

HSC Trial Examination 2020

Physics

Solutions and marking guidelines

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Section I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1BNewton's Laws of Gravitation are related to two bodies with space and the forces related. Kinetic energy and Kepler's Laws are not associated nor involve work within their equations or theory. The only plausible answer is B , which is the work to place an object in space against gravity or within space.	Mod 5 Advanced Mechanics PH12–12 Bands 2–3
Question 2AOrbital decay refers to satellite motion, and the quantum model refers to atomic theory. Wave-particle duality refers to light, leaving A as the only plausible answer. Transmutation is the decay of one element into another.	Mod 8 From the Universe to the Atom PH12–15 Bands 2–3
Question 3 B This is related to $Fc = \frac{mv^2}{r}$. The larger the mass, the more centripetal force; however, with a large radius there is less centripetal force.	Mod 5 Advanced Mechanics PH12–12 Bands 2–3
Question 4BThe stator within a DC motor is the stationary component of the motor. The permanent magnets or electromagnets remain stationary and provide a magnetic field, and the armature or coil rotates.	Mod 6 Electromagnetism PH12–13 Bands 2–3
Question 5DCharm, strange and bottom are all quarks, while upper is not.	Mod 8 From the Universe to the AtomPH12–15Bands 2–3
Question 6 D $\lambda_{\text{max}} = \frac{b}{T}$ $= \frac{2.898 \times 10^{-3}}{3500 \text{ K}}$ $= 828 \text{ nm}$	Mod 7 The Nature of Light PH12–14 Bands 3–4
Question 7BLenz's Law states that the induced current will always flow in a direction such that the resultant magnetic field opposes the original magnetic field. All other responses do not describe Lenz's Law.	Mod 6 Electromagnetism PH12–13 Bands 3–4
Question 8 C $E = mc^2$ $= 0.129 \times (3.00 \times 10^8)^2$ $= 1.16 \times 10^{16} \text{ J}$	Mod 7 The Nature of Light PH12–14 Bands 3–4
Question 9 C $B = \frac{F}{I_L \sin \theta}$ $= \frac{1.84}{3.6 \times 92 \times 10^{-3} \times \sin 90}$ $= 5.56 \text{ T}$	Mod 6 Electromagnetism PH12–13 Bands 3–4

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 10AWithin the first 100 seconds of the beginning of the Big Bang, all the fundamental particles were present, which includes options B, C and D. Helium was made after hydrogen formed, which was well past the first 100 seconds.	Mod 8 From the Universe to the Atom PH12–15 Bands 3–4
Question 11 B $\lambda = \frac{h}{mv}$ $= \frac{6.626 \times 10^{-34}}{5 \times 12.6}$ $= 1.05 \times 10^{-35} \text{ m}$	Mod 8 From the Universe to the Atom PH12–15 Bands 3–4
Question 12AIncomplete flux linkage and magnetic flux density are not consequences of the conservation of energy, so B and D are incorrect.AC generators do not operate by the laws of conservation of energy, so C is incorrect. Magnetic braking is the cause of eddy currents generated by the conservation of energy.	Mod 6 Electromagnetism PH12–13 Bands 3–4
Question 13DWhen an electron moves from a higher energy state to a lower state, it emits a photon. This phenomenon is often referred to as emission spectra.	Mod 7 The Nature of Light PH12–14 Bands 3–4
Question 14 C $\sin \theta = \sqrt{\frac{2gh}{u^2}}$ $\sin \theta = \sqrt{\frac{2 \times 9.8 \times 105}{49^2}}$ $\sin \theta = 0.92582$ $\theta = \sin^{-1} 0.92582$ $= 67^{\circ} 48'$ $\approx 68^{\circ}$	Mod 5 Advanced Mechanics PH12–12 Bands 4–5
Question 15 D $\tan \theta = \frac{v^2}{gr}$ $\tan \theta = \frac{\left(\frac{300}{3.6}\right)^2}{9.8 \times 750}$ $\theta = \tan^{-1} 0.94482$ $= 43^{\circ} 23'$ $\approx 43^{\circ}$	Mod 5 Advanced Mechanics PH12–12 Bands 4–5

