Neap

Trial Examination 2023

HSC Year 12 Physics

Solutions and Marking Guidelines

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1APolonium-214 undergoes alpha decay and emits a helium nucleus.	Mod 8 From the Universe to the Atom PH12–5, 12–6, 12–7, 12–15 Bands 3–6
As <i>X</i> is the mass number of Pb:	
X = 214 - 4	
= 210	
As <i>Y</i> is the atomic number of Pb:	
Y = 84 - 2	
= 82	
The alpha particle is the helium nucleus, which is composed of two protons, each with a positive charge, and two neutrons, each with no charge. Thus, the alpha particle has a +2 charge.	
Question 2 B photon energy = $E_{1} - E_{2}$	Mod 8 From the Universe to the Atom PH12–5, 12–6, 12–15 Bands 3–6
$-2.04 \times 10^{-18} - 1.04 \times 10^{-18}$	
-2.04×10^{-19}	
$= 1.00 \times 10^{-19}$	
is falling from a higher energy level to a lower energy level.	
Question 3 A	Mod 8 From the Universe to the Atom
Protons have a +1 charge with 2 up quarks and 1 down quark; that is, uud.	PH12–15 Bands 2–6
Neutrons have no charge with 1 up quark and 2 down quarks;	
that is, udd.	
Question 4 A	Mod 6 Electromagnetism
$\frac{V_{\rm p}}{N_{\rm p}} = \frac{N_{\rm p}}{N_{\rm p}}$	F1112-3, 12-13 Danus 4-0
V _s N _s	
$\frac{168}{4200} = \frac{50}{N}$	
4200 N _s	
$N_{\rm s} = \frac{4200 \times 50}{168}$	
=1250	
$N_{\rm p}: N_{\rm s} = 50: 1250$	
=1:25	

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance band	S
Question 5BB is correct and D is incorrect. The tennis ball's journey has two parts. Initially, it travels upwards after being launched by the tennis player, so the graph must begin above the x -axis. The ball travels upwards at a decreasing velocity, so it approaches the x-axis until it reaches its maximum height. After this, the ball travels downwards (that is, below the x-axis) at a decreasing velocity until it is caught by the tennis player at time T.A is incorrect. This graph accurately depicts the first part of the tennis ball's journey, but shows the second part of the	Mod 5 Advanced Mechanics PH12–4, 12–5, 12–12 Bands	3-6
journey as an upwards motion with increasing velocity. C is incorrect. This graph is parabolic, which does not represent the tennis ball's journey.		
Question 6CC is correct and D is incorrect. When a satellite that has an elliptical orbit, such as the Moon, returns to its closest point to Earth (the perigee), its gravitational potential energy will be at its lowest and its kinetic energy will be at its highest. Thus, the Moon will be moving at a high velocity.A is incorrect. At the furthest point in its orbit (the apogee), the Moon's gravitational potential energy will be at a maximum, not a minimum.B is incorrect. At the apogee, the Moon's kinetic energy will be at a minimum, not a maximum, and, as a result, it will move at a low velocity	Mod 5 Advanced Mechanics PH12–4, 12–6, 12–12 Bands	4-6
Question 7DDuring stage 1, the elevator moves at a constant velocity. Therefore: $weight = mg$ $= 65 \times 9.8$	Mod 5 Advanced Mechanics PH12–6, 12–12 Bands	4-6
= 637 N		
During stage 2, the elevator accelerates upwards. Therefore: weight = $mg + ma$ = $65 \times 9.8 + 65 \times 5$ = 962 N During stage 3, the elevator accelerates downwards. Therefore:		
weight = $mg - ma$ = $65 \times 9.8 - 65 \times 5$ = 312 N		

