

Final Examination 2023

NSW Year 11 Mathematics Extension 1

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 1DD is not equal to $\cos 2\theta$ and is therefore the correct response.	ME–T2 Further Trigonometric Identities ME11–3 Band E2	
Substituting the basic trigonometric identity $(\sin^2 \theta + \cos^2 \theta = 1)$ into the double angle formula for cosine does not result in $1 - 2\cos^2 \theta$; it results in $2\cos^2 \theta - 1$.		
A is incorrect. This can be obtained by applying the compound angle formula.		
B and C are incorrect. These can be obtained by substituting in values from the basic trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$.		
Question 2 B $N = Ae^{kt} + 1000$ $\frac{dN}{dt} = k \times Ae^{kt}$ $= k \left(Ae^{kt} + 1000 - 1000 \right)$	ME–C1 Rates of Change ME11–4 Band E2	
$=k\left(N-1000\right)$		
Question 3CC is correct. In the equation, the basic curve is shifted left by two and stretched vertically by a factor of two to obtain the correct curve. This is shown in option C.	ME–T1 Inverse Trigonometric Functions ME11–1 Band E2	
A is incorrect. This graph represents the equation $y = 0.5 \cos^{-1}(x - 2)$.		
B is incorrect. This graph represents the equation $y = 2\cos^{-1}(x-2)$.		
D is incorrect. This graph represents the equation $y = 0.5 \cos^{-1}(x+2)$.		

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 4 D $\alpha + \beta + \gamma = -\frac{b}{a}$ $= -\frac{-6}{3}$ $= 2$ $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} = \frac{3}{3} = 1$ $\alpha\beta\gamma = -\frac{d}{a} = -\frac{-7}{3} = \frac{7}{3}$ $3\alpha + 3\beta + 3\gamma + 4 = 3(\alpha + \beta + \gamma) + 4$ $= 3(2) + 4$ $= 10$	ME–F2 Polynomials ME11–2 Band E2
Question 5AA is correct. Squaring the key points shows that option A is the correct graph. When the original graph is -2 (the minimum point), the squared graph will be $(-2)^2 = 4$.B, C and D are incorrect. These do not correctly represent the graph of $(f(x))^2$.	ME–F1 Further Work with Functions ME11–1 Band E3
Question 6CPlacing the two instances of the letter S in the first and last position gives: $S_{}S$ Therefore, the number of ways to arrange the remaining letters is $\frac{6!}{2!}$, accounting for the duplicate letter T.	ME–A1 Working with Combinatorics ME11–5 Band E2

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 7DMethod 1:	ME–F1 Further Work with Functions ME11–2 Band E2
Evaluating $P(1.9)$, $P(2)$ and $P(2.1)$ for each equation gives:	
A: $P(1.9) > 0$, $P(2) = 0$, $P(2.1) > 0$.	
B: $P(1.9) > 0$, $P(2) = 0$, $P(2.1) > 0$.	
C: $P(1.9) < 0, P(2) = 0, P(2.1) < 0.$	
D: $P(1.9) < 0$, $P(2) = 0$, $P(2.1) < 0$.	
Either options C or D can represent the graph because the curve is below the <i>x</i> -axis at $x = 2$. However, C describes an equation of degree 2 and is therefore incorrect.	
Method 2:	
D is correct. The degree of this polynomial is 4, the leading coefficient is negative and there are three roots (with a double root at $x = 2$). Thus, sketching $P(x) = x(1 - x)(x - 2)^2$ gives:	
The section of the graph around $x = 2$ matches the sketch	
given in the question. Therefore, \mathbf{D} is correct.	
(continues on next page)	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
(continued)	
A is incorrect. Sketching $P(x) = x(x + 1)(x - 2)^2$ shows that the area around $x = 2$ in this graph is above the <i>x</i> -axis.	
$ \begin{array}{c} y \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
B is incorrect. Sketching $P(x) = x(x-1)(x-2)^2$ shows that the area around $x = 2$ in this graph is above the <i>x</i> -axis.	
y	
C is incorrect. This equation has a degree of 2.	
Question 8B $A = \pi r^2$ dA $2\pi r$	ME–C1 Rates of Change ME11–4 Band E3
$\frac{dA}{dr} = 2\pi r$ $\frac{dr}{dt} = 0.5$ $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ $= 2\pi r \times 0.5$	
$= \pi r$ Given that $r = 10$ cm, $\frac{dA}{dt} = 10\pi$ cm ² /s.	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 9 D	ME–F2 Polynomials
Let the roots be α and 2α .	ME11–2 Band E3
$3\alpha = -\frac{b}{a}$ $= \frac{18}{2}$	
= 9	
$\alpha = 3$	
$2\alpha^2 = \frac{c}{a}$	
$=\frac{c}{2}$	
$2(3)^2 = \frac{c}{2}$	
<i>c</i> = 36	
Question 10 A	ME–F1 Further Work with Functions
A is correct. The inverse function is the reflection of the graph of the original function across the line $y = x$. This can be seen in graph A.	ME11–2 Band E3
B , C and D are incorrect. These graphs do not accurately show the inverse of $f(x)$.	