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 16 D $E_{k \max} = hf - \phi$ $0 = hf - 4.5$ $f = \frac{4.5}{4.14 \times 10^{-15}}$ $= 1.09 \times 10^{15}$ Hz $\lambda = \frac{c}{f}$ $= \frac{3.0 \times 10^8}{1.09 \times 10^{15}}$	Mod 7 The Nature of Light PH12–14 Bands 4–5
$= 2.76 \times 10^{-7} \text{ m}$ Question 17 A Low-density stellar atmospheres produce a bright, narrow line on the emission spectrum or a dark line on the absorption line. The only plausible answer is A. Question 18 A $g = \frac{GM}{2}$	Mod 8 From the Universe to the Atom PH12–15 Bands 4–5 Mod 5 Advanced Mechanics PH12–12 Bands 4–5
$= \frac{6.67 \times 10^{-11} \times 4.87 \times 10^{24}}{(6\ 050\ 000)^2}$ = 8.87 m s ⁻² Question 19 D	Mod 8 From the Universe to the Atom
$E = mc^{2}$ = 3.60 × 10 ⁻²⁸ × (3.0 × 10 ⁸) ² = 3.24 × 10 ⁻¹¹ J E MeV = $\frac{3.24 \times 10^{-11}}{1.602 \times 10^{-19}}$ = 202 MeV	PH12–15 Bands 5–6

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 20 A	Mod 6 Electromagnetism	
At a speed of 1.25×10^8 m s ⁻¹ , relativistic effects will take effect and the mass of the proton will dilate. The relativistic mass of the proton will therefore be:	PH12-13	Bands 5–6
$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$		
$=\frac{1.673 \times 10^{-27}}{\sqrt{1-\frac{(1.25 \times 10^8)^2}{(3.0 \times 10^8)^2}}}$		
$= 1.840 \times 10^{-27} \text{ kg}$		
Thus:		
$B = \frac{mv}{qr}$		
$=\frac{1.840\times10^{-27}\times1.25\times10^{8}}{1.602\times10^{-19}\times82}$		
= 0.0175 T		

Section II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 21	
 Air resistance is prevalent in projectile motion, especially when conducting practical investigations. Air resistance or drag that acts on a projectile can be described with the following: The greater the velocity of the projectile, the greater the air resistance or drag force 	Mod 5 Advanced MechanicsPH12–12Bands 2–3• Describes all the effects of air resistance AND relates it to the diagrams
• The design of the projectile can have two effects. If the cross-sectional area is greater, or the shape of the projectile is not streamlined, then the air resistance or drag force is greater.	 Describes all the effects of air resistance
• The higher the air density, the greater the drag on the projectile. The graphs clearly demonstrate that one or more of the effects described above had an impact on the flight path recorded	of air resistance. OR • States ONE relation to the graphs2
The experiment was conducted the same in both the evacuated chamber and the classroom, meaning that the projectile was the same. Therefore, the graphs show that it was the air resistance in the classroom that changed the flight path of the projectile.	Gives some correct information 1
Question 22	
(a) $\frac{78}{3} = 26$ seconds per revolution $v = \frac{2\pi r}{T}$ $= \frac{2\pi \times 4.4}{26}$ $= 1.1 \text{ m s}^{-1}$	Mod 5 Advanced MechanicsPH12–12Bands 2–3• Calculates time for ONE revolution.AND• Calculates the correct linear speed 2• Any ONE of the above points 1
(b) $w = \frac{2\pi}{T}$ $= \frac{2\pi}{26}$ $= 0.24 \text{ rad s}^{-1}$	Mod 5 Advanced Mechanics PH12–12 Bands 2–3 • Calculates the correct angular velocity1
(c) $F_{c} = \frac{mv^{2}}{r}$ = $\frac{65 \times 1.1^{2}}{4.4}$ = 18 N	Mod 5 Advanced Mechanics PH12–12 Bands 2–3 • Calculates the correct centripetal force 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 23	
(a)	The Second Law of Kepler's Laws of Planetary Motion describes the speed of a planet orbiting the Sun. Kepler stated that the line between the Sun and the planet sweeps equal areas in equal times, meaning the speed of the planet increases as it nears the Sun and decreases as it moves away from the Sun.	Mod 5 Advanced MechanicsPH12–12Bands 2–3• States Kepler's Second Law.AND• Provides an accurate diagram to support Kepler's Second Law
	· · · ·	• Any ONE of the above points 2
	slower $area = A$ the Sun $area = A$	Gives some correct information 1
(b) Equate F_{c} $\frac{mv^{2}}{r} = \frac{G}{r}$ $v^{2} = \frac{G}{r}$ Let $T = th$ $v = \frac{2\pi r}{T}, s$ $\left(\frac{2\pi r}{T}\right)^{2}$ Hence $\frac{r^{3}}{T^{2}}$ Hence $\frac{r^{3}}{T^{2}}$	Equate $F_c = \frac{mv^2}{r}$ and $F = \frac{GMm}{r^2}$. $\frac{mv^2}{r} = \frac{GMm}{r^2}$ $v^2 = \frac{GM}{r}$ Let T = the period of orbit to complete one revolution. $v = \frac{2\pi r}{T}$, substitute $v^2 = \frac{GM}{r}$ $\left(\frac{2\pi r}{T}\right)^2 = \frac{GM}{r}$ $\frac{4\pi^2 r^2}{T^2} = \frac{GM}{r}$ Hence $\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$ Or $\frac{r^3}{T^2} = k$	Mod 5 Advanced Mechanics PH12–12 Bands 4–5 • Relates circular motion AND orbital velocity to derive Kepler's law. AND • Demonstrates manipulation of equations to find solution. AND • Correctly derives Kepler's Third Law 3 • Any TWO of the above points 2 • Any ONE of the above points
Que	stion 24	
$\tau = \tau$ $F = \frac{1}{2}$ $= \frac{1}{2}$	$rF\sin\theta$ $\frac{\tau}{r\sin\theta}$ $\frac{31}{0.9 \times \sin 72}$ 36 N	Mod 5 Advanced MechanicsPH12–12Bands 2–3• Correctly manipulates torque equation to find force.AND• Calculates the correct force

