Neap

Trial Examination 2022

HSC Year 12 Mathematics Standard 2

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION I

Answer and explanation	Syllabus content, outcomes and
	targeted performance bands
Question 1AA is correct.	MS-M1 Applications of Measurement MS11-3, 11-4 Bands 2-3
area = 0.0005×0.0002	
= 0.0000001	
$=1 \times 10^{-7} \text{ mm}^2$	
B and C are incorrect. These options give the perimeter of the rectangle and option C has a positive index.	
D is incorrect. This option has a positive index when it should be negative.	
Question 2 D	MS–N2 Network Concepts
D is correct, and B and C are incorrect. There are eight edges that join all the vertices.	MS2–12–8 Bands 2–3
A is incorrect. This option gives the number of vertices.	
Question 3 D	MS–S4 Bivariate Data Analysis
D is correct and C is incorrect. The correlation coefficient is negative and the value of 1 means that the two variables are perfectly correlated.	MS2–12–7 Bands 3–4
A and B are incorrect. There is not enough data to determine whether the variables have been interpolated or extrapolated.	
Question 4DThe diagram shows a right-angled triangle where the hypotenuse and opposite side of the angle are given. Therefore, sin is the ratio that needs to be used. $sin 20^{\circ} = \frac{x}{150}$ 	MS–M3 Right-angled Triangles MS2–12–4 Bands 3–4
Question 5Dweekly wage = 42×32.50 = \$1365	MS–F1 Money Matters MS11–5, 11–6, 11–10 Bands 3–4
loading = $17.5\% \times (1365 \times 4)$	
= \$955.50	
total wage = 4 weeks normal wages + loading = $(4 \times 1365) + 955.50$ = \$6415.50	
Question 6 D	MS–M5 Scale Drawings
map distance = $\frac{\text{actual distance}}{\text{scale}}$	MS1–12–4 Bands 2–3
$=\frac{650}{125}$	
= 5.2 cm	

Answer and explanation			Syllabus content, outco targeted performance		
Question 7 C			MS-F4 Investments and Loa	ans	
$A = P(1+r)^n$				MS2–12–5, 12–10	Bands 3–4
A = value of annui n = time period	ty, $P = initial inves$	tment, $r = $ interest	rate,		
$A = 25000 \left(1 + \frac{0.0}{2}\right)$	$\left(\frac{0.55}{2}\right)^{10}$				
= 32 791.2758					
≈ \$32 791					
Question 8	С			MS–A4 Types of Relationsh	ips
4x - 5y + 35 = 0				MS2-12-6	Bands 3–4
5y = 4x	+ 35				
$y = \frac{4}{5}x + 7 \rightarrow y =$	mx + b				
$\therefore m = \frac{4}{5}, b = 7$					
Question 9 D		MS–M7 Rates and Ratios			
amount of IV solution = $\left(\frac{3500}{250}\right) \times 15$			MS2-12-3	Bands 3–4	
	=210 mL				
Question 10	A			MS–S4 Bivariate Data Anal MS2–12–2, 12–9	ysis Bands 3–4
mean =	all scores			1102-12-2, 12-)	Danus 5-4
range = highest score – lowest score median = the middle score when scores are arranged in order					
mode = the score that has the highest frequency					
Comparing the old and new measures gives the following.					
	Old	New	-		
Mean	55.29	55.45			
Range	8	8			
Median	56	56			
Mode	56	56			
The only measure	that will change is	the mean.			

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 11 A $A = \frac{1}{2}ab\sin C$ $= \frac{1}{2} \times 8 \times 12 \times \sin 32$ $= 25.4361$ $\approx 25.4 \text{ cm}^2$	MS–M6 Non-right-angled Trigonometry MS2–12–4, 12–10 Bands 3–4
≈ 23.4 cm Question 12 C true measurement = 480 m precision/smallest unit = 10 m limits of accuracy = ± 5 m upper limit = 480 + 5 = 485 m lower limit = 480 - 5 = 475 m	MS-M1 Applications of Measurement MS11-3 Bands 3-4
Question 13CDominic did 112 km of short-distance driving.fuel used while short-distance driving = 1.12×10.4 =11.648 LDominic did 851 - 112 = 739 km of long-distance driving.fuel used while long-distance driving = 7.39×7.2 = 53.208 Ltotal fuel used = $53.208 + 11.648$ = 64.856 $\approx 65 L$	MS–M7 Rates and Ratios MS2–12–9, 12–10 Bands 4–5
Question 14Bdividend per share = \$0.40dividend yield = $\frac{\text{dividend per share}}{\text{market price per share}} \times 100$ = $\frac{0.40}{4.60} \times 100$ = 8.6957 $\approx 9\%$	MS–F4 Investments and Loans MS2–12–9, 12–10 Bands 4–5
Question 15 B 3 3 7 7 7 7 7 7 7 7 7 7	MS–N2 Network Concepts MS2–12–8, 12–9 Bands 4–5