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 11	
(a) $\frac{3}{2x-5} > 6$ $3(2x-5) > 6(2x-5)^{2}$ $3(2x-5) - 6(2x-5)^{2} > 0$ $3(2x-5)(1-2(2x-5)) > 0$ $3(2x-5)(1-4x+10) > 0$ $3(2x-5)(11-4x) > 0$ The LHS describes a concave down parabola w zeros at 2.75 and 2.5. The curve is greater than between the zeros. $\therefore \frac{5}{2} < x < \frac{11}{4} \text{ (or } 2.5 < x < 2.75)$ $\qquad + 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ \underbrace{\qquad + 1 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5$	
(b) $x = \sqrt{2t+4}$ $x^{2} = 2t+4$ $x^{2}-4 = 2t$ $t = \frac{x^{2}-4}{2}$ $y = 2t+1$ $y = 2\left(\frac{x^{2}-4}{2}\right)+1$ $= x^{2}-4+1$ $= x^{2}-4+1$ $= x^{2}-3$ The domain for t is $-2 \le t \le 6$. Finding the domain for x: When $t = -2, x = 0$. When $t = 6, x = 4$. $\therefore y = x^{2}-3, 0 \le x \le 4$	ME-F1 Further Work with Functions ME11-2 Band E3 • Provides the correct solution

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	(i)	Method 1: Arranging 8 people in a line with 10 positions gives: ${}^{10}P_8 = 1814400$ Method 2: Selecting 8 people from 10 people and arranging them in a line gives: ${}^{10}C_8 \times 8! = 1814400$	ME-A1 Working with Combinatorics ME11-5 Band E2 • Provides the correct solution 1
	(ii)	The four unrestricted friends can be arranged to act as 'barriers' for Ahmad and the group of three friends. These 'barriers' form 5 positions to place Ahmad and the group of three friends. Ahmad can be placed in any of the 5 positions, and the group of three can then be placed in any of the remaining 4 positions. Finally, the group of three can be permuted amongst themselves in 3! ways. Thus, the number of ways to arrange all the friends is: $4! \times 5 \times 4 \times 3! = 2800$	ME-A1 Working with Combinatorics ME11-5 Band E3 • Provides the correct solution 2 • Shows some understanding of the problem
(d)		$\frac{\pi}{4} = -\frac{1}{\sqrt{2}}$ $\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}, 0 \le x \le \pi$	ME-T1 Inverse Trigonometric Functions ME11-5 Band E2 • Provides the correct solution 2 • Shows some understanding of the problem
(e)	(i)	$\cos 105^\circ = \cos (60^\circ + 45^\circ)$ $= \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ$ $= \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right) - \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right)$ $= \frac{1 - \sqrt{3}}{2\sqrt{2}}$ $= \frac{\sqrt{2} - \sqrt{6}}{4}$	 ME-T2 Further Trigonometric Identities ME11-3 Band E3 Provides the correct solution 2 Makes some progress using cos(α + β). OR Shows some understanding of the problem

