Neap

Final Examination 2021

NSW Year 11 Physics

Solutions and marking guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1CC is correct. Diffraction refers to the way waves bend as they move past obstacles or gaps. The wave pictured is bending as it moves past a gap. A, B and D are incorrect. These options give the names of other wave behaviours.	Mod 3 Waves and Thermodynamics PH11–10 Bands 2–3
Question 2BBB is correct. Since a battery increases potential energy, the best way to model this would be by increasing the gravitational potential energy of the marble by lifting it. Since the marbles represent electrons, they flow out of the negative 	Mod 4 Electricity and Magnetism PH11–11 Bands 3–4
Question 3 A A is correct.	Mod 3 Waves and Thermodynamics PH11–10 Bands 3–4
<i>C</i> represents the centre of curvature. <i>F</i> represents the focal point. When the object is at the centre of curvature, the resulting image is inverted and of the same size as the object. As the object moves further away from the mirror, the image becomes more diminished and moves towards the focus. If the object is beyond the centre of curvature, the object will be diminished and inverted. B , C and D are incorrect. The image cannot be upright or magnified when placed beyond the centre of curvature of a concave mirror.	

Section I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 4CC is correct. Electric field strength is represented in field diagrams by the density of field lines. Since larger charges produce stronger electric fields, a particle with greater charge would have more field lines surrounding it. A is incorrect. The magnitude of this charge is the same as in the original diagram, despite the polarity being different. B is incorrect. Changes in the magnitude of a charge are not shown by changing the size of the particle. D is incorrect. The length of field lines in a field diagram is irrelevant.	Mod 4 Electricity and Magnetism PH11–11 Bands 3–4
Question 5 B $a = \frac{v - u}{\Delta t}$ $= \frac{(-3) - (2)}{(8) - (3)}$ $= -\frac{5}{5}$ $= -1 \text{ m s}^{-2}$	Mod 1 Kinematics PH11–8 Bands 2–3
Question 6CC is correct. The momentum of the ball changes directionwhen it rebounds off the edge of the table. A is incorrect.The speed of the ball stays the same, so $\frac{1}{2}mv^2$ will remainconstant. B is incorrect. The mass of the billiard ball will notchange. D is incorrect. The ball is not accelerating before thecollision or afterwards, so acceleration is 0 and willnot change.	Mod 2 Dynamics PH11–9 Bands 3–4
Question 7 D $E = \frac{V}{d} = \frac{F}{q}$ $V = \frac{Fd}{q}$ $= \frac{(1 \times 10^{-6})(1 \times 10^{-3})}{1.602 \times 10^{-19}}$ $= 24.96$ $\approx 25.0 \text{ V}$ Note: The charge of an electron is drawn from the formula sheet.	Mod 4 Electricity and Magnetism PH11–11 Bands 3–4

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 8 C	Mod 3 Waves and Thermodynamics
$v = f\lambda = \frac{\lambda}{T}$	PH11–10 Bands 3–4
$\lambda = vT$	
$a = v_{\text{initial}} T_{\text{initial}}$	
$\lambda_{\text{final}} = v_{\text{final}} T_{\text{final}}$	
$= \left(\frac{1}{2}v_{\text{initial}}\right) (2T_{\text{initial}})$	
$= v_{\text{initial}} T_{\text{initial}}$	
= <i>a</i>	
Question 9 B	Mod 2 Dynamics
B is correct. The impulse the car experiences is equal	PH11–9 Bands 3–4
no momentum after). Its momentum prior to the collision is:	
p = mv	
$=4000\left(\frac{72}{3.6}\right)$	
=80000 kg m s ⁻¹	
The impulse of a collision can also be found by plotting a force-time graph and finding the area underneath the line. B is the only graph with an area of 80 000. A , C and D are incorrect. The area under these graphs is not 80 000.	
Question 10 A	Mod 2 Dynamics
$P = \frac{\Delta E}{\Delta E}$	PH11–9 Bands 4–5
$=\frac{Fs}{t}$	
$=\frac{(ma)s}{t}$	
Therefore, the SI units for watts are:	
$W = \frac{(kg)(m s^{-2})(m)}{m}$	
$= \text{kg m}^2 \text{ s}^{-3}$	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 11BB is correct. Since Aaron's walking speed is less than his running speed, $0 <$ walking speed < running speed.	Mod 1 Kinematics PH11–8 Bands 5–6
$ \begin{array}{c} $	
Using the cosine rule or by resolving into components, you can find that $\theta = 22.5^{\circ}$. The direction of the correct vector can be anywhere within the acute angle between N22.5°W and NE, with these values excluded. B is the only value that fits into the possible range.	
A is incorrect. The direction of the change in velocity vector will only be NE if the walking speed = 0, which it does not. C and D are incorrect. They are outside of the range of possible angles.	
Note: This amount of working is not necessary to confidently answer the question but is necessary to prove the answer is correct.	
Question 12BB is correct. Gary is analysing data he collected, so it can be classified as primary data. As the data is numeric, it is quantitative. If the relationship derived between voltage and current is non-linear, the light bulb must be non-ohmic. A is incorrect. A non-linear relationship between voltage and current cannot imply an ohmic resistor. C is incorrect. The data being used was collected by Gary, so is not secondary data. D is incorrect. The data is not secondary, and the data describes the circuit's quantities, not its qualities, so it is not qualitative data.	Mod 4 Electricity and Magnetism PH11–11 Bands 3–4

