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Rationale

CambridgeMATHS Advanced Year 12 covers all syllabus dotpoints for Year 12 of the Mathematics
Advanced course being implemented in Term IV 2019. This rationale serves as a guide to how the book
covers the dotpoints of the syllabus. Further documents are available in the teacher resources.

The exercises

No-one should try to do all the questions! We have written long exercises with a great variety

of questions so that everyone will find enough questions of a suitable standard — they cater for
differentiated teaching to a wide range of students. The division of all exercises into Foundation,
Development and Challenge sections helps with this. Each student will need to tackle a selection of
questions, and there should be plenty left for revision.

The Foundation section in each exercise provides a gentle start with many straightforward questions
on each new skill and idea. Students need encouragement to assimilate comfortably the new ideas and
methods presented in the text so that they are prepared and confident before tackling later problems.

The Development section is usually the longest, and is graded from reasonably straightforward questions to
harder problems. The later questions may require the new content to be applied, they may require proof or
explanation, or they may require content from previous sections to put the new ideas into a wider context.

The Challenge section is intended to match some of the more demanding questions that HSC Advanced
examination papers often contain — we assume that this will continue with the HSC examinations on
the new syllabuses. They may be algebraically or logically challenging, they may establish more difficult
connections between topics, or they may require less obvious explanations or proofs. The section may be
inappropriate at first reading.

The structure of calculus in the book

Calculus is the centre of this course, and the structure of calculus has determined the order in which the
topics are presented in the book.

CHAPTER 1: Sequences and series are the discrete analogue of infinitesimal calculus. In particular, a
definite integral consists of ‘an infinite sum of infinitesimally thin strips’, so that sums of series, which
are conceptually much easier, should precede integration. Also, linear and exponential functions are
the continuous analogues of APs and GPs.

CHAPTER 2: Systematic curve-sketching using differentiation is traditionally the first and most
straightforward application of calculus. But before reaching for the derivative, it is important to give a
systematic account of the various non-calculus approaches to curve-sketching.

CHAPTERS 3-4: Differentiation, curve-sketching with calculus, and integration, are three dramatic new
ideas in school that change students’ perceptions of the nature of mathematics, making it far more
imaginative and speculative, and allowing easy solutions of problems that may otherwise seem
impossible. The first encounter with these three ideas should involve only algebraic functions, because
the complexities of the special functions associated with ¢* and sin x are unnecessary here, and they
cause confusion if introduced too early.

vi
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Differentiation was introduced in Year 11, so curve-sketching and integration are the next two topics
in the book. The derivative of ¢* was established last year because of the interest in rates, but we have
briefly left ¢* aside in these two chapters so that the story is not confused.

CHAPTER 5: With the basic methods of calculus now established, the significance of ¢* as a function that
is its own derivative, and of log, x as a primitive of x~!, can now be explained, and the importance
of the special number ¢ made clear. This chapter is necessarily long — the ideas are unfamiliar and
unsettling, their far-reaching significance is difficult to explain, and students need time to assimilate
them.

CHAPTER 6: The other group of special functions are the trigonometric functions, with their special
number nt. The standard forms now multiply, but the basic methods of calculus remain the same, and
by the end of Chapter 6 these methods will have been reviewed three times — for the exponential
functions, for the logarithmic functions, and for the trigonometric functions.

CHAPTERS 7-8: These are application chapters. Chapter 7 applies calculus to motion and rates. Chapter 8
is the discrete analogue of Chapter 7, applying series to practical situations, particularly finance. The
discussion of motion and rates in Chapter 7 allows a review of all the functions introduced in calculus.
Motion, in particular, allows the derivatives to be perceived by the senses — the first derivative is
velocity, which we see, and the second derivative is acceleration, which we feel.

Learning to handle applications of calculus is surprisingly difficult, and while a few questions have
been included in exercises in previous chapters, motion and rates both need a sustained account if they
are to be mastered. Motion requires confusing contrasts between displacement, distance and distance
travelled, and between velocity and speed. Rates require further contrasting experiences of translating
physical events into the abstractions of calculus.

CHAPTERS 9-10: Integration and the exponential function together make possible a coherent presentation
of statistics and the normal distribution in these two chapters. Probability becomes an area, and most

of the mysteries of ¢~* can now be rigorously expounded.

Syllabus coverage of the chapters
Chapter 1: Sequences and series
Syllabus References: M1.2

MI.3

Chapter 1 presents the theory of arithmetic and geometric sequences and series. Its purpose at the start of
the book is to give a wider mathematical context for linear and exponential functions in Chapters 2 and 5,
for the derivative used in Chapter 3, and for the definite integral in Chapter 4. There are some practical
examples throughout, but there are many more in Chapter 8, and it may be appropriate to bring forward
some questions from Sections 8 A—8C.

Arithmetic and geometric sequences are closely related, and are explained together as the theory progresses
through sequences in Sections 1 A—1C, problems in Section 1D, and the sums of series in Sections 1E-1G.
The chapter concludes in Sections 1H-11 with limiting sums of GPs and the explanation — finally — of
what a recurring decimal actually is.

Sigma notation is introduced for several reasons. It allows a more concise notation for series, it prepares
the ground for the continuous sum J of integration, it makes more precise the rather vague use of ), in

the statistics chapters, and the notation is needed in later mathematics courses. Nevertheless, neither the
text nor the exercises rely on it, and the few questions that use it can easily be avoided or adapted.

vii
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Chapter 2: Graphs and equations

Syllabus References: F1.2 dotpoint 2 (An alternative interval notation)

F1.2 dotpoint 7 (An alternative composite function notation)
F2
T3

The syllabus item F1 stresses ‘any function within the scope of this syllabus’. As explained in the
introduction, the methods used here will be extended to other functions as they are introduced in
Chapters 5, 6 and 10, apart from the trigonometric graphs that are covered in Section 2I. It also stresses
‘real-life contexts’, which will be further developed in Chapter 7.

F1.2 dotpoints 2 & 7 and Section 2A: The chapter begins with two pieces of notation that were flagged

last year as being a distraction at the start of Year 11.

e Bracket interval notation such as [3, 6] or (2, c0) is an alternative for inequality interval notation such
as 3 < x < 6 or x> 2. It requires more sophistication than was appropriate at the start of Year 11, and
in particular it requires the symbol U for the union of sets, which was introduced for probability in
Sections 10C-10D late in the Year 11 book.

e A composite function g( f(x)) can also be written as go f(x), which was unnecessarily abstract for the
start of Year 11.

F2 dotpoint 2, sub-dotpoints 1-2 & Sections 2A-2C: These sections consolidate and extend the
curve-sketching methods from Year 11, particularly the sign of the function and asymptotes, and organise
them into a curve-sketching menu, which gives a systematic approach to sketching an unknown function
(this organisation of approaches to curve-sketching is only our suggestion).

F2 dotpoint 2, sub-dotpoints 3—4 & Sections 2D-2E: Graphing is closely related to the solving of
equations and inequations. These sections formalise several important connections and methods.

F2 dotpoint 1 & Sections 2F-2H: After reviewing the translations, reflections and rotations introduced
last year, these sections introduce dilations, then investigate which transformations do not commute

with other transformations — a difficult question with a surprisingly simple answer. Replacement is our
preferred method of relating transformations to the equations of the function or relation, but the formulae
approach is also presented. The sections conclude with a complicated formula that transforms a function
successively by four separate transformations.

T3 & Section 21I: Radians were introduced last year, so transformations of trigonometric graphs can be
covered here. They lead to the four ideas of amplitude, period, phase and mean value, and they can be
dealt with by the same complicated formula given in Section 2H.

viii
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Chapter 3. Curve-sketching using the derivative
Syllabus References: C3.1
C3.2
C4.1 dotpoints 1, 2, 3, 11 (without the use of the integral sign)

The first and most straightforward application of the derivative is to assist in the sketch of a function
by examining its gradient, stationary points, concavity and inflections. This chapter explains those
procedures, which will be reviewed and extended progressively to exponential functions (Section SE),
logarithmic functions (Section SH) and trigonometric functions (Section 6E), and used in various
applications throughout the book, particularly in Chapter 7 on motion and rates.

C3.1, 3.2 dotpoints 1-2 & Sections 3A-3E: What is needed here for curve-sketching are pointwise
definitions of increasing and decreasing, and of concave up and concave down. The interval-wise
definitions are delayed until Section 7D, where they are needed for the discussion of rates in
Sections 7D-7F. Section 3E concludes the discussion by extending the curve-sketching menu of
Chapter 2 with two more steps involving the first and second derivatives.

C3.2 dotpoint 3 & Sections 3F-3G: The global maximum of a function is now introduced, followed by
an exercise consisting of diverse examples of the use of these procedures to find the maxima or minima
of functions in various practical situations.

C4.1 & Section 3H: Primitive functions have a strong graphical interpretation, and in preparation for the
following integration chapter, it is useful to review and extend here the discussion of primitives in Section
8D of the Year 11 book.

Chapter 4. Integration
Syllabus References: C4.1
C4.2

Having briefly reviewed the primitive in Section 3H, this chapter now begins and develops integration in
the traditional way by asking questions about areas of regions where some of the boundaries are neither
lines nor arcs of circles. The procedures in this chapter will be reviewed and extended progressively

to exponential functions (Sections SD-5E), reciprocal (Sections 51-5J) and trigonometric functions
(Sections 6D—6E), and used in various applications throughout the book.

C4.2 dotpoints 1-3, 5-8 & Sections 4A—4D: These sections introduce the definite integral in terms of
area, and first calculate integrals using area formulae. There is also some guided work on limiting sums
of areas. The fundamental theorem is stated and used in Section 4B, but not proven until Section 4D,
which is marked as Challenge. Using geometric arguments, Section 4C explores the behaviour of the
definite integral when the curve is below the or the integral runs backwards, and identities are developed
that can simplify the evaluation of a definite integral.

C4.2 dotpoints 4, 9—11 & Sections 4F—4H: Areas between curves are introduced, including areas between
a curve and the . Then the trapezoidal rule is developed, first geometrically, then algebraically, then using

spreadsheets to aid the computation. Some practical examples are given, and others occur throughout the

book, particularly with motion in Chapter 7.

C4.1 & Sections 4E, 41: The basic ideas of a primitive were discussed in Section 3H (C4.1 dotpoints 1-3,
9-11), and the remaining standard forms are dealt with in Chapters 5-6 as the new special functions are
developed. The reverse chain rule, however, is introduced here with powers of functions (C4.1 dotpoint 4),
in preparation for its further use with special functions.

ix
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Chapter 5. The exponential and logarithmic functions
Syllabus References: F2, as relevant
C2.1 dotpoints 3-5

C2.2, as relevant

C3.1, as relevant
C3.2, as relevant
C4.1, as relevant
C4.2, as relevant

As stated in the introduction to these notes, the exponential and logarithmic functions are unfamiliar
and difficult for students, and need their own sustained development rather than being interlocked with
powers of x and trigonometric functions. All curve-sketching, equation-solving and calculus relevant to
these functions is completed in these sections, in preparation for its further use, particularly in Chapter 7
on motion and rates and Chapter 10 on the normal distribution.

The topic was begun in Chapter 9 of the Year 11 book with the differentiation of the special number ¢ and
the exponential function ¢*. The results, but not all the explanations, are reviewed here in Sections 5A and
SF. Some further review of that earlier chapter may be appropriate.

We draw attention to what are possibly unfamiliar standard forms in Section 51 (C4.1 dotpoint 7).
S (%)
S

Students will now need to cope with absolute values in their integrals, and the further consequences of
this standard form have made the topic more difficult than it used to be.

J%dx= log Ix| + C and J dx = log | f(x)| + C.

Section 5K on calculus with other bases is important because in ordinary language, half-lives and
doubling times are so often used. The standard forms are to be learnt, but students should be aware of the
other possibility — convert everything to base ¢ before applying calculus.
Chapter 6. The trigonometric functions
Syllabus References: C2.1, as relevant

C2.2, as relevant

C3.1, as relevant

C3.2, as relevant

C4.1, as relevant

C4.2, as relevant

As in the previous chapter, the trigonometric functions are difficult for students, who learn best when
these functions are developed separately before being combined with other functions. All curve-sketching,
equation-solving and calculus relevant to these functions is completed in these sections, in preparation for
its further use, particularly in Chapter 7 on motion and rates.

Radian measure, based on the special number &, was introduced in Chapter 9 of the Year 11 book, and the
geometric formulae established there are important tools in this chapter. The graphs in radians were also
discussed there at length, then subjected to four separate transformations in Section 2I.

The fact that the derivative of sin x is cos x should be informally clear by now, but the informal graphical
proof is presented again. Using the geometric formulae, we are now able to prove in Section 6A using
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limits that sin x has gradient exactly 1 at the origin. The rest of the proof moves this result along the curve
using compound angle formulae, which we do not have, so it has been removed to the Chapter Appendix.

The authors are concerned that the standard forms for integration on the current formulae sheet go
significantly beyond the standard forms in C4.1, and seem rather sophisticated for Advanced students.
There may be future adjustment here.

Chapter 7. Motion and rates
Syllabus References:
Motion: C1.2 dotpoint 3, C1,3 dotpoints 67, C3.1 dotpoint 2, C3.2 dotpoint 3
Rates: C1.2 dotpoints 1-2, C1.3 dotpoint 8, C1.4 dotpoint 4, C3.2 dotpoint 3,
M1.2 dotpoint 5, M 1.4 dotpoint
Exponential function applications: E1.4 dotpoints 4, 6, 7

The syllabus references are scattered through the topics (the references above include both Year 11 and Year
12), but there is a constant concern that calculus be modelled by rates of various types, and in particular
applied to motion and to exponential growth and decay. As explained in the introduction to this Rationale,
some rates and motion questions have been asked already, but learning to apply calculus to practical situations
is surprisingly difficult. What is needed is sustained and contrasting work to gain experience in reinterpreting
the abstract objects of calculus. They appear in everyday things that we can see and feel, such as velocity,
acceleration, the diminishing flow of water from a kettle, the rise and fall of the tides and the temperature.
Then they appear in important contemporary concerns such as populations, radioactive decay and inflation.

Motion is particularly tricky and needs its own treatment in Section 7A—7C separate from other rates.
Exponential growth and decay also need separate attention in Section 7F. The calculus of all the functions
in the course so far reappears in these exercises.

There are several common ideas through the whole chapter. First, there are the correspondences,
gradient of a chord <— average rate <— average velocity,
gradient of a tangent <— instantaneous rate <—- instantaneous velocity.

Secondly, concavity can be interpreted as indicating whether the rate of increase or decrease is increasing
or decreasing, and in motion as the direction in which the particle is accelerating and whether the speed
is increasing or decreasing. Thirdly, differentiation moves from the quantity to the rate (Section 7D), and
integration from the rate to the quantity (Section 7E).

Section 7D finally gives a precise definition of increasing in an interval and concave up in an interval.
Curve-sketching with calculus (Chapter 2) was not an appropriate time for these ideas, but they are part
of the language of rates.
Chapter 8. Series and finance
Syllabus References: M1.1

M1.2 (review with applications)

M1.3 (review with applications)

MIi.4

M1.2-M1.3: Sections 8A—8B: Arithmetic and geometric sequences and series were presented in Chapter 1
to give a wider context to the intense calculus of the next few chapters. Those formulae are reviewed here,
but the emphasis is on applications of series to practical situations.

Xi
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Xii

Section 8B uses logarithms with problems involving GPs. These methods should be contrasted with
trial-and-error, which is attractive for occasional use, but clumsy in comparison.

MI.1, M1.4 & Sections SC-8E: These sections are still about APs and GPs, but specifically directed
towards interest, annuities (or superannuation) and paying off loans. The algebra involved in these last
two computations is difficult, but learning formulae should be discouraged, because the question only has
to start or finish the transaction slightly differently and any formula will fail.

Sections 8F—8G deal with the use of future value tables and present value tables to assist in questions involving
annuities, thus avoiding calculations with GPs. The Advanced syllabus in section M1.1 requires familiarity
with these tables, and these two sections address this requirement. The basic approach presented here is to treat
each payment as a separate investment. Another widely-used approach is recursion, where the monthly bank
statement becomes the goal of the computations. Opportunity has been given to use recursion instead — later
questions do not specify which approach is to be used, and earlier questions can easily be adapted.

Series are discrete objects, and their applications in Chapter 8 contrast with the applications of continuous
functions in Chapter 7. This contrast has an interesting companion — the discrete probability distributions
of Chapter 11 last year contrast with the continuous probability distributions of Chapter 10 this year.
Datasets, on the other hand, are always discrete.

Chapter 9. Displaying and interpreting data
Syllabus References: §2.1-S2.2

This chapter is in sharp contrast to Chapters 10-11 in the Year 11 book on probability and discrete
probability distributions. Those chapters were mostly about theoretical probabilities, with a little
sampling and data-gathering at the end. This chapter, however, is all about data — its display in tables
and charts, and the calculations of summary statistics — in order to gain a global view of a dataset that
could otherwise be just a meaningless jumble. After this, we seek interpretation (requiring common sense
and judgement) and prediction (risky), and we find a scientist to ask about causation.

Sections 9A-9C concern univariate data, and may be familiar from earlier years. Sections 9D-9F mostly
concern bivariate data, which may be less familiar. Pearson’s correlation coefficient and the least-squares
line of best fit are a difficult part of this chapter. We dislike black boxes, so we have given the formulae
for them in Section 9E and a short exercise to drill them, but what is intended is that they be calculated
by technology, which can also be rather complicated. The rest of the chapter is quite independent of the
formulae in Section 9E, which should be regarded as Challenge.

The technology used may be a calculator, or a spreadsheet, or special statistics software, and all these things
may be online. Technology in schools is still very variable, with no agreed equipment, rules or procedures.
We have given, here and elsewhere in the book, detailed instructions about using Excel, which is probably
the most widely-used spreadsheet, but even this is a highly contentious decision because the Mac versions
are different, the Windows versions keep changing, and many people prefer other technologies.

The final exercise is an investigation. It contains links to large datasets on the online interactive textbook,
activities such as surveys to generate data for analysis, and investigations allowing the reader to search
out raw data from the internet. Many things here could become projects.

One problem is a concern for the authors. No indication has been given about using a correction factor
when calculating the variance of a sample that is not a population. We do not want to make difficult
things more complicated, so we have used division by »n, which is simpler, particularly when the
formulae are developed for relative frequencies. We have warned about the technology issues that arise
when computing variance, and we have written Challenge sections and questions, in this chapter and in

Chapter 11 last year, where we have explained the correction as multiplying the variance by rnl Ifa
contrary ruling is ever given, adjustments will be needed.
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Chapter 10. Continuous probability distributions
Syllabus References: §3.1-53.2

Chapter 10 moves via Section 10A from the data of Chapter 9 back to probability theory, but with the
constant accompaniment of data, and this time the theory is about continuous random variables. Many
things about data lead into the continuous theory — the relative frequencies, the histograms and their
associated areas, the grouping that is so often necessary, the appearance of the frequency polygon — besides
of course the nature of what is being measured.

Various examples of continuous distributions are given in Sections 10B—10C. We have included some
distributions where the domain of the values is unbounded because the domain of the normal distribution
is the whole real number line (—oo0, co0). We have done any calculations over unbounded domains without
the usual complicated machinery, and the authors hope that such things will remain a side issue to the
important statistical ideas going on. More machinery may be appropriate in some classes.

The standard normal distribution is discussed in Section 10D, then stretched and shifted in Section 10E
to become the general normal distribution, where z-scores become a good example of the transformations
studied in Chapter 2.

We have used a short table of values of the normal in our calculations so that everything is accessible to
students whose only technology is a standard non-statistics scientific calculator. Some practice doing this
is useful for everyone, but as technology develops, such tables will fall out of use just as log tables have
done. Reading a printed table backwards is a particular nuisance because interpolation is clumsy and
time-consuming.

The inflections and variance of the standard normal are difficult, but should be accessible to most

[es]

students. On the other hand, the proof that J e ¥ dx = V/ 27 will unfortunately have to wait for far more

o]

sophisticated methods of calculus at some later time.

As in Chapter 9, Exercise 10G concludes the chapter with an investigation exercise using large datasets,
and projects can easily be developed from these questions.

Bill Pender, June 2019

The Book of Nature is written in the language of Mathematics.

— The seventeenth-century Italian scientist Galileo

It is more important to have beauty in one’s equations than to
have them fit experiment.

— The twentieth-century English physicist Dirac

Even if there is only one possible unified theory, it is just a

set of rules and equations. What is it that breathes fire into

the equations and makes a universe for them to describe?

The usual approach of science of constructing a mathematical
model cannot answer the questions of why there should be a
universe for the model to describe.

— Steven Hawking, A Brief History of Time

Xiii
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Overview

As part of the CambridgeMATHS series, this resource is part of a continuum from Year 7 through

to 12. The four components of Mathematics Advanced Year 12 — the print book, downloadable PDF
textbook, online Interactive Textbook and Online Teaching Resource — contain a range of resources
available to schools in a single.

Features of the print textbook

Refer to the Rationale for details of question categories in the exercises and syllabus coverage.
Each section begins at the top of the page to make them easy to find and access.

Plenty of numbered worked examples are provided, with video versions for most of them.
Important concepts are formatted in numbered boxes for easy reference.

Investigation exercises and suggestions for projects are included.

Proofs for important results are provided in certain chapters.

Chapter review exercises assess learning in the chapter.

N OO AN =

Downloadable PDF textbook

8 The convenience of a downloadable PDF textbook has been retained for times when users cannot go
online. PDF search and commenting tools are enabled.

Digital resources in the Interactive Textbook powered by the HOTmaths platform
(shown on the page opposite)

The Interactive Textbook is an online HTML version of the print textbook powered by the HOTmaths
platform, completely designed and reformatted for on-screen use, with easy navigation. It is included
with the print book, or available as digital-only purchase. Its features include:

9 Video versions of the examples to encourage independent learning.

10 All exercises including chapter reviews have the option of being done interactively on line, using
workspaces and self-assessment tools. Students rate their level of confidence in answering the question
and can flag the ones that gave them difficulty. Working and answers, whether typed or handwritten,
and drawings, can be saved and submitted to the teacher electronically. Answers displayed on screen if
selected and worked solutions (if enabled by the teacher) open in pop-up windows.

11 Teachers can give feedback to students on their self-assessment and flagged answers.

Xiv
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12 The full suite of the HOTmaths learning management system and communication tools are included in
the platform, with similar interfaces and controls.

13 Worked solutions are included and can be enabled or disabled in the student accounts by the teacher.

14 Interactive widgets and activities based on embedded Desmos windows demonstrate key concepts and
enable students to visualise the mathematics.

15 Desmos scientific and graphics calculator windows are also included.

16 Chapter Quizzes of automatically marked multiple-choice questions are provided for students to test
their progress.

17 Definitions pop up for key terms in the text, and are also provided in a dictionary.

18 Spreadsheet files are provided to support questions and examples based on the use of such technology.

19 Online guides are provided to spreadsheets and the Desmos graphing calculator, while links to scientific
calculator guides on the internet are provided.

20 Users who had Year 11 digital accounts may access Year 11 material for revision of prior knowledge.

21 Examination and assessment practice items are available

INTERACTIVE TEXTBOOK POWERED BY THE HOTmaths PLATFORM L&J

Numbers refer to the descriptions on the opposite page. HOTmaths platform features are updated regularly.
Content shown is from Mathematics Standard.
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Online Teaching Suite powered by the HOTmaths platform

22 The Online Teaching Suite is automatically enabled with a teacher account and appears in the teacher’s
copy of the Interactive Textbook. All the assets and resources are in the Teacher Resources panel for easy

access.

23 Teacher support documents include editable teaching programs with a scope and sequence document and
curriculum grid.

24 Chapter test questions are provided as printable PDFs or editable Word documents.

25 Assessment practice items (unseen by students) are included in the teacher resources.

26 The HOTmaths test generator is included.

27 The HOTmaths learning management system with class and student reports and communication tools is
included.

ONLINE TEACHING SUITE POWERED BY THE HOTmaths PLATFORM L&J

Numbers refer to the descriptions on the previous page. HOTmaths platform features are updated regularly.
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2 Chapter 1 Sequences and series _

m Sequences and how to specify them

A typical infinite sequence is formed by arranging the positive odd integers in increasing order:
1,3,5,7,9,11, 13, 15, 17, 19, . ..

The three dots . . . indicate that the sequence goes on forever, with no last term. The sequence starts with the
first term 1, then has second term 3, third term 5, and so on. The symbol 7', will usually be used to stand for
the nth term, thus

T,=1, Tro=3, T3=5 T4=17 Ts5=09,
The two-digit odd numbers less than 100 form a finite sequence:
1, 3,5 7, ..., 9
where the dots . . . stand for the 45 terms that have been omitted.

There are three different ways to specify a sequence, and it is important to be able to display a given
sequence in each of these different ways.

Write out the first few terms

The easiest way is to write out the first few terms until the pattern is clear to the reader. Continuing with our
example of the positive odd integers, we could write the sequence as

1, 3,5 709, ...

This sequence clearly continues as 11, 13, 15, 17, 19, ..., and with a few more calculations, it becomes
clearthat Ty = 21, T4 = 27,and T = 31.

Give a formula for the nth term
The formula for the nth term of this sequence is
T, =2n -1,
because the nth term is always 1 less than 2n. Giving the formula does not rely on the reader recognising a

pattern, and any particular term of the sequence can now be calculated quickly:

Ty = 60 — 1 Tio0 = 200 — 1 Toyy = 488 — 1
= 59 = 199 = 487

Say where to start and how to proceed

The sequence of odd positive integers starts with 1, then each term is 2 more than the previous one. Thus the
sequence is completely specified by writing down these two statements:

T, =1, (start the sequence with 1)
T,=T,_1 +2, forn > 2. (every term is 2 more than the previous term)

Such a specification is called a recursive formula of a sequence. Most of the sequences studied in this chapter
are based on this idea.
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1A Sequences and how to specify them

Example 1 1A

a Write down the first five terms of the sequence given by 7, = 7n — 3.
b Describe how each term 7', can be obtained from the previous term 7', _ .

SOLUTION
aT{=7-3 T, =14 - 3 T; =21 — 3 Ty =28 -3 Ts =35 -3
=4 = 11 = 18 =25 = 32
b Each term is 7 more than the previous term. Thatis, T,, = T,,_1 + 7.
Example 2 1A

a Find the first five terms of the sequence givenby 7y = 14and 7, = T,,_; + 10.
b Write down a formula for the nth term 7,,.

SOLUTION
aT =14 T, =T + 10 T; T, + 10 Ty =T3 + 10 Ts = T4 + 10
= =34 = 44 = 54

b From this pattern, the formula for the nth term is clearly 7,, = 10n + 4.

1 THREE WAYS TO SPECIFY A SEQUENCE

*  Write out the first few terms until the pattern is clear to the reader.
e Give a formula for the nth term 7,,.
» Say where to start and how to proceed. That is:
— Say what the value of 7' is.
— Then forn > 2, give a formula for 7, in terms of the preceding terms.

Using the formula for T, to solve problems

Many problems about sequences can be solved by forming an equation using the formula for 7,.

Example 3 1A
\——)

Find whether 300 and 400 are terms of the sequence 7,, = 7n + 20.

SOLUTION
Put T, = 300. Put T, = 400.
Then7n + 20 = 300 Then7n + 20 = 400
Tn = 280 Tn = 380
n = 40. n = 542
Hence 300 is the 40th term. Hence 400 is not a term of the sequence.
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4 Chapter 1 Sequences and series _
Example 4 1A
\e—— )

a Find how many negative terms there are in the sequence 7,, = 12n — 100.

b Find the first positive term of the sequence 7,, = 7n — 60.

SOLUTION
a Put T, <O. b Put T, > 0.
Then 12n — 100 < 0 Then7n — 60 > 0
n < 8%, Tn > 60
so there are eight negative terms. n > 8%.

Thus the first positive term is 79 = 3.

Note: The question, ‘Find the first positive term’ requires two answers:
*  Which number term is it?

*  What is its value?

Thus the correct answer is, ‘The first positive term is 79 = 3.

FOUNDATION

1 Alex collects stamps. He found a collection of 700 stamps in the attic a few years ago, and every month
since then he has been buying 150 interesting stamps to add to his collection. Thus the numbers of
stamps at the end of each month after his discovery form a sequence

850, 1000, ...

a Copy and continue the sequence to at least 12 terms followed by dots . . . .
b After how many months did his collection first exceed 2000 stamps?

2 Write down the next four terms of each sequence.

a 5,10, 15, ... b 6, 16, 26, ... c 2,48 ... d 3,6 12, ...
e 38, 34, 30, ... f 39,30, 21, ... g 24, 12,6, ... h 81,27,9, ...
(S T T T 1,409, ... k 1,23, ... |16, =8, 4, ...

3 Find the first four terms of each sequence. You will need to substituten = 1,n = 2,n = 3andn = 4
into the formula for the nth term 7,,.
a T,=6n b T,=5n-2 c 17,=2"
e T,=20—-n f T,=6-2n g 7T,=3x2"
i T,=n’ i T,=nn+1) k T,= (-1

= 5
=7 x 10"
(=3)"

=

-0 Q
N NN
3
|

N

4 Write down the first four terms of each sequence described below.

The first term is 6, and every term after that is 2 more than the previous term.
The first term is 11, and every term after that is 50 more than the previous term.
The first term is 15, and every term after that is 3 less than the previous term.
The first term is 12, and every term after that is 8 less than the previous term.
The first term is 5, and every term after that is twice the previous term.

The first term is 1, and every term after that is three times the previous term.

The first term is 18, and every term after that is half the previous term.

The first term is —100, and every term after that is one fifth of the previous term.

0 Qe = 00 o 0 T 9
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1A Sequences and how to specify them

5 Write out the first twelve terms of the sequence 7, 12, 17, 22, ...

How many terms are less than 307 b How many terms are less than 60?

How many terms lie between 20 and 40? d How many terms lie between 10 and 50?

What is the 10th term? f  What number term is 37?

Is 87 a term in the sequence? h Ts 201 a term in the sequence?
]

Find the last term less than 43.

-a O 0

Find the first term greater than 45.

6 Write out the first twelve terms of the sequence 3, 11, 3, 6, ...
a How many terms are less than 30? b How many terms are less than 400?
¢ How many terms lie between 20 and 100? d How many terms lie between 1 and 1000?
e What is the 10th term? f What number term is 1927
g Is 96 a term in the sequence? h TIs 100 a term in the sequence?
I Find the first term greater than 200. j Find the last term less than 50.

DEVELOPMENT

7 For each sequence, write out the first five terms. Then explain how each term is obtained from the
previous term.
aT,=12+mn b T,=4+ 5n c
d 7,=3x2" e T,=7x (-1) f

T, =15 - 5n
T, =80 x ()"
8 The nth term of a sequence is given by 7,, = 3n + 1.

a PutT, = 40, and hence show that 40 is the 13th term of the sequence.

b Put T, = 30, and hence show that 30 is not a term of the sequence.
¢ Similarly, find whether 100, 200 and 1000 are terms of the sequence.

9 Answer each question by forming an equation and solving it.
a Find whether 16, 35 and 111 are terms of the sequence 7, = 2n — 5.
b Find whether 44, 200 and 306 are terms of the sequence 7,, = 10n — 6.
¢ Find whether 40, 72 and 200 are terms of the sequence 7, = 2n>.
d Find whether 8, 96 and 128 are terms of the sequence 7,, = 2".

10 The nth term of a sequence is given by T,, = 10n + 4.
a PutT, < 100, and hence show that the nine terms 7'y to T are less than 100.
b PutT, > 56, and hence show that the first term greater than 56 is Tg = 64.
¢ Similarly, find how many terms are less than 500.
d Find the first term greater than 203, giving its number and its value.

11 Answer each question by forming an inequation and solving it.
a How many terms of the sequence 7,, = 2n — 5 are less than 100?
b How many terms of the sequence T,, = 4n + 6 are less than 300?
¢ What is the first term of the sequence T,, = 3n + 5 greater than 1277
d What is the first term of the sequence T,, = 7n — 44 greater than 100?
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6 Chapter 1 Sequences and series _

12 In each part, the two lines define a sequence T,. The first line gives the first term 7. The second line
defines how each subsequent term 7', is obtained from the previous term 7',,_ . Write down the first four
terms of each sequence.

a T = 3, b T, = 5,

T,=T,_1 +2, forn>2 T,=T,_1 + 12, forn > 2.
C T] = 6, d Tl = 12,

T,=T,_1 -3, forn > 2. T,=T,-1 — 10, forn > 2.
e T, =15, f T, = 4,

T, =2T,_, forn > 2. T, = 5T,_, forn > 2.
g T, = 20, h 7,=1,

T,=4T,_y, forn >

\Y

N

~
3

I

=-T,_;, forn > 2.

CHALLENGE

13 Write down the first four terms of each sequence. Then state which terms of the whole sequence are zero.
a T, = sin 90n° b T, = cos 90n° ¢ T, = cos 180n° d T, = sin 180n°
14 The Fibonacci sequence is defined by

F1=1, F2=1, Fnan—1+Fn—29 forn > 3.
Write out the first 12 terms of the sequence. Explain why every third term of the sequence is even and

the rest are odd.
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1B Arithmetic sequences

m Arithmetic sequences

A simple type of sequence is an arithmetic sequence. This is a sequence such as
3, 13, 23, 33, 43, 53, 63, 73, 83, 93, ...,

in which the difference between successive terms is constant — in this example each term is 10 more than
the previous term. Notice that all the terms can be generated from the first term 3 by repeated addition of this
common difference 10.

In the context of successive terms of sequences, the word difference will always mean some term minus the
previous term.

Definition of an arithmetic sequence

Arithmetic sequences are called APs for short. The initials stand for ‘arithmetic progression’ — an old name
for the same thing.

2 ARITHMETIC SEQUENCES

» The difference between successive terms in a sequence 7', always means some term minus the
previous term, that is,

difference = T,, — T, _1, Wheren > 2.
e A sequence T, is called an arithmetic sequence or AP if
T, — T,_1 =d, foralln > 2,
where d is a constant, called the common difference.

* The terms of an arithmetic sequence can be generated from the first term by repeated addition of
this common difference,

T,=T,_1 +d, foralln > 2.

Example 5 1B

Test whether each sequence is an AP. If the sequence is an AP, find its first term a and its common
difference d.

a 46, 43, 40, 37, ... b 1,4, 09, 16, ...

SOLUTION

a T, —T, =43 — 46 T3 — T, =40 — 43 Ty — T3 =37 — 40
Hence the sequence is an AP witha = 46 andd = —-3.

b 7, -T,=4-1 T3 — T, =9 -4 T, —-T3=16 -9

The differences are not all the same, so the sequence is not an AP.
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8 Chapter 1 Sequences and series _

A formula for the nth term of an AP

Let the first term of an AP be a and the common difference be d. Then the first few terms of the sequence are
T, = a, T, =a + d, T3 =a + 2d, T4 = a + 3d,

From this pattern, the general formula for the nth term is clear:

3 THE nTH TERM OF AN AP

T,=a+ (n — 1)d

where a is the first term and d is the common difference.

Example 6 1B

Write out the first five terms, and calculate the 20th term, of the AP with:

a a=2andd = 5, b a =20andd = -3.
SOLUTION
a 2, 7,12, 17, 22, ... b 20, 17, 14, 11, 8, ...
Tyy = a + 19d Tyy = a + 19d
=2+ 19 %5 =20+ 19 x (=3)

Example 7 1B
\—— )

a Find a formula for the nth term of the sequence 26, 35, 44, 53, . . ..
b How many terms are there in the sequence 26, 35, 44, 53, ...,917?

SOLUTION

a The sequence is an AP witha = 26 andd = 9.
HenceT,, = a + (n — 1)d

=26+9(n - 1)
=26+9m — 9
=17 + 9n.
b Put T, = 917.
Then 17 + 9n = 917
9n = 900
n = 100,

so there are 100 terms in the sequence.

Solving problems involving APs

Now that we have the formula for the nth term 7',,, many problems can be solved by forming an equation and
solving it.
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1B Arithmetic sequences

Example 8 1B

a Show that the sequence 200, 193, 186, ... is an AP.
b Find a formula for the nth term.
¢ Find the first negative term.

SOLUTION
a Because7, — T = -7 b HenceT,
and T3 — Th, = -7,

itis an AP with @ = 200 and d

200 — 7(n — 1)
200 — Tn + 7
= 207 — 7n.

Il
I
=

¢ Put T, <O0.
Then207 — 7Tn < 0O
207 < Tn
n > 29%,
so the first negative term is 73y = —3.

Example 9 1B

The first term of an AP is 105 and the 10th term is 6. Find the common difference and write out the
first five terms.

SOLUTION
First, we know that T, = 105,
that is, a = 105. (1)
Secondly, we know that T = 6,
so using the formula for the 10th term, a + 9d = 6. (2)
Substituting (1) into (2), 105 + 9d = 6

9d = -99

d = —11,

so the common difference is d = —11 and the sequence is 105, 94, 83, 72, 61, . . .

Arithmetic sequences and linear functions
Take a linear function such as f(x) = 30 — 8x, and substitute
the positive integers. The result is an arithmetic sequence

22, 14, 6, =2, =10, ....

The formula for the nth term of this AP is 7,, = 22 — 8(n — 1) = 30 — 8n. This is a function whose
domain is the set of positive integers, and its equation is the same as the linear function above, with only a
change of pronumeral from x to n.

x 1 2 3 4 5
fx) 22 14 6 -2 -10

Every arithmetic sequence can be generated in this way.
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10 Chapter 1 Sequences and series _
FOUNDATION
1 Write out the next three terms of these sequences. They are all APs.
a 2,6, 10, ... b 3,8, 13, ... c 35, 25, 15, ...
d 11, 5, -1, ... e 41,6, 7L, ... f 8 757, ...
2 Write out the first four terms of the APs whose first terms and common differences are:
a a=3andd = 2 b a=7andd =2 ¢ a=T7andd = —4
d a=17andd = 11 e a=30andd = —11 f a=-9andd =4
g a=4%tandd = -1 h a=3}andd = -2 I a=09andd = 0.7
3 Find the differences T, — T and T3 — T, for each sequence to test whether it is an AP. If the sequence
is an AP, state the values of the first term ¢ and the common difference d.
a 3,7 11, ... b 11, 7, 3, ... c 10, 17, 24, ...
d 10, 20, 40, ... e 50, 35, 20, ... f 23, 34, 45, ...
g —12, -7, =2, ... h -40, 20, -10, ... i1, 11, 111, ...
j 8, =2, =12, ... k —-17, 0, 17, ... I 10, 74, 5, ...
4 Use the formula 7, = @ + (n — 1)d to find the 11th term 7'{; of the APs in which:
a a=T7andd = 6 b a=15andd = -7 c a=10}andd = 4
5 Use the formula 7,, = a + (n — 1)d to find the eighth term T'g of the APs in which:
a a=1landd =4 b a=100andd = -7 ¢ a=—13andd =6
6 a Find the first term a and the common difference d of the AP 6, 16, 26, ...
b Find the ninth term T, the 21st term T and the 100th term 7' .
Use the formula 7,, = a + (n — 1)d to find a formula for the nth term 7,,.
7 a Find the first term a and the common difference d of the AP —20, -9, 2, ...
b Find the eighth term Tg, the 31st term 737 and the 200th term T .
¢ Use the formula 7, = a + (n — 1)d to find a formula for the nth term 7,,.
8 a Find the first term a and the common difference d of the AP 300, 260, 220, ...
b Find the seventh term 75, the 51st term 7’5y and the 1000th term 7'y .
¢ Usethe formula 7T, = a + (n — 1)d to find a formula for the nth term 7',,.
DEVELOPMENT
9 Find T3 — T, and T, — T to test whether each sequence is an AP. If the sequence is an AP, use the
formula 7, = a + (n — 1)d to find a formula for the nth term 7',,.
a 8§, 11, 14, ... b 21, 15,9, ... c 8,4,2, ...
d -3,1,5, ... e 13,3, 41 ... fo12, =5, =22, ...
g V2, 2v2, 3V2, ... h 1,4, 916, ... 211,41, .
10 a UsetheformulaT, = a + (n — 1)d to find the nth term T,, of 165, 160, 155, ...
b Solve T,, = 40 to find the number of terms in the finite sequence 165, 160, 155, ..., 40.
Solve T, < 0 to find the first negative term of the sequence 165, 160, 155, ...
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11 Use the formula 7,, = a + (n — 1)d to find the number of terms in each finite sequence.
a 10, 12, 14, ..., 30 b 1,4,7, ..., 100 ¢ 105, 100, 95, ..., 30
d 100, 92, 84, ..., 4 e —12,—10%, -9, ...,0 f 2,5 8, ...,2000
12 Find T, for each AP. Then solve T, < O to find the first negative term.
a 20, 17, 14, ... b 50, 45, 40, ... ¢ 67, 60, 53, ...
d 82,79, 76, ... e 345, 337, 329, ... f 24%, 24, 23%,
13 The nth term of an arithmetic sequence is T,, = 7 + 4n.
a Write out the first four terms, and hence find the values of a and d.
b Find the sum and the difference of the 50th and the 25th terms.
¢ Provethat 5T + 47, = Ty.
d  Which term of the sequence is 8§15?
e Find the last term less than 1000 and the first term greater than 1000.
f Find which terms are between 200 and 300, and how many of them there are.
14 a Let T, be the sequence 8, 16, 24, ... of positive multiples of 8.
I Show that the sequence is an AP, and find a formula for 7,.
ii  Find the first term of the sequence greater than 500 and the last term less than 850.
iii Hence find the number of multiples of 8 between 500 and 850.
b Use the same steps to find the number of multiples of 11 between 1000 and 2000.
Use the same steps to find the number of multiples of 7 between 800 and 2000.
15 a The first term of an AP is ¢ = 7 and the fourth term is T4 = 16. Use the formula
T, = a+ (n — 1)d to find the common difference d. Then write down the first four terms.
b The first term of an AP is @ = 100 and the sixth term is T = 10. Find the common difference d
using the formula 7, = a + (n — 1)d. Then write down the first five terms.
¢ Find the 20th term of an AP with first term 28 and 11th term 108.
d Find the 100th term of an AP with first term 32 and 20th term —6.
16 Tonian Windows charges $500 for the first window, then $300 each additional window.
a Write down the cost of 1 window, 2 windows, 3 windows, 4 windows, . . .
b Show that this is an AP, and write down the first term a and common difference d.
¢ Usethe formula7, = a + (n — 1)d to find the cost of 15 windows.
d Use the formula 7, = a + (n — 1)d to find a formula for the cost of n windows.
e Form an inequation and solve it to find the maximum number of windows whose total cost is less
than $10000.
17 Many years ago, 160 km of a railway line from Nevermore to Gindarinda was built. On 1st January
2001, work was resumed, with 20 km of new track completed each month.
a Write down the lengths of track 1 month later, 2 months later, 3 months later, . . . .
b Show that this is an AP, and write down the first term a and common difference d.
¢ Usethe formula 7, = a + (n — 1)d to find how much track there was after 12 months.
d Use the formula 7, = a + (n — 1)d to find a formula for the length after » months.
e The distance from Nevermore to Gindarinda is 540 km. Form an equation and solve it to find how
many months it took to complete the track.
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12 Chapter 1 Sequences and series _

18 a Write down the first few terms of the AP generated by substituting the positive integers into the linear
function f(x) = 12 — 3x. Then write down a formula for the nth term.
b i Find the formula of the nth term 7T, of the AP -3, —1, 1, 3, 5, ... Then write down the linear
function f(x) that generates this AP when the positive integers are substituted into it.
ii  Graph the function and mark the points (1, —=3), (2, —1), (3, 1), (4, 3), (5, 5).

CHALLENGE
19 Find the common difference of each AP. Then find x if T|; = 36.
a 5x—9,5x—5 5x—1, ... b 16, 16 + 6x, 16 + 12x, ...
20 Find the common difference of each AP. Then find a formula for the nth term T,.
a logz2, logs4, logs 8, ... b log, 54, log, 18, log,6, ...
¢ ox —3y,2x + y3x+ 5y, ... d 5-6V5 1 +V5 =3 +8Vs5, ...
e 1.36, —0.52, =24, ... f log, 3x2, log,3x, log,3, ...

21 a What are the first term and difference of the AP generated by substituting the positive integers into
the linear function with gradient m and y-intercept b?
b What are the gradient and y-intercept of the linear function that generates an AP with first term a and
difference d when the positive integers are substituted into it?
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IR Geometric sequences

A geometric sequence is a sequence like this:
2, 6, 18, 54, 162, 486, 1458,

in which the ratio of successive terms is constant — in this example, each term is 3 times the previous term.
Because the ratio is constant, all the terms can be generated from the first term 2 by repeated multiplication

by this common ratio 3.

In the context of successive terms of sequences, the word ratio will always mean some term divided by the

previous term.

Definition of a geometric sequence

The old name was ‘geometric progression’ and geometric sequences are called GPs for short.

4 GEOMETRIC SEQUENCES

* The ratio of successive terms in a sequence 7, always means some term divided by the previous
term, that is,

n

ratio = , Wheren > 2.

n—1
* A sequence T, is called a geometric sequence if
T}’l
Tn -1
where r is a non-zero constant, called the common ratio.

=r, foralln > 2,

* The terms of a geometric sequence can be generated from the first term by repeated multiplication
by this common ratio,
T,=T,_1 Xr foralln > 2.

Thus arithmetic sequences have a common difference and geometric sequences have a common ratio, so the
methods of dealing with them are quite similar.

Example 10 1C
Test whether each sequence is a GP. If the sequence is a GP, find its first term a and its ratio r.
a 40, 20, 10, 5, ... b 5, 10, 100, 200, ...
SOLUTION
a Here Qz@ and Ezw and in
T 40 T, 20 T3 10
= % = % = %

so the sequence is a GP witha = 40 and r = 1.

T, 10 T3 _ 100 Ty _ 200
SEES and 7= 0 and 7 = 100
=2 =10 = 2
The ratios are not all the same, so the sequence is not a GP.
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14 Chapter 1 Sequences and series _

A formula for the nth term of a GP

Let the first term of a GP be a and the common ratio be r. Then the first few terms of the sequence are
Ty =a, Ty, =ar, T3 = arz, Ty = ar3, T = ar4,

From this pattern, the general formula for the nth term is clear:

5 THE nTH TERM OF A GP
T, = ar"~!

where a is the first term and r is the common ratio.

Example 11 1C

Write out the first five terms, and calculate the 10th term, of the GP with:

a a=3andr = 2, b a =7andr = 10.
SOLUTION
a 3,6, 12, 24, 48, ... b 7, 70, 700, 7000, 70000, ...
T10:ar9 T10=a><r9
=3x2° =7 x 10°
= 1536 = 7000000000

Zeroes and GPs don’t mix

: T L
No term of a GP can be zero. For example, if 75 = 0, then T—3 would be undefined, contradicting the
T 2
definition that —> = r.
)

Similarly, the ratio of a GP cannot be zero. Otherwise 7, = ar would be zero, which is impossible, as we
have explained above.

Negative ratios and alternating signs
The sequence
2, =6, 18, =54, ...
is an important type of GP. Its ratio is r = —3, which is negative, so the terms are alternately positive and
negative.

Example 12 1C

a Show that 2, —6, 18, —54, ...is a GP and find its first term a and ratio r.
b Find a formula for the nth term, and hence find 7' and 7';5.
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1C Geometric sequences 15

SOLUTION
a Here sz and E:E and Qz_54
T 2 T, -6 T; 18
= -3 = -3 = —3,
so the sequence is a GP witha = 2 and r = 3.
b Using the formula for the nth term,
P= ar"1
=2 x (=3)"" 1,
Hence T¢ = 2 X (—3)5 and Ti5 =2 X (—3)14
= —486 =2 X 314, because 14 is even.

Using a switch to alternate the sign
Here are two classic GPs with ratio —1:
-1, 1, -1, 1, =1, 1, ... and 1, -1, 1, -1, 1, =1, ...

The first has formula 7,, = (—1)", and the second has formula 7,, = (—1)""".

These sequences provide a way of writing any GP that alternates in sign using a switch. For example, the
sequence 2, —6, 18, —54, ... in the previous worked example has formula 7,, = 2 x (=3)"~ 1, which can
also be written as

T,=2x3"1x (=1)!
to emphasise the alternating sign, and —2, 6, —18, 54, ... can be written as

T, =2x3"1x (=1

Solving problems involving GPs

As with APs, the formula for the nth term allows many problems to be solved by forming an equation and
solving it.

Example 13 1C

a Find a formula for the nth term of the geometric sequence 5, 10, 20, ....
b Hence find whether 320 and 720 are terms of this sequence.

SOLUTION
a The sequence is a GP witha = Sand r = 2.
Hence 7, = ar"~!
=5x 2" L
b Put T, = 320. ¢ Put T, = 720.
Then 5 x 2"~! = 320 Then 5 x 2"~! = 720
-1 = 64 2=l = 144,
n—-—1=6 But 144 is not a power of 2, so 720 is not
n=717, a term of the sequence.

s0 320 is the seventh term 7.
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Example 14 1C
\e— )

The first term of a GP is 448 and the seventh term is 7. Find the common ratio and write out the first
seven terms.

SOLUTION
First, we know that T, = 448
that is, a = 448. (1)
Secondly, we know that T; =7
so using the formula for the 7th term, ar® = 7. (2)
substituting (1) into (2), 448r% = 7

ro = 4

r=%or -1

Thus either the ratio is r = 1, and the sequence is
448, 224, 112, 56, 28, 14, 7, ...
or theratiois r = — %, and the sequence is

448, —224, 112, -56, 28, —14,7, ...

Geometric sequences and exponential functions

Take the exponential function f(x) = 54 x 37, and substitute the
positive integers. The result is a geometric sequence

X 1 2 3 4 5

f(x) 18 6 2 2 2
18,6,2,2 2 ...
The formula for the nth term of this GPis 7, = 18 X (%) n=1 = 54 x 37" This is a function whose domain

is the set of positive integers, and its equation is the same as the exponential function, with only a change of
pronumeral from x to n.

Thus the graph of an arithmetic sequence is the positive integer points on the graph of a linear function, and
the graph of a geometric sequence is the positive integer points on the graph of an exponential function.

