

Trial Examination 2022

HSC Year 12 Mathematics Advanced

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1DD is correct. A many-to-many relationship is a relationshipwhere one x-value maps to multiple y-values and one y-value ismapped from multiple x-values, as is the case with an ellipse.Hence, the diagram represents a many-to-many relationship.	MA–F1 Working with Functions MA11–1 Band 3
A and C are incorrect. These terms refer to functions. The ellipse clearly fails the vertical line test. Hence, the diagram does not represent a one-to-one or many-to-one relationship.	
B is incorrect. There are <i>y</i> -values that are mapped from multiple <i>x</i> -values. Therefore, the diagram does not represent a one-to-many relationship.	
Question 2 D $\mu = \frac{145 + 25}{2}$ = 85	MA–S3 Random Variables MA12–10 Band 3
Since it represents 99.7% of the area under the entire curve, the empirical rule states that the area bounded encompasses three standard deviations from the mean.	
$\sigma = \frac{85 - 25}{3}$ $= 20$	
$\operatorname{Var}(X) = \sigma^2$	
$=20^{2}$ = 400	
Question 3 D	MA–F1 Working with Functions
The equation $(x + 2)^2 + (y + 3)^2 = d$ represents a circle with	MA11–2 Bands 3–4
its centre at $(-2, -3)$ and a radius of \sqrt{d} , as shown below.	
У _	
$ \begin{array}{c} \sqrt{d} \\ C (-2, -3) \end{array} $	
For the <i>x</i> -axis to be a tangent to the circle, the diagram shows	
that the radius of the circle must be 3 units in length.	
$\sqrt{d} = 3$	
<i>d</i> = 9	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 4BFrom the table, the monthly repayment is \$836.44 for option 1and \$807.14 for option 2.total amount of interest paid for option 1:interest = total amount – loan $= (836.44 \times 12 \times 20) - 100\ 000$ $= $100\ 745.60$	MA–M1 Modelling Financial Situations MA12–10 Bands 3–4
total amount of interest paid for option 2: interest = total amount - loan = $(807.14 \times 12 \times 30) - 110\ 000$ = \$180\ 570.40	
difference in interest: 180 570.40 – 100 745.60 = \$79 824.80	
Question 5 C Method 1: $P(\text{sum} \ge 20) = P(9 \text{ and } 11) + P(9 \text{ and } 12)$ $= \left(\frac{1}{3} \times \frac{1}{3}\right) + \left(\frac{1}{3} \times \frac{1}{3}\right)$ $= \frac{2}{9}$	MA–S1 Probability and Discrete Probability Distributions MA11–7 Band 4
Method 2: The total number of elements in the sample space is $3 \times 3 = 9$. There are only two cases where the sum will be greater than 20. They are obtaining either 9 and 11 or 9 and 12. $P(\text{sum} \ge 20) = \frac{2}{9}$	
$\frac{P(\text{sum} \ge 20) = \frac{1}{9}}{\text{Question 6}}$	MA–C4 Integral Calculus
Given that $f(x) = \int_2^x \frac{1}{1+t^3} dt$, using the fundamental theorem of calculus gives: $f'(x) = \frac{d}{dx} \left[\int_2^x \frac{1}{1+t^3} dt \right]$ $= \frac{1}{1+x^3}$ Hence: $f'(2) = \frac{1}{1+2^3}$ $= \frac{1}{9}$	MA12–3 Bands 5–6

Answer and explanation	Syllabus content, outcom and targeted performance b	
Question 7 A Recall that μ and $E(X)$ are equivalent. $E(X) = \sum xp(x)$ $= (1 \times 0.05) + (2 \times 0.15) + (5 \times 0.4) + (6 \times 0.2) + (8 \times 0.2)$ = 5.15 P(X > 5.15) = P(x = 6) + P(x = 8) = 0.2 + 0.2	MA–S1 Probability and Discrete Probability Distributions MA11–7	Band 4
= 0.4 Question 8 A Method 1: Finding the points of intersection between the two curves gives: $px^2 = qx^2 + r$	MA–F1 Working with Functions MA11–9	Band 5
$px^{2} - qx^{2} - r = 0$ $(p - q)x^{2} - r = 0$ If there are no points of intersection, then $\Delta < 0$.		
$\Delta = b^2 - 4ac$ = (0) ² - 4(p-q)(-r) = 4r(p-q)		
4r(p-q) < 0 4r(p-q) is a negative value. If $r > 0$: p-q < 0		
 ∴ p < q Hence, option A is the only option that represents these conditions. Method 2: 		
A is correct. This can be found by checking each option by drawing two parabolas and assigning values for p , r and q . Substituting $p = 2$, $q = 3$ and $r = 1$ will describe a situation where both parabolas will not intersect.		
B is incorrect. The two parabolas will intersect if $p = 3$, $q = 2$ and $r = 1$. C is incorrect. The two parabolas will intersect if $p = -1$, q = 1 and $r = 0$. D is incorrect. The two parabolas will intersect if $p = 1$, q = -1 and $r = 0$.		

