solution 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	The median price of a television from shop <i>A</i> is \$460. The median price of a television from shop <i>B</i> is \$350. The price of televisions from shop <i>A</i> is generally more expensive. The interquartile range of the price of televisions from shop <i>B</i> is \$300. The interquartile range of the price of televisions from shop <i>A</i> can be found using the cumulative frequency polygon. $\int_{0}^{200} \int_{0}^{1} \frac{1}{200} \int_{0}^{1} \frac{1}{200$	 MS-S1 Data Analysis MS11-10 Bands 4-5 Provides the correct solution3 Interprets the median prices AND makes progress towards establishing the interquartile range for shop A
Que	stion 28	
(a)	$\frac{5}{24}$	MS–S2 Relative Frequency and Probability MS11–8 Bands 1–2 • Provides the correct solution 1
(b)	number of cans of lemonade = 5 number of cans that are not lemonade = $24 - 5$ = 19 total number of cans = 24 Therefore, the relative frequency of not selecting a can of lemonade is $\frac{19}{24}$.	MS–S2 Relative Frequency and Probability MS11–8 Bands 3–4 • Provides the correct solution 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	number of cans of ginger ale = 0.125×24 = 3 cans number of cans of tonic water = $24 - 5 - 5 - 3$ = 11 cans	MS-S2 Relative Frequency and Probability MS11-8 Bands 4-5 • Provides the correct solution 2 • Makes some progress
0110	stion 29	
area dept volu num Ther the d <i>Note</i>	of the backyard = $\frac{5}{2}(10+6)$ = 40 m ² h of dirt = 10 cm = 0.1 m me of dirt to be removed = 40 × 0.1 = 4 m ³ ber of skip bins = $\frac{4}{1.5}$ = 2.6667 ≈ 3 efore, Jonathon will need three skip bins to hold all	MS-M1 Applications of Measurement MS11-10 Bands 4-5 • Provides the correct solution 4 • Makes significant progress with ONE error
Que	stion 30	
(a)	The <i>y</i> -intercept represents the number of cupcakes made for which no muffins will be made (that is, 400 cupcakes).	MS-A2 Linear Relationships MS11-1 Bands 3-4 • Provides the correct explanation1
(b)	The gradient represents how many fewer cupcakes are made for every muffin made (that is, one cupcake).	MS-A2 Linear Relationships MS11-1 Bands 4-5 • Provides the correct explanation1
(c)	The graph would not applicable when x is less than 0 and when x is greater than 350. There cannot be fewer than 0 muffins made and at least 50 cupcakes must be made each day, which means that no more than 350 muffins can be made.	MS-A2 Linear Relationships MS11-1 Bands 4-5 • Provides the correct solution 2 • Gives ONE correct value of x 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 31	
Using the outlier formula gives: upper outlier limit = $Q_3 + 1.5 \times IQR$ 45 = 27 + 1.5(27 - x) 45 = 27 + 40.5 - 1.5x 45 = 67.5 - 1.5x 1.5x = 67.5 - 45 1.5x = 22.5 $x = \frac{22.5}{1.5}$ = 15		MS–S1 Data Analysis MS11–10 Bands 5–6 • Provides the correct solution
Que	stion 32	
(a)	80th percentile (or P_{80})	MS–S1 Data Analysis MS11–7 Bands 3–4 • Provides the correct solution 1
(b)	Carmela will not be employed by the government. She is ranked $\frac{520}{700} = 0.7429$. Carmela is in the 75th percentile; this is not in the top 20% of people completing the exam.	MS–S1 Data Analysis MS11–7 Bands 5–6 • Provides the correct solution 1
(c)	The skew of the dataset is negative. As there are 800 marks in the exam, the halfway point is 400. However, the median score is 570. As the majority of the scores are in the upper half, the skew of the dataset is negative.	MS–S1 Data Analysis MS11–7 Bands 5–6 • Provides the correct solution 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 33	
volume of each candle: $V = \pi r^{2}h$ $= \pi \times 4.5^{2} \times 12$ $= 763.4070 \text{ cm}^{3}$ mass of wax needed: $W = 763.4070 \times \left(\frac{100 - 10}{100}\right) \times 0.83$ $= 570.2650 \text{ grams}$	MS-A1 Formulae and Equations MS11-10 Bands 5-6 • Provides the correct solution
GST-inclusive price = 570.2650×0.02 = \$11.4053 GST-exclusive price = $\frac{11.4053}{110} \times 100$ = 10.3685 \approx \$10.37	 Calculates the volume OR calculates the mass using incorrect values in the substitution