

Trial Examination 2023

HSC Year 12 Mathematics Standard 2

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1 B 1 microsecond = 1×10^{-6} s	MS-M1 Applications of Measurement MS11-4 Bands 2-3
\therefore 6 microseconds = 6 × 10 ⁻⁶ s	
Question 2CA path is a walk with no repeated vertices. Therefore,ACBEC is not a path.	MS-N2 Network Concepts MS2-12-8 Bands 2-3
Question 3DD is correct. Given that there are six values in each data set, the median is found by calculating the mean of the middle two values (45 and 55 in option D).	MS–S1 Data Analysis MS11–7 Bands 2–3
$median = \frac{45 + 55}{2}$	
= 50 Finding the mean gives:	
$mean = \frac{40 + 45 + 45 + 55 + 85 + 90}{6}$	
$=\frac{360}{6}$ $= 60$	
A is incorrect. This dataset has a median of 55 and a mean of 60.	
B is incorrect. This dataset has a median of 50 and a mean of 53.33.	
C is incorrect. This dataset has a median of 50 and a mean of 56.67.	
Question 4 B Substituting $V_0 = 17500$, $r = 0.11$ and $n = 5$ into the declining-balance formula gives: $S = V_0(1-r)^n$ $= 17500 \times (1-0.11)^5$	MS-F4 Investments and Loans MS2-12-5 Bands 3-4
=\$9772.10	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 5 C	MS-M7 Rates and Ratios
Finding the price per gram for each packet of chips gives:	MS2-12-10 Bands 4-5
1 g of Nofrills chips = $\frac{1.25}{60}$	
-2.08 cents	
1 g of Smithy chips = $\frac{2.40}{135}$	
= 0.0178	
=1.78 cents	
1 g of Top chips = $\frac{4.10}{240}$	
= 0.0171	
=1.71 cents	
1 g of Cheap chips = $\frac{5.20}{300}$	
= 0.0173	
=1.73 cents	
As the packet of Top chips has the lowest cost per gram, it has the best value.	
Question 6 B	MS-A1 Formulae and Equations
$W = \sqrt[3]{\frac{2\pi}{6Y}}$	MS11–1 Bands 2–3
$= \sqrt[3]{\frac{2\pi}{6 \times 6.83}}$	
= 0.535	
Question 7 A	MS-S1 Data Analysis
A is not a true statement and is therefore the required response. Positively skewed data would be bunched on the right-hand side of the dot plot.	MS11–1 Bands 2–3
B is a true statement and is therefore not the required response. As the data is bunched on the left-hand side of the dot plot, it is negatively skewed.	
C is a true statement and is therefore not the required response. The data has one outlier near 50.	
D is a true statement and is therefore not the required response. The standard deviation cannot be found because the horizontal scale does not include specific scores.	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 8AUsing the cosine rule gives:	MS–M6 Non-right-angled Trigonometry MS2–12–4 Bands 4–5
$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$	
$\cos\theta = \frac{10^2 + 36^2 - 30^2}{2 \times 10 \times 36}$	
$\theta = 46.4578$ $\approx 46^{\circ}$	
Question 9CGiven that the distance travelled, d , is x km and the time taken, t , is 2 hours:	MS–A4 Types of Relationships MS2–12–6 Bands 5–6
speed = $\frac{\text{distance}}{\text{time}}$	
$y = \frac{d}{t}$	
$=\frac{x}{2}$	
Question 10BThe distance around the running track is given by the circumference of a circle and two straight lengths of 100 m each. Therefore:	MS-M1 Applications of Measurement MS11-4 Bands 3-4
perimeter = circumference of circle + 200 - $2\pi r + 200$	
$=2\pi\times\frac{65}{2}+200$	
$=65\pi + 200 \text{ m}$	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 11 D	MS–M6 Non-right-angled Trigonometry
Finding the hypotenuse gives:	MS2–12–4 Bands 4–5
$c = \sqrt{a^2 + b^2}$ $\sqrt{(A)^2 - (A)^2}$	
$=\sqrt{\left(\frac{4}{5}\right)}+\left(\frac{5}{5}\right)$	
=1	
$ \frac{4}{5} 1 \\ \frac{\theta}{3} \\ \frac{3}{5} \\ $	
Therefore:	
$\sin A = \frac{\text{opp}}{\text{hyp}}$	
4	
$\sin\theta = \frac{5}{5}$	
$=\frac{4}{5}$	
5	
Question 12 A Finding the ratio of fruit to sugar sives:	MS-M7 Rates and Ratios MS2-12-10 Bands 4-5
finding the ratio of fruit to sugar gives.	14152-12-10 Danus +-5
Iruit : sugar	
$10 \text{ kg} \cdot 0 \text{ kg}$	
2.5 Kg . 2 Kg	
is unuplying both sides of the ratio to reach 6 kg of sugar gives: $2.5 \times 3 \times 2 \times 3$	
2.3^3.2^3	
Therefore, Jihoon requires 7.5 kg of fruit.	