FOUNDATION
1 Write out the next three terms of each sequence. They are all GPs.
al,2,4, ... b 81, 27,9, ... c -7, —14, =28
d -2500, =500, —100, ... e 3, -6, 12, ... f =25, 50, —100, ...
g 5 =55, ... h -1000, 100, —10, ... i 0.04, 04, 4, ...
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1C Geometric sequences 17

2 Write out the first four terms of the GPs whose first terms and common ratios are:

a a=landr = 3 b a=12andr =2 C a=5andr = -2
d a=18andr =} e a=18andr = -1 f a=50andr =1
0 a=6andr =-1} h a=-13andr =2 I a=—-7andr = -1

T T . . .
3 Find the ratios T—s and T—z for each sequence to test whether it is a GP. If the sequence is a GP, write
2 1

down the first term a and the common ratio r.

a 4,8, 16, ... b 16,8, 4, ... c 7,21, 63, ...
d -4, =20, —100, ... e 2,4,6, ... f —1000, —100, —10, ...
g -80, 40, -20, ... h 29, 29, 29, ... i 1,49, ...
] —14, 14, —14, ... k61,4 ... I L1, -3 ...
4 Use the formula T,, = ar™ ! to find the fourth term of the GP with:
a a=5andr =2 b a=300andr = C a=-7andr = 2
d a=—-64andr =1 e a=1landr = =2 f a=—-15andr = -2

5 Use the formula T,, = ar”~! to find an expression for the 70th term of the GP with:
a a=1landr =3 b a=5andr =7 c a=8andr = -3

6 a Find the first term a and the common ratio r of the GP 7, 14, 28, ...
b Find the sixth term Tg and an expression for the 50th term 75 .
Find a formula for the nth term 7,,.

7 a Find the first term a and the common ratio r of the GP 10, —30, 90, ...
b Find the sixth term T'¢ and an expression for the 25th term 7'55.
¢ Find a formula for the nth term T',,.

8 a Find the first term a and the common ratio r of the GP —80, —40, —20, ...
b Find the 10th term 7’|y and an expression for the 100th term 7'y .
¢ Find a formula for the nth term 7.

DEVELOPMENT

T T
9 Find T—3 and T—z to test whether each sequence is a GP. If the sequence is a GP, use the formula
2 1

T, = ar"~!to find a formula for the nth term, then find 7.

a 10, 20, 40, ... b 180, 60, 20, ... c 64, 81, 100, ...
d 35, 50, 65, ... e %, 3, 12, ... f —-48, =24, -12, ...
10 Find the common ratio of each GP, find a formula for 7', and find Tg.
a1, -1,1, ... b -2,4, -8, ... c —-8,24, =72, ...
d 60, —-30, 15, ... e —1024, 512, =256, ... f li — % %, .
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11 Use the formula T7,, = ar™~ ! to find how many terms there are in each finite sequence.
al1,2,4,...,64 b -1, -3, -9, ..., =81 ¢ 8, 40, 200, ..., 125000
d 7,14, 28, ..., 224 e 2,14, 98, ..., 4802 Ll ...,625

250 5
12 a The first term of a GP is a = 25 and the fourth term is 74 = 200. Use the formula 7', = ar o
find the common ratio r, then write down the first five terms.
b The first term of a GP is @ = 3 and the sixth term is T¢ = 96. Use the formula T,, = ar"~ !to find
the common ratio r, then write down the first six terms.
¢ The first term of a GP is @ = 1 and the fifth term is 75 = 81. Use the formula 7, = ar"!to find
the common ratio r, then write down the first five terms.

13 Use the formula T,, = ar”~! to find the common ratio r of a GP for which:
a a=486andTs = % b a = 1000 and 77 = 0.001
C a=32andTg = —243 d a=5andT; = 40

14 The nth term of a geometric sequence is T,, = 25 x 2".

Write out the first six terms and hence find the values of @ and r.

Which term of the sequence is 64007?

Find in factored form 759 X Tpsand Ts5g + T»s.

Prove that Tg X T1; = 25 X T»g.

Write out the terms between 1000 and 100000. How many of them are there?

Verity by calculations that 77; = 51200 is the last term less than 100000 and that Ty, = 102400 is
the first term greater than 100000.

- 0D Q O T QD

15 A piece of paper 0.1 mm thick is folded successively 100 times. How thick is it now?

16 a Write down the first few terms of the GP generated by substituting the positive integers into the
exponential function f(x) = 24—5 X 5*. Then write down a formula for the nth term.
b i Find the formula of the nth term T, of the GP 5, 10, 20, 40, 80 ... Then write down the
exponential function f(x) that generates this GP when the positive integers are substituted into it.
Il Graph the function (without the same scale on both axes) and mark the points (1, 5), (2, 10),
(3,20), (4,40), (5, 80).

CHALLENGE

17 Find the nth term of each GP.
a \@,2\@,2\/6,... b ax, a®3, a’x>, ... c —E,—,—X,...

18 a Find a formula for 7, in 2x, 2x2, 2x>, ... Then find x if Tg = 2.
b Find a formula for T, in x4, xz, 1, ... Thenfind xif Tg = 36,
¢ Find a formula for T, in 2716, 2712, 278x, ... Then find x if T¢ = 96.

19 a What are the first term and common ratio of the GP generated by substituting the positive integers
into the exponential function f(x) = ¢b™?
b What is the equation of the exponential function that generates a GP with first term a and ratio r
when the positive integers are substituted into it?
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m Solving problems involving APs and GPs

This section deals with APs and GPs together and presents some further approaches to problems about the
terms of APs and GPs.

A condition for three numbers to be in AP or GP

The three numbers 10, 25, 40 form an AP because the differences 25 — 10 = 15and 40 — 25 = 15 are
equal.

Similarly, 10, 20, 40 form a GP because the ratios % = 2 and % = 2 are equal.

These situations occur quite often and a formal statement is worthwhile:

6 THREE NUMBERS IN AP OR GP

¢ Three numbers a, b and ¢ form an AP if

b—a=c—-b>b

e Three numbers a, b and ¢ form a GP if
b ¢
a b

Example 15 1D

a Find the value of x if 3, x, 12 form an AP.
b Find the value of x if 3, x, 12 form a GP.

SOLUTION
a Because 3, x, 12 form an AP, b Because 3, x, 12 form a GP,
x—3=12-x x _ 12
2 = 15 >
x =75 X7 =36
x =6 or —6.

Solving problems leading to simultaneous equations

Many problems about APs and GPs lead to simultaneous equations. These are best solved by elimination.

7 PROBLEMS ON APS AND GPS LEADING TO SIMULTANEOUS EQUATIONS

* With APs, eliminate a by subtracting one equation from the other.
*  With GPs, eliminate a by dividing one equation by the other.
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Example 16 1D

The third term of an AP is 16 and the 12th term is 79. Find the 41st term.

SOLUTION
Let the first term be a and the common difference be d.
Because 75 = 16, a + 2d = 16, (1)
and because T, = 79, a + 11d = 79. (2)
Subtracting (1) from (2), 9d = 63 (the key step that eliminates a)
d="1.
Subtracting into (1), a+ 14 =16
a = 2.
Hence T4 = a + 40d
= 282.
Example 17 1D

Find the first term a and the common ratio r of a GP in which the fourth term is 6 and the seventh term
is 162.

SOLUTION
Because Ty = 6, ar’ = 6, (1)
and because 77 = 162, ar® = 162. (2)
Dividing (2) by (1), r3 =27 (the key step that eliminates a)

r = 3.
Substituting into (1), aXx 2l =6

a=2

5

Solving GP problems involving trial-and-error or logarithms
Equations and inequations involving the terms of a GP are index equations, so logarithms are needed for a

systematic approach.

Trial-and-error, however, is quite satisfactory for simpler problems, and the reader may prefer to leave the
application of logarithms until Chapter 8.

Example 18 1D

a Find a formula for the nth term of the geometric sequence 2, 6, 18, ....
b Use trial-and-error to find the first term greater than 1000000.
¢ Use logarithms to find the first term greater than 1000000.
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SOLUTION
a Thisisa GP witha = 2 and r = 3,
soT, = ar"™!
=2 x 3L
b Put T, > 1000000.
Using the calculator, T, = 354294
and T3 = 1062882.
Hence the first term over 1000000 is 713 = 1062882.
¢ Put T, > 1000000.
Then2 x 3"~! > 1000000
37=1 = 500000
n — 1 > logz 500000 (remembering that 23 = means 3 = log, 8)
n—-—1> M (the change - of - base formula)
10g103
n—1>1194...
n> 1294 ...

Hence the first term over 1000000 is 713 = 1062882.

FOUNDATION
1 Find the value of x if each set of numbers below forms an arithmetic sequence.
(Hint: Form an equation using the identity 7, — 7| = T3 — T, then solve it to find x.)
a 5 x 17 b 32, x, 14 c —12, x, =50
d -23, x, 7 e x, 22,32 f —-20, -5, x

2 Each triple of number forms a geometric sequence. Find the value of x. (Hint: Form an equation using

T T
the identity T—Z = T—3, then solve it to find x.)

1 2
a 2, x 18 b 48, x, 3 ¢ —10, x, =90
d —98, x, -2 e x, 20, 80 fo—-1,4 x
3 Find x if each triple of three numbers forms: i an AP, i aGP
a 4, x, 16 b 1, x, 49 c 16, x, 25 d -5, x, =20
e x, 10, 50 fox 12,24 g x, —1,1 h x, 6, —12
i 20, 30, x ] =36, 24, x k -1 -3, x I 7, =7, x
DEVELOPMENT

4 1In these questions, substitute the last terminto 7,, = a + (n — l)dor T, = ar"~ L

a Find the first six terms of the AP with first term @ = 7 and sixth term T = 42.

b Find the first four terms of the GP with first term ¢ = 27 and fourth term 74 = 8.
¢ Find the first eleven terms of the AP witha = 40 and Ty, = 5.

d Find the first seven terms of the GP witha = 1 and 77 = 1000000.

e Find the first five terms of the AP witha = 3 and T5 = 48.

f Find the first five terms of the GP witha = 3 and T5 = 48.
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5 Use simultaneous equations and the formula 7,, = a + (n — 1)d to solve these problems.
a Find the first term and common difference of the AP with Ty = 18 and Ty = 48.
b Find the first term and common difference of the AP with 7, = 3 and T1¢ = 35.
¢ Find the first term and common difference of the AP with 75 = 24 and Ty = —12.
d Find the first term and common difference of the AP with T, = 6 and T, = 34.
6 Use simultaneous equations and the formula 7, = ar~ ! to solve these problems.
a Find the first term and common ratio of the GP with T3 = 16 and Tg = 128.
b Find the first term and common ratio of the GP with 73 = 1 and T¢ = 64.
¢ Find the first term and common ratio of the GP with T, = }and T = 27.
d Find the first term and common ratio of the GP with 75 = 6 and Tg9 = 24.
7 a The third term of an AP is 7 and the seventh term is 31. Find the eighth term.
b The common difference of an AP is —7 and the 10th term is 3. Find the second term.
¢ The common ratio of a GP is 2 and the sixth term is 6. Find the second term.
8 Use either trial-and-error or logarithms to solve these problems.
a Find the smallest value of n such that 3" > 1000000.
b Find the largest value of n such that 5" < 1000000.
¢ Find the smallest value of n such that 7* > 1000000000.
d Find the largest value of n such that 12" < 1000000000.
9 Let T, be the sequence 2, 4, 8, ... of powers of 2.
a Show that the sequence is a GP, and show that the nth term is 7,, = 2".
b Find how many terms are less than 1000000. (You will need to solve the inequation 7',, < 1000000
using trial-and-error or logarithms.)
¢ Use the same method to find how many terms are less than 1000000 000.
d Use the same method to find how many terms are less than 1029,
e How many terms are between 1000000 and 1000000000?
f How many terms are between 1000000000 and 102%?
10 Find a formula for 7', for these GPs. Then find how many terms exceed 107%. (You will need to solve the
inequation T,, > 107° using trial-and-error or logarithms.)
a 98, 14, 2, ... b 25 51, ... ¢ 1,09, 081, ...
11 When light passes through one sheet of very thin glass, its intensity is reduced by 3%. (Hint: 97% of the
light gets though each sheet.)
a If the light passes through 50 sheets of this glass, find by what percentage (correct to the nearest 1%)
the intensity will be reduced.
b What is the minimum number of sheets that will reduce the intensity below 1%?
12 a Find a and d for the AP in which Tg + Tg = 44and T|o + T3 = 35.
b Find a and r for the GP in which 7, + T3 = 4and T4 + T5 = 36.
¢ The fourth, sixth and eighth terms of an AP add to —6. Find the sixth term.
13 Each set of three numbers forms an AP. Find x and write out the numbers.
a x-—1,17, x + 15 b 2x + 2, x — 4, 5x
c x—3,52x+7 d 3x —2, x, x + 10
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1D Solving problems involving APs and GPs

14 Each set of three numbers forms a GP. Find x and write out the numbers.

a x, x+ 1, x b 2 —-—x,2,5—-x
15 Find x and write out the three numbers if they form: i an AP, ii aGP
a x, 24, 96 b 0.2, x, 0.00002. ¢ x, 0.2, 0.002.
d x -4, x+ 1, x+ 11 e x—2, x+2 5x—2 fvs+1,xV5-1
g \6, X, V8 h 2% x, 20 i 7, x, =7

16 [The relationship between APs and GPs]

a

The AP 1, 3, 5, 7, 9, ... has first term 1 and difference 2. Show that the sequence
21,23, 25, 27, 2%, ...
is a GP, and find its first term and common ratio.

The GP 3, 6, 12, 24, 48 ... has first term 3 and ratio 2. Show that the sequence

log, 3, log, 6, logy 12, log, 24, log, 48
is an AP, and find its first term and common difference.

CHALLENGE

17 a

Finda and b if a, b, 1 forms a GP, and b, a, 10 forms an AP.

b Findaandbifa, 1, a + b forms a GP, and b, %, a — b forms an AP.

The first, second and fourth terms of an AP 7, = a + (n — 1)d form a geometric sequence. Show
that eitherd = Oord = a.

The first, second and fifth terms of an AP 7,, = a + (n — 1)d form a geometric sequence. Show
that eitherd = Oord = 2a.

18 [The relationship between APs and GPs]

a
b
c

Show that 2°, 22, 27!, 274 . is a GP. Then find its nth term.

Show that log, 96, log, 24, log, 6, . . . 1is an AP. Then show that T, = 7 — 2n + log, 3.

Show that for any positive base b # 1, if T, is an AP with first term « and difference d, then bTrisa
GP with first term b® and ratio b<.

Show that for any positive base b # 1, if T}, is a GP with first term a > 0 and ratio r > 0, then

log,, T, is an AP with first term log;, a and difference log, r.

19 [Extension — geometric sequences in musical instruments] The pipe lengths in a rank of organ pipes
decrease from left to right. The lengths form a GP, and the 13th pipe along is exactly half the length of

the first pipe (making an interval called an octave).
1

a
b

Show that the ratio of the GPis r = (%) 2,

Show that the eighth pipe along is just over two-thirds the length of the first pipe (this interval is
called a perfect fifth).

Show that the fifth pipe along is just under four-fifths the length of the first pipe (a major third).
Find which pipes are about three-quarters (a perfect fourth) and five-sixths (a minor third) the length
of the first pipe.

What simple fractions are closest to the relative lengths of the third pipe (a major second) and the
second pipe (a minor second)?

23
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24 Chapter 1 Sequences and series _

m Adding up the terms of a sequence

Adding the terms of a sequence is often important. For example, a boulder falling from the top of a high cliff
falls 5 metres in the first second, 15 metres in the second second, 25 metres in the third second, and so on.
The distance that it falls in the first 10 seconds is the sum of the 10 numbers

S+ 15+25+35 +---+ 95 = 500.

A notation for the sums of terms of a sequence

For any sequence 7'y, T, T3, ..., define S, to be the sum of the first n terms of the sequence.

8 THE SUM OF THE FIRST n TERMS OF A SEQUENCE

Given a sequence Ty, T5, T3, ..., define
Sp=T1+ T, + T3 + ---+ T,
The sum S, is variously called:
 the sum of the first n terms of the sequence,
* the sum to n terms of the sequence,
 the nth partial sum of the sequence (‘partial’ meaning ‘part of the sequence’).

For example, the sum of the first 10 terms of the sequence 5, 15, 25, 35, ...1is
Sio=5+15+25+35+45+55+65+ 75+ 85+ 95
= 500,

which is also called the 10th partial sum of the sequence.

The sequence Sq, S, S3, Sy, ... of sums
The partial sums S, Sp, S3, Sy, ... form another sequence. For example, with the sequence 5, 15, 25, 35, ...,

S =5 S, =5+ 15 S3=5+15+25 Sy =5+15+ 25+ 35
=20 45 80

Example 19 1E

Copy and complete this table for the successive sums of a sequence.

n 1 2 3 4 5 6 7 8 9 10
. 5 15 25 35 45 55 65 75 8 95
Sn

SOLUTION

Each entry for S, is the sum of all the terms 7', up to that point.
n 1 2 3 4 5 6 7 8 9 10

s 5 15 25 35 45 55 65 75 8 95
Sy 5 20 45 80 125 180 245 320 405 500

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022



1E Adding up the terms of a sequence 25

Recovering the sequence from the partial sums
Suppose we know that the partial sums S, of a sequence are the successive squares,
S, 1, 4,9, 16, 25, 36, 49, 64, ...
and we want to recover the terms 7,,. The first term is 7y = §; = 1, and then we can take successive
differences, giving the sequence

T, 1, 3,5, 7,9, 11, 13, 15, ...

9 RECOVERING THE TERMS FROM THE PARTIAL SUMS

The original sequence 7', can be recovered from the sequence S,, of partial sums by taking successive
differences,

Iy =5

T,=S, — S,_1, forn > 2.

Example 20 1E

By taking successive differences, list the terms of the original sequence.

n 1 2 3 4 5 6 7 8 9 10

Sn 1 5 12 22 35 51 70 92 117 145

SOLUTION

Each entry for 7, is the difference between two successive sums S, .

n 1 2 3 4 5 6 7 8 9 10
T, 1 4 7 10 13 16 19 22 25 28
Se 1 5 12 22 35 51 70 92 117 145

Example 21 1E

Confirm the example given above by proving algebraically that if the partial sums S,, of a sequence are the
successive squares, then the sequence 7, is the sequence of odd numbers.

SOLUTION
We are given that  §,, = n’.
Hence T, =S
= 1, which is the first odd number,
and forn > 2, T,=S,—-S,_1

n? — (n — 1)7>
2n — 1, which is the nth odd number.

Note: Taking successive differences in a sequence is analogous to differentiation in calculus, and the
results have many similarities to differentiation. For example, in the worked example above, taking finite
differences of a quadratic function yields a linear function. The last question in the Challenge has further
analogies, which are not pursued in this course.
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Sigma notation

This is a concise notation for the sums of a sequence. For example:

5 10

dn? =22 4324424+ 52 don?=6>+ 7>+ 8> + 9% + 10

T 4494164025 " 236 +49 + 64 + 81 + 100
_ 54 — 330

The first sum says ‘evaluate the function n? for all the integers fromn = 2ton = 5, then add up the
resulting values’. There are 4 terms, and their sum is 54.

10 SIGMA NOTATION

Suppose that 7'y, T, T3, ... is a sequence. Then

20
D R e )

n=>5

(Any two integers can obviously be substituted for the numbers 5 and 20.)

We used the symbol Z before in Chapter 11 of the Year 11 book. It stands for the word ‘sum’, and is a large

version of the Greek capital letter 2 called ‘sigma’ and pronounced °s’. The superscripts and subscripts on
the sigma sign, however, are used for the first time in this chapter.

Example 22 1E
\——)

Evaluate these sums.

7 5
a 2 (5n+ 1) b Y (-2
n=4 n=1
SOLUTION
7 5
a 2 (5n+1)=21+26+ 31 + 36 b X (-2)"=-2+4 -8+ 16 — 32
=4 l’l:]
! = 114 =-22

Series
The word series is often used imprecisely, but it always refers to the activity of adding up terms of a
sequence. For example, the phrase

‘the series 1 + 4 + 9 + -’

means that one is considering the successive partial sums S; = 1, S, =1 + 4, S3=1+4 + 9, ... of
the sequence of positive squares.
The precise definition is that a series is the sequence of partial sums of a sequence. That is, given a sequence

Ty, Ty, T3, ...,the corresponding series is the sequence

S1 =Ty, So =T+ Ty, S35=T, +Tr + T3 S4=T +Tr+ T3+ Ty ...
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FOUNDATION

Find the sum S, of the first four terms of each sequence.
a 3,5 7,9, 11, 13, ... b 2, 6, 18, 54, 162, 486, ...
c 6, 2, =2, -6, —10, —14, ... d 2,1, %, 4 & -
Find the sum S5 of the first three terms of each series.
a 200 + 150 + 100 + 50 + O + --- b 32-164+8-4+2-1+---
c 24 -18-12-64+04+6+ --- d 51 +52+53+54+55+56+ -
Find the sums Sy, S5, S3, S4 and S5 for each sequence.
a 10, 20, 30, 40, 50, 60, ... b 1, -3,9, =27, 81, —243, ...
c 1, 4,9, 16, 25, 36, ... d 3,41, 6,71 9,103, 12, ...
Find the sums S,4, S5 and Sg for each series. (You will need to continue each series first.)
al-2+3-4+--- b 81 +27+9+3+---
¢ 304+20+ 10+ --- d 0.1 + 0.01 + 0.001 + 0.0001 + ---
Copy and complete these tables of a sequence and its partial sums.
T, 2 5 8 11 14 17 20 T, 2 -4 6 -8 10 —12 14
S, Sn
T, 40 38 36 34 32 30 28 T, 7 =7 7 -7 7 =7 7
S5 Sn

DEVELOPMENT
Each table below gives the successive sums Sj, S, S3, ... of a sequence. By taking successive
differences, write out the terms of the original sequence.
T, T,
S, 1 4 9 16 25 36 49 S, -3 -8 —15 —-24 -35 —48 —63
T, T,
S, 2 6 14 30 62 126 254 S. 8 0 8 0 8 0 8

[The Fibonacci and Lucas sequences] Each table below gives the successive sums S,, of a sequence. By
taking successive differences, write out the terms of the original sequence.

T, T,
S, 1 2 3 5 8 13 21 34 S, 3 4 7 11 18 29 47 76

Rewrite each partial sum without sigma notation, then evaluate it.

27

6 6 7 8

a 2 2n b Y (Bn+2) c 2 (18 — 3n) d Y n?
n=1 n=1 k=3 n=>5
4 5 4 31

e Xnd oo g 23" h (=1
n=1 n=0 n=2 (=1
40 105 4 4

P2 (=it i X4 kK XD'n+5 1 X0 o+s)
=1 n=5 n=0 n=0
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28 Chapter 1 Sequences and series _

9 a

Use the dot diagramonthe 22 °°**° b Use the dot diagram on the right > *°** **
right to explain why the sum ® e e e e 0 e to explain why the sum of the ee0 oo
.. 00O0OOeO e T ) ocooo
of the first n odd positive eee0e0 e first n positive integers is e
. . 2 OO eOeO e 1 o o
integers is n-. c0 000 e sn(n + 1). .
CHALLENGE

10 Rewrite each sum in sigma notation, starting each sum at n = 1. Do not evaluate it.

a

11 a

PB+2+3 4+ 440 b l+i+t+ -+ 5
344454422 d 24+22+28+... 4212
-1+2-34+---4+10 f1-2+3-----10

The partial sums of a sequence T, are given by S, = 2". Use the formula in Box 9 to find a formula

for T,,.

b Confirm your answer by writing out the calculation in table form, as in Question 6.

12 a

In Chapter 9 of the Year 11 book, you differentiated y = e*. What is the analogy to these results?

Prove thatn® — (n — 1) = 3n? — 3n + 1.

The partial sums of a sequence T, are given by §,, = n>. Use the formula in Box 9 to find a formula
for U,,.

The terms of the sequence T, are the partial sums of a third sequence U,,. Use the formula in Box 9
to find a formula for 7.

d Confirm your answer by writing out in table form the successive taking of differences in b and c.

In Chapter 8 of the Year 11 volume, you differentiated powers of x. What is the analogy to these
result?
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n Summing an arithmetic series

There are two formulae for adding up the first n terms of an AP.

Adding the terms of an AP

Consider adding the first six terms of the AP
S+ 15+25+35+45+55+ ---

Writing out the sum, Sg =5 + 15 + 25 + 35 + 45 + 55.
55+45+354+25+ 15+ 5,

60 + 60 + 60 + 60 + 60 + 60

6 X 60, because there are 6 terms in the series.
Ix 6 x 60

= 180.

Reversing the sum,  Sg
and adding the two, 2S¢

Dividing by 2, Se

Notice that 60 is the sum of the first term 7'y = 5 and the last term 7 = 55.

In general, let / = T, be the last term of an AP with first term a and difference d.

Then Si,i=a+@+d+@+2d)+---+{l -2d+{ —-d + L
Reversingthesum, S, =+ ({{ —d) + ({ - 2d) + -+ + (a + 2d) + (a + d) + a,

and adding, 28, =(a+O + @+ +---+@++ @+ + @@+ ?)
= n X (a + ), because there are n terms in the series.
Dividing by 2, S, =in(a + 0).

Example 23 1F

Add up all the integers from 100 to 200 inclusive.

SOLUTION
The sum 100 + 101 + --- + 200 is an AP with 101 terms.
The first term is a = 100 and the last term is £ = 200.

Using S, = in(a + ),
Sio1 = 4 x 101 x (100 + 200)
=1 x 101 x 300

An alternative formula for summing an AP

This alternative form is equally important.

The previous formula is S, =4in(a+ ), where { =T, =a+ (n — 1)d.
Substituting ¢ = a + (n — 1)d, S, = in(a + a(n — 1)d)
50 Sy = in(2a + (n = Dd).
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30 Chapter 1 Sequences and series _

11 TWO FORMULAE FOR SUMMING AN AP

Suppose that the first term a of an AP, and the number n of terms, are known.
e  When the last term ¢ = T, is known, use S, = %n (a +70).

¢  When the difference d is known, use Sy = %n(Za + (n — l)d).

If you have a choice, use the first because it is simpler.

Example 24 1F
Consider the arithmetic series 100 + 94 + 88 + 82 + - - -.

a Find S;g. b Find Sy .

SOLUTION

The series is an AP witha = 100 and d = —6.

a Using S, = In(2a + (n — 1d), b Similarly, S4; = ! x 41 x (2a + 40d)
Sio = 1 x 10 x (2a + 9d) =1 x 41 x (200 — 240)
=5 x (200 — 54) 1 x 41 x (—40)
= 730. = —820.
Example 25 1F

a Find how many terms are in the sum41 + 45 + 49 + --- + 401.
b Hence evaluate the sum 41 + 45 + 49 + -.- + 401.

SOLUTION

a The series is an AP with first term ¢ = 41 and difference d = 4.

To find the numbers of terms, put 7,, = 401
a+ (n— 1)d = 401

41 + 4(n — 1) = 401

4(n — 1) = 360

n—1=90

n = 91.

Thus there are 91 terms in the series.

b Because we now know both the difference d and the last term ¢ = T, either formula can be used.
It’s always easier to use S, = in(a + ¢) if you can.

Using S, = in(a + 0), OR Using S, = in(2a + (n — 1)d),
Sop = 1 x 91 x (41 + 401) So1 = 1 x 91 x (2a + 90d)
1% 91 x 442 1'% 91 x (82 + 360)
= 20111. = 20111.
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Solving problems involving the sums of APs

Problems involving sums of APs are solved using the formulae developed for the nth term 7', and the sum S,

of the first n terms.

Example 26

1F Summing an arithmetic series 31

1F

a Find an expression for the sum S, of n terms of the series 40 + 37 + 34 + .. ..

b Hence find the least value of n for which the partial sum S,, is negative.

SOLUTION

The sequence is an AP witha = 40 and d = 3.

a Sn=%n(2a+(n— 1)d)
%xnx(80—3(n—1))
=%><n><(80—3n+3)
n(83 — 3n)
- 7
b Put S, <0
Then M<O
n(83 — 3n) < 0
83 —3n <0
83 < 3n
n> 273

, because n is positive,

Hence g is the first sum that is negative.

Example 27

1F

The sum of the first 10 terms of an AP is zero, and the sum of the first and second terms is 24. Find the

first three terms.

SOLUTION

The first piece of information given is

The second piece of information given is

Subtracting (2) from (1),

and substituting this into (2),

Hence the APis 131 + 10} + 71 + - .-

ISBN 978-1-108-76626-5
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32 Chapter 1 Sequences and series _

FOUNDATION
1 LetS; =2+ 5+ 8+ 11 + 14 + 17 + 20. By reversing the sum and adding in columns, evaluate S.

2 State how many terms each sum has, then find the sum using S,, = in(a + ¢).

al+2+3+4+---+4+100 b 1+3+54+7+4+ 499
c 2+4+44+6+---+ 100 d 3+6+9+ 12+ ---4 300
e 101 + 103 + 105 + --- + 199 f 1001 + 1002 + 1003 + --- + 10000

3 UseS, =1in (2a + (n — 1)d) to find the sum S¢ of the first 6 terms of the series with:

a a=5andd = 10 b a=8andd =2
¢ a=-3andd = -9 d a=-7andd = —12

4 State the first term «a and the difference d for each series below. Then use the formula
S, = ‘En(Za + (n — l)d) to find the sum S,; of the first 21 terms of each series.

a24+6+10+ --- b 3+10+17+ .-
c -6-1+4+--- d 10+5+0—"---
e -7 -10—-13 — --- f1l+3l+50+...

5 Use the formula §,, = %n(2a + (n — 1)d) to find the sum of the stated number of terms.
a 2+5+ 8+ ---(12terms) b 40 + 33 + 26 + - - (21 terms)
c -6 —2+ 2+ ---(200 terms) d 33 + 30 + 27 + --- (23 terms)
e —10 — 74 =5+ --- (13 terms) f 101+ 10 + 94 + - - - (40 terms)

6 First use the formula 7, = a + (n — 1)d to find how many terms there are in each sum. Then use the
formula S, = in(a + ¢) to find the sum, where ¢ is the last term 7,.

a 50+ 51 +52+---4 150 b 8+ 15+22+---+4+92
¢c -10-3+4+---+60 d 4+7+ 10+ --- + 301
e 61+ 11 + 151+ -+ + 511 f-1i+1+2+---+ 133
7 Find these sums by any appropriate method.
a2+44+6+---4+ 1000 b 1000 + 1001 + --- + 3000
c 1+5+9+ - --(40terms) d 10 + 30 + 50 + --- (12 terms)
DEVELOPMENT

8 UseS, = in (2a + (n — l)d) to find and simplify the sum of the first n terms of each series.

as+10+15+--- b 10 + 13 + 16 + ---
c3+7+11+- - d -9-4+1+---
e S5+ 4L +44 .- fo(1-v2) +1+ (1+v2) + -
9 Use either standard formula for S, to find a formula for the sum of the first n:
a positive integers, b odd positive integers,
¢ positive integers divisible by 3, d odd positive multiples of 100.
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1F Summing an arithmetic series

a How many legs are there on 15 fish, 15 ducks, 15 dogs, 15 beetles, 15 spiders, and 15 ten-legged
grubs? How many of these creatures have the mean number of legs?

b Matthew Flinders High School has 1200 pupils, with equal numbers of each age from 6 to 17 years
inclusive. It also has 100 teachers and ancillary staff, all aged 30 years, and one Principal aged
60 years. What is the total of the ages of everyone in the school?

¢ An advertising graduate earns $28000 per annum in her first year, then each successive year her
salary rises by $1600. What are her total earnings over 10 years?

33

11 By substituting appropriate values of k, find the first term a and last term £ of each sum. Then evaluate
the sum using S,, = %n (a + ?). (Note that all four series are APs.)
200 61

a (600 — 2k) b Y (93 — 3k)

k=1 k=1
40 30

¢ 2 3k — 50) d Y 5k + 3)

k=1 k=10
12 Solve these questions using the formula S,, = In(a + ¢) whenever possible — otherwise use the

formula §,, = %n(Za + (n — l)d).

a Find the last term if a series with 10 terms and first term —23 has sum —35.

b Find the first term if a series with 40 terms and last term 8 } has sum 28.

¢ Find the common difference if a series with 8 terms and first term 5 has sum 348.

d Find the first term if a series with 15 terms and difference 2 has sum —15.

13 Beware! These questions require quadratic equations to find solutions for 7.

a Show that the sum to n terms of the AP 60 + 52 + 44 4+ 36 + ---is S, = 4n(16 — n).

b Hence find how many terms must be taken to make the sum: i zero, ii  negative.

¢ Find the two values of n for which the sum §,, is 220.

d Show that S, = —144 has two integer solutions, but that only one has meaning.

e For what values of n does the sum S,, exceed 1567

f Prove that no sum S, can exceed 256.

g Write out the first 16 terms and sums, and check your results.

14 First use the formula S,, = %n (2a + (n — l)d) to find the sum S,, for each arithmetic series. Then use
quadratic equations to find the number of terms if S,, has the given value.

a 42 + 40 + 38 + ---where S, = 0 b 60 +57 +54 + ---where S, =0

¢ 45 + 51 + 57 + ---where S, = 153 d 21 +3 +31+ .- whereS, =221

CHALLENGE
15 a Logs of wood are stacked with 10 on the top row, 11 on the next, and so on. If there are 390 logs, find
the number of rows, and the number of logs on the bottom row.

b A stone dropped from the top of a 245-metre cliff falls 5 metres in the first second, 15 metres in the
second second, and so on in arithmetic sequence. Find a formula for the distance after n seconds, and
find how long the stone takes to fall to the ground.

¢ A truck spends several days depositing truckloads of gravel from a quarry at equally spaced intervals
along a straight road. The first load is deposited 20 km from the quarry, the last is 10 km further
along the road. If the truck travels 550 km during these deliveries, including its return to the quarry
after the last delivery, how many trips does it make, and how far apart are the deposits?
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34 Chapter 1 Sequences and series _

16 a The sum of the first and fourth terms of an AP is 16, and the sum of the third and eighth terms is 4.
Find the sum of the first 10 terms.
b The sum of the first 10 terms of an AP is zero, and the 10th term is —9. Find the first and second
terms.
¢ The sum to 16 terms of an AP is 96, and the sum of the second and fourth terms is 45. Find the fourth
term, and show that the sum to four terms is also 96.

17 Find the sums of these APs, whose terms are logarithms.
a log,2 + log,4 + log,8 + --- + log, 1024
b logs243 + logs81 + logs27 + -+ + logssis
c log,36 + log,18 + log,9 + --- + logy g
d log,¥ + log,7 + log,3 + --- (10 terms)

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022



1G Summing a geometric series 35

m Summing a geometric series

There is also a simple formula for finding the sum of the first n terms of a GP. The approach, however, is
quite different from the approach used for APs.

Adding up the terms of a GP

This method is easier to understand with a general GP. Let us find the sum S, of the first n terms of the GP

a+ ar + ar® + -+
Writing out the sum, S, =a+ar+ar’+ -+ a2+ ar" L (1)
Multiplying both sides by r, rSy =ar + ar’ + ar’ + - + ar" ' + ar.  (2)
Subtracting (1) from (2), (r — 1) S, = ar" — a.
: a(r® = 1)
Then provided that r # 1, S, = —_1
r —
If r < 1, there is a more convenient form. Taking opposites of top and bottom,
s, = a(l — r”)'
1 —r

Method for summing a GP

Thus again there are two forms to remember.

12 TWO FORMULAE FOR SUMMING A GP

Suppose that the first term a, the ratio r, and the number 7 of terms are known.

n —
e When r > 1, use the formula S, = Lll).
r —
_ n
e Whenr < 1, use the formula S,, = M.
—r

Example 28 1G

a Find the sum of all the powers of 5 from 5910 57.
b Find the sum of the first six terms of the geometric series2 — 6 + 18 — - --.

SOLUTION
a Thesum5® + 5' + - + 57isaGPwitha = land r = 5.
n
-1
Using S, = M, (in this case r > 1)
r —
8
-1
Sg = M (there are 8 terms)
r —
Ix (-1
S
= 97656.
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36 Chapter 1 Sequences and series _

b To find the sum of the first six terms:

The series2 — 6 + 18 — ---isaGP witha = 2andr = 3.
1 _ n
Using S, = (1(17;’)’ (inthiscaser < 1)
—-r
a(l - r°
Se = ———
6 1 —r
2% (1= (=3)%
- 1+3
= —364.

Solving problems about the sums of GPs

As always, read the question very carefully and write down all the information in symbolic form.

Example 29 1G

The sum of the first four terms of a GP with ratio 3 is 200. Find the four terms.

SOLUTION
It is known that S4 = 200.
3 -1
Using the formula, % = 200
L 200
2
40a = 200
a=>5

So the seriesis 5 + 15 + 45 + 135 + - - -

Solving problems involving trial-and-error or logarithms

As remarked already in Section 1D, logarithms are needed for solving GP problems systematically, but
trial-and-error is quite satisfactory for simpler problems.

Example 30 1G
—

a Find a formula for the sum of the first n terms of the GP2 + 6 + 18 + ---.
b How many terms of this GP must be taken for the sum to exceed one billion?

SOLUTION
a The sequence is a GP witha = 2 and r = 3,
n
= 1l
o5, = =D
r—1
23" -1
T 3-1
=3" - 1.
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1G Summing a geometric series 37

b Put S, > 1000000000. OR Put S, > 1000000000.
Then 3" — 1 > 1000000000 Then 3" — 1 > 1000000000
3" > 1000000001. 3" > 1000000001
Using trial-and-error on the calculator, n> log;p 1000000001
318 = 387420489 logio3
and 319 = 1162261467, n>1886...,
S0 89 is the first sum over one billion. 0 Syg is the first sum over one billion.

An exceptional case

If the ratio of a GP is 1, then the formula for S, doesn’t work, because the denominator » — 1 would be zero.
All the terms, however, are equal to the first term a, so the formula for the partial sum S,, is just
S, = an.

This series is also an AP with first term a and difference 0. The last term is a, so
S, = %n(a + /) = %n(a + a) = an.
FOUNDATION
1 LetSg =2 + 6 + 18 + 54 + 162 + 486. By taking 3S¢ and subtracting S¢ in columns, evaluate Sg.

2 ‘As I was going to St Ives, I met a man with seven wives. Each wife had seven sacks, each sack had
seven cats, each cat had seven kits. Kits, cats, sacks and wives, how many were going to St Ives?’

Only the speaker was going fo St Ives, but how many were going the other way?

7
-1
3 a Usetheformula $7 = “U" =1 (0find1 + 3 + 32 + 3% 4 3% + 35 4 36
r—
_a(l—rh 223, ah _ 25, A6
b UsetheformulaS7—17toﬁnd1—3+3 - 37+ 3" -3 4+ 3"
- r
a(r™ =1) a(l —r™

4 Find these sums using S,, = whenr > 1,0r §, = I when r < 1. Then find a
r — - r

formula for the sum S,, of the first n terms of each series.

al+2+4+8+---(10terms) b 2+6+ 18 + ---(5terms)
¢c -1 —10 - 100 — ---(5terms) d -1 —-—5—-25—---(5terms)
e 1 —2+4—-8+ ---(10terms) f 2—-6+ 18 — ---(5terms)
g —1 + 10 — 100 + - - - (5 terms) h -1 +5—-25+ ---(5terms)

5 Find these sums. Then find a formula for the sum §,, of the first n terms of each series. Be careful when
dividing by 1 — r, because 1 — ris a fraction in each case.

a 8+4+ 2+ ---(10 terms) b 9+3+ 1+ ---(6terms)
c 45+ 15 + 5 + -+ - (5 terms) d 2+1+3+3+%

e 8 -4+ 2 —---(10 terms) f 9-3+1—---(6terms)
g —45+ 15 =5 + -+ (5 terms) h2-1+3-5+7%

DEVELOPMENT
6 Find an expression for S,,. Hence approximate S correct to four significant figures.
a 1412+ (1272 + - b 1+ 095+ (0.95)?% + ---
c 14 1.01 + (1.01)* + - d 14099 + (0.99)?2 + -
ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press

Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022
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7 The King takes a chessboard of 64 squares, and places 1 grain of wheat on the first square, 2 grains on
the next square, 4 grains on the next square, and so on.
a How many grains are on: | the last square, ii  the whole chessboard?
b Given that 1 litre of wheat contains about 30000 grains, how many cubic kilometres of wheat are
there on the chessboard?

8 Find S, and S for each series, rationalising the denominators in your answers.
a 1+V2+2+-- h 2-2V54+ 10— -

9 Find these sums. First write out some terms and identify a and r.
7 8 3
a 3 x 2" b ) 3! c 3 x 237"
n=1 n=3 n=1

10 a The first term of a GP is é and the fifth term is 162. Find the first five terms of the GP, then find
their sum.
The first term of a GP is — % and the fourth term is 6. Find the sum of the first six terms.
The second term of GP is 0.08 and the third term is 0.4. Find the sum to eight terms.
The ratio of a GP is » = 2 and the sum to eight terms is 1785. Find the first term.
A GP has ratio r = — } and the sum to eight terms is 425. Find the first term.

O Qo O T

11 a Each year when the sunflower paddock is weeded, only half the previous weight of weed is dug out.

In the first year, 6 tonnes of weed is dug out.
I How much is dug out in the 10th year?
il What is the total dug out over 10 years (correct to four significant figures)?

b Every two hours, half of a particular medical isotope decays. If there was originally 20 grams, how
much remains after a day (correct to two significant figures)?

¢ The price of Victoria shoes is increasing over a 10-year period by 10% per annum, so that the price in
each of those 10 yearsis P, 1.1 x P, (1.1 Y X P, ... I buy one pair of these shoes each year.
I Find an expression for the total paid over 10 years (correct to the nearest cent).
il Hence find the initial price P if the total paid is $900.

12 Find a formula for S,,, and hence find n for the given value of S,,.

a 5+ 10+ 20 + ---where S, = 315 b 5—-10+ 20 — ---where S, = —425
c 18 +6 + 2 + ---where Sn=26§ d 48 — 24 + 12 — ---where S, = 32]
CHALLENGE

13 a Show that the sum S, of the first nterms of 7 + 14 + 28 + ---is S, = 7(2" — 1).

b For what value of n is S,, equal to 1785?

¢ Showthat7T, = 7 x 2"~ !, and find how many terms are less than 70000.

d Use trial-and-error to find the first sum S, that is greater than 70 000.

e Prove that the sum S, of the first n terms is always 7 less than the (n + 1)th term.

14 The powers of 3 that are greater than 1 form a GP 3, 9, 27, . ..
a Find how many powers of 3 there are between 2 and 10%°.
b Show that S, = 3(3" — 1), and find the smallest value of n for which S, > 10%°.
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m The limiting sum of a geometric series

There is a sad story of a perishing frog, dying of thirst only 8 metres from the edge of a waterhole. He first
jumps 4 metres towards it, his second jump is 2 metres, then each successive jump is half the previous jump.
Does the frog perish?

The jumps form a GP, whose terms 7T, and sums S, are as follows:

T, 4 2 1 L ! i %
S 4 6 7 7L 73 77 7B
The successive jumps 4, 2, 1, 1, 1, ... have limit zero, because they are halving each time. It seems too

that the successive sums S, have limit 8, meaning that the frog’s total distance gets ‘as close as we like’ to
8 metres. So provided that the frog can stick his tongue out even the merest fraction of a millimetre,
eventually he will get some water to drink and be saved.

The limiting sum of a GP

We can describe all this more precisely by looking at the sum S,, of the first n terms and examining what
happens asn — oo.

The series4 + 2 + 1 + L + ---isaGPwitha = 4and r = 1.

Using the formula for the sum to n terms of the series,
a(l —r")

S, = T (using this formula because r < 1)
4= 1))
= -
n
“ax (1= (1))
=s(1-(3)),

n
As n increases, the term < ) gets progressively closer to zero:
3

1

2
B =4 0 =k 0 =k @) =8 0 =4
so that (%)n has limit zero asn — oo.

Hence S, does indeed have limit 8 (1 — 0) = 8, as the table of values suggested.

There are several different common notations and words for this situation:

13 NOTATIONS FOR THE LIMITING SUM

Take as an example the series 4 + 2 + 1 + 1 + .-,

e §, > 8asn — oo. (‘S,, has limit 8 as n increases without bound.”)

e lim S, = 8. (‘The limit of S,,, as n increases without bound, is 8.”)
n— oo

» Theseries4 + 2 + 1 + 1 + - - has limiting sum Sy, = 8.

e Theseries4 + 2 + 1 + 1 + - - converges to the limit S, = 8.
c 44+24+1+4+-.-=8

The symbols S, and S are both commonly used for the limiting sum.
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The general case

Suppose now that 7', is a GP with first term a and ratio r, so that

_.n
T, = ar"! and S, = M.
1 —-r
Suppose also that the ratio r lies in the interval —1 < r < 1.

1 3 .4

Then as n — o0, the successive powers r -, r2, ro,r”, ... get smaller and smaller,
that is, "= 0 and 1 —7r" > 1.

Thus both the nth term 7', and the sum S, converge to a limit,

_.n
lim T, = limar"!  and lims, = lim ¢4 =7)
n— oo n— oo n— 0o n— oo 1 —r
=0, _a
1 —r

14 THE LIMITING SUM OF A GEOMETRIC SERIES

e Suppose that |r| < 1, thatis, -1 < r < 1.
Then r" - 0asn — oo,
so the terms and the partial sums of the GP both converge to a limit,

lim 7, = 0 and S, = lim S, = —94—.
n— oo n— oo 1 — r

e If |r|] > 1, then the partial sums S, do not converge to a limit.

Example 31 1H

Explain why these series have limiting sums, and find them.

a 8+6+2+4+ - - b 18-6+2—---
SOLUTION
a Herea = 18andr = 1. b Herea = 18andr = — 1.
Because —1 < r < 1, the series converges. Because —1 < r < 1, the series converges.
18
Seo = 1 Sy, = 18 1
1 - 3 1+ 3
=18 x 3 =18 x 3
=27 = 134
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Example 32 1H

a For what values of x does the series 1 + (x — 2) + (x — 2)2 + - - converge?
b When the series does converge, what is its limiting sum?

SOLUTION

The sequence is a GP with firstterm a = 1 and ratior = x — 2.

a The GP convergeswhen — 1 <r <1
-l<x-2<1

1 <x<3.

B S
1 — (x—2)
1

3 —x

b The limiting sum is then S, =

Solving problems involving limiting sums

As always, the first step is to write down in symbolic form everything that is given in the question.

Example 33 1H

Find the ratio of a GP whose first term is 10 and whose limiting sum is 40.

SOLUTION
We know that S = 40.
Using the formula, i 4 _ 40
—r
and substituting a = 10 gives = 40
—-r
10 = 40(1 — r)
1 =4 - 4r
4r =3
r=2.

Sigma notation for infinite sums

When —1 < r < 1 and the GP converges, the limiting sum S, can also be written as an infinite sum, either
using sigma notation or using dots, so that

41

o0
Zar”l: a or a+ar+ar+ - =-—92
n=1 I —-r 1 —r
o0
3 s n—1 — 2 a ’
and we say that ‘the series Z ar =a + ar + ar” + --- converges to 1 .
n=1 -
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FOUNDATION

a Copy and complete the table of values opposite

for the GP witha = 18 and r = 1. - - - .
n

Wi
=il S
N
=

b Find the limiting sum using o, = - a_ . S,
- r

¢ Find the difference S, — S¢.

a Copy and complete the table of values opposite
for the GP witha = 24 andr = — 1.

Photocopying is restricted under law and this material must not be transferred to another party.

T, 24 -12 6 -3 1y =3
b Find the limiting sum using S, = 1 a S,
-r

¢ Find the difference S, — Sg.
Each GP below has ratio r = 1. Identify the first term a and hence find S,.
a l+i+14+-- b 8+4+2+--- c -4 -2-1 —--.
Each GP below has ratio r = — 1. Identify the first term a and hence find S.
a 1l-1+5--- b 36 — 12 +4 — .- c —60 +20 — 63 +---
Each GP below has first term a = 60. Identify the ratio » and hence find S.
a 60+ 15+ 33 +--- b 60 + 15 + 33+ --- cC 60 — 12 +22— ...
Find each ratio r to test whether there is a limiting sum. Find the limiting sum if it exists.
a 1l-1+4i--- b 1 +1+45+--- c 1-2+4---
d 1+3+ %+ e 4—-6+9—--- f12+4+44--
g 1000 + 100 + 10 + - -- h 1000 — 100 + 10 — --- i 1-14+1----
j 100 + 90 + 81 + --- k 2+2 -2+ I -2-X-Z_...
Bevin dropped the Nelson Bros Bouncy Ball from a height of 8 metres. It bounced continually, each
successive height being half of the previous height.
a Show that the first distance travelled down-and-up is 12 metres, and explain why the successive

down-and-up distances form a GP with r = 1.
b Through what distance did the ball ‘eventually’ travel?

DEVELOPMENT

These examples will show that a GP does not have a limiting sum whenr > Torr < —1.
Copy and complete the tables for these GPs, then describe the behaviour of S, asn — .
a r=1anda = 10 b r=—-landa = 10

n 1 2 3 4 5 6 n 1 2 3 4 5 6

T, T,

S, Sn
¢ r=2anda = 10 d r=-2anda = 10

n 1 2 3 4 5 6 n 1 2 3 4 5 6

T, T,

S, Sn
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For each series, find S, and Sy, then find the difference S, — Sa.
a 80 +40 + 20 + --- b 100+ 10+ 1+ --- ¢ 100 — 80 + 64 — ---

When Brownleigh Council began offering free reflective house numbers to its 10000 home owners, 20%
installed them in the first month. The number installing them in the second month was only 20% of those
in the first month, and so on.

a Show that the numbers installing them each month form a GP.

b How many home owners will ‘eventually’ install them? (‘Eventually’ means take S.)

¢ How many eventual installations were not done in the first four months?

The Wellington Widget Factory has been advertising its unbreakable widgets every month. The first
advertisement brought in 1000 sales, but every successive advertisement is only bringing in 90% of the
previous month’s sales.

a How many widget sales will the advertisements ‘eventually’ bring in?

b About how many eventual sales were not brought in by the first 10 advertisements?

Find, in terms of x, an expression for the limiting sum of each series on the left. Then solve the given
equation to find x.
a 5+5x+5x>4---=10 b 5+5x+5x2+---=3

C 5-5x+52—...=15 dx+§+g+---=2

X X 2x | 4x
e x -+ - =2 f + =4+ =+.---=2
7379 R
Find the condition for each GP to have a limiting sum, then find that limiting sum.
a 7+ Tx+ x>+ - b 2x + 6x2 + 18x% + - --

c 1+ x-D+ -1+ d 1+ d@+x0+ A+x0>+--

Find the limiting sum of each series, if it exists.
a 1+ (1.01) + (1.01)* + --- b 1-099 + (09972 — ...
c 1+ (L.OD™ '+ (1.01)™2 + --- d 072 — 0.12 + 0.02 — - -

Find the limiting sums if they exist, rationalising denominators if necessary.

a 16V5 +4V5 + V5 + - - b 108V7 — 36V7 + 1247 — -+
c7T+VI+1+-- d 4-2v2+4+2— ...

e 5-2vV5+4— ... . f 94310+ 10 + --- ,

0 1+ (1-v3)+ (1-+3) +-- h 1+ (2-v3)+(2-v3) +-
Expand each series for a few terms. Then write down « and r, and find the limiting sum.