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 8 B According to $\frac{F}{l} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{r}$, doubling the distance between the wires (from 0.05 m to 0.1 m) would reduce the acting	Mod 6 Electromagnetism PH12–4, 12–5, 12–13 Bands 3–6
force by half of its original value.	
Question 9 C F = qvB	Mod 6 Electromagnetism PH12–4, 12–5, 12–13 Bands 4–6
$= -1.602 \times 10^{-19} \times 80 \times 20$ $= 2.6 \times 10^{-16} $ N	
The magnetic field, B , is directed to the right of the page and the negative charge is entering the field up the page. Thus, the force is out of the page.	
Note: When applying the right-hand rule, the thumb points in the direction of the velocity of the charge (up the page), the index finger points in the direction of the magnetic field (right of the page) and the middle finger points in the direction of the force acting on the particle (into the page). As this is a negative particle, the force is in the opposite direction; thus, it is out of the page.	
Question 10BUsing the right-hand rule for the top and bottom of the coil, the current, I , is up the page and the magnetic field, B , is to the right of the page. Thus, the palm indicates a force into the page, which means that the coil rotates in an anticlockwise direction.	Mod 6 Electromagnetism PH12–4, 12–5, 12–13 Bands 4–6
$\tau = nIAB\sin\theta$	
$= 20 \times (15 \times 0.001) \times (0.03 \times 0.04) \times 3 \times \sin(65^{\circ})$	
$=20 \times 0.015 \times 0.0012 \times 3 \times 0.9063$	
$=9.79 \times 10^{-4}$ Nm	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 11CC is correct and D is incorrect. Using the right-hand rule, the magnetic field is into the page; thus, the direction of particle K's movement indicates that it is negatively charged.	Mod 6 Electromagnetism Mod 8 From the Universe to the Atom PH12–5, 12–6, 12–13, 12–15 Bands 5–6
Given that $F = qvB$: $F = \frac{mv^2}{r}$ $r = \frac{mv^2}{F}$ $r = \frac{mv^2}{qvB}$ $r = \frac{mv}{qB}$ $\frac{q}{m} = \frac{v}{rB}$ $= \frac{2.5 \times 10^4}{0.05 \times 1.8 \times 10^{-6}}$	
= $2.8 \times 10^{\circ}$ C kg A and B are incorrect. These options do not convert the radius of particle K's arc from centimetres to metres.	
Question 12CThe intensity of the light refers to the rate at which the photons in the light are incident on a surface; in this case, the piece of metal. The frequency of the light refers to the energy of each photon, according to $E = hf$.	Mod 7 The Nature of Light PH12–2, 12–4, 12–14 Band 5
Under condition 1, the maximum kinetic energy of the photoelectrons (K_{max}) would remain constant because the frequency of the light is kept constant, and the number of photoelectrons emitted would decrease because the intensity of light decreased.	
Under condition 2, the increased frequency of the light means that the photon energy is increased, according to $K_{\text{max}} = hf - \phi$. As ϕ is constant, this also increases the kinetic energy of the photoelectrons. As the intensity of the light is kept constant, the number of photons, and thus photoelectrons, also remains constant.	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 13AA is correct. The speed of light is constant relative to all observers.	Mod 7 The Nature of Light PH12–4, 12–14 Band 4
B , C and D are incorrect. These statements do not account for the speed of light being constant.	
Question 14CRen and Annika are moving on the same path. Therefore, they could both be moving towards the Extrema space station, with Annika travelling at a faster speed. Thus, conclusion 1 could be correct.	Mod 7 The Nature of Light PH12–4, 12–14 Bands 4–6
While her navigation system is rebooting, Ren could go off course and start moving backwards towards the Ultima space station while Annika remains stationary. Thus, conclusion 2 could be correct.	
Both Ren and Annika could go off course and start moving backwards towards the Ultima space station, with Ren moving faster than Annika. Thus, conclusion 3 could be correct.	
Question 15DUsing Wien's law gives:	Mod 7 The Nature of LightPH12-4, 12-14Band 4
$\lambda_{\max} = \frac{b}{T}$	
$=\frac{2.898\times10^{-3}}{4000}$	
$=7.245 \times 10^{-7}$ m	
= 725 nm	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 16 B	Mod 8 From the Universe to the Atom
$^{235}_{92}$ U + $^{1}_{0}$ n \rightarrow $^{140}_{56}$ Ba + $^{93}_{36}$ Kr + 3^{1}_{0} n	PH12-4, 12-5, 12-15 Bands 5-6
The mass of the reactants in the fission reaction is:	
235.044 + 1.00866 = 236.05266 amu	
The mass of the products in the fission reaction is: $139.91061 + 92.93127 + (3 \times 1.00866) = 235.86786$ amu	
Therefore, the mass lost during the reaction is:	
236.05266 - 235.86786 = 0.1848 amu	
Given that 1 amu = 1.661×10^{-27} kg, the energy released per nucleus is:	
$E = mc^2$	
$= (0.1848 \times 1.661 \times 10^{-27}) \times (3.00 \times 10^{8})^{2}$	
$=2.7625\times10^{-11} $ J	
Given that 2% of 1 kg is 0.02 kg, the mass of uranium-235 is:	
$\frac{0.02}{1.661 \times 10^{-27}} = 1.2040 \times 10^{25} \text{ amu}$	
number of uranium-235 nuclei = $\frac{1.2040\times10^{25}}{235.044}$	
$=5.1228\times10^{22}$ nuclei	
total energy released = $(2.7625\times10^{-11})\times(5.1228\times10^{22})$	
$=1.4168\times 10^{12}$	
$=1.42 \times 10^{12} \text{ J}$	
Question 17 A	Mod 8 From the Universe to the Atom
In experiment 1, the students would observe a continuous visible spectrum due to the heated filament of the incandescent lamp, which produces heat and light and emits photons across the entire visible spectrum.	PH12–5, 12–6, 12–15 Bands 4–6
In experiment 2, the students would observe an emission spectrum. The yellow lines on the black background are caused by the photons of light released by excited electrons returning to the ground state from a higher energy level and correspond to the differences in these energy levels.	
In experiment 3, the students would observe an absorption spectrum. The incandescent lamp produces photons of all colour frequencies; however, the sodium vapour would absorb photons that cause electrons to jump to higher energy levels. As these electrons return to the ground state, the photons released would be equivalent to the wavelengths of the energy absorbed. Thus, these wavelengths would appear as black lines on the coloured background.	