Syllabus content, outcomes, targeted Sample answer performance bands and marking guide **Ouestion 16** The area of the path is equal to the area of the large circle MS-M1 Applications of Measurement MS11-3, 11-4, 11-10 Bands 2-3 minus the area of the small circle. Using the formula Substitutes into the formula $A = \pi r^2$ gives: AND calculates the area $(\pi \times 3.6^2) - (\pi \times 1.8^2) = 30.5363$ $\approx 30.5 \text{ m}^2$ Makes significant progress1 **Question 17** MS-F4 Investments and Loans yearly salary = 6125×12 MS2-12-5, 12-10 Bands 2–3 = \$73 500 Provides the correct solution 1 total loan repayments = 73500×0.27 = \$19845 **Question 18** MS-F1 Money Matters extra tax = 27750 - 5092(a) MS11-5, 11-6, 11-10 Bands 3-4 = \$22 658 • Finds the amount of tax from cents in the dollar = $\frac{22658}{5}$ the table AND calculates = \$69 716.9231 taxable income = $45\,000 + 69\,716.9231$ Finds the amount of tax =114 716.9231 from the table.....1 ≈ \$114 717 MS-F1 Money Matters allowable tax deductions = 118000 - 114717(b) MS11–5, 11–6, 11–10 Bands 3-4 =\$3283 Provides the correct solution 1 Note: Consequential on answer to Question 18(a). **Question 19** MS-S2 Relative Frequency and $P(\text{triple 4}) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}$ Probability MS11-8, 11-9, 11-10 Bands 3-4 $=\frac{1}{216}$ Finds the probability of triple 4 occurring AND calculates the expected number of times = $\frac{1}{216} \times 1080$ expected number of times2 = 5 times Finds the probability of triple 4....1

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 20	
(a) limit of accuracy = 1 m absolute error = ± 0.5 m	MS-M1 Applications of Measurement MS11-3, 11-4, 11-10 Bands 3-4 • States the limit of accuracy AND the absolute error
(b) absolute error = largest area – actual area = $(10.5 \times 6.5) - (10 \times 6)$ = $68.25 - 60$ = 8.25 m^2	 MS-M1 Applications of Measurement MS11-3, 11-4, 11-10 Bands 3-4 Finds the largest area and the actual area AND calculates the absolute error
Question 21	
$\frac{x+4}{5} - \frac{2(x-2)}{3} = 2$ $\frac{3(x+4) - 5(2x-4)}{15} = 2$ 3x + 12 - 10x + 20 = 30 -7x = -2 $x = \frac{2}{7}$	 MS-A4 Types of Relationships MS2-12-1, 12-6 Bands 3-4 Provides the correct solution 3 Attempts to find a common denominator AND makes some progress towards the correct solution
Question 22	
y = 4 - 2x (1) 3x + 4y = 1 (2) Substituting (1) into (2) gives: 3x + 4(4 - 2x) = 1 3x + 16 - 8x = 1 -5x = -15 x = 3 Substitute $x = 3$ into (1) gives: y = 4 - 2(3) = -2 Therefore, the point of intersection is (3, -2).	MS-A4 Types of Relationships MS2-12-6 Bands 4-5 • Uses the substitution method AND provides the point of intersection

