

Trial Examination 2022

HSC Year 12 Physics

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Answer and explanation	Syllabus content, outc and targeted performanc	
Question 1DD is correct. Gravity always acts downwards, so the acceleration on the ball is vertically downward at every position in the ball's journey.	Mod 5 Advanced Mechanics PH12–5	Band 3
A is incorrect. This option may be reached by only accounting for the force of gravity when the ball is close to the surface of the Earth again.		
B is incorrect. This option may be reached by assuming that gravity acts downwards as the ball is travelling back to the surface of the Earth.		
C is incorrect. This option may be reached by assuming that, as it is rising, the ball has no downwards acceleration due to gravity.		
 Question 2 A A is correct. Projectile motion can be analysed as a combination of horizontal motion with constant velocity and vertical motion with constant acceleration. The two balls have different <i>x</i> motions, as the black ball was dropped from rest and the white ball was projected horizontally, but identical <i>y</i> motions, as they both fall the same distance at the same time. B is incorrect. This option identifies that the two balls have identical <i>x</i> positions, but the black ball was projected horizontally. C is incorrect. This option identifies that the <i>y</i> positions and <i>y</i> acceleration are different for the two balls when they are the same. D is incorrect. This option identifies that the <i>y</i> acceleration is different for the two balls when it is the same. 	Mod 5 Advanced Mechanics PH12–4, 12–5, 12–12	Band 4
Question 3 D At the maximum height, vertical velocity is 0. $v^2 = u^2 + 2as$ $0 = (6.5)^2 + 2 \times a \times 8.5$ $a = \frac{6.5^2}{2 \times 8.5}$ $= 2.49 \text{ m s}^{-2}$ From the table, this equates to the surface gravity of Pallas.	Mod 5 Advanced Mechanics PH12–4, 12–5, 12–12	Bands 4–5

.

SECTION I

Answer and explanation	Syllabus content, out and targeted performan	
Question 4 D road surface θ ψ $w = mg$ W = mg r = 63 m $\theta = 12^{\circ}$ There is no net force in the vertical direction. $N \cos \theta - mg = 0$ $\left(N = \frac{mg}{\cos \theta}\right)$ There is a net force provided by the normal force, which is the centripetal force. $F_{\text{net}} = N \sin \theta = \frac{mv^2}{r}$ $v^2 = mg \cos \theta \times \sin \theta \times \frac{r}{m}$ $= rg \tan \theta$ $v = \sqrt{(rg \tan \theta)}$ $= \sqrt{(63 \times 9.8 \tan 12^{\circ})}$ $= 11.46 \text{ m s}^{-1}$ $= 41.24 \text{ km h}^{-1}$ (to three significant figures)	Mod 5 Advanced Mechanics PH12–4, 12–5, 12–6, 12–12	Bands 5–6
Question 5AA is correct. The electrons in the vaporised element will absorb energy at a characteristic wavelength and, as they are excited, they will go to a higher energy state before dropping back to ground state. The wavelengths absorbed are distinctive of the element as each element has a unique arrangement of electrons. The wavelengths absorbed will appear as dark lines on a coloured background.B and D are incorrect. Energy is absorbed by the gaseous atoms, which will result in an absorption spectrum.C is incorrect. An emission spectrum is shown as coloured lines on a dark background. The lines on emission and absorption spectra are complementary, meaning that they appear at the same values.	Mod 7 The Nature of Light PH12–14	Bands 3–4

Answer and explanation	Syllabus content, outco and targeted performance	
Question 6BB is correct. Using the right-hand palm rule, where B is upthe page and the direction of the current (I) is to the left, theloop would experience a force into the page at WZ. At XY,B is up the page and I is to the right. Thus, it experiences aforce out of the page.	Mod 6 Electromagnetism PH12–3	Band 4
A is incorrect. This option may be reached by using the right-hand palm rule incorrectly.		
C and D are incorrect. When a loop experiences torque, it rotates. Thus, if the two forces were acting in the same direction, there would be no torque.		
Question 7DD is correct. Magnetic flux is represented by the total number of lines of force in any given area. Thus, both magnetic fields have the same amount of flux. As the smaller field has more lines of force in a smaller area, its magnetic flux density/ magnetic field strength is greater than the larger field.	Mod 6 Electromagnetism PH12–13	Band 4
A is incorrect. Both fields show the same number of force lines (9), but the smaller field has more lines in a smaller area. Thus, its flux density is greater.		
B and C are incorrect. Both fields show the same number of force lines.		
Question 8B $\tau = rF \sin \theta$ $= 0.5 \times 70 \sin(70^\circ)$ $= 32.8892$ ≈ 32.89 N m	Mod 5 Advanced Mechanics PH12–4, 12–6, 12–12	Band 4