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 18C $qV = \frac{1}{2}mv^2$	Mod 8 From the Universe to the AtomPH12-6, 12-15Band 5
$v = \sqrt{\frac{2qV}{m}}$	
$=\sqrt{\frac{2\times(1.602\times10^{-19})\times3200}{9.109\times10^{-31}}}$	
$=3.35\times10^7 \text{ m s}^{-1}$	
Question 19D $\tau = rF\sin\theta$	Mod 5 Advanced Mechanics PH12–4, 12–5, 12–6, 12–12 Bands 5–6
Given that $m = rF$, using points from the graph to find <i>m</i> gives:	
$m = \frac{200 - 50}{0.59 - 0.14}$ = 333.3333	
Therefore:	
m = rF	
$333.3333=0.25 \times F$	
F = 1333 N	
Question 20 C $T = \frac{60}{10}$ $= 6 \text{ s}$	Mod 5 Advanced Mechanics PH12–4, 12–6, 12–12 Bands 5–6
$v = \frac{2\pi r}{T}$	
$=\frac{2\pi \times 15.00}{6}$ =15.7079 m s ⁻¹	
$F = \frac{mv^2}{r}$	
$=\frac{(550.0+65.00)\times15.7079^{2}}{15.00}$	
= 10 110 N	

performance bands and marking guide
 Mod 5 Advanced Mechanics PH12–4, 12–5, 12–12 Bands 4–6 Identifies the appropriate data and formulae. AND Calculates the maximum height of the kai using appropriate units
• Provides some relevant working 1
Mod 5 Advanced Mechanics PH12-4, 12-5, 12-12 Bands 4-6 • Identifies the appropriate data and formulae. AND • Calculates the flight time of the kai using appropriate units2 • Provides some relevant working1
Mod 5 Advanced Mechanics PH12-4, 12-5, 12-12 Bands 4-6 • Identifies the appropriate data and formulae. AND • Calculates the horizontal range of the kai using appropriate units