Answer and explanation	Syllabus content, out and targeted performan	comes ce bands
Question 13 C	MS–M7 Rates and Ratios	
Finding the area of triangle <i>ABC</i> gives:	MS2-12-3	Bands 4–5
area of $\Delta ABC = \frac{1}{2} \times 3 \times 4 \times \sin A$		
$=\frac{1}{2}\times 12\times \sin A$		
Finding the area of triangle <i>ADE</i> gives:		
area of $\Delta A DE = \frac{1}{2} \times 7 \times 10 \times \sin A$		
$=\frac{1}{2} \times 70 \times \sin A$		
Finding the ratio gives:		
$\frac{1}{2} \times 12 \times \sin A : \frac{1}{2} \times 70 \times \sin A$		
12:70		
6:35		
Question 14 C	MS–M1 Applications of Mea	surement
Finding the height of the cylinder gives:	MIS11-4	Bands 3–0
$h = 3 \times 2r$		
= 0r		
volume of cylinder = $\pi r h$		
$=\pi r^2 \times 6r$		
$=6\pi r^3$		
volume of tennis balls = $3 \times \frac{4}{3} \pi r^3$		
$=4\pi r^3$		
Thus, finding the fraction of the volume of the cylinder that is occupied by the tennis balls gives:		
volume of tennis balls $4\pi r^3$		
volume of cylinder $-\frac{1}{6\pi r^3}$		
$=\frac{4}{}$		
6		
$=\frac{2}{3}$		
Question 15CThe mode gives the most frequent value in a dataset; thus, it	MS-S1 Data Analysis MS11-2	Bands 3–4
will be most useful to the owner as it will indicate which size is sold most often.		

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 16	
(a) Using Pythagoras' theorem to find the third side length of the triangle gives: $a^{2} + b^{2} = c^{2}$ $a^{2} = c^{2} - b^{2}$ $a^{2} = 13^{2} - 12^{2}$ $a^{2} = 25$ $a = 5 \text{ m}$ $\underbrace{- \frac{-13}{2} \text{ m}}_{\text{K} 12 \text{ m}}_{\text{K} 3} \text{ Therefore:}$ $h = 11 + 5$ $= 16 \text{ m}$	h MS-M1 Applications of Measurement MS11-3 Bands 2-3 • Provides the correct solution 1
(b) area of triangle = $\frac{1}{2} \times 12 \times 5$ = 30 m ² area of rectangle = 11×12 = 132 m ² Therefore: total area = 132 + 30 = 162 m ² Question 17	MS-M1 Applications of Measurement MS11-3 Bands 2-3 • Provides the correct solution 2 • Calculates the area of the triangle OR rectangle 1
The mean of class A is less than the mean of class B. The standard deviation of class A is less than the standard deviation of class B.	MS–S1 Data Analysis MS11–7 Bands 3–4 • Compares the means AND standard deviations2 • Compares the means OR standard deviations1

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 18	
Finding the distance that each car travelled gives: speed = $\frac{\text{distance}}{\text{time}}$ distance = speed × time = 90 × 5 = 450 km Finding the time it took car B to complete the journey gives: time = $\frac{\text{distance}}{\text{speed}}$ = $\frac{450}{80}$ = 5.625 hours = 5 hours 38 minutes	MS-M7 Rates and Ratios MS2-12-3 Bands 2-3 • Provides the correct solution 2 • Calculates the distance travelled during the journey 1
Question 19	
Given that $S = 180$, $D = 220$ and $n = 4$: $S = V_0 - Dn$ $180 = V_0 - 220 \times 4$ $V_0 = 180 + 880$ = \$1060	MS-F1 Money Matters MS11-5 Bands 2-3 • Provides the correct solution 2 • Finds the total amount of depreciation
Question 20	
longitude difference = $75 + 150$ = 225° Given that $15^{\circ} = 1$ hour: time difference = $\frac{225}{15}$ = 15 hours Therefore, New York is 15 hours behind Sydney, so the event	MS-M2 Working with Time MS11-3 Bands 2-4 • Provides the correct solution 3 • Calculates the longitude difference AND time difference
