

2023 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

DO NOT REMOVE PAPER FROM EXAMINATION ROOM

Student Number

Mathematics Extension 1

Afternoon Session Friday, 11 August 2023

General Instructions	 Reading time – 10 minutes Working time – 2 hours 								
	Write using black pen								
	 Calculators approved by NESA may be used 								
	 A reference sheet is provided 								
	 A normal cumulative distribution function table is provided Use the Multiple-Choice Answer Sheet provided 								
	 For questions in Section II, show relevant mathematical reasoning and/or calculations 								
	 Write your Centre Number and Student Number at the top of this page 								
Total marks:	Section I – 10 marks (pages 2–5)								
70	 Attempt Questions 1–10 								
	 Allow about 15 minutes for this section 								
	Section II – 60 marks (pages 6–10)								
	 Attempt Questions 11–14 								

Allow about 1 hour and 45 minutes for this section

Disclaime

Disclaimer These 'Trial' Higher School Certificate Examinations have been prepared by CSSA, a division of Catholic Schools NSW Limited. Every effort has been made to prepare these 'Trial' Higher School Certificate Examinations in accordance with the NSW Education Standards Authority (NESA) documents, Principles for Setting HSC Examinations in a Standards Referenced Framework and Principles for Developing Marking Guidelines Examinations in a Standards Referenced Framework. No guarantee or warranty is made or implied that the 'Trial' HSC Examined on papers mirror in every respect the actual HSC Examination papers in any or all courses to be examined. These papers do not constitute 'advice' nor can they be construed as authoritative interpretations of NESA intentions. Catholic Schools NSW Limited accepts no liability for any reliance, use or purpose related to these 'Trial' HSC Examination papers. Advice on HSC examination issues is only to be obtained from the NESA.

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the Multiple-Choice Answer Sheet for Questions 1-10

- 1 A bag contains a large number of red, green and blue marbles. Arlo will take out some marbles, without looking, and needs to be certain he will have at least four marbles of the same colour. What is the smallest number of marbles that he must take out to ensure this?
 - A. 4
 - B. 5
 - C. 10
 - D. 13

2

 $\frac{1}{\sqrt{1-x^2}}$ A. $\frac{2}{\sqrt{1-x^2}}$ B. C. $\frac{2}{\sqrt{4-x^2}}$ $\frac{1}{2\sqrt{4-x^2}}$ D.

3 What is the coefficient of x^5 in the expansion of $(3+2x)^7$?

Which of the following is equivalent to $\frac{d}{dx}\left(2\sin^{-1}\frac{x}{2}\right)$?

A. 21

- B. 128
- C. 1344
- D. 6048

4 What is the maximum value of $15\sin\theta - 8\cos\theta$?

- A. 7
- B. 15
- C. 17
- D. 23
- 5 A given Bernoulli experiment has a probability of success p. It is repeated n times, giving an expected value of 0.5 and a variance of 0.45. What is the value of n?
 - A. 5
 - B. 10
 - C. 25
 - D. 50

6 Which of the following gives the complete domain of $y = 5\cos^{-1}\left(\frac{2-x}{3}\right)$?

- A. [1,5]
- B. [-1,5]
- C. [-5,1]
- D. [-5,-1]

7 Consider the function $f(x) = x^2 + 2$, with domain $x \ge 0$. What is the gradient of the tangent to $y = f^{-1}(x)$ at x = 3?

- A. $\frac{1}{6}$ B. $\frac{1}{2}$ C. 2
- D. 6

-3-

The slope field for a differential equation is sketched below.

Which of the following is the correct differential equation for the slope field?

A. $\frac{dy}{dx} = \frac{2}{x} - y$ B. $\frac{dy}{dx} = \frac{2}{x} + y$ C. $\frac{dy}{dx} = \frac{2}{y} - x$ D. $\frac{dy}{dx} = \frac{2}{y} + x$

8

- 9 A school principal calls a meeting with two student representatives from each year group from Year 7 to Year 12. The 12 students and the principal sit at a round table. In how many ways can the 13 participants sit around the table if at least one pair of students from a year group sits apart?
 - A. $12! 6! \times 2^6$
 - B. $13! 6! \times 2^6$
 - C. $12! 5! \times 2^5$
 - D. $13! 5! \times 2^5$

10

Let f(x) be a continuous function with a > 0 and k > 0. Which of the following is true?