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 9BB is correct. Finding the magnitude and direction of the force from rod A to rod C gives:	Mod 6 Electromagnetism PH12–5, 12–13 Band 5
$\frac{F}{l} = \frac{k \times 5 \times 3}{0.3}$ $= 0.00001 \text{ Nm}^{-1} \text{ down}$	
Finding the magnitude and direction of the force from rod B to rod C gives:	
$\frac{F}{l} = \frac{k \times 5 \times 4}{0.2}$ $= 0.00002 \text{ Nm}^{-1} \text{ up}$	
Finding the magnitude and direction of the force on rod C gives:	
$\frac{F}{l} = 0.00002 - 0.00001$	
$= 0.00001 \text{ Nm}^{-1} \text{ up}$	
A is incorrect. This option gives the wrong direction.C and D are incorrect. These options use incorrect calculations.	
Question 10 A As the rod moves to the right, the area to the left of the rod increases, increasing the flux down through the area. Hence, a current is induced upwards in the rod, whose own magnetic field opposes the flux increase, producing a force to the left to oppose the motion. The increasing area on the left will induce a current in an anticlockwise direction around the loop.	Mod 6 Electromagnetism PH12–4, 12–13 Bands 5–6
Question 11DD is correct. In the investigation, the student is changing the rotational speed, causing the hanging mass to rise and fall; therefore, the rotational speed is the independent variable. The student then measures the radius of the string, which will change depending on the rotational speed used by the student; therefore, the radius is the dependent variable. They keep the mass of the rubber stopper and length of string the same; therefore, they are the controlled variables.A is incorrect. The rotation period is what the student is trying to determine (the dependent variable) and the length of string is a controlled variable.B and C are incorrect. The mass of the rubber stopper should not change; it is a controlled variable.	Mod 5 Advanced Mechanics PH12–4, 12–5, 12–12 Band 4