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
	(ii) $\cos 105^\circ = \cos(2 \times 52.5^\circ)$ $\frac{\sqrt{2} - \sqrt{6}}{4} = 2\cos^2 52.5^\circ - 1$ $2\cos^2 52.5^\circ = \frac{4 + \sqrt{2} - \sqrt{6}}{4}$ $\cos^2 52.5^\circ = \frac{4 + \sqrt{2} - \sqrt{6}}{8}$ $\cos 52.5^\circ = \frac{\sqrt{4 + \sqrt{2} - \sqrt{6}}}{2\sqrt{2}}$, as $\cos 52.5^\circ > 0$ <i>Note: Consequential on answer to</i>	 ME-T2 Further Trigonometric Identities ME11-3 Band E3 Provides the correct solution 2 Makes some progress using the double angle formula. OR Shows some understanding of the problem 1
000	Question $11(e)(i)$.	
(a)	stion 12 P(x) = (x+1)(x-2)Q(x) + 4x + k Evaluating $P(-1)$: -2 = 4x + k $k = 2$	ME–F2 Polynomials ME11–2 Band E3 • Provides the correct solution 2
	k = 2 P(2) = 4(2) + 2 = 10	 Makes some progress using the remainder theorem to find <i>k</i>. OR Shows some understanding of the problem1
(b)	$\sin\left(\theta + \frac{\pi}{6}\right) + \cos\left(\theta + \frac{\pi}{3}\right)$ $= \left(\sin\theta\cos\frac{\pi}{6} + \cos\theta\sin\frac{\pi}{6}\right) + \left(\cos\theta\cos\frac{\pi}{3} - \sin\theta\sin\frac{\pi}{3}\right)$	ME-T2 Further Trigonometric Identities ME11-3 Band E3 • Provides the correct solution 3 • Uses compound angle
	$=\frac{\sqrt{3}}{2}\sin\theta + \frac{1}{2}\cos\theta + \frac{1}{2}\cos\theta - \frac{\sqrt{3}}{2}\sin\theta$ $=\cos\theta$	 formulae for BOTH terms2 Shows some understanding of the problem1
(c)	Using the binomial theorem: $(1-2x)^5 = 1-5(2x)+10(4x^2)-10(8x^3)+$ $= 1-10x+40x^2-80x^3+$	ME–A1 Working with Combinatorics ME11–5 Band E3 • Provides the correct solution 3
	$= 1 - 10x + 40x^{2} - 80x^{2} +$ The term in x^{3} is given by: $1(-80x^{3}) + x(40x^{2}) + 2x^{2}(-10x)$ Thus, coefficient of x^{3} is: -80 + 40 - 20 = -60	 Expands (1-2x)⁵ correctly2 Shows some understanding of the problem1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(d) (i) y_{3} -2 -1 0 1 2 3 4 5 $x-2$ -1 -2 -1 -1 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2	ME-F1 Further Work with Functions ME11-1 Band E2 • Sketches the correct graph2 • Provides some correct features of the graph. OR • Equivalent merit1
(ii) y	 ME–F1 Further Work with Functions ME11–1 Band E2 Sketches the correct graph2 Provides some correct features of the graph. OR Equivalent merit1
(iii) y 3 2 1 0 -1 -2 2 4 6 x x x x y x x y x x x x x x x x	 ME-F1 Further Work with Functions ME11-1 Band E4 Sketches the correct graph3 Finds the reciprocal of one branch. OR Finds all asymptotes. OR Makes other substantial progress2 Provides some correct features of the graph. OR Equivalent merit1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 13	