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 9 C	MA–S2 Descriptive Statistics and Bivariate Data Analysis
C is correct. The box-plot indicates the data set has a symmetrical distribution. The curvature of the cumulative frequency diagram indicates that it is increasing at a decreasing rate up until the inflection point. After this, it increases at an increasing rate. The histogram in option C best represents this information as the frequencies are increasing at a decreasing rate as they move towards the centre, after which the frequencies increase at an increasing rate.	MA12–10 Bands 5–
A is incorrect. The cumulative frequency diagram for this histogram would be a diagonal line, as shown below. This is because the same frequency is added throughout the distribution.	
B is incorrect. The cumulative frequency diagram for this histogram would increase at an increasing rate then increase at a decreasing rate, as shown below.	
D is incorrect. This histogram does not represent a symmetrical distribution, as shown by the box-plot.	

Answer and explanation	Syllabus content and targeted perform	
Question 10 D	MA–F1 Working with H	Functions
Method 1:	MA11–9, 12–10	Bands 5–6
D is correct. Examining the behaviour of $y = f(g(-x))$ for		
both positive and negative values of <i>x</i> finds the following.		
• When $x = 1$, $g(-x) = g(-1) > 0$. Hence, $f(g(-1)) > 0$, since $f(x) > 0$ for $x > 0$.		
• When $x = -1$, $g(-x) = g(1) > 0$. Hence, $f(g(1)) > 0$		
for the same reason that $f(x) > 0$ for $x > 0$.		
• When $x = 0$, $g(0) > 0$. Hence, $f(g(0)) > 0$.		
Therefore, the graph of $y = f(g(-x))$ must be above the		
<i>x</i> -axis for all values of <i>x</i> .		
Examining the behaviour of $y = f(g(-x))$ at the extremities		
finds that when $x \to -\infty$, $g(-x) = g(\infty) \to \infty$. Hence,		
$f(g(-x)) \rightarrow \infty$ since $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.		
Therefore, the graph of $y = f(g(-x)) \rightarrow \infty$ as $x \rightarrow -\infty$.		
A and C are incorrect. The graphs exist below the <i>x</i> -axis.		
B is incorrect. When $x \to -\infty$, $f(g(-x)) \to 0$.		
Method 2:		
As $f(x)$ resembles $y = x^3$ and $g(x)$ resembles $y = e^x$:		
$f\left(g\left(-x\right)\right) = \left(e^{-x}\right)^{3}$		
$=e^{-3x}$		
Therefore, This graph should behave like an exponential		
function in the form $y = e^{-3x}$. Option D best represents		
this information.		

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 11	
2x-3 = 4 2x-3 = 4 2x = 7 $x = \frac{7}{2}$ -(2x-3) = 4 2x-3 = -4 2x = -1 $x = -\frac{1}{2}$ $\therefore x = \frac{7}{2}, \frac{1}{2}$	MA-F1 Working with Functions MA11-2 Band 3 • Provides the correct solutions 2 • Develops a linear equation AND provides its correct solution 1
Question 12	
A sketch of $y = f(x)$ is shown.	 MA–F1 Working with Functions MA11–2, 11–9 Bands 3–4 Provides the correct domain AND range using interval notation 2 Provides the correct domain OR range using interval notation 1