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 25	
<i>For example:</i> In the early 1600s, Galileo attempted to discover the speed of light. He stood on a hilltop and had an assistant stand on a separate hilltop, having measured the distance between the two hills. Both participants had a lamp, and Galileo also had a timepiece. Galileo uncovered	 Mod 7 The Nature of Light PH12–14 Bands 3–4 Discusses ONE historical method used to determine the speed of light. AND Provides the historical speed of light.
his lamp and begin to keep time; when his assistant saw the light from Galileo's lamp, they uncovered their lamp. Galileo recorded the time until he saw the light from his assistant's lamp. By doing so, he was able to determine that the speed of light was ten times greater than the speed of sound. Foucault improved the calculation of the speed of light by using a similar apparatus to that used in Fizeau's method. Foucault shone a bright light through a rotating mirror that would block the light's path. Foucault observed the light hitting a plane surface 8 km away from	 AND Discusses ONE contemporary method used to determine the speed of light. AND Provides the contemporary speed of light
the rotating mirror and was able to determine the speed of light based on the speed of rotation of the mirror, which periodically blocked the light from hitting the observed surface. His method determined the speed of light to be 298 000 km s ⁻¹ .	Any ONE of the above points 1
Question 26	
(a) $d\sin\theta = m\lambda$ $\theta = \sin^{-1}\left(\frac{m\lambda}{d}\right)$ $= \sin^{-1}\left(\frac{1 \times 854 \times 10^{-9}}{2.00 \times 10^{-4}}\right)$ $= 0.245^{\circ}$	Mod 7 The Nature of Light PH12–14 Bands 5–6 • Correctly manipulates SI units. AND • Calculates correct first-order maximum2 • Any ONE of the above points1
(b) distance = $L \tan \theta$ = 2.5 × tan 0.2446 = 0.011 m	Mod 7 The Nature of Light PH12–14 Bands 5–6 • Calculates correct distance between maximums 1
Question 27	
(a) $100 \\ 90 \\ 90 \\ 80 \\ 70 \\ 90 \\ 50 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$	Mod 8 From the Universe to the AtomPH12-15Bands 2-3• Gives correct labels and units.AND• Uses correct scale.AND
$ \begin{array}{c} $	 Correctly plots data with line of best fit 3 Any TWO of the above points 2 Any ONE of the above points 1
(b) Either reading from the table or the graph, the half-life for the isotope is 8 hours.	Mod 8 From the Universe to the AtomPH12-15Bands 2-3• States correct half-life value1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) (i) 16 hours × 60 × 60 = 57 600 seconds $\lambda = \frac{\ln 2}{t_{\frac{1}{2}}}$ $= \frac{\ln 2}{57 600}$	Mod 8 From the Universe to the AtomPH12–15Bands 4–6• Calculates the correct decay constant 2• Gives some correct information1
$= 1.20 \times 10^{-5} \text{ s}^{-1}$ (ii) $n = \frac{48 \text{ hours}}{16 \text{ hours}}$ $= 3$ (1) 3	Mod 8 From the Universe to the Atom PH12–15 Bands 4–6 • Determines the correct percentage of the sample left undecayed 2
percentage of sample left undecayed = $\left(\frac{1}{2}\right)$ = $\frac{1}{8} = 0.125$ = 12.5%	Gives some correct information 1
Question 28 Cathode ray tubes, or discharge tubes, were invented in the mid-1800s by a scientist named Heinrich Geissler. They were invented after the vacuum pump was developed. The vacuum pump was crucial in the development of cathode ray tubes as it created extremely low pressures. This led to the discovery of the electron. Cathode rays were discovered by electrodes being inserted into these vacuum tubes and high voltages being applied. This led scientists to discover and investigate the properties of cathode rays. A variety of different cathode ray tubes were made, which improved the scientists' understanding of the nature of cathode rays. A particular cathode ray experiment demonstrated that cathode rays can be influenced by both electric and magnetic fields. This led scientists such as JJ Thomson to use cathode rays with electric fields in order to measure the charge-to-mass ratio of the cathode rays	Mod 7 The Nature of Light PH12–14 Bands 3–4 • Discusses how the vacuum pump led to the invention of cathode ray tubes. AND • Discusses the structure of a typical cathode ray tube. AND • Discusses the discovery of cathode rays. AND • Links cathode ray discovery to discovery of the electron
He called the particles that he discovered electrons. Without the discovery of the vacuum pump, cathode ray tubes would have not been able to be produced, which in turn would have affected the discovery of the electron.	 Any TWO of the above points