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 22	
(a) $F_{\rm c} = \frac{mv^2}{r}$ = $1300 \times \frac{\left(\frac{80}{3.6}\right)^2}{40}$ = 16 049 N	Mod 5 Advanced Mechanics PH12–4, 12–5, 12–6, 12–12 Bands 4–6 • Identifies the appropriate data and formulae. AND • Calculates the magnitude of the centripetal force using appropriate units2
(b) $a = \frac{v^2}{r}$ = $\frac{\left(\frac{80}{3.6}\right)^2}{40}$ = 12 m s ⁻²	 Mod 5 Advanced Mechanics PH12–4, 12–5, 12–6, 12–12 Bands 4–6 Identifies the appropriate data and formulae. AND Calculates the magnitude of the centripetal acceleration using appropriate units
(c) $f_{n} = mg$ $F_{c} = F_{net}(x)$ $tan(8^{\circ}) = \frac{F_{net}(x)}{1300 \times 9.8}$ $F_{net}(x) = tan(8^{\circ}) \times 12\ 740$ $= 1790\ N\ OR\ 2 \times 10^{3}\ N\ (to\ 1\ significant\ figure)$	 Mod 5 Advanced Mechanics PH12–4, 12–5, 12–6, 12–12 Bands 4–6 Draws a relevant diagram that shows the vector components. AND Labels the reaction force AND weight force. AND Identifies F_{net}(x) as the centripetal force. AND Calculates the magnitude of the centripetal force using appropriate units4 Any THREE of the above points2 Any TWO of the above points2

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 23	
(a)	Finding the formula for orbital velocity gives: $\frac{GMm}{r^2} = \frac{mv^2}{r}$ $v = \sqrt{\frac{GM}{r}}$ Substituting into the formula gives: $v = \sqrt{\frac{GM}{r}}$ $= \sqrt{\frac{(6.67 \times 10^{-11}) \times (6.0 \times 10^{24})}{6.371 \times 10^6 + 5.0 \times 10^5}}$ $= 7622 \text{ m s}^{-1}$	Mod 5 Advanced Mechanics PH12-6, 12-12 Bands 4-6 • Calculates the orbital velocity using appropriate units
(b)	$E_{\rm p} = -\frac{Gm_1m_2}{r}$ = $-\frac{(6.67 \times 10^{-11}) \times (6.0 \times 10^{24}) \times 250}{6.371 \times 10^6 + 5.0 \times 10^5}$ = $-1.4561 \times 10^{10} \text{ J}$ = $-1.5 \times 10^{10} \text{ J}$	Mod 5 Advanced Mechanics PH12–6, 12–12 Bands 4–6 • Calculates the magnitude of the gravitational potential energy using appropriate units2 • Calculates the magnitude of the gravitational potential energy without appropriate units. OR • Calculates the magnitude of the gravitational energy without including the radius of Earth
(c)	$\frac{1}{2}mv^{2} = \frac{GMm}{r}$ $v = \sqrt{\frac{2GM}{r}}$ $= \sqrt{\frac{2 \times (6.67 \times 10^{-11}) \times (6.0 \times 10^{24})}{6.371 \times 10^{6} + 5.0 \times 10^{5}}}$ $= 10\ 793\ \mathrm{m\ s^{-1}}$	Mod 5 Advanced Mechanics PH12-6, 12-12Bands 5-6• Identifies the relationship between kinetic energy and potential energy.Bands 5-6• Identifies the relationship between kinetic energy and potential energy.AND• Identifies the appropriate data and formulae.AND• Calculates the escape velocity of the satellite using appropriate units.2• Any TWO of the above points.1

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(d)	As the satellite goes to a higher altitude, its gravitational potential energy increases. The work done on the satellite will equal the change in its gravitational potential energy.	 Mod 5 Advanced Mechanics PH12-6, 12-12 Bands 4-6 Identifies the change in the satellite's gravitational potential energy. AND Explains how the work done is equal to the change in gravitational potential energy2 Any ONE of the above points
Que	stion 24	
(a)	electric field wavelength magnetic field A radio wave, which is an electromagnetic wave, is propagated when a changing electric field induces a changing magnetic field at right angles, which in turn induces a changing electric field.	Mod 7 The Nature of Light PH12-2, 12-7, 12-14 Bands 3-6 • Draws an electromagnetic wave. AND • Labels all THREE of: - electric field - magnetic field - direction of propagation. AND • Describes how radio waves are propagated

