

**Trial Examination 2023** 

## **HSC Year 12 Mathematics Extension 2**

Solutions and Marking Guidelines

Neap<sup>®</sup> Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

| Answer and explanation                                                                                                                                                                                                                                   | Syllabus content, outcomes and targeted performance bands |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Question 1 A                                                                                                                                                                                                                                             | MEX-V1 Further Work with Vectors                          |
| $\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$                                                                                                                                                                                        | MEX12–3 Band E2                                           |
| $ \begin{bmatrix} 5 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 5 $                                                                                                                                                                 |                                                           |
| $\cos\theta = \frac{5}{\sqrt{3^2 + 5^2 + (-2)^2} \times \sqrt{1^2}}$                                                                                                                                                                                     |                                                           |
| $\theta = 35.8^{\circ}$                                                                                                                                                                                                                                  |                                                           |
| Question 2 A                                                                                                                                                                                                                                             | MEX–N2 Using Complex Numbers                              |
| Rewriting the equation gives:                                                                                                                                                                                                                            | MEX12–4 Band E3                                           |
| $\arg\left(\frac{z-1}{z+2i}\right) = \arg(z-1) - \arg(z+2i)$                                                                                                                                                                                             |                                                           |
| $=\pi$<br>This represents the line segment between points (1, 0) and (0, -2). These are the only possible positions of point <i>z</i> such that the difference between the argument of <i>z</i> - 1 and the argument of <i>z</i> + 2 <i>i</i> is $\pi$ . |                                                           |
| Question 3 D                                                                                                                                                                                                                                             | MEX-P1 The Nature of Proof                                |
| The contrapositive of the statement is:                                                                                                                                                                                                                  | MEX12–2, 12–8 Band E3                                     |
| 'If my teacher did not give me a detention, then I did complete my homework.'                                                                                                                                                                            |                                                           |
| Hence, the converse of the contrapositive is:                                                                                                                                                                                                            |                                                           |
| 'If I do complete my homework, then my teacher will not give me a detention.'                                                                                                                                                                            |                                                           |
| Question 4 D                                                                                                                                                                                                                                             | MEX-N1 Introduction to Complex                            |
| (a+bi)(2-i) = 3+i                                                                                                                                                                                                                                        | Numbers                                                   |
| $2a + b = 3 \Longrightarrow 4a + 2b = 6$                                                                                                                                                                                                                 | MEA12-1, 12-4 Dalid E2                                    |
| -a + 2b = 1                                                                                                                                                                                                                                              |                                                           |
| $\therefore 5a = 5$                                                                                                                                                                                                                                      |                                                           |
| $\therefore a = 1, b = 1$                                                                                                                                                                                                                                |                                                           |
| Question 5 A                                                                                                                                                                                                                                             | MEX-N2 Using Complex Numbers                              |
| As $ z  = 1$ , $z + 1$ is the long diagonal of a rhombus with side                                                                                                                                                                                       | MEX12–1, 12–5 Bands E3–E4                                 |
| length of one unit.<br>Hence, $\arg(z+1) = \frac{\theta}{2}$ , and $\cos\frac{\theta}{2} = \frac{\frac{1}{2} z+1 }{1}$ .                                                                                                                                 |                                                           |
| $\therefore  z+1  = 2\cos\left(\frac{\theta}{2}\right)$                                                                                                                                                                                                  |                                                           |

## SECTION I

| Answer and explanation                                                                                                                                                                      | Syllabus content, outcomes and targeted performance bands |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Question 6 C                                                                                                                                                                                | MEX–V1 Further Work with Vectors                          |
| C is correct. The line passes through point $(5, 2, 1)$ ; hence, the $(5)$                                                                                                                  | MEX12–3 Band E3                                           |
| fixed point of the vector equation is $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ . The line is parallel                                                                                         |                                                           |
| to the <i>x</i> - <i>y</i> plane and <i>x</i> - <i>z</i> plane; thus, the direction vector is $\begin{pmatrix} 1 \end{pmatrix}$                                                             |                                                           |
| $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ as it represents movement in the <i>x</i> -direction only.                                                                                           |                                                           |
| A is incorrect. This equation represents movement in the <i>x</i> -direction and <i>y</i> -direction. This would make the line parallel to the $x$ - $y$ plane but not the $x$ - $z$ plane. |                                                           |
| <b>B</b> is incorrect. This equation represents movement in the                                                                                                                             |                                                           |
| y-direction and z-direction. This would make the line parallel                                                                                                                              |                                                           |
| to the <i>y</i> – <i>z</i> plane but not the <i>x</i> – <i>y</i> plane or the <i>x</i> – <i>z</i> plane.                                                                                    |                                                           |
| <b>D</b> is incorrect. This equation represents movement in the                                                                                                                             |                                                           |
| <i>x</i> -direction and <i>z</i> -direction. This would make the line parallel                                                                                                              |                                                           |
| to the $x-z$ plane but not the $x-y$ plane.                                                                                                                                                 |                                                           |
| Question 7 A                                                                                                                                                                                | MEX–M1 Applications of Calculus                           |
| Given that $v^2 = 20 - 16x - 4x^2$ :                                                                                                                                                        | to Mechanics<br>MEX12-6 12-7 Band E3                      |
| $\frac{1}{2}v^2 = 10 - 8x - 2x^2$                                                                                                                                                           |                                                           |
| $\therefore a = \frac{d}{dx} \left(\frac{1}{2}v^2\right) = -4x - 8$                                                                                                                         |                                                           |
| =-4(x+2)                                                                                                                                                                                    |                                                           |
| Hence, the particle moves in a simple harmonic motion about                                                                                                                                 |                                                           |
| the centre $x = -2$ , $n = 2$ . Therefore, its period is $\frac{2\pi}{2} = \pi$ .                                                                                                           |                                                           |
| Given that $v^2 = 20 - 16x - 4x^2$ :                                                                                                                                                        |                                                           |
| $0 = -4(x^2 + 4x - 5)$                                                                                                                                                                      |                                                           |
| =-4(x+5)(x-1)                                                                                                                                                                               |                                                           |
| Hence, the turning points are at $x = -5$ and $x = 1$ and the amplitude is 3.                                                                                                               |                                                           |