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 12BB is correct. As a star rotates away from the observer, the light observed shifts towards the red end (longer frequency) of the spectrum. When the star is rotating towards the observer, the light observed shifts to the blue end (shorter 	Mod 7 The Nature of Light PH12–14 Bands 4–5	
Question 13 C Increasing the slit separation increases the distance between the bright bands. As the slit separation increases, interference decreases as interference is caused by individual photons passing through both slits. Therefore, widening the slits decreases the interference, which increases the distance between the bright bands. Increasing the distance between the double slits and the screen increases the spacing between the bright bands.	Mod 7 The Nature of Light PH12–2, 12–14 Band 5	
Question 14DD is correct. $d \sin \theta = m\lambda = \frac{dx}{L}$ For the six bright bands: $x = \frac{50 \text{ mm}}{5}$ $= 10 \times 10^{-3} \text{ m}$ $\lambda = 10 \times 10^{-3} \times \frac{0.07 \times 10^{-3}}{1.05}$ $= 6.66 \times 10^{-7} \text{ m}$ $= 666 \text{ nm}$ A is incorrect. This option may be reached by incorrectly converting to nanometres and dividing the 50 mm separation by 6 rather than 5.B is incorrect. This option may be reached by incorrectly converting to nanometres.C is incorrect. This option may be reached by incorrectly dividing the 50 mm separation by 6 rather than 5.	Mod 7 The Nature of Light PH12–4, 12–14 Band 4	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 15 B	Mod 7 The Nature of Light
$I_1 = I_0 \times \frac{1}{2}$	PH12–14 Band 5
$=150\times\frac{1}{2}$	
$= 75 \text{ Wm}^{-2}$	
change in angle = 60°	
$I_2 = I_1 \times \cos^2(60^\circ)$	
$=75\times\cos^2(60^\circ)$	
$=18.75 \text{ Wm}^{-2}$	
Question 16A r^3 GM	Mod 5 Advanced MechanicsPH12-6, 12-12Band 5
$\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$	
As Psi and Tri orbit the same star, $\frac{r^3}{T^2}$ (Psi) = $\frac{r^3}{T^2}$ (Tri).	
$\frac{r_{\rm Tri}^{3}}{r_{\rm Psi}^{3}} = \frac{(4r_{\rm Psi})^{3}}{r_{\rm Psi}^{3}}$	
$=4^{3}$ = 64	
$\frac{T_{\text{Tri}}^2}{T_{\text{Psi}}^2} = \sqrt{64}$ $= 8$	
Thus, Tri would take eight times longer to orbit the star than Psi.	
Question 17 C	Mod 8 From the Universe to the Atom
$\left(\frac{1}{2}\right)^2 \times 18.4 = 2.3$	PH12–5, 12–6, 12–15 Bands 5–6
$2^n = \frac{18.4}{2.3}$	
= 8 n = 3	
$t_{\frac{1}{2}} = 356 \times 3$	
=1068 years	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 18DD is correct. A nebula is a cloud of dust and gas. Gravity pulls the nebula into a point and a protostar forms. Hydrogen then fuses into helium and a main sequence star is formed. Stars spend most of their lives as main sequence stars. A larger main 	Mod 8 From the Universe to the Atom PH12–15 Bands 3–4
B is incorrect. The red giant would form a white dwarf. Stars spend most of their life as main sequence stars, then, depending on their mass, they form either red supergiants or red giants. It is the red supergiants that form black holes. Red giants, which are smaller, form white dwarfs, pulsars or neutron stars.	
Question 19 C DE = 3.71 - 5.52 = 1.81 eV emitted $= 2.895 \times 10^{-19} \text{ J}$ E = hf $f = \frac{2.896 \times 10^{-19}}{6.626 \times 10^{-34}}$ $= 4.4 \times 10^{14} \text{ Hz}$	Mod 8 From the Universe to the Atom PH12–6, 12–15 Bands 5–6
Question 20BB is correct. Model 1 represents the plum pudding model proposed by Thomson. The alpha particles travel through the atom as they are not significantly affected by the scattered charged particles in the atom. Model 2 represents Rutherford's model with the positive nucleus and negative electrons around the nucleus. Most of this atom is empty space, so most alpha particles can travel through the gold foil; only some collide with the small nucleus and are, thus, deflected.A is incorrect. Most, not a few, of the alpha particles would	Mod 8 From the Universe to the Atom PH12–5, 12–6, 12–15 Band 5
travel through the foil when using Thomson's model. When using Rutherford's model, only a few of the alpha particles are deflected by such a degree of scattering. Most travel through the foil undeflected with some deflected a narrow angle.C and D are incorrect. These options incorrectly identify the models.	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 21	
(a)	The ball is accelerating towards the centre of the circle. This net force is the centripetal force. Gravity is acting downwards, but the tension in the cord (the horizontal component) pulls the ball inward, keeping it moving in a circle around the pole. The velocity is a tangent to the circle in the direction of the motion of the ball.	 Mod 5 Advanced Mechanics PH12-4, 12-6, 12-12 Bands 4-5 Labels the velocity and forces. AND Explains the unbalanced force and the direction of velocity2 Any ONE of the above points1
(b)	$45^{\circ} - \frac{1.8 \text{ m}}{r}$ $\sin 45^{\circ} = \frac{r}{1.80}$ $r = 1.80 \sin 45^{\circ}$ $= 1.27 \text{ m} \text{ (to three significant figures)}$ <i>Note: A diagram is not required for the response but may be used as part of the working.</i>	Mod 5 Advanced Mechanics PH12–4, 12–6, 12–12 Band 4 • Provides the correct solution 1
(c)	F_{g} F_{g} F_{g} F_{net} $F_{net} = 0.588 \tan 45^{\circ}$ $= 0.59 \text{ N}$ Note: A diagram is not required for the response but may be used as part of the working.	Mod 5 Advanced Mechanics PH12-4, 12-6, 12-12 Band 4 • Calculates the magnitude of the net force using appropriate units