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 23	
curved surface area = $2\pi rh$ $234 = 2 \times \pi \times r \times 13$ $234 = 26\pi r$ $r = \frac{234}{26\pi}$ = 2.8648 $d = 2 \times 2.8649$ = 5.7296 ≈ 5.73 cm	 MS-M1 Applications of Measurement MS11-3, 11-4, 11-10 Bands 4-5 Provides the correct solution 3 Substitutes into the surface area formula AND finds the radius of the cylinder
Question 24	
(a) N 26 km 65° 16 km L C 285°	MS–M6 Non-right-angled Trigonometry MS2–12–3, 12–4, 12–9, 12–10 Bands 4–5 • Draws a correct diagram 1
(b) $\angle MCN = 360^{\circ} - 285^{\circ}$ = 75° $\angle NCL = 65^{\circ}$ $\angle MCL = \angle MCN + \angle NCL$ = 75 + 65 = 140°	MS–M6 Non-right-angled Trigonometry MS2–12–3, 12–4, 12–9, 12–10 Bands 3–4 • Shows the correct proof1
(c) $d^2 = 26^2 + 16^2 - (2 \times 26 \times 16 \times \cos 140)$ $d^2 = 1569.3490$ $d = \sqrt{1569.3490}$ = 39.6150 $\approx 40 \text{ km}$	MS-M6 Non-right-angled Trigonometry MS2-12-3, 12-4, 12-9, 12-10 Band 4 • Substitutes into the cosine rule AND calculates the distance

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(d) $\frac{\sin\theta}{16} = \frac{\sin 140}{40}$ $\sin\theta = \frac{16\sin 140}{40}$	MS-M6 Non-right-angled Trigonometry MS2-12-3, 12-4, 12-9, 12-10 Bands 4-5 • Provides the correct solution 3
$40 \theta = \sin^{-1} \left(\frac{16 \sin 140}{40} \right) = 14.8989$	• Substitutes into the sine rule AND finds the value of $\theta \dots \dots 2$
$\approx 15^{\circ}$ bearing = 180 - (15 + 75) = 90^{\circ} Note: Consequential on answer to Question 24(c).	Makes some progress1
Question 25 shower water usage per year = $14 \times 8 \times 2 \times 365$	MS–M7 Rates and Ratios
shower water usage per year = $14 \times 8 \times 2 \times 503$ = 81760 L = 81.76 kL cost per year = 81.76×2.55 = 208.488	 MS2-12-3, 12-4 Band 4 Finds the shower water usage per year AND calculates the cost
≈ \$208.49	Makes some progress1
Question 26	
(a) $z = \frac{x - \mu}{\sigma}$ $1.5 = \frac{84 - 72}{s}$ $s = \frac{84 - 72}{1.5}$ $= 8$	MS-S5 The Normal Distribution MS2-12-2, 12-7, 12-10 Bands 4-5 • Provides the correct solution 1
(b) $z = \frac{x - \mu}{\sigma}$ $1.5 = \frac{x - 78}{6}$ $x - 78 = 9$	 MS-S5 The Normal Distribution MS2-12-2, 12-7, 12-10 Bands 4-5 Substitutes into the formula AND determines the moderated score 2 Makes some progress
x = 87 (c) 66 has a z-score of -2. 2.5% × 120 = 3 students	MS-S5 The Normal Distribution MS2-12-2, 12-7, 12-10 Bands 4-5 • Finds the z-score and percentage AND calculates the number of students

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 27	
(a) B = 18 C 21 A = H = 16 I T T T T T T T T T T T T T T T T T T	MS-N2 Network Concepts MS2-12-8, 12-9, 12-10 Band 5 • Provides the correct solution 3 • Finds the minimum spanning tree AND uses some correct values 2 • Makes some progress towards finding the minimum spanning tree .1
Question 28	
$P(2 \text{ blue socks OR 2 white socks})$ $= \left(\frac{8}{15} \times \frac{7}{14}\right) + \left(\frac{7}{15} \times \frac{6}{14}\right)$ $= \frac{4}{15} + \frac{1}{5}$ $= \frac{7}{15}$	MS-S2 Relative Frequency and Probability MS11-8, 11-10Bands 4-5• Provides the correct solution 3• Finds the probability of either both blue or both white socks AND attempts to find the second probability
Question 29	
(a) $A \approx \frac{h}{2} (d_f + d_l)$ = $\frac{4}{2} (5+3) + \frac{4}{2} (3+4) + \frac{4}{2} (4+6) + \frac{4}{2} (6+4)$ = $16 + 14 + 20 + 20$ = 70 m^2	MS-M1 Applications of Measurement MS11-3, 11-4 Bands 4-5 • Uses the trapezoidal rule AND calculates the area
(b) $V = Ah$ $= 70 \times 2$ $= 140 \text{ m}^3$ $1 \text{ m}^3 = 1 \text{ kL} = 1000 \text{ L}$ capacity = 140 kL = 140 000 L <i>Note: Consequential on answer to Question 29(a).</i>	MS-M1 Applications of Measurement MS11-3, 11-4 Band 4 • Finds the volume of the pond AND calculates the capacity in litres