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
 (b) Hertz could have changed the orientation of the receiver and observed whether a spark occured as he changed the angle. If the sparks were only observed when the receiver was in a particular orientation, then the radio waves would be polarised in that orientation. This is because the vibrations of a polarised transverse wave are restricted to only one direction. 	 Mod 7 The Nature of Light PH12–2, 12–7, 12–14 Band 6 Explains a suitable method that could have been used to determine if radio waves were polarised. AND Demonstrates an understanding of polarisation
Question 25	
The diagram shows the refraction, or bending, of light. Both Huygens's and Newton's models can be used to explain how the light changes direction as it leaves the air and enters the glass prism. Huygens proposed the wave model of light, which stated that every point on the wavefront was a source of secondary wavelets that then travelled forwards at the same speed and wavelength as the original wave. When the wave encounters the glass prism, it slows down and refracts because the wavelength changes; thus, the wave also changes direction. Newton's corpuscular model of light assumes that the speed of light increases as it enters the glass prism because the light and glass particles are attracted to each other. The light particles are accelerated along the normal of the prism due to this attraction. When light exits the prism, the attraction is the same, though it opposes the direction of the light's motion. Thus, the speed of the particles decreases and the light moves away from the normal, changing direction. (continues on next page)	 Mod 7 The Nature of Light PH12–1, 12–7, 12–14 Bands 4–6 Identifies that the diagram shows refraction. AND Outlines Huygens's wave model. AND Outlines Newton's corpuscular model. AND Explains how Huygens's model can be used to explain refraction. AND Explains how Newton's model can be used to explain refraction 5 Identifies that the diagram shows refraction. AND Outlines Huygens's wave model OR Newton's corpuscular model. AND Explains how Huygens's model can be used to explain refraction 5 Identifies that the diagram shows refraction. AND Explains how Huygens's model can be used to explain refraction. AND Explains how Huygens's model can be used to explain refraction.

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(continued)	• Identifies that the diagram shows refraction.
	AND
	• Identifies that Huygens proposed the wave model.
	AND
	• Identifies that Newton proposed the corpuscular model.
	AND
	• Explains how Huygens's OR Newton's model can be used to explain refraction
	Identifies that diagram shows refraction.
	AND
	• Identifies that Huygens proposed the wave model.
	AND
	• Identifies that Newton proposed the corpuscular model2
	Provides some relevant information1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 26	
Model 1 is effective in demonstrating the motor effect by showing the basic principle behind a simple DC motor. In the model, current flowing through the copper coil is supplied by the battery. The current induces a magnetic field around the coil that interacts with the magnetic field produced by the stationary magnet on the wooden base. These forces are perpendicular to the coil's magnetic field and act on opposite sides of the coil, producing torque and causing the coil to rotate. Thus, this model effectively shows the motor effect. However, there are some elements of a DC motor that model 1	 Mod 6 Electromagnetism Mod 8 From the Universe to the Atom PH12–1, 12–4, 12–5, 12–6, 12–7, 12–13, 12–15 Bands 4–6 Explains in detail how model 1 demonstrates the motor effect. AND Identifies the features of a DC motor that model 1 represents.
 Thosevel, there are some elements of a DC indust that induct 1 does not represent. In a DC motor, the coil is often wound around a soft iron core to increase the magnetic field, and the core and coil are usually placed in an armature. Model 1 also lacks a split ring commutator, which changes the direction of the current through the coil relative to the external circuit in a DC motor. The plum pudding in model 2 represents Thomson's theory of the atom, which demonstrated the negative charge of electrons and showed that, overall, atoms are neutral. Though this theory is no longer accepted, model 2 is an effective visualisation of the theory. Electrons are represented by the pieces of dried plum that are dispersed throughout the plum pudding; the pudding between the pieces of plums is designated as being positive. Thomson proposed this theory before the nuclear model of the atom was created; thus, it was rejected once the Geiger–Marsden experiments showed that an atom has a very small positive nucleus. Models can help the students to visualise physics concepts, but without explaining experimental evidence, they can lead to misconceptions and oversimplification of these concepts. Model 1 demonstrates the motor effect, but does not include all the parts of a DC motor, and model 2 represents an early atomic model that ultimately could not explain later findings. While each model has some limitations, models 1 and 2 are effective in representing the concepts and would aid the students' overall understanding. (continues on next page) 	 AND Identifies the features of a DC motor that model 1 does not represent. AND Explains in detail how model 2 demonstrates Thomson's theory of the atom. AND Identifies the elements of Thomson's theory that model 2 represents. AND Outlines why Thomson's theory is no longer accepted. AND Judges summatively the effectiveness of models 1 and 2. AND Provides a logical and coherent response
	demonstrates Thomson's theory of the atom.