was broadcast at 11:00 pm on Tuesday.	Calculates the longitude difference1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 21	
(a) First toss Second toss Third toss $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	MS-S2 Relative Frequency and Probability MS11-2 Bands 3-5 • Draws a tree diagram that shows all the possible outcomes AND probabilities
(b) $P(\text{exactly one tail})$ = P(THH or HTH or HHT) $= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $= \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$ $= \frac{3}{8}$ OR Reading from the tree diagram: P(exactly one tail) = P(THH, HTH or HHT) from (HHH, HHT, HTH, HTT, THH, THT, TTH, TTT) $= \frac{3}{8}$	MS-S2 Relative Frequency and Probability MS11-8 Bands 3-5 • Provides the correct solution2 • Calculates at least ONE of the three probabilities1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	P(all heads) = P(HHH) = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ = $\frac{1}{8}$ OR Reading from the tree diagram: P(all heads) = (HHH) from (HHH, HHT, HTH, HTT, THH, THT, TTH, TTT) = $\frac{1}{8}$	MS–S2 Relative Frequency and Probability MS11–8 Bands 3–5 • Provides the correct solution 1
Que	stion 22	
(a)	taxable income = $108\ 000 - 342 - 674$ = $\$106\ 984$ Medicare levy = $0.02 \times 106\ 984$ = $\$2140$	MS-F1 Money Matters MS11-10 Bands 4-5 • Calculates the taxable income AND Medicare levy2 • Calculates the taxable income1
(b)	income tax payable = $5902 +$ $0.325 \times (106\ 984 - 45\ 000)$ = $5902 + 0.325 \times 61\ 984$ = $5902 + 20\ 144.80$ = $$26\ 046.80$ tax payable = income tax payable + Medicare levy = $26\ 046.80 + 2140$ = $$28\ 187$ Note: Consequential on answer to Question 22(a).	MS-F1 Money Matters MS11-10 Bands 4-5 • Calculates the tax payable2 • Calculates the income tax payable1
(c)	Cameron will owe money to the Australian Taxation Office because his tax payable of \$28 187 is greater than his PAYG tax of \$26 200.	MS-F1 Money Matters MS11-5 Bands 3-4 • Provides the correct solution 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 23	
(a)	City <i>D</i> is most frequently used. It is the vertex with the highest degree (5), so it has the largest number of direct connections to other cities.	MS-N2 Network Concepts MS2-12-8Bands 2-3• States the correct city.AND• Justifies the answer by identifying that city D has the highest degree
(b)	B C C D E total travel time = $2 + 9 + 1$ = 12 hours Note: Students do not need to include flight times in their paths to obtain full marks.	MS-N2 Network Concepts MS2-12-8 Bands 2-3 • Draws the path AND determines the total travel time2 • Draws the path OR determines the total travel time1
Que	stion 24	
(a)	The third second is the interval between $t = 2$ and t = 3 seconds. Substituting $t = 2$ into the equation gives: $h = 20 \times 2 - 2^2$ = 40 - 4 = 36 m Substituting $t = 3$ into the equation gives: $h = 20 \times 3 - 3^2$ = 60 - 9 = 51 m Therefore, the ball travels a vertical distance of 51 - 36 = 15 m in the third second.	MS-A4 Types of Relationships MS2-12-1 Bands 4-5 • Provides the correct solution 2 • Calculates the vertical distance at <i>t</i> = 3 1