¢ 20 o E7x ) o Saox (-3

n=1 n:]

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022



44 Chapter 1 Sequences and series

CHALLENGE

17 Suppose that T, = ar™~!is a GP with a limiting sum.

a Find the ratio r if the limiting sum equals 5 times the first term.

b Find the first three terms if the second term is 6 and the limiting sum is 27.

¢ Find the ratio if the sum of all terms except the first equals 5 times the first term.

2
d Show that the sum S of all terms from the third on is %

I Hence find r if S equals the first term.
ii Find r if S equals the second term.

r

lii Find r if S equals the sum of the first and second terms.

18 Find the condition for each GP to have a limiting sum, then find that limiting sum.

1 1

a1+ 2=+ &2=1)72%+-- b 1+ + I

1+ x2 (1 + x%)?

19 Suppose that the series v + vZ + 3 + - has a limiting sum w.

a Write w in terms of v.
Find v in terms of w.

1

b
¢ Hence find the limiting sum of the series w — w? 4+ w
d Test your results with v = 3.

3

— -, assuming that |w| < L.
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n Recurring decimals and geometric series

It would not have been easy in Chapter 2 of the Year 11 book to convert a recurring decimal back to a
fraction. Now, however, we can express a recurring decimal as an infinite GP — its value is the limiting sum
of that GP, which is easily expressed as a fraction.

Example 34 1l
\——)

Express these recurring decimals as infinite GPs. Then use the formula for the limiting sum to find their
values as fractions reduced to lowest terms.
a 027 b 2.645

SOLUTION

a Expanding the decimal, 0.27 = 0.272727 ...
= 0.27 + 0.0027 + 0.000027 + - - -

This is an infinite GP with first term ¢ = 0.27 and ratio r = 0.01.

Hence 027 =

b This example is a little more complicated, because the first part is not recurring.
Expanding the decimal, 2.645 = 2.645454545 . ..
= 2.6 + (0.045 + 0.00045 + ---)
This is 2.6 plus an infinite GP with first term a = 0.045 and ratio r = 0.01.
Hence 2.645 = 2.6 + %08

= 26 4 45
=10 T 99

_ 286 5
= + 1o

(=]

1
9
1

N =
—_

!
_
:

15 EXPRESSING A RECURRING DECIMAL AS A FRACTION

* To convert a recurring decimal as a fraction, write the recurring part as a GP.
e The ratio will be between 0 and 1, so the series will have an infinite sum.
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FOUNDATION
Note: These prime factorisations will be useful in this exercise:

9 = 32 999 = 33 x 37 99999 = 32 x 41 x 271

99 = 32 x 11 9999 = 32 x 11 x 101 999999 = 33 x 7 x 11 x 13 x 37

1 Write each recurring decimal as an infinite GP. Then use the formula for the limiting sum of a GP to
express it as a rational number in lowest terms.
a 03 b 0.1 c 0.7 d 06

2 Write each recurring decimal as an infinite GP. Then use the formula for the limiting sum of a GP to
express it as a rational number in lowest terms.

a 027 b 0.8i ¢ 0.09 d 0.i2
e 0.78 f 0.027 g 0.i35 h 0.i85
DEVELOPMENT

3 Write each recurring decimal as the sum of an integer or terminating decimal and an infinite GP. Then
express it as a fraction in lowest terms.
a 124 b 7.81 c 8.46 d 0.236

4 a Express the repeating decimal 0.9 as an infinite GP, and hence show that it equals 1.
b Express 2.79 as 2.7 plus an infinite GP, and hence show that it equals 2.8.

CHALLENGE
5 Use GPs to express these as fractions in lowest terms.
a 0.0957 b 0.2475 ¢ 0.230769 d 0.428571
e 0.2557 f 1.1037 g 0.000271 h 7.7714285

6 Last year we proved in Section 2B that /2 is irrational. Why can we now conclude that when V2is
written as a decimal, it is not a recurring decimal?

Two techniques in mental arithmetic: You would have used quite a bit of mental arithmetic in this
chapter. Here are some techniques that are well worth knowing and practising to make life easier
(and this course does not require them).

7 Doubling and halving are easy. This means that when multiplying and dividing with even numbers, we
can break down the calculation into smaller pieces that can be done mentally.
a To multiply by an even number, take out the factors of 2, then multiply the resulting odd numbers
together, then use doubling to get the final answer.

14x24=2"x (Tx3) =2"x21=2"x42=2"x8 =2x 168 =336

b To multiply by a multiple of 5, combine each 5 with a 2 using doubling and halving
15 x 26 = 30 x 13 = 390
125 x 108 = 250 x 54 = 500 x 27 = 1000 x 131 = 13500
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11 Recurring decimals and geometric series 47

¢ To divide by 5 or a multiple of 5, double top and bottom.

62 _ 124 _ ny 48 _9% _ 3,
5 10 15 30
d Some practice — make up your own, and use a calculator to check.
11 x 44, 12 x 77, 18 x 14, 14 x 35, 15 x 21, 75 X 16, 85—5 45—2 %

8 The difference of squares makes multiplying two odd numbers straightforward as long as you know
your squares.
13 x 17 = (15 = 2) (15 + 2) = 152 — 22 = 225 — 4 = 221
a To find a square, add and subtract to give a product that can be done easily, then use the difference of

squares in reverse. In this example, multiplying by 20 is simple.
232 = (20 x 26) + 3% = (10 x 52) + 3> = 520 + 9 = 529
b Half-integers can easily be squared in this way.
(81)" = & x 9 + (1) =722
¢ Some practice — it is worth learning by heart the squares up to 207.
9 x 13, 17 x 23, 23 x 37, 172, 13 x 21, 18% 17 x 19, 19%, 17 x 21, 41%, 28
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Chapter 1 Review

Review activity

e Create your own summary of this chapter on paper or in a digital document.

Chapter 1 Multiple-choice quiz

e This automatically-marked quiz is accessed in the Interactive Textbook. A printable PDF worksheet
/ version is also available there.

Chapter review exercise

1 Write out the first 12 terms of the sequence 50, 41, 32, 23, ...

a How many positive terms are there? b How many terms lie between 0 and 40?
¢ What is the 10th term? d What number term is —13?
e Is —100 a term in the sequence? f What is the first term less than —357?

2 The nth term of a sequence is given by T,, = 58 — 6n.
a Find the first, 20th, 100th and the 1000000th terms.
b Find whether 20, 10, —56 and — 100 are terms of the sequence.
¢ Find the first term less than —200, giving its number and its value.
d Find the last term greater than —600, giving its number and its value.

3 Find the original sequence T, if its partial sums S, are:

a the sequence 4, 11, 18, 25, 32, 39, ..., b the sequence O, 1, 3, 6, 10, 15, 21, ...,
¢ givenby S, = n> + 5, d givenby S, = 3",
4 Evaluate these expressions:
6 2 6 6 "
a Xnl-1) b X (57 - 3) ¢ X (-1 d X (Y
n=3 n=-2 n=0 n=1

Write out the first eight terms of the sequence 7,, = 5 x (—1)".
Find the sum of the first seven terms and the sum of the first eight terms.

a
b
¢ How is each term obtained from the previous term?
d What are the 20th, 75th and 111th terms?

6 Test each sequence to see whether it is an AP, a GP or neither. State the common difference of any AP
and the common ratio of any GP.
a 76, 83, 90, ... b 100, —21, —142, ... c 1,409, ...
6, 18, 54, ... e 6,10, 15, ... f 48, =24, 12, ...

d

7 a State the first term and common difference of the AP 23, 35, 47, ...
b
C

Use the formula 7,, = a + (n — 1)d to find the 20th term and the 600th term.
Show that the formula for the nth termis 7,, = 11 + 12n.
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d Hence find whether 143 and 173 are terms of the sequence.
e Hence find the first term greater than 1000 and the last term less than 2000.
f Hence find how many terms there are between 1000 and 2000.

8 A shop charges $20 for one case of soft drink and $16 for every subsequent case.

a Show that the costs of 1 case, 2 cases, 3 cases, . . . form an AP and state its first term and common
difference.
b Hence find a formula for the cost of n cases.
¢ What is the largest number of cases that I can buy with $200, and what is my change?
d My neighbour paid $292 for some cases. How many did he buy?
9 a Find the first term and common ratio of the GP 50, 100, 200, ...
b Use the formula 7,, = ar"~ "'to find a formula for the nth term.
¢ Hence find the eighth term and the twelfth term.
d Find whether 1600 and 4800 are terms of the sequence.
e Find the product of the fourth and fifth terms.

—

Use logarithms, or trial-and-error on the calculator, to find how many terms are less than 10000 000.

10 On the first day that Barry exhibited his paintings, there were 486 visitors. On each subsequent day,
there were only a third as many visitors as on the previous day.
a Show that the number of visitors on successive days forms a GP and state the first term and
common ratio.
Write out the terms of the GP until the numbers become absurd.
For how many days were there at least 10 visitors?
What was the total number of visitors while the formula was still valid?

Use the formula S, = % to find the ‘eventual’ number of visitors if the absurdity of fractional
- r

numbers of people were ignored.

o Q O T
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50 Chapter 1 Sequences and series

11 Find the second term x of the sequence 15, x, 135:

a if the sequence is an AP, b if the sequence is a GP.
12 Use the formula S, = in (Za + (n — 1)d ) to find the sum of the first 41 terms of each AP.
a 51 +62+73+--- b 100 + 75 + 50 + --- c -35-32-20— ...

13 Use the formula 7,, = @ + (n — 1)d to find the number of terms in each AP, then use the formula
S, = in(a + ¢) to find the sum of the series.
a 23 +27 + 31 + -+ + 199
b 200 + 197 + 194 + --- — 100
c 12+ 121 +13+-.-450

14 Use S, = M or S, = a(lir) to find the sum of the first 6 terms of each GP.
r — — r
a3+6+12+--- b 6—-18+54 —--- ¢c -8 —40 —-20 — ---

15 Find the limiting sum of each GP, if it exists.
a 240 + 48 + 92 + - -- b -6+9 - 131+ .- c —405 + 135 — 45 + ---

16 a For what values of x does the GP (2 + x) + (2 + x)2 + (2 + x)3 + - - have a limiting sum?
b Find a formula for the value of this limiting sum when it does exist.

17 Use the formula for the limiting sum of a GP to express as a fraction:
a 039 b 0.468 c 12.3045

18 @ The second term of an AP is 21 and the ninth term is 56. Find the 100th term.
b Find the sum of the first 20 terms of an AP with third term 10 and 12th term —89.
¢ The third term of a GP is 3 and the eighth term is —96. Find the sixth term.
d Find the difference of the AP with first term 1 if the sum of the first 10 terms is —215.
e Find how many terms there are in an AP with first term 4 } and difference — 1 if the sum of all the
terms is 8.
Find the common ratio of a GP with first term 60 and limiting sum 45.
g The sum of the first 10 terms of a GP with ratio —2 is 682. Find the fourth term.

—h
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This chapter completes non-calculus curve-sketching and the use of graphs to solve
equations and inequations.

Sections 2A-2C discuss four approaches to curve-sketching — domain, odd and even
symmetry, zeroes and sign, and asymptotes — and combine then into an informal menu
for sketching any curve given its equation. This is in preparation for Chapter 3, where the
methods of calculus will be added to gain more information about the graph.

Section 2A also emphasises the role of the graph in solving inequations. Sections 2D—2E
develop graphical methods further to help solve various equations and inequations.

Sections 2F-2I review transformations, and add stretching (or dilation) to the list of available
transformations. The problem of combining two or more transformations is addressed,
including a crucial and difficult question, ‘Does it matter in which order the transformations
are applied?’

Trigonometric graphs, in particular, benefit very greatly from a systematic approach using
translations and dilations, because the amplitude, period, phase and mean value all depend
on them. The final Section 2| deals with these graphs.

Whether explicitly suggested in an exercise or not, graphing software in any form is always (
very useful in confirming results and improving approximations. It is particularly suited to
investigating what happens when changes are made to a function’s equation.

:ﬁullﬁ SR LT TR i t III,“!”_-
RN i | T i g
SR | W I“..‘"rw E ~5 o]
. ' |1 " , L g I u3s s 3
; = [l
5| HE:
Digital Resources are available for this chapter in the Interactive Textbook and Online
Teaching Suite. See the overview at the front of the textbook for details.
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m The sign of a function

When we are sketching a curve, we usually want to know very early where the curve is above the x-axis and
where it is below the x-axis. That means knowing where the function is positive and where it is negative. This
section provides an approach to this question using a table of signs.

The other main concern of this chapter is solving equations and inequations graphically. We can always put
all the terms on the left. For example,

x3+12x2+x can be written as x3—x2—x+120.

This procedure reduces every inequation to one of the four forms

f(x)< 0 or f(x)<0 or f(x)>0 or f(x) >0,

so that solving an inequation is the same as finding the sign of the function f(x).

Before all this, however, two extra pieces of notation need to be introduced.
¢ Bracket interval notation is an alternative to inequality interval notation.
e Composition of functions has an alternative notation fo g.

Bracket interval notation

There is an alternative notation for intervals that will make the notation in this section and later a little more
concise. The notation encloses the endpoints of the interval in brackets, using a square bracket if the endpoint
is included and a round bracket if the endpoint is not included.

Here are the five examples from the Year 11 book written in both notations:

Diagram Using inequalities Using brackets
i 3 x l<x<3 53]

Read this as, ‘The closed interval from 1 to 3’

O ———— )

0 5 > -1<x<5 (-1,5)
Read this as, “The open interval from —1 to 5°.
[ ——) > _ _
5 3 x 2<x<3 [-2,3)

Read this as, ‘The interval from —2 to 3, including —2 but excluding 3°.

5 X x> -5 [—5, o0)

Read this as, ‘The closed ray from —5 to the right’.

b ——)
2

x x <2 (—00,2)

Read this as, ‘The open ray from 2 to the left’.
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2A The sign of a function 53

The first interval [%, 3] is closed, meaning that it contains all its endpoints.
The second interval (—1, 5) is open, meaning that it does not contain any of its endpoints.

The third interval [—2, 3) is neither open nor closed — it contains one of its endpoints, but does not contain
the other endpoint.

The fourth interval [—5, o0) is unbounded on the right, meaning that it continues towards infinity. It only has
one endpoint —5, which it contains, so it is closed.

The fifth interval (—o0, 2) is unbounded on the left, meaning that it continues towards negative infinity. It
only has one endpoint 2, which it does not contain, so it is open.

‘Infinity’ and ‘negative infinity’, with their symbols co and —oo, are not numbers. They are ideas used in
specific situations and phrases to make language and notation more concise. Here, they indicate that an interval
is unbounded on the left or right, and the symbol (—oo, 2) means ‘all real numbers less than 2’.

Bracket interval notation has some details that need attention.

¢ The variable x or y or whatever is missing. This can be confusing when we are talking about domain and
range, or solving an inequation for some variable. When, however, we are just thinking about ‘all real
numbers greater than 100’, no variable is involved, so the notation (100, co) is more satisfactory than
x > 100.

¢ The notation can be dangerously ambiguous. For example, the open interval (—1, 5) can easily be
confused with the point (-1, 5) in the coordinate plane.

¢ Infinity and negative infinity are not numbers, as remarked above.

¢ The set R of all real numbers can be written as (—oo, ).

e The notation [4, 4] is the one-member set {4}, called a degenerate interval because it has length zero.

e Notations such as (4,4), (4,41, [7,3] and [7, 3) all suggest the empty set, if they mean anything at all,
and should be avoided in this course.

1 BRACKET INTERVAL NOTATION

* A square bracket means that the endpoint is included, and a round bracket means that the endpoint
is not included.
e Fora < b, we can form the four bounded intervals below. The first is closed, the last is open, and
the other two are neither open nor closed.
[a,b] and [a,b) and (a,b] and (a,b).
* For any real number a, we can form the four unbounded intervals below. The first two are closed,
and the last two are open.
[a,0) and (—co0,al and (a,00) and (—o0,a).
e The notation (—oo0, c0) means the whole real number line R.
e The notation [a, a] is the one-member set {a}, called a degenerate interval.
* An interval is called closed if it contains all its endpoints, and open if it doesn’t contain any of its
endpoints.

For those who enjoy precision, the interval (—oo, c0) is both open and closed (it has no endpoints), and a
degenerate interval [a, a] is closed.
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The union of intervals

The graph to the right is the quadratic y = x(x — 3). From the graph, we can see that 4
the inequation

x(x — 3)>0 has solution x<0 or x>3.
This set is the union of the two intervals (—oo, 0] and [3, 00), so when using bracket

interval notation, we write the set as

(—00,0] U[3, 00).
Here are some further examples using both types of interval notation. The close

association between the word ‘or’ and the union of sets was discussed in Sections 10C and 10D of the Year

11 book in the context of probability.

Diagram Using inequalities Using brackets
0123 x 0O<x<lor2<x<3 [0, 1] U [2,3]
_101 3 6 X -l<x<lor3<x<6 (-1,1] U [3,6)
0 2 3 4 X x<2o0r3<x<4 (—0,2] U (3,4)

Some alternative notation for composite functions

If f(x)and g (x) are two functions, the composite g ( f(x)) of two function f(x)and g (x) can also be written

as g of(x).Thus
gof(x) = g(f(x)), forall x for which f(x) and g (f(x)) are defined.

The advantage of this notation is that the composite function g ( f(x)) has a clear symbol g o f that displays

the composition of functions as a binary operator o on the set of functions, with notation analogous to

addition a + b, which is a binary operator on the set of numbers.

Be careful, however, when calculating g o f(2), to apply the function f before the function g, because
gof(x) means g ( f(x)). Section 4E of the Year 11 book developed composite functions in some detail, and

Exercise 2A contains only a few mostly computational questions as practice of the new notation.

The composite g o f(x)is often written with extra brackets as (g o f) (x), and readers may prefer to add these

extra brackets.
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Example 1 2A

If f(x) = x + 3and g(x) = x>, find:

ai gof(s i fog(5) iii gog(5) iv fof(5)
b i gof(x) i fog(x) iii gog(x) iV fof(x)
SOLUTION
ai g°f(5 =g i fog(5) = f(25)
i g0g(5) = g(25) iv fof(5) = f(8)
= 625 =11
b i gof(x) =g(x+3) i fog(x) = f(x?)
= (x + 3) =x2 +3
i gog(x) = g(x?) iv fof(x) = f(x + 3)
= x4 =x+6

Where can a function change sign?

Now we can begin the main topic of this section.

Sketching polynomials in Section 3G of the Year 11 book required a table of test values dodging around the
zeroes to see where the function changed signs. The functions in this chapter, however, may also have breaks
in the curve, called discontinuities, and we need to dodge around them as well.

2 WHERE CAN A FUNCTION CHANGE SIGN?

The only places where a function may possibly change sign are zeroes and discontinuities.

Informally, a function is called continuous at x = a if f(x)is defined at x = a and the curve y = f(x) can
be drawn through the point (a, f(a)) without lifting the pen off the paper. Otherwise the value x = a is called
a discontinuity of f(x). Continuity was discussed in Section 8K of the Year 11 book.

\»y
a\/ﬁc ‘< .. .

The graph above has discontinuities at x = ¢, x = d, x = eand x = f, and has zeroes at x = a and x = b.

The function changes sign at the zero x = « and at the discontinuities x = ¢ and x = ¢, and nowhere else.
Notice that it does not change sign at the zero x = b or at the discontinuities x = d and x = f.

The statement in Box 2 goes to the heart of what the real numbers are and what continuity means. In this
course, the sketch above is sufficient justification of it.
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56 Chapter 2 Graphs and equations _

A table of signs

As a consequence, we can examine the sign of a function using a table of test values dodging around any
zeroes and discontinuities. We add a third row for the sign, so that the table becomes a table of signs.

3 EXAMINING THE SIGN OF A FUNCTION

To examine the sign of a function, draw up a fable of signs. This is a table of test values that dodge
around any zeroes and discontinuities.

Finding the zeroes of a function has been a constant topic. To find discontinuities, assume that the function in
the course are continuous at every value in their domains, except where there is an obvious problem.

Solving polynomial inequations

A simpler form of this table of signs was introduced in Section 3G of Year 11 to sketch polynomials.
Polynomials do not have any discontinuities, so the test values only needed to dodge around the zeroes.

The attention in Section 3G was on the sketch of the function, whereas in this section our attention is also on
solving inequations, as can be seen in the remaining worked examples. The graphs are not strictly necessary
for this particular purpose, but they are very useful because they allow us to see the whole situation.

Example 2 2A
\—— )

a Draw up a table of signs of the functiony = (x — 1)(x — 3)(x — 5).

b Sketch the graph of the function.

¢ State, using both interval notations, where the function is positive and where it is negative.

d From the graph, or from the table of signs, write down the solutions of (x — 1)(x — 3)(x — 5) <0
using both interval notations.

SOLUTION
a There are zeroes at 1, 3 and 5, and no b y4
discontinuities.
X 0 1 2 3 4 5 6 N R
y -15 0 3 0O -3 0 15 1 3>~—5 X
sign  — 0 aF 0 - 0 aF
[—15

¢ Hence yis positive for | < x < 3 or x > 5, or alternatively (1,3) U (5, c0), and negative for
x < lor3 < x < 5,or alternatively (—o0, 1) U (3,5).

d x <1lor3 < x <5, oralternatively (—oo, 1] U [3,5].
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Example 3

Rearrange the inequation x> + 1 < x? + x by moving all terms to the left.

Factory = x> — x? — x + 1 by grouping.

Hence sketch the graph of y = 53 = 5 = 53 4 .

O Q O T QD

From the graph, or from the table of signs, find the solution of x> + 1 < x% + x.

SOLUTION

a B+ 1<x®+x d VA

—x2 - x x3—x2—x+1S0

b y=x>-x>-x+1 _1/\1
=x*x-1) - (x-1) |
=@ -Dx-1 /

=(x+ Dx = 1)

=V

¢ The LHS has zeroes at 1 and —1, and no discontinuities.

X -2 -1 0 1 2
y -9 0 1 0 3
sign = — 0 + 0 +

e Rewrite the inequation as x3 — x> — x + 1 < 0. Then from the graph, the solution is

x < —1orx = 1, oralternatively (—oo, —1]1 U [1, 1].

Solving inequations involving discontinuities

Draw up a table of signs to establish where the function is positive and where it is negative.

2A

When the function has discontinuities, the method is the same, except that the test values now need to dodge

around discontinuities as well as zeroes.

As always, a sketch is very useful because it shows the whole situation.

Example 4
. . x —1
Examine the sign of y = .
x—4
SOLUTION
There is a zero at x = 1, and a discontinuity at x = 4. VA

X 0 1 2 4 5

2A

y : 0 -1 = 4

sign  + 0 - s + 1\ &
Hence y is positive for x < 1 or x > 4, and negative for 1 < x < 4.

(This graph has a horizontal and a vertical asymptote, which will be discussed in Section 2B.)
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Example 5 2A

Examine the sign of y = I .
1+ x2
SOLUTION
The function is always positive because 1 + x? is always at least 1. There is thus no need to use a table of
signs.
A table of signs can still be used, however. The function has no zeroes because the X 0
numerator is never zero, and has no discontinuities because the denominator is y
never zero. Hence one test value f(0) = 1 establishes that the function is always sion +
positive. £
FOUNDATION

1 For each number line, write the graphed interval using:

I inequality interval notation, ii bracket interval notation.

a —+—r—+—*r - > h ——F—F———2+——— C}Q‘}}})})

-2 0 2 4 X -2 0 2 4 X -2 0 2 4 X

2 For each interval given by inequality interval notation:

i draw the interval on a number line, il write it using bracket interval notation.

a -1 <x<?2 h x<2 c x<?2
3 For each interval given by bracket interval notation:

I draw the interval on a number line, il write it using inequality interval notation.

a [—1,00) b (-1,2) C (—o0,)
4 If f(x) = 5xand g(x) = 2% find:

a i gof(3) i fog(3) i gog(3) v fof(3)

b i gofx) i fog(x) i gog(x) v fof(x)
5 Write down the values of x for which each curve is:

i below the x-axis, il above the x-axis.

a YA b YA

g : A
X —sv S
ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press

Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022



2A The sign of a function 59

6 For each curve, write down the values of x for which:
I y=0, il yis positive, lii yis negative.
d YA b V4

A J/
3 Jz

7 For each function graphed, use bracket interval notation to state where the function is negative. Also

>

=V
w
~

=N

state whether each function is one-to-one or many-to-one.
a yA b YA c YA d y

=V

] ‘ 2
1 x 2 x o x
/1/ o

0 2
(1,-1)
) =x -1 f(x) = x? - 2x f(x) = logyx fx) =2 - Vx
8 Use the given graph of the LHS to help solve each inequation (inequality interval notation).
a yl\ b yl\ c y!\
h X s
= 3 )’C
-2 24 X
x(x— DHx—-2)<0 x(x+ 2D)x - 2D)x—4) <0 x(x=3?%>0
d L e yA f VA
4 x -3 .
3 X
3 3 X
2x—4) >0 (x = 3)%(x + 32 <0 x(x = 32x + 372 >0
DEVELOPMENT
9 For each number line, write the graphed compound interval using:
I inequality interval notation, il bracket interval notation.
q ——F—F—%+*—* > h 32 *+—2. > C —S——= 2% | 5
2 0 2 4 X -2 0 2 4 X -2 0 2 4 X
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10 For each compound interval given by inequality interval notation:
I draw the number line graph, il write it using bracket interval notation.
a x=—-lorx >2 b x<-lor2 <x<3 c -l<x<lorx>2

11 For each compound interval given by bracket interval notation:
I draw the number line graph, il write it using inequality interval notation.

a [-1,1]u [2, ) b [-1,1)u(2,3] c (—1,1]u [3,3]
12 Re-write the solutions to Question 8 using bracket interval notation.

13 Show that the zeroesof y = (x + 1)(x — 1) arex = 1 and
x = —1. Then copy and complete the table of test values to examine

x -2 -1 0 1 2

the sign, and sketch the graph. Y
sign

14 Apply the methods used in the previous question to sketch these quadratics, cubics and quartics. Mark
all x- and y-intercepts.
ay=(x+ D+ 3) b y=((x- 13- x c
d y=x(x—-2)x+ 2) e y=(2 - xx(x+ 2)(x + 4) f

y= (1 - 0+ 2)

y=(x—1Px-3)

15 Use the methods of the Questions 13 and 14 to sketch each polynomial. You will first need to factor each
polynomial completely. Begin by finding any common factors.

a f(x) = x3 = dx b fx) = x3 = 5x2 c f(x) = X3 — 4x? + 4x

16 Solve these inequations from the graphs in the previous question, or from the tables of values used to
construct them. Begin by getting all terms onto the one side.

a x> > 4x b x3 < 5x2 C x> + 4x < 4x?

17 Factor each equation completely, and hence find the x-intercepts of the graph. Factor parts b and ¢ by
grouping in pairs.
a y=x—x b y=x>-2x*-x+2 C y=x>+2x2—4x -8

18 For each function in the previous question, examine the sign of the function around each zero and hence
draw a graph of the function.

19 Find all zeroes of these functions, and any values of x where the function is discontinuous. Then analyse
the sign of the function by taking test values around these zeroes and discontinuities.

X x —4 x+ 3
JS(x) — S(x) P JS(x) P
1 2_4 2_4
d flx) = 5 e f(x) = X ffx) = x2
x° =1 X x° — 16
20 Prove that composition of functions is associative, that is,
( (fog)o h) (x) = <fo (go h)) (x), for all x where both sides are defined.
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CHALLENGE

21 If necessary, collect all terms on the LHS and factor. Then solve the inequation by finding any zeroes
and discontinuities and drawing up a table of test values around them.

a x-Dx-3)(x-5<0 b x+3)x-DHkx-=-4) >0
c (x—1*x=32>0 d (x + 2)x(x — 2)(x — 4) >0
e x> > Ox fox* > 5x°
22 a Consider the function y = 1] r
X —

I Determine the natural domain,
il Find any intercepts with the x- and y-axes,
lii Determine where the function is positive or zero, using a table of signs, if necessary.
iv Use appropriate graphing software or applications to confirm your answers.
b Repeat the steps of part a for y = Ji
x“ =1
23 Aninterval is called closed if it contains all its endpoints, and open if it doesn’t contain any of its
endpoints.
a Explain why the degenerate interval [5] is closed.
b Explain why the interval (—o0, ) is closed.
¢ Explain why the same interval (—oo0, c0) is also open.
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m Vertical and horizontal asymptotes

So far in this course we have discussed three steps in sketching an unknown function (leaving

transformations aside for the moment). After factoring:

1 Identify the domain.
2 Test whether the function has even or odd symmetry or neither.
3 Identify the zeroes and discontinuities and draw up a table of signs.

This section introduces a fourth step:
4 Identify a curve’s vertical and horizontal asymptotes.

This may also involve describing the curve’s behaviour near them.

Asymptotes
Asymptotes occur naturally with algebraic fractions such as
S or S or _x-
M Y YT 2 i

In the functions above, the denominator is very small when x is near 3 for the first function, or near 2 or —2
for the second function, or near 4 for the third function. In all three functions, the denominator is very large
when x is very large. There are two straightforward principles to keep in mind:
e The reciprocal of a very small number is a very large number.

The reciprocal of a very large number is a very small number.
e The reciprocal of a positive number is positive.

The reciprocal of a negative number is negative.

All this is well demonstrated by the rectangular hyperbola y = l, which has a Y
X

vertical and a horizontal asymptote, as discussed in Section 3H of the Year 11 book.
Horizontally, when x is a very large number, positive or negative, y is a very small x
number with the same sign, so the curve approaches the x-axis on the left and on the
right. We described this situation earlier by the statement:

‘Asx — 00,y - 0O,andasx - —o0,y — 0.
Vertically, when x is a very small number, positive or negative, y is a very large X 1 0 1
number with the same sign, so the curve flies off to co or to —co near x = 0. " "

. S . - *
We described this situation earlier by the statement: Y

sign  — * +

‘Asx - 07,y - —oo,andasx — 0",y = 400
‘As x approaches O from the left, . . ., and as x approaches O from the right, . . .’

In more difficult situations than this, use a table of signs, as introduced in the previous section, to check the
sign and distinguish between y — oo and y — —oo0.
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4 TESTING FOR VERTICAL ASYMPTOTES

Always factor the function first as far as possible.

e If the denominator has a zero at x = a, and the numerator is not zero at x = a, then the vertical
line x = a is an asymptote.

e The choice between y — oo and y - —oo can be made by looking at a table of signs.

Once the vertical asymptote has been identified, the behaviour of the curve near it can then be

described using the notation x — aand x — a”.

Example 6 2B

<Y)

Find the vertical asymptote of the function y =

— x :

b Construct a table of signs, and describe the behaviour of the curve near it.

¢ Name the horizontal asymptote, and describe the behaviour of y for large x.
d Sketch the curve.

SOLUTION
a When x = 3, the denominator vanishes, but the numerator does not, so x = 3 is an asymptote.
d Ay
b There are no zeroes, and there is 0 3 4
a discontinuity at x = 3.
y 3 x -2 3
From the table of signs: 3 < X
Asx — 37, y - —o0, sign| + ¥ a 3
andasx — 37,y - +oo.
¢ The x-axis is a horizontal asymptote:
Asx - o,y - 0,andasx - —o0,y — 0.
Example 7 2B
a Test whether the function f(x) = % is even or odd.
4 —x
b Find any vertical asymptotes of the function y = %
4 — x

¢ Construct a table of signs, and describe the behaviour of the curve near it.
d Name the horizontal asymptote, and describe the behaviour of y for large x.
e Sketch the curve.
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SOLUTION
a f(-x) = | e o
4 — (—x)?
= f(x), 1
so the function is even. 24 2
X
. 1
b Factoring, y = .
2 -x)Q2 + x)
When x = 2 or x = —2, the denominator vanishes, but the
numerator does not, so x = 2 and x = —2 are asymptotes.
¢ There are no zeroes, and there are x -3 -2 0 5 3
discontinuities at x = 2 and x = —2.
1 1 1
From the table of signs: y 50 4 o5
Asx — (-2)7,y - —oo, and sign — % 4+ % -

asx — (—2)+,y - +00.

Asx - 27,y - +oo,
andasx —» 21,y > —o0.

d The x-axis is a horizontal asymptote:

Asx - o,y - 0,andasx —» —o0,y — 0.

Horizontal asymptotes, and the behaviouras x — oo andas x - —o

It was very straightforward in the examples above to see that the x-axis is an asymptote to each curve. But it
is not so straightforward to find the horizontal asymptotes, if indeed they exist, for curves such as
x —1 x — 1

= or = .
g x—4 Y x> — 4

Such curves are called rational functions because they are the ratio of two polynomials. For rational
functions, dividing top and bottom by the highest power of x in the denominator makes the situation clear.

5 BEHAVIOUR FOR LARGE x

* Divide top and bottom by the highest power of x in the denominator.
* Then use the fact that% — 0asx - occandasx —» —oo.

e If f(x) tends to a definite limit » as x — oo or as x — —oo, then the horizontal line y = bisa
horizontal asymptote on the right or on the left.

The next worked example uses these methods to find the asymptotes of the function sketched in Section 2A
(worked Example 4).
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Example 8 2B

x —1

a Examine the behaviour of the function y = asx — oo and as x —» —oo, noting any horizontal
x —_—
asymptotes.

b Find any vertical asymptotes of the function y = X

i. Then use a table of signs to discuss the

behaviour of the curve near them.
¢ Sketch the curve.

SOLUTION
a Dividing top and bottom by x gives C yy
14
y = 1 _ %’
-0 1
Oy — =lasx > ooandasx —» —oo. < .
- 1 G
Hence y = 1 is a horizontal asymptote.

b When x = 4, the denominator vanishes, but the numerator does not, so x = 4 is an asymptote.

From the table of signs to the right, dodging around the zero c 0 1 2 4 5
at x = 1 and the discontinuity at x = 4:
Asx > 47,y > —oo0,andasx — 4%,y - +oo, y L+ o0 -1 * 4
sign + 0 - * 4
Example 9 2B
Examine the behaviour of these functions as x — oo and as x — —oo, noting any horizontal asymptotes.
x — 1 x2 -1
x2 -4 x—4
_ 4.2
c y= 35)6—4)6 d y = PE s # + 3
4 — 5x — 3x? XX+ 1
SOLUTION

1 1

X
1 — 4
xZ

Henceasx — o0,y — 0,andasx — —o0,y — 0, and the x-axis y = 0 is a horizontal asymptote.

[S]

a Dividing top and bottom by x%y =

==

=

b Dividing top and bottom by x, y =

=l

—

Hence asx — o0,y — o0,andas x - —o0,y — —o0, and there are no horizontal asymptotes.
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_ _ 2
¢ y= 3 — 5x — 4x
4 — 5x — 3x?
354
Dividing top and bottom by x2, y = X4 Ty
2T
Henceasx — o0,y — %, andas x - —o0,y — ‘3—‘, and y = %is a horizontal asymptote.
o 1
d y=2"+ + 3
X2+ 1
Asx - o0,y - oo,andasx —» —o0,y — 3.
Hence y = 3 is a horizontal asymptote on the left.
FOUNDATION
Note: Later parts of some questions here and in Exercise 2C use calculus to identify details such as
stationary points. These are not essential for the basic sketch of the curve, and readers may like to leave those
parts until after a review of calculus in Chapter 3.
1 a Sketchy = ! 1 after carrying out the following steps:
I State the natural domain.
ii  Find the y-intercept.
lii Explain why y = 0 is a horizontal asymptote.
iv. Draw up a table of test values to examine the sign.
v Identify any vertical asymptotes, and use the table of signs to write down its behaviour near any
vertical asymptotes.
b Repeat the steps of part a to sketch y = 3 2 .
- X
¢ Likewise sketch y = — 2 .
x+ 2
d Now sketch y = > .
2x + 5
2 Follow the steps of Question 1 to investigate the function y = % and hence sketch it.
(x -1
3 Investigate the domain, intercepts, sign and asymptotes of the function y = — % and hence
sketch its graph. (xr —2)
4 Find the horizontal asymptotes of these functions by dividing through by the highest power of x in the
denominator and taking the limit as x — oo and as x - —o0.
1 x -3 2x + 1
a X) = b X) = c xX) =
f@) = —— ) =" o) = S5
5 —x 1 X
d flx) = e f
4 - 2x 2+ 1 x4+ 4
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DEVELOPMENT

10

Le

-~ 00 QO O T Q

Lety =

a

Sketch the function y = X
X +

Q@ = 00 Qo O T D

ty =

3
x+ Dx =3
State the natural domain.

Find the y-intercept.
Show that y = 0 is a horizontal asymptote.
Draw up a table of test values to examine the sign.

Identify the vertical asymptotes, and use the table of signs to write down its behaviour near them.

Sketch the graph of the function and state its range.

Follow steps similar to those in Question 5 in order to sketch y =

What is the range of y = 4
4 —x

?
2

2

x2 4+ 1
Determine the horizontal asymptote.
Explain why there are no vertical asymptotes.

Show that the tangent to the curve is horizontal at the y-intercept.

Sketch y = L Use a table of signs if needed.
X2+ 1
What is the range of the function?

Is this function one-to-one or many-to-one?

i by carrying out the following steps.

State the natural domain.

Find the y-intercept.

Determine the horizontal asymptote.
Investigate the vertical asymptote.

Sketch the function.

What is its range?

Is this function one-to-one or many-to-one?

Follow the steps of Question 8 to sketch these graphs.

Consider the function y =

o O T 9

X x+ 1
= b = H
’ x+ 2 Y x =2

3x
2+l
Show that it is an odd function.
Show that it has only one intercept with the axes at the origin.
Show that the x-axis is a horizontal asymptote.

Hence sketch the curve.
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11

12

13

14

15

Chapter 2 Graphs and equations _

Consider the function f(x) =

Q O T 9

_ 2
Show that y = 4-x is even.
4 + x?

Find its three intercepts with the axes.
Determine the equation of the horizontal asymptote.
Sketch the curve.

2 +5c+ 6

x> —4x + 3
i Determine the horizontal asymptote.

Consider the function y =

il Factor the numerator and denominator.

iii Hence determine any vertical asymptotes.

Follow similar steps to find the asymptotes of these rational functions.

: x? =2+ 1 ; x =5 1 — 4x?

by =0 i y=—-—"—"—" i y = ———
X+ 5x+4 x“ 4+ 3x — 10 1 — 9

(Computer sketches of these curves may be useful to put these features in context.)

I Sketchy = cos x for 0 < x < 2z, showing the points where y = —1, 0, or 1.

in this domain?

il Where are the vertical asymptotes of sec x = L
CoS X

lii Use the graph of y = cos x to determine the behaviour of y = sec x at each of these asymptotes.

Iv. When cos x is positive, 0 < cos x < 1. Use this result to show that sec x > 1 for these values of x.
Where is sec x = 1?7

v What happens when cos x is negative?

vi Hence sketch y = sec x on the same number plane.

Likewise sketch y = sin xand y = cosecx for 0 < x < 2x.

X
2

x2 —
Show that the function is odd. What symmetry does its graph have?
State the domain of the function and the equations of any vertical asymptotes.
Use a table of test values of f(x) to analyse the sign of the function.
What value does f(x) approach as x becomes large? Hence write down the equation of the horizontal
asymptote.
X2+ 4
(2 — 4y
Explain why the curve y = f(x) has no tangent that is horizontal, and why the curve is always

Use the quotient rule to show that the derivative of f(x) is f'(x) = —

decreasing.
Sketch the graph of y = f(x), showing all important features.
Use the graph to state the range of the function.

Consider the function y = x + l.
X

Show that the function is odd. What symmetry does its graph have?
State the domain of the function and the equation of the vertical asymptote.
Use a table of test values of y to analyse the sign of the function.
2
x- =1

x2

Show that the derivative is y' =
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[5-}

Find any points where the tangent is horizontal.

—h

Sketch the graph of the function. (You may assume that the diagonal line y = x is an asymptote to
the curve. This is because for large x, the term 1 becomes very small.)
X

g Write down the range of the function.

16 a Factor the denominator of y = )62_71 and hence explain why there is no vertical asymptote at x = 1.
x“ =1

b Sketch the function, carefully noting the domain.
CHALLENGE
17 a Notice that (x — 1) = (x + 1) — 2. Use this result to show that the function y = X I_ i
X

in Question 8 can be writtenas y = 1 —

x+ 1
b Hence confirm the horizontal asymptote found in Question 8.
¢ Likewise, find the horizontal asymptotes of the functions in Question 9 by re-writing each numerator.

18 In each question above, the horizontal asymptote was the same on the left as x — —oo, and on the right
X
as x — oo. This is not always the case. Consider the function y = liex'
+ e

a Find lim y.
X— —00
b Multiply the numerator and denominator by e ™, then find lim y.
X—>00
¢ Determine any intercepts with the axes.
d Using no other information, sketch this curve.
e

Test algebraically whether the curve is even, odd or neither.
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m A curve-sketching menu

We can now combine four approaches to curve-sketching into an informal four-step approach for sketching

an unknown graph. This simple menu cannot possibly deal with every possible graph. Nevertheless, it will

allow the main features of a surprising number of functions to be found. Two further steps involving calculus
will be added in Chapter 3.

A ‘sketch’ of a graph is not an accurate plot. It is a neat diagram showing the main features of the curve.

6 SKETCHES

A sketch should show any x- and y-intercepts if they are accessible, any vertical or horizontal
asymptotes, and any other significant points on the curve.
There should always be some indication of scale on both axes, and both axes should be labelled.

A curve-sketching menu

Here is our informal four-step approach to sketching an unknown function.

7 A CURVE SKETCHING MENU

0

Preparation: Combine any fractions using a common denominator, then factor top and bottom

as far as possible.

Domain: What is the domain? (Always do this first.)

Symmetry: Is the function odd, or even, or neither?

A Intercepts: What are the y-intercept and the x-intercepts (zeroes)?

B Sign: Where is the function positive, and where is it negative?

A Vertical asymptotes: Examine the behaviour near any discontinuities, noting any vertical
asymptotes.

B Horizontal asymptotes: Examine the behaviour of f(x) as x — oo and as x — —oo,
noting any horizontal asymptotes.

Finding the domain and finding the zeroes may both require factoring, which is the reason why the
preparatory Step O is useful. Factoring, however, may not always be possible, even with the formula for the
roots of a quadratic, and in such cases approximation methods may be useful.

Questions will normally give guidance as to what is required. Our menu is not an explicit part of the course,

but rather a suggested way to organise the approaches presented in the course.

Putting it all together — the first example

All that remains is to give two examples of the whole process.
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Example 10 2C
. 2x?
Apply the steps in Box 7 to sketch f(x) = 5
x —
SOLUTION
2
0 Preparation: f(x) = = 32)x(x T3 j VA k
1 Domain: x # 3andx # —3. 2
2(—x)? >
2 Symmetry: f(—x) = 2T =3 3 7
(=x)? = 9
_ 2x2
x> =9
=f(x).

so f(x) is even, with line symmetry in the y-axis.

3 Intercepts and sign: When x = 0,y = 0.
There is a zero at x = 0, and discontinuities at x = 3 and x = —3.

X -4 -3 -1 0 1 3 4

ONE S U
sign  + * - 0 - * +
4 Vertical asymptotes: At x = 3 and x = —3, the denominator vanishes, but the numerator does not,
sox = 3 and x = —3 are vertical asymptotes. To make this more precise, it follows from the table of
signs that

f(x) - owasx - 37 and f(x) - —asx - 37,
f(x) » —owasx » (=3)" and f(x) - owasx —» (=3)".

2

1 — 2
x2

Horizontal asymptotes: Dividing through by x2, f(x) =

]

so f(x) - 2asx —» ooandasx — —oo,
and y = 2 is a horizontal asymptote.

Putting it all together — the second example

The second example requires a common denominator. The calculations involving intercepts and sign have
been done with an alternative approach using signs rather than numbers.
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Example 11 2C
Apply the steps in Box 7 above to sketch f(x) = L L 1
x -2 x — 8
SOLUTION
_(X—8)+(x—2) VA
A S Y e
_ 2x — 10
A ] 25\ (8 ¥
_ 2(x = 5) _g
NCEIES

1 The domainis x # 2 and x # 8.
2 f(x) is neither even nor odd.

3 Whenx =0,y = —3.
There is a zero at x = 5, and discontinuities at x = 2 and x = 8.

X 0 2 7 8 10
x—2 - 0 + + +  + o+ If only the signs are calculated,
x—5 = — — 0 + + + at least these three lines of
working should be shown.
x—8 - - - - - 0 4
fx) — * + 0 - * +

4 Atx = 2and x = 8 the denominator vanishes, but the numerator does not, sox = 2 and x = 8 are
vertical asymptotes.
From the original form of the given equation, f(x) —» Oasx —» coandasx — —o0,s0y = Oisa
horizontal asymptote.

FOUNDATION

Note: As remarked in the previous exercise, later parts of some questions use calculus, but these details are
not essential for the basic sketch of the curve. Readers may like to leave those parts until after a review of
calculus in Chapter 3.

1 Complete the following steps in order to sketch the graph of y = 5 .
x“ =9
Factor the function as far as possible.

State the domain using bracket interval notation.

Show that the function is even. What symmetry does the graph have?
Write down the coordinates of any intercepts with the axes.

Investigate the sign of the function using a table of test values. Where is y < 07?

- 0 QO O T 9

Write down the equation of any vertical asymptote.
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Q - 0 a O T o
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What value does y approach as x — oo and as x — —oo? Hence write down the equation of the
horizontal asymptote.
Sketch the graph of the function showing these features.

—18x

The graph appears to be horizontal at its y-intercept. Use the fact that y' = 5 (which you

2
may want to prove) to confirm that the graph is horizontal there. " =9)

X
— 52
Factor the function as far as possible.

State the domain using bracket interval notation.

Show that the function is odd. What symmetry does the graph have?
Write down the coordinates of any intercepts with the axes.

Investigate the sign of the function using a table of test values. Where is y > 07?
Write down the equation of any vertical asymptote.
What value does y approach as x — oo and as x — —oo? Hence write down the equation of the
horizontal asymptote.

Sketch the graph of the function showing these features.

(x> + 4)
4 — x%)?
why the graph always has a positive gradient.

Use the fact that y’ = (which you may want to prove using the quotient rule) to explain

3 Lety = x3 — 4x.

Q@ = 00 Qo O T D

Factor this function.

State the domain using bracket interval notation.

Write down the coordinates of any intercepts with the axes.

Show that the function is odd. What symmetry does the graph have?

Does this function have any asymptotes?

Use this information and a table of signs to sketch the curve.

The graph seems to have a peak somewhere in the interval —2 < x < 0 and a trough in the interval
0 < x < 2. These are stationary points, where y’ = 0. Show that y’ = 3x2 — 4, then solve y =0
to find the x-coordinates of these points (they will involve surds) and add them to the diagram.

DEVELOPMENT

1 1

4 Follow these steps to graph y = f(x), where f(x) = +

a

«Q = 00 Qo O T

x—1 x-4
Combine the two fractions using a common denominator, then factor the numerator and denominator
as far as possible.
State the domain.
Explain why the function is neither even nor odd (the answers to part a may help).
Write down the coordinates of any intercepts with the axes.
Investigate the sign of the function using a table of test values. Where is y > 07?
Write down the equation of any vertical asymptote.
What value does f(x) approach as x — oo and as x — —oo? Hence write down the equation of the
horizontal asymptote.
Sketch the graph of the function showing these features.
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O QO T

Q = 0 Qo 60 T

3x — 3
x> —2x -3
State the domain and any intercepts with the axes.

Factor the numerator and denominator of y =

Explain why the function is neither even nor odd (the answers to part a may help).
Write down the equations of the asymptotes.
Sketch the graph of this curve.

x2 4+ 2 + 1

Factor the right-hand side of y = .
x2 4+ 2x -3

State the domain and any intercepts with the axes.

Explain why the function is neither even nor odd.

Use a table of signs to explain why the x-axis is tangent to the graph at the x-intercept.
Write down the equations of the asymptotes.

Sketch the graph of this curve.

What is the range of this function?

2

7 Let f(x) = 9627_4 You may assume that f(x) is neither even nor odd.

-~ 0 QO O T o

8 Follow the curve-sketching menu to sketch the graph of y = 1
X

x° — 4x
Factor f(x).
State the domain of f(x) and write down the intercepts of y = f(x).
Write down the equations of the asymptotes.
Sketch the graph of y = f(x).
What is the range of this function?
The graph crosses its horizontal asymptote in the interval 0 < x < 4. Find the coordinates of this
point and add it to the graph.

2

- % Include on your sketch the

x-coordinates of any points where the tangent to the curve is horizontal.

9 Lety = x> + 6x> — 8x.

a

o QO T

State the domain using inequality interval notation.

Write down the coordinates of any intercepts with the axes.

Does this function have any asymptotes?

Use this information and a table of signs to sketch the curve.

The graph seems to be horizontal somewhere in the interval 0 < x < 2, and again in the interval

2 < x < 4.Find y’ and solve y* = 0 using the quadratic formula to find the x-coordinates of these
stationary points, then add them to the diagram.
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1
10 Thecurvey = e 2

in this course.

1s essential in statistics because it is related to the normal distribution, studied later

a What is the domain of this function?
b Determine whether the function is even or odd (or neither).
¢ Find any intercepts with the axes.
d Investigate any asymptotes.
e By considering the maximum value of —x?, find the highest point on this curve.
f Sketch the curve, and hence state its range.
CHALLENGE
-1
11 We can apply calculus to the functiony = e 2 drawn in Question 10.
_1,2
a Use the chain rule to prove that y/ = —xe 2 .
b Hence confirm that the tangent is horizontal at its y-intercept.
— lx2 — lxz
¢ Whichis higher,y = e 2 ory=2 2 ?
_1,2
12 The graphof y = ¢ 2 drawn in Question 10 appears to be steepest at x = —1 where it has
positive gradient, and at x = 1 where it has negative gradient. In order to confirm this, the range of
—1y2
y = —xe 2 isneeded.
— lxz
Use the curve sketching menu to sketch the graph of f(x) = —xe 2 .Include on the sketch the

x-coordinates of any points where the tangent is horizontal. Hence prove the result.
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m Solving inequations

The equation 3x = 12 has solution x = 4. When the equals sign is replaced by <, or by <, or by >, or by >,
the result is an inequation, and we say,

‘The inequation 3x > 12 hassolution x > 47,

because substituting any number greater than 4 makes the statement true, and substituting any other number
makes the statement false. In this section and the next, various inequations are solved using algebraic and
graphical methods.

An inequality is an inequation such as x> > 0 that is true for all values of x. Inequalities are thus similar to
identities, which are equations that are true for all values of x, such as (x + 3)2 =x2 4+ 6x + 9.

There are, however, different conventions about the words ‘inequation’ and ‘inequality’. Often the word
‘inequation’ is not used at all, and the word ‘inequality’ is used for both objects. Don’t be alarmed if you are
asked to ‘solve an inequality’.

