

HSC Trial Examination 2019

Physics

Solutions and marking guidelines

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Section I

Answer and explanation	Syllabus content and course outcomes	
Question 1A $s = ut + \frac{1}{2}at^2$	Mod 5 Advanced Mechanics PH12–12	Bands 3–4
$22.8 = 0 + \frac{1}{2} \times 9.8 \text{ m s}^{-2} \times t^2$		
$t = \sqrt{\frac{22.8}{4.9}}$		
= 2.16 s		
Question 2 C	Mod 5 Advanced Mechanics	
$v = \sqrt{rg\tan(\theta)}$	PH12-12	Bands 3–5
$= \sqrt{4500 \times 9.8 \times \tan(8)}$		
$= 78.7 \text{ m s}^{-1}$		
Question 3 C	Mod 5 Advanced Mechanics PH12–12	Bands 3–4
$v = \frac{2\pi T}{T}$		
$=\frac{2\times\pi\times8}{0.32}$		
$= 157 \text{ m s}^{-1}$		
Question 4 A	Mod 5 Advanced Mechanics	
The units for angular velocity are either degrees ^{-1} or rad s ^{-1} . The only possible answer is A .	PH12-12	Bands 2–3
Question 5 D	Mod 5 Advanced Mechanics	
A , B and C are all Kepler's Laws. D is not, but is rather relating to gravity.	PH12-12	Bands 3–4
Question 6 C	Mod 6 Electromagnetism	D 1 2 5
$E = \frac{V}{D}$	PH12–13	Bands 3–5
$=\frac{240}{1.2}$		
$= 200 \text{ V m}^{-1}$		
W = qEd		
$= 1.602 \times 10^{-19} \times 200 \times 0.47$		
$= 1.77 \times 10^{-17} \text{ J}$		
Question 7 B	Mod 6 Electromagnetism	
$F = qvB\sin(\theta)$	PH12-13	Bands 4–5
$= 1.602 \times 10^{-19} \times 1.5 \times 10^8 \times 2.0 \times 10^{-2} \times \sin(7.5^{\circ})$		
$= 6.273 \times 10^{-4} \text{ N}$		
The only possible answer after rounding is B .		

Answer and explanation	Syllabus content and course outcomes	
Question 8A $F = 4\pi \times 10^{-7} \times 1.37 \times 0.74$	Mod 6 Electromagnetism PH12–13	Bands 4–5
$L^{-} 2\pi \times 0.02$ = 1.0 × 10 ⁻⁵ N m ⁻¹ attractive		
Question 9B $\frac{I_p}{I} = \frac{n_s}{n}$	Mod 6 Electromagnetism PH12–13	Bands 3–4
$I_{\rm p} = \frac{800 \times 3.34}{1600}$		
= 1.67 amp		
Question 10 D Maximum torque is achieved when the force is applied at right angles with the largest distance possible; hence $\tau = r_{\perp}F$.	Mod 6 Electromagnetism PH12–13	Bands 3–4
Question 11 C Faraday related electricity and magnetism, while Maxwell linked that an electromagnetic wave consists of oscillating electric and magnetic fields that included visible light. This meant that Maxwell unified light as a form of an electromagnetic wave.	Mod 7 The Nature of Light PH12–14	Bands 2–4
Question 12C $\lambda_{max} = \frac{b}{T}$ $T = \frac{b}{\lambda_{max}}$ $= \frac{2.898 \times 10^{-3}}{550 \times 10^{-9}}$ $= 5269 \text{ K}$	Mod 7 The Nature of Light PH12–14	Bands 2–4
Question 13 C 6 m 0.03 m	Mod 7 The Nature of Light PH12–14	Bands 3–5
angle = $\tan^{-1}\left(\frac{0.03}{6}\right)$ = 28.65°		
$\lambda = \frac{90 \times 10^{-6} \times \sin(0.2865)}{1}$ = 4.50 × 10 ⁻⁷ m or 450 nm		
Question 14APolarisation occurs only in transverse waves and in one direction; hence, only answer A is possible.	Mod 7 The Nature of Light PH12–14	Bands 2–3

