

Trial Examination 2023

HSC Year 12 Mathematics Advanced

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION I	
Answer and explanation	Syllabus content, outcomes and targeted performance bands
$\begin{array}{c c} \textbf{Question 1} & \textbf{D} \\ m = \tan\theta \\ (2\pi) \end{array}$	MA-C1 Introduction to Differentiation MA11-1 Bands 3-4
$= \tan\left(\pi - \frac{2\pi}{3}\right)$ $= \tan\left(\frac{\pi}{3}\right)$ $= \sqrt{3}$	
Question 2 C	MA-F1 Working with Functions
Case 1:	MA11–1, 11–2 Band 3
2x - 1 = 5	
2x = 6	
x = 3	
Case 2:	
-(2x-1) = 5	
2x - 1 = -5	
2x = -4	
x = -2	
$\therefore x = -2, 3$	
Question 3 C	MA-E1 Logarithms and Exponentials
$pH = -log_{10}[H^+]$	MA11-6 Bands 3-4
$1.5 = -\log_{10}[H^+]$	
$-1.5 = \log_{10}[\text{H}^+]$	
$10^{-1.5} = [\mathrm{H}^+]$	
Question 4 D	MA-F1 Working with Functions
The parabola is concave up; hence, $a > 0$.	MA11–2, 11–9 Band 4
The parabola has a y-intercept that is positive; hence, $c > 0$.	
The parabola does not have <i>x</i> -intercepts; hence, $b^2 - 4ac < 0$.	
The parabola is concave up; hence, $a > 0$.	-

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 5BReading from the graph, there was a total of 80 games playedin the tournament.	MA–S2 Descriptive Statistics and Bivariate Data Analysis MA12–8, 12–10 Band 4
25% of 80 = 20 games	
Using the graph, 25% of the games took less than 67.5 minutes to finish.	
80- 70- 60- 50- 30- 20- 10- 0 15 30 45 60 75 90 105 120 135 150 165 180 Duration of game (minutes)	
Question 6 B	MA–C3 Applications of Differentiation
$y = \ln \sqrt{\frac{x+1}{x-1}}$	MA12–3, 12–6 Bands 4–5
$=\ln\left(\frac{x+1}{x-1}\right)^{\frac{1}{2}}$	
$= \ln(x+1)^{\frac{1}{2}} - \ln(x-1)^{\frac{1}{2}}$	
$=\frac{1}{2}\ln(x+1) - \frac{1}{2}\ln(x-1)$	
$\frac{dy}{dx} = \frac{1}{2} \left(\frac{1}{x+1} \right) - \frac{1}{2} \left(\frac{1}{x-1} \right)$	
$=\frac{1}{2}\left(\frac{1}{x+1} - \frac{1}{x-1}\right)$	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
 Question 7 A To form the function g(x), f(x) has been: reflected about the <i>y</i>-axis, forming f(-x) 	MA–F2 Graphing Techniques MA12–1 Bands 4–5
 reflected about the <i>x</i>-axis, forming -f(-x) translated 2 units to the left, forming -f(-(x - 2)). Hence: 	
g(x) = -f(-(x-2)) = -f(2-x)	
Question 8AThe equations will have no real solutions if they are parallel to each other and have different y-intercepts.	MA–F1 Working with Functions MA11–9 Band 5
Rearranging the equations to find the gradients of each equation gives:	
ax + y - 4 = 0 y = -ax + 4	
$\therefore m_1 = -a$ x + 2y - a = 0 2y = -x + a	
$y = -\frac{x}{2} + \frac{a}{2}$	
$\therefore m_2 = -\frac{1}{2}$	
For both lines to be parallel, $m_1 = m_2$. Therefore: $-a = -\frac{1}{2}$ $a = \frac{1}{2}$	
$u - \frac{1}{2}$	

Answer and explanation	Syllabus content, outcom and targeted performance b	
Question 9 C	MA-S1 Probability and Discrete	
Using the information provided to find $P(A \cap B)$ gives:	Probability Distributions	
$P(A B) = \frac{P(A \cap B)}{P(B)}$	MA11-7, 11-9 B	ands 5–6
$0.4 = \frac{P(A \cap B)}{0.6}$		
$0.4 \times 0.6 = P(A \cap B)$		
$P(A \cap B) = 0.24$		
Using the information provided to find $P(A \cap \overline{B})$ gives:		
$P(\overline{B}) = 1 - P(B)$		
=1-0.6		
= 0.4		
$P(A \mid \overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})}$		
$0.8 = \frac{P(A \cap \overline{B})}{0.4}$		
$0.8 \times 0.4 = P(A \cap \overline{B})$		
$P(A \cap \overline{B}) = 0.32$		
Thus, a complete Venn diagram can be constructed.		