Answer and explanation	Syllabus content, or and targeted performa	utcomes ance bands
Question 13 B	Mod 1 Kinematics	
Taking downwards as positive:	PH11-8	Bands 4-5
$20 = 6.32t + 4.9t^2$		
$0 = -20 + 6.32t + 4.9t^2$		
Thus, $a = 4.9$, $b = 6.32$ and $c = -20$.		
Rearranging and using the quadratic formula gives:		
$t = \frac{-6.32 \pm \sqrt{6.32^2 - 4 \times 4.9 \times -20}}{9.8}$ = 1.48 s		
Note: The positive solution must be taken because time cannot be negative.		
Question 14 B	Mod 2 Dynamics	
B is correct. Newton's Third Law states that if object A	PH11-9	Bands 4–5
exerts a force on object <i>B</i> , object <i>B</i> must exert an equal and		
opposite force on object A. While gravity and the normal		
force are equal and opposite, they are applied to the same		
and the normal force are associated with a separate pair		
A. C and D incorrect. These options are all examples		
of two objects exerting equal and opposite forces		
on one another, so are action-reaction force pairs.		

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 15 C	Mod 3 Waves and Thermodynamics
For the <i>n</i> th harmonic of a string fixed at both ends,	PH11–10 Bands 5–6
the wavelength is $\lambda = \frac{2l}{r}$, where <i>l</i> is the length	
of the string. To find the value of l in the fifth harmonic,	
find the wavelength of the second harmonic.	
$v = f \lambda$	
$\lambda = \frac{v}{f}$ $= \frac{5}{3}$	
$\lambda = \frac{2l}{n}$	
$\frac{5}{3} = \frac{2l}{2}$	
$l = \frac{5}{3}$	
Therefore, to calculate the frequency of the fifth harmonic:	
$\lambda = \frac{2l}{n}$	
$=\frac{2\left(\frac{5}{3}\right)}{5}$	
$=\frac{2}{3}$	
$f = \frac{v}{\lambda}$	
$=\frac{10}{\left(\frac{2}{3}\right)}$	
=15 Hz	

Syllabus content, outcomes, targeted performance bands and marking guide
od 2 Dynamics H11–9 Bands 2–3 Gives the correct magnitude of the force. ND Gives the correct direction of the force
od 1 Kinematics H11–8 Bands 2–3 Gives the correct magnitude of change in velocity. ND Gives the correct direction of change in velocity
Any C