- A. $\int_0^a f(x) dx = k \int_0^{ak} f(kx) dx$ B. $\int_0^a f(x) dx = \frac{1}{k} \int_0^{ak} f(kx) dx$
- C. $\int_0^a f(x) \, dx = k \int_0^{ak} f\left(\frac{x}{k}\right) \, dx$

D.
$$\int_0^a f(x) dx = \frac{1}{k} \int_0^{ak} f\left(\frac{x}{k}\right) dx$$

- 5 -

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Your responses for Questions 11–14 should include relevant mathematical reasoning and/or calculations.

Question 11 (14 marks)

(a) Solve |5x-1| < 5.

0

.

(b) Find
$$\int \frac{1}{9+25x^2} dx$$
. 2

2

1

2

(c) The polynomial $P(x) = x^3 + 3x^2 - 4x - 5$ has roots α , β and γ .

- (i) Find $\alpha + \beta + \gamma$.
- (ii) Find $\alpha^2 + \beta^2 + \gamma^2$.

(d) For the vectors $\underline{u} = 2\underline{i} + 3j$, and $\underline{v} = 5\underline{i} - 12j$, find each of the following:

- (i) $\underline{u} \cdot \underline{v}$ 2(ii) $|\underline{v}|$ 1(iii) the projection of \underline{u} onto \underline{v} 2
- (e) In how many ways can the letters of the word POSSIBILITY be arranged so that the two 2 Ss are together?

Question 12 (15 marks)

(a) Solve the differential equation $\frac{dy}{dx} = \frac{2}{x^3 e^y}$, where y(1) = 0. 3

Express your solution in the form y = f(x).

(b) Prove the identity
$$\tan\left(\frac{\pi}{4} + x\right) - \tan\left(\frac{\pi}{4} - x\right) = 2\tan(2x)$$
. 3

3

(c) Given $|\underline{a}| = 2$, $|\underline{b}| = 3$ and $\underline{a} \cdot \underline{b} = 5$, calculate the length of $3\underline{a} - 2\underline{b}$.

(d) Find the exact value of
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (\sin x - \cos x)^2 dx$$
. 3

(e) Use mathematical induction to prove that $23^n - 1$ is divisible by 11, for all positive **3** integers *n*.

Question 13 (16 marks)

(a)

(c)

(i) Show that
$$\frac{d}{dx}(\tan^3 x) = 3\sec^4 x - 3\sec^2 x$$
.

1

1

2

(ii) Hence, or otherwise, evaluate
$$\int_0^{\frac{\pi}{4}} \sec^4 x \, dx$$
. 3

- (b) A cumulative probability distribution function for a continuous random variable is given 3 by $F(x) = \frac{3}{\pi} \tan^{-1}(\sqrt{x}), \ 0 \le x \le a$. Find the value of *a*.
 - (i) Show that $\cos x + \cos 5x = 2\cos 3x \cos 2x$.
 - (ii) Hence, or otherwise, solve $\cos x + \cos 5x = \cos 2x$ for $x \in [0, \pi]$.

(d) Use the substitution
$$u = \tan^{-1} x$$
 to find $\int_0^{\sqrt{3}} \frac{1}{(1+x^2)^{3/2}} dx$. 3

(e) The shaded region shown below is bounded by the positive x- and y-axes, the curve $y = \log_e (x - 1)$, and a horizontal line which intersects the curve where the x-coordinate is the rational number k.

The volume V formed when this region is rotated around the y-axis is given by

$$V=\frac{\pi(27+\log_e 16)}{2}.$$

Find the value of k.

Question 14 (15 marks)

(a) You may use the Normal Cumulative Distribution Function Table on page 11 to answer Question 14(a).