A B		
0.32 0.24 0.36		
$P(B A) = \frac{P(B \cap A)}{P(A)}$		
$=\frac{0.24}{0.56}$		
$=\frac{3}{7}$		
7		
Question 10 A The domain of $f(g(x))$ is (-1, 2] as it depends on the domain of $g(x)$.	MA–F1 Working with Functions MA11–2, 11–9	Band 6
Reading from the graph, the range of $g(x)$ is $[-1, 2]$. Hence, $f(g(x))$ will only take on these values as inputs. According to the graph of $f(x)$, the range is $[-3, 3]$ in the restricted domain $[-1, 2]$. Hence, the range of $f(g(x))$ is $[-3, 3]$.		

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 11	
$9^{2x-3} = 27^{x}$ $3^{2(2x-3)} = 3^{3x}$ Equating the powers gives: $2(2x-3) = 3x$ $4x-6 = 3x$ $4x-3x = 6$ $x = 6$ Question 12	MA-E1 Logarithms and Exponentials MA11-6 Bands 3-4 • Provides the correct solution 2 • Applies index laws
Since $\sum p(x) = 1$: 0.35 + a + b + 0.15 + 0.05 + 0.01 = 1 a + b = 0.44 (1) $E(X) = \sum xp(x)$ $= 0 \times 0.35 + 1 \times a + 2 \times b + 3 \times 0.15 + 4 \times 0.05 + 5 \times 0.01$ = a + 2b + 0.7 Since $E(X) = 1.5$: 1.5 = a + 2b + 0.7 a + 2b = 0.8 (2) Subtracting (1) from (2) gives: 2b - b = 0.8 - 0.44 b = 0.36 Substituting $b = 0.36$ into (1) gives: a + 0.36 = 0.44 a = 0.08	MA–S1 Probability and Discrete Probability Distributions MA11–7 Bands 3–4 • Provides the correct solution 3 • Finds the value of a OR b 2 • Makes progress towards finding the values of a and b 1
Question 13	
(a) The number of squares in each figure forms an arithmetic sequence. F_1 has one square, so $a = 1$; the difference between F_1 and F_2 is 2, so $d = 2$. Therefore, the formula for the sequence is: $T_n = a + (n-1)d$ $F_n = 1 + (n-1) \times 2$ Substituting $n = 15$ gives: $F_{15} = 1 + (15-1) \times 2$ = 29	MA-M1 Modelling Financial Situations MA12-4, 12-10Band 3• Provides the correct solution 2• Finds an expression for F_n 1

SECTION II

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
F) 17 17- 8 Sir	nding the value of <i>n</i> when $F_n = 175$ gives: $F_n = a + (n-1)d$ $F_2 = 1 + (n-1) \times 2$ $F_4 = 2(n-1)$ $F_7 = n - 1$ n = 88 nce <i>n</i> is an integer, it is possible to have a figure with 5 squares; F_{88} has 175 squares.	 MA-M1 Modelling Financial Situations MA12-4, 12-10 Bands 3-4 Provides the correct solution 2 Makes progress towards solving an equation for <i>n</i> 1
S_{5} Th	nding S_{50} gives: $T_n = \frac{n}{2} (2a + (n-1)d)$ $T_0 = \frac{50}{2} (2 \times 1 + (50 - 1) \times 2)$ = 2500 herefore, 2500 squares are needed to make the first of igures.	MA-M1 Modelling Financial Situations MA12-4, 12-10Bands 3-4• Provides the correct solution 2• Finds an expression for S_{50} 1
Question	1 14	
	$(x^{2} + 1)^{3}$ $(3x^{2} + 1)^{2} \times 6x$ $((3x^{2} + 1)^{2})^{2}$	MA-C2 Differential Calculus MA12-3, 12-6 Bands 3-4 • Provides the correct solution 2 • Makes progress towards finding the derivative
Question	n 15	