(b)	average speed = $\frac{\text{distance travelled from } t = 2 \text{ to } t = 3}{\text{time between } t = 2 \text{ and } t = 3}$ = $\frac{15}{1}$ = 15 m/s Note: Consequential on answer to Question 24(a).	MS-A4 Types of Relationships MS2-12-1 Bands 4-5 • Provides the correct solution 2 • Provides some relevant working 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 25	
The absolute error of a measurement is half of the amount it is rounded by. Therefore, the absolute error of the loaf of bread is 5 g. Finding the percentage error gives: percentage error = $\frac{\text{absolute error}}{\text{measurement}} \times 100$	MS-M1 Applications of Measurement MS11-3 Bands 2-3 • Provides the correct solution 2 • Provides some relevant working 1
$= \frac{5}{700} \times 100$ = 0.714%	
Question 26	
(a) Finding the total value of Charlotte's investment after six years gives: $FV = PV (1+r)^{n}$ $= 7000 \times (1+0.045)^{6}$ $= \$9115.82$ Thus, the compound interest earned is: 9115.82 - 7000 = \\$2115.82	MS-F4 Investments and Loans MS2-12-5 Bands 3-4 • Provides the correct solution 2 • Finds the total value of the investment
(b) Substituting the compound interest found in part (a) into the simple interest formula gives: $I = Pm$ $2115.82 = 7000 \times r \times 6$ $r = \frac{2115.82}{42\ 000}$ $= 0.050376$ $= 5.04\%$ Note: Consequential on answer to Question 26(a).	MS-F4 Investments and Loans MS2-12-5 Bands 4-5 • Provides the correct solution 2 • Uses the simple interest formula with ONE error 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 27	
(a)	Using interior angles gives: N A A A A B A A A A A A A A A A A A A	MS-M6 Non-right-angled Trigonometry MS2-12-4 Bands 3-4 • Provides the correct solution 2 • Uses interior angles to find the angle of 70°
(b)	Using the sine rule gives: $\frac{12}{\sin(40)} = \frac{AB}{\sin(30)}$ $AB = \frac{12\sin(30)}{\sin(40)}$ $= \frac{12 \times \frac{1}{2}}{\sin(40)}$ $= \frac{6}{\sin(40)}$ $= 9.3343 \text{ km}$ $\approx 9 \text{ km}$	MS-M6 Non-right-angled Trigonometry MS2-12-4 Bands 4-5 • Provides the correct solution 2 • Uses the sine rule with ONE error 1
Que	stion 28	
(a)	Using a calculator to find Pearson's correlation coefficient gives: r = 0.8047	MS-S4 Bivariate Data Analysis MS2-12-7 Bands 2-3 • Provides the correct solution 1
(b)	It is a strong positive correlation, since 0.75 < <i>r</i> < 1. <i>Note: Consequential on answer to</i> Question 28(a) .	MS-S4 Bivariate Data AnalysisMS2-12-7Bands 2-3• Describes the correlation with reference to the Pearson's correlation coefficient 1
(c)	As engine size increases, fuel economy becomes worse/fuel economy becomes poorer.	MS-S4 Bivariate Data Analysis MS2-12-7 Bands 2-3 • States the relationship between engine size and fuel economy 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 29	
$\frac{3x}{2} - \frac{x}{4} = 5 + x$ $4 \times \frac{3x}{2} - \frac{x}{4} = 4 \times (5 + x)$ $6x - x = 20 + 4x$ $5x = 20 + 4x$ $5x - 4x = 20$ $x = 20$	MS-A1 Formulae and Equations MS11-1 Bands 3-4 • Provides the correct solution 3 • Calculates the value of x with ONE error
Question 30	
dividend yield = $\frac{\text{dividend per share}}{\text{market price per share}} \times 100$ = $\frac{0.76}{8.50} \times 100$ = \$8.94	MS-F4 Investments and Loans MS2-12-5 Bands 3-4 • Provides the correct solution 2 • Calculates the dividend yield with ONE error OR incorrect rounding 1