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 13	
LHS = $\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A}$ = $\frac{\sin^2 A}{\sin A (1 + \cos A)} + \frac{(1 + \cos A)^2}{\sin A (1 + \cos A)}$ = $\frac{\sin^2 A + (1 + \cos A)^2}{\sin A (1 + \cos A)}$ = $\frac{\sin^2 A + (1 + 2\cos A + \cos^2 A)}{\sin A (1 + \cos A)}$ = $\frac{2 + 2\cos A}{\sin A (1 + \cos A)}$ (since $\sin^2 A + \cos^2 A = 1$) = $\frac{2(1 + \cos A)}{\sin A (1 + \cos A)}$ = $\frac{2}{\sin A}$ = $2 \csc A$ = RHS	MA-T2 Trigonometric Functions and Identities MA11-4 Bands 3-4 • Provides the correct solution 3 • Combines the fractions together AND applies trigonometric identities to assist with the proof of the expression. OR • Equivalent merit
Question 14	
(a) $\frac{5}{100}$ prohibited items $\frac{5}{100}$ no alarm triggered $\frac{95}{100}$ no alarm triggered $\frac{2}{100}$ alarm triggered $\frac{2}{100}$ alarm triggered no alarm triggered no alarm triggered no alarm triggered $\frac{98}{100}$ no alarm triggered	MA-S1 Probability and Discrete Probability Distributions MA11-7 Bands 3-4 • Provides FOUR correct values 2 • Provides at least TWO correct values 1
(b) $P(\text{prohibited} \mid \text{alarm}) = \frac{P(\text{prohibited} \cap \text{alarm})}{P(\text{alarm})}$ $= \frac{\left(\frac{5}{100} \times \frac{95}{100}\right)}{\left(\frac{5}{100} \times \frac{95}{100}\right) + \left(\frac{95}{100} \times \frac{2}{100}\right)}$ $= \frac{5}{7}$	MA-S1 Probability and Discrete Probability Distributions MA11-8 Band 4 • Provides the correct solution 2 • Indicates the use of the conditional probability formula 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 15	
(a)	Katarina is incorrect because a correlation coefficient is a value between $-\ddot{\mathbf{u}} \le r \le$ A value of $r = -2.5$ exists outside this restriction. She is also incorrect because the scatter plot indicates that there is a positive correlation. Hence, the correlation coefficient should have a positive value between $0 < r < 1$.	MA–S2 Descriptive Statistics and Bivariate Data Analysis MA12–10 Bands 3–4 • Provides TWO valid reasons2 • Provides ONE valid reason1
(b)	y = $0.8077x + A$ Using the point (180, 184): 184 = 0.8077(180) + A 184 = 145.386 + A A = 38.614 Hence, the least-squares regression line is y = $0.8077x + 38.614$. When y = 160: 160 = 0.8077x + 38.614 x = 150.285 Therefore, Katarina's mother is approximately 150 cm tall.	MA–S2 Descriptive Statistics and Bivariate Data Analysis MA12–9 Bands 3–4 • Provides the correct solution 2 • Finds the value of <i>A</i> 1
Que	stion 16	
(a)	$f(x) = \frac{x^2}{\cos x}$ $f'(x) = \frac{(\cos x)(2x) - (x^2)(-\sin x)}{\cos^2 x}$ $= \frac{x(2\cos x + x\sin x)}{\cos^2 x}$ $f'(\pi) = \frac{\pi(2\cos \pi + \pi\sin \pi)}{\cos^2 \pi}$ $= \frac{\pi(-2+0)}{(-1)^2}$ $= -2\pi$	MA-C2 Differential Calculus MA12-6 Bands 3-4 • Provides the correct solution 3 • Substitutes $x = \pi$ into $f'(x) \dots 2$ • Uses the quotient rule to differentiate $f(x) \dots 1$