The meaning of ‘less than’

There are a geometric and an algebraic interpretation of the phrase ‘less than’. Suppose that @ and b are real
numbers.

8 THE MEANINGOFa < b

The geometric interpretation
We say that a < b if a is to the left of » on the number line:

=V

a b
The algebraic interpretation
We say thata < bif b — a is positive.

The first interpretation is geometric, relying on the idea of a ‘line’ and of one point being ‘on the left-hand
side of " another. The second interpretation requires that the term ‘positive number’ be already understood.
Both interpretations are useful when solving inequations.

Solving linear inequations

As reviewed in Chapter 1 of the Year 11 book, the rules for adding and subtracting from both sides, and
for multiplying or dividing both sides, are exactly the same as for equations, with one qualification — the
inequality symbol reverses when multiplying or dividing by a negative.

9 SOLVING A LINEAR INEQUATION

Use the same methods as for linear equations, except that:
*  When multiplying or dividing both sides by a negative number, the inequality symbol is reversed.
* As with equations, never multiply or divide by 0.
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Example 12 2D

Solve these inequations:

a 3x—7 <8+ 18 b 20>2—3x>8

SOLUTION

a 3x — 7 < 8 + 18 b 20>2 — 3x > 8
+ (=8x + 7)] =5x <25 18> -3x > 6
x2 -5 ~6<x < -2

Solving quadratic inequations

The most straightforward way to solve a quadratic inequation is to sketch the graph of the associated
parabola.

10 SOLVING A QUADRATIC INEQUATION

* Move everything to the left-hand side.
e Sketch the graph of y = LHS, showing the x-intercepts.
* Read the solution off the graph.

Example 13 2D
\——)

Solve each inequation by constructing a function and sketching it.

a x>>9 b x+ 6> x?
SOLUTION
a Moving everything onto the left, x2 -9 >0, A
then factoring, x=3)x+3) >0. \ / R
We now sketch the graph of y = (x — 3) (x + 3), -3 3x
and examine where the graph is above the x-axis.
Thus the values of x for which y > 0 are
x> 3 or x < —3. -9
(This example x2 > 9is easy, and can be done without working.)
b Moving everything onto the left, x> — x — 6 < 0, e
then factoring, x-3)x+2) L0 \ /)
We now sketch the graph of y = (x — 3) (x + 2), -2 3 X
and examine where the graph is below or on the x-axis.
Thus the values of x for which y < 0 are iy
-2 < x<3.
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Solving absolute value equations and inequations on the number line
Most equations and inequations involving absolute values in this course are simple enough to be solved using

distances on the number line.

11 SOLVING SIMPLE ABSOLUTE VALUE EQUATIONS AND INEQUATIONS

1 Force the equation or inequation into one of the following forms:
|x — b|=a, or |x-bl<a, or |x-b|>a or....
2 Find the solution using distance on a number line.

Example 14 2D

Solve these equations and inequations on the number line:

a |x—-2|=5 b |[x+ 3|=4 ¢ [3x + 7|<3 d [7-1ix[>3

SOLUTION

a x = 2| =5 b Ix + 3| =4
(distance from xto 2) = 5 (distance from xto —3) = 4

L | * 5 L ! L >
=3 2 7 £ -7 3 1 X
sox=-3orx = 7. sox = —=T7orx = 1.

c |3x + 7|<3 d |7 — x| >3
lx + 24[<1 128 — x| > 12
(distance from x to —2%) <1 (distance from x to 28) > 12

0 == ' >,
X 16 28 40 X

31 -l _
33 23 1

W=

so—3l<x<-11 sox < 16orx > 40.

Solving absolute value equations and inequations algebraically
We saw in Section 4D of the Year 11 book how an absolute value equation of the form | f(x) | = a can be
solved algebraically by rewriting the equation.
Rewrite an equation | f(x)|=a as f(x) =a or f(x)=—a.
We can take a similar approach to solving an inequation | f(x) |<a or | f(x)|> a.
Rewrite an inequation | f(x)|<a as —a<f(x)<a.
Rewrite an inequation | f(x)|>a as f(x) < —a or f(x) > a.

The absolute value | f (x)| cannot be negative. Thus if a is negative:
® | f(x)|=aand | f(x)]|<ahave no solutions, and
® | f(x)|> ais true for all values of x in the domain of f(x).
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Example 15 2D

a Solve |9 — 2x| =5. b Solve |9 — 2x|<5. ¢ Solve |9 — 2x| > 5.
SOLUTION
a 9 — 2x| = 5

9 —-2x=50r9 —2x = -5

—4 or — 2x = —14

—2x

x=2o0r x =7
b 9 — 2x| < 5 c 9 — 2x| > 5
-5<9-2x<5 9-2x<-50r9-2x>5
—14 < -2x < 4 —2x < =14 or —2x > —4
+(=2) 7T >x>2 +(=2) x>7o0orx <2
that is, 2 <x<T. that is, x<2o0rx>T71.
12 SOLVING AN ABSOLUTE VALUE EQUATION OR INEQUATION
e Rewrite an equation | f(x)| = a as f(x) = a or f(x) = —a.
e Rewrite an inequation | f(x)|<a as —a<f(x) <a.
e Rewrite an inequation | f(x)|>a as f(x) <—a or f(x) > a.
FOUNDATION
1 Solve each inequation, and graph your solution on the number line.
a x—-—2<3 bh 3x > -6 c 4x — 3 < -7 d 6x —5<3x — 17
2 Solve each inequation, then write your answer using bracket interval notation.
a -2x <6 b —-5x > -50 c 3—-2x>7
d -4 -—x<1 e 3-3x<19 +x fo12—-7x>—-2x — 18
3 Use the given graph of the LHS to help solve each inequation.
a x(x—4) <0 b x-3)(x+1) >0 c x2-x) <0
') yA A
/ R \ / R > X
4 X -1 30X

4 Sketch the associated parabola (vertices are unnecessary) and hence solve:

a x+2)(x—-4) <0 b x=-3)&x+1) >0 c 2-x)(x=5 =20
d +1DHx+3) >0 e x—-—1Hx-=-5 >0 f Gx+5x+4) <0
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80 Chapter 2 Graphs and equations _
5 Solve each equation or inequation using distances. Graph the solution on a number line.
ajx-—4|/=1 b |x-3|=7 c |lx+2]=2 d |x+1|=6
e |x—-2]<3 flx=7>2 g |x+3]>4 h |x+10[ <6
DEVELOPMENT
6 Solve each double inequation, and graph your solution on the number line.
a3<x+2<6 b -5<x-3<4 c -1 <2x<3 d -7<5x+3<3
7 Solve each double inequation, and write your answer in bracket interval notation.
a —4<-2x<8 b -2<-x<1 c -7<5-3x<4 d -4<1-1x<3
8 Solve each inequation.
a§—§<3 b lx+ 1>k
cle—zxglgl d 12 -x) -2 +x) >2
9 Factor the LHS, then sketch an appropriate parabola in order to solve:
a x> +2x-3<0 b x> =5x+4>0 c x4+ 6x+8>0
d x> -x-6<0 e X —x-3<0 f4+3x-x*>0
10 Solve:
a x> <1 b x? > 3x c x? > 144
d x>>0 e x>+ 9 < 6x fodx — 3 > x?
11  Write down and solve a suitable inequation to find the values of x for which the line y = 5x — 41is
below the liney = 7 — 1x.
12 a Sketchthelinesy = 1 —x,y = 2and y = —1 on a number plane and find the points of intersection.
b Solve the inequation —1 < 1 —x < 2 and relate the answer to the graph.
13 Solve these equations and inequations using distances.
a |7x| = 35 b |2x — 1] =11 c |7x = 3| =11 d |3x + 2| =8
e [3x — 5| <4 flex —7]>5 g [2x+ 1] <3 h |5x + 4] >6
14 Solve these equations and inequations algebraically (some were in Question 13).
a [2x| =10 b |[x-2]=6 c |3x+2[ =28 d |5x+2|=9
e |[x-2]<3 f |3x —5]<4 g |5x + 4] >6 h |6x —7]>5
CHALLENGE
15 a i What value of x makes |x — 4| zero?
i Simplify [x — 4] + x + 1 whenx > 4.
iii Simplify [x — 4| + x + 1 when x < 4.
b i What value of x makes |x + 3|zero?
i Simplify |[x + 3| + 1 — xwhenx > —3.
iii Simplify [x + 3| + 1 — xwhenx < —3.
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¢ i What value of x makes |2x + 4| zero?
i Simplify [2x + 4| — x + 5whenx > -2.
iii Simplify |2x + 4| — x + 5whenx < —2.
d i What value of x makes |3x — 3| zero?
i Simplify |3x — 3| + x — 1 when x > 1.
iii Simplify [3x — 3| + x — 1 whenx < 1.

16 a Consider the equation [2x| + x — 1 = 0.
i Simplify the equation when x > 0 and hence find any solutions for which x
il Simplify the equation when x < 0 and hence find any solutions for which x < 0.
b Consider the equation |3x — 6] + x = 4.
i Simplify the equation when x > 2 and hence find any solutions for which x > 2.
il Simplify the equation when x < 2 and hence find any solutions for which x < 2.

¢ Consider the equation [x + 1| — 1x = 3.

v
o

i Simplify the equation when x > —1 and hence find any solutions for which x > —1.
il Simplify the equation when x < —1 and hence find any solutions for which x < —1.
d Consider the equation |3x — 2| = x + 6.

i Simplify the equation when x > % and hence find any solutions for which x >

W WD

i Simplify the equation when x < % and hence find any solutions for which x <

2

17 a Draw a sketch of the curve y = x“ — 4 and use it to solve the inequation x2 -4 > 0. Hence write

down the natural domain of Vx2 — 4.

b Solve the inequation x> — 4 > 0 and hence write down the natural domain of

18 Use the methods of the previous question to write down the domain of:

a V4 - x? b* c Vx2 -4 d#

4 — x? x> — 4
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E Using graphs to solve equations and inequations

In this section, graphs are used to solve more general equations and inequations. The advantage of such an
approach is that once the graphs are drawn, it is usually obvious from the picture how many solutions there
are, and indeed if there are any solutions at all, as well as their approximate values. Exact solutions can
sometimes then be calculated once the situation has been sorted out from the picture.

Constructing two functions from a given equation

Here is an equation that cannot be solved algebraically, so that a graphical approach is appropriate:
¥ =x+ 2.

To the right, y = LHS and y = RHS are graphed together. (In other situations, some e
rearrangement of the equation first may be appropriate.)

The first thing to notice is that there are two solutions, because the graphs intersect
twice.

2
The second thing is to examine what the values of the two solutions are. One solution .,// }
is exactly x = 2, because 2 2

=V

2 =4=2+ 2, so (2, 4) lies on both graphs.
The other solution is just to the right of x = —2. From the graph, we might guess x = —1.7, and if necessary
we can refine this solution in several ways:
¢ Plot the graphs carefully on graph paper (an old method that works).

e Use trial and error on a calculator (see Question 11 in Exercise 2E).
e Use graphing software that can generate approximations (if you have it).

Counting the number of solutions of an equation

Often, however, we only want to know how many solutions an equation has, and roughly where they are.

Example 16 2E

a Graphy =9 — x2 and y = 1 on the one set of axes.
X

b Use your graph to investigate the equation 9 — x? = l. How many solutions does the equation have,
X

and approximately where are they?

SOLUTION V4
a The two functions are sketched to the right.

b There are three points of intersection of the two graphs.
Thus there are three solutions: -3 3
— one just to the left of x = -3, 12 \ x

— one just to the right of x = 0,
— and one just to the left of x = 3.
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2E Using graphs to solve equations and inequations 83

13 GRAPHICAL SOLUTION OF AN EQUATION

* Sketch the graphs of y = LHS and y = RHS on one pair of axes.
— It may be appropriate to rearrange the original equation first.

e The solutions are the x-coordinates of any points of intersection.

* You may be interested only in the number of solutions.

e The graph will give a rough idea where any solution lies.

Solving an inequation using graphs

Now consider the inequation

2 < x + 2.
From the sketch at the start of the section the curve y = 2*is only below the curve y = x + 2 between the
two points of intersection. Hence the solution of the inequation is approximately —1.7 < x < 2.

14 GRAPHICAL SOLUTION OF AN INEQUATION

e Sketch the graphs of y = LHS and y = RHS on one pair of axes.
¢ Then examine which curve lies above the other at each value of x.

Absolute value equations and inequations — graphical solutions

The most straightforward approach to absolute value equations and inequations is to draw a sketch to sort out
the situation. Then the exact values can usually be found algebraically.

The next worked example benefits greatly from the diagram that makes the situation so clear.

Example 17 2E
\—— )

Draw the graph of y = |2x — 5].
Write down the equations of the right-hand and left-hand branches.

Hence find the points P and Q of intersection.
Solve [2x — 5| = x + 2.

a
b
¢ One the same diagram, draw the graphof y = x + 2.
d
e
f Solve [2x = 5| > x + 2.

SOLUTION
a To find the x-intercept, put y = 0, then 2x — 5 = 0
x=2 %
To find the y-intercept, put x = 0, then y=10-35|
= 3

We can now sketch the right-hand branch by symmetry (or use a table of values).
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2x — 5.
Forx <21,y = -2x + 5.

b Forx > 21,y

¢ The two graphs intersect at two points P and Q as shown.

d The points P and at Q can be now found algebraically.
P is the intersectionof y = x + 2 withy = 2x — 5,

x+2=2x—-15
x=7 so P= (7,9),

and Q is the intersection of y = x + 2 withy = —2x + 5,

x+2=-2x+5
x=1, so Q0 = (1,3).

e Hence the solutionsare x = 7orx = 1.

f Look at where y = |2x — 5] is on or above y

From the graph, x < lorx > 7.

Note: Graphing software would be particularly useful in this exercise.

x + 2.

vy

N

FOUNDATION

1 1In each case, use the given graph to determine the number of solutions of the equation.

a

=V

A3
y=Inx

Inx =x2 —4x + 3
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b

yA

y=sinx

y=cosx

cos x = sin x, for

—-rn<x<nrm
yl\
3,,
24 /y=3"*
Y 1‘ .
_] 12)C
y=x+1
3 =x+2
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2E Using graphs to solve equations and inequations

2 For each equation in Question 1, read the solutions from the graph, approximated correct to one decimal

place where appropriate.

3 Write down the values of x for which:
Iy =f(x)isabovey = g(x),

i y=f(x)isbelowy = g(x).

a yA b V4 =
y=1() t& y=f()
| x,
| > -3 2
1 X
y=g(x) y=28()
4 State the values of x for which: 1 f(x) = g(x), 1 f(x) > gx), li f(x) < gkx).
3 y=gw b M y=fe
=80
* ; | | .
3 \ -2 1 X
y=f(x)
5 Use the given graphs to help solve each inequation.
a VA b V4 c
y =%x +2 /24
-3 Y R 4
£15 X
-2 y= i X
=33 ,
\ y=2x 2 x
=—L(x+7)
r+2< -3+ 7 x2 < 2 2 <o -1
6 Solve these inequations using the given graphs.
a b ya c v y=x
y=2 \
1
2 ! AR
1 x
4x +1 R _11
/ X YEx
2 <x+1 1 <x
X
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=2 =1 0 . 2

X

In preparation for the following questions, photocopy the sketch above, which shows the graph of the
function

y=x2, for =2 < x < 2.

Read V2 and /3 off the graph, correct to one decimal place, by locating 2 and 3 on the y-axis and
reading the answer off the x-axis. Check your approximations using a calculator.

b Draw on the graph the line y = x + 2, and hence read off the graph the solutions of X2 =x+ 2.
Then check your solution by solving x2=x+2 algebraically.

From the graph, write down the solution of x2 > x4 2.

Y

o

d Draw a suitable line to solve x> = 2 — xand x> < 2 — x. Check your results by solving
x? = 2 — xalgebraically.
Draw y = x + 1, and hence solve x> = x + 1 approximately. Check your result algebraically.

=~ o

Find approximate solutions for these quadratic equations by rearranging each with x? as subject, and
drawing a suitable line on the graph.

i x> 4+x=0 i x2-x-1=0 i 22 —x—-1=0
DEVELOPMENT
8 In each part:
I Carefully sketch each pair of equations.
Il Read off the points of intersection.
lii Write down the equation satisfied by the x-coordinates of the points of intersection.
a y=x-—2andy =3 — Ix b y=xandy = 2x — x°
Cy:%andyzx—l d y=x’andy = x
9 Use your graphs from the previous question to solve these inequations.
a x—-22>3-1x b x < 2x — x?
c 2 >x — 1 d x3>x
X
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2E Using graphs to solve equations and inequations

Explain how the graphs of Question 1 parts a, b and ¢ could be used to solve:

a eX=c¢ b tanx = 1 cC x> —4x+1=0.

[Solving an equation by trial and error]

a At the start of Section 2E we sketched y = 2*and y = x + 2 on one set of axes, and saw that
there is a solution a little to the right of x = —2. Fill in the table of values below, and hence find the
negative solution of 2* = x + 2 correct to three decimal places.

X -2 —-1.7 -1.6 —1.68 —-1.69 —1.691 —1.6905
2)C
x + 2

b For parts ¢ and e of Question 1, use trial and error on the calculator to find the negative solution of
the equation, correct to three decimal places.

a Sketch on the same number plane the functions y = |x + 1|andy = 1x — 1.
b Hence explain why all real numbers are solutions of the inequation [x + 1| > 1x — 1.

a Draw a sketch of the curve y = 2" and the line y = —1. Hence explain why the inequation 2* < —1
has no solutions.

b Drawy = 2x — land y = 2x + 3 on the same number plane, and hence explain why the
inequation 2x — 1 < 2x + 3 is true for all real values of x.

Sketch each pair of equations, and hence find the points of intersection.
a y=|x+ 1landy =3 b y=|x—-2landy = x
c y=|2x|and2x — 3y + 8 =0 d y=|x| —landy = 2x + 2

Use your answers to the previous question to help solve:
a [x+1/<3 b |x — 2| >x
2x + 8

¢ |2x] >
3

d x| >2x+ 3

[Break-even point]
A certain business has fixed costs of $900 plus costs of $30 per item sold. The sale price of each item is
$50. If enough items are sold then the company is just able to pay its total costs. That point is called the
break-even point. Companies may use several different methods to graph this information. Here are two
such methods. In each case, let n be the number of items sold.
a | The gross profit per item is $50 — $30 = $20. Sketch the graph of the gross profit for n items
y = $20 X n.
i On the same graph, sketch the fixed costs y = $900.
lii The point where these two lines cross is the break-even point. How many items need to be sold to
break even?
b i Onanew graph, draw y = $50 X n, the total sales for n items.
i On the same graph, draw y = $900 + $30 X n, the total cost for n items.
lii Does the break-even point for this graph agree with the result of part a?

87
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CHALLENGE

17 a Sketchy = x? =2, y = xand y = —x on the same number plane, and find all points of intersection
of the three functions.
Hence find the solutions of x> — 2 = |x|.
Hence solve x> — 2 > |x|.

18 Sketch graphs of the LHS and RHS of each equation on the same number plane in order to find the
number of solutions (tables of values may help). Do not attempt to solve them.

a 1 -1tx=x?-2 b |2x] =2F

c X —x=tax+1) d4x—x2:£

e 2¥=2x — x? f 2"“—1:1
x

19 Draw appropriate graphs, using a computer or graphics calculator, in order to find the solutions of these

equations correct to one decimal place.
a x> =2@x-2)7> b x3 =4 - x? c 2= —x(x + 2) d 275 = 2x — x?
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2F Review of translations and reflections 89

This short section reviews translations and reflections in preparation for dilations.

Translations and reflections
Here are the rules from Chapter 4 of the Year 11 book.

15 A SUMMARY OF SHIFTING AND REFLECTING

Transformation By replacement

Shift horizontally /4 right Replace x by x — h

Shift vertically k up Replace yby y — k
Reflect in the y-axis Replace x by —x

Reflect in the x-axis Replace y by —y

Rotate 180° about O Replace x by —x, y by —y

By function rule

y=fx) —-y=fx-nh
y=fx) -y =fx) +k
y=fx) -y =f(=x
y=f(x) »y=-f(x)
—f(=x)

y=f(x) =y

The equation of a transformed relation can always be obtained by replacement, whether or not the relation is

a function. The second method, by function rule, can only be used when the relation is a function.

Example 18

2F

Write down the equation of the resulting graph when each transformation below is applied to the circle

x—12+ o +2?%=1.

a shift left 3 units b reflect in the x-axis

Then sketch all four circles on one set of axes.

SOLUTION
The original circle is x -1+ (v + 27
a Shifting left 3 units gives ((x + 3) — D2 + (y + 2)? =
x+ 2%+ (y +2)7?
b Reflecting in the x-axis gives (x — 12+ (—y + 2 =
x- 17+ (y-27°=
¢ Rotating 180° about O gives (—x — 1)2 + (-y + 2)2 =
x+ 12+ (y-27°=
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Example 19 2F
\e— )

Write down the equation of the resulting graph when each transformation below is applied the exponential
curve y = 2%:

a shift down 1 unit, b reflect in the y-axis, ¢ rotate 180° about O.

Then sketch all four curves on one set of axes.

SOLUTION
The original curve is y = 2%
a Shifting down 1 unit gives y=2"- 1.

b Reflecting in the y-axis gives y =27%

¢ Rotating 180° about O gives y=-=27"%

FOUNDATION

1 Write down the new equation for each function or relation after the given shift has been applied. Draw a
graph of the image after the shift.
2%: down 1 unit

a y= x2: right 2 units
¢ y = x> — 1: down 3 units = L:right 3 units

e x> + y2 = 4:up 1 unit = logy x: left 1 units

= = o T
= < =

g y = sinx: left 7 units y = Va: up 2 units

2 Repeat Question 1 for the reflection in the given axis, or rotation about the origin.
a x-axis b y-axis ¢ x-axis d x-axis
e y-axis f rotate 180° g rotate 180° h y-axis

3 In which parts of Question 2 was the result the same as the original function? In each case, explain
geometrically why that happened.

4 Use your understanding of translations, and completion of the square where necessary, to determine the
centre and radius of each circle.

a (x+ 12 +y?2=4 b x—172+ (y-272=1
C x> —4x+y>=0 dx2+y2—6y=16
5 In each case an unknown function has been drawn. Draw the functions specified below it.
a VA b b I
4 y=f y =P
3
S
————————————— 3l -1/ I
> X
12 3\x 23
I y=f(x—=-2) i y=f(x) -2 i y=Px+1) il y=Px) +1
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DEVELOPMENT
6 Write down the equation for each function after the given translation has been applied.
a y = x2:left 1 unit, up 2 units b y = l:right 2 units, up 3 units
¢ y = cos x: right 5 units, down 2 units d y = e": left 2 units, down 1 unit

7 The composition of functions can sometimes result in translations.
a Leth(x) = x — 3. Draw the following using the graph of f(x) given in Question 5a.

I y=foh( i y=nhof(x)
b Letk(x) = x + 2. Draw the following using the graph of P (x) given in Question 5b.
I y=Pok(x) i y=koP(x)

8 In each part explain how the graph of each subsequent equation is a transformation of the first graph
(there may be more than one answer), then sketch each curve.

a Fromy = —x: i y=-x+2 iiy=-x-2 iiy=x+14

b Fromy = x2: i y= (x+ 1)? iiy=—(x+ 1) iiy=(x+12%-1
cFromyz\/;c: iy=\/m iiy=—\/; iiiy=—\/m
dFromyz%: iy=%—1 iiy:xiz—l iiiy:—%

e Fromy = sinx: | y =sinx — 1 iiy=sin(x—§) -1 liil y = —sinx

9 Answer these questions about the cubic y = x3 - 3x.
a Find the coordinates of the two points where the tangent is horizontal.
b The cubic is shifted 1 unit up.
i Write down the equation of this new cubic.
ii  Show that the x-coordinates where the tangent is horizontal have not changed.
¢ The original cubic is shifted 1 unit left.
I Write down the equation of this third cubic, expanding any brackets.
ii  Show that the y-coordinates where the tangent is horizontal have not changed.

10 Complete the square then sketch each circle, stating the centre and radius. Find any intercepts with the
axes by substituting x = Oandy = 0.
a xX+4x+y2 -8 =0 b x2 — 2x + y2 + 4y = -1
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11 Describe each graph below as a standard curve transformed either by two shifts, or by a reflection

followed by a shift. Hence write down its equation.

a YA b yA
3 2,\3 X
-1 S~
<]
_3
R 2
-3 1 X
(=2,-1)
c YA d VA
1
1 S 2
_1””3 X s 1 ~a
s TR AR

CHALLENGE

12 Describe each graph below as the given standard curve transformed by a reflection followed by two

shifts, and hence write down its equation.
b ya \ c VA

a ya
3,1
2

=V

2 4
21\3 4
‘ >

/—8
Start with y = V.

Start with y = x2. Start with y = log, x.

© Pender et al. 2019 Cambridge University Press
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2G Dilations 93

m Dilations

A dilation is a stretch of a curve in one direction. For example, a dilation distorts a circle into an ellipse.
Dilations are another kind of transformation of curves, and they belong naturally with the translations and
reflections that were reviewed in the previous section. Most of the functions in the course can be reduced to
very simple functions using a combination of translations, reflections and dilations.

Stretching a graph vertically
Compare the graphs of

y=x(x —2) and y=3xx - 2).

Each value in the table below for y = 3x(x — 2) is three times the corresponding Ay
value in the table for y = x(x — 2). This means that the graph of y = 3x(x — 2)
is obtained from the graph of y = x(x — 2) by stretching away from the x-axis in

the vertical direction by a factor of 3: >

1 X
X -2 -1 0 1 2 3 4 3

xx—-2) 8 3 0 -1 0 3 8

3x(x = 2) 24 9 0 =3 0 9 24

We can rewrite the equation y = 3x(x — 2) as3 = x(x — 2). This makes it clear that the stretching has
been obtained by replacing y by 3.

The x-axis is the axis of dilation. Points on the x-axis do not move, and all other points on the graph triple
their distance from the x-axis.

16 VERTICAL DILATIONS — STRETCHING A GRAPH VERTICALLY

» To stretch a graph in a vertical direction by a factor of a, replace y by g.

e Alternatively, if the graph is a function, the new function rule is y = a f(x).
* The axis of dilation for these transformations is the x-axis.

Stretching a graph horizontally

By analogy with the previous example, the graph of y = x(x — 2) can be stretched ~ ya
horizontally away from the y-axis by a factor of 3 by replacing x by %, giving the
new function

y=x<x—2)=;x(x—6). 12/ 3

-
B
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94 Chapter 2 Graphs and equations _

Two table of values should make this clear. The first table is the original graph, the second is the new
function.

X -2 -1 0 1 2 3 4 X -6 -3 0 3 6 9 12
xx-2) 8 3 0 -1 0 3 8 (x-2) 8 3 0 -1 0 3 8
The y-coordinates in each table are the same, but we needed to treble the x-coordinates to produce those

same y-coordinates. Thus the y-axis is the axis of dilation, and the dilation factor is 3, because the point
(0, 0) on the y-axis does not move, and all other points on the graph triple their distance from the y-axis.

17 HORIZONTAL DILATIONS — STRETCHING A GRAPH HORIZONTALLY

» To stretch the graph in a horizontal direction by a factor of a, replace x by X
a

» Alternatively, if the graph is a function, the new function ruleis y = f (x)
a

* The axis of dilation for these transformations is the y-axis.

Example 20 2G

2 2
Obtain the graph of % -+ Y~ — 1 from the graph of the circle x2 + y? = 1.

4

SOLUTION

The equation can be rewritten as

y [

HRIGRS 2
)T - :
which is the unit circle stretched vertically by a factor of 2 and horizontally 4&& 4%

-2

by a factor of 4.

2 2
Note: Any curve of the form x—z + y—z = 1 is called an ellipse. It can be
a b
obtained from the unit circle x> + y? = 1 by stretching horizontally by a factor of a and vertically by a

factor of b, so that its x-intercepts are a and —a and its y-intercepts are b and —b.

Enlargements

The dilation of a figure is usually not similar to the original. For example, the A"
equilateral triangle ABC in the figure to the right with its base on the x-axis is stretched to

the squat isosceles triangle A’BC’ by a horizontal dilation with factor 2, and it is stretched

to the skinny isosceles triangle A”BC by a vertical dilation with factor 3. A
B C (o
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2G Dilations 95

But if two dilations with the same factor 2, one horizontal and the other vertical, are P
applied in order to the equilateral triangle ABC — the order does not matter — the result

is the similar equilateral triangle PBQ. Such a combined transformation is called an

enlargement, and the factor 2 is called the enlargement factor or similarity factor.

In the coordinate plane, the centre of an enlargement is normally taken as the origin.

18 ENLARGMENTS

* An enlargement of a figure is similar to the original. In particular, matching angles are equal, and
the ratios of matching lengths are equal.

* The composition of two dilations with the same factor, one horizontal and one vertical, is an
enlargement with centre the origin.

* To apply an enlargement with factor a, replace x by g and y by g.

* Alternatively, if the graph is a function, the new function rule is y = af <x>
a

Example 21 2G

Apply an enlargement with centre the origin and factor 3 to the circle
(x + 1)2 + (y — 1)2 = 1. Write down the new function, then sketch
both curves.

SOLUTION

¥ 2 y 2
The new function is (3 + 1) + (3 - 1) =1

(x+37%+ @y -37%=09.

The two circles are sketched to the right.

Stretching with a fractional or negative factor yA
In the upper diagram to the right, a vertical dilation with factor } has been applied to
the parabola y = x? + 2to yield the parabola
3
Yy 2 : 2
T=x + 2, that is, y=1ix"+ L 5
2 1
The result is a compression, but we still call it a dilation. -2 2 X
A
In the lower diagram to the right, vertical dilations with factors —1 and — 1 have been =2 - 2,
applied to the same parabola y = x? 4 2. The results are the parabolas _}
y=-x>-2 and y=-L?-1L 3
The first parabola is the reflection of the original in the x-axis. The second parabola
is the reflection in the x-axis of the compressed image.
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96 Chapter 2 Graphs and equations _

When the dilation factor is negative, the dilation can be thought of as a dilation with positive factor followed
by a reflection.

In particular, a reflection is a dilation with factor —1.

19 DILATIONS WITH A FRACTIONAL OR NEGATIVE FACTOR

o If the dilation factor is between 0 and 1, the graph is compressed.
o If the dilation factor is negative, the dilation is the composition of a dilation with positive factor
and a reflection — the order does not matter.
e In particular:
— A reflection is a dilation with factor —1.
— A rotation of 180° about the origin is an enlargement with factor —1, and is often called a
reflection in the origin.

Example 22 2G

Write down the new functions when each dilation is applied to the parabolay = (x — 3)(x — 5).
Then sketch the four curves on one set of axes.

a A horizontal dilation with factor —2.

b A horizontal dilation with factor — %

¢ A vertical dilation with factor —1.

SOLUTION
a Replacing x by —LZ’
y=(~1-3)(-1-9) 2

y =1x+ 6)(x + 10)

15
b Replacing x by —>— = —2x,
PRERESYY Tk \
—2x — 3)(=2x — 5) } }
—-10 —6

y=(
y=4(x + 14)(x + 29)

N\u.< |
2w

¢ Replacing y by ll = -y,

-15
—y = (= 3)x - 5) /

y=—-(x=3)x-15)

Note: The word ‘dilation’ is often used to mean ‘enlargement’, but in this course, it means a stretching in just
one direction. Be careful when looking at other sources.
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FOUNDATION

1 Write down the new equation for each function or relation after the given dilation has been applied.
Draw a graph of the image after the shift.

= 2% vertically by 2

L: horizontally by 2

a y = x% horizontally by
cC y= x? - 1 vertically by —1
e x? + y2 = 4: vertically by% = log,x: horizontally by —1

y = —Vx: horizontally by —2

o oo
= e <
Il

g y = sin x: horizontally by 1

2 In each case an unknown function has been drawn. Use dilations to draw the new functions indicated

below it.
ay=f L b y=P 1
y =fx) y=P(x)
et 1
-2/ | 1 / 2
/ -1 N\ 2%
e
N
—2-1 1 2%
iy =f20 0y =2f(x) i y="P(3) i y=1PW
c y=nh e dy=gkx 4
y = h(x) y=g)
1
) \/v
s 12X 1 1 x
-1
Ly =ho Qi oy =h(3) 2y =g(x) iy =g(2x)

3 Sketch x + y = 1. Then explain how each graph below may be obtained by dilations of the first graph
(there may be more than one answer), and sketch it.

as+y=1 b $+3=1 cC 2x+y=1

4 a Thecircle (x — 3)* + y2 = 4is enlarged by factor } with centre the origin. Write down the new
equation and draw both circles on the one set of axes.

b The hyperbolay = % is enlarged by factor /3 with centre the origin. Write down the new equation

and draw both hyperbolas on the one set of axes.

97

DEVELOPMENT
5 In each case, graph the three given equations on one set of axes by using dilations.
a y = x(4 + -x)$ y = 2-x(4 + x), and y = %(4 + %)
bty =36 (3)7+ (57 =36 and 207+ 3y =36
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Chapter 2 Graphs and equations _

The composition of functions can sometimes result in dilations.

a Letk(x) = 3x. Draw the following using the graph of /(x) given in Question 2(c).
I y=hok(x) i y=koh(x)

b Letl(x) = %x. Draw the following using the graph of g(x) given in Question 2(d).
Iy =go°l(x) iy =~>tog

Sketch each group of three trigonometric functions on the one set of axes.
a y=sinx,y = 3sinx,y = 3sin 2x b y=-cosx,y=cos3y=2cos3

Answer these questions about the cubic y = x3 - 3x,
a Find the coordinates of the two points where the tangent is horizontal.
b The cubic is dilated vertically by factor 2.
I Write down the equation of this new cubic.
Il Show that the x-coordinates where the tangent is horizontal have not changed.
¢ The original cubic is dilated horizontally by factor 3.
I Write down the equation of this third cubic.
ii  Show that the y-coordinates where the tangent is horizontal have not changed.

In each case identify how the graph of the second equation can be obtained from the graph of the first by
a suitable dilation.

2 2 1 1
a = -2 dy=3x"-6 b = d
y=x x and y X X y x_4any o — 4

2
x + 1

cosx and y = cos 3 d y= ! and y =

C
Y x+ 1

Consider the hyperbola y = %

The hyperbola is stretched horizontally by factor 2. Write down its equation.

The original hyperbola is stretched vertically by factor 2. Write down its equation.
What do you notice about the answers to parts a and b?

Can the hyperbolas in parts a or b be obtained by an enlargement?

O Q O T QO

Investigate whether there are any other functions that exhibit similar behaviour.

Consider the parabola y = x2

a The parabola is dilated horizontally by factor 1. Write down its equation.

The original parabola is dilated vertically by factor 4. Write down its equation.
What do you notice about the answers to parts a and b?

Can the parabolas in parts a or b be obtained by an enlargement?

o QO T

Investigate whether there are any other functions that exhibit similar behaviour.

The mass M grams of a certain radioactive substance after ¢ years is modelled by the formula
1

M=3x25

a Find the initial mass.

b Find the time taken for the mass to halve, called the half-life.

¢ Suppose now that the initial mass is doubled.
I Explain this in terms of a dilation and hence write down the new equation for M.
i Show that the dilation does not change the value of the half-life.

Show that the equation y = mux of a straight line through the origin is unchanged by any enlargement
with centre the origin.
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2G Dilations 99

CHALLENGE

14 Describe each graph below as a standard curve transformed by dilations, and hence write down
its equation.
a

=V
[\

S ot

15 a For each pair of curves, suggest two simple and distinct transformations by which the second
equation may be obtained from the first. ’
iy =2%y =21 i y=7,y=k— iiihy=3%y=3"
X X
b Investigate other combinations of curves and transformations with similar ambiguity.

16 The parabolay = x? is stretched horizontally by factor a. Clearly a horizontal stretch by factor £ will
restore the original parabola. What other stretch will produce a new parabola that appears identical to the

original parabola y = x2?
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100 Chapter 2 Graphs and equations _

m Combinations of transformations

We will now apply several transformations to a graph one after the other.

In this section we will mostly regard reflections in the axes as dilations with factor —1, and of course
a rotation of 180° about the origin is the composition of two reflections. This reduces the types of
transformations to just four — two translations and two dilations:

20 A SUMMARY OF TRANSFORMATIONS

Transformation By replacement By function rule
Shift horizontally right & Replace x by x — h y=f(x) - y=f(x—-h)
Shift vertically up k Replace yby y — & y=f(x) - y=f(x) +k
Stretch horizontally factor a Replace x by = y=f(x) o y=f (x)

a a
Stretch vertically factor b Replace y by % y =fx) -y =0bf(x)

We shall see that it sometimes matters in which the order the two transformations are applied. Two
transformations are said to commute if the order in which they are applied does not matter, whatever graph
they are applied to.

Two translations always commute
Suppose that the parabolic graph y = x? is shifted right 3 and then down 1.
Shifting right 3, y = (x — 3)?
and shiftingdown 1, y + 1 = (x — 3)?
y=(x—372-1.

The result is exactly the same if the graph y = x? is shifted down 1 and then right 3.

Shiftingdown 1, y + 1 = x?
y = x2 -1,
and shifting right 3, y=(x—-3)?%-1

Thus the two translations commute.

In general, any two translations commute.

Two dilations always commute
Suppose that the circle graph x>+ y2 = 1 is stretched vertically with factor 2 and then horizontally with factor 3.

2
. . yl\
Stretching vertically factor 2, x? + (g) =1
2
5 y2 /7\
xXT + — = 1, r/ \
4 N s
and stretching horizontally factor 3, (;C + yZ =1 _\2\ £
ﬁ + ﬁ =1
9 4 '
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2H Combinations of transformations 101

The result is the same if the graph is stretched horizontally with factor 3 and then VA
vertically with factor 2. 2
Stretching horizontally factor 3, 4 y2 =1, ﬁ ﬁ R
2
and stretching vertically factor 2, % + yz = 1. )

Thus the two dilations commute, and in general, any two dilations commute.

A horizontal dilation and a vertical translation commute

Apply a reflection in the y-axis (horizontal dilation with factor —1), then shift up 2, VA
successively to the circle (x — 2)2 + (v — 1)2 = 1. A
Reflecting in the y-axis, (—x — 2)? + (y — 12 =1 Q 34
x+22+ (- 1)72=1, %
and shifingup2, (x + 27 + (y =2 - 1)’ = 1 ] Q N
x+2?%+ G -32%=1. -3-2-1| 123%
The resulting circle (x + 2)2 + (y — 3)2 = 1 is the same if the transformations VA
are done in the reverse order. A
Shifting up 2, =27+ (-3 =1, Q 30
and reflecting in the y-axis, (—x — 2)% + (y — 3 =1 % O
('x+2)2+(y_3)2:1 :::”:::)
. . oL -3-2-1]123*%*
Thus the two transformations commute. In general, any horizontal dilation and any

vertical translation commute. Similarly, any vertical dilation and any horizontal
translation commute.

21 COMMUTING TRANSFORMATIONS

* Any two translations commute.
* Any two dilations commute (including reflections).
e A translation and a dilation commute if one is vertical and the other horizontal.

Transformations that do not commute

In the remaining case, the transformations do not commute. That is, a translation and a dilation do not
commute when they are both horizontal or both vertical. The next worked examples give two examples
of this.
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Example 23

2H

a The reflection in the y-axis (horizontal dilation with factor —1) and the translation left 2 are applied
successively to the circle (x + 3)> + y? = 1. Find the equation of the resulting graph, and sketch it.

b Repeat when the transformations are done in the reverse order.

v
SOLUTION
a Applying the reflection, —x+ 32 +y2=1
P ( )2 yz O
(xr=3)"+y" =1 420 24 x
and applying the translation, (x + 2 — 32 +y2 =1
(x - 1) +y>=1.
b Applying the translation, x+2+32+y2=1 4
(x + 57 +y> =1,
and applying the reflection, (—x + 5) + y2 =1 4
_ 5)2 2 _ Y N
(=3 +y 6= | 4% 7%
Example 24 2H
=),
a The vertical dilation with factor } and the translation down 3 units are applied successively to the
parabola y = x2 + 4. Find the equation of the resulting graph, and sketch it.
b Repeat when the transformations are done in the reverse order. ~
SOLUTION
a Applying the dilation, y = %(x2 + 4)
y = %xz + 2, ;
and applying the translation, y = 1x? + 2 — 3
y = %xz —
b Applying the translation, y=x>+4-3
y = @
and applying the dilation, y = %(x2 + 1)

22 TRANSFORMATIONS THAT DO NOT COMMUTE

e A vertical translation and a vertical dilation do not commute.
e A horizontal translation and a horizontal dilation do not commute.
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2H Combinations of transformations

A universal formula involving all four transformations

When the graph is a function, there is a universal formula that allows the four transformations to be applied
to any function y = f(x). The formula is:

y = kf(a(x + b)) + c.

This formula is useful because it applies all four transformations to any function y = f(x). It is useful for
trigonometric functions, and for computer programs. The formula is tricky to use, however, and although
readers must know the formula, most problems should be done using the methods already presented.

Here is how to analyse the successive transformations involved in this formula.

Start with
Stretching horizontally with factor é gives
Shifting left b gives

Stretching vertically with factor k gives

y =/

y = flax).

y = f(a(x + b))
v = kf(a(x + b))

Shifting up ¢ gives v = kfa(x + b)) + ¢

Another way to analyse this formula is to rewrite it progressively so that the four successive transformations

can be seen:
y = kf(a(x + b)) +c

v — ¢ = kf(a(x + b))
Y = flate + b))

y—c _[(x+Db

k _f< 1/a>

y—c¢ _ x—(—b)>

k _f< 1/a

23 A UNIVERSAL FORMULA INVOLVING ALL FOUR TRANSFORMATIONS

The following sequence of transformations transforms the function y = f(x) to

y = kf(atx + b)) + c.
1 Stretch horizontally with factor %.
3 Stretch vertically with factor k.

2 Shift left b.
4 Shift up c.

Alternatively, the vertical dilation and translation (step 3 then step 4) could be done before the
horizontal dilation and translation (step 1 then 2).

FOUNDATION

1 Lety = x? — 2x. Sketch the graph of this function showing the intercepts and vertex.

a 1 Sketch the parabola after shifting right 1 unit. Find its equation, expanding any brackets.
il The parabola in part i is then shifted up 2 units. Sketch the new graph and find its equation.
b i The original parabolay = x? — 2xis translated up 2 units. Sketch the result and find its equation.

il Sketch the parabola in part i after translating right 1 unit. Find its equation, expanding any brackets.
¢ Parts a and b used the same two translations, right 1 unit and up 2 units, but in a different order. Do
these transformations commute?
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104 Chapter 2 Graphs and equations _

2 Asin Question 1, start with the parabola y = x2 = 2x.
a | The parabola is stretched horizontally with factor 2. Sketch the situation and find its equation.
Ii  The parabola in part i is then stretched vertically with factor 3. Sketch the new graph and find its
equation.
b i The original parabolay = x? — 2xis stretched vertically with factor 3. Sketch the result and find
its equation.
ii  The parabola in part i is then stretched horizontally with factor 2. Sketch the situation and find its
equation.
¢ Parts a and b used the same two dilations, horizontally with factor 2 and vertically with factor 3, but
in a different order. Do these transformations commute?

3 Once again, start with the parabolay = x? = 2x.

a | The parabola is dilated horizontally with factor 2. Sketch the situation and find its equation.
ii  The parabola in part i is then translated up 1 unit. Sketch the new graph and find its equation.

b i The original parabola y = x> — 2ux is shifted up 1 unit. Sketch the result and find its equation.
Ii  The parabola in part i is then dilated horizontally with factor 2. Sketch the situation and find its

equation.

¢ Parts a and b used the same two transformations, stretched horizontally with factor 2 and shifted up

1 unit, but in a different order. Do these transformations commute?

4 Lety = x> — 2x. Sketch the graph of this function showing the intercepts and vertex.
a | The parabola is shifted right by 1 unit. Sketch the situation and find its equation, expanding any
brackets.
ii  The shifted parabola is then reflected in the y-axis. Sketch the new graph and find its equation.
b i The original parabolay = x? — 2xis reflected in the y-axis. Sketch the result and find its
equation.
Il The reflected parabola is then shifted right by 1 unit. Sketch the situation and find its equation,
expanding any brackets.
¢ Parts a and b each used a shift right 1 unit and reflection in the y-axis, but in a different order.
Do these two transformations commute?

DEVELOPMENT

5 Which of these pairs of transformations commute?
reflection in the y-axis and horizontal translation,
vertical dilation and vertical translation,

vertical dilation and reflection in the x-axis,
horizontal translation and vertical translation,
horizontal dilation and horizontal translation,

- 0D Q O T D

reflection in the x-axis and horizontal translation.

6 Write down the new equation for each function or relation after the given transformations have been
applied. Draw a graph of the image.
a y= x2: right 2 units, then dilate by factor } horizontally
b y = 2% down 1 unit then reflect in the y-axis
cC y= x> — 1: down 3 units, then dilate by factor —1 vertically
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2H Combinations of transformations 105

1: right 3 units then dilate by factor 2 vertically

2 4 y2 = 4: up 2 units then dilate by factor % vertically

log, x: left 1 units then dilate by factor 2 horizontally
sin x: left z units then reflect in the x-axis
Vi up 2 units then dilate by factor —1 horizontally

7 Identify the various transformations to help graph these trigonometric functions. Make sure the

transformations are applied in the correct order when they do not commute.
a y=sin2x + 1 b y=2sinx+ 1 Cy=2sin(x+§) dy=sin(2x+§)

8 Determine the equation of the curve after the given transformations have been applied in the order stated.

a
b
c

y

y
y =
y

x2: left 1, down 4, dilate horizontally by 2
x2: down 4, dilate horizontally by 2, left 1
2*: down 1, right 1, dilate vertically by —2

l: right 2, dilate by 2 vertically, up 1
X

CHALLENGE

9 Identify the transformations of these trigonometric functions and hence sketch them.
a y=3cos2x + 1 by:ZCos(x—§)+2

Cy:cos(%x—§)+1 dy:cos%(x—§)+l

10 The parabolay = (x — 1)? is shifted 2 left and then reflected in the y-axis.
a Show that the new parabola has the same equation.

b Investigate why this has happened.
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Chapter 2 Graphs and equations

m Trigonometric graphs

In Sections 9G-9J of the Year 11 book, we developed radians as a way of measuring angles. An angle

ISBN 978-1-108-76626-5

measured in radians is a pure number, without units, and some important conversions are:

2r = 360°, =« =180°, 5 =90°, §=060°, % =45° ¢ =30°

In Section 9J we drew all six trigonometric functions. Here are sin x, cos x and tan x.

y = sin x
y
1
N -3
-3n - 57” 2n - 37" - Z n 37’1 2n 577[ 3N
-1
y = COS X
yi
1
/\ / \ m /\
-3n -z -2n —37” -n -1 3 37“ 2n %ﬂw
-1
y = tan x
ya /
L :
-z | /
/37{ _5t Lop _3n Zx  -x | I o n Eud 2n  On B X
2 2 2 1 2 2 2 2

The investigation Exercise 9J in the Year 11 book dealt thoroughly with the symmetries of these three graphs

under translations, reflections in the axes, and rotations about the origin. We now have dilations, and this

section shows how to generate any basic wave graph by combinations of translations and dilations.

Reflections and rotations do not need review, so all the dilations in this section have positive factors. We will

consider separately, then in combination:

e Vertical dilations with positive factors — this leads to the amplitude.
* Horizontal dilations with positive factors — this leads to the period.
® Translations left and right — this leads to the phase.

¢ Translations up and down — this leads to the mean value.

Vertical dilations and amplitude

The amplitude of a wave is the maximum height of the wave above its mean position. The graphs on the

previous page both show that y = sin x and y = cos x have a maximum value of 1, a minimum value of —1

and a mean value of 0 (the average of 1 and —1). Thus both have amplitude 1.
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21 Trigonometric graphs 107

Now let us apply a vertical dilation with factor a to y = sin x.

Replacing y by % gives g = sin x, and then multiplying by a gives y = a sin x.

This function is also a wave, but its amplitude is now a, because it has maximum value y = a, minimum
value y = —a, and mean value y = 0. Exactly the same argument applies to y = cos x.

24 VERTICAL DILATIONS AND AMPLITUDE

The amplitude of a wave is the maximum height of the wave above its mean position.

e y = sin xand y = cos x both have amplitude 1.
e y = asin xand y = a cos x both have amplitude a.
e y=asinxandy = acos xare y = sin xor y = cos x stretched vertically with factor a.

We can stretch the function y = tan x vertically to y = atan x in the usual way. But the function increases
without bound near its asymptotes, so the idea of amplitude makes no sense. Instead, we can conveniently tie
down the vertical scale of y = atan x by using the fact that tan 7 = 1,sowhenx = 7,y = a.

Horizontal dilations and period

The trigonometric functions are called periodic functions because each graph repeats itself exactly over and
over again. The period of such a function is the length of the smallest repeating unit.

The graphs of y = sin x and y = cos x on the previous page are waves, with a pattern that repeats every
revolution. Thus they both have period 2.

The graph of y = tan x, on the other hand, has a pattern that repeats every half-revolution. Thus it has period 7.

25 THE PERIODS OF THE TRIGONOMETRIC FUNCTIONS

* The period of a function that repeats is the length of the smallest repeating unit.
* y =sinxand y = cos x have period 2z  (that is, a full revolution).
e y = tan x has period #  (that is, half a revolution).

. . . . . X
Now consider the function y = sin nx, which we can also write as y = sin —

ln

This shows that it is a horizontal dilation of y = sin x with factor l
n

Because y = sin x has period 2z, the dilation y = sin nx therefore has period 2—”
n

The same arguments apply to y = cos nx and y = tan nx.

26 HORIZONTAL DILATIONS AND PERIOD

. . 27
e y = sin nxand y = cos nx have period —.
n

* y = tan nx has period z
n

* These functions are y = sin x, y = cos x and y = tan x stretched horizontally with factor l.
n
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108 Chapter 2 Graphs and equations _
The next worked example examines the amplitude and period together.

Example 25 21

Find the period and amplitude of:

a y = 5sin2x b y=2tan ix
Then sketch one period of the function, showing all intercepts, turning points and asymptotes.

SOLUTION
a y = 5sin 2 x has an amplitude of 5, and a b y=2tn 1 has period = = 3.
3

. 2
periodof = = 7
2 It has no amplitude, but when x = 34—”,
y=2tanf = 2.
y A y A

2

Horizontal translations and phase

There are two steps in understanding phase. First, look at horizontal translations of the three basic
trigonometric functions
y = sin x and y = COS X and y = tan x.