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 30	
amount of energy per year = $3 \times 350 \times 365$ = $383\ 250$ watts = $383.25\ kW$ cost per year = 383.25×0.45 = 172.4625 $\approx 172.46	 MS-M7 Rates and Ratios MS2-12-3, 12-4, 12-9, 12-10 Bands 4-5 Finds the amount of energy per year in kilowatts AND finds the cost per year2 Makes some progress towards finding the amount of energy per year1
Question 31	1
(a) $C = \text{cost}, n = \text{number of coffee tables}, I = \text{income}$ C = 180n + 360 I = 200n	MS-A4 Types of Relationships MS2-12-1, 12-6 Bands 4-5 • Provides the TWO equations2 • Provides ONE equation1
(b) 4000 3600 3200 2800 2400 2400 2000 1600 1200 400 400 0 2 400 1200 400 0 2 400 1200 400 0 2 4 6 8 10 12 14 16 18 20 number of coffee tables Note: Consequential on answer to Question 31(a).	MS-A4 Types of Relationships MS2-12-1, 12-6 Bands 4-5 • Graphs the TWO equations 2 • Graphs ONE equation

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	The point of intersection is (18, 3600). This is the break-even point, where cost is equal to income. This is the point at which Domenica will start to make a profit. <i>Note: Consequential on answer to Question 31(b).</i>	MS-A4 Types of Relationships MS2-12-10Band 4• States the point of intersection AND explains the significance 2• States the point of intersection OR explains the significance 1
(d)	profit = income - cost = $200n - (180n + 360)$ = $20n - 360$ n = 30 \therefore profit = $20(30) - 360$ = \$240 Note: Consequential on answer to Question 31(a).	MS-A4 Types of Relationships MS2-12-1, 12-6 Band 4 • Finds an expression for the profit AND calculates the profit
Que	stion 32	
(a)	future value = 16500×3.18 = \$52470	MS-F5 Annuities MS2-12-5, 12-9, 12-10 Bands 3-4 • Provides the correct solution 1
(b)	future value = 13400×4.16 = \$55744	MS-F5 Annuities MS2-12-5, 12-9, 12-10 Bands 3-4 • Provides the correct solution 1
(c)	payment per period = $\frac{55\ 000}{2.08}$ = 26 442.307 \approx \$26 443 Note: Do not accept the rounded-down value of \$26 442; this is not enough to reach the goal of \$55 000.	MS-F5 Annuities MS2-12-5, 12-9, 12-10Bands 4-5• Chooses the correct value from the table AND calculates the rounded value
(d)	payment per period = $\frac{32\ 475}{2.06}$ = 15 764.5631 \approx \$15 765	MS-F5 Annuities MS2-12-5, 12-9, 12-10 Bands 4-5 • Chooses the correct value from the table AND provides the payment per period2 • Makes some progress1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 33	
	$0 \times 0.0892 = \$267.60$ 0.0892 = \$150 $x = \frac{150}{0.0892}$ = 1681.6144 = 1681 MJ	MS-M7 Rates and Ratios MS2-12-3, 12-4, 12-9, 12-10 Bands 4-5 • Finds the cost of 3000 MJ AND calculates the correct logical solution to obtain a cost less than \$150
will i	: Do not accept the rounded-up value of 1682 MJ; this result in a bill greater than \$150.	Attempts to find the cost of 3000 MJ1
	stion 34	
(a)	A = 55p - 425 = 55(100) - 425 = \$5075	MS-A1 Formulae and Equations MS11-1, 11-6 Bands 3-4 • Provides the correct solution 1
(b)	$10\ 000 = 55p - 425$ $55p = 10\ 425$ $p = \frac{10\ 425}{55}$ = 189.5455 \$\approx 190 guests	MS-A1 Formulae and Equations MS11-1, 11-6 Bands 4-5 • Substitutes into the formula AND calculates the rounded solution
Oue	stion 35	
(a)	$\frac{70\ 000}{1000} = \$70$ monthly repayment = 70 × 32.52 = \\$2276.40	MS-F4 Investments and Loans MS2-12-5, 12-10 Bands 3-4 • Provides the correct solution 1