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(continued)	 Identifies the elements of Thomson's theory that model 2 represents. AND Outlines why Thomson's theory is no longer accepted. AND Judges the effectiveness of models 1 and 2 6–7
	 Explains how model 1 demonstrates the motor effect. AND Identifies the features of a DC motor that model 1 represents. AND Explains how model 2 demonstrates Thomson's theory of the atom. AND Identifies the elements of Thomson's theory that model 2 represents. AND Judges the effectiveness of models 1 and 2 4–5
	 Outlines how model 1 demonstrates the motor effect. AND Outlines how model 2 demonstrates Thomson's theory of the atom. AND Judges the effectiveness of models 1 and 2
	Provides some relevant information1

Sample answer			Syllabus content, outcomes, targeted performance bands and marking guide	
Ques	tion 27			
(a)	Identify risk Lasers can damage the eyes.	Control risk Point laser away from students.	Evaluate risk The risk is low, if students follow directions.	 Mod 7 The Nature of Light PH12–2, 12–7 Bands 2–6 Provides relevant headings for each column. AND Conducts a risk assessment for the experiment
(b)	Note: Three light three dotted lines of destructive (nodal) between the light the ligh	bands must be post where constructive ccurred. The dark) interference and bands.	itioned at the e (anti-nodal) bands represent must be positioned	 Mod 7 The Nature of Light PH12–2, 12–3, 12–4, 12–7, 12–14 Bands 4–6 Sketches alternating light and dark bands. AND Positions the light bands in relation to the wavefronts2 Sketches alternating light and dark bands1
(c)	As this is a first or $d\sin\theta = m\lambda$ $\theta = \sin^{-1} \left(\frac{63}{0.4}\right)$ $= 0.0864^{\circ}$ $\tan\theta = \frac{x}{L}$ $x = \tan(0.0864)$ $= 1.8 \times 10^{-3} \text{ r}$	eder diffraction, m $\frac{3 \times 10^{-9}}{12 \times 10^{-3}}$ °)×1.2 n	= 1.	Mod 7 The Nature of Light PH12-4, 12-14 Band 4 • Calculates the distances between the bright bands 2 • Provides some relevant working 1

od 7 The Nature of Light 112–4, 12–7, 12–14 Band 5 Explains how time dilation occurs in the thought experiment. ND Explains how length contraction occurs in the thought experiment 4 Outlines how time dilation occurs in the thought experiment 4 Outlines how time dilation occurs in the thought experiment 3 Outlines how length contraction occurs in the thought experiment 3 Outlines how time dilation occurs in the thought experiment 3 Outlines how time dilation occurs in the thought experiment 3 ND Identifies that length contraction occurs in the thought experiment 3 ND Identifies that length contraction occurs in the thought experiment 2 ND Outlines how length contraction occurs in the thought experiment 2 Provides some relevant 2