| Answer and explanation                                                   | Syllabus content, outcomes and targeted performance bands |
|--------------------------------------------------------------------------|-----------------------------------------------------------|
| Question 8 C                                                             | MEX–M1 Applications of Calculus                           |
| ma = mg - kv                                                             | to Mechanics                                              |
| a = g - kv                                                               | MEX12–6, 12–7 Band E3                                     |
| $\frac{dv}{dt} = 10 - \frac{v}{2}$ $= \frac{20 - v}{2}$                  |                                                           |
| $\frac{dt}{dv} = \frac{2}{20 - v}$                                       |                                                           |
| $\int_{0}^{t} dt = 2 \int_{0}^{v} \frac{1}{20 - v} dv$                   |                                                           |
| $t = -2\left[\ln\left 20 - \nu\right \right]_{0}^{\nu}$                  |                                                           |
| $= 2\left[\ln 20 - \ln \left 20 - v\right \right]$                       |                                                           |
| $\frac{t}{2} = \ln \left  \frac{20}{20 - v} \right $                     |                                                           |
| $\frac{20}{20-v} = e^{\frac{t}{2}}$                                      |                                                           |
| $20 - v = 20e^{-\frac{t}{2}}$                                            |                                                           |
| $v = 20\left(1 - e^{-\frac{t}{2}}\right)$                                |                                                           |
| Question 9 A                                                             | MEX-P1 The Nature of Proof                                |
| A is correct. This statement is true for all values of                   | MEX12–2, 12–8 Band E3                                     |
| $a, b, c, d \in \mathbb{R}.$                                             |                                                           |
| <b>B</b> is incorrect. This statement has the following counter-example. |                                                           |
| a = 10, b = 9, a > b                                                     |                                                           |
| c = 5, d = -10, c > d                                                    |                                                           |
| $a - c = 5, \ b - d = 19, \ a - c < b - d$                               |                                                           |
| <b>C</b> is incorrect. This statement has the following counter-example. |                                                           |
| a = 10, b = 4, a > b                                                     |                                                           |
| c = -1, d = -2, c > d                                                    |                                                           |
| $ac = -10, \ bd = -8, \ ac < bd$                                         |                                                           |
| <b>D</b> is incorrect. This statement has the following counter-example. |                                                           |
| a = 10, b = 9, a > b                                                     |                                                           |
| c = 5, d = 3, c > d                                                      |                                                           |
| $\frac{a}{c} = 2, \ \frac{b}{d} = 3, \ \frac{a}{c} < \frac{b}{d}$        |                                                           |

| Answer and explanation                                                    | Syllabus content, outcomes and targeted performance bands |
|---------------------------------------------------------------------------|-----------------------------------------------------------|
| Question 10CMEX–V1 Further Work with Vector                               |                                                           |
| Since $x = \sqrt{t-2}, t = x^2 + 2.$                                      | MEX12–1, 12–3 Band E3                                     |
| Thus:                                                                     |                                                           |
| $y = \frac{1}{2-t}$                                                       |                                                           |
| $=-\frac{1}{x^2}$                                                         |                                                           |
| :: t > 2, x > 0, y < 0                                                    |                                                           |
| Hence, the solution should only include the fourth quadrant of the graph. |                                                           |

|             | Sample answer                                                                                                                                                                                                                                                                                                     | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 11 |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |
| (a)         | Assume that $n \in \mathbb{Z}^+$ and $\sqrt{3n+1}$ is rational.<br>$3n+1 = \frac{p^2}{q^2}, p, q \in \mathbb{Z}$<br>$p^2 = 1$                                                                                                                                                                                     | MEX-P1 The Nature of Proof<br>MEX12-1, 12-2, 12-8 Bands E2-3<br>• Provides the correct solution 2<br>• Uses the correct method 1                                                                                                        |
|             | $n = \frac{1}{3q^2} - \frac{1}{3}$ (contradiction)<br>If $n \in \mathbb{Z}^+$ , then $\sqrt{3n+1}$ is always irrational, as <i>n</i> will<br>not always be an integer.                                                                                                                                            |                                                                                                                                                                                                                                         |
| (b)         | $\alpha + \beta = \sqrt{3}cis\left(\frac{\pi}{3}\right) + \sqrt{3}cis\left(-\frac{\pi}{3}\right)$ $= 2\cos\left(\frac{\pi}{3}\right) \times \sqrt{3}$ $= \sqrt{3}$ $\alpha\beta = \sqrt{3}cis\left(\frac{\pi}{3}\right) \times \sqrt{3}cis\left(-\frac{\pi}{3}\right)$ $= 3$ $\therefore x^2 - \sqrt{3}x + 3 = 0$ | <ul> <li>MEX–N2 Using Complex Numbers<br/>MEX12–1, 12–4 Bands E2–3</li> <li>Provides the correct solution 2</li> <li>Makes some progress using<br/>the sum and product of the roots.</li> <li>OR</li> <li>Equivalent merit 1</li> </ul> |
| (c)         | Let $u = \sin^{-1} 3x$ and $\frac{du}{dx} = \frac{1}{\sqrt{\frac{1}{9} - x^2}}$ .<br>$\frac{dv}{dx} = 1, v = x$<br>$\int \sin^{-1} 3x dx = x \sin^{-1} 3x - \int \frac{x}{\sqrt{\frac{1}{9} - x^2}} dx$<br>$x = x \sin^{-1} 3x + \sqrt{\frac{1}{9} - x^2} + C$                                                    | MEX-C1 Further Integration<br>MEX12-5 Band E3<br>• Provides the correct solution 2<br>• Makes some progress<br>applying integration by parts 1                                                                                          |

## SECTION II

|     | Sample answer                                                                                                                                                                                                                                                                                                               | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) | T $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$                                                                                                                                                                                                                                                                                       | <ul> <li>MEX-M1 Applications of Calculus<br/>to Mechanics<br/>MEX12-6, 12-7 Bands E2-E3</li> <li>Provides the correct solution 2</li> <li>Uses the correct equation<br/>for the vertical force AND<br/>tension in one rope</li></ul> |
|     | $\theta = 39.9^{\circ}$                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |
|     | $\therefore$ maximum angle $\approx 80^{\circ}$                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                      |
| (e) | (i) Assuming that the two lines intersect gives:<br>$2-\lambda = -1 + \mu$ $3 = \lambda + \mu$ (x-coordinate)<br>$1+\lambda = 1-2\mu$ $0 = \lambda + 2\mu$ (y-coordinate)<br>$\mu = -3, \lambda = 6$ However, substituting these values into the<br>z-coordinate gives:<br>$1-\lambda = -5$ $\mu = -3$ $1-\lambda \neq \mu$ | MEX–V1 Further Work with Vectors<br>MEX12–3 Band E3<br>• Solves all THREE<br>simultaneous equations<br>to show the inconsistency1                                                                                                    |
|     | (ii)<br>$\overrightarrow{PQ} = \begin{pmatrix} -1+\mu\\ 1-2\mu\\ \mu \end{pmatrix} - \begin{pmatrix} 2-\lambda\\ 1+\lambda\\ 1-\lambda \end{pmatrix}$ $= \begin{pmatrix} -3+\mu+\lambda\\ -2\mu-\lambda\\ -1+\mu+\lambda \end{pmatrix}$                                                                                     | MEX–V1 Further Work with Vectors<br>MEX 12–3 Band E3<br>• Provides the correct solution 1                                                                                                                                            |