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 29	
JJ Thomson's discovery of the electron led him to propose the plum pudding model of the atom. This model shows that there is a positively charged fluid with electrons scattered inside this fluid, just as plums are scattered in a plum pudding mixture.	Mod 8 From the Universe to the Atom PH12–15 Bands 5–6 • Discusses Thomson's model. AND • Discusses Rutherford's model.
Geiger and Marsden found that firing alpha particles at a thin foil of gold produced a scattering of those particles. Rutherford then proposed a planetary model of the atom. This model shows that there is a positive centre (nucleus) and electrons orbiting the nucleus, similar to planets orbiting around the Sun. Rutherford also described a particle that was similar to a proton that would be found inside the nucleus. He predicted that this particle would be neutrally charged. Chadwick submitted a scientific paper many years later called the 'Possible Existence of a Neutron'. Chadwick conducted experiments based on measurements of the recoil of hydrogen	 AND Discusses discovery of the neutron. AND Discusses Chadwick's discovery of the neutron. AND Discusses Bohr's contribution. AND Discusses de Broglie's contribution. AND Discusses Heisenberg's uncertainty principle.
and nitrogen after interactions with his proposed neutron. He calculated the neutron's mass to be 1.15 times greater than the proton.	AND • Discusses Schrödinger's contribution 8
Bohr used ideas from previous scientists in developing his model of the atom through the quantum ideas proposed by Planck	• Any SEVEN of the above points7
and Einstein. Bohr described orbital shells/states that electrons occupy and how the movement of electrons between the shells/states must	• Any SIX of the above points6
meant energy is being absorbed or emitted. This was the first leap from classical physics to quantum physics. It was further improved by de	• Any FIVE of the above points
Broglie, who suggested that electrons may demonstrate wave-like properties.	• Any FOUR of the above points4
After de Broglie's contribution, the next contributions were from Heisenberg and Schrödinger, two scientists prominent in quantum	• Any THREE of the above points3
physics.	• Any TWO of the above points
Heisenberg's uncertainty principle states that, for an electron, its velocity and its position cannot be exactly measured concurrently.	• Any ONE of the above points 1
Schrödinger then used Heisenberg's uncertainty principle to describe the position of electrons to be in a cloud around the nucleus, where the exact position of an electron can only be known as a probability within this cloud.	
Question 30	
(a) $\varepsilon = -n \frac{\Delta \theta}{\Delta t} = -n \frac{\Delta BA}{\Delta t}$ $ \varepsilon = n \frac{\Delta BA}{\Delta t}$ $= 1 \times \frac{0.80 \times 0.37^2}{0.04}$ = 2.74 V	 Mod 6 Electromagnetism PH12–13 Bands 4–5 Calculates the area of the loop. AND Calculates the change in flux. AND States the direction of the change in flux. AND Calculates the correct induced amfwaltere
	Any THREE of the above points
	Any TWO of the above points