SECTION II

performance bands and marking guide
Mod 5 Advanced Mechanics PH12-6, 12-12 Band 5 • Calculates the horizontal and vertical components. AND • Calculates the time of flight. AND • Calculates the range using appropriate units

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 23	
	performance bands and marking guide Mod 5 Advanced Mechanics PH12–6, 12–7, 12–12 Band 5 • Calculates the gravitational potential energy using appropriate units. AND • Calculates the escape velocity using appropriate units. AND • Calculates the gravitational potential energy using appropriate units. AND • Calculates the gravitational potential energy using appropriate units. AND • Calculates the gravitational potential energy using appropriate units. AND • Calculates the escape velocity using appropriate units. AND • Calculates the escape velocity using appropriate units. AND • Calculates the escape velocity using appropriate units. AND • Outlines escape velocity
Question 24 (a) $m_1 = m_2 = 5.0 \times 10^8 \text{ kg}$ R = 100 m $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$ $F = \frac{Gm_1m_2}{r^2}$ $= \frac{6.67 \times 10^{-11} \times 5 \times 10^8 \times 5 \times 10^8}{100^2}$ = 1668 N	 with no explanation of escape velocity

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b) Gravitational force versus $\frac{1}{d^2}$ $\begin{pmatrix} Q \\ Q $	Mod 5 Advanced Mechanics PH12-6, 12-12Band 4• Provides the title, axes labels and units.Band 4• Provides the title, axes labels and units.AND• Uses the x-axis for $\frac{1}{d^2}$
(c) $k = \frac{(37-6) \times 10^3}{(8.5-1.4) \times 10^{-14}}$ $= \frac{31 \times 10^3}{7.1 \times 10^{-17}}$ $= 4.366 \times 10^{17} \text{ Nm}$ $k = GM_1M_2$ $4.366 \times 10^{17} \text{ Nm}^2 = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2} \times$ $1.00 \times 10^{24} \text{ kg} \times \text{mass of moon}$ $\text{mass of moon} = \frac{4.366 \times 10^{17}}{6.67 \times 10^{-11} \times 1.00 \times 10^{24}}$ = 6546 kg	Mod 5 Advanced Mechanics PH12-6, 12-12Bands 5-6• Uses the graph to determine the gradient.AND• Uses the data to find the mass of the moon.AND• Provides the correct calculations using appropriate units.3• Any TWO of the above points.2• Any ONE of the above points.1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 25	
(a)	In DC motors, a DC current runs through a coil in a magnetic field. Thus, it experiences a force known as the motor effect and it spins. A split ring commutator is used to switch the direction of the current in the coil every half rotation, or 180°, to ensure that the torque stays in the same direction. In DC motors, electric energy produces kinetic energy. The DC motor has an input voltage into the leads, which allows current to run through the motor. It also has brushes that connect the external circuit to the coil, which spins. The coil, known as the armature, spins inside the magnets or the stator. In an AC induction motor, there are no connected leads, brushes or split ring commutator. AC induction motors have a rotor, squirrel cage and a stator, which is a pair of electromagnets. As AC current is supplied to the electromagnets, an oscillating magnetic field is produced, causing a change in flux. By Faraday's Law, a coil experiencing a change of flux produces an electromotive force. By Lenz's Law, the emf causes a current, which creates a magnetic field that opposes the original change of flux. The squirrel cage experiences a change of flux, and a current is induced in the rotor. The induced current in a magnetic field experiences a force that makes it turn (the motor effect).	 Mod 6 Electromagnetism PH12–13 Band 5 Provides a detailed description of the structures of DC and AC motors. AND Explains the physics principles involved in DC and AC motors. AND Identifies the similarities and differences between DC and AC motors