| Sample answer                                                                                                                                                                                                                                                                                               | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii) $ \begin{pmatrix} -3 + \mu + \lambda \\ -2\mu - \lambda \\ -1 + \mu + \lambda \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} = 0 $                                                                                                                                                   | MEX–V1 Further Work with Vectors<br>MEX12–3 Bands E3–E4<br>• Provides the correct solution 3                                                                                                             |
| $\therefore 4\mu + 3\lambda = 4$ $\begin{pmatrix} -3 + \mu + \lambda \\ -2\mu - \lambda \\ -1 + \mu + \lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 0$ $\therefore 6\mu + 4\lambda = 4$                                                                                          | • Uses the dot product of $\overrightarrow{PQ}$<br>and the direction vectors<br>of $L_1$ and $L_2$ to find points<br>P and $Q$ 2                                                                         |
| $\therefore \delta \mu + 4\lambda = 4$<br>$\therefore \lambda = 4, \ \mu = -2$<br>$\therefore P: (-2, 5, -3), \ Q: (-3, 5, -2)$<br>$ \overline{PQ}  = \sqrt{2}$<br>Note: Consequential on answer to Question<br>11(e)(ii).                                                                                  | • Makes some progress<br>towards finding points<br><i>P</i> and <i>Q</i> 1                                                                                                                               |
| (f) Given that $2 z-1  =  z-4 $ :<br>$4 z-1 ^2 =  z-4 ^2$<br>$4(z-1)\overline{(z-1)} = (z-4)\overline{(z-4)}$<br>$4(z-1)(\overline{z}-1) = (z-4)(\overline{z}-4)$<br>$4z\overline{z} - 4z - 4\overline{z} + 4 = z\overline{z} - 4z - 4\overline{z} + 16$<br>$3z\overline{z} = 12$<br>$ z ^2 = 4$<br> z  = 2 | MEX-N1 Introduction to Complex<br>Numbers         MEX12-1, 12-4       Band E3         • Provides the correct solution 2         • Makes some progress using<br>conjugate theorems for<br>complex numbers |

|     |         | Sample answer                                                                                   | Syllabus content, outcomes, targeted performance bands and marking guide                                      |
|-----|---------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Que | stion 1 | 2                                                                                               |                                                                                                               |
| (a) | (i)     | $\ddot{x} = -\frac{96000}{x^2}$ $\frac{d}{dx} \left(\frac{1}{2}v^2\right) = -\frac{96000}{x^2}$ | MEX-M1 Applications of Calculus<br>to Mechanics<br>MEX12-6, 12-7 Band E3<br>• Provides the correct solution 3 |
|     |         | $\frac{1}{2}v^2 = \int -\frac{96000}{x^2} dx$                                                   | • Provides the correct value of <i>x</i> 2                                                                    |
|     |         | $v^2 = -192\ 000 \int x^{-2} dx$                                                                | • Provides the correct expression of $v^2$                                                                    |
|     |         | $=\frac{192\ 000}{x}+c$                                                                         |                                                                                                               |
|     |         | $\therefore x = 6400, v = 8$ , then $c = 34$                                                    |                                                                                                               |
|     |         | At $v = 6.5$ :                                                                                  |                                                                                                               |
|     |         | $v = \sqrt{\frac{192\ 000}{x} + 34}$                                                            |                                                                                                               |
|     |         | $6.5 = \sqrt{\frac{192\ 000}{x} + 34}$                                                          |                                                                                                               |
|     |         | $x = 23\ 273\ \mathrm{km}$                                                                      |                                                                                                               |
|     |         | $\therefore 23273 - 6400 = 16873 \text{ km}$                                                    |                                                                                                               |
|     | (ii)    | $\because v = \sqrt{\frac{192000}{x} + 34}$                                                     | MEX–M1 Applications of Calculus<br>to Mechanics<br>MEX12–6, 12–7 Band E3                                      |
|     |         | $\lim_{x \to \infty} = \sqrt{\frac{192000}{x} + 34}$                                            | • Provides the correct solution 1                                                                             |
|     |         | $=\sqrt{34} \text{ km s}^{-1}$                                                                  |                                                                                                               |
|     |         | <i>Note: Consequential on answer to Question 12(a)(i).</i>                                      |                                                                                                               |