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 29	
(a) 2.5 2.0 2.0 1.5 0.5 0.0	 Mod 6 Electromagnetism PH12–2, 12–5, 12–13 Band 4 Identifies the <i>y</i>-axis as force and the <i>x</i>-axis as current. AND Labels the axes, including correct units. AND Plots the data. AND Draws a line of best fit3 Any THREE of the above points2 Any TWO of the above points1
 (b) For example: The graph shows that as current increases, there is a proportional increase in the upwards net force acting on the system, assuming that the magnetic field and current are kept constant. Note: Responses can also refer to the angle being kept constant. Consequential on answer to Question 29(a). 	Mod 6 Electromagnetism PH12–2, 12–5, 12–13 Band 4 • Identifies the relationship shown in the graph. AND • States TWO assumptions2 • Any ONE of the above points1
(c) gradient = $\frac{\text{rise}}{\text{run}}$ = $\frac{1.5 \times 10^{-4} - 1.0 \times 10^{-4}}{3.0 - 2.0}$ = 0.5×10^{-4} $F = lIB \sin\theta$ $\frac{F}{l} = \frac{0.5 \times 10^{-4}}{1}$ = 0.5×10^{-4} N m ⁻¹ $\therefore \frac{F}{l} = BI \sin\theta$	Mod 6 Electromagnetism PH12-2, 12-5, 12-13 Band 6 • Calculates the gradient. AND • Uses relevant equations to identify what the gradient represents

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 30	
This Hertzsprung–Russell diagram graphs the luminosity of stars against their surface temperature. Matching luminosity and surface temperature helps to determine the size/mass of a star; for example, stars with a low temperature but a high luminosity are very large (super giants). A star is found in a particular region of a Hertzsprung–Russell	 Mod 8 From the Universe to the Atom PH12–5, 12–6, 12–7, 12–15 Bands 4–6 Explains the relationship between luminosity and surface temperature. AND
diagram depending on its evolutionary stage. These stages are controlled by the nucleosynthesis reactions occurring in the star's core.White dwarfs are found in area A; these stars are cooling down as they have stopped all nuclear reactions. Main sequence	 Identifies the stars in areas A–D. AND Describes the life cycle of stars with small mass and stars with large mass.
stars are found in area B; this is where the Sun would be found, as it is approximately halfway through its life cycle and is undergoing hydrogen fusion at its centre. Red giants are found in area C; these stars have used up most of the hydrogen in their cores and are now fusing helium, meaning that they are nearing the end of their lives. Supergiants are found in area D; these massive stars have very high temperatures and other fusion reactions occurring in their core.	 AND Identifies all THREE of: stars with a small mass use the proton-proton cycle stars with a large mass use the CNO cycle stars release a large amount
The life cycle of a star begins when the gas inside huge interstellar clouds condenses due to gravitational attraction. In the core of the new star, hydrogen is converted into helium, which releases large amounts of energy; this occurs in main sequence stars. As a main sequence star increases in size, it consumes hydrogen more quickly and burns hotter and brighter; thus, it appears higher in area B of the diagram.	 of energy as they burn fuel. AND Provides a logical and coherent response
The proton–proton cycle is most common in main sequence stars with a small mass, such as the Sun, while the carbon–nitrogen–oxygen (CNO) cycle takes place in stars with a large mass, such as supergiants.	surface temperature. AND • Identifies the stars in areas A–D. AND
As stars evolve and move up the main sequence, they burn hydrogen faster. This causes the stars to form helium, which then collapses and forms heavier elements with large releases of energy; thus, the outer hydrogen shell expands. This outer surface is cooler and appears red, so the star moves off the main sequence and becomes a red giant. When stars with a small or medium mass burn out, they collapse and form white dwarfs made mainly of carbon, nitrogen and oxygen. These white dwarfs are not as	 Outlines the life cycle of stars with small mass and stars with large mass. AND Identifies any TWO of: stars with a small mass use the proton–proton cycle stars with a large mass use
luminous as and have much smaller surface areas than main sequence stars. (continues on next page)	 the CNO cycle stars release a large amount of energy as they burn fuel

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(continued)	 Explains the relationship between luminosity and surface temperature. AND Identifies the stars in areas A–D. OR Outlines the life cycle of stars with small mass and stars with large mass. AND Identifies any ONE of: stars with a small mass use the proton–proton cycle stars with a large mass use the CNO cycle
	 stars release a large amount of energy as they burn fuel
	 Explains the relationship between luminosity and surface temperature. AND
	• Identifies the stars in areas A–D. OR
	 Identifies any ONE of: stars with a small mass use the proton-proton cycle stars with a large mass use the CNO cycle stars release a large amount of energy as they burn fuel