(b)	monthly repayment = 70×22.97 = \$1607.90 monthly saving = $2276.40 - 1607.90$ = \$668.50 <i>Note: Consequential on answer to Question 35(a).</i>	MS-F4 Investments and Loans MS2-12-5, 12-10 Band 4 • Finds the monthly repayment AND calculates the monthly saving. .2 • Finds the monthly repayment .1
(c)	(i) total amount paid = $$2276.40 \times 12 \times 3$ = $$81950.40$ interest = $81950 - 70000$ = $$11950.40$ <i>Note: Consequential on answer to Question</i> 35(a).	MS-F4 Investments and Loans MS2-12-5, 12-10 Bands 4-5 • Finds the total amount paid AND calculates the interest paid2 • Finds the total amount paid1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
	(ii) $I = Prn$ $11950.40 = 70\ 000 \times r \times 3$ $r = \frac{11950.40}{210\ 000} \times 100\%$ = 5.6907 $\approx 5.7\%$ per annum <i>Note: Consequential on answer to Question</i> 35(c)(i).	MS-F4 Investments and Loans MS2-12-5, 12-10 Bands 4-5 • Substitutes into the simple interest formula AND calculates the annual interest rate2 • Makes some progress1
Que	stion 36	
(a)	Pearson correlation coefficent = 0.9786 ≈ 0.98 Note: The method for finding the answer may differ based on the calculator used. For CASIO, the data is entered into the calculator in STAT mode and paired data, A + BX, along with its frequency. The coefficient is found using the regression analysis options in the STAT menu.	MS–S4 Bivariate Data Analysis MS2–12–2, 12–7, 12–9 Bands 4–5 • Finds the Pearson correlation coefficient1
(b)	The linear relationship has a strong positive linear correlation.	MS-S4 Bivariate Data Analysis MS2-12-2, 12-7, 12-9 Bands 4-5 • States the strength AND direction of correlation
(c)	$0.3 = 0.072 + 0.088 \times \text{length}$ $0.228 = 0.088 \times \text{length}$ $\text{length} = \frac{0.228}{0.088}$ = 2.5909 $\approx 2.6 \text{ cm}$	MS-S4 Bivariate Data AnalysisMS2-12-2, 12-7, 12-9Bands 4-5• Substitutes into the equation AND calculates the length
Que	stion 37	
(a)	daily interest rate = $\frac{14.8}{365}$ $\approx 0.0405\%$	MS-F4 Investments and Loans MS2-12-9, 12-10 Bands 4-5 • Provides the correct solution 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	clothing store = $20 + 5 = 25$ days shoe store = $13 + 5 = 18$ days supermarket = $11 + 5 = 16$ days Using the compound interest formula, $A = P(1 + R)^{n}$: total paid = $84(1.000405)^{25} + 150(1.000405)^{18}$ $+ 170(1.000405)^{16}$ = 407.0569 $\approx 407.06	MS-F4 Investments and Loans MS2-12-9, 12-10 Bands 4-5 • Substitutes into the compound interest formula with the correct number of days AND provides the correct solution
Que	stion 38	
(a)	There are eight different paths: <i>ABG</i> , <i>ACBG</i> , <i>ACEFG</i> , <i>CBG</i> , <i>CEFG</i> , <i>DFG</i> , <i>DCBG</i> , <i>DCEFG</i> .	MS-N3 Critical Path Analysis MS2-12-8, 12-9, 12-10 Bands 4-5 • States the number of paths AND lists the paths
(b)	water supply $4 \begin{array}{c} 6 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 7 \\ 6 \\ 3 \\ 6 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 7$	MS-N3 Critical Path Analysis MS2-12-8, 12-9, 12-10 Bands 4-5 • Finds the correct flow in the pipes AND calculates the maximum flow2 • Makes some progress1
(c)	water supply 6 4 7 C 2 E B G Note: The minimum cut is indicated by the dashed line.	MS–N3 Critical Path Analysis MS2–12–8, 12–9, 12–10 Bands 4–5 • Draws the minimum cut1