When one of these is shifted horizontally, the phase or phase shift is defined to be the displacement of the
curve fo the left. For example:

® y = sin (x + %) is y = sin x translated % to the left, so its phase is 5.
® y = cos (x - %) is a translation of —7 to the left, so its phase is —3.
® y = tan (x + %) is a translation of % to the left, so its phase is .

In general, y = sin(x + b)isy = sinx translated left by b, so its phase is b.
The same argument applies to y = cos(x + b)and y = tan(x + b).

27 HORIZONTAL TRANSLATIONS AND PHASE

* Wheny = sinxory = cosxory = tan x is translated horizontally, the phase or phase shift is
the displacement of the curve to the left.
e Thusy = sin(x + b),y = cos(x + b)and y = tan(x + b) all have phase b.
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21 Trigonometric graphs 109

Example 26 21
Use horizontal translations to sketch these functions, and state their phase.
a y= sin(x + %) b y= cos(x - 52—”) cC y= tan(x + %)
SOLUTION
a YA b yA c VA
_5no_nm 1] T 1t T 1/ T
6 3 f\ X \ 2 2 / 2 =

a

pg
|

a

a

=

"

@& T

Shift y = sinx left §. Shift y = cos x left — F. Shift y = tan x left 7.
The phase is 5. The phase is — 57 The phase is 7.

Note: The phase is not uniquely defined, because we can add and subtract multiples of the period.

e In part b, we could also write the phase as — 57" + 2r = —F,oras — 57" + 4n = 37"
: — _5

® Inparta, we could also say that the phase is § — 2r = — =F.

® In part ¢, we could also say that the phaseis} — n = —%", oras i + m = 537".

Combining period and phase

The second step in understanding phase is to combine a horizontal translation with a horizontal dilation. Two
such transformations do not commute, so we need to be careful of the order in which they are applied. Here
is an example where y = sin x has undergone such a compound transformation:

y = sin 2(x + %) orequivalently y = sin(Zx + %)

The rule for finding the phase is: Express the compound transformation as a horizontal dilation followed by a
horizontal translation. The phase, or phase shift, is the shift to the left of the final horizontal translation.

The first form of the function above displays dilation-followed-by-translation.
e First dilate y = sin x horizontally by a factor of 1 to obtain y = sin 2x,

e then shift left by Z to obtain y = sin2(x + Z).

We can therefore conclude that the phase of the function is .

The second form of the function above displays translation-followed-by-dilation.

* First translate y = sin x left § to obtain y = sin (x + %),
e then dilate horizontally by a factor of } to obtain y = sin (2x + %) .
This does not give us the phase since the transformations are in the wrong order.

The function y = cos 3 (x — %) has phase —7, because to obtain it from y = cos x:
e Firstdilate y = cos x horizontally by a factor of 1 to obtain y = cos 3x,
* then shift left by —7 to obtain y = cos 3 (x - %)

Again, y = tan %(x + %) has phase 7, because to obtain it from y = tan x:
¢ First dilate y = tan x horizontally by a factor of 3 to obtain y = tan %x,
e then shift left by % to obtain y = tan %(x + %)
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110 Chapter 2 Graphs and equations _

28 COMBINING PERIOD AND PHASE

e Suppose that y = sinxory = cosxory = tan x is dilated horizontally and then translated
horizontally. The phase, or phase shift, is the shift to the left of the final horizontal translation.
e Thusy = sina(x + b),y = cosa(x + b) and y = tana(x + b) all have phase b.
* Method: Take any coefficient of x outside the bracket, rewriting, for example,
y = sin(2x+§) as y = sin2(x+g).

Example 27 21
\—— )

Find the phase of each function, then describe how its graph can be obtained by a horizontal dilation
followed by a horizontal translation.
a y=sin%<x—ﬁ{) b y=cos(5x + n) c y=tan2(3x+£)

SOLUTION
a The phase is —7. The graph is y = sin x dilated horizontally with factor 2, then shifted left —%.

b Rewrite the function as y = cos 5 (x + g) Hence the phase is %, and the graph is y = cos x dilated

horizontally with factor %, then shifted left Z.

¢ Rewrite the function as y = tan 6 (x + %) Hence the phase is {5, and the graph is y = tan x dilated

horizontally with factor £, then shifted left /5.

Vertical translations and the mean value

A vertical translation shifts the mean value of the wave from 0O to some other value. Perform any vertical
translation last after any vertical stretch since the two transformations do not commute.

29 VERTICAL TRANSLATIONS AND THE MEAN VALUE

* The mean value of a wave is the mean of its maximum and minimum values.
e y=sinx + candy = cos x + ¢ both have mean value c.

* y = sin x + cis the result of shifting y = sin x up c.

In a combination of transformations, do any vertical translation last.

The function y = tan x + c is not a wave. It has no amplitude, and it has no mean value.

Putting it all together

The two worked examples below put all four transformations together. The clearest order to list the four
transformations (which may not all be involved) is:

1 any horizontal dilation — this gives the period,

2 any horizontal translation — this gives the phase,

3 any vertical dilation — this gives the amplitude (sine and cosine only),

4 any vertical translation — this gives the mean value (sine and cosine only).
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21 Trigonometric graphs 111

Rather than formulae, we recommend thinking through the four successive transformations above, because
this usually leads to a better understanding of the situation. For the sine and cosine functions

y = ksina(x + b) + ¢ and y = kcosa(x + b) + c,
the period is %, the phase is b, the amplitude is k, and the mean value is c.

For the tangent function y = ksina(x + b) + c,the period is  and the phase is b.

Example 28 21

Use four successive transformations to sketch y = 3 cos 2 (x + g) — 2, and state the period, phase

amplitude, and mean value (ignoring x-intercepts in the final diagram).

SOLUTION

1 2 Stretch horizontally factor %, 3 Shift y = cos 2x left Z,
giving y = cos 2x. giving y = cos 2 (x + %).
The period is now % = 7. Phase is now 7.

4 Then stretch vertically with factor 3, 5 Shift the whole thing down 2 units,
giving y = 3 cos 2(x + g). giving y = 3cos2(x + g) 9
The amplitude is now 3. The mean value is now —2.

Example 29

Find the period, phase, amplitude and mean value of?:

a y=lsin(4x - 1) - 2 b y=3tn7(2x + ¥) - 1

SOLUTION

a Rewrite the function with 4 outside the bracket as y = %sin 4 (x — %) - 2.

Hence the period is 2 = Z, the phase is —%, the amplitude is 15, and the mean value is —2.

b Rewrite the function with 2 outside the bracket as y = 3tan 14 <x + ?—g) - 1.

Hence the period is {7, the phase is %’6[, there is no amplitude, and there is no mean value.

Oddness and evenness of the trigonometric functions

Box 30 quickly reviews the oddness and evenness of the sine, cosine and tangent functions. These are
crucially important properties of the three functions.
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112 Chapter 2 Graphs and equations _

30 ODDNESS AND EVENNESS OF THE TRIGONOMETRIC FUNCTIONS

e The functions y = sin x and y = tan x are odd functions and they both have point symmetry
in the origin.
Thus: sin(—x) = —sin x and tan(—x) = —tan x.
e The function y = cos x is an even function and it has line symmetry in the y-axis.
Thus: cos(—x) = cos x.

Graphical solutions of trigonometric equations

Many trigonometric equations cannot be solved by algebraic methods. Approximation methods using the
graphs can usually be used instead and a graph-paper sketch will show:
* how many solutions there are ® the approximate values of the solutions.

Example 30 21

a Find, by drawing a graph, the number of solutions of

sinx = x2 — 1.

—_ <

b Then use the graph to find approximations correct to

one decimal place.

SIE]

SOLUTION
a Herearey = sinxandy = x? - 1. Clearly the

|
—_
(e]
—_
Y]
=

equation has two solutions.

b The positive solution is x = 1.4, and the negative

-1

solution is x = —0.6.

Note: Technology is particularly useful here. It allows sketches to be drawn quickly, and many programs will
give the approximate coordinates of the intersections.

FOUNDATION

1 a Sketch the graph of each function for 0 < x < 2z, stating the amplitude in each case.
I y=1isinx i y=2sinx iii y=3sinx
b Describe the transformation from y = sin xto y = k sin x. (Assume that k is positive.)
How does the graph of y = k sin x change as k increases?

2 a Sketch the graph of each function for 0 < x < 2z, and state the period in each case.
Iy = cos ix iy = cos2x iii y = cos 3x
Describe the transformation from y = cos xto y = cos nx. (Assume that »n is positive.)
How does the graph of y = cos nx change as n increases?

3 a Sketch the graph of each function for 0 < x < 2z, and state the period in each case.
I y=tanx iy =tanix lii y = tan 2x

b Describe the transformation from y = tan x to y = tan ax. (Assume that a is positive.)

How does the graph of y = tan ax change as a increases?
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21 Trigonometric graphs 113

4 a Sketch the graph of each function for 0 < x < 2z, and state the phase in each case.
Iy = sin(x + %) ii y=sin(x + n) iy = sin(x + 27)
Describe the transformation from y = sin xtoy = sin(x + a). (Assume that a is positive.)
Describe the transformation when « is a multiple of 2z.

5 a Sketch the graph of each function for 0 < x < 2z, and state the mean value and the range.
I y=cosx + 1 ii y=cosx + 2 i y=cosx + 1%
Describe the transformation from y = cos xtoy = cos x + c. (Assume that c is positive.)
How does the graph of y = cos x + ¢ change as ¢ increases?

DEVELOPMENT

6 State the amplitude and period of each function, then sketch its graph for —z < x <
d

TT.
a y=3cos2x b y = 2sinlx C y=tan3 y = 2cos 3x

7 Write down a sequence of transformations that will transform y = sin x to the given function, and hence
sketch the given function for 0 < x < 2x.
a y = 3sin 3x b y=-2sinj c y=3sin(x—%)+2

8 Write down a sequence of transformations that will transform y = cos x to the given function, and hence
sketch the given function for —z < x < 7.
a y = 5cos ix b y=-2cos2x — 2 c y=cos(2(x—§>)

9 a | What horizontal dilation followed by what horizontal translation together transform y = sin x into
y = sin5(x + %)‘7
i State the period and the phase.
Repeat for the transformation from y = cosxtoy = cos {(x + 7).
¢ Repeat for the transformation from y = tanxto y = tan %(x - 25—”)

10 a What are the period, phase, amplitude and mean value of each function?
iy =3sin2(x - %) i y=3coslx+ ) +5 il y = 2tn3(x + %) - 3

11 a | Rewritey = sin (6x - %) to display it as y = sin x transformed by a horizontal dilation followed
by a horizontal translation.
Il Hence write down the period and phase of the function.
lii How can y = sin (6x - %) be obtained from y = sin x by a horizontal translation followed by a
horizontal dilation?
b Repeat part a for the function y = cos (}Tx + %) as a transformation of y = cos x.

¢ Repeat part a for the function y = tan (%x - 45—”) as a transformation of y = tan x.

12 a Write down, in the order given below Box 23, a sequence of dilations and translations that will
transform y = sin x to the given function.
iy =sin(3x + 3) i y=1lsin(4x — 1) — 4 i y=6sin(§+3%) +5
b What are the period, phase, amplitude and mean value of each function in part a?
13 Solve each equation, for 0 < x < 2z. Then indicate the solutions on a diagram showing sketches of the

functions on the LHS and RHS of the equation.
a 2sin(x — 1) =1 b 2cos2x = —1
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114 Chapter 2 Graphs and equations _
14 Solve each equation, for 0 < x < 7z, giving solutions correct to 3 decimal places.
a cos(x + 02) = -0.3 b tan 2x = 0.5
15 a Find the vertex of the parabola y = x? - 2x + 4.

b Hence show graphically that x> — 2x + 4 > 3 sin x for all real values of x.

CHALLENGE
16 a Sketch the graph of y = 2 cos x for -2z < x < 2x.

b On the same diagram, carefully sketch the line y = 1— 1x, showing its x- and y-intercepts.

¢ How many solutions does the equation 2 cos x = 1 — 1x have?

d Mark with the letter P the point on the diagram from which the negative solution of the equation in
part C is obtained.

e Prove algebraically that if n is a solution of the equation in part ¢, then —2 < n < 6.

17 a What is the period of the function y = sin §x?

b Sketchthe curve y = 1 + sin fx, for0 < x < 4.

¢ Through what fixed point does the line y = mx always pass for varying values of m?

d By considering possible points of intersection of the graphs of y = 1 + sin fxand y = mux, find
the values of m for which the equation sin 7x = mx — 1 has exactly one real solution in the domain
0<x<4

18 The depth of water in Dolphin Bay varies according to the tides. The depth is modelled by the equation

x = 2cos (%t) + 8, where x metres is the depth and ¢ hours is the time since the last high tide. Last

Saturday, it was high tide at 7 am.

a How deep is the bay at high tide?

b How deep is the bay at low tide?

¢ When did the first low tide after 7 am occur?

d At what time last Saturday morning was the depth 9 metres?

19 a i Photocopy this graph of y = sin x,for0 < x < 7, y
and on it graph the line y = 3x. 1‘
ii Measure the gradient of y = sin x at the origin.
lii For what values of k does sin x = kx have a
solution, for 0 < x < #?

b The diagram shows points A and B on a circle with
centre O, where ZAOB = 26, chord AB has length 300 W2 L
metres, and the minor arc AB has length 400 metres.

. . 3 »0 m B
I Show that sin 6 = 36.
ii Use the graph from part a i to determine 6, correct to one decimal place. A y
iii Hence find ZAOB in radians, correct to one decimal place, and show that

the radius of the circle is about 154 metres.

¢ P and Q are two points 300 metres apart. The circular arc PQ has length

¢ metres.
i If C is the centre of the arc and ZPCQ = 2a, show that sin o = M. 300 m
Il Use your answer to part a iii to find the possible range of values of ¢. d
!
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Review activity

e Create your own summary of this chapter on paper or in a digital document.

Chapter 2 Multiple-choice quiz

e This automatically-marked quiz is accessed in the Interactive Textbook. A printable PDF worksheet
/ version is also available there.

Chapter review exercise

1 For each number line, write the graphed interval using:

i inequality interval notation, ii bracket interval notation.
a 2

2 0 2 4

C I Sr—— Y
-2 0 2 4 X

=V
|
)
=)
]
N
=V

2 If f(x) = x2 - land g(x) = x + 1, find:
ai fog(=2) i gof(=2) i fof(=2) iv gog(=2)
b i fog(x) i gof(x) i fof(x) iv gog(x)

3 Find the horizontal asymptotes of these functions by dividing through by the highest power of x in the
denominator, and taking the limit as x — oo and as x — —oo.

1 _x -3 X
af(x)_x+2 bf(x)_2x+5 X2+ 1

4 Lety = x> — 9x% + 18x.
a State the domain using inequality interval notation.
Write down the coordinates of any intercepts with the axes.
Does this function have any asymptotes?
Use this information and a table of values to sketch the curve.

©C Q O T

The graph seems to be horizontal somewhere in the interval 0 < x < 3, and again in the interval
3 < x < 6. Use calculus to find the x-coordinates of these points, and add them to the diagram.

5 Solve each double inequation, then write your answer in bracket interval notation.
a -6<-3x<12 b -2<2x+1<1
c -7<5+4x<7 d -4<1-1x<3

6 Carefully draw the graphs of the LHS and RHS of each equation on the same number plane in order

to find the number of solutions. Do not attempt to solve them.
a x—2=1logmx
b cosx=1-x2

c x(x—2)(x+2) =2 — |x]
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116 Chapter 2 Graphs and equations

7 In each case an unknown function has been drawn. Draw the functions specified below it.

a ya V=) b YA y=P(x)

w 4} (9]
f
I
w

-2-1 1234;
I y=f(x-1 i y=fx +1 i y=Px+1) ii y=Px -1

8 In each case apply the indicated dilation to the corresponding function in Question 7 and draw the
resulting graph.

a i y=f(%x) i y=1fx bi y=P2x) ii y=2Px

9 In each case, completely factor the given polynomial where necessary and hence sketch its graph.
A table of values may also help. Then use the graph to solve f(x) < 0.

a fx)=x+1Dx-3) b f(x) =x(x—-2)x+ 1) cf(x)=x2—4x—5

d f(x) =3 — 2x — x? e f(x) =2x — x> —x3 f fx) = x> + 4x? + 4x
10 Let y = 5 .

x+2)2 —-x)

a State the natural domain.

b Find the y-intercept.

¢ Show that y = 0 is a horizontal asymptote.

d Draw up a table of signs.

e Identify the vertical asymptotes, and use the table of signs to describe its behaviour near them.

f Sketch the graph of the function and state its range using bracket interval notation
11 @ Factor the right-hand side of y = 23x—+3

x4+ 2x — 3

b State the domain and any intercepts with the axes.

¢ Explain why the function is neither even nor odd.
[HINT: The answers to a may help.]

d Find the equations of the asymptotes.

e Sketch the graph of this curve.

12 Solve these equations and inequations algebraically.
a |[2x| =7 b 3x -2 =1 c [3x+ 5] <4 d |[6x + 7] >5

13 Carefully sketch the functions on the LHS and RHS of each inequation on the same number plane. Then

use the graph to solve the inequations.
1

a x—-1>1+1% b > 1 — 2x
1 —x
C |2x] <x+3 d [Ix + 1 >i(x+5)
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14 Write down the equation for each function after the given translations have been applied.
a y=ux% right 2 units, up 1 unit b y = l:left 2 units, down 3 units
€ y = sin x: left § units, down 1 unit d y = e*:right 2 units, up 1 unit

15 In each case identify how the graph of the second equation can be obtained from the graph of the first by
a suitable dilation.

2 1,2 1 1
a y=22-2vandy = b? - b y= dy =
y=x xandy = ix X y= —gandy =
2
¢ y=cosxandy = Lcos d y= andy =
Y x Y = o Y x+ 1 Y x4+ 2

16 Which of these pairs of transformations commute?
a reflection in the y-axis and reflection in the x-axis,
b vertical reflection and vertical translation,
¢ horizontal translation and horizontal dilation,
d vertical translation and horizontal dilation.

17 Identify the various transformations of the standard functions and hence graph each. Make sure the
transformations are applied in the correct order when they do not commute.
a y=4-2° b y=1(x-2?%-1 ¢ y=2sin(x+%) +1
18 Write down the amplitude and period, then sketch the graph for —z < x < 7.
a y=4sin2x b y=3coslx

19 a Explain how the graph of y = tan x can be transformed into the graph of y = 1 — tan x

b Hencesketchy = 1 — tanxfor—7 < x < 7.

20 a Rewrite the function if necessary, then write down a sequence of dilations and translations, in the
order given below Box 29, that will transform y = cos x into:
i y=3cos5x — 2 ii y=4cos4(x+%) iiiy=cos(2x—§) + 1
b What are the period, phase, amplitude and mean value of each function in part b?
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This chapter will use the derivative to extend the systematic approach to sketching curves
developed in Chapter 2 by asking two further questions:

1 Where is the curve sloping upwards, where is it sloping downwards, and where does it
have any maximum or minimum values?

2 Where is the curve concave up, where is it concave down, and are there points of
inflection where the curve changes from one concavity to the other?

These are standard procedures for investigating unfamiliar curves. In particular, the algorithm
for finding the maximum and minimum values of a function can be applied to all sorts of
practical and theoretical questions.

The chapter concludes with a fuller account of primitives than was appropriate in Year 11,
in preparation for integration in Chapter 4.

Curve-sketching software is very useful when studying this chapter, because it can easily
show the effect on the graph of changing the equation of the curve.

Digital Resources are available for this chapter in the Interactive Textbook and Online
Teaching Suite. See the overview at the front of the textbook for details.

N
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3A Increasing, decreasing and stationary at a point 119

Increasing, decreasing and stationary at a point

We have used the terms increasing and decreasing freely so far without precise definitions. This section uses
tangents to formalise the ideas of increasing and decreasing at a point. Later, in Chapter 7, we will use chords
to formalise the ideas of increasing and decreasing over an interval.

Tangents and the behaviour of a curve at a point

At a point where a curve is sloping upwards, the tangent has positive gradient, and y is increasing as x
increases. At a point where it is sloping downwards, the tangent has negative gradient, and y is decreasing as
X increases.

Let f(x) be a function that can be differentiated at x = a.

1 INCREASING, DECREASING AND STATIONARY AT A POINT

Let f(x) be a function that can be differentiated at x = a.
e If f'(a) > 0, then f(x) is called increasing at x = a.
e If f'(a) < 0, then f(x) is called decreasing at x = a.
e If f'(a) = 0, then f(x) is called stationary at x = a.

For example, the curve in the diagram to the right is: A
® increasing at A and G, B
e decreasing at C, E and I, & H
e stationary at B, D, F' and H. A b .
Think about the tangents to the curve at each of E G
the nine points. \'/ >
F
Example 1 3A
=),
Differentiate f(x) = x> — 12x. Hence find whether the curve y = f(x) is increasing, decreasing or
stationary at the point where:
a x=15 b x=2 c x=0
SOLUTION
Differentiating, f'(x) = 3x> — 12.
a f'(5) =75 - 12 > 0, so the curve is increasing at x = 5.
b f(2) = 12 — 12 = 0, so the curve is stationary at x = 2.
¢ f'(0) =0 — 12 < 0, sothe curve is decreasing at x = 0.
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Chapter 3 Curve-sketching using the derivative

Example 2
For what value(s) of x is the curve y = x* — 4x stationary?
SOLUTION
Differentiating, y’ = 453 — 4
=4 - D).

Put y" = 0 to find where the curve is stationary.
Then =1

x = 1.

Example 3

a Differentiate y = (x — 2)(x — 4).

3A

3A

b Hence find the values of x where the curve is stationary, and where it is decreasing. Then sketch the curve.

SOLUTION
a Expanding, y=x2—6x+8,
and differentiating, y’ = 2x — 6
=2(x — 3).
b Whenx = 3,y’ = 0, so the curve is stationary at x = 3.

When x < 3,y’ < 0, so the curve is decreasing for x < 3.

Example 4

a Show that f(x) = x4+ x — lis always increasing.

)

<N
N
=V

&(3,—1)

3A

b Find f(0) and f(1), and hence explain why the curve has exactly one x-intercept.

SOLUTION
a Differentiating, f'(x) = 3x2 + 1.

Because squares can never be negative, f'(x) can never be less than 1, so the function is increasing for

every value of x.

b Substituting, f(0) = —1 and f(1) = 1.

Because f(0) is negative and f(1) is positive, and the curve is continuous, the curve crosses the x-axis

somewhere between 0 and 1.

Because the function is increasing for every value of x, it can never go back and cross the x-axis at a

second point.
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3A Increasing, decreasing and stationary at a point 121

FOUNDATION

1 In the diagram to the right, name the points where: e

a f'x) >0 B

b fi(x) <0 C

c fix)=0 A
2 Find the derivative of each function. By substituting x = 1 b

into the derivative, determine whether the function is increasing,

decreasing or stationary at x = 1.

(A function is increasing at some point on the curve when

d d d
il > 0 there, it is decreasing when d—y < 0 there, and it is stationary when d—y = 0 there.)
X X

dx

a y=ux’ b y=x?-2x c y=3x?- 8

d y=x>-3x+7 e y=x + 5x foy=4x3 - 3x*
3 a Find the derivative f'(x) of f(x) = x2 — 6x + 11.

b Hence find whether the curve y = f(x) is increasing, decreasing or stationary at:

i x=0 i x=1 iimx=3 iv x =4 v x = —1

4 a Find the derivative /' (x) of f(x) = x> — 6x> + 9x.
Hence find whether the curve y = f(x) is increasing, decreasing or stationary at:
I x=0 i x=1 i x=2 ivx=3 v x =-1

=

5 By finding where the derivative is zero, find the x-coordinates of the stationary points of each function.

a y=ux>-2 b y=x>-4x+3 C y=x>+6x+9
d y=2x* - 16x e y=ux — 3x2 fy=x-12
6 a Explain why y = —5x + 2 is decreasing for all x.
b Explain why y = x + 7 is increasing for all x.
¢ Explain why f(x) = x> is increasing for all values of x, apart from x = 0, where it is stationary.
d Explain why f(x) = x2is increasing for x > 0 and decreasing for x < 0. What happens at x = 0?

DEVELOPMENT

7 Differentiate each function using the chain rule. Then evaluate f"(0) to establish whether the curve is
increasing, decreasing or stationary at x = 0.

a fx)=(@x- 1y b f(x) = (2x — 1)* ¢ f(x) = (x* + 3)?

8 Differentiate each function using the product rule. Then evaluate f'(1) to establish whether the curve is
increasing, decreasing or stationary at x = 1.
a f) =@ = 5x+3) b f(x) = (x = 2)(x* +5) ¢ f) =G+ 20 -2

9 Differentiate each function using the quotient rule. Then evaluate f'(2) to establish whether the curve is
increasing, decreasing or stationary at x = 2.

2
X x+ 1 X
a (x) = b (x) = c (x) =
! x+ 1 U x —1 f x + 2
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Chapter 3 Curve-sketching using the derivative

Differentiate each function by first writing it in index form. Then evaluate f'(1) to establish whether the
curve is increasing, decreasing or stationary at x = 1.

a [ = Va b f) = ¢ f) = -+
X X
a Find f’(x) for the function f(x) = 4x — x2.
b For what values of x is:
i f'(x) >0, i f'(x) <0, il f'(x) = 07

¢ Find f(2). Then, by interpreting these results geometrically, sketch y = f(x).

a Find f’(x) for the function f(x) = x? — 4x + 3.
b For what values of x is:

I fl(x) >0, i f'(x) <0, i f'(x) = 07
¢ Evaluate f(2). Then, by interpreting these results geometrically, sketch y = f(x).

Y

Let f(x) = x> — 3x%> — 9x — 2. Show that f/(x) = 3(x — 3)(x + 1).
By sketching a graph of y = f”(x), show that f(x) is increasing when x > 3orx < —1.

(=2

Find the derivative f'(x) of f(x) = O+ 7

Use factoring or the quadratic formula to find the zeroes of f’(x).
Sketch the graph of y = f'(x).

Hence find the values of x for which f(x) is decreasing.

Q O T o

Find the derivative of each function. By solving y’ > 0, find the values of x for which the function is
increasing.
a y=x>—-4x+1 d y=x>-3x2+7

b y=7-6x — x? c y=2x>— 6x

The graphs of four functions a, b, ¢ and d are shown below. The graphs of the derivatives of these
functions, in scrambled order, are shown in I, II, IIT and IV. Match the graph of each function with the
graph of its derivative.

a ) b e c e d yA

v

/w
=
=V

=V
=

=V

/

a Differentiate f(x) = — l, and hence prove that f (x) increases for all x in its domain.
X

b Sketch a graph of f(x) = — % and explain why f(—1) > f(2) despite this fact.
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18 a Use the quotient rule to find the derivative f’(x) of f(x) = 2x 3
x —_—
b Explain why f(x) is decreasing for all x # 3.
3
19 a Use the quotient rule to find the derivative f'(x) of f(x) = 2x .
x“+ 1
b Explain why f(x) is increasing for all x, apart from x = 0 where it is stationary.
20 a Find f'(x) for the function f(x) = 1x® + x* + 5x + 7.
b By completing the square, show that f'(x) = (x + 1)> + 4, and hence explain why f(x) is
increasing for all x.
¢ Evaluate f(—3) and f(0), and hence explain why the curve y = f(x) has exactly one x-intercept.
CHALLENGE
21 Look carefully at each function graphed below to establish where it is increasing, decreasing and

stationary. Hence sketch the graph of the derivative of the function.

a

ye b

VA f

y!

A

c

/

=V

=V

22 a If f(x) = —x> + 2x% — 5x + 3, find f'(x).
b By evaluating the discriminant A, show that f'(x) < 0 for all values of x.

¢ Hence deduce the number of solutions of the equation 3 — 5x + 2% — X3 = 0.

A
Y d

¢ l/N\ e/,
fa N x

23 Sketch possible graphs of continuous curves that have the properties below.

a

S =f(=3) =0,
f(=1) =0,

f'(x) > Owhenx < —1,
f'(x) < Owhenx > —1.

f(x)is odd,

f(3) = 0and f'(1) = 0,
f'(x) > Oforx > 1,
f'(x) < 0for0 < x < 1.
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f2) =12 =0,
f/(x) > Oforall x # 2.

f(x) > 0 for all x,
f(0) =0,

f'(x) < Oforx < O,
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m Stationary points and turning points

Stationary points on a curve that is not a constant function near that point can be classified into four

different types:
Maximum turning point ~ Minimum turning point Stationary point Stationary point

of inflection of inflection

Turning points

The first stationary point is a maximum turning point — the curve turns smoothly from increasing to
decreasing, with a maximum value at the point.

The second stationary point is a minimum turning point — the curve turns smoothly from decreasing to
increasing, with a minimum value at the point.

2 TURNING POINTS

A stationary point is called a turning point if the derivative changes sign around the point.
* At a maximum turning point, the curve changes from increasing to decreasing.
e At a minimum turning point, the curve changes from decreasing to increasing.

Stationary points of inflection

In the third and fourth diagrams above, there is no turning point. In the third diagram, the curve is increasing
on both sides of the stationary point, and in the fourth, the curve is decreasing on both sides.

Instead, the curve flexes around the stationary point, changing concavity from downwards to upwards, or
from upwards to downwards. The surprising effect is that the tangent at this type of stationary point actually
crosses the curve.

3 POINTS OF INFLECTION

* A point of inflection is a point on the curve where the tangent crosses the curve. This means that
the concavity changes from upwards to downwards, or from downwards to upwards, around the point.
* A stationary point of inflection is a point of inflection where the tangent is horizontal. Thus it is
both a point of inflection and a stationary point.
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3B Stationary points and turning points 125

Local or relative maximum and minimum
A local or relative maximum is a point where the curve reaches a maximum in its immediate neighbourhood.
Sometimes there is no tangent at the point — look at points C and [ in the diagram below.

4 LOCAL MAXIMA AND MINIMA

Let A(a,f(a)) be a point on y = f(x). There may or may not be a tangent at A.
* The point A is called a local or relative maximum if

f(x) £ f(a), forall xin some small interval around a.
e Similarly, A is called a local or relative minimum if

f(x) > f(a), for all xin some small interval around a.

Example 5 3B
\——)

Classify the points labelled A-/ in the diagram below.

SOLUTION
C and F are local maxima, but only F'is a maximum turning point.  y,
D and I are local minima, but only D is a minimum turning point. € F
B and H are stationary points of inflection.
A, E and G are also points of inflection, but are not FE_ E G \-H
stationary points. ‘ \/ >
i I
D

Note: The point F is called a maximum turning point rather than a ‘local maximum turning point’. This is because
when we are classifying turning points, we are only ever interested in the immediate neighbourhood of the point.

Analysing stationary points with a table of slopes

Section 2A explained how a function can only change sign at a zero or a discontinuity. Similarly, the
derivative f’(x) can only change sign at a zero or discontinuity of f’(x), meaning a stationary point of f(x)
or a point where f (x) is not differentiable.

This gives a straightforward method for analysing the stationary points. The method also gives an overall
picture of the shape of the function.

5 USING THE DERIVATIVE f'(x) TO ANALYSE STATIONARY POINTS AND SLOPE

1 Find the zeroes and discontinuities of the derivative f'(x).

2 Then draw up a table of test values of the derivative f'(x) dodging around its zeroes and
discontinuities, with the slopes underneath, to see where the gradient changes sign.

The resulting table of slopes shows not only the nature of each stationary point, but also where the

function is increasing and decreasing across its whole domain. This gives an outline of the shape

of the curve, in preparation for a proper sketch.
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126 Chapter 3 Curve-sketching using the derivative _

Example 6 3B

Find the stationary points of the cubic y = x3 — 6x% + 9x — 4, use a table of slopes to determine their
nature, and sketch the curve.

SOLUTION
d
= 3x2 — 12x + 9
dx
= 3()62 — 4x + 3)
=3(x - 1 = 3),
so y’ has zeroes at x = 1 and 3, and no discontinuities. 4
X 0 1 2 3 4 { 3 4/)
v/ 9 0 -3 0 9 i X
slope / - \ _ / i
Whenx =1, y=1-6+9—4 =4 '
=0,
and whenx = 3, y =27 — 54 + 27 — 4
= —4.

Hence (1, 0) is a maximum turning point, and (3, —4) is a minimum turning point.

Note: Only the signs of y’ are relevant, but if the actual values of y’ are not calculated, some other
argument should be given as to how the signs were obtained.
Example 7 3B

Find the stationary points of the quintic f(x) = 3x° — 20x3, use a table of slopes to determine their
nature, and sketch the curve.

SOLUTION
F(x) = 15x* — 60x>
= 15x2 (x> — 4)
= 15x%(x = 2)(x + 2),
so f’(x) has zeroes at x = —2, x = 0 and x = 2, and has no discontinuities. VA

X =3 =2 =1 @ 1 2 3

---164
fi(x) 675 0 —45 0 —45 0 675 ﬁ\é
: 2 5
slope  / _ o -2 \j/ *
= ! —64 1>t

When x = 0, y=0-0=0,

when x = 2 y =96 — 160 = —64
and whenx = -2, y = =96 + 160 = 64.
Hence (-2, 64) is a maximum turning point, (2, —64) is a minimum turning point, and (0, 0) is a stationary

point of inflection.
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3B Stationary points and turning points 127

Note: This function f(x) = 3x> — 20x7 is odd, and it has as its derivative f'(x) = 15x* — 60x2, which
is even. In general, the derivative of an even function is odd, and the derivative of an odd function is even
(see question 18 in Exercise 3B). This provides a useful check.

Finding pronumerals in a function

In this worked example, the pronumerals in a function are found using information about a stationary point
of the curve.

Example 8 3B

The graph of the cubic f(x) = x> + ax? + bxhasa stationary point at A (2, 2). Find a and b.

SOLUTION
To find the two unknown constants, we need two independent equations.
Because f(2) = 2, 2 =8+ 4a + 2b
2a + b = 3. ()
Differentiating, f'(x) = 3x% + 2ax + b,
and because f'(2) = 0, 0=12+ 4a + b
4a + b = —12. 2)
Subtracting (1) from (2), 2a = -9
a=-41,
and substituting into (1), =9 + b = -3
b = 6.

FOUNDATION
1 By finding where the derivative equals zero, determine the x-coordinates of any stationary points of each
function.
a y=x>—6x+38 b y=x>+4x+3 cC y=ux>— 3

2 By finding where the derivative equals zero, determine the coordinates of any stationary points of each
function. (Remember that you find the y-coordinate by substituting the x-coordinate into the original

function.)
a y=x2-—4dx+7 b y=x>-8x+ 16 C y=3x>—6x+1
dy=—x2+2x—1 ey=x3—3x2 fy:x4_4x+1

3 Find the derivative of each function and complete the given table to determine the nature of the
stationary point. Sketch each graph, indicating all important features.

X 1 2 3 by 1 2 3
a y=xt-dx+3 ¥ b y=12 + 4x — x% Y
slope slope
x -4 -3 =2 x -2-10
cC y=x>+6x+8 Y d y=15 - 2x — x% ¥/
slope slope
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128 Chapter 3 Curve-sketching using the derivative _

4 Differentiate each function and show that there is a stationary point at x = 1. Then use a table of test
values of f’(x) to determine the nature of the stationary pointat x = 1.
a f(x)=x>-2x-3 b f(x) =15 + 2x — x2
cf(x)=x3+3x2—9x+2 df(x)=x3—3x2+3x+1

. . . : d o
5 Find the stationary point of each function and use a table of test values of d—y to determine its nature.
N . . x
Sketch each graph, indicating all intercepts with the axes.

a y=x>+4x - 12 b y=5—4x — x?

DEVELOPMENT

d
6 a Show that the derivative of y = x3 — 3x2 is d—y = 3x(x — 2).
X

b Use a table of slopes to show that there is a maximum turning point at (0, 0) and a minimum turning
point at (2, —4).
¢ Sketch the graph of the function, showing all important features.

7 a Show that the derivative of y = 12x — x3is vy =32 - x)(2 + x).
b Use atable of test values of y’ to show that there is a maximum turning point at (2, 16) and a
minimum turning point at (=2, —16).
¢ Sketch the graph of the function, showing all important features.

8 Find the stationary points of each function, then determine their nature using a table of slopes. Sketch
each graph. (You need not find the x-intercepts.)
a y=2x>+4 3x% - 36x + 15 b y=x>+ 4x? + 4x
c y=16 + 4x> — x* d oy =3x* — 16x73 + 24x? + 11

9 a Use the product rule to show thatif y = x(x — 2)3, then vy =22x - H(x - 2)%.
Find any stationary points and use a table of gradients to classify them.
¢ Sketch the graph of the function, indicating all important features.

d
10 a Use the product rule to show that if y = x*(x — 4)%, then dl = 4x(x — 4)(x = 2).
X

b Find any stationary points and use a table of gradients to classify them.
Sketch the graph of the function, indicating all important features.

11 a Use the product rule to show thatif y = (x — 5)2(2x + 1), then y' ' =2(x —5Q@x — 4).
Find any stationary points and use a table of slopes to classify them.
Sketch the graph of the function, indicating all important features.

12 a The tangent to the curve y = x? + ax — 15 is horizontal at the point where x = 4. Find the
value of a.
b The curvey = x? + ax + 7hasa turning point at x = —1. Find the value of a.

13 a Thecurve f(x) = ax’> + 4x + chasa turning point at (—1, 1). Find a and c.
b Findbandcify = x* + bx?> + cx + 5 has stationary points at x = —2 and x = 4.
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14 Thecurve y = ax> + bx + ¢ passes through the points (1,4) and (—1, 6), and there is a maximum

turning point at x = — 1.
a Showthata + b +c=4,a — b +c=6and—a + b = 0.

b Hence find the values of a, b and c.

15 The line y = 2x is the tangent to the curve y = ax? + bx + cat the origin, and there is a maximum
turning point at x = 1.
a Explain why ¢ = 0.
d
b Explain why d—y = 2 when x = 0 and use this fact to deduce that b = 2.
X

¢ Show that 2a + b = 0 and hence find the value of a.

CHALLENGE
3(1 - 1+
16 a If f(x) = —* show that f/(x) = ~L = DT+ 0
x2+ 1 (x2 + 1)?
Hence find any stationary points and determine their nature.
¢ Sketch the graph of y = f(x), indicating all important features.
d Hence state how many roots the equation 5 = c has for:
x=+ 1
i c>3 i c=3 ii0<c<3 ive=0

(Hint: Sketch the horizontal line y = ¢ on the same number plane and see how many times the
graphs intersect.)

17 The function y = ax® + bx? + cx + d has a relative maximum at (=2, 27) and a relative minimum at
(1, 0). Find the values of a, b, ¢ and d using the following steps.
d
a Find d—y and show that3a + 20 + ¢ = 0and 12a — 4b + ¢ = 0.
X
b Using the fact that (1, 0) and (-2, 27) lie on the curve, show thata + b + ¢ + d = O and
—8a + 4b — 2¢ + d = 27. By subtracting, eliminate ¢ from these two equations.
¢ Solve the simultaneous equations 3a + 2b + ¢ = 0,12a — 4b + ¢ = Oand
9a — 3b + 3¢ = -27.
d Find the value of d.

18 a It was claimed just after worked Example 7 that the derivative of an even function is odd. Draw
graphs of some even functions to explain why this is so.
Similarly, draw graphs to explain why the derivative of an odd function is even.
Explain how this works when differentiating powers of x.
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m Second and higher derivatives

The derivative of the derivative of a function is called the second derivative of the function. There are various
notations, including

d’y
dx?

This section reviews the algebra of higher derivatives from Section 8D of the Year 11 book in preparation for

and f"(x) and f @ (x) and y" and y @,

the geometric implications of the second derivative in the next section.

Example 9 3C

Find the successive derivatives of y = PN T R

SOLUTION
d? d*
y=xt+x3+x2+x+ 1 2 1252 4 6x + 2 2 o4
dx? dx*
d d? d>
—y=4x3+3x2+2x+1 7)):24x+6 7}}:0
dx dx3 dx?

Because the fifth derivative is zero, all the higher derivatives are also zero.

Example 10 3C

Find the first four derivatives of f(x) = x ™!, giving each answer as a fraction.

SOLUTION
fx)=—-x2  fr)=22 Ou=-at B =24x7°
__ 1 _ 2 __6 _24
x2 x3 x4 x5

FOUNDATION
1 Find the first, second and third derivatives of each function.
ay=x’ b y=x! c y=x’ d y=x? e y=2ut
foy=3x g y=4 - 3x h y=x>- 3 i y=4 —x? ] oy=4x0 + 2%
2 Expand each product, then find the first and second derivatives.
ay=x(x+3) by=x2(x—4) cy=x-=-2)x+1)
d y=@Gx+2)(x - 5) e y=3x2(2x - 3x?) foy=4a’x + 2%
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DEVELOPMENT
3 Find the first, second and third derivatives of each function.
a y=x% b y=x! c y=x2 d y=5x"3 e y=x>+x!
4 By writing each function with a negative index, find its first and second derivatives.
1 1 3 2
af(x)=—3 bf(x)=—4 ‘3f(x)=*2 df(x)=—3
X X X X
5 Use the chain rule to find the first and second derivatives of each function.
a y=(x+1)7? b y=@3x - 5) c y=(1- 4x)? d y=@8-xl
6 By writing each function with a negative index, find its first and second derivatives.
X+ 2 3 — x)? (5x + 4)° (4 — 3x)°
7 By writing each function with fractional indices, find its first and second derivatives.
a f(x) = Vx b f(x) = Vx ¢ f(x) = xvx
df(x)=L e f(x) =vVx+2 fofx) =+v1 - 4x
Vx
8 a Find f'(x) and f”(x) for the function f(x) = x3 4+ 3x% + 5x — 6.
b Hence evaluate:
i f(0) i (1) i f7(0) v f7(1)
9 a If f(x) = 3x + x>, find:
i f(2) i f"(2) i f"(2) v f"(2)
b If f(x) = (2x — 3)* find:
() i (1) i £ (1) v f"(1)
10 Use the quotient rule to find the first derivative of each function. Then use the chain rule to find the
second derivative.
X x — 1
a == b =
Y x +1 Y 2x + 5
11 Iff(x) = x(x — 1)4, use the product rule to find f'(x) and f"(x).
12 Find the values of x for which y” = 0 if:
a y=x*-6x?+11 b y=x+x>=-5x+7
CHALLENGE
13 a Find the first, second and third derivatives of x".
b Find the nth and (n + 1)th derivatives of x".
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132 Chapter 3 Curve-sketching using the derivative _

m Concavity and points of inflection

Sketched to the right are a cubic function and its first and second derivatives.

These sketches will show how the concavity of the original graph can be
determined from the sign of the second derivative.

y=x3—6)c2+9x=x(x—3)2
y =32 = 12x+ 9 =3(x - D(x - 3)
vy =6x — 12 =6(x—2)

The sign of each derivative tells us whether the function above it is increasing
or decreasing. Thus the second graph describes the gradient of the first, and
the third graph describes the gradient of the second.

To the right of x = 2, the top graph is concave up. This means that as one moves
along the curve to the right from x = 2, the tangent gets steeper, with its gradient
steadily increasing. Thus for x > 2, the gradient function y’ is increasing as x

increases, as can be seen in the middle graph. The bottom graph is the gradient of

w
“V

the middle graph, and accordingly y” is positive for x > 2. 1

Similarly, to the left of x = 2 the top graph is concave down. This means that
its gradient function y’ is steadily decreasing as x increases. The bottom graph Ay
is the derivative of the middle graph, so y” is negative for x < 2.

o

This example demonstrates that the concavity of a graph y = f(x) at any
value x = a is determined by the sign of its second derivative at x = a.

—_

W
0 N g
(\]

6 CONCAVITY AND THE SECOND DERIVATIVE

e If f”(a) is negative, the curve is concave down at x = a.
e If f"(a) is positive, the curve is concave up at x = a.

Points of inflection

As foreshadowed in Section 3B, a point of inflection is a point where the tangent crosses the curve. This
means that the curve curls away from the tangent on opposite sides of the tangent, and this in turn means that
the concavity changes sign around the point.

The three diagrams above show how the point of inflection at x = 2 results in a minimum turning point at x = 2
in the middle graph of y’. Hence the bottom graph of y” has a zero at x = 2 and changes sign around x = 2.

This discussion gives us a method of analysing concavity and finding points of inflection. Once again, we use
the fact that y” can only change sign at a zero or a discontinuity of y”.
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3D Concavity and points of inflection 133

7 USING f”(x) TO ANALYSE CONCAVITY AND FIND POINTS OF INFLECTION

A point of inflection is a point where the tangent crosses the curve.

1 Find the zeroes and discontinuities of the second derivative f”(x).

2 Then use a table of test values of the second derivative f”(x) dodging around its zeroes and
discontinuities, with the concavities underneath, to see where the concavity changes sign.

The table of concavities will show not only any points of inflection, but also the concavity of the
graph across its whole domain.

Before drawing the sketch, it is often useful to find the gradient of the tangent at each point of inflection.
Such tangents are called inflectional tangents.

Example 11 3D

a Find any turning points of f(x) = x — 5x*,
b Draw up a table of concavities. Find any points of inflection and the gradients of the inflectional
tangents, and describe the concavity. Then sketch.

SOLUTION

Here f(x) = x> — 5x* x*(x = 5)
Fi(x) =5x* = 2063 =530 - 4)
fr(x) = 20x3 — 60x% = 20x%(x — 3).

a f'(x) has zeroes at x = 0 and x = 4, and no discontinuities:

X -1 0 1 4 5
fl(x) 25 0 —-15 0 625
slope /  — N/

So (0, 0) is a maximum turning point, and (4, —256) is a minimum turning point.

b f"(x) has zeroes at x = 0 and x = 3, and no discontinuities: y

7 1 0 1 3 4 e
) —80 0 —40 0 320

concavity ~ . — . -

-162

-256

So (3, —162) is a point of inflection, but (0, 0) is not.
Because f(3) = —135, the inflectional tangent has gradient —135.
The graph is concave down for x < 0and 0 < x < 3, and concave up for x > 3.

Note: The example given above is intended to show that f”(x) = 0is NOT a sufficient condition for a
point of inflection. The sign of f”(x) must also change around the point — this happened at x = 3, but not
atx = 0.
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Using the second derivative to test stationary points

If a curve is concave up at a stationary point, then the point is a minimum ya

turning point, as at the point A.

¢

Similarly, if a curve is concave down at a stationary point, then the point is a
maximum turning point, as at the point B. This gives an alternative test of a

stationary point.

\
> e
=V

8 USING THE SECOND DERIVATIVE TO TEST A STATIONARY POINT

Suppose that the curve y = f(x) has a stationary point at x = a.

e If f"(a) > 0, the curve is concave up at x = a, and there is a minimum turning point there.

e If f"(a) < 0, the curve is concave down at x = a, and there is a maximum turning point there.
e If f"(a) = 0, more work is needed. Go back to the table of values of f'(x).

The third dotpoint is most important — all four cases shown on page 124 are possible for the shape of the
curve at x = a when the second derivative is zero there.

The previous example of the point (0,0) ony = x> — 5x* shows that a stationary point where f”(x) = 0
can be a turning point. The next worked example is an example where a stationary point turns out to be a

point of inflection.

Example 12 3D

Use the second derivative, if possible, to determine the nature of the stationary points of the graph of
f(x) = x* — 4x3. Find also any points of inflection, examine the concavity over the whole domain, and

sketch the curve.

SOLUTION

Here, f(x) = x* - 43 = x3(x - 4)
F(x) = 4x3 = 12x% = 4x%(x = 3)
fr(x) = 12x% — 24x = 12x(x — 2),

so f'(x) has zeroes at x = 0 and x = 3, and no discontinuities.

Because f”(3) = 36 is positive, (3, —27) is a minimum turning point, VA
but f(0) = 0, so no conclusion can be drawn about x = 0.
X -1 0 1 3 4 2 3
f[x) =16 0 -8 0 64 4 x
slope \ _ -1
P v 6
So (0, 0) is a stationary point of inflection. =27
f"(x) has zeroes at x = 0 and x = 2, and no discontinuities,
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3D Concavity and points of inflection

X -1 0 1 2 3
f(x) 36 0 -—-12 0 36
concavity — : N : -

So, besides the horizontal inflection at (0, 0),

there is a non-stationary inflection at (2, —16),

and the inflectional tangent at (2, —16) has gradient —16.

The graph is concave down for 0 < x < 2, and concave up for x < 0 and for x > 2.

Finding pronumerals in a function

In this worked example, a pronumeral in a function is found using information about the concavity of the graph.

Example 13 3D

For what values of bisy = x* — bx® + 5x% + 6x — 8 concave down when x = 22

SOLUTION
Differentiating, y = 4x3 — 3bx? + 10x + 6,
and differentiating again, y” = 12x2 — 6bx + 10,
so when x = 2, y" =48 — 12b + 10

= 58 — 12b.
In order for the curve to be concave down at x = 2,

58 — 12b < 0
12b > 58
b > 43

FOUNDATION

1 Complete the table below for the function to the right.
At each point, state whether the first and second
derivatives are positive, negative or zero.

Pomt A B C D E F G H I \-/ E
! F H

Y A
y// G

2 Find f”(x) for each function. By evaluating f”(0), state whether the curve is concave up (f”(x) > 0)
or concave down (f”(x) < 0)atx = 0.
a f(x) = x> = 3x?2 b f(x) = x> + 4x> = 5x + 7
c fx) =x* + 242 =3 d f(x) = 6x — 7x> — 8x*

3 By showing that f'(2) = 0, prove that each curve has a stationary point at x = 2. Then evaluate f”(2)
to determine the nature of the stationary point.

o~
=V

135

af(x)=x2—4x+4 bf()c)=5+4x—x2
c f(x) = X = 12x d f(x) = 23 = 3xr = 12x + 5
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136 Chapter 3 Curve-sketching using the derivative _
%y %y
4 A curve is concave up when —= > 0 and concave down when —— < 0.
dx? dx
a Explain why y = x2 — 3x + 7 is concave up for all values of x.
b Explain why y = —3x% + 2x — 4 is concave down for all values of x.
. . . d 2y 3 2
5 a Find the second derivative - ofy = x> — 3x" — 5x + 2.
dx
b Hence find the values of x for which the curve is:
I concave up,
il concave down.
. .. d 2y 3 2
6 a Find the second derivative — ofy =x7 —x* — 5x + 1.
dx
b Hence find the values of x for which the curve is:
I concave up,
Il concave down.
DEVELOPMENT
7 A function has second derivative y” = 3x3(x + 3)*(x — 2). Determine the x-coordinates of the points
of inflection on the graph of the function.
8 a If fx) = x3 = 3x, show that f(x)=3(kx - 1)+ 1)and f"(x) = 6x.
b By solving f'(x) = 0, find the coordinates of any stationary points.
¢ Examine the sign of f”(1) and f”(—1) to determine their nature.
d Find the coordinates of the point of inflection. Remember that you must show that the sign of f”(x)
changes about this point.
e Sketch the graph of f(x), indicating all important features.
9 a If f(x) = x> — 6x% — 15x + 1, show that f'(x) = 3(x — 5)(x + 1)and f"(x) = 6(x — 2).
b Find any stationary points and use the sign of f”(x) to determine their nature.
¢ Find the coordinates of any points of inflection, testing them with a table of concavities.
d Sketch the graph of f(x), indicating all important features.
10 a Ify = x> = 3x% — 9x + 11, showthaty’ = 3(x — 3)(x + 1)andy” = 6(x — 1).
b Find any stationary points and use the sign of y” to determine their nature.
¢ Find the coordinates of any points of inflection, testing them with a table of concavities.
d  Sketch the graph of the function, indicating all important features.
11 a Ify =3 + 4x> — x* showthaty’ = 4x>(3 — x)and y” = 12x(2 — x).
b Find any stationary points and use a table of test values of y’ to determine their nature.
¢ Find the coordinates of any points of inflection.
d Sketch the graph of the function, indicating all important features.
12 Find the range of values of x for which the curve y = 2x3 — 3x? — 12x + 8is:
a increasing, thatisy’ > 0, b decreasing, thatisy’ < 0,
c concave up, thatis y” > 0, d concave down, thatis y” < 0.
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3D Concavity and points of inflection 137

13 a Ify = x> + 3x> — 72x + 14, find y’ and y".
Show that the curve has a point of inflection at (—1, 88).
Show that the gradient of the tangent at the point of inflection is —75.