$\int \frac{5x^3 - 2}{x^5}$	$\frac{2x}{x} dx = \int \frac{5x^3}{x^5} - \frac{2x}{x^5} dx$ = $\int \frac{5}{x^2} - \frac{2}{x^4} dx$ = $\int 5x^{-2} - 2x^{-4} dx$ = $\left[-\frac{5}{x} + \frac{2}{3x^3} \right] + C$	MA–C4 Integral Calculus MA12–7 Band 4 • Provides the correct solution 2 • Makes progress towards simplifying the integrand 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 16	
$\int_{1}^{4} 2$	$\sqrt{x} + \frac{3}{x}dx = \int_{1}^{4} 2x^{\frac{1}{2}} + \frac{3}{x}dx$ $= \left[\frac{4}{3}x^{\frac{3}{2}} + 3\ln x\right]_{1}^{4}$	MA-C4 Integral Calculus MA12-7 Band 4 • Provides the correct solution 2 • Finds the anti-derivative
	$\begin{bmatrix} 3^{11} + 6^{11} \ln 4 \end{bmatrix}_{1}$ $= \left(\frac{4}{3} \times 4^{\frac{3}{2}} + 3\ln 4\right) - \left(\frac{4}{3} \times 1^{\frac{3}{2}} + 3\ln 1\right)$ $= \frac{32}{3} + 3\ln 4 - \frac{4}{3}$ $= \frac{28}{3} + 6\ln 2$	
Que	stion 17	
(a)	$Q_1 = 67 \text{ and } Q_3 = 79.5$ IQR = 79.5 - 67 = 12.5	MA-S2 Descriptive Statistics and Bivariate Data Analysis MA12-8Band 3• Provides the correct solution 2• Identifies Q_1 OR Q_3 1
(b)	Outliers are outside the upper and lower bounds of a data set. To be an outlier, the mark needs to be less than $Q_1 - 1.5 \times IQR$. $Q_1 - 1.5 \times IQR = 67 - 1.5 \times 12.5$ = 48.25 Therefore, the result of 35% is considered an outlier. <i>Note: Consequential on answer to Question 17(a).</i>	MA–S2 Descriptive Statistics and Bivariate Data Analysis MA12–8 Band 3 • Provides the correct solution 1
(c)	The scatterplot indicates a positive correlation. Hence, the correlation coefficient cannot be negative. The correlation coefficient must be within $-1 \le r \le 1$. Hence, -2.6577 is not an acceptable value.	MA–S2 Descriptive Statistics and Bivariate Data Analysis MA12–10 Bands 3–4 • Provides TWO correct reasons2 • Provides ONE correct reason1
(d)	The correlation between the students' school attendance and Mathematics test results is strong and positive.	MA-S2 Descriptive Statistics and Bivariate Data Analysis MA12-8Band 3• Describes the strength AND direction of the correlation2• Describes the strength OR direction of the correlation1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(e) Substituting $x = 88$ into the equation of the least-squares regression line gives: y = 0.7341x + 12.151 $= 0.7341 \times 88 + 12.151$ = 77% (nearest percentage) Question 18	MA-S2 Descriptive Statistics and Bivariate Data Analysis MA12-10Band 3• Provides the correct solution 1MA-C3 Applications of Differentiation MA12-6MA12-6Bands 3-4• Sketches a graph that shows all THREE of: - an <i>x</i> -intercept at $(0, 0)$ - turning points at $x = \pm 5$ - a horizontal asymptote at $y = 0$
Question 19 Rearranging $y = 5\sin\left(2x + \frac{\pi}{3}\right)$ to identify the transformations involved gives: $y = 5\sin\left(2x + \frac{\pi}{3}\right)$ $\frac{y}{5} = \sin\left(2\left(x + \frac{\pi}{6}\right)\right)$ $\frac{y}{5} = \sin\left(\frac{x - \left(-\frac{\pi}{6}\right)}{\frac{1}{2}}\right)$	MA-T3 Trigonometric Functions and Graphs MA12-5, 12-10 Band 4 • Outlines all THREE graphical transformations in the correct order3 • Outlines TWO graphical transformations2 • Outlines ONE graphical transformation1