Section II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 18	
For example: Bella's voice could be replaced by an electronic speaker set to constant volume as an alternative source of sound. The speaker's constant level of sound output will mean the volume detected at the source will remain more constant. This variable will thus be controlled to a greater extent, leading to a more valid experiment. Additionally, conducting the experiment indoors would allow Tom and Bella to have greater control over their surrounding environment, so sound from wind and other sources would affect Tom's measurements less. <i>Note: Allow responses with other appropriate changes,</i> <i>including increasing the volume of the sound in some</i> <i>way, decreasing the length between measurements</i> <i>and repeating the experiment.</i>	Mod 3 Waves and Thermodynamics PH11–10 Bands 3–4 • Identifies TWO changes that would increase validity in a significant way. AND • Explains how these changes would increase the validity of the experiment
Question 19	
 (a) Newton's First Law of Motion states that an object in motion will remain in motion and an object at rest will remain at rest unless acted upon by an unbalanced force. 	Mod 2 Dynamics PH11–9 Bands 2–3 • States Newton's First Law of Motion1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) <i>For example:</i> The football slows down due to friction an resistance. These forces lead to an unbalant opposite the ball's direction of motion, can the ball to experience a change in velocity by Newton's First Law of Motion. Newtor Law of Motion states that acceleration is p to the resistive force. Therefore, the ball act in an opposite direction to its motion, or de until it stops. From the given data, the avera acceleration experienced as a result of this is $a = \frac{(10-0)}{5} = 2 \text{ m s}^{-2}$ opposite to its direction. At this point, friction stops action on the ball, meaning it no longer experience force and remains at a constant velocity of <i>Note: Responses that include a discussion Third Law as it applies to friction are acceleration are acceleration are acceleration are acceleration of the stops as a set of the stop of the</i>	A rollingMod 2 Dynamics PH11-9Bands 3-4• Correctly applies TWO of Newton's Laws to the situation.••• Correctly applies TWO of Newton's Laws to the situation.••• Montions friction AND/OR rolling resistance and its associated force.••• Mentions friction AND/OR rolling resistance and its associated force.••• Montions friction AND/OR
Question 20	
	Mod 4 Electricity and Magnetism PH11–11 Bands 2–3 • Correctly draws the magnetic field1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	The magnetic field strength of a solenoid is given by the equation $B = \frac{\mu_0 NI}{L}$, where <i>B</i> is the magnetic field strength, μ_0 is the magnetic permeability constant, <i>N</i> is the number of coils, <i>L</i> is the length of the solenoid and <i>I</i> is the current through the wire. From this formula, we can deduce that increasing the terms of the numerator will increase the magnetic field strength. Increasing the number of coils of wire around the solenoid and increasing the current through the wires will both increase the magnetic field strength of the solenoid. Adding a ferromagnetic material such	 Mod 4 Electricity and Magnetism PH11-11 Bands 2-4 Identifies THREE ways of increasing the magnetic field strength. AND Explains with reference to the relevant formula2 Identifies TWO ways of increasing the magnetic field strength. OR Identifies ONE way of increasing magnetic field strength AND
0100	as iron to the core will also increase the magnetic field strength of the solenoid.	explains with reference to the relevant formula1
(a)	3 m s ⁻¹ Note: The speed of the second body will be equal to that of the first body. For the two bodies to have no momentum upon collision, they must have initially had equal and opposite momentums. Since they both had the same mass, they must also have had equal (and opposite) velocities.	Mod 2 Dynamics PH11–9 Bands 3–4 • Gives the correct speed 1
(b)	The collision was inelastic. After the collision, both bodies have zero velocity and, therefore, no kinetic energy. This means that whatever kinetic energy they had before the collision was not conserved.	Mod 2 Dynamics PH11–9 Bands 3–4 • Determines that the collision was inelastic. AND • Gives a correct justification with reference to a change in kinetic energy

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(c) Mechanical energy is conserved: $E_i = E_f$ $E_i = U_f + K_f$ As gravitational potential energy (U_f) is zero the instant before hitting the ground: $E_i = 0 + \frac{1}{2}mv^2$ $5 = \frac{1}{2}(0.2 + 0.2)v^2$ $v^2 = \frac{2 \times 5}{0.4}$ $v = \sqrt{25}$ $= 5 \text{ m s}^{-1}$	Mod 2 Dynamics PH11–9 Band 3–4 • Applies the law of conservation of mechanical energy. AND • Correctly calculates the speed 2 • Applies the law of conservation of mechanical energy 1
Question 22 $\sin \theta_c = \frac{n_2}{n_1}$ $n_1 = \frac{n_2}{\sin \theta_c}$ $= \frac{1.52}{\sin(70)}$ $= 1.6$ $n_1 = \frac{c}{v_1}$ $v_1 = \frac{c}{n_1}$ $= \frac{3 \times 10^8}{1.6}$ $= 1.85$ $\approx 1.9 \times 10^8 \text{ m s}^{-1}$	Mod 3 Waves and Thermodynamics PH11-10 Bands 4-5 • Calculates the correct transmission speed
Question 23 (a) $s = ut + \frac{1}{2}at^2$ $s = \frac{1}{2}at^2$ $t = \sqrt{\frac{2s}{a}}$ $= \sqrt{\frac{2 \times 60}{1.2}}$ = 10 s	Mod 1 Kinematics PH11–8 Bands 3–4 • Calculates the correct time taken2 • Gives some relevant information1