Hence find the equation of the tangent at the point of inflection.

Qo O T o

If f(x) = x>and g(x) = x* find f'(x), f"(x), g'(x) and g” (x).

b Both f(x) and g (x) have a stationary point at (0, 0). Evaluate f”(x) and g ”(x) when x = 0. Can you
determine the nature of the stationary points from this calculation?

¢ Use tables of values of f'(x) and g’(x) to determine the nature of the stationary points.

14

<Y

3

15 Find a if the curve y = x> — ax? 4+ 3x — 4 has an inflection at the point where x = 2.

For what values of ais y = x3 + 2ax? + 3x — 4 concave up at the point where x = —17?
Find a and b if the curve y = x* + ax® + bx? has an inflection at (2,0).

For what values of aisy = x* + ax? — x? concave up and increasing when x = 1?

Q O T 9o

16 The diagram to the right shows the graph of the derivative y = f'(x) of the Af(x)
function y = f(x), with domain x > 0.
a State whether the graph of y = f(x) is increasing or decreasing throughout
its domain.
b State whether the graph of y = f(x) is concave up or concave down
throughout its domain.

X

CHALLENGE
17 Sketch a small section of the graph of the continuous function f(x) about x = a if:
a f'(a) > 0and f"(a) > O, b f'(a) > Oand f"(a) < 0,
¢ f'(a) < Oand f"(a) > 0O, d f'(a) < Oand f"(a) < 0.
18 A function has equation y = %x3 - 3x% + 11x - 9.
a Show that the function has no stationary points.
b Show that there is a point of inflection.
¢ How many x-intercepts does the graph of the function have? Justify your answer.
19 A curve has equation y = ax® + bx?> + cx + d and crosses the x-axis at x = —1. It has a turning
point at (0, 5) and a point of inflection at x = 1. Find the values of a, b, ¢ and d.
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3E Systematic curve sketching with the derivative 139

E Systematic curve sketching with the derivative

In Section 2C of the last chapter, we developed a systematic four-step approach to sketching an unfamiliar
curve:
1 domain, 2 symmetry, 3 intercepts and sign, 4 asymptotes

This chapter has used the derivative to examine the gradient and concavity of curves and to find their turning
points and inflections. We can now add these methods to the menu as steps 5 and 6.

Few curves in this course would require consideration of all the points in the summary below. Questions
almost always give some guidance as to which methods to use for any particular function.

9 A SUMMARY OF CURVE-SKETCHING METHODS

1 DomaIn: Find the domain of f(x). (Always do this first.)
2 SYMMETRY: Find whether the function is even or odd, or neither.
3 A INTERCEPTS: Find the y-intercept and all x-intercepts (zeroes).
B SiGN: Use a table of test values of f(x), that is, a table of signs, to find where the function is
positive, and where it is negative.
4 A VERTICAL ASYMPTOTES: Examine any discontinuities to see whether there are vertical
asymptotes there.
B HORIZONTAL ASYMPTOTES: Examine the behaviour of f(x) as x — oo and as x — —oo,
noting any horizontal asymptotes.
5 THE FIRST DERIVATIVE:
A Find the zeroes and discontinuities of f”(x).
B Use a table of test values of f(x), that is, a table of slopes, to determine the nature of the
stationary points and the slope of the function throughout its domain.
6 THE SECOND DERIVATIVE:
A Find the zeroes and discontinuities of f”(x).
B Use a table of test values of f”(x), that is, a table of concavities, to find any points of inflection
and the concavity of the function throughout its domain.
7 ANY OTHER FEATURES:
A routine warning of incompleteness.

The final Step 7 is a routine warning that many important features of functions will not be picked up using
this menu. For example, every parabola has an axis of symmetry, but the even-and-odd test only picks up
that axis of symmetry when it is the y-axis. Even more importantly, the trigonometric functions repeat
periodically, and tests for periodicity are not mentioned.

An example of a curve with turning points and asymptotes

The curve in the worked example below has three asymptotes and a turning point. Such curves are never easy
to analyse, but it is worth having one such example that combines the calculus approaches of the present
chapter with the previous non-calculus approaches.

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party.



140 Chapter 3 Curve-sketching using the derivative _

Example 14 3E

o
x(x —4)°
a Write down the domain of the function.

Consider the curve y =

Use a table of test values to analyse the sign of the function.
¢ Find any vertical and horizontal asymptotes.
2(2 - x)
xXx — 4%

e Find all the zeroes and discontinuities of f’(x). Then use a table of test values of f’(x) to analyse

d Show that the derivative is y’ =

stationary points and find where the function is increasing and decreasing.
f Sketch the curve and hence write down the range of the function.

SOLUTION
a The domain of the functionis x # 0 and x # 4.

b The function is never zero, and it has discontinuities at x = 0 and x = 4.

o -1 0 2 4 5

N |—

1 1
Hence y is positive for x < 0 or x > 4, and y is negative for 0 < x < 4.

¢ The lines x = 0 and x = 4 are vertical asymptotes.
Also,y - 0asx — oo and as x — —oo, so the x-axis is a horizontal asymptote.

d Differentiating using the chain rule, Let u = x> — 4x.
1
x2(x — 4)? .
u
— Hence — = 2x — 4
_ 22(2 .x)z‘ dx
x“(x — 4) dy 1
and —=-—.
du u?
e Hence y’ has a zero at x = 2 and discontinuities at x = 0 and x = 4.
X -1 0 1 2 3 4 5
yooo o5 x5 0 -5 o -5
_ Y
slope / * / \ * \

Thus there is a maximum turning point at (2, - }‘), the curve is increasing

for x < 2 (except at x = 0), and it is decreasing for x > 2 (except at x = 4). x
f The graph is sketched to the right.
; 1
From the graph, the rangeisy > Oory < — ;.
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3E Systematic curve sketching with the derivative 141

FOUNDATION
1 The diagram to the right shows a sketch of y = 6x2 — x>. The curve cuts the o6l -
x-axis at A, and it has a maximum turning point at B and a point of inflection at C. B
a Find the coordinates of A. c
b Find the coordinates of B.
¢ Find the coordinates of C. A
X
2 The diagram to the right shows a curve y = f(x). From the sketch,
find the values of x for which: A
a f'(x) =0, ((2’2)
b f"(x) =0,
¢ f(x) is increasing, .
d f"(x) > 0. -2 4\ X
3 a Find the x-intercepts of the parabola y = x> — 5x — 14. (You may use L
either factoring or the quadratic formula.) 1,-2)
b By putting x = 0, find the y-intercept.
d
¢ Solve d—y = 0 and hence find the coordinates of the stationary point.
X
%y
d By examining the sign of — establish the nature of the stationary point.
dx
e Sketch the graph of the function, indicating all important features.
4 Using the steps outlined in the previous question, sketch the graphs of:
a y=ux>— 8 b y=6—x— x?
DEVELOPMENT

5 a Showthaty = 27x — x3 is an odd function. What symmetry does its graph display?
b Show thaty’ = 3(9 — x*)and y” = —6x.
Find the coordinates of the stationary points. Then determine their nature, either by examining the
sign of f”(3) and f”(—3), or by means of a table of test values of y"'.
Show, using a table of test values of y”, that x = 0 is a point of inflection.
By substituting into the gradient function y’, find the gradient at the inflection.
f  Sketch the graph of the function, indicating all important features.

6 a If f(x) = 2x> — 3x% + 5, show that f'(x) = 6x(x — 1)and f"(x) = 6(2x — 1).
b Find the coordinates of the stationary points. Then determine their nature, either by examining the
sign of f”(0) and f”(1), or by means of a table of test values of y"'.
¢ Explain why there is a point of inflection at x = 1, and find the gradient there.
d Sketch the graph of f(x), indicating all important features.

7 Find the first and second derivatives of each function below. Hence find the coordinates of any stationary
points and determine their nature. Then find any points of inflection. Sketch the graph of each function.
You do not need to find the x-intercepts in part b.

a y=ux(x—6)> b y=x3—-3x2-24x+5
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142 Chapter 3 Curve-sketching using the derivative _

Ify = 12x° — 3x* + 11, show that y’ = 12x?>(3 — x)and y” = 36x(2 — x).

By solving y’ = 0, find the coordinates of any stationary points.

By examining the sign of y”, establish the nature of the stationary point at x = 3. Why does this
method fail for the stationary point at x = 0?

Use a table of test values of y' to show that there is a stationary point of inflection at x = 0.
Show that there is a change in concavity at x = 2.

O T o

f  Sketch the graph of the function, showing all important features.

9 Using the method outlined in the previous question, sketch y = x* = 16x3 + 7242 + 10.

CHALLENGE

Note: The next three questions involve functions that may have both turning points and asymptotes. As a
consequence, the analysis of each function is quite long and complicated.

is flo) = - — 2%
2% -4 (x* - 4
b Show that y = f(x) has a stationary point at x = 0. Then determine its nature, using a table of test
values of f'(x).
¢ Show that the function is even. What sort of symmetry does its graph have?
State the domain of the function and the equations of any vertical asymptotes.
What value does f(x) approach as x — oo and as x — —oo? Hence write down the equation of the
horizontal asymptote.
f Sketch the graph of y = f(x), showing all important features.
g Use the graph to state the range of the function.

10 a Show that the derivative of f(x) =

2
Y s fi(x) = — X+ 4

2% -4 (2 — 42
b Explain why the curve y = f(x) has no stationary points, and why the curve is always decreasing.
2x3 + 24x

(x? — 4)}

11 a Show that the derivative of f(x) =

¢ Given that f"(x) = , show that (0, 0) is a point of inflection. Then find the gradient of the

tangent at this point.

State the domain of the function and the equations of any vertical asymptotes.

What value does f(x) approach as x becomes large? Hence write down the equation of the horizontal
asymptote.

Show that the function is odd. What symmetry does its graph have?

Use a table of test values of y to analyse the sign of the function.

Sketch the graph of y = f(x), showing all important features.

- g =

Use the graph to state the range of the function.

. 1. x2 =1
Show that the derivativeof y = x + —isy’ = .
X X

12

Q0

Find the stationary points and determine their nature.

Show that the function is odd. What symmetry does its graph have?

State the domain of the function and the equation of the vertical asymptote.
Use a table of test values of y to analyse the sign of the function.

- 00 Q O T

Sketch the graph of the function. (You may assume that the diagonal line y = x is an asymptote to
the curve. This is because for large x, the term 1/x is very close to zero.)
g Write down the range of the function.
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m Global maximum and minimum

Australia has many high mountain peaks, each of which is a local or relative maximum, because each is the
highest point relative to other peaks in its immediate locality. Mount Kosciuszko is the highest of these, but
it is still not a global or absolute maximum, because there are higher peaks on other continents of the globe.
Mount Everest in Asia is the global maximum over the whole world.

10 GLOBAL MAXIMUM AND MINIMUM

Let A (a,f(a)) be apointon acurve y = f(x).

e The point A is a global or absolute maximum if
f(x) < f(a), forall xin the domain.

e Similarly, A is a global or absolute minimum if
f(x) > f(a), forall xin the domain.

The following diagrams illustrate what has to be considered in the general case.

In the upper diagram, the domain is all real numbers.
e There are local maxima at the point B, where f’(x) is undefined, and at the
turning point D. This point D is also the global maximum.

e There is a local minimum at the turning point C, which is lower than all

points on the curve to the left past A. There is no global minimum, however,
because the curve goes infinitely far downwards to the right of E.

In the lower diagram, the domain is the closed interval on the x-axis from P to V.

® There are local maxima at the turning point R and at the endpoint P. There
is no global maximum, however, because the point 7" has been omitted from
the curve.

¢ There are local minima at the two turning points Q and S, and at the endpoint V.
These points Q and S have equal heights and are thus both global minima.

Q S

Testing for global maximum and minimum

These examples show that there are three types of points that must be considered and compared when finding
the global maximum and minimum of a function f (x) defined on some domain.

11 TESTING FOR GLOBAL MAXIMUM AND MINIMUM

Examine and compare:

* turning points,

e boundaries of the domain (or the behaviour for large x),

e discontinuities of f'(x) (to pick up sharp corners or discontinuities).

More simply, examine and compare turning points and boundary points — and discontinuities if there are any.

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party.



144 Chapter 3 Curve-sketching using the derivative

Example 15

Find the absolute maximum and minimum of f(x) = 4x — x2

Note: Calculus is not needed here because the function is a quadratic.

SOLUTION

The graph is a concave-down quadratic.

Factoring, f(x) = x(4 — x), so the x-intercepts are x = 0 and x = 4.
Taking their average, the axis of symmetry is x = 2,

and substituting, the vertex is (2, 4).

Hence, from the sketch, the absolute maximum is 4 at x = 2,

and the absolute minimum is 0 at the endpoints where x = 0 or 4.

Example 16
\e—— )

over the domain 0 < x < 4.

3F
y!
4
2 4 x
3F

Find the global maximum and minimum of the function f(x) = x> — 6x% + 9x — 4, Where% <x <5

SOLUTION

The unrestricted curve was sketched in Section 3B
(worked Example 6), and substituting the boundaries,

f3)=-1 and £(5) = 16.
Hence the global maximum is 16, at x = 5,
and the global minimum is —4, at x = 3.

(3.4)

FOUNDATION

1 In the diagrams below, classify each labelled point as one of the following: (i) global maximum,
(i1) global minimum, (iii) local maximum, (iv) local minimum, (v) horizontal point of inflection.

a VA b

A c A c ya

G

A i

Bk ;

=V

=V
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3F Global maximum and minimum 145

Sketch each function and state its global minimum and maximum in the specified domain.

y:xz,—2§x§2 y=5-x0<x<3
y=v16 —x*>, -4 <x<4 y=|x[,-5<x<1
y=vVx0<x<38 y=1/x,—4 <x<-1
-1, forx < =2,
y=+x+1, for-2 <x < I,
2, forx > 1.

Sketch the graph of each function, clearly indicating any stationary points. Determine the absolute

minimum and maximum of the function in the specified domain.
y=x2—4x+3,0§x§5 y=x3—3x2+5—3§x§2
y=3x3—x+2,—l§x§1 y=x3—6x2+12x,05x53

Find (i) any local maxima or minima, and (ii) the global maximum and minimum of the function

y = x* — 8x2 + 11 for each domain.

1<x<3 -4 <x<1 -1 <x<0
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m Applications of maximisation and minimisation

Here are some of many practical applications of maximisation and minimisation.
e Maximise the volume of a box built from a rectangular sheet of cardboard.

® Minimise the fuel used in a flight.

e Maximise the profits from manufacturing and selling an article.

® Minimise the amount of metal used in a can of soft drink.

Such problems can be solved using calculus, provided that a clear functional relationship can first be
established.

12 MAXIMISATION AND MINIMISATION PROBLEMS

Usually a diagram should be drawn. Then:

1 Introduce the two variables from which the function is to be formed.
‘Let y (or whatever) be the quantity that is to be maximised,
and let x (or whatever) be the quantity that can be varied.’

2 Form an equation in the two variables, noting any restrictions.

3 Find the global maximum or minimum.

4 Write a careful conclusion.

Note: A claim that a stationary point is a maximum or minimum must always be justified by a proper
analysis of the nature of the stationary point.

Example 17 3G

An open rectangular box is to be made by cutting square corners out of a square piece of cardboard
measuring 60 cm X 60 cm, and folding up the sides. What is the maximum volume of the box, and what
are its dimensions then?

SOLUTION
Let V be the volume of the box, and let x be the side lengths of the cut-out squares.
Then the box is x cm high, with base a square of side length 60 — 2x, *
50 V = x(60 — 2x)? ,
= 3600x — 240x2 + 4x3, where 0 < x < 30. 00 =2x
Differentiating, V' = 3600 — 480x + 12x>
= 12(x — 30)(x — 10), *
so V' has zeroes at x = 10 and x = 30, and no discontinuities. x 60-2x x

Also, V" = —480 + 24x,

so V”(10) = =240 < 0and V" (30) = 240 > 0.

Hence (10, 16000) is the global maximum in the domain 0 < x < 30,

and the maximum volume is 16000 cm® when the box is 10 cm X 40 cm X 40 cm.
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Example 18
A certain cylindrical soft drink can is required to have a volume of 250 cm?.

a Show that the height of the can is Eg, where r is the base radius.
zr

b Show that the total surface area is S = 27r2 + @

¢ Show thatr = il gives a global minimum of S in the domain » > 0.
T3

3G

d Show that to minimise the surface area of the can, the diameter of its base should equal its height.

SOLUTION
a Let the height of the can be 4 cm.

Then volume = 7zr2h

250 = 7r2h
h=20
7[}’2

b Each end has area zr 2 and the curved side has area 2nrh, SO
S = 27r? + 27rh

= 27r? + 27r X 2
zr
= 271r? + 5&, where r > 0.
r
¢ Differentiating, 2 = 4nr — 20y
dr 72
_ 4zr? — 500
r2
. . . ds
To find stationary points, put ol 0
r
4zr® = 500
P3 =125
/4
5
r=—.
1
T3
2
Differentiating again, D 4r + 1000 ,
dr? r?

which is positive for all » > 0.
Hence the stationary point is a global minimum in the domain » > 0.
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148 Chapter 3 Curve-sketching using the derivative _

d Whenrzil, hzﬁ
w5 r? i

250 | 7
T 25
10
1
73
= 2r.
Hence the minimum surface area occurs when the diameter equals the height.

Cost and time problems

There is often an optimum speed at which the costs of running a boat or truck are minimised.
* At slow speeds, wages and fixed costs rise.
e At high speeds, the costs of fuel and wear rise.

If some formula for these costs can be found, calculus can find the best speed.

Example 19 3G

The cost C (in dollars per hour) of running a boat depends on the speed v km/h of the boat according
to the formula C = 500 + 40v + 5v>.

50000

a Show that the total cost for a trip of 100 kmis 7 = + 4000 + 500v.

b What speed will minimise the total cost of the trip?

SOLUTION
a Because time = dlstance’ the time for the trip is @hours.
speed Y
Hence the total costis 7 = (cost per hour) X (time for the trip)
= (500 + 40v + 51?) x 10
= 50800 + 4000 + 500v, wherev > 0.
b Differentiating, T 100 + 500
dv 2
_500(=100 + v?)
v2
_500(v = 10)(v + 10)
= 2 ,

SO j— has a single zero at v = 10 in the domain v > 0, and no discontinuities.
v

d*T _ 100000

dv? v3

sov = 10 gives a global minimum in the domain v > 0.

Differentiating again, , which is positive for all v > 0,

Thus a speed of 10 km/h will minimise the cost of the trip.
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FOUNDATION

Note: You must always prove that any stationary point is a maximum or minimum, either by creating a table
of test values of the derivative, or by substituting into the second derivative. It is never acceptable to assume
this from the wording of a question.

1 Attime ¢ seconds, a particle has height h = 3 + r — 2t2 metres.
a Find % and show that the maximum height occurs after 0.25 seconds.
b Find the maximum height.

2 a Giventhat P = xyand 2x + y = 12, show that P = 12x — 2x°.

b Find le—P and hence determine the value of x that maximises P.
X

¢ Hence find the maximum value of P.
3 a Giventhat Q = x> + y?andx + y = 8, show that O = 2x? — 16x + 64.
d
b Find d—Q and hence determine the value of x that minimises Q.

X
¢ Hence find the minimum value of P.

4 A rectangle has a fixed perimeter of 20 cm. Let the length of the rectangle be x.
a Show that the width of the rectangle is 10 — x.
b Hence show that the area of the rectangle is givenby A = 10x — x2.
¢ Find le—A and hence find the value of x that maximises A.
X
d Hence find the maximum possible area of the rectangle.

5 A landscaper is constructing a rectangular garden bed. Three of the sides are to be fenced using
40 metres of fencing, while an existing wall will form the fourth side of the rectangle.
a Let x be the length of each of the two sides perpendicular to the wall. Show that the side parallel to
the wall has length 40 — 2x.
b Show that the area of the garden bed is given by A = 40x — 2x2.
¢ Find ZZZ—A and hence find the value of x that maximises A.
X
d Find the maximum possible area of the garden bed.

6 The quantity V of vitamins present in a patient’s bloodstream ¢ hours after taking the vitamin tablets is

givenby V = 4t% — 13, for0 < ¢ < 3. Find % and hence determine when the quantity of vitamins in
the patient’s bloodstream is at its maximum.
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DEVELOPMENT

10

11

12

A rectangle has a constant area of 36 cm?.

a If x is the length of the rectangle, show that the width is 3)76 .

b Show that the perimeter of the rectangle is given by P = 2x + 72 .
X

P )

¢ Show that Ir 2 - and hence that the minimum value of P occurs at x = 6.

X X
d Find the minimum possible perimeter of the rectangle.

A farmer has a field of total area 1200 m>. To keep his animals separate,

he sets up his field with fences at AC, CD and BE, as shown in the diagram.

The side AD is beside a river, so no fence is needed there. The point B is the

midpoint of AC, and CD is twice the length of BE. Let AB = xand BE = y.

a Show that the total length of fencing is L = 2x + liﬂ .

b Hence find the values of x and y that allow the farmer to use the least
possible length of fencing.

A window frame consisting of six equal rectangles is illustrated to the right.
Only 12 metres of frame is available for its construction.
a If the entire frame has height 4 metres and width w metres, show that
w = 1(12 = 3h).
b Show that the area of the window is A = 3h — %hz.

= =
Sln ]

2y

¢ Find % and hence find the dimensions of the frame for which the area of the window is maximised.

A 10 cm length of wire is cut into two pieces from which two squares are formed.

a If one piece has length x, find the side length of each square.

b Show that the combined area of the two squares is A = é(x2 — 10x + 50).

¢ Find CZZ—A and hence find the value of x that minimises A.
X

d Find the least possible combined area.

The total cost of producing x telescopes per day is given by C = (%x2 + 15x + 10) dollars, and each

telescope is sold for a price of (47 - %x) dollars.

a Find an expression for the revenue R raised from the sale of x telescopes per day.
b Find an expression for the daily profit P = R — C made if x telescopes are sold.
¢ How many telescopes should be made daily in order to maximise the profit?

The sum of the height / of a cylinder and the circumference of its base is 10 metres.

a Show thath = 10 — 2ar, where r is the radius of the cylinder.

b Show that the volume of the cylinderis V = ar? (10 = 27r).

¢ Find % and hence find the value of r at which the volume is a maximum.
r

d Hence find the maximum possible volume of the cylinder.
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13 A closed cylindrical can is to have a surface area of 60z cm?.

30 — r2

a Let the cylinder have height / and radius r. Show that A = .

b Show that the volume of the canis V = zr(30 — r?).

¢ Find % and hence find the maximum possible volume of the can.
r

14 A box with volume 32 cm?> has a square base and no lid. Let the square base have length x and the box

have height A.
a Show that the surface area of the box is S = x2 + 4xh.
b Show thath = % and hence that S = x2 + 1i—8

X
¢ Find the dimensions of the box that minimise its surface area.

15 a An open rectangular box is to be formed by cutting squares of side length x cm from the corners of
a rectangular sheet of metal that has length 40 cm and width 15 cm. Express the width, length and
height of the box in terms of x.
b Show that the volume of the box is given by V = 600x — 110x? + 4x°.

¢ Find Z—V and hence find the value of x that maximises the volume of the box.
x

16 The steel frame of a rectangular prism, as illustrated in the diagram, is three times I
as long as it is wide. Y

a Find an expression, in terms of x and y, for the length of steel S required to ] =1
X

1458 and hence show that § = 16x + 58?2.

X X

construct the frame.

b The prism has a volume of 4374 m?>. Show that y =

16(x3 - 72
¢ Show that ? = 6()6—379) and hence find the dimensions of the frame so that the minimum
X X

amount of steel is used.

17 Engineers have determined that the strength s of a rectangular beam varies as
the product of the width w and the square of the depth d of the beam; that is,
s = kwd? for some constant k > 0.
a A particular cylindrical log has a diameter of 48 cm. Use Pythagoras’ theorem
to show that s = kw (2304 — w?). 0
b Hence find the dimensions of the strongest rectangular beam that can be cut from

B

the log.

CHALLENGE

18 A closed rectangular box has length x cm, width y cm and height 4 cm. It is to be made from 300 cm? of
thin sheet metal, and the perimeter of the base is to be 40 cm.
a Show that the volume of the box is given by V = 150k — 2042
b Hence find the dimensions of the box that meets all the requirements and has the maximum possible
volume.
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A cylinder of height 4 cm and radius » cm is enclosed in a cone of , A

height 40 cm and radius 12 cm.
a Explain why AABC ||| AADE.
b By using ratios of corresponding sides, show that h = 40 — 2r.

¢ Show that the volume of the cylinder is given by V = 40 ar? — g—oﬂr3 .

40 cm

d Find ? and hence find the value of r for which the volume of the n
r

cylinder is maximised. \

12 cm

In the diagram to the right, PORS is a rectangle with sides PQ = 6 cm and U
OR = 4 cm. The side SP is extended to 7', and the side SR is extended to U,
so that 7, Q and U are collinear. Let PT = xcm and RU = y cm. 4 cm
a Show that xy = 24.

. 48 6 cm
b Show that the area of ATSU is givenby A = 24 + 3x + P’y
¢ Hence find the minimum possible area of ATSU. N p T

A page of a book is to have 80 cm? of printed material. There is to be a 2 cm margin at the top and
bottom and a 1 cm margin on each side of the page. Let the page have width x and height y.

80
x -2

a Show that (y — 4)(x — 2) = 80 and hence thaty = 4 +
4x* + T2x
x =2
¢ Use the quotient rule to show that % = 4 (xz(x— _4x2)—2 36) .
d What should be the dimensions of the page in order to use the least amount of paper?

b Show that the area of the pageis A =

A transport company runs a truck from Hobart to Launceston, a distance of 250 km, at a constant speed
of v km/h. For a given speed v, the cost per hour is 6400 + vZ cents.

a Show that the cost of the trip, in cents, is C = 250 (6400 + v).
v

b Find the speed at which the cost of the journey is minimised.

¢ Find the minimum cost of the journey.

A man in a rowing boat is presently 6 km from the nearest point A < 20km—>

. . . k
on the shore. He wants to reach, as soon as possible, a point B that is a A Jx o B

further 20 km along the shore from A.
a He can row at 8 km/h and he can run at 10 km/h. He rows to a point on

6 km

the shore x km from A, and then he runs to B. Show that the time taken
for the journey is T = (V36 + x? + (20 = x).
(Hint: Recall that time = distance/speed.)

b The boundaries of the domain in this situation are x = 0 (in which case he rows directly to A), and
x = 20 (in which case he rows all the way to B). Find the values of T, correct to two decimal places
where necessary, corresponding to these boundary conditions.

man

¢ Use calculus to show that 7 has a local minimum at x = 8.
d Hence find the minimum possible time for the journey.
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m Primitive functions

This section reverses the process of differentiation and asks, “What can we say about a function if we know
its derivative?” The results of this section will be needed when integration is introduced in Chapter 4.

This topic was briefly mentioned in Section 8D of the Year 11 book, but without any terminology or
formulae, and we begin the discussion again here.

Functions with the same derivative
Many different functions may all have the same derivative. For example, all these functions have the same
derivative 2x:

x2, x2 + 3, x2 -2, X2+ 41, X2 -z

These functions are all the same apart from a constant term. This is true generally — any two functions with
the same derivative differ only by a constant.

13 FUNCTIONS WITH THE SAME DERIVATIVE

A If a function f (x) has derivative zero in an interval a < x < b, then f(x) is a constant function in
a<x<b.

B If f/(x) = g’(x) for all x in an interval a < x < b, then f(x) and g(x) differ by a constant in
a<x<b.

Proof

A Because the derivative is zero, the gradient of the curve is zero throughout the interval.
The curve is therefore a horizontal straight line, and f(x) is a constant function.

B Take the difference between f(x) and g (x) and apply part A.
Let h(x) = f(x) — g(x).
Then h'(x) = f'(x) = g'(x)
= 0, forall xintheintervala < x < b.
Hence by part a, h(x) = C, where C is a constant,
SO f(x) — g(x) = C, asrequired.

The family of curves with the same derivative
Continuing with the very first example, the various functions whose derivatives are 2x are all of the form
fx) = X2+ C, where C is a constant.

By taking different values of the constant C, these functions form an infinite family of curves, each
consisting of the parabola y = x translated upwards or downwards.
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154
Initial or boundary conditions
If we know also that the graph of the function passes through a particular point, VA
say (2, 7), then we can evaluate the constant C by substituting the point into 7
f) =x*+C,
7=4+C /
Thus C = 3 and hence f(x) = x2 4+ 3—in place of the infinite family of 3 ’
functions, there is now a single function. \
Such an extra condition is called an initial condition or boundary condition. 2,%
Primitives -3
We need a suitable name for the result of this reverse process. The words
primitive and anti-derivative are both used. -6
14 A PRIMITIVE OF A FUNCTION
* A function F'(x) is called a primitive or an anti-derivative of f (x) if the derivative of F'(x) is f(x),
F'(x) = f(x).
e If F(x)is any primitive of f (x) then the general primitive of f (x) is
F(x) + C, where C is a constant.
The general primitive of f(x) is also called just the primitive of f(x). For example, each these functions is a
primitive of x2 4 1,
%x3+x, %x3+x+7, %x3+x—13, %x3+x+47t,
whereas the primitive of x2 + lis %x3 + x + C, where C is a constant.
A rule for finding primitives
We have seen that a primitive of x is %xz, and a primitive of x2is %x3. Reversing the formula
di(x”"']) = (n + 1)x" gives the general rule:
x
15 FINDING PRIMITIVES
d
r 2- x", wheren # —1,
dx
xn+1
then y = + C, for some constant C.
n+1
‘Increase the index by 1 and divide by the new index.’
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Example 20 3H

Find the primitives (or anti-derivatives) of:

Al R R N | b 5x3 + 7
SOLUTION
a Let Zi]c=x3+x2+x+1. b Let f(x)=5x>+7.
Then y =1x*+1x3 +1x2 + x + C, Then f(x) = 3x* + 7x + C,
for some constant C. for some constant C.

Example 21 3H

Rewrite each function with negative or fractional indices, and find the primitive.

ai b\/;c

)
SOLUTION
a Let fix) =
)
= x_2
Then f(x) = —x~!' + €, where Cis a constant,
- _L.@
X

b Let Q:\/;
dx ,

= Xx2.

3
Then y = %xi + C, where C is a constant.

Linear extension

Reversing the formula di(ax + b)) = a(n + 1)(ax + b)" gives:
X

16 EXTENSION TO POWERS OF LINEAR FUNCTIONS

d
r 2= (ax + b)", wheren # —1,
dx

_ (ax + b)"+1
T oan+ 1)

then + C, for some constant C.

‘Increase the index by 1, then divide by the new index and by the coefficient of x.’
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Example 22 3H
=),

Find the primitives of:

a (Gx+ D b (1 — 3x)° c L d Vx+ 1
(x + 1)?
SOLUTION
d d
a Let 2= (Gx+ 1 b Let == (1 - 3xS
dx dx
3x + 1) 1 - 3x)
Then y= X+t D L ¢ Then y= S = L ¢
5% 3 7 %X (=3)
where C is a constant, where C is a constant,
(3x + 1) (1 — 3x)’
=" 7 4L C. =-——" 4+ C.
5 J T
d d
c Let —yzé d Let y=\/x+1
dx  (x + 1)? dx 1
= (x+ D72 = (x + 1),
! 1)
Then y=%+€, Then y=w+C,
2
where C is a constant, where C is a constant,
3
_ 1 L C y=%(x+1)2+C.
x + 1

Finding the primitive, given an initial condition
If the derivative of a function is known, plus an initial condition (or boundary condition), then substitute the
condition into the general primitive to find the constant, and hence the original function.

17 FINDING A FUNCTION, GIVEN ITS DERIVATIVE AND AN INITIAL CONDITION

 First find the primitive, taking care to include the constant of integration.
¢ Then substitute the known value of the function to work out the constant.

Example 23 3H

dy

Given that ol 6x> 4+ 1,and y = 12 when x = 2, find y as a function of x.
X

SOLUTION
I7)

So 2= 2 + 1,
dx
y = 203 + x + C, for some constant C.

substitutingx = 2andy = 12, 12 = 16 + 2 + C,

so C = —6, and hence y = 2% + x — 6.
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Example 24 3H

Given that f”(x) = 12(x — 1)% and £(0) = £(1) = 0, find f(4).

SOLUTION
We know that fr(x) = 12(x — 1)~
Taking the primitive, f(x) =4x — 1)3 + C, for some constant C,
and taking the primitive again, f(x) = (x — )* + Cx + D, for some constant D.
Because f(0) = 0, 0=1+0+D

D= —1.
Because f(1) = 0, 0=0+C - 1.
Hence C = 1, so f4) =81 +4 -1

= 84.

FOUNDATION

1 Find the primitive of each function.

a x° b x3 c x0 d 3x e 5 f 5x° g 21x° h 0
2 Find the primitive of each function.

a x2 + x4 b 4x3 — 5x* c 2x% + 5x’

d x? —x+1 e 3 — 4x + l6x’ fo3x? — 4xd - 5x*
3 Find the primitive of each function, after first expanding the product.

a x(x—=13) b x+1x-2) c Bx—-1Dx+ 4

d x2(5x3 = 4x) e 2x0(4x* + 1) fo(x=301+x%
4 Find y as a function of x if:

a y = 2x + 3and: i y=3whenx =0, ii y=8whenx = 1.

b y' = 9x% + 4 and: i y=1whenx =0, ii y=5whenx = 1.

c y =3x2 — 4x + 7and: i y=0whenx =0, ii y=—1whenx = 1.

DEVELOPMENT

5 Write each function using a negative power of x. Then find the primitive function, writing it as a fraction
without a negative index.
1

a — b L c — 2 d - % e % b
X x3 x3 X X x3
6 Write each function using a fractional index, and hence find the primitive.

a\/;c bi c% dl e\s/;
Vx Vx

d
7 Find y as a function of x if d—y = V/x and:
X

a y=lwhenx =0, b y=2whenx = 9.

157
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8 Find each family of curves whose gradient function is given below. Then sketch the family, and find the
member of the family passing through A (1, 2).

d d d d
Y Y _ 3 ¢ =32 a1
dx dx dx dx 2
. d + by't! .
9 Recall that 1f—y = (ax + b)",theny = u + C, for some constant C. Use this result to find
dx a(n + 1)
the primitive of each function.
a (x+1)7° b (x —2) ¢ (x + 57 d (2x + 3)* e (3x — 4)°
f o5y — 1) g (1 —x3 h (1 = 7x) . j — 1
(x - 2)* (1 -x'"

1

10 Find the primitive of each function. Use the rule given in the previous question and the fact that Vu = u.

Vx + 1 b vx -5 c V1 —x d vV2x = 7 e V3x — 4

a
11 a Findyify’ = (x — 1)* giventhaty = O when x = 1.
b Findyify" = 2x + 1), given thaty = —1 when x = 0.
¢ Findyify = v2x + 1, giventhaty = ! whenx = 0.

d
12 a Find the equation of the curve through the origin whose gradient is d—y =3x* — x4+ 1
X

d
b Find the curve passing through (2, 6) with gradient function d—y =2 + 3x? - x>

X
¢ Find the curve through the point (%, 1) with gradient function y’ = (2 — 5x)°.

d
13 Find yif d—); =83 — 612 + 5, and y = 4 when ¢t = 0. Hence find y when ¢t = 2.

CHALLENGE

n+1
T provided that n # —1. Why can’t this rule be used whenn = —1?

14 The primitive of x" is

15 Findyify” = 6x + 4, giventhat whenx = 1,y’ = 2andy = 4.
(Hint: Find y’ and use the condition y’ = 2 when x = 1 to find the constant of integration. Then find y
and use the condition y = 4 when x = 1 to find the second constant.)

16 A function f(x) has second derivative f”(x) = 2x — 10. Its graph passes through the point (3, —34),
and at this point the tangent has a gradient of 20.
a Show that f/(x) = x> — 10x + 41.
b Hence find f(x), and show that its graph cuts the y-axis at (0, —121).

17 Ify” = 8 — 6x, show that y = 42 — 3+ Cx + D, for some constants C and D. Hence find the
equation of the curve given that it passes through the points (1, 6) and (-1, 8).

18 In Question 8d above, you showed that the curve with derivative f'(x) = — % passing through A (1,2)
X
isy = 1 + 1. This is not strictly true, because the asymptote at x = 0 allows the two branches of the
x

curve to move independently so that each branch has its own arbitrary constant.

% + 1, forx > 0,

a Prove that the function g (x) = also satisfies the two conditions of Question 8d.
—+ 7, forx < 0,
X

b Find the piecewise-defined equation of the function /4 (x) with the same derivative h'(x) = — lz

passing through the points A (2,5) and B(—1,0).

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party.



Chapter 3 Review

Review activity

e Create your own summary of this chapter on paper or in a digital document.

Chapter 3 Multiple-choice quiz

e This automatically-marked quiz is accessed in the Interactive Textbook. A printable PDF worksheet
/ version is also available there.

Chapter review exercise

1 1In the diagram to the right, name the points where: D
a f'(x) >0 b f/(x) <0 c f/[ix)=0 C
d f"(x) > 0 e f'(x) <0 f f(x) =0 A ENF 4
2 a Find the derivative f'(x) of the function f(x) = x> — x> — x — 7. b G
b Hence find whether f(x) is increasing, decreasing or stationary at:
i x=0 i x=1 il x = -1 ivx=3

3 a Find the derivative f’(x) of the function f(x) = x2 — 4x + 3.
b Find the values of x for which f(x) is:
i increasing, ii decreasing, iii stationary.
4 Differentiate each function, then evaluate f’(1) to determine whether the function is increasing,
decreasing or stationary at x = 1.

a f(x)=x’ b f(x) = (x + 2)(x — 3)
+ 1
c f(x)=(x—1) d fx) =2
x -3
5 Find the first and second derivatives of:
ay=ux’ b y=x’ - 4x? c y=(x-2) dy%

6 Find f”(x) for each function. By evaluating f”(1), state whether the curve is concave up or concave
downatx = 1.

a f)=x> -2 +4x -5 b f(x) =6 — 2x3 — x*
7 a Find the second derivative f”(x) of the function f(x) = 203 — 3x% + 6x — 1.
b Find the values of x for which f(x) is:
i concave up, ii concave down.
8 Find the values of x for which the curve y = x> — 6x% + 9x — 11is:

a increasing, b decreasing, C concave up, d concave down.

159
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160 Chapter 3 Curve-sketching using the derivative

9 Look carefully at each function graphed below to establish where it is increasing, decreasing and
stationary. Hence sketch the graph of the derivative of each function.

a v A b v 4 c yA d

e

=V

> 2
. ' N7

10 The curve y = x> + x% — x + 2 is graphed to the right. 4

The points P and Q are stationary points.

a Find the coordinates of P and Q. £

b For what values of x is the curve concave up? />

¢ For what values of k are there three distinct solutions of the equation 0 .

X2+ —x4+2=k j *

11 Sketch the graph of each function, indicating all stationary points and points of inflection.
a y-= x2 - 6x =7
b y=x3-6x>+38
c y=2x3 -3 - 12x + 1
12 a Sketch the graph of the function y = x> — 3x? — 9x + 11, indicating all stationary points.
b Hence determine the global maximum and minimum values of the function in the domain
-2 <x <6

2

13 a The tangenttoy = x“~ — ax + 9 is horizontal at x = —1. Find the value of a.

b Thecurvey = ax® + bx + 3hasa turning point at (—1, 0). Find the values of a and b.
14 a Show that the curve y = x* — 4x3 + 7hasa point of inflection at (2, —9).

b Find the gradient of the curve at this point of inflection.
¢ Hence show that the tangent at the point of inflection is 16x + y — 23 = 0.

15 The number S of students logged onto a particular website over a five-hour period is given by the
formula§ = 175 + 1812 — ¢% for0 < ¢ < 5.
a What is the initial number of students that are logged on?
b How many students are logged on at the end of the five hours?
¢ What was the maximum number of students logged onto the website during the five-hour period?

16 A rectangular sheet of cardboard measures 16 cm by 6 cm. Equal squares of side length x cm are
cut out of the corners and the sides are turned up to form an open rectangular box.

a Show that the volume V of the box is given by V = 4x3 — 44x? + 96x.
b Find, in exact form, the maximum volume of the box.
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Chapter 3 Review 161

17 A coal chute is built in the shape of an upturned cone. The sum of the base radius r and the height
h is 12 metres.
a Show that the volume V of the coal chute is given by V = 4rr? — %er3. (Recall that the volume
of a cone is given by V = Lzr2h.)
b Find the radius of the cone that yields the maximum volume.

18 Find the primitive of each function.
a x’ b 2x c 4 d 10x* e 8x + 3x% — 4x°

19 Find the primitive of each function after first expanding the brackets.

a 3x(x —2) b (x + D(x = 5) c (2x — 3)?
20 Find the primitive of each function.

a (x + 1)y b (x — 4) c (2x - 1)

21 Find the primitive of each function after writing the function as a power of x.

a% bﬁ
X

22 Find the equation of the curve passing through the point (2, 5) with gradient function
f(x) = 3x% — 4x + 1.

23 If f'(x) = 4x — 3 and f(2) = 7, find f(4).
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The calculation of areas has so far been restricted to regions bounded by straight lines or

parts of circles. This chapter will extend the study of areas to regions bounded by more
general curves.

For example, it will be possible to calculate the area of the shaded
region in the diagram to the right, bounded by the parabola
y = 4 — x?and the x-axis.

The method developed in this chapter is called integration.

We will soon show that finding tangents and finding areas are

inverse processes, so that integration is the inverse process of

differentiation. This surprising result is called the fundamental

theorem of calculus — the word ‘fundamental’ is well chosen because the theorem is the
basis of the way in which calculus is used throughout mathematics and science.

Graphing software that can also estimate selected areas is useful in the chapter to illustrate
how answers change as the curves and boundaries are varied.

R - o

Digital Resources are available for this chapter in the Interactive Textbook and Online
Teaching Suite. See the overview at the front of the textbook for details.
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4A Areas and the definite integral 163

m Areas and the definite integral

All area formulae and calculations of area are based on two principles:
1 Areaofarectangle = length X breadth.
2 When a region is dissected, the area is unchanged.

A region bounded by straight lines, such as a triangle or a trapezium, can be cut up and rearranged into
rectangles with a few well-chosen cuts. Dissecting a curved region into rectangles, however, requires an
infinite number of rectangles, and so must be a limiting process, just as differentiation is.

A new symbol — the definite integral
Some new notation is needed to reflect this process of infinite dissection as it applies to functions and their graphs.

The diagram on the left below shows the region contained between a given curve y = f(x) and the x-axis, from
x = atox = b, where a < b. The curve must be continuous and, for the moment, never go below the x-axis.

ya ya VA
S )
i < | < | ‘
a b X é b ))c (‘1

In the middle diagram, the region has been dissected into a number of thin strips. Each strip is approximately
a rectangle, but only roughly so, because the upper boundary is curved. The area of the region is the sum of
the areas of all the strips.

The third diagram shows just one of the strips, above the value x on the x-axis. Its height at the left-hand end
is f(x), and provided the strip is very thin, the height is still about f(x) at the right-hand end. Let the width of
the strip be ox, where ox is, as usual in calculus, thought of as being very small. Then, roughly,

area of strip = height X width
= f(x) ox.
Adding up all the strips, using sigma notation for the sum,

b

area of shaded region = 2 area of each strip
X=a

b
D f(x) bx.

X=a

Now imagine that there are infinitely many of these strips, each infinitesimally thin, so that the inaccuracy
disappears. This involves taking the limit, and we might expect to see something like this

b
area of shaded region = 51im0 Z f(x) ox,
X —
X=a

but instead, we use the brilliant and flexible notation introduced by Leibnitz.
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164 Chapter 4 Integration _

The width ox is replaced by the symbol dx, which suggests an infinitesimal width, and an old form J of the
letter S is used to suggest an infinite sum under a smooth curve. The result is the strange-looking symbol

b
J f(x) dx. We now define this symbol to be the shaded area,

a

b
J f(x) dx = area of shaded region.

a

The definite integral
b

This new object J f(x) dx is called a definite integral. The rest of the chapter is concerned with evaluating
a

definite integrals and applying them.

1 THE DEFINITE INTEGRAL

Let f(x) be a function that is continuous in a closed interval [a, b], where a < b.
For the moment, suppose that f (x) is never negative in the interval.
b

» The definite integral J f(x) dx is defined to be the area of the region between the curve and the
a
x-axis, fromx = atox = b.

* The function f(x) is called the integrand, and the values x = a and x = b are called the lower
and upper limits (or bounds) of the integral.

The name ‘integration’ suggests putting many parts together to make a whole. The notation arises from
building up the region from an infinitely large number of infinitesimally thin strips. Integration is ‘making a
whole’ from these thin slices.

Evaluating definite integrals using area formulae

When the function is linear or circular, the definite integral can be calculated from the graph using
well-known area formulae, although a quicker method will be developed later for linear functions.

Here are the relevant area formulae:

2 AREA FORMULAE FOR TRIANGLE, TRAPEZIUM AND CIRCLE

Triangle: Area = 1bh = 1 x base X height
Trapezium: Area = }(a + b)h = average of parallel sides X width
Circle: Area = 71> = 7z X square of the radius

For a trapezium, 4 is the perpendicular distance between the parallel sides. Depending on the orientation, the
word ‘height’ or ‘width’ may be more appropriate. Similarly, any side of a triangle may be taken as its ‘base’.
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4A Areas and the definite integral 165

Example 1 4A

Evaluate using a graph and area formulae:
4

4
a J(x—l)dx b J(x—l)dx
1 2

SOLUTION
a The graph of y = x — 1 has gradient 1 and y-intercept —1. VA
The area represented by the integral is the shaded triangle,

with base 4 — 1 = 3 and height 3.
4

HenceJ (x = 1)dx = § x base X height 1l
1 /

— 4%. /

=V

b The function y = x — 1 is the same as before.
The area represented by the integral is the shaded trapezium, A

with width 4 — 2 = 2 and parallel sides of length 1 and 3.
4

Hencel (x — 1) dx = average of parallel sides X width

2
143, 1= .
= 2 112 4 x

Example 2 4A

Evaluate using a graph and area formulae:
2

5
a J |x| dx b J V25 — x%dx
3 -5

SOLUTION

a The function y = |x| is a V-shape with vertex at the origin. ya
Each shaded triangle has base 2 and height 2.

2 % (% X base X height)

2
HenceJ |x| dx
=

2><(1><2><2>
= 4. -2 2

ol
=V

b The shaded region under y = V25 — x? is a semicircle, with 4
centre at the origin and radius 5.

5
HenceJ V25 — x%dx = 1 x ar? i i
2
2

1 2
= X 5 X 7 -5 5 X

25z
= SE,
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166 Chapter 4 Integration _

Using upper and lower rectangles to trap an integral

The diagram to the right illustrates how the integral VAL £
5

J

4
J (25 — x?)dx
0

can easily be trapped between two rectangles, g
e the lower rectangle OABC (or inner rectangle), and A .
e the upper rectangle OADE (or outer rectangle). 0 4 5\ .

This allows us to trap the integral between two values, as calculated in part a of the
worked example below.

Using more and more rectangles allows the integral to be trapped between closer and closer bounds, as in parts b
and ¢. In Section 4D, we will prove the fundamental theorem of calculus using upper and lower rectangles.

Example 3 4A

4

a Evaluate the bounds on J (25 — xz) dx indicated in the diagram above.
0

b Subdivide the interval [0, 4] as [0, 2] U [2, 4] to tighten the bounds.

¢ Subdivide [0, 4] into four subintervals to tighten the bounds further.

SOLUTION

a In the diagram above,
area of lower (or inner) rectangle OACB = 9 X 4

= 36,
area of upper (or outer) rectangle OAED = 25 X 4
= 100,
4
50 36 < J (25 — x%)dx < 100.
0
b Subdividing the interval [0, 4] as [0, 2] U [2, 4], A
area of 2 lower rectangles = 21 X 2 + 9 X 2 21
= 60,
area of 2 upper rectangles = 25 X 2 + 21 X 2 9
= 927 >
4 ) 2 45 X
s060 < [ (25 — x%)dx < 92.
0
¢ Subdividing [0, 4] into four subintervals,
area of 4 lower rectangles = 24 + 21 + 16 + 9 A
— 25
= 70,
area of 4 upper rectangles = 25 + 24 + 21 + 16
= 86,
4
— 2 >
so70<J0(25 x“)dx < 86. 1 2345\‘)(
The exact value of the integral is 78 2, as calculated later in worked Example 5(c).
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4A Areas and the definite integral 167

The area of a circle

In earlier years, the formula A = r? for the area of a circle was developed. Because the boundary is a
curve, some limiting process had to be used in its proof. For comparison with the notation for the definite
integral explained at the start of this section, here is the most common version of that argument — a little
rough in its logic, but very quick. It involves dissecting the circle into infinitesimally thin sectors and then
rearranging them into a rectangle.

PN

The height of the rectangle in the lower diagram is . Because the circumference 2zr is divided equally
between the top and bottom sides, the length of the rectangle is zr. Hence the rectangle has area zr 2, which
is therefore the area of the circle.

FOUNDATION
1 yA y= xz 2 YA y= x2 3
1 B 1+ B
D

\ A \ c A

o 1 X o 1 1 X 113 X

2 472 4

a Find the area of AOAB in a Find the area of AOCD in a Use the diagram above to

the diagram above.

the diagram above.