Question 31	
12% per annum = $\frac{12}{12}$ = 0.01 = 1% per month Therefore, $r = 0.0100$. $N = 12 \times 5$ = 60 Using the table to find Natalia's monthly repayment, a , gives: 10 000 = $a \times 30.9766$ $a = \frac{10\ 000}{30\ 9766}$	MS-F4 Investments and Loans MS2-12-5 Bands 4-5 • Provides the correct solution 3 • Calculates the monthly repayment with ONE error 2 • Provides some relevant working 1
= \$322.82	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 32	
(a)	positive correlation	MS-S4 Bivariate Data Analysis MS2-12-2 Bands 2-3 • Identifies the correct correlation 1
(b)	Using two points on the line of best fit – (16, 22) and (15, 21) – to find the gradient gives: $m = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{22 - 21}{16 - 15}$ $= \frac{1}{1}$ $= 1$ Substituting $m = 1$ into the general equation of a line gives: $y = 1 \times x + c$ y = x + c Substituting the point (16, 22) into $y = x + c$ gives: 22 = 16 + c c = 22 - 16 = 6 Therefore, the equation of the line of best fit is $y = x + 6$.	MS-S4 Bivariate Data Analysis MS2-12-2 Bands 4-5 • Finds the gradient AND the equation of the line of best fit2 • Finds the gradient1
(c)	Substituting $x = 10$ gives: y = 10 + 6 = 16 cm <i>Note: Consequential on answer to Question 32(b).</i>	MS–S4 Bivariate Data Analysis MS2–12–2 Bands 3–4 • Provides the correct solution 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 33	
(a) $y = 2x + 650$	MS-A4 Types of Relationships MS2-12-6 Bands 3-4 • Provides the correct solution 2 • Provides the correct gradient OR y-intercept
(b) $y = 2x + 650$ y = 2x + 650 y = 10x y = 10	MS-A4 Types of Relationships MS2-12-6 Bands 3-4 • Sketches the graphs of $y = 10x$ AND $y = 2x + 650 \dots 2$ • Sketches the graph of $y = 10x$ OR $y = 2x + 650 \dots 1$
(c) Equating the two equations to find the <i>x</i> value of the point of intersection gives: 10x = 2x + 650 8x = 650 x = 81.25 Therefore, the manufacturer must produce 82 pairs of shorts to generate a profit. <i>Note: Consequential on answer to Question 33(a)</i> <i>and Question 33(b)</i> .	MS-A4 Types of Relationships MS2-12-6 Bands 4-5 • Provides the correct solution 2 • Provides some relevant working 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 34	
energy used in 2.5 hours = 800×2.5 = 2000 Wh Converting the energy used each day into kWh gives: $\frac{2000 \text{ Wh}}{1000 \text{ kWh}} = 2 \text{ kWh}$ Finding the cost of using the drill for one year gives: $\cot t = 2 \times 365 \times 0.2866$ = 730×0.2866 = $\$209.22$	MS-A4 Types of Relationships MS2-12-6 Bands 4-5 • Provides the correct solution 3 • Calculates the cost for one year with ONE error 2 • Provides some relevant working 1
Question 35	
 (a) The shortest path is: home to station 1 = 8 minutes station 1 to station 2 = 7 minutes station 2 to school = 14 minutes Therefore, the time it takes for Skylar to travel to school is 8 + 7 + 14 = 29 minutes. 	MS-N3 Critical Path Analysis MS2-12-8 Bands 4-5 • Provides the correct solution 2 • Finds the time of the shortest path with ONE error
(b) station 3 station 2 Skylar's home school	MS2–12–8 Bands 3–4 • Draws the minimum spanning tree1