Any ONE of the above points. 1

•

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	The change in flux is into the page. The direction of the induced magnetic field will be out of the page, meaning the direction of the induced current will be anticlockwise.	Mod 6 ElectromagnetismPH12–13Bands 2–3• Correctly identifies direction of the induced current
Ques	tion 31	
(a)	 Any two of: increasing the force acting on the sides increasing the width of the coil adding more coils around the armature any other reasonable answer 	Mod 6 Electromagnetism PH12–13 Bands 2–3 • Gives TWO modifications to increase speed 2 • Gives ONE modification to increase speed 1
(b)	In a DC motor, as the coil rotates in one direction, the current flowing through the loop must reverse direction just as the coil reaches the position where it is perpendicular to the direction of the magnetic field. A commutator, which acts as a switch, is used to reverse the direction of the current. Each part of the commutator is connected to each end of the coil. When the commutator rotates with the coil, contact with the brushes changes just as the coil reaches the position where the plane of the coil is perpendicular to the field direction. This reverses the direction of the current in the coil. As a result, the direction of the force on each side of the coil is reversed and the loop continues to rotate in the same direction.	Mod 6 Electromagnetism PH12–13Bands 2–3• Outlines how the commutator interacts with the direction of the current in the coil.AND• Outlines how the commutator interacts with the direction of the force in the coil 2• Any ONE of the above points 1
Ques	ation 32	
Both The c on a c field direct the fi and th This produ	electric and magnetic fields exert force on a charged particle. lifference between the effect that electric and magnetic fields have charged particle has to do with the particle's trajectory. An electric exerts a force on a charged particle that is directed in the same tion as the field. A magnetic field exerts a force moving across eld, so the force will be directed perpendicularly to the field he velocity of the charged particle. will result in the different trajectories; an electric field will uce a parabolic trajectory, whereas a magnetic field will produce what trajectory. This is shown in the following diagrams:	 Mod 6 Electromagnetism PH12–13 Bands 4–5 States ONE similarity between magnetic and electric fields. AND States that the trajectories of particles in electric and magnetic fields are different. AND States that different forces are applied.
a circ	cular trajectory. This is shown in the following diagrams:	AND
_1	particle path	• Draws correct diagrams to show the different trajectories 4
		Any THREE of the above points 3 Any TWO of the above points
	electric field	Any ONE of the above points 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Ques	stion 33	
force	e of repulsion = mg = $0.06 \times 10^{-3} \times 9.8$	Mod 6 Electromagnetism PH12–13 Bands 3–4 • Calculates the correct force
$\frac{F}{l} = \frac{f}{2}$ $I = \frac{f}{2}$ Since of the $I = \frac{f}{2}$	$= 5.88 \times 10^{-4} \text{ N}$ $\frac{\mu_0 I_1 I_2}{2\pi r}$ $\sqrt{\frac{F \times 2\pi r}{l \times \mu_0}}$ the current is the same for both conductors, the magnitude e current will be: $\frac{5.88 \times 10^{-4} \times 2\pi \times 5.00 \times 10^{-3}}{29.0 \times 10^{-2} \times 4\pi \times 10^{-7}}$	 of repulsion. AND Rearranges equation to find current. AND States that the current is the same for both conductors. AND States the correct magnitude of the current. 4 Any THREE of the above points
= 7	7.12 A	• Any ONE of the above points1
Ques	stion 34	
output effici The e curre	t power = $V_1 I_1$ = 240 × 0.02 = 4.8 W at power = $V_2 I_2$ = 12 × 0.28 = 3.36 W tiency = $\frac{3.36}{4.8} \times 100$ = 70% efficiency is 70%, with losses potentially resulting from eddy nts, wind resistance or flux leakage.	Mod 8 From the Universe to the Atom PH12–15 Band 1 • Calculates the correct input power AND • Calculates the correct efficiency AND • Calculates the correct efficiency AND • Gives an account for energy loss
Que		Mod 7 The Nature of Light
(a)	ϕ = 5.1 eV Note: As the answer is read from the graph, allow responses in the range of 5.1–5.3.	 PH12–14 Bands 4–6 Gives response obtained from reading the graph 1
(b)	$\lambda = 180 \text{ nm} \qquad \phi = 5.1 \text{ eV}$ Note: ϕ value is dependant on answer to part (a). $K_{\text{max}} = hf - \phi$ $= (4.14 \times 10^{-15} \times 1.25 \times 10^{14}) - 5.1$ $= 0.075 \text{ eV}$	Mod 7 The Nature of Light PH12–14 Bands 3–4 • Identifies correct equation to calculate K _{max} . AND • Demonstrates working with correct values. AND • Provides correct answer between 0.03–0.075 eV