1

2
b Hence explain why b Find the area of the show that Jox dx < 3.
1 .
) . trapezium CABD. b Explain why 1} is a better
x“dx < 5. :
o 2 ¢ Hence explain why 1
1 5 X approximation to I x2 dx
J.ox dx < 3. than 2 is. 0
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168 Chapter 4 Integration _

4 Use area formulae to calculate the definite integrals in these sketches.

2 3 4 3
a [3dx b J4dx c dex d JZxdx
0 0 0 0
y A y A y A y A
< = 6
< 4 > 4
X T 3 :
2 X 3 x
2 5 2 4
e J'(2—x)dx f J(S—x)dx g J(x+2)dx h J(x+3)dx
0 0 0 0
y A y A y A y A
S 3 ; :
2
3
2 X > 0 2 X 0 4 X
N e 7
5 Use area formulae to calculate the sketched definite integrals.
3 2 1 3
a J 2 dx b J 5dx c J 2x + 4) dx d J (3x + 3) dx
-1 -3 -2 -1
y A y A y A y A
5 (16 bt
< 2 > 4
> 3]
_1 3 X
, 2 . -1/ .
-3 2 X / 1 X J 3 X
5 2 3 2
e { (x + 4) dx f J (x + 6)dx g J | x| dx h J |2x| dx
-1 -2 -3 -2
y A y A y A y A
(5.9 3 4
(2,8)
6
(—1, 3) 4 (_2’ 4) -
( . R -3 37 ) 2 X
v 5 x e X
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4A Areas and the definite integral

DEVELOPMENT
a In the diagram to the right, add the areas of the lower rectangles. 4 y=x
(For example, PORU is a lower rectangle.) 1 T /
b Add the areas of the upper rectangles. (For example, PQST is an upper U S
rectangle.) 1 R
¢ Hence explain why &5 < szdx < 5. S I (.
0 133X
1
The area of the region in the diagram to the right is given by J 2% dx. VA
0
1 5l
a Use one lower and one upper rectangle to show that 1 < J 2%dx < 2.
0
1
b Use 2 lower and 2 upper rectangles of equal width to show that
1 / | >
(with decimals rounded to one place) 1.2 < J 2%dx < 1.7. 1 *
0
1
¢ Use 4 lower and 4 upper rectangles of equal width to show that 1.3 < J 2%dx < 1.6.
0
d What trend can be identified in the parts above?

The area of the region in the diagram to the right is given by J In x dx.

a

d

4 yA

/1242

2
Use 2 lower and 2 upper rectangles to show that (with decimals rounded to
4

2 places) 1.79 < J Inxdx < 2.48.
2

Use 4 lower and 4 upper rectangles of equal width to show that

4
1.98 < J Inx dx < 2.33.
2
4
Use 8 lower and 8 upper rectangles of equal width to show that 2.07 < J Inxdx < 2.24.
2

What trend can be identified in the parts above?

Sketch a graph of each definite integral, then use an area formula to calculate it.

a

169
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170 Chapter 4 Integration _
10 Sketch a graph of each definite integral, then use an area formula to calculate it.
4 0
a J V16 — x? dx b J V25 — x?dx
—4 =5
11 The diagram to the right shows the graph of y = x? from Yy
x = 0tox = 1, drawn on graph paper. _1‘ a
The scale is 20 little divisions to 1 unit. This means that 400 little
squares make up 1 square unit.
a Count how many little squares there are under the graph from
x = 0tox = 1 (keeping reasonable track of fragments of
1
squares), then divide by 400 to approximate J x2 dx.
0
Write your answer correct to 2 decimal places. i
T X
b By counting the appropriate squares, approximate:
1 1
2
i szdx ii szdx
0 }
Confirm that the sum of the answers to parts i and ii is the answer to part a.
12 The diagram to the right shows the quadrant y
\
y = 1 — x%, fromx =0tox = 1. -
As before, the scale is 20 little divisions to 1 unit.
a Count how many little squares there are under the graph
fromx = Otox = 1.
1
b Divide by 400 to approximate J V1 — x?%dx.
0
Write your answer correct to 2 decimal places. -
¢ Hence, using the fact that a quadrant has area % zr 2, find an i
approximation for z. Give your answer correct to 2 decimal places. *
CHALLENGE
1 { Y
13 LetA = J dx.
ox + 1
a Use the areas of the lower and upper rectangles in the top diagram to show that
<A<l 1
b Use the areas of the 2 lower and 2 upper rectangles in the bottom diagram to
show that 5 < A < 2. (Thatis, 0.58 < A < 0.83, correct to 2 decimal places.) -1 1 x
¢ Use 3 lower and 3 upper rectangles of equal width to show that g—g <A< ‘6%.
(Thatis, 0.62 < A < 0.78, correct to 2 decimal places.) VA
d Finally, use 4 lower and 4 upper rectangles of equal width to show that
% <A< %. (That is, correct to 2 decimal places, 0.63 < A < 0.76.)
e As the number of rectangles increases, is the interval within which A lies )
getting bigger or smaller?
f The exact value of AisIn2 = 0.693147. . .. Do the lower and upper limits of _1 ! 1 X
the intervals in parts a to d seem to be approaching the exact value?
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4A Areas and the definite integral 171

w 14 [An investigation using technology]
!

Some of the previous questions involve summing the areas of lower and upper rectangles to approximate
a definite integral. Many software programs can do this automatically, using any prescribed number

of rectangles. Steadily increasing the number of rectangles will show the sums of the lower and upper
rectangles converging to the exact area, which can be checked either using area formulae or using the
exact value of the definite integral as calculated later in the course.

Investigate some of the definite integrals from Questions 1-3, 6—8 and 11-13 in this way.

I
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172 Chapter 4 Integration _

m The fundamental theorem of calculus

There is a remarkably simple formula for evaluating definite integrals, based on taking the primitive of the
function. The formula is called the fundamental theorem of calculus because the whole of calculus depends
on it. Its proof is in Section 4D, which is marked as Challenge because it is a little more difficult than the rest
of this chapter. The formula alone is presented in this section.

Primitives

Let us first review from Section 3H what primitives are, and the first step in finding them.

3 PRIMITIVES

e A function F (x) is called a primitive or anti-derivative of a function f(x) if its derivative is f(x):
F (x) is primitive of f(x) if F'(x) = f(x).
* To find the general primitive of a power x", where n # —1:

n+1

d
If d—y = x",theny = d + C, for some constant C.

X n+ 1

‘Increase the index by 1 and divide by the new index.’

Statement of the fundamental theorem

The fundamental theorem says that a definite integral can be evaluated by writing down any primitive F (x)
of f(x), then substituting the upper and lower limits into it and subtracting.

4 THE FUNDAMENTAL THEOREM OF CALCULUS

Let f(x) be a function that is continuous in a closed interval [a, b]. Then

b
Jf(x) dx = F(b) — F(a), where F(x) is any primitive of f(x).

a

This result is extraordinary because it says that taking areas and taking tangents are inverse processes, which
is not obvious.

Using the fundamental theorem to evaluate an integral

The conventional way to set out these calculations is to enclose the primitive in square brackets, writing the
lower and upper limits as subscript and superscript respectively.

Example 4 4B
\—— )

Evaluate these definite integrals.

2 4
a J2xdx b J(2x—3)dx
0 2
Then draw diagrams to show the regions that they represent, and check the answers using area formulae.
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4B The fundamental theorem of calculus 173

SOLUTION
2 YA ]

2
a sz dx = [xz]o (x? is a primitive of 2x) .
=22 -0 (substitute 2, then substitute 0 and subract)
=4
This value agrees with the area of the shaded region,

=V

area of triangle = 1 x base X height 2
=lx2x4 g
= 4.
4 4
b J 2x — 3)dx = [x2 - 3x] (take the primitive of each term) yA y=2x-3
2 2 5
= (16 — 12) — (4 — 6) (substitute 4, then substitute 2)
=4 - (-2)
— 6 1”7777ﬂ
Again, this value agrees with the shaded area, T
area of trapezium = average of parallel sides X width /
_1+5 % 2
2
= 6.

Note: Whenever the primitive has two or more terms, brackets are needed when substituting the upper and
lower limits of integration. Set your work out as in line 2 of the solution to part b.

Example 5 4B

Evaluate these definite integrals.
1 2 4

a szdx b J (x® + 8)dx c J(25—x2)dx
0 -2 0

SOLUTION
1

371
a J x2dx = [%} (increase the index from 2 to 3, then divide by 3)
0 0

% — 0 (substitute 1, then substitute O and subtract)
1
=3
This integral was approximated by counting squares in Question 5 of Exercise 1A.

- 4 9
b J (x3 + 8)dx = [% + Sx] ) (take the primitive of each term)
=2 —
= (4 +16) — (4 — 16) (substitute 2, then substitute —2)
=20 — (-12)
= 3

4
4
c J (25 — xY)dx = [25x _ %ﬁ]
0 0
= (100 - Ix 64) — (0 — 0) (never omit a substitution of 0)
= 78% (this integral was bounded in worked Example 3)
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174 Chapter 4 Integration _

Expanding brackets in the integrand

As with differentiation, it is often necessary to expand the brackets in the integrand before finding a
primitive.

With integration, there is no ‘product rule’ that could avoid the expansion.

Example 6 4B
\e—— )

Expand the brackets in each integral, then evaluate it.

6 3
a Jx(x+1)dx b J(x—4)(x—6)dx
1 0

SOLUTION
6 6

a Jx(x + 1)dx J (x2 + x)dx
1 1

3 2
X X
-

1

3 2

6

(72 + 18) = (L + 1)
90 — 3
=891

3 3
b [ (x — 4)(x — 6) dx J(xz— 10x + 24) dx
0

0
3
= [2 o5k 4 04y’
3 0
= (9—45+72) = (0 — 0 + 0)
— 36

Note: Parts a and b show how easily fractions arise in definite integrals because of the fractions in the
standard forms for primitives. Care is needed with the resulting common denominators, mixed numerals
and cancelling.

Writing the integrand as separate fractions

If the integrand is a fraction with two or more terms in the numerator, it should normally be written as
separate fractions, as with differentiation.

With integration, there is no ‘quotient rule’ that could avoid this.

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022



4B The fundamental theorem of calculus 175

Example 7 4B
Write each integrand as two separate fractions, then evaluate the integral.

23x4 — 2?2 _2x3 — i
. [2o22, ) [Pemay,

1 xz -3 x3
SOLUTION

23 4 _ o2 2
a Jx_xdx = J (3x> — 2)dx (divide both terms on the top by x?)

1 x2 1 )

= [x3 - Zx]
1

B-H-(1-2)=4-(-1) =5

=2

3 5.4
b [ %dx =J (1 — 2x)dx (divide both terms by x3)
-3 X -3
-2
_ _ 2
- [x * ]—3

(2-4) - (3-9)=-6-(-12)=-6+12=6

Negative indices

The fundamental theorem works just as well when the indices are negative. The working, however, requires
care when converting between negative powers of x and fractions.

Example 8 4B
Use negative indices to evaluate these definite integrals.
5 2
a J x 2 dx b J i dx
1 .
X
SOLUTION
5 x_] 5
a J x2dx = [—1] (increase the index from —2 to —1and divide by —1)
1 —111
173 S | o
= [— —] (rewrite x ™ as — before substitution)
xli X
=_%_ (-1) =—%+1=‘51
2 2
b 1 _ -4 .1 4 . .
—dx = | x dx (rewrite — as x~ before finding the primitive)
1 x4 J1 x4
x 312 . . ..
= Y (increase the index to —3 and divide by —3)
ol
1 ]2 U I | o
= |- — (rewrite x> as — before substitution)
353 1 %3
_ _ 1 1) _ _ 1 8 _ 7
=~ —<— §) —utuTu
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176 Chapter 4 Integration _

Note: The negative index — 1 cannot be handled by this rule, because it would generate division by 0,
which is nonsense:

21 2
de = Jx_ldx =
11X 1

Chapter 5 on exponential and logarithmic functions will handle this integral.

1
= nonsense.
2

x0

Warning: Do not integrate across an asymptote

The following calculation seems just as valid as part b above: ya
1
-341
J xhdx = |2
-1 =3
— _1_1
373
= -2
3 -1 1 X

But in fact the calculation is nonsense — the function has an asymptote at x = 0, so

4

it is not even defined there. (And the function y = x™ is always positive, so how could it give a negative

answer for an integral?) You cannot integrate across an asymptote, and you always need to be on the lookout
for such meaningless integrals.

FOUNDATION

Technology: Many programs allow definite integrals to be calculated automatically. This allows not just

quick checking of answers, but experimentation with further definite integrals. It would be helpful to
generate screen sketches of the graphs and the regions associated with the integrals.

1 Evaluate these definite integrals using the fundamental theorem.

-1 -4 03

a 2x dx b 2x dx c 4x dx
Jo J1 J1
S N N

d 8x dx e 3x2dx f 5x* dx
J2 J2 J0
. ~ rl

g 10x* dx h 123 dx i 11x'0 dx
J1 Jo J0

2 a Evaluate these definite integrals using the fundamental theorem.
1 7 5
i J4dx ii Jde iii de
0 2 4
b Check your answers by sketching the graph of the region involved.

3 Evaluate these definite integrals using the fundamental theorem.

6 4 3
a J(2x+1)dx b [(2x—3)dx c J(4x+5)dx
3 2 0
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4B The fundamental theorem of calculus 177

3 4 1
d J (3x% = 1) dx e J (6x% + 2)dx f J (3x% + 2x) dx
2 1 0
2 2 5
g J (4x3 + 3x2 + 1) dx h J (2x + 3x% + 8x3)dx i J (3x2 — 6x + 5)dx
1 0 3
DEVELOPMENT

4 Evaluate these definite integrals using the fundamental theorem. You will need to take care when finding
powers of negative numbers.

0 0 1
a J (1 = 2x)dx b J (2x + 3)dx c J 3x2 dx
—1 -1 -2
2 2 -1
d [ (4x3 + 5)dx e J (5x* + 6x%)dx f J (4x3 + 12x% = 3) dx
-1 -2 -2

5 Evaluate these definite integrals using the fundamental theorem. You will need to take care when adding
and subtracting fractions.

4 -2 3

a (x + 2)dx b (x% + x) dx c (x> + x?)dx
J1 Jo J0
nl -3 r'—2

D

d (x3 = x + 1Ddx (2x% = 3x + 1)dx f (16 — x> — x)dx
J_1 2 4

6 By expanding the brackets first, evaluate these definite integrals.

) 2 ol
a x(2 + 3x)dx b (x+ 1)Bx + 1)dx c )c2(5)c2 + 1)dx
J2 JO J—1
n2 aO r'O
d (x — 3)%dx e x(x = )(x + 1)dx f (1 — x>)?dx
— J_1 —
7 Write each integrand as separate fractions, then evaluate the integral.
34,3 2 2 4 3.2 4
J3x +4xdx b[4x =X cJSx +9xdx
1 x X 2 x2
2x3+4x2 3x3—xz+x _1x3—2x5
d ——dx e = Tdx f == dx
X 1 x -2 x?

8 Evaluate these definite integrals using the fundamental theorem. You will need to take care when finding

powers of fractions.

1 2 3
2

2 3 3
a szdx b J (2x + 3x2)dx c L (6 — 4x) dx
0 0

2

9 a Evaluate these definite integrals.
10 3 1
i J x 2 dx i J. 2x 3 dx iii J 4x 7 dx
5 2

b By writing them with negative indices, evaluate these definite integrals.

21 41 13
i J —dx i J —dx iiil J —dx
lx2 I x 7 X

~
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10

11

12

Chapter 4 Integration

ok

a i Show that | 3dx = 3k — 6.

J2 k
ii  Hence find the value of k, given that J 3dx = 18.
k 2

xdx = %kz.

b i Show that

Jo k
Il Hence find the positive value of k, given that J xdx = 18.
0

Find the value of kif £ > 0 and:
8 3
bJ3dx=12 CJ(k—3)dx=5
2

3
a J'2dx=4
k

k

k k k
dJ(x—3)dx=O eJ(x+1)dx=6 fJ(k+3x)dx=123
3 1 1
4
Use area formulae to find J f(x) dx in each sketch of f(x).

a yf 0 b ya

3 4
CHALLENGE

—
[\
(O8]
!
=V
—
\S]

13

Write each integrand as separate fractions, then evaluate the definite integral.

*1 o+ 2 ey (T = -4
a Y dx b * dx c S
1 x? Jo2 i3 J-3 2x2
14 Evaluate these definite integrals.
B 1\? 5 1) (T 1)
a <x + ) dx b <x2 + ) dx c ( + ) dx
J1 X J1 x2 -2 \x X
15 a Explain why the function y = iz is never negative.
X
b Sketch the integrand and explain why the argument below is invalid.
1
1
de: _1 =-1-1=-2
—1 xz X -

¢ Without evaluating any integrals, say which of these integrals are meaningless.

2
iJl
0(3 - x)?

4
i J S S
2 (3 — x)?

Question 16 should only be attempted in Exercise 4D.
X
16 a Use the differential form of the fundamental theorem di J f(Hydt = f(x) to find:

d X
i J t2 dt
dx Jq

X Ja

d [* d [*

i J (2 + 30)dr i J
dx J)o X Ja

Lar

6
ii J R SN
43 - x7

X

4 [ 3 4
v — | @ = 3)dt
dL( )

b Confirm your answers to parts (i) and (ii) above by evaluating the definite integral and then
differentiating with respect to x.
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4C The definite integral and its properties 179

m The definite integral and its properties

This section will first extend the theory to functions with negative values. Then some simple properties of the
definite integral will be established using arguments about the dissection of regions.

Integrating functions with negative values

When a function has negative values, its graph is below the x-axis, so the ‘heights’ of the little rectangles in
the dissection are negative numbers. This means that any areas below the x-axis should contribute negative

values to the value of the final integral.
/WN ﬁm
a hWk poox

B

y\

For example, in the diagram above, where a < h < k < b, the region B is below the x-axis because the
function f(x) is negative in [, k]. So the heights of all the infinitesimal strips making up B are negative, and
B therefore contributes a negative number to the definite integral,

b
Jf(x) dx = +areaA — area B + area C.

a
Thus we attach the sign + or — to each area, depending on whether the curve, and therefore the region, is

above or below the x-axis. For this reason, the three terms in the sum above are often referred to as signed
areas under the curve, because a sign has been attached to the area of each region.

5 THE DEFINITE INTEGRAL AS THE SUM OF SIGNED AREAS

Let f(x) be a function continuous in the closed interval [a, b], where a < b,

and suppose that we are taking the definite integral over [a, b].

* For regions where the curve is above the x-axis, we attach + to the area.
For regions where the curve is below the x-axis, we attach — to the area.
These areas, with signs attached, are called signed areas under the curve.

* The definite integral J f(x) dx is the the sum of these signed areas under the curve in the

interval [a, b]. “

b

The whole definite integral J f(x) dx is often also referred to as the signed area under the curve.
a
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Example 9 4C
Evaluate these definite integrals.

6 6
aJ(x—4)dx bJ(x—4)dx cj(x—4)dx
0 4 0
Sketch the graph of y = x — 4 and shade the regions associated with these integrals. Then explain how
each result is related to the shaded regions.
SOLUTION
4 4
— (1,2 A
a L)(x - 4)dr = [} - 4x]0 4, :
= @8 -16) — (0 - 0) B M.
= -8 19} 4 6 X
Triangle OAB has area 8u” and is below the x-axis. so the value of the
integral is —8.
6 A4
b J (x — 4)dx = [lxz - 4x]6
4 . 4
= (18 — 24) — (8 — 16)
= =6 - (-8)
=2
Triangle BMC has area 2u? and is above the x-axis, so the value of the integral is 2.
6
6
c — 4)dx = |Ix* — 4
L (x ) dx [zx x]o
= (18 —24) — (0 — 0)
= -6
This integral represents the area of ABMC minus the area of AOAB, so the value of the integral is
2 — 8 =—6.
0dd and even functions
In the first example below, the function y = x3 — 4xis an odd function, with point symmetry in the origin.
Thus the area of each shaded hump is the same. Hence the whole integral from x = —2tox = 2 is zero,
because the equal humps above and below the x-axis cancel out.
In the second diagram, the function y = x? + 1 is even, with line symmetry in the y-axis. Thus the areas to
the left and right of the y-axis are equal, so there is a doubling instead of a cancelling.
6 INTEGRATING ODD AND EVEN FUNCTIONS
a
e If f(x)is odd, then J fx)dx = 0.
—a
a a
e If f(x)is even, thenJ fx)dx = 2 Jf(x) dx.
—a 0
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Example 10

Sketch these integrals, then evaluate them using symmetry.

2
a J (x3 — 4x) dx
-2

2
b J (x% + 1) dx
-2

SOLI;TION
a " 2(x3 — 4x)dx = 0, because the integrand is odd.
;ﬂ;ithout this simplification, the calculation is:
)
(x> — 4x)dx = [ix4 - 2x2]i2
J2

4-8)— (4 -298)
= 0, as before.

b Because the integrand is even,
2 2

[ (x%2 + 1)dx =2
-2 0

(x% + 1)dx

%

2

—
W=

2 x3+x]0
= 2
9

wl—

Dissection of the interval

2% +2) - (0 + 0))

When a region is dissected, its area remains the same. In particular, we can always

dissect the region by dissecting the interval a < x < b over which we are integrating.

Thus if f(x) is being integrated over the closed interval [a, b] and the number

¢ lies in this interval, then:

7 DISSECTION OF THE INTERVAL

b c b
Jf(x) dx = Jf(x) dx + Jf(x) dx

a a C

Intervals of zero width

4C The definite integral and its properties 181

4C
y
/
I
yA
5
1
-2 S
a4 b X

Suppose that a function is integrated over an interval a < x < a of width zero,

and that the function is defined at x = a. In this situation, the region also

has width zero, so the integral is zero.

8 INTERVALS OF ZERO WIDTH

Jf(x) dx =0

a
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182 Chapter 4 Integration _

Running an integral backwards from right to left

A further small qualification must be made to the definition of the definite integral. Suppose that the limits
of the integral are reversed, so that the integral ‘runs backwards’ from right to left over the interval. Then its
value reverses in sign:

9 REVERSING THE INTERVAL

Let f(x) be continuous in the closed interval [a, b], where a < b. Then we define
b

Jf(x)dx = —J f(x) dx.
b a

This agrees perfectly with calculations using the fundamental theorem, because

F(a) — F(b) = - (F(b) - F(a)).

Example 11 4C

Evaluate and compare these two definite integrals using the fundamental theorem.

4 2
a J(x—l)dx bJ(x—l)dx
2 4
SOLUTION
4 2 4
a J(x— 1)dx = Lo x
2 2 2
=08-4 - 2-2)
= 4,
which is positive, because the region is above the x-axis.
v
2 2 2
b J(x— Ddx = |— - x
4 2 4 3l
=2-2)-08-4
= —4, 1
which is the opposite of part a, because the integral runs backwards _1 5 4 x
from right to left, fromx = 4tox = 2. /|
Sums of functions
When two functions are added, the two regions are piled on top of each other, so that:
10 INTEGRAL OF A SUM
b b b
J (F@) + g0) dx = Jf(x) dx + J g(x) dx
a a a
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Example 12 4C

Evaluate these two expressions and show that they are equal.

1 1 1 1
a J(x2+x+1)dx b szdx+dex+Jldx
0 0 0 0
SOLUTION
: 2 W !
a (x +x+1)dx=[++x}
0 302 0
=(+3i+1) - 0+0+0)
=13,
l2 1 1 x31 x21 1
bedx+dex+Jldx= +[}+x]
0 0 0 31 2o 0
=(-0+(}-0+a-0
= 12, the same as in part a.

Multiples of functions

Similarly, when a function is multiplied by a constant, the region is stretched vertically by that constant, so that:

11 INTEGRAL OF A MULTIPLE

b b
J kf(x)dx = ka(x) dx

Example 13 4C

Evaluate these two expressions and show that they are equal.

183

3 -3
a | 10x3dx b 10| x3dx
J1 J1
SOLUTION
? 10x* 3 i 413
a | 103 = | b 10| x3dx = 10 x |2
J1 4 | i 1
810 10 81 1
= Y LY =10 o _ 2
4 4 X (4 4)
_ %0 C10x %
4 4
= 200 = 200
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Inequalities with definite integrals

Suppose that a curve y = f(x) is always underneath another curve y = g(x) in an intervala < x < b. Then
the area under the curve y = f(x) from x = ato x = b is less than the area under the curve y = g(x).

In the language of definite integrals:

12 INEQUALITY

If f(x) < g(x)in the closed interval [a, b], then

b b
Jf(x) dx < J g(x) dx.

a

Example 14 40
\—— )

a Sketch the graph of f(x) = 4 — x2,for—2 < x < 2. VA
2 4 y=4

b Explain why 0 < J (4 — x?)dx < 16.
—

SOLUTION
a The parabola and line are sketched opposite. /_2 2\ X

b Clearly0 < 4 — x2 < 4 over the interval =2 < x < 2.
Hence the region associated with the integral is inside the square of side length 4 in the diagram
opposite.

FOUNDATION

Technology: All the properties of the definite integral discussed in this section have been justified
visually from sketches of the graphs. Computer sketches of the graphs in this exercises would be helpful
in reinforcing these explanations. The simplification of integrals of even and odd functions is particularly
important and is easily demonstrated visually by graphing programs.

5 4

1 Evaluate J 2x — 3)dx andJ. (2x — 3) dx. What do you notice?
5

4

2 Show, by evaluating the definite integrals, that:

N 1

a 6x2dx = 6J x2 dx

Jo 0

2 2 2

b (x3+x2)dx=J x3dx+J x2dx

J1 -1 -1

3 3

2
c (x2—4x+3)dx=J(x2—4x+3)dx+J(x2—4x+3)dx
Jo 0 2

3 Without evaluating the definite integrals, explain why:
2

2
a (x2 = 3x)dx = 0 b J xdx =0
Jo _
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4 The diagram to the right shows the line y = x — 1. Without evaluating v
the definite integrals, explain why:
1 2
a J (x — 1) dx is negative, b J (x — 1) dxis positive, ‘ ‘ R
0 1 ‘ ‘
0 ! 2 11 2 x
c [ (x — 1) dxis zero, d J (x — 1) dxis negative.
0 -2
5 The diagram to the right shows the parabolay = 1 — x2. Without evaluating the definite integrals,
explain why:
NI
a (1 - x2) dx is positive, VA
J-1 1
-3 _l/\l —>
b | (1 = x?)dxis negative, % 34
J1
0 1
c | (-xPHdx= J (1 — x?)dx,
J-1 0
L 1
’ 2 2
d (1—x)dx>J(1—x)dx.
Jo L
3 1
6 a If J f(x) dx = 7, what is the value of J f(x) dx?
L S
b IfJ g(x) dx = 5, what is the value ofJ g(x) dx?
-1 -2
-1
7 a Evaluate J (x2 — 1) dx.
1
b The graph of y = x> — 1 is below the x-axis for —1 < x < 1, and yet the integral is positive.
Explain this.
1 1
8 Use a diagram to explain why J 2x dx > J x dx.
0 | 0 0
9 Write J x3dx + J x3dxasa single integral, and then use a diagram to explain why this definite
-2 0
integral is negative.
DEVELOPMENT
10 In each part, evaluate the definite integrals. Then use the properties of the definite integral to explain the
relationships amongst the integrals within that part.
2 0
a i | Gx?-1)dx i [ (3x% — 1) dx
Jo 2
1 1
b i | 20x%dx i 20J x3 dx
JO 0
-4 4 4
c i (4x + 5)dx i 4x dx iii J 5dx
J1 J1 1
2 -1 2
d i | 12%ax i | 12x%dx i J 12x3 dx
Jo Jo 1
-3 —2
e i | (4 =3x%dx i (4 — 3x?)dx
J3 J2
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11 Use the properties of the definite integral to evaluate each integral without using a primitive function.
Give reasons.

3 4 1
a JV9—x2dx b J(x3—3x2+5x—7)dx c J x3 dx
3 -1

4

Q

5 z 2
3 LI X
(x? — 25x) dx e sin x dx f dx
-5 _z

2 —21+x2

12 a On one set of axes sketch y = x?and y = x3, clearly showing the points of intersection.
1 1

b Hence explain why 0 < Jx3 dx < szdx < 1.

0 0
¢ Check the inequality in part b by evaluating each integral.
4
13 Use area formulae to find J f(x) dx, given the following sketches of f(x).
0
a y4 h ya
1 1
2 R 3 4 .
1 3 4 X 1 2 *
-1 -1

CHALLENGE

14 Using the properties of the definite integral, explain why:

k
a J (ax® + ex® + e)dx = 0
—k

k k
b [ (bx* + dx?® + f) dx 2J (bx* + dx?® + f) dx
—k 0

15 Sketch a graph of each integral and hence determine whether each statement is true or false.

1 2 -1 |
a[zxdx=o bJ3x>0 cJ Livso dJldx>O
-1 0

2 X 72X
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m Challenge — proving the fundamental theorem

This section develops a proof of the fundamental theorem of calculus, as stated and used in Sections 4B

and 4C. The section is challenging, and readers may prefer to leave it to a second reading of the chapter at a

later time.

The definite integral as a function of its upper limit
b

The value of a definite integral J f(x) dx changes when the value of b changes.
a
This means that it is a function of its upper limit . When we want to emphasise

the functional relationship with the upper limit, we usually replace the letter b
by the letter x, which is conventionally the variable of a function.

In turn, the original letter x needs to be replaced by some other letter, usually ¢.
Then the definite integral is clearly represented as a function of its upper limit x,
as in the first diagram above. This function is called the signed area function

for f(x) starting at x = a, and is defined by

X

A(x) = J.f(t) dt

a
The function A (x) is always zero at x = a. For the function sketched above, A (x)

increases at an increasing rate — see the second sketch. A (x) is also defined to the left
of a, where it is negative because the integrals run backwards.

The signed area function

<

.

A(x)A

The function in the sketch above was never negative. But the definite integral is the signed area under the

curve, meaning that a negative sign is attached to areas of regions below the x-axis (provided that the integral

is not running backwards).

The upper graph of f(¢) to the right is a parabola with axis of symmetry x = b.
The four areas marked B are all equal. Here are some properties of the signed area
function

X

A(x) = [ £(1) dt.

a

® A(a) = 0, as always.

* In the interval [a, b], f(¢) is negative and decreasing, so A (x) decreases at an
increasing rate.

e In the interval [b, c], f(r) is negative and increasing, so A (x) decreases at a
decreasing rate.

e In the interval [c, 00), f(¢) is positive and increasing, so A (x) increases at an
increasing rate.

® A(b) = —-Band A(c) = —2Band A(d) = —B.

® A(x) is also defined in the interval (—oo, a] to the left of a, where it is negative
because the integrals run backwards and the curve is above the x-axis.

The lower diagram above is a sketch of the signed area function A (x) of f(x).
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13 THE SIGNED AREA FUNCTION

Suppose that f(x) is a function defined in some interval / containing a. The signed area function for
f(x) starting at a is the function defined by the definite integral

X
A(x) = J f(¢)dt, for all x in the interval /.
a

In Chapter 10 on continuous probability distributions, the cumulative distribution function of a continuous
distribution will be defined in this way.

Example 15 4D
\e—— )

Let A(x) = J f(t) dt be the signed area function starting at t = 0 for the graph VA

0 R V)
sketched to the right. Use area formulae to draw up a table of values for

y = A(x) in the interval [—3, 3], then sketch y = A (x).

—_
Mo L
w4+
=V

_2,,
SOLUTION
Use triangles for x > 0 and rectangles for x < 0.
X -3 -2 -1 0 1 2 3 A
1,,
Ax) -6 -4 -2 0 1 0 -3 Ly N3,
L/l 12\ X
Forx = —2 and x = —1, A(x) is negative because the integrals run backwards )
and the curve is above the x-axis. The area function A (x) is increasing for ¢ < 1 -3
because y > 0, and is decreasing for x > 1 because y < 0.

The fundamental theorem — differential form
We can now state and prove the differential form of the fundamental theorem of calculus, from which we will
derive the integral form used already in Sections 4B and 4C.

Theorem: If f(x) is continuous, then the signed area function for f(x) is a primitive of f(x). That is,

A (x) = CZCJ £y dr = £ ().

Proof: Because the theorem is so fundamental, its proof must begin with the definition of the derivative as a

limit,
Ax+ h) — A ya
Ay = mAE T =A@
h—0 h

Subtracting areas in the diagram to the right,

x+h

A(X+h)—A(X)=J Sf(1) dt, i
* 1 x+h >
! = lim — a x x+h !
SO A’ (x) %1_r)r(1) hL f() dt.
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4D Challenge — proving the fundamental theorem 189

This limit is handled by means of a clever sandwiching technique.

Suppose that f() is increasing in the interval [x, x + hl, as in the diagram above.
Then the lower rectangle on the interval [x,x + &] has height f(x),

and the upper rectangle on the interval [x, x + h] has height f(x + h),

x+h
so using areas, h X f(x) < J f()ydt < h X f(x + h)

X

x+h
f) < }J Foyde < f(x + h). (1)

X

Thus the middle expression is ‘sandwiched’ between f(x) and f(x + h).

Because f(x) is continuous, f(x + h) — f(x)ash — 0,

x+h
so by (1), ;1_{1}) ilzJ f(t)dt = f(x), meaning that A" (x) = f(x), as required.

X

If f(x) is decreasing in the interval [x,x + h], the same argument applies, but with the inequalities reversed.
X

Note: This theorem shows that the signed area function A (x) = J f (1) dt is a primitive of f(x). Itis

therefore often written as F'(x) rather than A (x). “

Example 16 4D

Use the differential form of the fundamental theorem to simplify these expressions. Do not try to
evaluate the integral and then differentiate it.

X X X
a dJ (t2 + 1) dt b dJ (log, 1) dt c dj e~ dt
dxJo dx J4 dx J_3

SOLUTION

X
The differential form says that di J f(t)dt = f(x). Hence:
X Ja
rX

a S| 2+ 1dr= x2+ 1)
Jo

rX

b — | (log,t)dt = log,x
Ja

rX

The fundamental theorem — integral form

The integral form of the fundamental theorem is the familiar form that we have been using in Sections 4B
and 4C.

Theorem: Suppose that f(x) is continuous in the closed interval [a, b1, and that F'(x) is a primitive of f(x). Then

b
Jf(x) dx = F(b) — F(a).

a
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X

Proof: We now know that F(x) and J f(t) dt are both primitives of f(x).

a

Because any two primitives differ only by a constant,

X
Jf(t) dt = F(x) + C, for some constant C.
a

a

Substituting x = a,J f(t)ydt = F(a) + C,

a
a

but J f(t) dt = 0, because the area in this definite integral has zero width,
a

SO 0=F() + C

C = —F(a)

Thus Jf(t) dt = F(x) — F(a).

and changing letters from x to b and from ¢ to x gives
b

J f(x)dx = F(b) — F(a), asrequired.

Example 17 4D

Use the integral form of the fundamental theorem to evaluate each integral. Then differentiate your result,

thus confirming the consistency of the discussion above.
X X X

d 2 dJ 3 ) dJ 1
a — | 6t°dt b — t7 — 9t + 5)dt c — | —dt
de dx _2( ) dx 4t2

SOLUTION
X X
a J 6t2dt = [2t3]
I 1
w3 -2

X
S0 dJ 6t2dt = i(2x3 -2)
dx

= 6x2, consistent with the differential form.

-2
(x* - 32> + 5x) - (4 + 24 - 10)

= 1x* — 3¢ 4 5x — 18,

X
b J (t3 = 92 + 5)dt = [iz“ — 3 4 SI]x
-2

X
3 2 d 4 3
— t" =9 +5)dt=—(x —3x +5x - 18
SO J—z( ) dx(4x X X )

3 2 . . . .
x — 9x~ + 5, consistent with the differential form.

X
SO dJ %dt = —(—x‘l + %)
dxJy t dx

= x~°, consistent with the differential form.
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Super challenge — continuous functions

In Section 8K of the Year 11 volume, we defined continuity at a point — you can draw the curve through the

point without lifting the pencil off the paper.

Then throughout this chapter, we have been using the phrase, ‘continuous in the closed interval [a, b]’. This

idea is also straightforward, and informally means that you can place the pencil on the left-hand endpoint
<a, f (a)) and draw the curve to the right-hand endpoint (b, f (b)) without lifting the pencil off the paper.

There is, however, a global notion of a continuous function:

A continuous function is a function continuous at every value in its domain.
This may look obvious, like so many definitions in mathematics, but it is not.
. . 1. . .
It means, for example that the reciprocal function y = — is a continuous function.
X

This is because x = 0 is not in its domain, so the function is continuous at every
value of x in its domain.

Thus y = 1 is a ‘continuous function with a discontinuity’.
X

(Or perhaps the word ‘discontinuity’ is redefined). We recommend avoiding the
concept completely unless some question specifically requires it.

1 The graph to the right shows y = 3¢, for0 < r < 3.

a Use the triangle area formula to find the signed area function
X

A(x) = J3tdt,f0r0 <x <3
0

b Differentiate A (x) to show that A’ (x) is the original function, apart from a
change of letter.

2 Write down the equation of each function, then use area formula, not integration,
X

v

FOUNDATION

to calculate the signed area function A (x) = J f(t)dt, for 0 < t < 4. Then differentiate A (x) to

0
confirm that A" (x) is the original function, apart from a change of letter.

a v b YA

8

1 | t
e N
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192 Chapter 4 Integration _

DEVELOPMENT

X

3 For each function sketched below, describe the behaviour of the signed area function A (x) = J f(p) dt,
0
for all x > 0, in the interval [0, 2] and in the interval [2, co). Then draw a freehand sketch of y = A (x).

a y b ya

E

2 x

X
4 The differential form di J f(¢) dt of the fundamental theorem tells us that the derivative of the integral
X Ja

is the original function, with a change of letter. Use this to simplify these expressions. Do not attempt to
find primitives.

X X X
1
dJ L ar b dJ L c dJe‘z’zdt
dx )it dxlo1 + 3 dx Jo

5 Use the differential form of the fundamental theorem to simplify these expressions. Then confirm the
consistency of the discussion in this section by performing the integration and then differentiating.

X X X

d ) dJ 3 dJl

a — | Bt — 12)dt b — | (t° + 4 dt c — | —drt
del( ) dx 2( ) dx )y 42

X

6 a Sketchy = e’, then sketch the signed area function A (x) = J e’ dt. How would you describe the

. 0
behaviour of y = A(x)? .

b Sketch y = log,t, then sketch the signed area function A (x) = J log, t dt. How would you
describe the behaviour of y = A(x)? !

X
¢ Sketch y = 1, then sketch the signed area function A (x) = J %dt. How would you describe the
behaviour of y = A(x)? !

CHALLENGE
7 a Sketched to the rightis y = cos x, for 0 < x < 2z. Copy and complete y

t
the table of values for the signed area function A (x) = J cost dt, for Lop

0 ‘

: . T >
0 S t < 2nm, g'lven that the region marked P has area exactly 1 B N onx
(this is proven in Chapter 6). Then sketch y = A(x).
x 0 % 7 ¥ 2z

A(x)

What is your guess for the equation of A (x), and what does this suggest the derivative of sin x is?
b Sketchy = sin ¢, for 0 < r < 2z, and repeat the procedures in part a.
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8 The function y = f(¢) sketched to the right has point symmetry in (c, 0). YA

Let A(x) = J £(1) dt.
‘ a2\ R

d
a Where is A (x) increasing, and when it is decreasing? a b c\e/’ t
Where does A (x) have a maximum turning point, and where does A (x)
have a minimum turning point?
Where does A (x) have inflections?
Where are the zeroes of A (x)?
Where is A (x) positive, and where it is negative?
Sketch y = A(x).

- 0D Q O

9 This ‘super challenge’ question may illuminate the definition of a continuous function:
A continuous function is a function that is continuous at every number in its domain.

Classify these functions as continuous or not continuous according to the definition above.

a y=x-2 b y= 12
x—
2 forx # 2,
x—
C = d =
Y=o, forx = 2. y=Va
L, forx > 0,
ey=i fy: X
X 0, forx = 0.
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m The indefinite integral

Now that primitives have been established as the key to calculating definite integrals, this section turns again
to the task of finding primitives. First, a new and convenient notation for the primitive is introduced.

The indefinite integral

Because of the close connection established by the fundamental theorem between primitives and definite
integrals, the term indefinite integral is often used for the general primitive. The usual notation for the
indefinite integral of a function f(x) is an integral sign without any upper or lower limits. For example, the
primitive or the indefinite integral of x2 4+ 1is

3
J(x2 + 1)dx = % + x + C, for some constant C.

The word ‘indefinite’ suggests that the integral cannot be evaluated further because no limits for the integral
have yet been specified.

The constant of integration

A definite integral ends up as a pure number. An indefinite integral, on the other hand, is a function of
x — the pronumeral x is carried across to the answer.

It also contains an unknown constant C (or ¢, as it is often written) and the indefinite integral can also be
regarded as a function of C (or of ¢). The constant is called a ‘constant of integration’ and is an important
part of the answer — it must always be included.

The only exception to including the constant of integration is when calculating definite integrals, because in
that situation any primitive can be used.

Note: Strictly speaking, the words ‘for some constant C’ or ‘where C is a constant’ should follow the first
mention of the new pronumeral C, because no pronumeral should be used without having been formally
introduced. There is a limit to one’s patience, however (in this book there is often no room), and usually it is
quite clear that C is the constant of integration. If another pronumeral such as D is used, it would be wise to
introduce it formally.

Standard forms for integration

The two rules for finding primitives given in Section 3H can now be restated in this new notation.

14 STANDARD FORMS FOR INTEGRATION

Suppose that n # —1. Then

xn+1
o x"dx = + C, for some constant C.
n+ 1
1
(ax + b)"*
J J(ax + b)'dx = —————— + C, forsome constant C.
a(n + 1)
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4E The indefinite integral 195

The word ‘integration’ is commonly used to refer both to the finding of a primitive, and to the evaluating of a
definite integral. Similarly, the unqualified term ‘integral’ is used to refer both to the indefinite integral and to

the definite integral.

Example 18

n+1
1 + C to find:

Use the standard form [x” dx =
n +

a J9 dx

SOLUTION

a J9 dx = 9x + C, for some constant C

4E

b J12x3dx

Note: We know that 9x is the primitive of 9, because di (9x) = 9.
x

But the formula still gives the correct answer, because 9 = 9x0,

so increasing the index to 1 and dividing by this new index 1,

1
J9x0 dx = 9% + C, for some constant C

9% + C.

4
b Jle3 dx = 12 x XZ + C, for some constant C

=34+ C

Example 19

_ (ax + pyrt1

4E

Use the standard form J(ax + b)'dx = ——— + Ctofind:

a(n + 1)

a J(3x + 1) dx

SOLUTION
(Bx + 1)°
3X6
2G@x + 1) + C

+ C (heren = Sand a

a J(3x + 1) dx

(5 — 2x)°
(-2) x 3
=-15-23+cC

b J(s — 2x)%dx + C  (heren = 2anda

ISBN 978-1-108-76626-5 © Pender et al. 2019
Photocopying is restricted under law and this material must not be transferred to another party.

b J(s — 2x)%dx

3and b = 1)

—2andb = 5)

Cambridge University Press
Updated May 2022



196 Chapter 4 Integration _

Negative indices

Both standard forms apply with negative indices as well as positive indices, as in the next worked example.

The exception is the index —1, where the rule is nonsense because it results in division by zero. We shall deal
with the integration of x~! in Chapter 5.

Example 20 4E
Use negative indices to find these indefinite integrals.
. le i b ["
x3 (3x + 4)2
SOLUTION
a ledx = Jle_3dx
3
X
=)
=2x*X +C (increase the index to —2, then divide by —2)
6
=-—+C
¥2
b de - J(3x + 4 2dx
(3x + 4) 1
3 4)”
- (3’6:(_)1) +C  (herea = 3andb = 4)
1
=-———+C
33x + 4)

Special expansions

In many integrals, brackets must be expanded before the indefinite integral can be found. The next worked
example uses the special expansions. Part b also requires negative indices.

Example 21 4E

Find these indefinite integrals.

a J(x3 — 1)2dx b [(3 —12> (3 + 12> o
X X

SOLUTION
a J(x3 — D?%dx = [(x® — 223 + 1) ax (using(A + B)? = A? + 2AB + B?)
7 4
X
== -=+x+C
7 277

b J<3 - 1) (3 + 12> ol = J<9 - 1) dx  (using(A — B)(A + B) = A% — B?)
X

X X
= J(9 — x™ ) dx
x3 1
=9x——+C=9x+—3+C
-3 3x
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4E The indefinite integral 197

Fractional indices

The standard forms for finding primitives of powers also apply to fractional indices. These calculations
require quick conversions between fractional indices and surds. The next worked example finds each
indefinite integral and then uses it to evaluate a definite integral.

Example 22 4E

Use fractional and negative indices to evaluate:
4 4
a J Vi dx b J € dx
1 1
SOLUTION

4
a J\/;cdx
1

(rewrite V/x as x> before finding the primitive)

I
—

o

&

1
4
=12 [x%] . (increase the index to 3 and divide by %)
=2x@8-1 (42=2"=8andl2=1)
=42
4 4
b J €L dx = J x 72 dx <rewriteL as x 2 before finding the primitive)
1 Vx 1 X
2 1 4 . . 1 . . 1
=% xz] | (mcrease the index to 5 and divide by 5)
=2x (2-1) (4=+v4=2andlz=1)
=
Example 23 4E
a Use index notation to express . as a power of 9 — 2x.

9 — 2x

b Hence find the indefinite integral [dx

Vo — 2%

SOLUTION
1 _1
a —— = (9 — 2.
V9 — 2x
b HenceJ.1 = J(9 - 2x)_i dx
9 — 2x
1
9 — 2x)2 + by"t!
= (716)2 + C, usingJ(ax + b)'dx = u
-2 x1 a(n + 1)
= —-v9 — 2x + C.
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FOUNDATION

Technology: Many programs that can perform algebraic manipulation are also able to deal with indefinite
integrals. They can be used to check the questions in this exercise and to investigate the patterns arising in

such calculations.

1 Find these indefinite integrals.

a J4 dx b Jl dx c JO dx d J(—Z) dx

e Jx dx f sz dx g Jx3 dx h Jx7 dx
2 Find the indefinite integral of each function. Use the notation of the previous question.

a 2x b 4x c 3x2 d 4x3

e 10x° foox3 g 4x° h 3x8
3 Find these indefinite integrals.

a |(x+ x?)dx b | (x* = x3)dx c |7 + x'9dx

d | @2x + 5xhdx e | (98 — 11)dx fo (7 + 3x%) ax

g |(4 - 3x)dx h (1= x? + x%)dx i | (Bx? = 8% + Tx%)dx
4 Find the indefinite integral of each function. (Leave negative indices in your answers.)

a x7? b x73 c x8

d 3x~* e 9x~10 f 10x°
5 Find these indefinite integrals. (Leave fractional indices in your answers.)

a Jxé dx b [xé dx c ijt dx

d [xi dx e Jx 3 dx f J4x; dx

DEVELOPMENT

6 By first expanding the brackets, find these indefinite integrals.

a |x(x + 2)dx b |x(4 — x?)dx ¢ |x2(5 = 3x)dx

d | - 5)ax e |(x — 3)Ydx fo|2x + 1)%dx

g |1 -xH)%dx h (2 = 30)(2 + 3x) dx i | (x®=3)(1 = 2x)dx
7 Write each integrand as separate fractions, then perform the integration.

2 7 8 3 _ .4
. J)€+2xdx b dex . Jhxdx
X X0 4x
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4E The indefinite integral 199

8 Write these functions with negative indices and hence find their indefinite integrals.

a i b i c L
x2 x3 x>
x? %0 x8
. 1 . 1 1 1
b I -3 K575
Tx 5x X X

d L

9 Write these functions with fractional indices and hence find their indefinite integrals.

a Va

10 Use the indefinite integrals of the
a F\/;C dx
0
11 By using the rule J(ax + b)'dx
a n(x + 1)°dx
d "(3 — x)dx
g "(5 — 2x)%dx

110 ax

I 132x -

12 By using the rule J(ax + b)'dx
4
a J(éx - 7) dx

13 By using the rule J(ax + b)'dx

a ¥dx

Jax+ 1)’
0 |—1—ax
Y2 -2
Ji3 - 5x0)*

14 By expanding the brackets, find:

a | \/;<3\/; - x)dx

8
b J%dx
0

b\3/;c ci

Vx

previous question to evaluate:

49 |
c J —dx
254/
bn+1
I A
a(n + 1)
b |(x + 2)%dx

e |3x + 1)*dx

h (1 = 5x)dx

k |4(5x — 4)0dx

_ (ax + pyrt+!
T oan+ 1)

b J.(}‘x — 7)6 dx

_ (ax + b)"*!
- a(n + 1)
b |—1
CN

e |3
Ja =70

h |— % i
J5(1 = 4x)?

+ C, find:

+ C, find:

b («/} —2)(Vx + 2)dx

15 a Evaluate these definite integrals.

1

. 1

i JXde
0
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b By writing them with fractional indices, evaluate these definite integrals.
4 9 9
i {\/de i Jx\/;cdx i J dx
0 1 14/x
16 Expand the brackets and hence find:
4 1 9 2
a J(z—«/})(2+«/§c)dx b J«/}(«/}—4)dx c J(\/i—l)dx
2 0 4
CHALLENGE
17 Explain why the indefinite integral Llc dx cannot be found in the usual way using the standard form
n+1
Jx”dx =2 + C.
n+1
18 Find each indefinite integral.
a Jv2x — ldx b JV7 — 4dxdx
c JV34x— 1 dx d Jldx
V3x + 5
19 Evaluate these definite integrals
2
2 3 5
c 1 - x)d
a | (x+ D b | (2x — 53 dx )T
Jo J2
-5 4 Nl -7 |
d (1 _x) dx e | V9 — 8xdx f ————dx
Jo S Jo 124/x + 2
-0 5 0
g | Vi+lax h | V3x + 1ax i | V1 - 5xax
J-2 J1 J-3
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4F Finding areas by integration 201

m Finding areas by integration

The aim of this section and the next is to use definite integrals to find the areas of regions bounded by curves,
lines and the coordinate axes.

Sections 4F-4G ignore integrals that run backwards. Running an integral backwards reverses its sign, which
would confuse the discussion of areas in these sections. When finding areas, we decide what integrals to
create, and we naturally avoid integrals that run backwards.

Areas and definite integrals

Areas and definite integrals are closely related, but they are not the same thing.

® An area is always positive, whereas a definite integral may be positive or negative, depending on whether
the curve is above or below the x-axis.

Problems on areas require care when finding the required integral or combination of integrals. Some

particular techniques are listed below, but the general rule is to draw a diagram first to see which pieces need

to be added or subtracted.