|     | Sample answer                                                                                                                                                                                                                                                                                         | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | $P(1):$ $2(1) > 1 + \frac{1}{3^{1}} > \frac{1}{3(1)}$                                                                                                                                                                                                                                                 | MEX–P2 Further Proof by Mathematical<br>Induction<br>MEX12–1, 12–2, 12–7, 12–8 Band E4<br>• Provides the correct solution 4                                                 |
|     | $2 > \frac{4}{3} > \frac{1}{3}$<br>Therefore, <i>P</i> (1) is true.<br>If <i>P</i> ( <i>k</i> ) is true, $2k > 1 + \frac{1}{3^1} + \frac{1}{3^2} + \dots + \frac{1}{3^k} > \frac{1}{3k}$ .<br><i>P</i> ( <i>k</i> + 1):<br>Consider the series:                                                       | <ul> <li>Considers adding 2×3<sup>k</sup> extra terms to the series.</li> <li>AND</li> <li>Provides the correct manipulation of the lower limit of the inequality</li></ul> |
|     | $\frac{1}{3^k + 1} + \frac{1}{3^k + 2} + \dots + \frac{1}{3^k + 3^k + 3^k}$                                                                                                                                                                                                                           | • Considers adding $2 \times 3^k$ extra terms to the series 2                                                                                                               |
|     | This series has $2 \times 3^{k}$ terms.<br>Since $\frac{1}{3^{k}} > \frac{1}{3^{k}+1} > \frac{1}{3^{k}+3^{k}+3^{k}}$ and<br>$\frac{1}{3^{k}} > \frac{1}{3^{k}+2} > \frac{1}{3^{k}+3^{k}+3^{k}}$ and so on.                                                                                            | Provides the correct proof     for <i>P</i> (1)1                                                                                                                            |
|     | $\therefore \frac{1}{3^{k}} \times (2 \times 3^{k}) > \frac{1}{3^{k} + 1} + \frac{1}{3^{k} + 2} + \dots + \frac{1}{3^{k} + 3^{k} + 3^{k}} > \frac{1}{3^{k} + 3^{k} + 3^{k}} \times (2 \times 3^{k})$ $2 > \frac{1}{3^{k} + 1} + \frac{1}{3^{k} + 2} + \dots + \frac{1}{3 \times 3^{k}} > \frac{2}{3}$ |                                                                                                                                                                             |
|     | Adding this result to $P(k)$ :                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |
|     | $2k+2 > 1 + \frac{1}{3} + \dots + \frac{1}{3^{k} + 3^{k} + 3^{k}} > \frac{1}{3k} + \frac{2}{3}$                                                                                                                                                                                                       |                                                                                                                                                                             |
|     | $2(k+1) > 1 + \frac{1}{3} + \dots + \frac{1}{3(3^k)} > \frac{1}{3k}$                                                                                                                                                                                                                                  |                                                                                                                                                                             |
|     | Since $k > 0$ , $\frac{2k+1}{3k} > \frac{2k+1}{3k+3} > \frac{1}{3(k+1)}$                                                                                                                                                                                                                              |                                                                                                                                                                             |
|     | $\therefore 2(k+1) > 1 + \frac{1}{3} + \dots + \frac{1}{3^{k+1}} > \frac{2k+1}{3k} > \frac{1}{3(k+1)}$                                                                                                                                                                                                |                                                                                                                                                                             |
|     | As $P(1)$ is true, and $P(k) \Rightarrow P(k+1)$ , $P(n)$ is true for                                                                                                                                                                                                                                 |                                                                                                                                                                             |
|     | $\forall n \in \mathbb{Z}^+$ .                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                 | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) (i) $\therefore  z  =  \omega  \therefore \left  \frac{z}{\omega} \right  = 1$<br>$\arg\left(\frac{z}{\omega}\right) = \arg(z) - \arg(\omega)$<br>$= \frac{\pi}{3}$                                                                                                                                                                                                                       | MEX-N1 Introduction to Complex<br>Numbers<br>MEX12-1, 12-4Band E3• Provides the correct modulus<br>AND argument of $\frac{z}{\omega}$                                                    |
| (ii) $\therefore  z  =  \omega $<br>$\left \frac{z^3}{\omega^3}\right  = \frac{ z ^3}{ \omega ^3}$<br>= 1<br>$\arg\left(\frac{z^3}{\omega^3}\right) = \arg(z^3) - \arg(\omega^3)$<br>$= 3\arg(z) - 3\arg(\omega)$<br>$= 3\arg\left(\frac{z}{\omega}\right)$<br>$= \pi$<br>$\therefore z^3 + \omega^3 = 0$                                                                                     | MEX-N1 Introduction to Complex<br>Numbers<br>MEX12-1, 12-4 Band E3<br>• Provides the correct solution 2<br>• Makes progress applying<br>de Moivre's theorem.<br>OR<br>• Equivalent merit |
| (d) $\int \frac{x^3 + 4x^2 - 2x - 33}{x^2 - 9} dx = \int x + 4 + \frac{7x + 3}{x^2 - 9} dx$ $= \frac{1}{2}x^2 + 4x + \int \frac{A}{x - 3}$ $+ \frac{B}{x + 3} dx$ $7x + 3 = A(x + 3) + B(x - 3)$ $A = 9, B = -2$ $\int \frac{x^3 + 4x^2 - 2x - 33}{x^2 - 9} dx = \frac{1}{2}x^2 + 4x + \int \frac{9}{x - 3}$ $- \frac{2}{x + 3} dx$ $= \frac{1}{2}x^2 + 4x + 9\ln x - 3 $ $- 2\ln x + 3  + C$ | MEX-C1 Further Integration         MEX12-5       Band E3         • Provides the correct solution 3         • Provides the correct partial fraction                                       |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |
| (a) $\therefore a > b > 0, \ a + b + 1 > b + b + 1 > 0$<br>$\therefore a + b + 1 > 2b + 1$<br>$(a + b + 1)^2 > (2b + 1)^2$<br>$(a + b + 1)^2 > 4b^2 + 4b + 1$<br>$\therefore 4b^2 + 4b + 1 > 4b^2 + 4b = 4b(b + 1) > 3b(b + 1)$<br>$\therefore (a + b + 1)^2 > 3b(b + 1)$                                                                                                                                                                                                                                                                                                                                                                                                        | MEX-P1 The Nature of Proof<br>MEX12-2, 12-8Band E3• Provides the correct proof<br>for $4b^2 + 4b + 1 > 3b(b+1)$ .AND• Provides the correct<br>connection between<br>the inequalities |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Provides the correct proof<br/>for (a+b+1)<sup>2</sup> &gt; 4b<sup>2</sup> + 4b + 12</li> <li>Provides the correct proof<br/>for a+b+1 &gt; 2b+11</li> </ul>                |
| (b) As $t = \tan \frac{x}{2}$ , then $\frac{dt}{dx} = \frac{1}{2}\sec^2 \frac{x}{2}$ .<br>$\frac{dx}{dt} = 2\cos^2 \frac{x}{2}$<br>$= \frac{2}{t^2 + 1}$<br>$\int \frac{\cos x dx}{4 + 3\cos x} = \int \frac{\frac{1}{3}(4 + 3\cos x) - \frac{4}{3}}{4 + 3\cos x} dx$<br>$= \frac{1}{3}\int 1 - \frac{4}{4 + 3\cos x} dx$<br>$= \frac{x}{3} - \frac{1}{3}\int \frac{4}{4 + 3\left(\frac{1 - t^2}{1 + t^2}\right)^2 t^2 + 1} dt$<br>$= \frac{x}{3} - \frac{8}{3}\int \frac{1}{t^2 + 7} dt$<br>$= \frac{x}{3} - \frac{8}{3}\left(\frac{1}{\sqrt{7}}\arctan\frac{t}{\sqrt{7}}\right) + C_1$<br>$= \frac{x}{3} - \frac{8\sqrt{7}}{34}\arctan\frac{\sqrt{7}\tan\frac{x}{2}}{7} + C_2$ | MEX-C1 Further Integration<br>MEX12-5 Band E3<br>• Provides the correct solution                                                                                                     |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) $9z^4 - 18z^3 + 5z^2 - 18z + 9 = 0$<br>$9z^2 - 18z + 5 - 18z^{-1} + 9z^{-2} = 0$<br>$9(z^2 + z^{-2}) - 18(z + z^{-1}) + 5 = 0$<br>$9(2\cos 2\theta) - 18(2\cos \theta) + 5 = 0$<br>$18(2\cos^2 \theta - 1) - 36\cos \theta + 5 = 0$<br>$36\cos^2 \theta - 18 - 36\cos \theta - 13 = 0$<br>$\cos^2 \theta - \cos \theta - \frac{13}{36} = 0$<br>$\left(\cos \theta - \frac{1}{2}\right)^2 - \frac{1}{9} = 0$<br>$\left(\cos \theta - \frac{1}{2}\right)^2 = \frac{1}{9}$<br>As $\cos \theta = \frac{5}{6}$ , $\sin \theta = \frac{\pm\sqrt{11}}{6}$ , then $z = \frac{5}{6} \pm \frac{\sqrt{11}}{6}i$ .<br>As $\cos \theta = \frac{1}{6}$ , $\sin \theta = \frac{\pm\sqrt{35}}{6}$ , then $z = \frac{1}{6} \pm \frac{\sqrt{35}}{6}i$ . | MEX-N2 Using Complex Numbers<br>MEX12-1, 12-4Bands E3-4• Provides the correct<br>solutions for all FOUR<br>values of $z$                                                                                                                                                                                |
| (d) (i) $x = 3\sin\theta + 2, x - 2 = 3\sin\theta$<br>$y = 3\cos^2\theta + 1, y - 1 = 3\cos^2\theta$<br>$z = 3\sin\theta\cos\theta + 5, z - 5 = 3\sin\theta\cos\theta$<br>$(x - 2)^2 + (y - 1)^2 + (z - 5)^2 = (3\sin\theta)^2 + (3\cos^2\theta)^2$<br>$+ (3\sin\theta\cos\theta)^2$<br>$= 9\sin^2\theta + 9\cos^2\theta\cos^2\theta$<br>$+ 9\sin^2\theta\cos^2\theta$<br>$= 9(\sin^2\theta + \cos^2\theta)$<br>$= 9(\sin^2\theta + \cos^2\theta)$<br>$= 9(\sin^2\theta + \cos^2\theta)$<br>$= 9(\sin^2\theta + \cos^2\theta)$                                                                                                                                                                                                            | MEX-V1 Further Work with Vectors<br>MEX12-1, 12-3 Band E3<br>• Performs factorisation<br>and uses the Pythagorean<br>identity to simplify<br>the expression<br>$(x-2)^2 + (y-1)^2 + (z-5)^2 = 92$<br>• Substitutes to obtain<br>$(3\sin\theta)^2 + (3\cos^2\theta)^2$<br>$+ (3\sin\theta\cos\theta)^21$ |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Syllabus content, outcomes, targeted performance bands and marking guide                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| (ii) $\because c : (2, 1, 5)$<br>$ \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} $ $ 2 = -2 + 2\lambda, \ \lambda = 2 $ $ 1 = -3 + 2\lambda, \ \lambda = 2 $ $ 5 = 3 + \lambda, \ \lambda = 2 $ As the value of $\lambda$ is consistent for all three equations, line <i>L</i> passes through the centre point (2, 1, 5).                                                                                                                                                                                                                                                                                                                                                             | MEX–V1 Further Work with Vectors<br>MEX12–1, 12–3 Band E3<br>• Provides the correct solution 1                                         |  |
| (iii) $(-2+2\lambda-2)^{2} + (-3+2\lambda-1)^{2} + (3+\lambda-5)^{2} = 9$ $(2\lambda-4)^{2} + (2\lambda-4)^{2} + (\lambda-2)^{2} = 9$ $4\lambda^{2} - 16\lambda + 16 + 4\lambda^{2} - 16\lambda + 16 + \lambda^{2} - 4\lambda + 4 = 9$ $9\lambda^{2} - 36\lambda + 36 = 9$ $\lambda^{2} - 4\lambda + 4 = 1$ $\lambda^{2} - 4\lambda + 3 = 0$ $(\lambda-1)(\lambda-3) = 0$ $\lambda = 1, \lambda = 3$ $\begin{pmatrix} -2\\ -3\\ 3 \end{pmatrix} + \begin{pmatrix} 2\\ 2\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 0\\ -1\\ 4 \end{pmatrix}$ $\begin{pmatrix} -2\\ -3\\ 3 \end{pmatrix} + 3\begin{pmatrix} 2\\ 2\\ 1\\ 2 \end{pmatrix} = \begin{pmatrix} 4\\ 3\\ 6 \end{pmatrix}$ Therefore, line <i>L</i> and the surface of the sphere intersect at points (0, -1, 4) and (4, 3, 6). | MEX-V1 Further Work with Vectors<br>MEX12-1, 12-3 Bands E3-E4<br>• Provides the correct solution 2<br>• Finds the quadratic equation 1 |  |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Syllabus content, outcomes, targeted performance bands and marking guide                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Question 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |
| (a) $\int \frac{x+3}{\sqrt{9-8x-x^2}} dx = \int \frac{x+4-1}{\sqrt{9-8x-x^2}} dx$ $= \int \frac{x+4}{\sqrt{9-8x-x^2}} dx - \int \frac{1}{\sqrt{9-8x-x^2}} dx$ $= \sqrt{9-8x-x^2}$ $-\int \frac{1}{\sqrt{25-(x+4)^2}} dx$ $= \sqrt{9-8x-x^2} - \arcsin\left(\frac{x+4}{5}\right) + C$                                                                                                                                                                                                                                                      | MEX-C1 Further Integration<br>MEX12-5Band E5• Provides the correct solution 3• Derives $\sqrt{9-8x-x^2}$ |
| (b) Let $z = rcis\theta$ .<br>$\therefore \operatorname{Im}\left(z + \frac{1}{z}\right) = 0$ $\operatorname{Im}\left(rcis\theta + \frac{1}{rcis\theta}\right) = 0$ $\therefore r\sin\theta + r^{-1}\sin\theta^{-1} = 0$ $r\sin\theta + r^{-1}\sin(-\theta) = 0$ $r\sin\theta - r^{-1}\sin\theta = 0$ $\sin\theta(r - r^{-1}) = 0$ $\sin\theta = 0, r - \frac{1}{r} = 0$ $\therefore \operatorname{Im}(z) = 0 \text{ or } \frac{r^2 - 1}{r} = 0$ As $\operatorname{Im}(z) \neq 0$ , then $r^2 = 1$ , $r = \pm 1$ .<br>$\therefore  z  = 1$ | MEX-N2 Using Complex Numbers<br>MEX12-1, 12-4Band E3• Derives $r = \pm 1$                                |
| (c) (i) Let $\frac{a+b}{2} \ge \sqrt{ab}$ .<br>$\therefore \frac{(x-2)+2}{2} \ge \sqrt{2(x-2)}$ $x \ge 2\sqrt{2(x-2)}$                                                                                                                                                                                                                                                                                                                                                                                                                    | MEX–P1 The Nature of Proof<br>MEX12–2, 12–8 Band E3<br>• Provides the correct proof1                     |