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 17	
(a) $y = x \ln x$ $\frac{dy}{dx} = (x) \left(\frac{1}{x}\right) + (\ln x)(1)$ $= 1 + \ln x$	MA–C3 Applications of Differentiation MA12–3 Bands 3–4 • Provides the correct solution 1
(b) If $\ddot{u} = \ddot{u} \qquad \frac{dy}{dx} = 1 + \ln x$ (from part (a)). Using the fundamental theorem of calculus: $\int_{1}^{e} (1 + \ln x) dx = [x \ln x]_{1}^{e}$ $\int_{1}^{e} 1 dx + \int_{1}^{e} \ln x dx = [x \ln x]_{1}^{e}$ $\int_{1}^{e} \ln x dx = [x \ln x]_{1}^{e} - \int_{1}^{e} 1 dx$ $= [x \ln x]_{1}^{e} - [x]_{1}^{e}$ $= (e \ln e - 1 \ln 1) - (e - 1)$ $= e - (e - 1)$ $= 1$ Note: Consequential on answer to Question 17(a).	MA-C4 Integral Calculus MA12-10 Band 4 • Provides the correct solution 2 • Applies the fundamental theorem of calculus to the solution found in part (a) 1
Question 18	
(a) $I = \int_{\frac{1}{3}}^{\frac{1}{2}} \sec^2\left(\frac{\pi x}{2}\right)$ $= \left[\frac{1}{\left(\frac{\pi}{2}\right)} \tan\left(\frac{\pi x}{2}\right)\right]_{\frac{1}{3}}^{\frac{1}{2}}$ $= \frac{2}{\pi} \left[\tan\left(\frac{\pi x}{2}\right)\right]_{\frac{1}{3}}^{\frac{1}{2}}$ $= \frac{2}{\pi} \left(\tan\left(\frac{\pi x}{2}\right)\right)_{\frac{1}{3}}^{\frac{1}{2}}$ $= \frac{2}{\pi} \left(\tan\left(\frac{\pi x}{2}\right)\right)$ $= \frac{2}{\pi} \left(1 - \frac{1}{\sqrt{3}}\right)$	MA-C4 Integral Calculus MA12-7 Bands 3-4 • Provides the correct solution 3 • Substitutes the boundaries AND simplifies the anti-derivative 2 • Finds the anti-derivative 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) $\frac{dy}{dx} = \frac{2x}{3x^2 + 1}$ $y = \int \frac{2x}{3x^2 + 1} dx$ $= \frac{1}{3} \int \frac{6x}{3x^2 + 1} dx$ $= \frac{1}{3} \ln 3x^2 + 1 + C$	MA-C4 Integral Calculus MA12-3 Bands 3-4 • Provides the correct solution 2 • Manipulates the integrand into the form $\frac{f'(x)}{f(x)}$
Question 19 $A = \int_{0}^{1} \sqrt{x} (1-x) dx$ $= \int_{0}^{1} \sqrt{x} - x \sqrt{x} dx$ $= \int_{0}^{1} x^{\frac{1}{2}} - x^{\frac{3}{2}} dx$ $= \left[\frac{2}{3} x^{\frac{3}{2}} - \frac{2}{5} x^{\frac{5}{2}} \right]_{0}^{1}$	MA-C4 Integral Calculus MA12-10 Band 4 • Provides the correct solution 3 • Finds the anti-derivative 2 • Expresses the integrand in the form x^n 1
$= \left(\frac{2}{3} - \frac{2}{5}\right) - (0 - 0)$ $= \frac{4}{15} \text{ units}^2$	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 20	
The parabola has the equation $y = ax^2 + bx + c$. The following diagram shows a cartesian plane assigned to the diagram.	MA–F1 Working with Functions MA11–8, 11–9 Band 4 • Provides the correct solution 3
	• Finds the value of <i>c</i> and develops simultaneous equations to solve for <i>a</i> and <i>b</i> 2
$2 \bigoplus_{i=1}^{2} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_$	• Finds the value of <i>c</i> 1
The ball passes through the points $(0, 2)$, $(5, 4)$ and $(14, 3)$.	
Substituting (0, 2) gives:	
$2 = a(0)^2 + b(0) + c$	
c=2	
Hence, the equation is now represented as $y = ax^2 + bx + 2$.	
Substituting (5, 4) gives:	
$4 = a(5)^2 + b(5) + 2$	
$2 = 25a + 5b$ $a = \frac{2 - 5b}{25} (\text{equation 1})$	
Substitution (14, 3) gives:	
$3 = a(14)^{2} + b(14) + 2$ 1 = 196a + 14b (equation 2)	
Substituting equation 1 into equation 2 gives:	
$1 = 196\left(\frac{2-5b}{25}\right) + 14b$	
25 = 196(2 - 5b) + 350b	
25 = 392 - 980b + 350b	
-367 = -630b	
$b = \frac{367}{630}$	
(continues on next page)	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Subs <i>a</i> = - = -	tinued) stituting the value of b into equation 1 gives: $\frac{2-5\left(\frac{367}{630}\right)}{25}$ $-\frac{23}{630}$ refore, $y = -\frac{23}{630}x^2 + \frac{367}{630}x + 2$.	
Que (a)	stion 21 Method 1: Model A represents a geometric sequence where $a = 200\ 000\ and\ r = \frac{110}{100} = 1.1$. Hence, the general term is $T_n = 200\ 000(1.1)^{n-1}$. For the year 2025, let $n = 5$. $T_5 = 200\ 000(1.1)^{5-1}$ $= 292\ 820$ Method 2: $A = P(1+r)^n$ $= 200\ 000(1+0.1)^4$ $= 292\ 820$	MA-M1 Modelling Financial Situations MA12-4 Bands 3-4 • Provides the correct solution 2 • Finds the general term T_n . OR • Equivalent merit 1
(b)	Model B represents an arithmetic sequence where $a = 200\ 000$ and $d = M$. Hence, the general term is $T_n = 200\ 000 + (n-1)M$. Since $T_5 = 292\ 820$: $292\ 820 = 200\ 000 + (5-1)M$ $92\ 820 = 4M$ $M = $23\ 205$	MA-M1 Modelling Financial Situations MA12-2Band 4• Provides the correct solution 2• Finds the general term T_n 1

	S	Syllabus content, outcomes, targeted performance bands and marking guide			
Question 22					
The shaded r	egion is de	MA–C4 Integral Calculus			
<i>x</i> 0	37.5	75	112.5	150	MA12–3 Bands 3– • Provides the correct solution
y 0	42	59	36	0	
Applying the n = 4 to find $A \approx \frac{b-a}{2n} \{f(x) = \frac{150-0}{2(4)}\}$ ≈ 5137.5 r	the approx a) + f(b) + 0 + 0 + 2(4)	 Provides a correct table of values with function values. OR Equivalent merit 			
Question 23					
$\tan 10^{\circ}$ $\tan 10^{\circ}$ XF $\therefore XP$ As ΔR $\tan 5^{\circ}$	$PX \text{ is a rig}$ $PX \text{ is a rig}$ $P = \frac{RX}{XP}$ $P = \frac{h}{XP}$ $P = \frac{h}{\tan 10^{\circ}}$ $P = h \cot 10^{\circ}$ $QX \text{ is a rig}$ $= \frac{h}{XQ}$ $= h \cot 25^{\circ}$				MA-T1 Trigonometry and Measure of Angles MA11-3, 12-1 Bands 3- • Shows that $XP = h \cot 10^\circ$. AND • Finds the expression for XQ