Answer and explanation	Syllabus content and course outcomes
Question 15 A $L = 42 \times \sqrt{\left(1 - \frac{(2.75 \times 10^8)^2}{(3.0 \times 10^8)^2}\right)}$	Mod 7 The Nature of Light PH12–14 Bands 4–5
= 16.79 m	
Question 16 D $\lambda = \frac{h}{mv}$ $= \frac{6.626 \times 10^{-34}}{9.109 \times 10^{-31} \times 2.2 \times 10^{6}}$	Mod 8 From the Universe to the Atom PH12–15 Bands 3–4
$= 3.3 \times 10^{-10}$ m or 0.33 nm	
Question 17CA is an example of nuclear fusion; D is not a definition for nuclear fission; and B is incorrect due to the release of protons and positrons. The only correct answer is C.	Mod 8 From the Universe to the Atom PH12–15 Bands 2–3
Question 18DAlpha particles are heavy compared to beta particles and have a charge of +2, as in the helium nucleus.	Mod 8 From the Universe to the AtomPH12-15Bands 2-3
Question 19DBinding energy is the only suitable answer as it is the separation or combining of protons and neutrons into its constituents. The CNO cycle is when stars convert hydrogen to helium, which is incorrect for this question. Gravitational potential energy and elastic potential energy do not separate nor combine atoms together to satisfy the question; neither is related.	Mod 8 From the Universe to the Atom PH12–15 Bands 2–3
Question 20BAll but B are fundamental forces of nature. Electrostatic charge is not a force.	Mod 8 From the Universe to the AtomPH12-15Bands 2-3

	Sample answer	Syllabus content, course outcomes and marking guide
Question 21		
(a) You need to To find t_1 , $t_1 = \frac{17 \text{ m}}{100000000000000000000000000000000000$	o find t_1 and t_2 of the projectile. $vy = u_y + at.$ $\frac{s^{-1} \times \sin(45)}{-9.8}$	Mod 5 Advanced Mechanics PH12–12 Bands 4–6 • Gives correct equation to determine time. AND • Demonstrates manipulation of the
= 1.23 s To find t_2 , $t_2 = \sqrt{\frac{2x(-1)}{2x(-1)}}$	$\Delta y = u_y t + a_y t^2.$	 correct equation. AND States correct answer with units
$\int \frac{1}{2} \sqrt{g}$ $= \sqrt{\frac{2x(-)}{-}}$ $= 1.29 \text{ s}$ To find tot	-8.17) 9.8 al time $t_{1} + t_{2} = 2.52$ s	Any ONE of the above points
(b) $u_x = u \cos(x)$ $= 17 \times c$ = 12.02 $v_x = u_x$ = 12.02 $v_y = u_y + a$ = 0 + (-) = -12.6 $v^2 = (12.02)$ v = 17.44 $\tan^{-1}(\frac{-12}{12})$ 17.44 m s^{-1}	article, $t_1 + t_2 = 2.52$ s. (θ) $\cos(45)$ $m s^{-1}$ $m s^{-1}$ $t_y t$ $(-9.8) \times 1.29$ s $4 m s^{-1}$ $2 m s^{-1})^2 + (-12.64 m s^{-1})^2$ $m s^{-1}$ $(-12.64 m s^{-1})^2$ $m s^{-1}$ $(-12.64 m s^{-1})^2$ $m s^{-1}$ $(-12.64 m s^{-1})^2$ $(-12.64 m s^{-1$	Mod 5 Advanced Mechanics PH12–12 Bands 4–6 • Calculates horizontal velocity with units. AND • Calculates vertical velocity with units. AND • Calculates correct final velocity with units. AND • Calculates correct final velocity with units. AND • Gives angle • Any THREE of the above points • Any TWO of the above points • Any ONE of the above points
Question 22 (a) $\tau = rF \sin(t)$ = (0.46) = 42.32	(θ) × 92 × sin(90) N m	Mod 6 Electromagnetism PH12–13 Band 1 • Provides correct torque equation OR demonstrates calculation. AND • Gives correct answer and units