$\begin{pmatrix} 2 \\ \end{pmatrix}$ Therefore, the correct order of transformations is: 1. a horizontal dilation with a scale factor of $\frac{1}{2}$	
2. a horizontal translation of $\frac{\pi}{6}$ units to the left	
3. a vertical dilation with a scale factor of 5.	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 20	
The common ratio for the geometric sequence is: $r = \frac{-12}{6}$ $= -2$ However, negative numbers cannot be used with the natural logarithm. Therefore, using $r = 2$ to find the number of terms in the geometric sequence gives: $T_n = ar^{n-1}$ $1536 = 6 \times 2^{n-1}$ $256 = 2^{n-1}$ $\ln 256 = \ln 2^{n-1}$ $\ln 256 = (n-1)\ln 2$ $\frac{\ln 256}{\ln 2} = n - 1$ $n = 9$ Hence, finding the sum of the first nine terms using $r = -2$ gives: $S_n = \frac{a(r^n - 1)}{r - 1}$ $S_9 = \frac{6(-2^9 - 1)}{-2 - 1}$ $= 1026$	 MA-M1 Modelling Financial Situations MA12-4 Bands 4-5 Provides the correct solution 4 Makes progress towards finding the sum of the first nine terms in the geometric sequence
Question 21	MA MI Malalling Einer ist Sites time
The interest factor for six years at a rate of 3% is 6.4684. The total amount at the end of six years is: $A_6 = 5000 \times 6.4684$ $= 32\ 342$	MA-M1 Modelling Financial Situations MA12-4, 12-10 Band 5 • Provides the correct solution 3
In the seventh and eighth years, A_6 continues to earn interest and Duncan makes an additional \$5000 deposit for each year. Hence: $A_8 = 32\ 342 \times 1.025^2 + 5000 \times 1.025^2 + 5000 \times 1.025$	 Calculates the value of A₆. AND Makes progress towards calculating the value of A₈2
= \$44 357.44	• Calculates the value of $A_6 \dots \dots 1$

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 22	
Using the bearings to calculate $\angle CAB$ and $\angle CBA$ gives:	MA-T1 Trigonometry and Measure of Angles MA11-1, 11-9 Bands 4-5 • Provides the correct solution 3 • Makes progress towards finding <i>AB</i> by applying the sine rule OR equivalent merit
Note: Diagrams are not required to achieve full marks, but	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 23	
(a) Since $\int_{-\infty}^{\infty} f(t) dt = 1$: $\int_{0}^{5} kt(5-t) dt = 1$ $\int_{0}^{5} 5t - t^{2} dt = \frac{1}{k}$ $\left[\frac{5t^{2}}{2} - \frac{t^{3}}{3}\right]_{0}^{5} = \frac{1}{k}$ $\left(\frac{5 \times 5^{2}}{2} - \frac{5^{3}}{3}\right) = \frac{1}{k}$ $\frac{125}{6} = \frac{1}{k}$ $k = \frac{6}{125}$	MA–S3 Random Variables MA12–8, 12–10 Bands 3–4 • Provides the correct solution 2 • Finds the anti-derivative of <i>f</i> (<i>t</i>) 1
(b) The mode is the value of t that gives the maximum value of $f(t)$. Since $f(t) = \frac{6}{125}t(5-t)$ is concave down, the maximum value occurs at the axis of symmetry. Substituting $f(t) = 0$ to find the roots of the parabola gives: $\frac{6}{125}t(5-t) = 0$ t = 0, 5 Given that the axis of symmetry is the midpoint between these values: $f(t) = \frac{1}{2.5} = \frac{1}{5} = \frac{1}{5}$ The axis of symmetry is at $t = 2.5$ and, hence, the mode is $t = 2.5$. Note: Diagrams are not required to achieve full marks, but may be used to develop the response.	