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) Using Pythagoras' theorem in ΔXPQ : $XP^2 + PQ^2 = XQ^2$ $(h \cot 10^\circ) + (100)^2 = (h \cot 5^\circ)^2$ $h^2 \cot^2 10^\circ + 10\ 000 = h^2 \cot^2 5^\circ$ $10\ 000 = h^2 \cot^2 5^\circ - h^2 \cot 10^\circ$ $10\ 000 = h^2 (\cot^2 5^\circ - \cot^2 10^\circ)$ $h^2 = \frac{10\ 000}{\cot^2 5^\circ - \cot^2 10^\circ}$ $h = \sqrt{\frac{10\ 000}{\cot^2 5^\circ - \cot^2 10^\circ}}$ $= 10\ m$	MA-T1 Trigonometry and Measure of Angles MA12-9Bands 3-4• Provides the correct solution 3• Makes h^2 the subject 2• Applies Pythagoras' theorem to ΔXPQ 1
Question 24	
(a) When $t = 0$: $h = 5 + 3\sin\left(\frac{\pi}{4} \times 0\right)$ $= 5 + 3\sin 0$ = 5 m	MA–T3 Trigonometric Functions and Graphs MA12–5 Bands 2–3 • Provides the correct solution 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	Finding the period: $T = \frac{2\pi}{n}$ $= \frac{2\pi}{\left(\frac{\pi}{4}\right)}$ $= 8$ The amplitude is 3. Hence, the maximum value is 5 + 3 = 8 and the minimum value is 5 - 3 = 2.	 MA-T3 Trigonometric Functions and Graphs MA12-5 Band 4 Sketches a graph that shows all THREE of: the period the maximum and minimum values the correct graph shape3 Any TWO of the above points1
(c)	When $h = 4$: $4 = 5 + 3\sin\left(\frac{\pi}{4}t\right)$ $-\frac{1}{3} = \sin\left(\frac{\pi}{4}t\right)$ $\frac{\pi}{4}t = \sin^{-1}\left(-\frac{1}{3}\right)$ $\frac{\pi}{4}t = (\pi + 0.3398), (2\pi - 0.3398), (3\pi + 0.3398),$ $(4\pi - 0.3398),$ $t = \frac{\pi}{4}(\pi + 0.3398), \frac{\pi}{4}(2\pi - 0.3398),$ $\frac{\pi}{4}(3\pi + 0.3398), \frac{\pi}{4}(4\pi - 0.3398),$ = 4.433 hours, 5.851 hours, 12.43 hours, 15.57 hours, Since the family will be by the river between 12 pm to 2 pm, the solution $t = 12.43$ indicates the first time the family is safe to swim in the river. As 12.43 hours = 12 hours and 26 minutes, the earliest time the family can swim in the river is 12:26 pm.	 MA-T3 Trigonometric Functions and Graphs MA12-1, 12-5, 12-10 Bands 4-5 Provides the correct solution3 Solves the trigonometric equation for possible values of <i>t</i>2 Substitutes <i>h</i> = 4 to develop a trigonometric equation1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 25	
(a) $(-3, 2)$ $(0, 1$	 MA-F2 Graphing Techniques MA12-1 Bands 4-5 Sketches a graph that shows all FOUR of: a reflection about the <i>x</i>-axis a vertical dilation with scale factor of 2 a horizontal dilation with scale factor of 3 a vertical translation of one unit upwards4 Any THREE of the above points2 Any ONE of the above points 1
Question 26	
(a) To find the x-intercepts, let $y = 0$. $0 = \frac{2x}{e^x}$ $0 = 2x$ $x = 0$ Therefore, the x-intercept is (0, 0). To find the y-intercepts, let $x = 0$. $y = \frac{2(0)}{e^0}$ $= 0$ Therefore, the y-intercept is (0, 0). Hence, $y = \frac{2x}{e^x}$ only has one intercept at the origin.	MA-C3 Applications of Differentiation MA12-3 Bands 2-3 • Provides the correct solution 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide	
(b) $y = \frac{2x}{e^x}$ $\frac{dy}{dx} = \frac{(e^x)(2) - (2x)(e^x)}{(e^x)^2}$ $= \frac{2e^x(1-x)}{e^{2x}}$ $= \frac{2(1-x)}{e^x}$ For stationary points, $\frac{dy}{dx} = 0$. $0 = \frac{2(1-x)}{e^x}$ $1-x = 0$ $x = 1$ When $x = 1$: $y = \frac{2(1)}{e^1}$ $= \frac{2}{e}$ Determining the nature of the stationary point using the first derivative table gives: $\frac{x 0 1 2}{\frac{dy}{dx} 2 \text{ (positive)} 0 -\frac{2}{e^2} \text{ (negative)}}$ Hence, the turning point $\left(1, \frac{2}{e}\right)$ is a maximum turning point.	MA-C3 Applications of Differentiation MA12-6 Bands 4-5 • Tests and determines the nature of the stationary point $\left(1, \frac{2}{e}\right) \dots 3$ • Finds the stationary point at $\left(1, \frac{2}{e}\right) \dots 2$ • Finds the derivative $\dots 1$	