 (c) It would be faster for Skylar to wait for the train to station 2 and then walk to school from station 2 (5-minute wait + 7-minute train ride + 14-minute walk = 26 minutes). 	MS–N3 Critical Path Analysis MS2–12–8 Bands 3–4 • States the faster path1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 36	
(a) Dividing the wall into the four sections gives: $\begin{array}{c} &\leftarrow -12 \text{ m} - \cancel{\ast} - 12 \text{ m} - \cancel{\ast} - 12 \text{ m} - \cancel{\ast} - 12 \text{ m} - \cancel{\ast} \\ \hline & A_1 & A_2 & A_3 & A_4 \\ \hline & A_1 & A_2 & A_3 & A_4 \\ \hline & A_1 = \frac{h}{2} (d_f + d_l) \\ A_1 = \frac{12}{2} \times (15 + 25) \\ = 6 \times 40 \\ = 240 \text{ m}^2 \\ A_2 = \frac{12}{2} \times (25 + 20) \\ = 6 \times 45 \\ = 270 \text{ m}^2 \\ A_3 = \frac{12}{2} \times (20 + 26) \\ = 6 \times 46 \\ = 276 \text{ m}^2 \\ A_4 = \frac{12}{2} \times (26 + 14) \\ = 6 \times 40 \\ = 240 \text{ m}^2 \\ \text{total area} = 240 + 270 + 276 + 240 \\ = 1026 \text{ m}^2 \end{array}$	MS-M7 Rates and Ratios MS2-12-4 Bands 4-5 • Provides the correct solution3 • Calculates the area of the wall with ONE error2 • Provides some relevant working1
(b) $V = \text{area} \times \text{width of dam}$ = 1026 × 28 = 28 728 m ³	MS-M1 Applications of Measurement MS11-4 Bands 2-3 • Provides the correct solution 2
Note: Consequential on answer to Question 36(a) .	• Provides some relevant working 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 37	
Calculating the z-score for Kenna's first exam gives: $z = \frac{73 - 78}{4}$ $= -1.25$ Calculating the z-score for Kenna's second exam gives: $z = \frac{70 - 84}{8}$ $= -1.75$ As the first exam has a better z-score, Kenna achieved a better result in the first exam.	MS-S5 The Normal Distribution MS2-12-7 Bands 5-6 • Provides the correct solution 3 • Finds the z-scores with ONE error
Question 38	
N = number of standard drinks = 5×1.1 = 5.5 standard drinks H = hours spent drinking = 4.5 hours M = mass of the person = 110 kg $BAC_{\text{male}} = \frac{10N - 7.5H}{6.8M}$ = $\frac{10 \times 5.5 - 7.5 \times 4.5}{6.8 \times 110}$ = 0.0284	MS-A1 Formulae and Equations MS11-1 Bands 3-5 • Provides the correct solution 2 • Calculates the BAC with ONE error
Question 39	
dosage in mg = 100×18 = 1800 mg dosage in mL = $\frac{1800}{40}$ = 45 mL	MS-A1 Formulae and Equations MS11-1 Bands 3-5 • Provides the correct solution 3 • Calculates the dosage with ONE error

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 40	
(a)	As the account compounds biannually for five years, the period is 10. The interest rate is $\frac{12}{2} = 6\%$ for each period of six months. Therefore, in five years Jamari will have saved $13.1808 \times 2000 = $26\ 361.60$	MS–S5 The Normal Distribution MS2–12–7 Bands 5–6 • Provides the correct solution 2 • Calculates the amount with ONE error
(b)	Finding the time it would take Cara to save \$26 361.60 gives: 26 361.60 = 1600 × x $x = \frac{26 361.60}{1600}$ = 16.476 Referring to the table, x = 16.476 corresponds most closely to the future value of 16.8699, which results from an interest rate of 6% over 12 periods. Therefore, Cara will be able to contribute more to the deposit after $\frac{12}{2} = 6$ years. <i>Note: Consequential on answer to Question 40(a).</i>	MS–S5 The Normal Distribution MS2–12–7 Bands 5–6 • Provides the correct solution 2 • Calculates the number of years with ONE error