MA-S3 Random Variables MA12-8 Bands 3-4 • Provides the correct solution 2 • Makes progress towards finding the axis of symmetry of $f(t)$ 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	$P(t \le 1) = \int_{0}^{1} \frac{6}{125} t(5-t) dt$ = $\frac{6}{125} \int_{0}^{1} 5t - t^{2} dt$ = $\frac{6}{125} \left[\frac{5t^{2}}{2} - \frac{t^{3}}{3} \right]_{0}^{1}$ = $\frac{6}{125} \left[\left(\frac{5}{2} - \frac{1}{3} \right) - (0-0) \right]$ = $\frac{13}{125}$ = 0.104 Therefore, 10.4% of the high-rise buildings are constructed within a year.	MA-S3 Random Variables MA12-8, 12-10Bands 3-4• Provides the correct solution 2• Develops an integral to describe $P(T \le 1)$ 1
Question 24		
(a)	$\frac{d}{dx}(x\ln x - x) = \ln x \times 1 + x \times \frac{1}{x} - 1$ $= \ln x + 1 - 1$ $= \ln x$	MA-C3 Applications of Differentiation MA12-3, 12-6 Bands 3-4 • Provides the correct solution 2 • Provides some relevant working 1
(b)	If $y = \ln x$, $y' = \frac{1}{x}$. When $x = e$, $y' = \frac{1}{e}$. Thus, the gradient of the tangent is $\frac{1}{e}$. Finding the equation of the tangent gives: $y - 1 = \frac{1}{e}(x - e)$ e(y - 1) = x - e ey - e = x - e ey = x $y = \frac{1}{e}x$	MA-C3 Applications of Differentiation MA12-3 Band 4 • Provides the correct solution 2 • Finds the gradient of the tangent 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	Dividing the shaded area into two regions, A_1 and A_2 , gives: $ \begin{array}{c} y \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	MA-C4 Integral Calculus MA12-7, 12-10Bands 4-5• Provides the correct solution 3• Finds the area of A_1 . AND• Makes progress towards finding the area of A_2 2• Finds the area of A_1 .
	Note: Consequential on answer to Question 24(a).	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 25	
(a)	120 km/h is two standard deviations to the right of the mean. Therefore, the percentage of drivers travelling at a dangerous speed is $\frac{5\%}{2} = 2.5\%$, according to the	MA–S3 Random Variables MA12–8 Bands 3–4 • Provides the correct solution 1
	empirical rule for normally distributed random variables.	
(b)	Finding the z-score for 102.5 km/h gives: $z = \frac{x - \mu}{\sigma}$ $= \frac{102.5 - 110}{5}$ $= -1.5$ Finding the z-score for 120 km/h gives: $z = \frac{x - \mu}{\sigma}$ $= \frac{120 - 110}{5}$ $= 2$ Therefore: $P(102.5 \le X \le 120) = P(-1.5 \le z \le 2)$ $= \int_{-1.5}^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$	MA–S3 Random Variables MA12–10 Band 4 • Provides the correct solution 2 • Finds the <i>z</i> -score for 102.5 km/h OR 120 km/h
(c)	$P(-1.5 \le z \le 2) = \int_{-1.5}^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$ $= \frac{1}{\sqrt{2\pi}} \int_{-1.5}^{2} e^{-\frac{x^2}{2}} dx$ Thus, using $e^{-\frac{x^2}{2}}$ to generate a table of values gives: $\boxed{\frac{x - 1.5}{0.25} \frac{0.25}{2}}{\frac{f(x)}{0.325} \frac{0.969}{0.135}}$ Applying the trapezoidal rule gives: $P(-1.5 \le z \le 2) = \frac{1}{\sqrt{2\pi}} \int_{-1.5}^{2} e^{-\frac{x^2}{2}} dx$ $= \frac{1}{\sqrt{2\pi}} \left[\frac{21.5}{2 \times 2} (0.325 + 0.1353 + 2 \times 0.969) \right]$ = 0.837	MA-C4 Integral Calculus MA12-3 Bands 3-4 • Provides the correct solution 2 • Provides the correct table of values