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	$\tau = nBIA \sin \theta$ = 1×0.025×8×(0.30×0.25)×sin0° = 0.015 Nm	Mod 6 Electromagnetism PH12-4, 12-13Band 4• Identifies the appropriate data, formulae and units.AND• Calculates the magnitude of the torque22• Any ONE of the above points1
(c)	Using more coils would incrementally increase the size of the torque. As seen in the formulae, torque is multiplied by <i>n</i> (number of coils). Increasing the area of the loop would increase the torque. As $\tau \propto A$, if <i>A</i> increases, τ increases. <i>Note: Responses may also refer to change in current or magnetic field strength.</i>	Mod 6 Electromagnetism PH12-4, 12-13Band 5• Provides TWO appropriate modifications.Band 5• AND• Explains why the modifications would increase the torque
Que	stion 26	
(a)	$\begin{array}{c} & \times & \times & \times \\ \hline S & N \end{array} \xrightarrow{\bullet} & & & & \\ & & & & & \\ \hline & & & & & \\ \hline & & & &$	Mod 6 Electromagnetism PH12–4, 12–13 Band 5 • Labels the direction of current and the induced magnetic field on the diagram 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
 (b) Faraday found that a current was induced in one direction as the magnet was pushed into a coil and in the opposite direction when the magnet is removed from the coil. When the magnet was kept still in the coil, there was no current. Faraday identified the relationship between a changing magnetic field, brought about by moving the magnet, and the creation of an induced current. He confirmed this when he wrapped two separate coils of wire around opposite sides of an iron ring and showed that, when one was supplied with current that was switched on and off continuously, a current was induced in the second coil. Faraday's Law states that the induced emf is proportional to the rate of change of flux through the coil. Lenz's Law explains that 'whenever there is an induced emf, its direction will be such that there is opposition to the change in flux that created it'. As the magnet approaches the coil, the flux density increases and an emf is generated in the coil. Thus, induced emf did not oppose the motion of the magnet, then the magnet would speed up, creating a greater change in flux and greater emf. This is not possible as it violates the Law of Conservation of Energy. The work of Faraday and Lenz is significant as it gave rise to the development of transformers, which have many applications in society including the transport of electricity. Note: This response is more comprehensive than a student would be required to give. 	 of Energy. AND Makes a summative judgement about the contributions of Faraday and Lenz

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 27	
Given that voltage is equal to <i>IR</i> , power can equal <i>VI</i> . If power remains constant, an increase in voltage must result in a decreased current to uphold the Law of Conservation of Energy. This reduced current results in a reduced overall transformation of electrical energy into heat energy. This means that the transmission lines will retain more of the original electrical energy, resulting in an overall decrease in the percentage of energy lost. Therefore, the power loss in each system can be significantly less when transferring energy at a much higher voltage. Both voltages travel along the same line; hence, <i>R</i> is constant. Voltage in transmission A: 28×10^3 kV Voltage in transmission B: 280×10^3 kV The voltage in transmission B is 10 times greater than in transmission A. The current in transmission A must be a tenth of the system in transmission B. $P_{loss} = I^2 R$ $= \left(\frac{1}{10}\right)^2 \times R$ As the P_{loss} of transmission B is 1 : 100, it loses 100 times less energy than transmission A. <i>Note: An explanation of the difference in the transmissions is not required but may be included to develop the response.</i>	Mod 6 Electromagnetism PH12–5, 12–13 Band 5 • Compares the energy losses mathematically. AND • Includes $P = VI$ and $P = I^2R$. AND • Provides an overall comparison about energy and power loss in each transmission