LithiumCorp claims that the batteries it manufactures for mobile phones will last for at least 10 hours of continuous video streaming. The video streaming time for their batteries is normally distributed with a mean of 10 hours 15 minutes and a standard deviation of 30 minutes. 3

5

A potential customer, BananaPhones, will test 25 randomly selected batteries and if more than 50 percent of the batteries allow at least 10 hours of video streaming it will agree to purchase batteries from LithiumCorp.

Calculate the probability that LithiumCorp will be successful in supplying its batteries to BananaPhones. Give your answer correct to the nearest percent.

(b) A water tank is a prism with a base of area A square metres. Torricelli's Law states that the rate of change in the volume V cubic metres of a leaking tank with water level h metres at time t hours is given by the differential equation

$$\frac{dV}{dt} = -h\sqrt{h}$$

If a tank has a base with area 10 square metres and the initial height of the water is 4 metres, find how long it takes until the tank contains less than 1 litre of water.

Question 14 continues on page 10

Question 14 (continued)

(c) Charlie hits a tennis ball at an angle of 45° against a vertical wall 10 m away. The ball rebounds off the wall and passes directly over where it was first struck at point Q. The tennis ball is 1 m above the ground when Charlie hits it and has an initial speed of 20 m/s.

The position \underline{r} in metres of the ball t seconds after it is hit but before it hits the wall at P is given by the vector equation

$$\underline{r}(t) = \begin{pmatrix} 10\sqrt{2}t \\ 10\sqrt{2}t - 5t^2 + 1 \end{pmatrix}$$
. Do NOT prove this.

(i) Calculate the height at which the ball hits the wall.

(ii) Find the velocity vector $\underline{v}(t)$ of the ball during its flight from Charlie to the **1** wall.

1

- (iii) Calculate the speed U m/s and the angle β at which the ball hits the wall. 2
- (iv) The ball rebounds off the wall at the same angle that it hits it, β , but its speed 3 is reduced so that it leaves the wall with an initial speed of $\frac{1}{\sqrt{2}}U$ m/s.

Show that the y-coordinates of the points P and Q in the diagram above are equal. Assume the acceleration due to gravity is 10 m/s^2 .

End of Examination

Normal Cumulative Distribution Function Table

Z_	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	.1.0000	1.0000	1.0000	1.0000	1.0000

Entries represent $P(Z \le z)$. The value of z to the first decimal place is given in the left column. The second decimal place is given in the top row.

EXAMINERS

David Houghton (Convenor) Geoff Carroll Stephen Ewington Rebekah Johnson Svetlana Onisczenko

Oxley College, Burradoo Sydney Grammar School, Darlinghurst Ascham School, Edgecliff Loreto Kirribilli, Kirribilli Meriden School, Strathfield

Additional Disclaimer

Users of CSSA Trial HSC Examinations are advised that due to changing NESA examination policies, it cannot be assumed that CSSA Trial HSC Examinations and NESA Examinations will, from year to year, always fully align with respect to either or both the format and content of examination questions. Candidates for HSC examinations and their teachers should always anticipate a dynamic assessment environment.

Copyright Notice

- 1. The copyright in this examination paper is that of Catholic Schools NSW Limited ACN 619 593 369 trading as CSSA @2023 Catholic Schools NSW.
- The copyright in this examination paper is that of Catholic Schools NSW Limited ACN 619 593 369 trading as CSSA @2023 Catholic Schools NSW.
 This examination paper may only be used in accordance with the CSSA Trial HSC Examination Terms & Conditions (Terms). Those Terms should be read in full. The Terms contain a number of conditions including those relating to:

 a) how this examination paper may be used for trial HSC examinations and/or as a practice paper;
 b) when copies may be made of this examination paper;
 c) the security and storage requirements for this examination.

 Some of the manefail in this examination.
 Some of the manefail in the examination.
- Some of the material in this examination and the communicated to you in accordance with the statutory licence in section 113P of the Copyright Act 1968 (Cth) (Act). Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.
 Do not remove this notice.

Questions 8, 13(c), and 14 (c) - Diagrams created by the 2023 CSSA Trial HSC Examinations Mathematics Extension 1 Committee