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(d) From part (c): $P(-1.5 \le z \le 2) = 0.837$ $= 83.7\%$ 83.7% 83.7% 83.7% 83.7% 83.7% 83.7% 63.7% $12 = 3.3\%$ Given that $P(-2 \le z \le 2) = 95\%$: $P(-2 \le z \le -1.5) = 95 - 83.7$ $= 11.3\%$ According to the empirical rule, $P(z \le -2) = 2.5\%$. Hence: $P(z \le -1.5) = 2.5 + 11.3$ = 13.8% Therefore, the probability of a driver travelling faster than 102.5 km/h is 100 - 13.8 = 86.2%. Note: Consequential on answer to Question 25(c)	MA-S3 Random Variables MA12-10 Bands 5-6 • Provides the correct solution 2 • Makes progress towards the correct solution
<i>Note: Consequential on answer to</i> Question 25(c) . Question 26	
$\int_{0}^{k} e^{x} (e^{x} - 2) dx = \frac{3}{2}$ $\int_{0}^{k} e^{2x} - 2e^{x} dx = \frac{3}{2}$ $\left[\frac{1}{2}e^{2x} - 2e^{x}\right]_{0}^{k} = \frac{3}{2}$ $\left(\frac{1}{2}e^{2k} - 2e^{k}\right) - \left(\frac{1}{2} - 2\right) = \frac{3}{2}$ $\frac{1}{2}e^{2k} - 2e^{k} = 0$ $e^{2k} - 4e^{k} = 0$ $e^{k} (e^{k} - 4) = 0$ $e^{k} = 0, 4$ Given that $e^{k} > 0$ for all k, there are no real solutions from $e^{k} = 0.$ Therefore: $e^{k} = 4$ $\ln e^{k} = \ln 4$ $k \ln e = \ln 4$ $k = \ln 4$ $k = \ln 4$ $= 2\ln 2$	MA-C4 Integral Calculus MA12-7, 12-10Bands 4-5• Provides the correct solution 4• Identifies that there are no real solutions for $e^k = 0$. AND• Makes progress towards solving $e^k = 4$

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 27	
(a)	When $t = 0$: x(t) = 5t x(0) = 5(0) = 0 Therefore, the particle begins at the origin.	 MA-C3 Applications of Differentiation MA12-3, 12-10 Bands 3-4 Provides the correct solution 1
(b)	For $0 \le t \le 1$: x(t) = 5t $v(t) = \frac{dx}{dt}$ = 5 Given that $v > 0$ for $0 \le t \le 1$, the particle is never at rest during this time period. For $t > 1$: $x(t) = 6\sqrt{t} - \frac{1}{t}$ $= 6x^{\frac{1}{2}} - t^{-1}$ $v(t) = \frac{dx}{dt}$ $= 3t^{-\frac{1}{2}} + t^{-2}$ $= \frac{3}{\sqrt{t}} + \frac{1}{t^2}$ Since $v > 0$ for $t > 1$, the particle is never at rest during this time period. Hence, the particle is never at rest.	 MA-C3 Applications of Differentiation MA12-3, 12-10 Bands 3-4 Provides the correct solution 3 Shows that the particle is never at rest for ONE of the time intervals
(c)	In part (b), it is shown that the particle will always have a velocity such that $v > 0$. This means that the particle starts at the origin and will always move in the positive direction. Hence, the distance travelled in the first four seconds is given by: $x(t) = 6\sqrt{t} - \frac{1}{t}$ $x(4) = 6\sqrt{4} - \frac{1}{4}$ = 11.75 m	 MA-C3 Applications of Differentiation MA12-3, 12-10 Bands 4-5 Provides the correct solution 1

Sample ans	wer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 28		