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 28	
Classical physics is based on Newton's Laws of Motion and attempts to explain the movement of objects as being defined. Quantum physics aligns the dual nature of energy and matter as waves and particles. Classical physics cannot do this. The photoelectric effect needs quantum theory to be understood. The initial energy of a photon of light is <i>hf</i> . When the photon hits the metal surface, the energy is passed to the electron. For the electron to be released from the surface of the metal, it possesses kinetic energy (K_{max}) and the work function (ϕ). As $hf = K_{max} + \phi$, so $K_{max} = hf - \phi$. In the experiments conducted by Lenard, light was fired at a metal plate, causing electrons to be ejected from it, and then travelled through a circuit to a collecting plate. The current produced was measured by an ammeter. A voltage was applied to the collector plate to stop current flowing; this was known as the stopping voltage. The ammeter read zero as no electrons were reaching the collecting plate. The energy of the photoelectrons to be emitted, there was a particular frequency of light that had to be reached, which is the threshold frequency. If the frequency of the incident light was increased, the energy of the photoelectrons increased but there was no increase seen on the ammeter. Even when the voltage was increased, the current reaches a maximum value. If the intensity of the incident light increased, the kinetic energy of the photoelectrons released increased, the reading on the ammeter increased. These observations cannot be explained by classical physics, which would instead predict that the frequency of the light would not determine whether photoelectrons were emitted. In classical physics, energy from a wave builds up over time. Thus, even low frequency light should build up enough energy for electrons to be ejected over time. The wave model would also predict a delay between the waves striking the	 Mod 8 From the Universe to the Atom PH12–6, 12–7, 12–15 Band 6 Provides a well-structured and succinct analysis. AND Assesses what classical physics cannot explain. AND Assesses what quantum physics can explain. AND Provides a detailed description of the photoelectric effect. AND Provides an equation for the photelectric effect. AND Describes the work of Bohr, De Broglie and Schrodinger8–9 Assesses what classical physics can explain. AND Assesses what classical physics cannot explain. AND Assesses what quantum physics can explain. AND Provides a description of the photoelectric effect. AND Provides an equation for the photoelectric effect. AND Describes the work of Bohr, De Broglie and Schrodinger6–7 Defines classical and quantum physics. AND Outlines the photoelectric effect. AND Describes the work of Bohr, De Broglie and Schrodinger6–7 Defines classical and quantum physics. AND Outlines the photoelectric effect. AND Describes the work of Bohr, de Broglie AND Schrödinger5

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
 (continued) Similarly, questions about the structure of the atom that arose from observations of spectra of gases could not be explained by classical physics. Bohr explained the emission spectrum of hydrogen by using quantum physics. He proposed that the hydrogen atom was only capable of absorbing a limited range of frequencies of light; this absorbed energy was quantised. The emission spectra produced by hydrogen was complementary to the energy absorbed by the atom. Bohr labelled the electron orbits of the hydrogen atom with principal quantum numbers and was able to calculate the energy of each. Electrons could only exist in one discrete level; they gained a quantum of energy to be excited to a higher level and would release the fixed amount of energy as they returned to the lower or ground state energy level. Bohr's model worked well for hydrogen, but not so well for larger atoms with more electrons. De Broglie's work used standing waves to explain the stable orbits of Bohr's model. He developed the wave-particle theory by explaining the orbiting electrons in the hydrogen atom as matter waves. They were only stable because they established standing waves. The path they travelled (circumference) is equal to a whole number of wavelengths. Classical physics cannot explain the dual nature of energy and matter. Schrödinger's work on the probability of finding an electron by developing a mathematical equation calculates the region of space that an electron occupies, the orbital. Classical physics provides the underlying assumption that all particles, large and small, have a defined place and defined movement. Only knowing the probability of particles being in a three-dimensional space is the realm of quantum physics. 	 Defines classical OR quantum physics. AND Outlines the photoelectric effect. AND Describes the work of Bohr, de Broglie AND Schrödinger4 Outlines the photoelectric effect. AND Describes the work of Bohr, de Broglie AND Schrödinger3 Outlines the photoelectric effect. OR Describes the work of Bohr, de Broglie AND Schrödinger2 Provides some relevant information1
would be required to give.	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 30	
(a)	$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$ = $\frac{2.5 \times 10^{-8}}{\sqrt{1 - \frac{\left(2.95 \times 10^8\right)^2}{\left(3.0 \times 10^8\right)^2}}}$ = 1.37×10^{-7} s In this time, travelling at 2.95×10^8 m s ⁻¹ , the observer would measure the meson travelling at: s = vt = $2.95 \times 10^8 \times 1.37 \times 10^{-7}$ = 40.4 m (with time dilation) If time dilation did not exist, the meson would travel for 2.5×10^{-8} s. Therefore, the expected distance it	 Mod 7 The Nature of Light PH12-4, 12-14 Bands 5-6 Calculates the distance travelled in the observer's timeframe. AND Calculates the distance travelled in the meson's timeframe. AND Provides the correct significant figures for each solution3 Any TWO of the above points1
	would travel is:	
	s = vt	
	$= 2.95 \times 10^8 \times 2.5 \times 10^{-8}$ = 7.38 m (without time dilation)	
(b)	The pilot is inside the spacecraft, so they would measure a mass of 79 000 kg.	Mod 7 The Nature of LightPH12-4, 12-14Band 5
	Calculating the mass measured by an observer gives:	• Identifies the mass for pilot AND observer.
	$p_{\rm v} = \frac{m_0 v}{\sqrt{1-\frac{m_0 v}{m_0 v}}}$	AND Observer.
	$p_v = \frac{m_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	Calculates the mass. AND
	$=\frac{7.9\times10^{4}}{\sqrt{1-\left(\frac{(0.3c)^{2}}{c^{2}}\right)}}$	• Explains why objects cannot exceed the speed of light
		• Any TWO of the above points2
	$= 8.28 \times 10^4 \text{ kg}$	• Any ONE of the above points 1
	Because the total energy of a mass is $E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$,	
	the energy requirement approaches infinity as the velocity approaches the speed of light. Hence, an object with mass cannot accelerate to the speed of light.	