|        |     | Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                     |
|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i     | ii) | Let $x = a^{2} + 2$ .<br>$a^{2} + 2 \ge 2\sqrt{2(a^{2} + 2 - 2)}$<br>$a^{2} + 2 \ge 2\sqrt{2}a$<br>$\therefore a > 0, a^{2} + 2 > 0 \text{ and } 2\sqrt{2}a > 0$<br>$(a^{2} + 2)^{2} \ge 8a^{2}$<br>$a^{4} + 4a^{2} + 4 \ge 8a^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MEX-P1 The Nature of Proof<br>MEX12-2, 12-7, 12-8 Bands E3-E4<br>• Provides the correct<br>condition AND proof for<br>$(a^2 + 2)^2 \ge 8a^2 \dots 2$<br>• Provides the correct proof<br>for $a^2 + 2 \ge 2\sqrt{2}a \dots 1$ |
| (d) (i | i)  | Let <i>t</i> be the time in hours after the helicopter<br>leaves its base.<br>Path of the helicopter:<br>$\begin{pmatrix} -25\\ 124\\ 28 \end{pmatrix} + t \begin{pmatrix} 18\\ 12\\ 4 \end{pmatrix}$ Path of the missile:<br>$\begin{pmatrix} -8\\ -238\\ 3 \end{pmatrix} + (t-1) \begin{pmatrix} 20\\ 280\\ 25 \end{pmatrix}$ Assuming the missile will hit the helicopter:<br>$\begin{pmatrix} -25\\ 124\\ 28 \end{pmatrix} + t \begin{pmatrix} 18\\ 12\\ 4 \end{pmatrix} = \begin{pmatrix} -8\\ -238\\ 3 \end{pmatrix} + (t-1) \begin{pmatrix} 20\\ 280\\ 25 \end{pmatrix}$ -25 + 18t = -8 + 20t - 20, t = 1.5<br>124 + 12t = -238 + 280t - 280, t = 2.34<br>Since the value of <i>t</i> is inconsistent for the <i>x</i> - and<br><i>y</i> -coordinates, the missile will not collide with<br>the helicopter. | <ul> <li>MEX–V1 Further Work with Vectors<br/>MEX12–3, 12–7, 12–8 Bands E3–E4</li> <li>Shows the inconsistency for<br/>the value of <i>t</i> for the <i>x</i>- and<br/><i>y</i>-coordinates</li></ul>                        |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii) Path of the helicopter:<br>$\begin{pmatrix} -25\\ 124\\ 28 \end{pmatrix} + t \begin{pmatrix} 18\\ 12\\ 4 \end{pmatrix}$ Path of the missile:<br>$\begin{pmatrix} -8\\ -238\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 20\\ 280\\ 25 \end{pmatrix}$ Intersection of missile with the helicopter:<br>$\begin{pmatrix} -25\\ 124\\ 28 \end{pmatrix} + t \begin{pmatrix} 18\\ 12\\ 4 \end{pmatrix} = \begin{pmatrix} -8\\ -238\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 20\\ 280\\ 25 \end{pmatrix}$ Equating <i>x</i> :<br>$-25 + 18t = -8 + 20\lambda$ $-17 = 20\lambda - 18t$ $-238 = 280\lambda - 252t$ Equating <i>y</i> :<br>$124 + 12t = -238 + 280\lambda$ $362 = 280\lambda - 12t$ | Syllabus content, outcomes, targeted performance bands and marking guide         MEX-V1 Further work with Vectors         MEX12-3, 12-7, 12-8       Band E4         • Provides the correct solution 4         • Shows consistency for the values of t and λ for the x, y and z components |
| Solving simultaneously:<br>600 = 240t<br>t = 2.5<br>$\therefore \lambda = 1.4$<br>Equating <i>z</i> and checking for consistency:<br>$28 + 4t = 3 + 25\lambda$<br>LHS: $28 + 4t = 38$<br>RHS: $3 + 25\lambda = 38$<br>Hence, it is possible that the missile may<br>intersect with the helicopter.<br>The total flight time for the helicopter is 2.5 hours.<br>This means the helicopter will intersect with the<br>missile at 10:30 am.<br>The total flight time for the missile is 1.4 hours.<br>This means it will intersect with the helicopter<br>1 hour and 24 minutes before 10:30 am.<br>Therefore, the missile would need to be fired<br>at 9:06 am to collide with the helicopter.    |                                                                                                                                                                                                                                                                                           |