		Sam	ple answer			· ·	yllabus content, outcomes, targeted rformance bands and marking guide
	$\frac{d^2y}{dx^2} =$	$\frac{2(1-x)}{e^{x}}$ $2\left[\frac{(e^{x})(-1)-e^{x}}{e^{x}}\right]$ $2\left(\frac{xe^{x}-2e^{x}}{e^{2x}}\right]$ $2\left(\frac{x-2}{e^{x}}\right)$	L			MA	A-C3 Applications of Differentiation A12-10 Bands 4-5 Provides the correct solution 3 Finds a possible point of inflection occurs at $\left(2, \frac{4}{e^2}\right)$
ر ۲ ۲	For positive for positive for positive for positive for a constraint of the formula in the form	(e^{-x}) ssible points o $2\left(\frac{x-2}{e^x}\right)$ = 0 = 2 x = 2: $\frac{2}{2}$	nflection usin			•	Finds the second derivative 1
Γ	x	1	2	3			
-	$\frac{d^2y}{dx^2}$	$-\frac{2}{e}$ (negative)	0	$\frac{2}{e^3}$ (positive)			
i	As ther nflecti	e is a change i on.	in concavity,	$\left(2,\frac{4}{e^2}\right)$ is a p	point of		

Syllabus content, outcomes, targeted performance bands and marking guide
MA-C3 Applications of Differentiation MA12-10Band 4• Sketches a graph that shows all FOUR of:
• Any TWO of the above points2
Any ONE of the above points 1
 MA–S3 Random Variables MA12–8 Band 4 Provides the correct solution 3 Makes valid progress in solving F(x) = 0.5 for the median time 2 Finds the cumulative distribution function 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 28	
(a)	When $t = 0$: $x = \frac{2(0) - 1}{0 + 1}$ $= -1$ Hence, the particle is initially one metre to the left of the origin.	MA-C1 Introduction to Differentiation MA11-5 Band 3 • Provides the correct solution 1
(b)	$x = 2 - 3(t+1)^{-1}$ $v = 3(t+1)^{-2}$ $= \frac{3}{(t+1)^2}$ $a = -6(t+1)^{-3}$ $= \frac{-6}{(t+1)^3}$	MA-C1 Introduction to Differentiation MA11-5 Bands 3-4 • Finds the expression for v AND a2 • Finds the expression for v OR a1
(c)	As $t \to \infty$, $x \to 2-0=2$. Hence, the particle approaches $x = 2$ m. As $t \to \infty$, $v \to 0$. Hence, the particle's velocity is slowing down and approaching 0 m s ⁻¹ . As <i>t</i> increases indefinitely, the particle is approaching x = 2 m with decreasing speed.	MA-C1 Introduction to Differentiation MA11-9Bands 4-5• Describes the particle's displacement AND velocity as $t \rightarrow \infty$ 2• Describes the particle's displacement OR velocity as $t \rightarrow \infty$ 1
Oue	stion 29	
(a)	The perimeters of the triangles form a geometric sequence where $a = p$ and $r = \frac{1}{2}$. Let p_n represent the perimeter of the <i>n</i> th triangle. $p_n = ar^{n-1}$ $= p\left(\frac{1}{2}\right)^{n-1}$ $= p\left(\frac{1}{2}^{n-1}\right)$ $= \frac{p}{2^{n-1}}$ (since $1^{n-1} = 1$)	MA-M1 Modelling Financial Situations MA12-4Bands 4-5• Provides the correct solution 2• Finds an expression for p_n . OR• Equivalent merit 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) $S_{\infty} = \frac{a}{1-r}$ $= \frac{p}{1-\frac{1}{2}}$ $= \frac{p}{\frac{1}{2}}$ $= 2p$	MA–M1 Modelling Financial Situations MA12–4 Bands 3–4 • Provides the correct solution 1
Question 30	
(a) $P(\text{centre}) = \frac{\pi'(2)^2}{\pi'(20)^2}$ = $\frac{4}{400}$ = $\frac{1}{100}$	 MA–S1 Probability and Discrete Probability Distributions MA11–7 Band 4 Provides the correct solution 1
(b) $P(\text{centre circle and outer section in any order})$ $= 2 \times \left(\frac{1}{100} \times \frac{\pi (20)^2 - \pi (5)^2}{\pi (20)^2} \right)$ $= 2 \times \left(\frac{1}{100} \times \frac{15}{16} \right)$ $= \frac{3}{160}$	 MA–S1 Probability and Discrete Probability Distributions MA11–7 Band 4 Provides the correct solution 2 Finds the probability of a dart landing in the outer section 1
(c) $E(X) = \Sigma x p(x)$ $= \left(10 \times \frac{225}{256}\right) + \left(25 \times \frac{63}{640}\right)$ $+ \left(40 \times \frac{441}{160\ 000}\right) + \left(105 \times \frac{3}{160}\right)$ $+ \left(120 \times \frac{21}{20\ 000}\right) + \left(200 \times \frac{1}{10\ 000}\right)$ = 13.475	MA–S1 Probability and Discrete Probability Distributions MA11–7 Band 3 • Provides the correct solution 1