(a)	There are three pairs of repeated letters (A, M and T) and five non-repeated letters (C, E, H, I and S). Case 1: All five letters are different: $\binom{8}{5} \times 5! = 6720$ Case 2: One pair of repeated letters: $\binom{3}{1} \times \binom{7}{3} \times \frac{5!}{2!} = 6300$ Case 3: Two pairs of repeated letters: $\binom{3}{2} \times \binom{6}{1} \times \frac{5!}{2!2!} = 540$ Summing all three cases gives:	 ME-A1 Working with Combinatorics ME11-5 Band E4 Provides the correct solution 4 Makes substantial progress towards the correct solution 3 Recognises the problem involves cases. AND Makes some progress towards the correct solution
(b)	$6720 + 6300 + 540 = 13\ 560$ (i) $P(t) = A e^{kt}$ $P'(t) = k \times A e^{kt}$ $= k \times P(t)$	ME–C1 Rates of Change ME11–4 Band E2 • Provides the correct solution 1
	(ii) $\frac{A}{2} = A e^{50k}$ $0.5 = e^{50k}$ $\ln 0.5 = 50k$ $k = \frac{\ln 0.5}{50}$ $\approx -1.39\%$ The rate of change is approximately -1.39% per year.	ME-C1 Rates of Change ME11-4 Band E3 • Provides the correct solution 2 • Shows some understanding of the problem
	(iii) $P(80) = 3000e^{80k}$ $k = \frac{\ln 0.5}{50}$ $P(80) = 3000e^{80\left(\frac{\ln 0.5}{50}\right)}$ ≈ 989 Thus, there will be approximately 989 animals in the population after 80 years.	ME-C1 Rates of Change ME11-4 Band E3 • Provides the correct solution 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iv)	Population: $P(t) = 3000e^{\left(\frac{\ln 0.5}{50}\right)t}, \text{ where } \left(\frac{\ln 0.5}{50}\right) \text{ is negative.}$ As $t \to \infty$, $e^{\left(\frac{\ln 0.5}{50}\right)t} \to 0$, $3000e^{\left(\frac{\ln 0.5}{50}\right)t}$ will also approach 0. Thus, the population will decrease until the animal becomes extinct. Rate of change: $\frac{d}{dt}P(t) = k \times P(t)$ $= \left(\frac{\ln 0.5}{50}\right)e^{\left(\frac{\ln 0.5}{50}\right)t}$ $e^{\left(\frac{\ln 0.5}{50}\right)t}$ will approach 0. This will not be changed by $\left(\frac{\ln 0.5}{50}\right)$. Thus, $\frac{d}{dt}P(t)$ will approach 0 and the rate of change will also approach 0. (If the animal becomes extinct, then the rate of change will be 0 by definition.)	ME-C1 Rates of Change Band E4 • Explains what will happen to the population AND rate of change with reference to limits (or equivalent)
(c) (i)	$P(t) = 500 + Ce^{kt}$ $P'(t) = k \times Ce^{kt}$ $= k (Ce^{kt} + 500 - 500)$ $= k (P(t) - 500)$	ME–C1 Rates of Change ME11–4 Band E2 • Provides the correct solution 1
(ii)	In the new equation, $P(t) = 500 + Ce^{kt}$, Ce^{kt} will approach 0 because k is negative. Thus, $P(t)$ will approach 500 as $t \to \infty$ because Ce^{kt} will approach 0. $P'(t) = k \times Ce^{kt}$, $P' \to 0$ as $t \to \infty$, since k is negative; thus, the rate of change will be effectively 0. Therefore, the population will become static at around 500 animals.	ME-C1 Rates of Change ME11-4 Band E3 • Explains what will happen to population AND rate of change with reference to limits (or equivalent)