(a) $P(\text{Edie wins}) = \frac{1}{4}$		MA-S1 Probability and DiscreteProbability DistributionsMA11-7Band 3• Provides the correct solution 1
(b) If Edie is to win in the second Catriona must lose in the first P(E wins 2nd) = P(E loses 1s) $= \frac{3}{4} \times \frac{3}{4} \times \frac{3}{5}$ $= \left(\frac{3}{4}\right)^2 \times \frac{3}{5}$ Therefore, the probability that OR second round is: P(E wins 1 st OR 2nd) = P(E) $= \frac{1}{4} + Note: Consequential on answer$	t round. Therefore: st, C loses 1st, E wins 2nd) at Edie wins in the first E wins 1st) + P(E wins 2nd) $\left(\left(\frac{3}{4}\right)^2 \times \frac{3}{5}\right)$	 Provides the correct solution 2 Makes progress towards calculating the probability of Edie winning in the second round 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) The series can be expressed as two separate geometric sequences, S_1 and S_2 . $S_1 = \frac{1}{4} + \left(\left(\frac{3}{4}\right)^2 \times \left(\frac{3}{5}\right)^2 \times \frac{1}{4}\right) + \dots$ $S_2 = \left(\left(\frac{3}{4}\right)^2 \times \frac{3}{5}\right) + \left(\left(\frac{3}{4}\right)^2 \times \left(\frac{3}{5}\right)^2 \times \frac{3}{5}\right) + \dots$ Finding the limiting sum of S_1 gives: $S_1 = \frac{a}{1-r}$ $= \frac{\frac{1}{4}}{1-\left(\frac{3}{4}\right)^2 \times \left(\frac{2}{5}\right)^2}$ $= \frac{25}{91}$ Finding the limiting sum of S_2 gives: $S_2 = \frac{a}{1-r}$ $= \frac{\left(\frac{3}{4}\right)^2 \times \frac{3}{5}}{1-\left(\frac{3}{4}\right)^2 \times \left(\frac{2}{5}\right)^2}$ $= \frac{135}{364}$ Therefore: total probability = $S_1 + S_2$ $= \frac{235}{91} + \frac{135}{364}$ Since $\frac{235}{364} > \frac{1}{2}$, Edie has a greater chance at winning than Catriona.	MA-M1 Modelling Financial Situations MA12-4, 12-10 Band 5-6 Provides the correct solution 3 Calculates the limiting sum of S_1 AND S_2

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 29	
$AB = AC = BC = r$, since they are all radii. Hence, $\triangle ABC$ is an equilateral triangle and $\angle CAB = \frac{\pi}{3}$. $A = \frac{\pi}{3}$	 MA-T1 Trigonometry and Measure of Angles MA11-3, 11-9 Bands 5-6 Provides the correct solution 4 Finds an expression for the area of one segment outside Δ<i>ABC</i> 3 Finds an expression for the area of a sector of a circle OR equivalent merit 2 Finds an expression for the area of Δ<i>ABC</i> OR equivalent merit 1
$= \frac{1}{2}r^{2}\theta - \frac{\sqrt{3}}{4}r^{2}$ $= \frac{1}{2} \times r^{2} \times \frac{\pi}{3} - \frac{\sqrt{3}}{4}r^{2}$ $= \frac{\pi}{6}r^{2} - \frac{\sqrt{3}}{4}r^{2}$ $A_{\text{shaded}} = 3 \times A_{\text{segment outside }\Delta ABC} + A_{\Delta ABC}$ $= 3\left(\frac{\pi}{6}r^{2} - \frac{\sqrt{3}}{4}r^{2}\right) + \frac{\sqrt{3}}{4}r^{2}$ $= \frac{\pi}{2}r^{2} - \frac{\sqrt{3}}{2}r^{2}$ $= \frac{r^{2}}{2}(\pi - \sqrt{3})$ $= \frac{1}{2}r^{2}(\pi - \sqrt{3})$ Note: Diagrams are not required to achieve full marks, but may be used to develop the response.	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 30	