	Sample answer	Syllabus content, outcomes, targeted performance bands
	Sample answer	
(b)	Southern displacement: $s = ut + \frac{1}{2}at^{2}$ $= ut$ $= 4 \times 10$ $= 40$ As the southern displacement is less than 42, Freya will not hit the rocks.	 Mod 1 Kinematics PH11–8 Bands 3–4 Correctly calculates Freya's southern displacement. AND Correctly uses the southern displacement to conclude that Freya will not hit the rocks
(c)	The velocity displayed on the speedometer is wholly dependent on the boat's acceleration. Henry's instrument will detect the boat's velocity to be equal to the vector sum of the western velocity caused by the boat's acceleration and the southern velocity of the river current. Therefore, Henry's instrument will observe the boat moving with greater velocity.	Mod 1 Kinematics PH11-8 Bands 4-5 • Identifies that Henry's instrument will observe a greater velocity. AND • Provides a supporting explanation with reference to how the two velocities differ 3 • Correctly explains how the two velocities differ 2 • Gives some relevant information 1
Que	stion 24	
(a)	<i>For example:</i> Notes with low pitch correspond to sound waves that have a long wavelength. The long wavelengths of the low notes allow them to diffract around obstacles more easily than notes of higher pitch. Given that the student is a significant distance from the source of the music, it is possible that the low notes would reach them and the high notes would not. <i>Note: Accept other accurate explanations relating to wave behaviour. Responses should make a connection between the pitch of a note and its wavelength/frequency.</i>	 Mod 3 Waves and Thermodynamics PH11–10 Bands 3–4 Correctly explains the observation by relating the properties of notes of low pitch to their wave behaviour2 Gives some relevant information1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) $v = f \lambda$ $f = \frac{v}{\lambda}$ $= \frac{340}{2}$ = 170 Hz <i>Note: The value for v is the speed of sound as drawn</i>	Mod 3 Waves and Thermodynamics PH11–10 Bands 2–3 • Calculates the correct frequency 1
(c) $f' = f \frac{(v_{\text{wave}} + v_{\text{observer}})}{(v_{\text{wave}} - v_{\text{source}})}$ $v_{\text{observer}} = \frac{f'}{f} (v_{\text{wave}} - v_{\text{source}}) - v_{\text{wave}}$ $= \frac{171}{170} \times (340 - 0) - 340$ $= 2 \text{ m s}^{-1}$ The student is moving at 2 m s ⁻¹ toward the source of the sound.	Mod 3 Waves and Thermodynamics PH11–10 Bands 3–5 • Calculates the correct velocity2 • Correctly applies the relevant formula1
Question 25	
(a) Combining the resistors in series: $R_{\text{series}} = 12 + 12$ $= 24 \Omega$ Combining the resistors in parallel: $\frac{1}{R_{\text{circuit}}} = \frac{1}{12} + \frac{1}{24} + \frac{1}{24}$ $= \frac{1}{6}$ $= 6 \Omega$ As the ammeter is connected in series, its reading will be the circuit current, so we can apply Ohm's law to the resistors to obtain: $I_{\text{circuit}} = \frac{V_{\text{circuit}}}{R_{\text{circuit}}}$ $= \frac{12}{6}$ $= 2 \text{ A}$	Mod 4 Electricity and Magnetism PH11-11 Bands 3-6 • Calculates the ammeter reading3 • Calculates the total equivalent resistance of the circuit

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	P = IV = $I^{2}R$ = $2^{2} \times 6$ = 24 W $P = \frac{\Delta E}{\Delta T}$ $\Delta E = P\Delta T$ = 24×60^{2} = 86.4 kJ	Mod 4 Electricity and Magnetism PH11-11 Bands 5-6 • Calculates the energy consumed by the spotlight • Calculates the power consumed by the spotlight. • Calculates the power consumed by the spotlight. • OR • Equivalent merit
(c)	For example: As an observer moves further away from the spotlight, the light rays it produces will be dispersed further and further apart. Subsequently, a lower concentration of light energy will reach the area where the observer is, resulting in the spotlight's intensity decreasing as the observer moves away. Note: Answers could also include a suitable reference to the formula $I_1R_1^2 = I_2R_2^2$.	Mod 3 Waves and Thermodynamics PH11-10 Bands 4-5 • Explains how the spotlight's intensity changes as an observer moves away from it