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(iii) $3000 = 500 + Ce^{k(0)}$ = 500 + C C = 2500 $P(t) = 500 + 2500e^{kt}$ The population halves in 50 years: $1500 = 500 + 2500e^{k(50)}$ $\frac{1000}{2500} = e^{50k}$ $\ln\left(\frac{2}{5}\right) = 50k$ $k = \frac{\ln\left(\frac{2}{5}\right)}{50}$ The population after 80 years: $P(80) = 500 + 2500e^{k(80)}$ ≈ 1077 Thus, the population is expected to be around 1077 after 80 years.	ME-C1 Rates of Change ME11-4 Band E4 • Provides the correct solution 2 • Shows some understanding of the problem

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 14	
(a)	Since 33 points are to be drawn inside a square with sides of 4 cm, the square must have an area of $4 \times 4 = 16 \text{ cm}^2$. Dividing the square into 16 equally sized squares of 1 cm ² gives:	ME-A1 Working with Combinatorics ME11-5 Band E4 • Provides the correct solution 3 • Makes substantial progress towards the correct solution 2
		• Makes some progress towards recognising this as a pigeonhole principle question 1
	If three or more points are assigned within one of the 16 squares, these points will be guaranteed to form a triangle with an area less than 1 cm^2 . Assigning two points to each square gives 32 points.	
	The 33rd point, regardless of where it is placed, will lie in a square which already has two points. Thus, there will be three points within an area of 1 cm^2 .	
	Thus, it is guaranteed to be possible to find three points that form a triangle with an area less than 1 cm^2 .	
(b)	Possible integer roots will be factors of -2 . Thus, check $P(0)$, $P(1)$, $P(-1)$, $P(2)$ and $P(-2)$.	ME-F2 Polynomials ME11-2 Band E4 • Provides the correct solution 3
	Of these, it is found that 2 and -1 are roots of the polynomial.	Differentiates at least once
	Checking the multiplicity of 2: $P'(x) = 4x^3 + 3x^2 - 6x - 5$	to show the link between differentiation and
	$P'(2) \neq 0$	root multiplicity2
	Thus, 2 is a root with multiplicity 1. Checking the multiplicity of -1 : P'(-1) = 0	Shows some understanding of the problem1
	$P''(x) = 12x^{2} + 6x - 6$ P''(-1) = 0 P'''(x) = 24x + 6	
	P''(x) = 24x + 6 $P'''(-1) \neq 0$ Therefore, -1 is a root with multiplicity 3 of $P(x)$.	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) (i)	$y = \sin^{-1} x$ $\cos y = \cos(\sin^{-1} x)$ Consider $-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$. Sketching the cosine curve in the region $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ gives: $y = \frac{1}{1} + \frac{\pi}{2} + \frac{\pi}{$	ME-T1 Inverse Trigonometric Functions ME11-3 Band E4 • Provides the correct solution 2 • Shows some understanding of the problem
(ii)	As $y = \sin^{-1}x$, $x = \sin y$.	ME-T1 Inverse Trigonometric Functions ME11-3 Band E4 • Provides the correct solution 3 • Makes substantial progress towards finding the length of the third side
(d) (i)	$\frac{d}{dt} = \frac{d}{dx} \times \frac{dx}{dt}$ $\therefore \frac{d}{dt} (x^2) = 2x \times \frac{dx}{dt}$	ME11-4 Band E4 • Provides the correct solution 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
an Re qu Us be u^2 Di $\frac{d}{dt}$ 2u Gi u^2	milar to $\frac{d}{dt}(x^2) = 2x \times \frac{dx}{dt}$, $\frac{d}{dt}(u^2) = 2u \times \frac{du}{dt}$ and $\frac{d}{dt}(y^2) = 2y \times \frac{dy}{dt}$. epresenting the scenario described in the estion gives:	ME-C1 Rates of Change ME11-4 Band E4 • Provides the correct solution 3 • Makes substantial progress using related rates

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(continued)	
Finding x , y and u :	
At 2:30 pm, the first boat has travelled for 2.5 hours at 3 km/h. Thus, it has travelled 7.5 km.	
At 2:30 pm, the second boat has travelled for 1.5 hours at 5 km/h. Thus, it has also travelled 7.5 km. Since $u^2 = x^2 + y^2$, $x = 7.5$ and $y = 7.5$, using Pythagoras' theorem to find <i>u</i> gives: $u = \frac{\sqrt{225}}{\sqrt{2}}$ $= \frac{15}{\sqrt{2}}$ Substituting 7.5, 7.5 and $\frac{15}{\sqrt{2}}$ into (2): 15 du $a(7.5) = 5(7.5)$	
$\frac{15}{\sqrt{2}}\frac{du}{dt} = 3(7.5) + 5(7.5)$	
$\frac{du}{dt} \approx 5.64 \text{ km/h}$	
Therefore, the rate of change is 5.64 km/h.	