	Sample answer	Syllabus content, course outcomes and marking guide
(b)	$\tau = rF\sin(\theta)$ $F = \frac{\tau}{r\sin(\theta)}$ $= \frac{42.32}{0.46 \times \sin(50)}$ $= 120.1 \text{ N}$	Mod 6 ElectromagnetismPH12–13Band 2• Correctly identifies a valid method for measuring the forceAND• Gives correct answer
Quest	tion 23	
For Ea $F = \frac{G}{2}$ $= \frac{6}{3}$ For M	arth: $\frac{3MM}{r^2}$.67 × 10 ⁻¹¹ × 6.00 × 10 ²⁴ × 2.00 × 10 ³⁰ (1.50 × 10 ¹¹) ² .56 × 10 ²² N directed towards the Sun lercury:	 Mod 5 Advanced Mechanics PH12–12 Band 4 Provides correct Earth equation OR demonstrates working for Earth. AND Gives gravitational force for Earth. AND Provides correct Mercury equation OR demonstrates working for Mercury. AND Gives gravitational force for Mercury.
$F = \frac{G}{2}$	$\frac{dMM}{r^2}$	 AND Gives correct ratio
$=\frac{6}{2}$	$\frac{.67 \times 10^{-11} \times 3.29 \times 10^{25} \times 2.00 \times 10^{30}}{(5.79 \times 10^{10})^2}$.31 × 10 ²² N directed towards the Sun	 Any FOUR of the above points4 Any THREE of the above points3 Any TWO of the above points2
There does c	fore, the Sun exerts a force 2.71 times greater on Mercury than it on Earth.	Any ONE of the above points1
Quest	tion 24	
(a)	Escape velocity is when a projectile wants to escape the influence of gravity by a planet/moon, while orbital velocity is when a projectile is under the influence of gravity in uniform circular motion. escape velocity formula: $v_{escape} = \sqrt{\frac{2GM}{r}}$	Mod 5 Advanced MechanicsPH12–12Band 1• Defines escape velocity.AND• Defines orbital velocity.AND• States escape velocity formula.
	orbital velocity formulas: $v_{\text{orbital}} = \sqrt{\frac{GM}{r}}$	States orbital velocity formula4
		• Any THREE of the above points3
		Any TWO of the above points
(b)	For example: Geostationary satellites GPS; communication Low-Earth orbit satellites weather; military surveillance; mapping	Mod 5 Advanced Mechanics PH12–12 Band 1 • Gives a correct use for geostationary satellites. AND • Gives a correct use for low-Earth orbit satellites

Sample answer	Syllabus content, course outcomes and marking guide
Question 25	
(a) $F = nLIB$ = 150 × 1.5 × 0.12 × 0.06 = 1.62 N out of the page	Mod 6 Electromagnetism $PH12-13$ Band 1• Correctly identifies $F = nLIB$.AND
	 Gives direction as out of the page AND Gives the correct answer
	Any TWO of the above points
(b) The magnitude is zero, as it is sin(0), to which the answer is 0.	 May ONE of the above points
(c) out of page A BI I I I I I I I I I	Mod 6 Electromagnetism PH12–13 Band 3 • Correctly labels or indicates direction of force
D C into page The coil will rotate counter-clockwise when viewed from the left of the page.	
Question 26	
A split-ring commutator ensures that the output current to the external circuit is direct current and not alternating current. Slip rings provide electrical contact between the rotating coil and the external circuit to ensure alternating current is produced by the generator and is delivered to the external circuit.	 Mod 6 Electromagnetism PH12–13 Bands 3–5 Explains the purpose of a split-ring commutator. AND Explains the purpose of slip rings 2
	• Any ONE of the above points 1
Question 27	
$\Phi = BA\cos(\theta)$ $B = \frac{\Phi}{A\cos(\theta)}$ $= 84.85 \text{ T}$	Mod 6 Electromagnetism PH12–13 Band 3 • Gives correct equation for magnetic flux density. AND • Calculates correct value with units 2
	Any ONE of the above points

	Sample answer	Syllabus content, course outcomes and marking guide
Que	stion 28	
(a)	$\alpha = \frac{Eq}{m}$ = $\frac{6000 \times (1.2 \times 10^{-6})}{2.0 \times 10^{-2}}$ = 0.36 m s ⁻²	Mod 6 ElectromagnetismPH12–13Band 3• Gives correct equation for acceleration.AND• Correctly manipulates equation with correct variables.AND• States correct answer with units.• Any TWO of the above points
		• Any ONE of the above points1
(b)	$v_{\perp} = -0.25 \text{ m s}^{-1}$ $v_{\parallel} = u + at$ $= u + \frac{Eq}{m} \times t$	Mod 6 Electromagnetism PH12–13 Bands 3–6 • Identifies correct perpendicular speed. AND • Identifies correct equation for parallel speed.
	$= 0 + (0.36) \times 0.5$ = 0.18 m s ⁻¹ $v = \sqrt{(v_{\perp})^{2} + (v_{\parallel})^{2}}$	 AND Uses Pythagoras' theorem to find final speed. AND States correct answer with units
	$= \sqrt{(-0.25)^2 + (-0.18)^2}$	Any THREE of the above points
	$= 0.31 \text{ m s}^{-1}$	Any TWO of the above points
		• Any ONE of the above points1
Que	stion 29	
(a)	Newton's corpuscular theory proposed that light was made of small particles, while Huygens' theory suggested that light was a wave. Newton also stated that light travelled faster in more optically dense media, whereas Huygens suggested the opposite – that the light waves should slow down. However, both theories suggested that they could explain refraction and Snell's law.	Mod 7 The Nature of LightPH12–14Band 3• Identifies Newton's corpuscular theory and Huygens' light-wave theory.AND• States ONE similarity between the two theories.AND• States ONE difference between the two theories.AND
		• Any TWO of the above points2
		• Any ONE of the above points1
(b)	Huygens' theory of light was more correct than Newton's. This is because when Foucault conducted his experiment, he found that the speed of light travels slower in water than air. This went against Newton's theory of light.	 Mod 7 The Nature of Light PH12–14 Band 3 Identifies that Huygens' model was more correct than Newton's. AND States a reason proving Huygens' model was correct OR discusses an experiment proving Huygens' model was correct2
		• Any ONE of the above points1