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c)	$\mathcal{O} = hf_0$ $f_0 = \frac{\mathcal{O}}{h}$ $= \frac{5.10}{4.14 \times 10^{-15}}$ $= 1.23 \times 10^{15} \text{ Hz}$ From the graph, the line of best fit cuts the <i>x</i> -intercept at approximately $1.25 \times 10^{15} \text{ Hz}$, which supports the answer given above.	 Mod 7 The Nature of Light PH12–14 Bands 3–4 Identifies correct equation to calculate cut-off frequency. AND Supports answer with evidence from the graph. AND Gives answer between 1.23–1.26 × 10¹⁵ Hz
Ques	stion 36	
(a)	$t_{\text{Earth}} = \frac{s}{v}$ $= \frac{20}{0.38}$ $= 52.6$ $= 53 \text{ warrs}$	Mod 7 The Nature of Light PH12–14 Bands 3–4 • Calculates correct number of years 1
		Mad 7 The Nature of Light
(b)	$l_0 = 20$ light years $v_0 = 0.38c$ $l = l_0 \sqrt{1 - \frac{v_0^2}{c_0^2}}$	 PH12-14 Bands 4-5 Calculates correct number of years. AND Correctly converts light years into Earth years
	$= 20 \sqrt{1 - \frac{0.00}{1^2}}$ = 18.5 light years	• Any ONE of the above points 1
	$t_{\text{atomic clock}} = \frac{s}{v}$ $= \frac{18.5}{0.38}$ $= 48.7 \text{ years}$	
Ques	stion 37	
(a)	$r = 35\ 800\ 000 + 6\ 371\ 000$ = 42 171 000 $E = -\frac{GMm}{2r}$ = $-\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 2550}{2 \times 42\ 171\ 000}$ = -1 210 × 10 ¹⁰ I	Mod 5 Advanced MechanicsPH12–12Bands 4–5• Identifies correct equation.AND• Gives the correct answer in joules 2• Any ONE of the above points 1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	$k = \frac{GMm}{2r}$ = $\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 2550}{2 \times 42171000}$ = 1.210×10^{10} J $k = \frac{1}{2}mv^{2}$ $\therefore 1.210 \times 10^{10}$ J = $\frac{1}{2}mv^{2}$ $v^{2} = 9490196.078$ v = 3081 m s ⁻¹	 Mod 5 Advanced Mechanics PH12–12 Bands 4–5 Identifies relationship between kinetic energy and total mechanical energy from part (a). AND Demonstrates working for calculating kinetic energy. AND Calculates the correct answer
(c)	 Geostationary satellites orbit within this range (35 000–36 000 km) away from Earth. A geostationary satellites use is generally specific to one of the following: communication GPS military uses weather predictions <i>Note: Only two uses required for full marks.</i> 	Mod 5 Advanced MechanicsPH12–12Band 2–3• Gives correct satellite type.AND• Gives TWO uses of geostationary satellites 2• Any ONE of the above points 1