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 31	
The invention of particle accelerators led to the discovery of more particles and allowed scientists to gain a better understanding of the model of the atom through the experiments that were made possible. Particle accelerators use electric fields to accelerate charged particles to very high speeds (close to the speed of light) and, consequently, very high energies. Magnetic fields are used to direct their travel. They are aimed at targets and, as they bombard them, new particles are created from the collisions. When the particles smash into each other, they break apart into their constituent particles: quarks, bosons and other fundamental particles. These particles do not last long, so new technology was needed to even detect them. The Standard Model was developed to describe the structure of atoms and the forces or interactions holding them together. It divides fundamental particles into two main groups: fermions (particles that make up matter) and bosons (particles that impart force). Fermions include two types of particles: quarks and leptons. There are six quarks: up, down, charm, strange, top and bottom. Quarks also have antimatter equivalents, with their charges being equal and opposite. They do not exist on their own and usually combine with each other. These combinations are hadrons. Three-quark combinations are baryons, and two-quark combinations are mesons; they have one quark and one antiquark. Neutrons made of are one up quark and two down quarks	 Mod 8 From the Universe to the Atom PH12–7, 12–15 Band 6 Provides a well-organised and succinct response. AND Describes in detail ALL particles and forces of the Standard Model. AND Explains in detail the role of particle accelerators in enhancing understanding of atoms
(udd). Protons are made of two up quarks and one down quark (uud). For mesons, the positive kaon is the up and anti-strange combination, while the negative kaon is the strange and anti-up combination.Leptons include the electron, muon and neutrino. The muon is a heavier form of the electron. The neutrino is neutral, has very little interaction with matter and has a very small mass.In the Standard Model, there are four fundamental forces. For each force, there is an exchange particle called a boson.	 accelerators in enhancing understanding of atoms
The gravitational force is a long-range force that acts on all particles with mass. It is believed to be carried by gravitons that have not yet been discovered. This is an area of study in which particle accelerators continue to be important. The electromagnetic force acts on all electrically charged particles and holds atoms and molecules together; it is carried by the photon. The strong nuclear force is a short acting force that joins quarks together to form neutrons and protons; it is carried by gluons. (continues on next page)	 Identifies most of the particles and forces of the Standard Model. AND Identifies the role of particle accelerators in enhancing understanding of atoms