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 26	
For example: In both systems, heat will flow from the hot object – either the metal or the polystyrene sheet – to the cold ice via conduction, causing the ice to melt. This will cause the temperature of both systems to decrease, but the total drop in temperature will be dependent on the specific heat capacities of both the metal and the sheet, so they will likely experience temperature drops of different magnitudes. Furthermore, as metal is a thermal conductor and polystyrene is a thermal insulator, the ice on the metal sheet will melt faster than the ice on the polystyrene sheet. In accordance with the zeroth law of thermodynamics, both systems will reach thermodynamic equilibrium after a large period of time passes, and the transfer of heat will then cease. However, as the metal sheet had a larger initial mass of ice to melt, and so required more energy to melt the ice, the metal sheet will have lost more energy than the polystyrene sheet. Subsequently, as metal is a good thermal conductor, the metal–ice system will likely reach a lower equilibrium temperature than the polystyrene–ice system. <i>Note: Responses could also include a relevant reference</i> to the latent heat required to melt the ice, a relevant reference to the equation $Q = mc\Delta T$ or a relevant diagram.	 Mod 3 Waves and Thermodynamics PH11–10 Bands 3–5 Explains the thermodynamic changes that occur in both systems in detail. AND Compares the thermodynamic changes that occur in both systems in detail. AND Presents the response in a logical, cohesive manner5 Explains the thermodynamic changes that occur in both systems. AND Compares the thermodynamic changes that occur in both systems. AND Compares the thermodynamic changes that occur in both systems. AND Presents the response in a logical, cohesive manner4 Explains the thermodynamic changes that occur in both systems. AND Presents the response in a logical, cohesive manner4 Explains the thermodynamic changes that occur in both systems. AND Compares the thermodynamic changes that occur in both systems.
	• Gives some relevant information1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 27	
Let the final relative velocity be v_{AB} . $v_{AB} = v_A - v_B$ This difference can be represented diagrammatically as follows. 15 40° 120° 12 40° 120° 12 40° 120° 12 $y_{AB_x} = -15\sin 40 - 12\sin 20$ = -13.746055 In the y direction: $v_{AB_y} = 12\cos 20 - 15\cos 40$ = -0.21435519 For magnitude: $v_{AB} = \sqrt{13.746^2 + 0.214^2}$ = 13.7 For direction: $\tan \theta = \left(-\frac{0.214}{13.746}\right)$ $\theta = \tan^{-1}\left(-\frac{0.214}{13.746}\right)$ $= -89.19^{\circ}$ Therefore, $v_{AB} = 13.7$ m s ⁻¹ at bearing S89°W.	Mod 1 Kinematics PH11-8 Bands 3–5 • Draws a correct diagram that represents v_{AB} . AND • Correctly calculates the magnitude of the relative velocity vector. AND • Correctly calculates the direction of the relative velocity vector4 • Any TWO of the above points

San	nnle answer	Syll targ	abus content, outcomes, geted performance bands and marking guide
Ouestion 28			
(a) force	2 (N) A	Mod 4 Ele PH11–11	ectricity and Magnetism Bands 2–6
	$\begin{array}{c} & & \\$	 Accur AND Uses units AND Draw of bes AND Calcur of the Any T 	correct axes labels, and scale. s an accurate line st fit. lates the gradient line4 THREE of the above points3
		• Any T	TWO of the above points2
		• Any (ONE of the above points 1
(b) From the graph: gradient = $\frac{4.5 - (-3)}{(-5 - 4) \times (-5 - 4)}$ = -9×10^5	From the graph: gradient = $\frac{4.5 - (-3.6)}{(-5 - 4) \times 10^{-6}}$ = -9×10^{5}	 Uses to cal AND Explate that o 	the gradient of the line culate q_1 . ins the changes ccur in the force
Using the value of the	the gradient, solve for q_1 .	betwe	een the two particles2
gradient = $\frac{F}{q_2}$		• Any (ONE of the above points 1
$=\frac{q_1}{4\pi\varepsilon_0 r^2}$			
$q_1 = \text{gradient}$	$\times 4\pi\varepsilon_0 r^2$		
$= -9 \times 10^{5} \times$ $= -1 \times 10^{-4}$			
The force on the part on the second partic as seen in the graph. if q_2 also has a nega the charges is positiv a positive charge, th is negative (attractiv <i>Note: Accept varyin</i> on the points on the to calculate the grad be used to find an accept varying	ticles is proportional to the charge le, producing a linear relationship, As q_1 has a negative charge, tive charge, the force between we (repulsive). If q_2 has e force between the charges re). g values for q_1 depending line of best fit chosen dient. The gradient must ccurate value of q_1 .		

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 29	
Equation 25 F_{N} $F_{g} cos \theta$ $F_{g} cos \theta$ Equating forces perpendicular to the plane: $F_{N} = F_{g} cos \theta$ $N = mg cos \theta$ Equating forces parallel to the plane: $F_{g} sin \theta = F_{fr}$ $mg sin \theta = \mu N$ $= \mu mg cos \theta$ $\mu = \frac{sin \theta}{cos \theta}$	Mod 2 Dynamics PH11–9Bands 4–6• Successfully derives $\mu = \tan \theta$. AND•• Draws an accurate free-body diagram
$= \tan \theta$	Shows working of equivalent merit1