|          | Sample answer                                                                                                                                                                                                                                                                                                                                                                             | Syllabus content, outcomes, targeted performance bands and marking guide                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Question | n 15                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |
| (a) (i)  | Let $ z  =  z + 2 $ .<br>$a^{2} + b^{2} = (a + 2)^{2} + b^{2}$<br>$a^{2} = a^{2} + 4a + 4$<br>a = -1<br>$\therefore x = -1$                                                                                                                                                                                                                                                               | MEX–N2 Using Complex Numbers<br>MEX12–1, 12–4 Bands E2–E3<br>• Provides the correct solution 1                               |
| (ii)     | ) Let $ z  = 2$ .<br>$a^2 + b^2 = 4$<br>$1 + b^2 = 4$<br>$b = \pm \sqrt{3}$<br>$\therefore z_1 = 2e^{\frac{2\pi}{3}i}, z_2 = 2e^{-\frac{2\pi}{3}i}$                                                                                                                                                                                                                                       | MEX–N2 Using Complex Numbers<br>MEX 12–1, 12–4 Band E3<br>• Provides the correct solution 2<br>• Finds the value of <i>b</i> |
| (iii     | i) $\arg\left(\frac{\upsilon\omega^k}{ki}\right) = \arg\left(2e^{\frac{2\pi}{3}i}\right) + k \arg\left(2e^{-\frac{2\pi}{3}i}\right)$<br>$-\arg(i)$<br>$= \frac{2\pi}{3} - \frac{2k\pi}{3} - \frac{\pi}{2}$<br>$= \frac{1-4k}{6}\pi$<br>$\because \operatorname{Re}\left(\frac{\upsilon\omega^k}{ki}\right) = 0$<br>$\frac{1-4k}{6}\pi = \pm \frac{\pi}{2}$<br>$k = -\frac{1}{2}, \ k = 1$ | MEX-N2 Using Complex Numbers<br>MEX12-1, 12-4 Band E3-E4<br>• Provides the TWO correct<br>values of $k$                      |