Sample answer	Syllabus content, course outcomes and marking guide	
Question 30		
(a) 7.5 7.0 6.5 6.5 6.0 5.5	Mod 7 The Nature of Light PH12–14 Band 2 • Correctly plots data. AND • Includes line of best fit.	
5.0 4.5 4.0 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 5.0 4.5 5.0 4.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Any ONE of the above points 1	
(b) From the graph, the <i>x</i> -intercept is 0.4×10^{15} Hz. E = hf $= 6.626 \times 10^{-34} \times 0.4 \times 10^{15}$ $= \frac{2.6504 \times 10^{-19}}{1.602 \times 10^{-19}}$ = 1.654 eV	Mod 7 The Nature of Light PH12–14Bands 4–6• Identifies stopping frequency. AND•• Uses correct formula. AND•• Converts work function into electron voltage	
(c) $\frac{(7.3 \times 10^{-19} - 0.23 \times 10^{-19})}{(1.49 \times 10^{15} - 0.43 \times 10^{15})} = 6.67 \times 10^{-34} \text{ J s}^{-1}$	Mod 7 The Nature of Light PH12–14Band 3• Uses gradient formula to gain Planck's constant.Band 3• Answer is within range of 6.6×10^{-34} J s ⁻¹	

Copyright © 2019 Neap

9

Sample answer		Syllabus content, course outcomes and marking guide
Quest	ion 31	
Particles cannot exceed the speed of light as this is the upper limit of speed in the Universe. This was postulated by Einstein when discussing special relativity. His second postulate states that the speed of light is constant for all observers, which means that it is the upper limit of speed in the Universe. This holds true as recent experiments have not demonstrated that a particle can exceed this speed.		 Mod 7 The Nature of Light PH12–14 Bands 2–4 Explains that the speed of light is the upper limit of speed. AND Attributes the speed of light being constant to Einstein's postulate. AND Provides a reasoning for particles never exceeding the speed of light
Quest	ion 32	
Any or	ne of:	Mod 7 The Nature of Light
•	Stand back at least three metres from the apparatus as it produces X-ray radiation. Handle the tubes with care, as they are made of glass and contain hazardous chemicals such as mercury and sodium.	PH12–14 Band 1 Gives ONE safety procedure for spectroscopy1
•	Do not stare at the light when in operation.	
•	Do not look directly at the Sun, with or without the spectroscope. any other reasonable safety precaution	
	, , , , , , , , , , , , , , , , , , ,	