Sample answer		Syllabus content, outcomes, targeted performance bands and marking guide	
Que	stion 31		
(a)	Lenz's law states that the induced electromotive force (emf) in a conductor is in a direction that opposes the energy change that induced it. Thus, it would be expected that the magnet falls through the PVC pipe much faster than the copper pipe. Copper is metallic and therefore a conductor. As the magnet falls, the magnetic field in the copper pipe would change and the movement of the electrons in the copper atoms would induce a current. As a result, eddy currents would form in a direction opposite to the changing external magnetic field. As the falling magnets under the giant drop's seats reach the copper fins, eddy currents and magnetic forces are induced in the copper. The interaction between the magnetic forces causes electromagnetic braking to occur and slow down the seats.	 Mod 6 Electromagnetism PH12–2, 12–13 Bands 4–6 Uses Lenz's law to explain why the magnet falls much slower through the copper pipe. AND Explains eddy currents. AND Explains how electromagnetic braking occurs in the giant drop3 Any TWO of the above points2 Any ONE of the above points. OR Provides some relevant information 	
(b)	The teacher's comment is correct. The size of the eddy currents is proportional to the speed of the falling seats. As the induced magnetic field interacts with the external magnetic field, the seats slow, the eddy currents reduce proportionally and the induced magnetic field decreases, resulting in a smooth deceleration. Conversely, conventional braking relies on an operator responding to the falling seats and the change in speed would be felt more suddenly by the occupants. Thus, electromagnetic brakes are smoother and more reliable.	Mod 6 Electromagnetism PH12–12 Bands 5–6 • States that the teacher's comment is correct. AND • Explains why electromagnetic braking is smoother than conventional braking	
Que	The nuclear model of the stam has a positive nucleus	Mod 8 From the Universe to the Atom	
(u)	surrounded by electrons. Rutherford's atomic model demonstrated that the mass of an atom was concentrated in a tiny, positively charged nucleus and electrostatic forces kept the negatively charged electrons in orbit around the nucleus. This force of attraction provided the centripetal force needed to maintain stable orbits.	 PH12–5, 12–7, 12–15 Bands 3–6 Outlines the nuclear model of the atom. AND Describes the specific features of Rutherford's model	

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	For example: One limitation of Bohr's atomic model was that it showed a single electron spiraling into the nucleus, emitting radiation and thus making the atom unstable. Bohr's model was only applicable to hydrogen atoms and ions with one electron. De Broglie proposed that electrons show wave properties such that their orbits are standing waves; thus, no energy would be lost during orbit. For example, the first orbit at $n = 1$ has a circumference of one wavelength. An electron could not be closer to the nucleus than this as the electron's wave amplitude would be less than zero. Thus, de Broglie's matter waves explained electron orbits and provided stability to the atom. De Broglie's model overcame the limitation of Bohr's model by showing that an electron could not exist closer to the nucleus than the first orbit, as only part of a single wavelength of the electron wave would fit. <i>Note: Other limitations of Bohr's model could include</i> <i>its inability to predict the brightness of spectral lines and the presence of hyperfine spectral lines; or its inability to explain the splitting of spectral lines (stark and Zeeman effects).</i>	 Mod 8 From the Universe to the Atom PH12–5, 12–7, 12–15 Bands 4–6 Outlines ONE limitation of Bohr's atomic model. AND Explains how de Broglie overcame the limitation. AND Describes de Broglie's atomic model. AND Provides a logical and coherent response4 Outlines ONE limitation of Bohr's atomic model. AND Outlines how de Broglie overcame the limitation. AND Outlines de Broglie's atomic model
(c)	The electrostatic force of repulsion (230 N) is much greater than the gravitational force of attraction $(-2.2 \times 10^{-34} \text{ N})$; the difference prevents these forces from making the nucleus stable. The strong nuclear force holds the nucleus together and only acts over short distances $(1.0 \times 10^{-15} \text{ m})$. It is carried by gluons and attracts nucleons to each other within the nucleus.	 Mod 8 From the Universe to the Atom PH12–7, 12–15 Bands 5–6 Explains why the forces cannot account for nuclear stability. AND Describes the properties of the strong nuclear force. AND Refers to the data
		• Any ONE of the above points 1