|     | Sample answer                                                                                                                     | Syllabus content, outcomes, targeted performance bands and marking guide                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| (b) | (i) Let $u = x^n$ and $\frac{du}{dx} = nx^{n-1}$ .<br>Let $\frac{dv}{dx} = \cos x$ and $v = \sin x$ .                             | MEX-C1 Further Integration<br>MEX12-5 Band E4<br>• Provides the correct<br>recurrence relation |
|     | $\therefore \int x^n \cos x dx = x^n \sin x - n \int x^{n-1} \sin x dx$<br>Let $u = x^{n-1}$ and $\frac{du}{dx} = (n-1)x^{n-2}$ . | Performs the second integration by parts2                                                      |
|     | Let $\frac{dv}{dx} = \sin x$ and $v = -\cos x$ .                                                                                  | • Performs the first integration by parts1                                                     |
|     | $\int x^{n-1} \sin x dx = -x^{n-1} \cos x + \int (n-1)x^{n-2} \cos x dx$                                                          |                                                                                                |
|     | $\int x^{n} \cos x dx = x^{n} \sin x + n \left( x^{n-1} \cos x - (n-1)I_{n-2} \right)$                                            |                                                                                                |
|     | $= x^{n} \sin x + nx^{n-1} \cos x - n(n-1)I_{n-2}$                                                                                |                                                                                                |
|     | (ii) $I_0 = \int_0^\pi \cos x dx$ $= [\sin x]_0^\pi$                                                                              | MEX-C1 Further Integration<br>MEX12-5 Band E3<br>• Provides the correct solution 2             |
|     | = 0<br>$I_2 = [x^2 \sin x + 2x \cos x]_0^{\pi} - 2(1)I_0$<br>$= -2\pi$                                                            | • Calculates $I_0 = 01$                                                                        |
|     | $I_4 = [x^4 \sin x + 4x^3 \cos x]_0^{\pi} - 4(3)I_2$<br>= $-4\pi^3 + 24\pi$                                                       |                                                                                                |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) (i) $P(2): T_1 = 3, T_2 = 4(2)^2 - 1 = 15$<br>$T_2 = \frac{3 \times (2(2)^2 + 2)}{2(2) - 3}$<br>= 15<br>$\therefore P_2$ is true.<br>If $P(k)$ is true, then $T_k = 4k^2 - 1$ and<br>$T_k = \frac{T_{k-1}(2k+1)}{2k-3}.$<br>P(k+1):<br>$T_{k+1} = \frac{T_k(2(k+1)+1)}{2(k+1) - 3}$<br>$= \frac{T_k(2k+3)}{2k-1}$<br>$= \frac{(4k^2 - 1)(2k+3)}{2k-1}$<br>$= \frac{8k^3 + 12k^2 - 2k - 3}{2k-1}$<br>$= \frac{(2k-1)(4k^2 + 8k + 3)}{2k-1}$<br>$= 4k^2 + 8k + 3$<br>$= 4(k^2 + 2k + 1) - 1$<br>$= 4(k+1)^2 - 1$<br>$= T_{k+1}$<br>As $P(2)$ is true, and $P(k)$ implies $P(k+1), P(n)$ | MEX-P2 Further Proof by Mathematical<br>Induction<br>MEX12-1, 12-2, 12-7, 12-8<br>Bands E3-E4<br>• Provides the correct algebraic<br>manipulation of powers to<br>prove $P(k + 1)$ .<br>AND<br>• Provides the correct solution 3<br>• Uses $P(k)$ in $P(k + 1)$ to<br>derive $\frac{(4k^2 - 1)(2k + 3)}{2k - 1}$ 2<br>• Provides the correct proof<br>for $P(2)$ |
| (ii) $\sum_{n=1}^{k} (4n^2 - 1) = \left(4\sum_{n=1}^{k} n^2\right) - k$ $= \frac{4k(k+1)(2k+1)}{6} - k$ $= \frac{(4k^3 + 6k^2 + 2k) - 3k}{3}$ $= \frac{k(4k^2 + 6k - 1)}{3}$ $= \frac{1}{3}k(4k^2 + 6k - 1)$ Therefore, the sum of <i>n</i> terms is<br>$\frac{1}{3}n(4k^2 + 6k - 1).$                                                                                                                                                                                                                                                                                                    | MEX–P1 The Nature of Proof<br>MEX12–1, 12–2, 12–7, 12–8 Band E3<br>• Provides the correct solution 2<br>• Applies properties of summation 1                                                                                                                                                                                                                      |

|     |         | Sample answer                                                                                                       | Syllabus content, outcomes, targeted performance bands and marking guide                                          |
|-----|---------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Que | stion 1 | 16                                                                                                                  |                                                                                                                   |
| (a) | (i)     | $\dot{x} = 5, x = 5t$<br>$\dot{y} = 13 - 10t, y = 13t - 5t^2$                                                       | MEX–M1 Applications of Calculus<br>to Mechanics<br>MEX12–6, 12–7 Band E3<br>• Provides the correct solution 1     |
|     | (ii)    | Horizontally:<br>$\ddot{x} = -0.5\dot{x}$<br>$\frac{d\dot{x}}{dt} = -0.5\dot{x}$                                    | MEX–M1 Applications of Calculus<br>to Mechanics<br>MEX12–6, 12–7 Bands E3–E4<br>• Provides the correct solution 2 |
|     |         | $\int_{5}^{\dot{x}} \frac{d\dot{x}}{\dot{x}} = -0.5 \int_{0}^{t} dt$ $\ln \left  \frac{\dot{x}}{5} \right  = -0.5t$ | • Provides the correct integration of $\ddot{x}$ OR $\ddot{y}$ 1                                                  |
|     |         | $e^{-\frac{1}{2}} = \frac{\dot{x}}{5}$ $\dot{x} = 5e^{-\frac{t}{2}}$                                                |                                                                                                                   |
|     |         | Vertically:                                                                                                         |                                                                                                                   |
|     |         | $y = -10 - 0.5y$ $\frac{d\dot{y}}{dt} = -10 - 0.5\dot{y}$                                                           |                                                                                                                   |
|     |         | $\int_{13}^{y} \frac{dy}{20+y} = -0.5 \int_{0}^{y} dt$                                                              |                                                                                                                   |
|     |         | $\ln \left  \frac{20 + \dot{y}}{20 + 13} \right  = -0.5t$                                                           |                                                                                                                   |
|     |         | $e^{-\frac{t}{2}} = \frac{20 + \dot{y}}{33}$                                                                        |                                                                                                                   |
|     |         | $\dot{y} = 33e^{-2} - 20$                                                                                           |                                                                                                                   |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii) The maximum height occurs when $\dot{y} = 0$ .<br>$0 = 33e^{-\frac{t}{2}} - 20$<br>$-\frac{t}{2} = \ln\left(\frac{20}{33}\right)$<br>t = 1<br>Vertical distance:<br>$\dot{y} = 33e^{-\frac{t}{2}} - 20$<br>$y = -66e^{-\frac{t}{2}} - 20t + c$<br>When $t = 0$ , $y = 0$ .<br>$\therefore c = 66$<br>$y = -66e^{-\frac{t}{2}} - 20t + 66$<br>$= -66e^{-\frac{1}{2}} - 20(1) + 66$<br>= 5.97  m<br>Therefore, the rock can be projected to a maximum height of 5.97 m.<br><i>Note: Consequential on answer to Question 16(a)(ii).</i> | <ul> <li>MEX-M1 Applications of Calculus to Mechanics</li> <li>MEX12-6, 12-7 Bands E3-E4</li> <li>Provides the correct solution 3</li> <li>Provides the correct integration of <i>y</i></li></ul> |

| Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) $v = (k + v_0)a^{bt} - k$ $x = \int vdt$ $= \frac{(k + v_0)a^{bt}}{b \ln a} - kt + c$ $\because t = 0, x = 0$ $\therefore c = -\frac{k + v_0}{b \ln a}$ $\therefore x = \frac{(k + v_0)a^{bt}}{b \ln a} - kt + \frac{k + v_0}{b \ln a}$ $= \frac{(k + v_0)(a^{bt} - 1)}{b \ln a} - kt$ $\because v = (k + v_0)a^{bt} - k, a^{bt} = \frac{v + k}{v_0 + k}, \text{ and}$ $\log_a \left  \frac{v + k}{v_0 + k} \right  = bt, t = \frac{\ln \left  \frac{v + k}{v_0 + k} \right }{b \ln a}.$ $x = \frac{(k + v_0)\left(\frac{v + k}{v_0 + k} - 1\right)}{b \ln a} - \frac{k \ln \left  \frac{v + k}{v_0 + k} \right }{b \ln a}$ $= \frac{(v + k - k - v_0) - k \ln \left  \frac{v + k}{v_0 + k} \right }{b \ln a}$ $= \frac{1}{h \ln a} \left( v - v_0 - k \ln \left  \frac{v + k}{v_0 + k} \right  \right)$ | <ul> <li>MEX-M1 Applications of Calculus to Mechanics</li> <li>MEX12-6, 12-7 Band E4</li> <li>Uses substitution AND algebraic manipulation to provide the correct solution 3</li> <li>Uses algebraic manipulation to obtain any TWO of <i>c</i>, <i>a<sup>bt</sup></i> OR <i>t</i> 2</li> <li>Uses integration to find the value of <i>x</i> in terms of <i>t</i> 1</li> </ul> |
| (c) (i) $(e^{i\theta} + e^{-i\theta})^4 = {4 \choose 0} (e^{i\theta})^4 (e^{-i\theta})^0$<br>$+ {4 \choose 1} (e^{i\theta})^3 (e^{-i\theta})^1$<br>$+ {4 \choose 2} (e^{i\theta})^2 (e^{-i\theta})^2$<br>$+ {4 \choose 3} (e^{i\theta})^1 (e^{-i\theta})^3$<br>$+ {4 \choose 4} (e^{i\theta})^0 (e^{-i\theta})^4$<br>$= e^{4i\theta} + 4e^{2i\theta} + 6 + 4e^{-2i\theta} + e^{-4i\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                   | MEX–N2 Using Complex Numbers<br>MEX12–4, 12–7 Band E3<br>• Provides the correct solution 1                                                                                                                                                                                                                                                                                     |