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(continued) The weak nuclear force is a short-range force that intera with some particles to form other particles; it is carried b and Z bosons. Therefore, the invention of particle accelerators has not only allowed the discovery of new particles but, by stud their interactions, it has enabled physicists to understand more about the fundamental forces of nature holding ato together. Without particle accelerators, particles could n reach the speeds necessary to conduct these experiments <i>Note: This response is more comprehensive than a stude</i> <i>would be required to give.</i>	 AND Identifies the role of technology in enhancing understanding of atoms
Question 32	
 (a) For example: A computer simulation was used where unstable a were hit with neutrons, which caused them to spli smaller atoms. Each atom produced neutrons, whi then caused other atoms to split in a chain reaction After a few seconds, the chain reaction had increat to the point of an explosion. In the simulation, it was possible to include contrarods made of a metal that absorbed neutrons. Whet these were used, the reaction was controlled as not all neutron collisions caused fission. For every two or three neutrons released, only one hit an atom at caused fission. The model was very effective. It was a clear visuar representation of fission that demonstrated the chain reaction. It showed that if it was not controlled, the chain reaction became explosive. It also showed t effect of introducing the neutron-absorbing mater control the chain reaction. 	 t into Describes the model. AND Explains how the model showed fission. AND Explains how the model shows controlled versus uncontrolled fission. AND Provides a concise judgment about the effectiveness of the model4 Any THREE of the above points3

	Sample ar	swer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	Oxygen has 8 protons and $1.007276 \text{ amu} \times 8 = 8.058$ $1.008664 \text{ amu} \times 10 = 10.08$ = 18.14 Calculating the mass defect 18.144848 - 17.99916 = 0.2 $0.145688 \text{ amu} \times 1.661 \times 10^{-1}$ Calculating the binding end	208 3664 44848 amu t gives: 145688 amu $^{-27}$ kg = 2.42×10 ⁻²⁸ kg	 Mod 8 From the Universe to the Atom PH12-6, 12-15 Bands 4-5 Calculates the mass defect. AND Calculates the binding energy in joules. AND Calculates the binding energy in electron volts
	$E = mc^{2}$ = 2.42 × 10 ⁻²⁸ × (3.00 × 1) = 2.18 × 10 ⁻¹¹ J = 135.9 × 10 ⁸ eV	08)	 Any TWO of the above points2 Any ONE of the above points1
(c)	nucleosynthesis via the pro- fusion reaction involves for into a helium nucleus, whice The PP chain involves thre is $4_1^1 H \rightarrow {}^4_2 He + 2 {}^0_{+1}e + 2v$	th releases energy. e steps. The overall reaction $+2\gamma$. s join and produce a helium ditrons, two neutrinos and	 Mod 8 From the Universe to the Atom PH12–7, 12–15 Band 5 Identifies that main sequence stars undergo the PP chain. AND Provides an overall equation for the fusion of four hydrogen nuclei into one helium nuclei. AND Describes the PP chain3 Any TWO of the above points2 Any ONE of the above points1
Que	stion 33		
(a)	ObservationThe cathode rays cast a shadow with the sharp edges of the maltese cross.A paddle wheel rotates from the cathode to the anode.	<i>Explanation</i> The shadow demonstrates that the cathode rays travel in straight lines. This portrays both the particle nature and wave nature of the cathode rays. This shows that they possessed momentum. Thus, they must have mass and are, therefore, particles.	 Mod 8 From the Universe to the Atom PH12–5, 12–6, 12–7, 12–15 Band 5 Describes in detail the observations. AND Explains the observations by linking to the properties of cathode rays2 Outlines the observations1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	$eV = \frac{1}{2}mv^{2}$ 1.6×10 ⁻¹⁹ ×2400 = $\frac{1}{2}$ ×9.1×10 ⁻³¹ ×v ² $v^{2} = \frac{1.6 \times 10^{-19} \times 2400}{\frac{1}{2} \times 9.1 \times 10^{-31}}$ $v = 2.9 \times 10^{7} \text{ m s}^{-1}$	Mod 8 From the Universe to the Atom PH12-6, 12-15Bands 4-5• Identifies the appropriate formula to use.AND• Provides the correct solution using appropriate units.2• Any ONE of the above points1
(c)	Millikan observed the oil drops that fell through the small gap between the plates. When the electric force was equal to the opposing gravitational force, the drop remained in static equilibrium. Therefore, $Mg = qE$, where $E = \frac{V}{d}$. He found that the charge on the oil droplet was always a multiple of 1.6×10^{-19} C, which is the charge on an electron.	 Mod 8 From the Universe to the Atom PH12–7, 12–15 Bands 5–6 Provides a concise description of observations. AND Links to the charge always being a multiple of 1.6 × 10⁻¹⁹ C2 Any ONE of the above points1

.