		Sample ar	iswer	Syllabus content, outcomes, targeted performance bands and marking guide	
(d)	x	P(X = x)	$x^2 p(x)$	MA–S1 Probability and Discrete Probability Distributions	
	10	$\frac{225}{256}$	$\frac{5625}{64}$	MA11–7 Bands 4–5 • Provides the correct solution 3	
	25	$\frac{63}{640}$	$\frac{7875}{128}$	Provides the correct value for Var(X)2	
	40	$\frac{441}{160000}$	$\frac{441}{100}$	• Finds the values for the $x^2 p(x)$ column	
	105	$\frac{3}{160}$	$\frac{6615}{32}$		
	120	$\frac{21}{20000}$	$\frac{378}{25}$		
	200	$\frac{1}{10000}$	4		
	= 198 For standard $\sigma = \sqrt{Var(X)}$ $= \sqrt{198.08}$	$\frac{625}{64} + \left(\frac{7875}{128} + \left(\frac{378}{25}\right) + \left(\frac{378}{25}\right) + 3.087$ deviation: $\frac{5}{7}$	-(4)-13.475		
	=14.07 (to	two decimal	places)		

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide		
Question 31			
(a) The length of the whiteboard, <i>L</i> , can be found by dividing it into two separate parts, <i>L</i> ₁ and <i>L</i> ₂ . $ \begin{array}{c} L_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	MA-C3 Applications of Differentiation MA12-3 Bands 4-5 • Provides the correct solution 2 • Makes valid progress to show the expression for L 1		

ī.

	Sample answer					Syllabus content, outcomes, targeted performance bands and marking guide		
(b)	To find the angle that minimises the function $L = \frac{3}{\cos\theta} + \frac{4}{\sin\theta}:$ $L = \frac{3}{\cos\theta} + \frac{4}{\sin\theta}$ $= 3(\cos\theta)^{-1} + 4(\sin\theta)^{-1}$ $\frac{dL}{d\theta} = -3(\cos\theta)^{-2}(-\sin\theta) - 4(\sin\theta)^{-2}(\cos\theta)$ $= \frac{3\sin\theta}{\cos^2\theta} - \frac{4\cos\theta}{\sin^2\theta}$ $= \frac{3\sin^3\theta - 4\cos^3\theta}{\cos^2\theta\sin^2\theta}$					MA-C3 Applications of Differentiation MA12-9, 12-10Band 6• Provides the correct solution 5• Tests AND shows that $\theta = 47.47^{\circ}$ is a minimum turning point 4• Shows that $\theta = 47.47^{\circ}$ 		
	For state 0 $4\cos^3 \theta$	$\cos^{2} \theta \sin^{2} \theta$ ionary points $\theta = \frac{3\sin^{3} \theta - 4}{\cos^{2} \theta s}$ $\theta = 3\sin^{3} \theta - 4$ $\theta = 3\sin^{3} \theta$ $\theta = \tan^{3} \theta$	$, \frac{dL}{d\theta} = 0.$ $\frac{4\cos^3\theta}{\sin^2\theta}$		• Finds an expression for $\frac{dL}{d\theta}$ 1			
	Convert 0.833×	$P = \left(\frac{4}{3}\right)^{\frac{1}{3}}$ $P = \tan^{-1} \left[\left(\frac{4}{3}\right)^{\frac{1}{3}} = 0.833$ $P = 0.833$	ees gives:	ionary point	ısing			
	the first	derivative te	st gives:		-			
	θ	47°	47. 74°					
	$\frac{dL}{d\theta} \begin{array}{c} -0.383 \\ (negative) \end{array} = \begin{array}{c} 0 \\ 0 \\ (positive) \end{array}$							

(continues on next page)

(negative)

 $d\theta$

(positive)