Sample answer		Syllabus content, course outcomes and marking guide	
Que	stion 33		
(a)	 Rutherford's model of the atom was superior in the beginning; however, it had many limitations, including: an inability to explain the nucleus; an uncertainty on how to place the electrons around the dense region that is now known as the nucleus, and; an uncertainty on why the electrons orbiting the nucleus did not slow down and crash into each other. A couple of years later, a scientist named Niels Bohr created a model of the atom that improved Rutherford's model. Over time, however, Bohr's model of the atom also had limitations, which include: an inability to predict the spectra of multi-electron atoms, and; an inability to explain the different intensities of lines or why some lines split into multiple, closely spaced lines. It did not take long before scientists improved Bohr's theory when studying emission line spectroscopy. 	 Mod 8 From the Universe to the Atom PH12–15 Bands 3–6 Provides ONE limitation of Rutherford's model about the nucleus. AND Provides ONE limitation of Rutherford's model about the electrons. AND Provides ONE limitation of Rutherford's model about the electron orbits. AND Provides ONE limitation of Rutherford's model about the electron orbits. AND Explains how Bohr's model was superior to Rutherford's model. AND Provides ONE limitation of Bohr's model about multi-electron atom spectra. AND Provides ONE limitation of Bohr's model about different spectra-line intensities or why some lines split into multiple, closely split lines	
(b)	Schrödinger's model of the atom was developed mathematically and the equations that he used could explain the probability or the certainty of a quantum event or quantum position in quantum mechanics. This improved the model of the atom from Bohr's model, as Schrödinger identified that the electrons were orbiting the nucleus within probability clouds and not fixed positions within the shell.	 Mod 8 From the Universe to the Atom PH12–15 Band 2 Describes Schrödinger's contribution to quantum mechanics. AND Describes how the model changed from Bohr's to Schrödinger's	
	within the shell.	Any ONE of the above points	

Syllabus content, course outcomes and

Sample answer	Syllabus content, course outcomes and marking guide
Question 34	
 Students can discuss any one of: Thomson's plum pudding model of the atom using cathode ray tubes Thomson's charge-to-mass ratio experiment Millikan's oil drop experiment For example: Robert Millikan created an oil drop experiment to measure the charge of the electron. Millikan's apparatus comprised two metal electric plates within a 	 Mod 8 From the Universe to the Atom PH12–15 Band 3 States experimental evidence to support the existence of the electron. AND Provides supporting evidence for how the electron was discovered. AND Names the correct scientists or models3 Any TWO of the above points2
container of water. Millikan sprayed oil drops within the container of water and applied a potential difference between the two plates to suspend the oil between them. This meant that the oil drop was balanced between the electrostatic and gravitational forces, and from this Millikan used $q_E = mg$ to determine that the charge on a drop was a multiple of 1.6×10^{-19} C.	Any ONE of the above points1
Question 35	
Fission: Fusion: \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet	Mod 8 From the Universe to the AtomPH12–15Band 1• Gives correct drawing for fission.AND• Gives correct drawing for fusion
Question 36	
$\lambda = \frac{\ln(2)}{\frac{t_1}{2}}$ $t_1 = \frac{\ln(2)}{\lambda}$ $= 4.1 \times 10^8 \text{ s}$	Mod 8 From the Universe to the Atom PH12–15Band 3• Gives correct formula for half-life. AND• Gives correct answer with units
Question 37	
 (a) Emission spectra are the production of bright lines against a dark background by the excitation of a low density gas. Absorption spectra are produced by stars and show dark lines against a continuous background spectrum. 	 Mod 8 From the Universe to the Atom PH12–15 Band 2 States the difference between emission spectra and absorption spectra. AND Provides some relevant information about either emission spectra OR absorption spectra
	absorption spectra 1

Syllabus content, course outcomes and

		Sample answer		Syllabus content, course outcomes and marking guide
(b)	Any tw tem lum abs	o of: pperature (K) ninosity (Sun = 1) olute magnitude		Mod 8 From the Universe to the AtomPH12–15Band 3• Names TWO correct factors2• Names ONE correct factor.1
(a)	When the hydrog spectra end of the are mo	using spectroscopy on common of en and helium in space, scientist I lines of these elements were sh the spectrum. This means that the ving or accelerating away from e	elements such as ts discovered that the ifted towards the red e objects being studied each other.	Mod 8 From the Universe to the Atom PH12–15Band 3• Explains spectral lines shifting on the light spectrum.AND• States that the objects are moving or accelerating away from each other 2• Any ONE of the above points 1
(b)	Edwin suppor is expa	Hubble (He discovered that reds t the Big Bang Theory, as it ident nding.)	shift was useful to tifies that the Universe	Mod 8 From the Universe to the AtomPH12-15Bands 2-4• Names correct scientist1
(a)	E = mc $= 5.c$ $= 5.c$	c^{2} $5 \times 10^{9} \times (3.0 \times 10^{8})^{2}$ $24 \times 10^{26} \text{ J}$		Mod 8 From the Universe to the Atom PH12–15Band 3• Gives correct equation AND/OR manipulation.• Gives correct answer
(b)	1.	Stage of stellar evolution protostar		Mod 8 From the Universe to the AtomPH12–15Band 3• Correctly places TWO terms
	2. 3.	main sequence star red giant white dwarf		Correctly places ONE term 1