| Sample answer                                                                                                                                         | Syllabus content, outcomes, targeted performance bands and marking guide                                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| (ii) $\left(e^{i\theta} + e^{-i\theta}\right)^n = \sum_{r=0}^n \binom{n}{r} \left(e^{i\theta}\right)^{n-r} \left(e^{-i\theta}\right)^r$               | MEX–N2 Using Complex Numbers<br>MEX–P1 The Nature of Proof<br>MEX12–1, 12–2, 12–4, 12–7, 12–8                                                 |  |
| $2(e^{i\theta} + e^{-i\theta})^{n} = \left[\binom{n}{0}(e^{i\theta})^{n}(e^{-i\theta})^{r} + \binom{n}{(e^{i\theta})^{n-1}(e^{-i\theta})^{1}}\right]$ | • Uses the conjugate property<br>to provide the correct solution 3                                                                            |  |
| $+\binom{n}{2}(e^{i\theta})^{n-2}(e^{-i\theta})^2 + \dots$ $\binom{n}{2}(e^{i\theta})^n (e^{-i\theta})^n$                                             | • Uses the symmetry of binomial coefficients to derive $2\sum_{n=0}^{n} {n \choose r} \left( e^{(n-2r)i\theta} + e^{-(n-2r)i\theta} \right).$ |  |
| $+ {n \choose n} (e^{i\theta})^{*} (e^{-i\theta})^{*} \\ + \left[ {n \choose n} (e^{i\theta})^{0} (e^{-i\theta})^{n} \right]$                         | OR<br>• Equivalent merit                                                                                                                      |  |
| $+\binom{n}{n-1} (e^{i\theta})^{1} (e^{-i\theta})^{n-1}$ $+\binom{n}{n-2} (e^{i\theta})^{2} (e^{-i\theta})^{n-2}$                                     | combines the terms                                                                                                                            |  |
| $(n^{n} - 2) + \dots + {\binom{n}{0}} (e^{i\theta})^{n} (e^{-i\theta})^{0} \end{bmatrix}$                                                             |                                                                                                                                               |  |
| $\because \binom{n}{r} = \binom{n}{n-r}, \ \binom{n}{r} + \binom{n}{n-r} = 2\binom{n}{r}$                                                             |                                                                                                                                               |  |
| $2\left(e^{i\theta} + e^{-i\theta}\right)^n = \sum_{r=0}^n 2\binom{n}{r} \left(e^{(n-r)i\theta}e^{-ri\theta}\right)^{(r)i\theta}$                     |                                                                                                                                               |  |
| $+e^{(r)i\theta}e^{-(n-r)i\theta}$ $=2\sum_{r=0}^{n} \binom{n}{r} \left(e^{(n-2r)i\theta} + e^{-(n-2r)i\theta}\right)$                                |                                                                                                                                               |  |
| $=2\sum_{r=0}^{n} \binom{n}{r} 2\cos((n-2r)\theta)$                                                                                                   |                                                                                                                                               |  |
| $(e^{i\theta} + e^{-i\theta})^n = \sum_{r=0}^n {n \choose r} 2\cos((n-2r)\theta)$                                                                     |                                                                                                                                               |  |
| $=2\sum_{r=0}^{n} \binom{n}{r} \cos((n-2r)\theta)$                                                                                                    |                                                                                                                                               |  |

| _     | Sample answer                                                                                                           |          | Syllabus content, outcomes, targeted performance bands and marking guide |  |
|-------|-------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------|--|
| (iii) | $\int \left(e^{i\theta} + e^{-i\theta}\right)^6 d\theta = 2 \int \binom{6}{0} \cos 6\theta + \binom{6}{1} \cos 4\theta$ | ME<br>ME | EX–C1 Further Integration<br>EX12–1, 12–4, 12–5, 12–7<br>Bands E3–E4     |  |
|       | $+\binom{6}{2}\cos 2\theta + \binom{6}{3}\cos \theta$                                                                   | •        | Provides the correct solution 2                                          |  |
|       | $+\binom{6}{4}\cos(-2\theta)$                                                                                           | •        | Uses part (c)(ii) to obtain<br>the sum of cosines1                       |  |
|       | $+\binom{6}{5}\cos(-4\theta)$                                                                                           |          |                                                                          |  |
|       | $+\binom{6}{6}\cos(-6\theta)$                                                                                           |          |                                                                          |  |
|       | (from part (c)(ii))                                                                                                     |          |                                                                          |  |
|       | $= 2\int \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta$                                                                 |          |                                                                          |  |
|       | $+20\cos 0^\circ + 15\cos(-2\theta)$                                                                                    |          |                                                                          |  |
|       | $+6\cos(-4\theta)$                                                                                                      |          |                                                                          |  |
|       | $+\cos(-6\theta)d\theta$                                                                                                |          |                                                                          |  |
|       | $\because \cos(-\theta) = \cos\theta$                                                                                   |          |                                                                          |  |
|       | $\int \left(e^{i\theta} + e^{-i\theta}\right)^6 d\theta = 2\int 2\cos 6\theta + 12\cos 4\theta$                         |          |                                                                          |  |
|       | $+30\cos 2\theta + 40d\theta$                                                                                           |          |                                                                          |  |
|       | $=\frac{2\sin 6\theta}{3}+6\sin 4\theta$                                                                                |          |                                                                          |  |
|       | $+30\sin 2\theta + 80\theta + C$                                                                                        |          |                                                                          |  |
|       | $=\frac{2\sin 6\theta}{3}+6\sin 4\theta$                                                                                |          |                                                                          |  |
|       | $+30\sin 2\theta + 80\theta + C$                                                                                        |          |                                                                          |  |
|       | Note: Consequential on answer to <b>Question</b><br>16(c)(ü).                                                           |          |                                                                          |  |