(continued) Hence, $\theta = 47.74^\circ$ is a minimum turning point. For this reason, the maximum possible length of <i>L</i> occurs when $\theta = 47.74^\circ$: $L = \frac{3}{\cos 47.74^\circ} + \frac{4}{\sin 47.74^\circ}$ ≈ 9.86 Therefore, the maximum possible length of the whiteboard is 9.86 metres. Note: Accept the final answer rounded up or down. No marks are awarded for correct rounding. To find the maximum length that the whiteboard can be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos \theta} + \frac{4}{\sin \theta}$. Notice that the whiteboard will form an angle θ such that $0^\circ < \theta < 90^\circ$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90° . As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0° . Entering the corridors: $\qquad \qquad $	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
For this reason, the maximum possible length of <i>L</i> occurs when $\theta = 47.74^\circ$. When $\theta = 47.74^\circ$: $L = \frac{3}{\cos 47.74^\circ} + \frac{4}{\sin 47.74^\circ}$ ≈ 9.86 Therefore, the maximum possible length of the whiteboard is 9.86 metres. Note: Accept the final answer rounded up or down. No marks are awarded for correct rounding. To find the maximum length that the whiteboard can be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos \theta} + \frac{4}{\sin \theta}$. Notice that the whiteboard will form an angle θ such that $0^\circ < \theta < 90^\circ$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90° . As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0° .	(continued)	
occurs when $\theta = 47.74^\circ$. When $\theta = 47.74^\circ$: $L = \frac{3}{\cos 47.74^\circ} + \frac{4}{\sin 47.74^\circ}$ ≈ 9.86 Therefore, the maximum possible length of the whiteboard is 9.86 metres. Note: Accept the final answer rounded up or down. No marks are awarded for correct rounding. To find the maximum length that the whiteboard can be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos \theta} + \frac{4}{\sin \theta}$. Notice that the whiteboard will form an angle θ such that $0^\circ < \theta < 90^\circ$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90° . As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0° . Entering the corridors:	Hence, $\theta = 47.74^{\circ}$ is a minimum turning point.	
$L = \frac{3}{\cos 47.74^{\circ}} + \frac{4}{\sin 47.74^{\circ}}$ ≈ 9.86 Therefore, the maximum possible length of the whiteboard is 9.86 metres. Note: Accept the final answer rounded up or down. No marks are awarded for correct rounding. To find the maximum length that the whiteboard can be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos \theta} + \frac{4}{\sin \theta}$. Notice that the whiteboard will form an angle θ such that $0^{\circ} < \theta < 90^{\circ}$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90°. As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0°. Entering the corridors:		
≈ 9.86 Therefore, the maximum possible length of the whiteboard is 9.86 metres. Note: Accept the final answer rounded up or down. No marks are awarded for correct rounding. To find the maximum length that the whiteboard can be carried around the correr, θ must be found that minimises $L = \frac{3}{\cos \theta} + \frac{4}{\sin \theta}$. Notice that the whiteboard will form an angle θ such that $0^\circ < \theta < 90^\circ$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90°. As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0° . Entering the corridors:	When $\theta = 47.74^{\circ}$:	
whiteboard is 9.86 metres. Note: Accept the final answer rounded up or down. No marks are awarded for correct rounding. To find the maximum length that the whiteboard can be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos\theta} + \frac{4}{\sin\theta}$. Notice that the whiteboard will form an angle θ such that $0^\circ < \theta < 90^\circ$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90° . As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0° . Entering the corridors: 4 m	≈ 9.86	
Note: Accept the final answer rounded up or down. No marks are awarded for correct rounding. To find the maximum length that the whiteboard can be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos\theta} + \frac{4}{\sin\theta}$. Notice that the whiteboard will form an angle θ such that $0^{\circ} < \theta < 90^{\circ}$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90°. As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0°. Entering the corridors:		
No marks are awarded for correct rounding. To find the maximum length that the whiteboard can be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos \theta} + \frac{4}{\sin \theta}$. Notice that the whiteboard will form an angle θ such that $0^\circ < \theta < 90^\circ$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90° . As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0° . Entering the corridors: 4 m		
be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos\theta} + \frac{4}{\sin\theta}$. Notice that the whiteboard will form an angle θ such that $0^\circ < \theta < 90^\circ$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90° . As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0° . Entering the corridors: $\int \frac{1}{\theta} \frac{1}{\theta}$		
that $0^{\circ} < \theta < 90^{\circ}$. As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90° . As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0° . Entering the corridors: $\int \frac{1}{\theta} 1$	be carried around the corner, θ must be found that minimises $L = \frac{3}{\cos \theta} + \frac{4}{\sin \theta}$.	
As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90°. As the whiteboard moves around the corner, θ will decrease towards its lower bound, 0°. Entering the corridors:		
θ 4 m	As the whiteboard enters from the bottom corridor, the angle θ will start towards its upper bound, 90°. As the whiteboard moves around the corner, θ will decrease	
	Entering the corridors:	
(continues on next page)	(continues on next page)	

Sample answer	Syllabus content, outcomes, targete performance bands and marking gui
(continued)	
Moving around the corner:	
θ	
$\langle \overline{3 m} \rangle$	
When θ is close to either the lower or upper bound,	
the length of the whiteboard is infinitely long. This is	
also represented when $ heta$ is considered as 90° or 0°	
in the expression $L = \frac{3}{\cos\theta} + \frac{4}{\sin\theta}$. That is, when	
$\theta \rightarrow 90^{\circ} \text{ or } 0^{\circ}, L \rightarrow \infty.$ However, in these situations,	
the whiteboard will be too long to make it around	
the corner.	
Hence, the response should find the value of θ such	
that L is optimally long enough to still be able to turn	
around the corner.	
/	
/ {	
Notice in the diagram that the value of θ for the	
whiteboard turning the corner will give the shortest	
possible length for L.	
Hence, to find the maximum possible length of the	
whiteboard such that it can turn around the corner,	
the angle that minimises the function $L = \frac{3}{\cos\theta} + \frac{4}{\sin\theta}$	
must be found. $\cos\theta \sin\theta$	