(a)	Given that <i>BCD</i> is a triangle: $\tan \theta = \frac{b}{BD}$ $BD = \frac{b}{\tan \theta}$ $= b \cot \theta$ $\therefore AB = a - b \cot \theta$ $\sin \theta = \frac{b}{BC}$ $BC = b \csc \theta$ Therefore: $R = R_{AB} + R_{BC}$ $= k \frac{AB}{(r_1)^4} + k \frac{BC}{(r_2)^4}$ $= k \left(\frac{a - b \cot \theta}{(r_1)^4} + \frac{b \csc \theta}{(r_2)^4}\right)$	MA-T2 Trigonometric Functions and Identities MA11-1, 11-9 Band 5 • Provides the correct solution 2 • Finds an expression for AB OR BC
(b)	$\frac{d}{dx}(\cot\theta) = \frac{d}{dx}\left(\frac{\cos\theta}{\sin\theta}\right)$ $= \frac{\sin\theta \times -\sin\theta - \cos\theta \times \cos\theta}{\sin^2\theta}$ $= \frac{-\sin^2\theta - \cos^2\theta}{\sin^2\theta}$ $= \frac{-(\sin^2\theta + \cos^2\theta)}{\sin^2\theta}$ $= -\frac{1}{\sin^2\theta}$ $= -\csc^2\theta$	 MA-C2 Differential Calculus MA12-3 Bands 4-5 Provides the correct solution2 Differentiates cotθ using the quotient rule1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) $R = k \left(\frac{a - b \cot\theta}{(r_1)^4} + \frac{b \csc\theta}{(r_2)^4} \right)$ $\frac{dR}{d\theta} = k \left(\frac{b \csc^2\theta}{(r_1)^4} - \frac{b \cot\theta \csc\theta}{(r_2)^4} \right)$ $= bk \left(\frac{(\csc^2\theta}{(r_1)^4} - \frac{\cot\theta \csc\theta}{(r_2)^4} \right)$ $= bk \left(\frac{(r_2)^4 \csc^2\theta - (r_1)^4 \cot\theta \csc\theta}{(r_1 r_2)^4} \right)$ $= \frac{bk}{(r_1 r_2)} \csc\theta \left((r_2)^4 \csc\theta - (r_1)^4 \cot\theta \right)$ Finding the stationary points by solving $\frac{dR}{d\theta} = 0$ gives: $\frac{bk}{(r_1 r_2)} \csc\theta \left((r_2)^4 \csc\theta - (r_1)^4 \cot\theta \right) = 0$ $(r_2)^4 \csc\theta - (r_1)^4 \cot\theta = 0$ $\left(\frac{r_2}{r_1} \right)^4 = \frac{\cot\theta}{\csc\theta}$ $\left(\frac{r_2}{r_1} \right)^4 = \frac{\cos\theta}{\frac{\sin\theta}{\sin\theta}}$ $\cos\theta = \left(\frac{r_2}{r_1} \right)^4$ Given that $\frac{d^2R}{d\theta^2} > 0$ when $\cos\theta = \left(\frac{r_2}{r_1} \right)^4$, $\cos\theta = \left(\frac{r_2}{r_1} \right)^4$ is a minimum turning point. Hence, the resistance of the blood is minimised when $\cos\theta = \left(\frac{r_2}{r_1} \right)^4$.	MA-C3 Applications of Differentiation MA12-6, 12-10 Band 6 • Provides the correct solution. AND • Justifies that the resistance of the blood is minimised when $\cos\theta = \left(\frac{r_2}{r_1}\right)^4$ 4 • Shows that a stationary point occurs when $\cos\theta = \left(\frac{r_2}{r_1}\right)^4$ 3 • Makes progress towards solving $\frac{dR}{d\theta} = 0$ 2 • Makes progress towards finding an expression for $\frac{dR}{d\theta}$ 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(d) When $r_2 = \frac{3}{4}r_1$:	MA–T2 Trigonometric Functions and Identities
$\cos\theta = \left(\frac{r_2}{r_1}\right)^4$	MA11–4 Band 4 • Provides the correct solution 2
$= \left(\frac{\frac{3}{4}r_1}{r_1}\right)^4$	• Provides some relevant working 1
$=\left(\frac{3}{4}\right)^4$	
$\theta = \cos^{-1}\left(\left(\frac{3}{4}\right)^4\right)$	
=72°	