15 FINDING AN AREA

When using integrals to find the area of a region:

1 Draw a sketch of the curves, showing relevant intercepts and intersections.
2 Create and evaluate the necessary definite integral or integrals.

3 Write a conclusion, giving the required area in square units.

Regions abhove the x-axis

When a curve lies entirely above the x-axis, the relevant integral will be positive, and the area will be equal to
the integral, apart from needing units.

Example 24 4F

Find the area of the region bounded by the curve y = 4 — x? and the x-axis. (This was the example
sketched in the introduction to this chapter.)

SOLUTION

The curve meets the x-axis at (2,0) and (=2, 0).
The region lies entirely above the x-axis and the relevant integral is

% 32 YA
J (4 — x%)dx = [4 —% y=4-2
=9 =2

- (-9 - (-3+Y)

=54 - (-51) s

- 102, /—2 2\ x

which is positive because the region lies entirely above the x-axis.
Hence the required area is 10§ square units.
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Regions below the x-axis
When a curve lies entirely below the x-axis, the relevant integral will be negative, and the area will be the

opposite of this.

Example 25 4F

Find the area of the region bounded by the curve y = x> — 1 and the x-axis.

SOLUTION
The curve meets the x-axis at (1,0) and (—1, 0).
The region lies entirely below the x-axis and the relevant integral is vA
1 3 1
J (x2 = 1)dx = x—x]
—1 3 -1
= (-1 - (=4+1) = T3
-§-3
=11 -l

3
which is negative, because the region lies entirely below the x-axis.
Hence the required area is 1 % square units.

Curves that cross the x-axis
When a curve crosses the x-axis, the area of the region between the curve and the x-axis cannot usually be
found by means of a single integral. This is because integrals representing regions below the x-axis have

negative values.

Example 26 4F

a Sketch the cubic curve y = x(x + 1)(x — 2), showing the x-intercepts.
b Shade the region enclosed between the x-axis and the curve, and find its area.

2
¢ Find J x(x + 1)(x — 2) dx and explain why this integral does not represent the area of the region
-1

described in part b.

SOLUTION
a The curve has x-intercepts x = —1, x = O and x = 2, and is graphed below.
b Expanding the cubic, y=x(x+ I)(x - 2)
= x(x2 - x = 2)
=x3 - x? - 2x. A
/
For the region above the x-axis,
0 0
4 3
J(x3—xz—2x)dx=x—x—x2 )
-1 4 3 1 - =
X
=0-0-0 - (+4-1)
= 3
= 1
SO area above = f—zsquare units.
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4F Finding areas by integration 203

For the region below the x-axis,

g 4 .3 2
J(x3—x2—2x)dx= [x_x_xz
0 4 3 0
=(4-22-4)-0-0-0)
= -2%
SO area below = 23 square units.
Adding these, total area = 75 + 23
= 3 square units.
2 2
4 3
X X 2
x(x+ 1)(x —2)dx = |=— — — —x
c Ll( )( ) 1 3 B
S (i)
=23+
=215

This integral represents the difference 22 — 3 = 21 of the two areas, and is negative because the area

below is larger than the area above.

Areas associated with odd and even functions

As always in mathematics, these calculations are often much easier if symmetries can be recognised.

Example 27

3

a Show thaty = x” — xis an odd function.

b Using part a, find the area between the curve y = x> — x and the x-axis.

SOLUTION

a Let f(x) = x3 - x y4
Then f(—x) = (—x)° — (=x)

= -x3 +x
= —f(x), so f(x) is odd. -
b Factoring, y = x(x2 -1 / 1

=V

=x(x — DHx + 1),
so the x-intercepts are x = —1,x = Oand x = 1.
The two shaded regions have equal areas because the function is odd.
1

4 271
First, J(x3—x)dx= X
0 4 2o
=(-3)-0-0
= -1

so area below the x-axis = I square units.

Doubling, total area = 1 square units.
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Area between a graph and the y-axis

Integration with respect to y rather than x can often give a result more quickly without the need for

subtraction. When x is a function of y:

® A definite integral with respect to y represents the signed area of the region between the curve and the y-axis.

e This means that the definite integral is the sum of areas of regions to the right of the y-axis, minus the sum
of areas of regions to the left of the y-axis.

¢ The limits of integration are values of y rather than of x.

16 THE DEFINITE INTEGRAL AND INTEGRATION WITH RESPECT TO y

Let x be a continuous function of y in some closed intervala < y < b.
b

Then the definite integral J x dy is the sum of the areas of regions to the right of the y-axis,
a
fromy = atoy = b, minus the sum of the areas of regions to the left of the y-axis.

Example 28 4F
\e—— )

a Sketchthelinesy = x + 1 and y = 5, and shade the region between these lines to the right of the
y-axis.

b Write the equation of the line so that x is a function of y.
Use integration with respect to y to find the area of this region.

d Confirm the result by area formulae.

SOLUTION
a The lines are sketched below. They meet at (4, 5).

x + 1.
Solving for x, x=y— 1

b The given equation is y

¢ The required integral is

5 2 5 Y1
J(y “ Dy =P ] 5 /.
1

I
|
|

<

A

=74~ (-4) ;

=V

= 8, P
which is positive, because the region is to the right of the y-axis.
Hence the required area is 8u’.
d Areaof triangle = 1 X base X height
=1x4x4
= 8u’.
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4F Finding areas by integration 205

Example 29 4F

The curve in the diagram below is the cubic y = x3.

a Write the equation of the cubic so that x is a function of y.
b Use integration with respect to y to find the areas of the shaded regions to the right and left of the y-axis.
¢ Find the total area of the two shaded regions.

SOLUTION
a The given equationis y = x3.
Solving for x, x3 = y
X = y%.
b For the region to the right of the y-axis, yA
8 ] 81
1 4
Jy3 dy = i[w]
0 0 .
= % X (16 — 0)  (because 8 = 2% = 16)
= 12,
SO area = 12 square units. >
For the region to the left of the y-axis, Ji -1
0 1 3] 4 0
yidy = g|y3
-1 -1 y
= % X (0 —1) (because (—1)3 = (—1)4 =1)
= -3
SO area = 3 square units

¢ Adding these, total area = 12 3 square units.

FOUNDATION

Technology: Graphing software will help in identifying the definite integrals that need to be evaluated to
find the area of a given region.

1 Find the area of each shaded region below by evaluating the appropriate integral.

a VA A b VA [ VA d
y=2x y=3x7
\ L
2 X 1 3 X 4.3 | S
y/=4x ) e
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206 Chapter 4 Integration _

e yA f yA g h Y\
y=x2 y=x—2x 5
y=5-x
3 X 2 4 X >
13 5%
i y\ J yl\z k 44 I VA
y=12—-x—|x Sx+ 1 y=3/x—)
, X R 1 27X
y=x—x R 7 x
/—4 3\3’6

Note: In Questions 2—4, you will be finding areas between a curve and the y-axis. In each such case, the
equation of the curve has already been given with x as the subject.

2 a AL b VA
2
=3
] gt
x=2y
> X
X 2y
Explain why the shaded area is given by the Explain why the shaded area is given by the
5 0
integral J 2y dy. Then find the area. integral J 3y2 dy. Then find the area.
0 -2

3 Find the area of each shaded region below by evaluating the appropriate integral. The equation of the
curve has already been given with x as the subject.

d y A b y A (H VA
] /
(\3 3
4 27

x=2y-4

=V
=
Il
~<

] x=27-3y2 >

=V

d ya € V4 f

=
=V

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022



4F Finding areas by integration 207

4 Find the area of each shaded region below by evaluating the appropriate integral.

a A b VA c VA d VA

V4
! 1 3
5 y=3x y=2 N | X
y=x2—4x+3 =3 > =3 >
/ X X

5 Find the area of each shaded region below by evaluating the appropriate integral.
a A b c VA d V4

v
4 17 X 13
4 x|=3y
x=1-y _1 X X
N ~ 2hx=y2—6y+8
\x ‘ -8
§ oy ¥ v
DEVELOPMENT
6 Theline y = x + 1 is graphed on the right. YA
a Copy the diagram, and shade the region between the liney = x + 1 /
and the x-axis fromx = —=3tox = 2.
2 :
b By evaluating J (x + 1) dx, find the area of the shaded region above the 2 X
X-axis. -
-1
¢ By evaluating J (x + 1) dx, find the area of the shaded region below the

: -3
X-axis.

d Hence find the area of the entire shaded region.

2
e Find J (x + 1) dx, and explain why this integral does not give the area of the shaded region.
-3

7 Thecurvey = (x — 1)(x + 3) = x> + 2x — 31is graphed. VA
a Copy the diagram, and shade the region between the curve
y = (x — 1)(x + 3) and the x-axis fromx = —=3tox = 2.
1

b By evaluating [ (x2 + 2x — 3)dx, find the area of the shaded region below

the x-axis. -3 —3\/
2

¢ By evaluating J (x% + 2x — 3)dy, find the area of the shaded region above the
: 1
X-axis.

d Hence find the area of the entire shaded region.

2
e Find J (x? + 2x — 3)dx, and explain why this integral does not give the area of the shaded region.
-3
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8 Thecurvey = x(x + 1)(x — 2) = x> — x?> — 2xis graphed. VA
a Copy the diagram, and shade the region bounded by the curve and the x-axis.
2
b By evaluating (x3 = x% — 2x) dx, find the area of the shaded region below -1 2
the x-axis. X
0
¢ By evaluating (x* — x? — 2x) dx, find the area of the shaded region above
the x-axis. -
d Hence find the area of the entire region you have shaded.
2
e Find J (x3 = x> = 2x)dx, and explain why this integral does not give the area of the shaded region.
-1

9 In each part below, find the area of the region bounded by the graph of the given function and the
x-axis between the specified values. Remember that areas above and below the x-axis must be calculated

separately.

ay= x2, between x = —3 and x = 2

b y= 2x3, between x = —4andx = 1

c y=3x(x —2),betweenx = Oand x = 2

d y=x— 3,betweenx = —landx = 4

e y=(x-—-1+ 3)(x — 2),betweenx = =3 and x = 2
f y=—-2x(x + 1), betweenx = —2andx = 2

10 In each part below, find the area of the region bounded by the graph of the given function and the
y-axis between the specified values. Remember that areas to the right and to the left of the y-axis must
be calculated separately.

a

b
c
d

x=1y — 5betweeny = Oandy = 6

x =3 —ybetweeny = 2andy = 5

X = y2,betweeny = —landy =3

x=(y —1)(y + 1),betweeny = 3andy = 0

11 In each part below you should sketch the curve and look carefully for any symmetries that will simplify

the calculation.

a

Find the area of the region bounded by the given curve and the x-axis.
i y=x7,for—2 <x<L2

i y=x3=16xr=x(x — 4)(x + 4),for—4 < x < 4

iy =x* —9x? = x>(x — 3)(x + 3),for-3 < x <3

Find the area of the region bounded by the given curve and the y-axis.
I x=2yfor-5<y<5

i x=yfor=3<y<3

i x=4—-y2=02 -yQ+y,for-2<y<?2

12 Find the area of the region bounded by y = |x + 2| and the x-axis, for -6 < x < 2.
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CHALLENGE

13 The diagram shows the parabola y> = 16(2 — x).
a Find the x-intercept and the y-intercepts. T

b Find the exact area of the shaded region:
i by integrating y = 4V/2 — x with respect to x,

A
ii by integrating with respect to y. (You will need to make x /

=V

the subject of the equation.)

14 The gradient of a curve is y’ = x>

the origin.

a Find the equation of the curve.

b Show that the curve has turning points at (1, 1 %) and (3, 0), and sketch its graph.

¢ Find the area of the region bounded by the curve and the x-axis between the two turning points.

— 4x + 3, and the curve passes through

15 Sketch y = x? and mark the points A (a, a?), B(—a,a?), P(a,0) and O(—a,0).
a

a Show thatj x%dx = 2 (area AOAP).

0
a

b Show that J x2dx = 1 (area of rectangle ABQP).

—a
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210 Chapter 4 Integration _

m Areas of compound regions

When a region is bounded by two or more different curves, some dissection process is usually needed before
integrals can be used to calculate its area.

Thus a preliminary sketch of the region becomes all the more important.

Areas of regions under a combination of curves

Some regions are bounded by different curves in different parts of the x-axis.

Example 30 4G

a Sketch the curves y = x2 and y=(x— 2)2 on one set of axes.
b Shade the region bounded by y = x%,y = (x — 2)? and the x-axis.
¢ Find the area of this shaded region.

SOLUTION

a The two curves intersect at (1, 1), because it is easily checked by substitution that this point lies on
both curves.

b The whole region is above the x-axis, but it will be necessary to find separately the areas of the regions
to the left and right of x = 1.

1 a1
¢ First, szdx = |=— VA
0 3o
=1
2
— 2y312
Secondly, J (x — 2)%dx = (x32)] 1
1 1 \ /
0 - (=) Pz
= % 1 2 2
Combining these, area = 1 + 1
= % square units.

Note: In this worked example, the second parabola is the first shifted right 2, and a parabola is symmetric
about its axis of symmetry. This is why the two pieces have the same area.

Areas of regions between curves

Suppose that one curve y = f(x) is always below another curve y = g(x) in an interval @ < x < b. Then
the area of the region between the curves from x = a to x = b can be found by subtraction.

17 AREA BETWEEN CURVES

If f(x) < g(x)intheintervala < x < b, then
b

area between the curves = J ( gx) — f (x)) dx.

a
That is, take the integral of the top curve minus the bottom curve.
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4G Areas of compound regions 211

The assumption that f(x) < g(x) is important. If the curves cross each other, then separate integrals will need
to be taken or else the areas of regions where different curves are on top will begin to cancel each other out.

Example 31 4G

a Find the two points where the curve y = (x — 2)? meets the line y = X
b Draw a sketch and shade the area of the region between these two graphs.
¢ Find the shaded area.

SOLUTION
a Substitutingy = xintoy = (x — 2)? gives Ay
(x—-2P%=x
P —dx+4=1x
) 4
x*=5%+4=0
(x = Dx = 4) =0,
x = 1or 4, 1y |
so the two graphs intersect at (1, 1) and (4, 4). 1 2 4 X

b The sketch is drawn to the right.

¢ In the shaded region, the line is above the parabola.
4
Hence area = (x - (x = 2)2) dx
1
4
= (x- 2 -4x+4))ax
1
A4
= | (=x? + 5x — 4)dx
1

= —£+$—4x4

5 1
= (-211 + 40 - 16) - (-1 + 2} - 4)
=22+ 12

= 41 square units.

Note: The formula given in Box 17 on the previous page for the area of the region between two curves holds
even if the region crosses the x-axis.

To illustrate this point, the next example is the previous example shifted down 2 units so that the region
between the line and the parabola crosses the x-axis. The area of course remains the same — and notice how
the formula still gives the correct answer.
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212 Chapter 4 Integration

Example 32

a Find the two points where the curves y = x? — 4x + 2 and y = x — 2 meet.

b Draw a sketch and find the area of the region between these two curves.

SOLUTION
a Substitutingy = x — 2intoy = x> — 4x + 2 gives Ay
2 —dx+2=x-2
2 -5x+4=0 5
x-—1Dx-4)=0
x =1 or 4,
so the two graphs intersect at (1, —1) and (4, 2). -1
/|

Again, the line is above the parabola,
4

SO area = ((x - 2) — (x2 — 4x + 2))dx
I

4

(—x2 + 5x — 4)dx

I

o3 2 &
X 44

| 3 2 |
(-21% + 40 - 16) — (-1 + 24
4

1 .
> square units.

Areas of regions between curves that cross

4G

Now suppose that one curve y = f(x) is sometimes above and sometimes below another curve y = g(x) in

the relevant interval. In this case, separate integrals will need to be calculated.

Example 33

The diagram below shows the curves
y=—x2+4x—4 and y=x2—8x+12
meeting at the points (2, 0) and (4, —4). Find the area of the shaded region.

4G

SOLUTION
In the left-hand region, the second curve is above the first.
2
Hence area = ((x2 — 8 + 12) — (—x2 + 4x — 4)) dx '<~y
Jo 112
2
= | (2x% - 12x + 16) dx
J0
3 2
= |2 6x2 4 16x ) /
0 >
X
=51 -24+32 2\ /6
= 131u’. =
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In the right-hand region, the first curve is above the second,

SO

Hence total

area

area

4

4

(=2x2 + 12x — 16) dx
J2
_ 3 4
— 2% + 6x2 — 16x

2

(-42% +96 — 64) — (=51 + 24 - 32)

-10% + 131
Z%uz.

131 + 22
16 u?.

((=x% + 4x - 4) — (2 - 8x + 12)) dx

4G Areas of compound regions

213

FOUNDATION

w Technology: Graphing programs are particularly useful with compound regions because they allow the

e Scparate parts of the region to be identified clearly.

1 Find the area of the shaded region in each diagram below.

d AL

by

yl\

2 By considering regions between the curves and the y-axis, find the area of the shaded region in each

diagram below. Notice that the equation of each curve has already been solved for x.

a  ys

by
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214 Chapter 4 Integration _

3 Find the areas of the shaded regions in the diagrams below. In each case you will need to find two areas
and add them.

d y A b VA

y=+2)
I .

9
y= (=22 Hy=e-ap

A

4 Find the areas of the shaded regions in the diagrams below. In each case you will need to find two areas
and subtract one from the other.
a

y=x

) 2 X

yl\

y=6xjx2—8

| _ ]

2 4 67X

DEVELOPMENT

5 a By solving the equations simultaneously, show that the parabola y = x2 + 4 and the line y=x+6
intersect at the points (—1, 5) and (2, 8).
Sketch the parabola and the line on the same diagram, and shade the region enclosed between them.

¢ Show that this region has area
2

2
J ((x+6) —(x2+4)>dx=J (x = x% + 2)dx
-1 -1

and evaluate the integral.

6 a By solving the equations simultaneously, show that the parabolay = 3x — x? = x(3 — x) and the
line y = x intersect at the points (0, 0) and (2, 2).
b Sketch the parabola and the line on the same diagram, and shade the region enclosed between them.

Show that this region has area
2

2
J (3x — X2 - x)dx = J (2x — xz)dx
0 0

and evaluate the integral.

7 a By solving the equations simultaneously, show that the parabolay = (x — 3)? and the line
y = 14 — 2xintersect at the points (—1, 16) and (5, 4).
Sketch the parabola and the line on the same diagram, and shade the region enclosed between them.
Show that this region has area

5 5
J (14 —20) = (x = 37) dx = J (4x + 5 — x?)dx,
-1 -1

and evaluate the integral.
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11

12

4G Areas of compound regions

Solve simultaneously to find the points of intersection of each pair of graphs. Then sketch the graphs on
the same diagram, and shade the region enclosed between them. By evaluating the appropriate definite
integral, find the area of the shaded region in each case.

a
b
c

y=x+3 and y=x2+1

y=9—x2 and y=3 —x

y=x2—x+4 and y = —x>+3x + 4

By solving the equations simultaneously, show that the parabola y = x> + 2x — 8 and the line
y = 2x + 1 intersect at the points (3,7) and (-3, —5).

Sketch both graphs on the same diagram, and shade the region enclosed between them.

Despite the fact that it crosses the x-axis, the region has area given by
3 3
J (@x+ 1 = % + 2x - 8)) dx = J (9 - x?) dx.
-3 -3
Evaluate the integral and hence find the area of the region enclosed between the curves.

2 _ x — 2 and the line

By solving the equations simultaneously, show that the parabolay = x
y = x — 2 intersect at the points (0, —2) and (2, 0).
Sketch both graphs on the same diagram, and shade the region enclosed between them.

Despite the fact that it is below the x-axis, the region has area given by
2 2
J (0 -2) -2 —x-2))dr = J (2x — x2)dx.
0 0
Evaluate this integral and hence find the area of the region between the curves.

Solve simultaneously to find the points of intersection of each pair of graphs. Then sketch the graphs on
the same diagram, and shade the region enclosed between them. By evaluating the appropriate definite
integral, find the area of the shaded region in each case.

a
b
c

y=x2—6x+5 and y=x -5
y
y=x>-1 and y=7—x

—3x and y=4—x2

2

On the same number plane, sketch the graphs of the parabolas y = xZandx = y?, clearly indicating
their points of intersection. Shade the region enclosed between them.

1
Explain why the area of this region is given by J (\/; - x2> dx.
0

Find the area of the region bounded by the two curves.

CHALLENGE

13

14

15

Tangents are drawn to the parabola x? = 8y at the points A (4,2) and B(—4,2).

a
b
c

a
b
c

Draw a diagram of the situation and note the symmetry about the y-axis.
Find the equation of the tangent at the point A.
Find the area of the region bounded by the curve and the tangents.

Show that the tangent to the curve y = x> at the point where x = 2 has equationy = 12x — 16.
Show by substitution that the tangent and the curve intersect again at the point (—4, —64).
Find the area of the region enclosed between the curve and the tangent.

Consider the curves y = x3 =3 andy = —x% + 10x — 11.

a
b
c

Show by substitution that the curves intersect at three points whose x-values are —4, 1 and 2.
Sketch the curves showing clearly their intersection points.
Find the area of the region enclosed by the two curves.

215
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m The trapezoidal rule

Methods of approximating definite integrals become necessary when exact calculations using primitives are

not possible. This can happen for two reasons.

e The primitives of many important functions cannot be written down in a formula suitable for calculation —
this is the case for the important normal distribution in Chapter 10.

¢ Some values of a function may be known only from experiments, and the function formula may be
unknown.

The trapezoidal rule
Besides taking upper and lower rectangles, the most obvious way to approximate VA
an integral is to replace the curve by a straight line, that is, by a chord

joining (a, f (a)) and (b, f (b)).The resulting region is then a trapezium, so this f®b)
approximation method is called the trapezoidal rule. f(c}

Consider the trapezium in the diagram to the right.
Here width = b — a, a b
fla) + f(D)
5 .
Hence area of trapezium = width X average of parallel sides
b —
S (F@ + 1),

The area of this trapezium is taken as an approximation of the integral.

=V

and averageofparallelsides =

18 THE TRAPEZOIDAL RULE USING ONE SUBINTERVAL

Let f(x) be a function that is continuous in the closed interval [a, b].
e Approximating the curve from x = 1 to x = b by a chord allows the region under the curve to be
approximated by a trapezium, giving
. b —
J f@)de = 22 (f (@) + £(b)).
a
e If the function is linear, then the chord coincides with the curve and the formula is exact.

* Always start a trapezoidal-rule calculation by constructing a table of values.

Subdividing the interval

Given an integral over an interval [a, b], we can split that interval [a, b] up into a number of subintervals
and apply the trapezoidal rule to each subinterval in turn. This will usually improve the accuracy of the
approximation.

Here is the method applied to the reciprocal function y = l, whose primitive we will only establish in
X
Chapter 5.
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Example 34 4H
: 1

Find approximations of [ — dx using the trapezoidal rule with:
1 X

a one subinterval, b four subintervals.

SOLUTION

Always begin with a table of values of the function.

x 1 2 3 4 5
y!\

1
1 9 1 1 1 1
X 2 3 4 5
a One application of the trapezoidal rule, using the whole
interval as the subinterval, requires just two values
of the function.
5
1 5-1
—dx = X ) + f(5 ‘ | >
Jlx = 2= x (f(D) + £9)
=2x (1+1)
=22
b Four applications of the trapezoidal rule require five values of the function.
Dividing the interval 1 < x < 5 into four equal subintervals,

51 21 31 41 51
de=de+de+de+de
1 X 1 X 2 X 3 X 4 X

Each subinterval has width 1, so applying the trapezoidal rule to each integral,
5

J1 Lar 2 1) + £@) + 1@ + £B) + 1(FB) + £ @) + 1(F @ + £(5)

X

3+ 10+ 8 10+ D) 36+ Y)
1

Note: Always take subintervals of equal width unless otherwise indicated.

Concavity and the trapezoidal rule

The curve in the example above is concave up, so every chord is above the curve, and every approximation
found using the trapezoidal rule is therefore greater than the integral.

Similarly, if a curve is concave down, then every chord is below the curve, and every trapezoidal-rule
approximation is less than the integral. The second derivative can be used to test concavity.

19 CONCAVITY AND THE TRAPEZOIDAL RULE

o If the curve is concave up, the trapezoidal rule overestimates the integral.
e If the curve is concave down, the trapezoidal rule underestimates the integral.

o [f the curve is linear, the trapezoidal rule gives the exact value of the integral.
o d? .
The second derivative —;} can be used to test the concavity.
dx
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Example 35 4H

a Use the trapezoidal rule with one subinterval (that is, two function values) to approximate
5
J (200x — x*)dx.
I

b Use the second derivative to explain why the approximation underestimates the integral.

SOLUTION
4

a Construct a table of values for y = 200x — x".

5
J(zoox e e 2 ; Ly (r() + £(5) y 199 375
1

=2 x (199 + 375)
= 1148

b The functionis y = 200x — x*.
Differentiating, y’ = 200 — 4x>
and y” = —12x2
Because y” = —12x%is negative throughout the interval 1 < x < 5,
the curve is concave down throughout this interval.
Hence the trapezoidal rule underestimates the integral.

A formula for multiple applications of the trapezoidal rule

When the trapezoidal rule is being applied two or three times, it is easier to perform the two or three
calculations required. These separate calculations also reinforce the meaning of the approximation, and help
to gain an intuitive understanding of the accuracy of the estimates.

But increasing accuracy with the trapezoidal rule requires larger numbers of applications of the rule, and this
can quickly become tedious. Let us then develop a single formula that splits an integral into n subintervals

of equal width and applies the trapezoidal rule to each — anyone writing a program or using a spreadsheet to
estimate integrals would want to do this.

The first step is to divide the interval [a, b] into n equal subintervals, each of width A, like this:

a = .xO .xl x2 .X:3 e .xn_z X

There are n + 1 points altogether, and they divide the interval into n equal subintervals. The endpoints are
a = xpand b = x,,1,and the n — 1 division points in between are x, X2, . . ., X, _1.

There are n subintervals, so nh = b — a, and the width /4 of each subinterval is

p=b-2a

n

Thus starting with a = x), the successive values of the division points are
X9 = a Xpn_o=a+ (n — 2)h
Xx1=a+h Xp_1=a+ (n— Dh
Xy =a + 2h Xp=a+nh=a+ (b -a)=0>
Thatis, x, = a + rh,forr =0,1,2,...,n — 1, n.
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4H The trapezoidal rule 219

Now we can apply the trapezoidal rule to each subinterval in turn,

b X1 29 Xy — 1 b
Jf(x)dx J'f(x)dx+J'f(x)dx+---+J f(x)dx+J f(x)dx

- g(f(a) + 1) + %(f(xl) +f(x2) + oo
+g<f(x,,_2) + (o) + %(f(x,,_l) + f(b))
= 2(f@ + 200 + 2 () + o+ Y + D)
20 TRAPEZOIDAL-RULE FORMULA USING n SUBINTERVALS

Let f(x) be a function that is continuous in the closed interval [a, b]. Then

b
Jf(x) dv = 2(£(@) + A1) + S@) + - + Ao 1) + FB)
¢ b — a
n

where h = andx, =a + rh,forr =1,2,...,n — 1.

A common rearrangement of this formula, using nested brackets, is

b
Jf(x) dx = (f(a) + £b) + 2(fOeD) + f(x2) + - + o) )

b —a
2n
Using the formula for the trapezoidal rule

The formula may look complicated at first sight, but it is actually quite straightforward to use, provided that:
® We begin with a sensible value of the width & of each subinterval.

® We construct a clear table of values to work from.

Here is an example where there is no equation of the function, but simply a set of experimental results
gathered by recording equipment.

Example 36 4H

The flow at Peachtree Creek on 4th December 2002 after a storm is shown in the graph below. The flow
rate in cubic feet per second is sketched as a function of the time # in hours.

We can estimate the total amount of water that flowed down the creek after the storm that day by integrating from
t = 4tot = 24. Use the trapezoidal rule with two-hour subintervals to approximate the total amount of water.

Rainfall and streamflow at Peachtree Creek, Dec. 24, 2002

1,500 / \\ 0.08

0 L1 0
0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

= 7,500 0.4

S — Streamflow [

% 6,000 //\\ Rainfall L 10.32
o, wn
8, 500 / ~ 0.24 é
g / N B
2 3,000 / \\ 0.16%
3 2
=

=

g

0]
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SOLUTION
The graph is very inaccurate, like so much internet data, but here is a rough table of values of the
flow rate in cubic feet per second as a function of time ¢ in hours.
t 4 6 8 10 12 14 16 18 20 22 24
Flow rate 100 600 5500 6700 5800 4800 4100 1800 800 600 500
The units need attention. The time is in hours, so the flow rates must be converted to cubic feet per hour by
multiplying by 60 X 60 = 3600.
To avoid zeroes, let R be the flow rate in millions of cubic feet per hour.
t 4 6 8 10 12 14 16 18 20 22 24
R 0.36 2.16 19.8 24.12 20.88 17.28 14.76  6.48 2.88 2.16 1.8
Here h = 2andn = 10.Alsoa = xg = 4,x1 =6,...,x,_1 =22, x, = b = 24.
20
HenceJ Rdt = %(f(4) + 2f(6) + 2f(8) + --- + 2f(22) + f(24) )
4
= 0.36 + 432 + 39.6 + 48.24 + 34.56 + 29.52 + 12.96 + 5.76 + 432 + 1.8
= 223.2.
Alternatively, using the second formula,
20 24 — 4
L Rt = = (F@) + £24) +2(f(6) + f(8) + --- + f(22)))
= 0.36 + 1.8 + 2(2.16 + 19.8 + 24.12 + 17.28 + 14.76 + 62.48 + 1.44 + 1.08)
= 2.16 + 2 x 110.52
= 223.2.
Thus about 223 million cubic feet of water flowed down the creek from 4:00 am to midnight.
Using a spreadsheet for calculations
The authors used a spreadsheet for all the calculations above — the trapezoidal-rule formula is well suited
for machine computation. The next worked example shows how to use an Excel spreadsheet to carry out such
a calculation but any spreadsheet can be used. Note that:
® Excel commands and procedures have been changing over successive versions.
® Mac users will need some adjustments, particularly when implementing the ‘fill down’ and ‘fill right
commands. | 2
e 2"
The calculation involves the integration of . We will see in Chapter 10 that this function is the
2z
probability density function of the normal distribution, and is the most important function in statistics. There
is no simple equation for its primitive, so approximations are always necessary.
Example 37 4H
12 1
Letgp(x) = ¢ . Approximate the integral J ¢ (x) dx using the trapezoidal rule with 10 subintervals.
2z 0
(The symbol ¢ is the lower case Greek letter ‘phi’, corresponding to Latin f.)
ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press

Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022



4H The trapezoidal rule 221

SOLUTION

In these instructions, we enter a formula into a cell by typing the = sign as the first character.

The cell in column D and row 3 is labelled D3, and in formulae, this refers to its contents. Normally leave
the top row clear for later titles.

1 On a new sheet in Excel, enter 0 into Cell A2 and press Enter.
— Select Cell B2 and type =0.1+A2 and press Enter.
— Cell B2 should now show 0.1.

2 Select Cells B2 : K2 and press Ctr1+R to ‘fill right’.
— Cells C2 :K2 should now show 0.2, 0.3, ..., 1.

3 Type =EXP(-A2*A2/2)/SQRT(2*PI()) into Cell A3.
— Cell A3 should now show ¢ (0) = 0.398942.

4 Select Cells A3 :K3 and press Ctr1+R to ‘fill right’.
— Cells B3 : K3 should now show ¢ (0.1) = 0.396953, ..., ¢ (1) = 0.241971.
We now have the table of values for the function ¢ (x), and we need to add

¢ 0) + 2¢(0.1) + 2¢(0.2) + --- + 2¢(0.9) + ¢ (1)

5 Select Cell A4 and enter =A3. This should duplicate the value in A3.
— Select Cell K4 and enter =K 3. Again, this duplicates the value in K3.
— Select Cell B4 and enter =2 *B3. This should double the value in B3.
— Select Cells B4 : J4 and press Ctr1+R to ‘fill right’.
— Add the row by selecting Cell L4 and typing =SUM (A4 :K4).

In this case, h = 0.1 so we multiply by 14 = 0.05.

6 Select Cell L5 and type =L4*0.05 — this shows the final answer.

1
Hence J ¢ (x) dx = 0.341. We shall find in Chapter 10 that this is approximately the probability that a
0

score in a normal distribution lies between the mean 0 and one standard deviations above the mean.
The correct approximation to three decimal places in 0.398 — we will see in Chapter 10 that the curve is
concave down in the interval [0, 1], which explains why our estimate is a little smaller than it should be.

Readers may like to repeat the calculations above using 100 subintervals and see how close the approximation
is then.

FOUNDATION

Technology: It is not difficult to write (or download) a program that will allow the calculations of the
trapezoidal rule to be automated. It can then be applied to many examples from this exercise. The number of
subintervals used can be steadily increased, and the approximations may then converge to the exact value of
the integral. An accompanying screen sketch showing the curve and the chords would be helpful in giving a
visual impression of the size and the sign of the error.
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6
Approximate J f(x) dx in each part by using the formula 1 (a + b)h for the area of a trapezium.
2

a X 2 6 b X 2 6 ¢ X 2 6

fx) 8 12 f(x) 62 48 fx) -4 -9
Three function values are given in the table below.

X 2 6 10

fx) 12 20 30
10

a Approximate J f(x) dx by calculating the areas of two trapezia and then adding.
2

b Check your answer to the previous part by using the formula for the trapezoidal rule.

Three function values are given in the table below.

X -5 0 5
fx) 24 26 44
5
a Approximate J f (x) dx by adding the areas of two trapezia.
-5

b Check your answer to the previous part by using the formula for the trapezoidal rule.
Show, by means of a diagram, that the trapezoidal rule will:

a overestimate J f(x)dx,if f"(x) > Ofora < x < b,
a
b

b underestimatle(x) dx,if f"(x) < Ofora < x < b.

a

a Complete this table for the function y = x(4 — x): * 0 ! 2 3 4

y

4
b Hence use the trapezoidal rule with five function values to approximate J x(4 — x)dx.
4 0

¢ What is the exact value of J x(4 — x) dx, and why does it exceed the approximation? Sketch the
0

curve and the four chords involved.
d Calculate the percentage error in the approximation (that is, divide the error by the exact answer and
convert to a percentage).

X 1 2 3 4 5
y

b Use the trapezoidal rule with the five function values above, that is with four subintervals, to

a Complete this table for the function y = g

approximate J 6 dx.
1 X

¢ Show that the second derivative of y = g is y” = 12x73, and use this result to explain why the

approximation will exceed the exact value of the integral.
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7 a Complete this table correct to four decimal places for the function y = Vx.

X 4 5 6 7 8 9
y

9
b Approximate J Vx dx, using the trapezoidal rule with the six function values above, that is with five
4

subintervals. Answer correct to three significant figures.

9

1, _3
¢ What is the exact value of J Vx dx? Show that the second derivative of y =x2isy” = — ix 2, and
4

use this result to explain why the approximation is less than the value of the definite integral.

DEVELOPMENT

8 Use the trapezoidal rule with three function values to approximate each definite integral, writing your
answer correct to two significant figures where necessary.

1 0 3 -1
a Jz-de b J 2% dx c Jv39 — 2xdx d [ V3 — xdx
0 -2 1 -13

9 Use the trapezoidal rule with four subintervals to approximate each definite integral, writing your answer
correct to three significant figures where necessary.

6 2 8 2
a { ldx b J ¥dx c J Vx? = 3dx d J logigx dx
2 X 02 + vx 4 1
10 An object is moving along the x-axis with values of the P 0 1 2 3 4 5

velomt).f v in rr.l/s at various t?mes t given in the table 15 13 14 20 24 27
to the right. Given that the distance travelled may be

found by calculating the area under the velocity/time

graph, use the trapezoidal rule to estimate the distance

travelled by the particle in the first 5 seconds.

11 The diagram to the right shows the width of a lake at 10-metre intervals.

Use the trapezoidal rule to estimate the surface area of the water. | | ; ‘ |
0 10 20 30 40
12 The diagram to the right shows a vertical rock cutting of length 300 metres

alongside a straight horizontal section of highway. The heights of the cutting

are measured at 50-metre intervals. Use the trapezoidal rule to estimate the 5 10 [13 14 |11 -
3
100 200 300

area of the vertical rock cutting. 0

CHALLENGE

|
13 a Use the trapezoidal rule with five function values to approximate J V1 — x?dx, giving your answer
correct to four decimal places. 0
b Use part @ and the fact thaty = V1 — x? is a semi-circle to approximate 7. Give your answer
correct to one decimal place, and explain why your approximation is less than z.
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14 Use the trapezoidal rule with four subintervals, together with appropriate log laws, to show that

5
J In xdx = 1n 54.
1

1
15 a Evaluate J (x> + 1)dx using the fundamental theorem, and then using the trapezoidal rule with
-1

three function values.
b Explain from the graph why the trapezoidal rule gives the correct answer in this case.

An investigation using a spreadsheet for trapezoidal rule calculations
16 Work through the spreadsheet example just above this exercise. Then use a spreasheet to estimate these

integrals using the trapezoidal rule with 5, 10, 20 and perhaps more subintervals.
11 11 10
a J la’x b J log, x dx c J e dx
X 1 0
You will need to look at the results and perhaps vary the number of decimal places that you are using in
the calculations and recording in your answers.

Possible spreadsheet projects

It is possible to program a spreadsheet so that the number of subintervals can be entered as a single variable.
The construction of such a program and similar programs could be incorporated into a longer project
examining the usefulness and accuracy of the trapezoidal rule, or examining some physical phenomena.

In the next diagram, it is clear that in parts of the graph where there is a lot of activity, the subintervals
should be quite narrow, whereas in other calmer parts they can be far wider. Such variability could also be
incorporated into the spreadsheet and its formulae.
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4H The trapezoidal rule 225

An investigation (and possible project) integrating a graph from the web by the trapezoidal rule
There is a great deal of data available on the web for a sustained investigation of river flow. The following
question suggests some interesting questions about one such situation, but there are many more situations
and questions. Integrating graphs of all kinds from the web using the trapezoidal rule could be the basis of
various different projects.

17 The hydrograph above shows the rate of flow through Control Point X on the Turia River in Spain over
a three-day period in May 2004. The rate of flow (‘Caudal’) is given as a function of the date—times
(‘Fecha’) — notice that the successive date—times on the horizontal axis are separated by exactly
6 hours. The rainfall (‘Lluvia’) is given by the vertical bars.

The units of time are hours, and the units of the flow rate are ‘cubic metres per second’. The flow rate R
should be converted to units of ‘thousands of cubic meters per hour’ so that time is in hours and there are
fewer zeroes — multiply by 60 x 60 = 3.6.
1000
a From the graph, copy and complete the table of values of
the flow rate R at the first four date—times, 04/05/2004

17:40 to 05/05/2004 11:40. 2

t 17:40 23:40 05:40 11:40

Then use the trapezoidal rule to estimate the total volume of water that flowed through the control
point in those 18 hours.

b Draw up a similar table for the 18 hours of heavy flow from 05/05/2004 17:40 to 06/05/2004 11:40,
but use 3 hours as the separation between successive times.

t  17:40 20:40 23:40 02:40 05:40 08:40 11:40
R

Then use the trapezoidal rule to estimate the total volume of water that flowed through the Control
Point in those 18 hours. Why are 3 hours suggested here in part b for the width of the subintervals,
where 6 hours was used in part a?

¢ How many times more water flowed down the river in the second 18-hour period? Look at the rainfall
record, and discuss how the river flow responded to the rainfall.
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n The reverse chain rule

When we use the chain rule to differentiate a composite function, the result is a product of two terms. For

example, in the first worked example below,
43 4 5% = 43 + 59 x 32,
dx

This section deals with the problem of reversing a chain-rule differentiation. The section is demanding, and
as with Section 4D, readers may prefer to leave it for a second reading of the chapter at a later time.

Reversing a chain-rule differentiation
Finding primitives is the reverse process of differentiation. Thus once any differentiation has been performed,

the process can then be reversed to give a primitive.

Example 38 41
\—— )

a Differentiate (x3 + 5)4 with full setting-out of the chain rule.
b Hence find a primitive of 12x2(x3 + 5)3.
¢ Hence find the primitive of x2 (x3 + 5)3.

SOLUTION
a Let y= x3 + 5% Let u=x>+5.
_ 4
Thencdly:flyx;m Then dy—u.
X u b u 2
H — =3
= 4% + 5)3 x 3x2 en T
= 12x% (x° 3.
x“(x” 4+ 5) and ﬂ — 443
du
b By parta, di(x3 + 5% = 1222 (3 + 5)°.
X

Reversing this, J12x2 (x3 + 5)3 dx = ()c3 + 5)4.
¢ Dividing by 12, J.x2(x3 + 5)3dx = 11—2(x3 + 5)4 + C, for some constant C.

Note: It is best not to add the arbitrary constant until the last line, because it would be pointless to divide C

by 12 as well.

Example 39 41

with full setting-out of the chain rule.

a Differentiate
1 +x

X

b Hence find the primitive of ———————.
(1 + x)?
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SOLUTION
a Let y = | 5 Let u=1+ x%
1+ x =i
Then y=u"".
d d
Then o X dz du
dx du dx Hence I = 2x
= -1+ xH2 x 2 dx
. —2x and d—y = —y 2
B (1 + x2)2. !
b By part a, d( ! ) e S
dx\1 + x2/ (1 + x?)?
Reversing this, J—szz dx = ! 5 + C, for some constant C,
(1 + x°) 1+ x
L (=2) o x=—"1 4c
(1 + x?)? 2(1 + x?)

21 REVERSING A CHAIN-RULE DIFFERENTIATION

Once a chain-rule differentiation, or any differentiation, has been performed, the result can be written
down in reverse as an indefinite integral.

A formula for the reverse chain rule

There is a formula for the reverse chain rule. Start with the formula for differentiating a function using the
chain rule — we gave the formula in two forms:

i (Mn) — nun—l dl i(}c(x))n _ n(f(x)>n—1f/ .
dx dx dx
and we can reverse both forms of the formula, n
n n-1 f(x)
Ju”‘ldudx = J(f(x)) f(x)dx = ) .
dx n n
Then replacingn — 1byrnandnbyn + 1, ( >n+l
ndu ut! J " , S(x)
—dx = OR dx = ———
Ju Cdr= () f@dr = ===

Take your pick which formula you prefer to use. The difficult part is recognising what u or f(x) should be in
the function that you are integrating.

We shall do worked Example 38 ¢ again using the formula.
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Example 40 41
Use the formula for the reverse chain rule to find sz (x3 + 5)3dx.

SOLUTION
The key to finding this integral is to realise that x2isa multiple of the derivative of x> 4 5. At this point,
wecanputu = x>+ Sorf(x) = x> 4+ 5,and everything works smoothly after that. Here are two strong
recommendations:
® Show working identifying u or f(x) and its derivative on the right-hand side.
® Write down the standard form above substituting the particular value of n.
Using the first formula,
J)cz(x3 + 5)3 dx = ;J'3x2(x3 + 5)3 dx Let u=x>+5.
du 2
:%X%(x3+5)4+c’ Then a=3x
for some constant C, du
L3 i Here Ju3 Sdx = lut.
= (" + 5)" + C. dx
Using the second formula,
[xz(x3 + 53 dx = ;J3x2(x3 + 5)3dx Let f(x) = x3 + 5.
Then ! = 3x2
= Ixi3+50 + G , TE=
for some constant C, Here J(f(x)) fx)dx = }T(f(x)) .
=i+ 5+ C
Notice that the two notations differ only in the working in the right-hand column.
Example 41 4]
Use the formula for the reverse chain rule to find:
2
a Jxvl—xzdx b Jxvl—xzdx
0
SOLUTION
a This integral is based on the recognition that di(l — x2) = —2x.
b
Using the first formula,
1
Jx\/l — x%dx = —;J(—zx) x (1 — x2) dx | Let u=1-x%
3
= 1x21-x%+C | Then fl—“ =
: b
for some constant C, J
3 1L du __ 92 3
_ _%(1 _ xz)z +C Here Juzdxdx = ju2
ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press

Photocopying is restricted under law and this material must not be transferred to another party. Updated May 2022
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Using the second formula,

Jxvl — x%dx = —éJ'(—2x) X (1 — xz)% Let fx) =1 - x2.
2)% Then f(x) = =2x

2Ar).

= —% X %(1 —3 X .
~l1 - X2+ C, Here J(f(x)2>f/(x)dx

for some constant C.

b The definite integral is meaningless because /1 — x2 is undefined for x > 1.

22 A FORMULA FOR THE REVERSE CHAIN RULE

* The reversing of the chain rule can be written as a formula in two ways:
n+1
n du u"t! J " <f(x)>
—=dr = + C OR @by = ————— a0 (C.
Ju dx * n+1 (f(x))f(x)x n+1

* The vital step in using this formula is to identity u or f(x) and its derivative.

To use the formula, we have to write the integrand as a product. One factor is a power of a function f(x) or u.
The other factor is the derivative of that function.

FOUNDATION
.. d 4
1 a Find —(Q2x + 3)".
dx
b Hence find:
i J8(2x + 3)3dx i J16(2x + 3) dx
2 a Find L 3x — 5)°.
dx
b Hence find:
i J9(3x — 5)%dx i J27(3x — 5)%dx
. od 5
3 a Find —(1 + 4x)°.
dx
b Hence find:
i JZO(I + 4x)*dx i J10(1 + 4x)*dx
4 a Find L1 - 20
dx
b Hence find:
i J—S(l - 2x)dx i J—2(1 — 2% dx
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Find < (4x + 3)°1.
dx
Hence find:

i J—4(4x + 3) 2dx

d 1
Find —(2x — 5)2.
dx
Hence find:

i J(2x — 5)_zldx

i J(4x + 3)%dx

i J;(zx — 5)7dx

DEVELOPMENT

10

11

12

Find 4 (x2 + 3)*
dx
Hence find:

i JSX(XZ + 3P dx

Find i(x3 - 1)
dx
Hence find:

i [15x2(x3 — D*dx

Find i\/ 2x% + 3.

dx
Hence find:

sz dx

V2x? + 3
Find (vx + 1)

dx

3

Hence find: 5

_ J3(\/§ +1)

I -
24/x

dx

Find L (x3 + 3x2 + 5)%
dx

Hence find:

i J12(x2 + 203 + 3x% + 53 ax

Find i(s - x2 - x"
dx
Hence find:

i J(—14x -1 = x* = x)%dx
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41 The reverse chain rule

13 Find these indefinite integrals using the reverse chain rule in either form

Jf’(X) (f)) d =

a |5(5x + 4)3dx
b |-3(1 — 3x)°dx
c |2x(x? = 5)dx

d [3x2(x3 + ) dx

e 67de
J(3x% + 2)?
r 2

f ﬁdx

INV9 — 2x3

n+1
f(x) n+1
Q+c OR Ju"d”dx=“ +C
n+ 1 dx n+1
(Let f(x) = 5x + 4oru = 5x + 4.
(Let f(x) =1 — 3xoru =1 — 3x.)
(Let f(x) = x> — 50ru = x> — 5.)
(Let f(x) = X3+ Joru=x>+7)
(Let f(x) = 3x% + 2oru = 3x% + 2)
(Let f(x) =9 — 2x30oru = 9 — 2x3)
CHALLENGE

14
a [10x(5x% + 3)%dx

¢ [12x2(1 + 4x3)dx
e [P - x4)7dx
g xV5x2 + 1dx

x + 1

i dx

JVdax? + 8x + 1

15

a xz(x3 + 1)4dx
J—1
1

2
c V1 — 4x? dx

JO
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IVx? + 3

2x(x? + 1)3dx
x(1 + 3x2)4dx

3x2Vx3 — 1dx

2x dx

d dx

J (2 + 5)7°

Jo(5x2 + 1)°

1
X

dx

r—1

(x + 5)(x? + 10x + 3)%dx
3
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232 Chapter 4 Integration

Review activity

e Create your own summary of this chapter on paper or in a digital document.

Chapter 4 Multiple-choice quiz

e This automatically-marked quiz is accessed in the Interactive Textbook. A printable PDF worksheet
/ version is also available there.

Chapter review exercise

1 Evaluate these definite integrals, using the fundamental theorem.

ol 2 S
a | 3x2dx b | xdx c | 4x3dx
JO J1 J2
1 =2 -1
d x*dx e 2x dx f x2dx
J1 J4 J-3
=) o4 rl
g | (x + 3)dx h (2x — 5)dx i (x2 = 2x + 1) dx
Jo =i J_3
2 By expanding the brackets where necessary, evaluate these definite integrals.
-3 -0 8|
a | x(x - Ddx b (x + D)(x — 3)dx c | (2x = 1)?dx
J1 J-1 Jo
3 Write each integrand as separate fractions, then evaluate the integral.
2x2 — 3x 33x4 — 4x? _1x3 — 2t
. [z, [ty o[22y,
1 X 2 x2 -2 x?
k
4 a i Show thatJ S5dx = 5k — 201}
4
ii  Hence find the value of & if J S5dx = 10.
k 4
b i ShowthatJ (2x — Ddx = k* - k.
0 k
il Hence find the positive value of k for which J (2x — 1)dx = 6.
0

5 Without finding a primitive, use the properties of the definite integral to evaluate these integrals, stating

reasons.
3 2 3
a J(x3—5x+4)dx b J x3 dx c J (x3 = 9x) dx
3 =2 -3
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3

6 Use area formulae to find J f(x) dx, given the following sketches of f(x).
0
a VA b VA
2
4
3‘
> UE
23 X 1
7 (From Section 4D, which is marked as Challenge).
a Find each signed area function.
X X
i A(x) = J 4 — tydr i A(x) = J =2 dt
-2 2
b Differentiate the results in part a to find:
X X
i dJ 4 — 1)dt i dJ t~2dt
dx ) _» dx J o
¢ Without first performing the integration, use the fundamental theorem of calculus to find these
functions.
d (" d [ 2+4
i J (7 = 563 + Ddr i J dt
dx J7 delz 2
8 Find these indefinite integrals.
a |(x+2)dx b [ +3x% —=5x+ Ddx ¢ [x(x - 1)ax
d [@-3)Q-xd e |x2ax L
J J JX
g |Vxdx h |+ D*ax i x = 35 ax
9 Find the area of each shaded region below by evaluating a definite integral.
a A b A C yp y=2 4443 @ ‘

y=x2 y=p3—dx \

y!
4
3
) _
2 % x=2y-6

. %

=V
=V
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234 Chapter 4 Integration

e A f A g A h A =x-1
A L B M o vy oy
y=x2 y=x2 )
() | \ an
N x
y=g X . y=3x-2
-1 1 x /|

10 a By solving the equations simultaneously, show that the curves y = x> —3x + 5andy = x + 2
intersect at the points (1, 3) and (3, 5).
b Sketch both curves on the same diagram and find the area of the region enclosed between them.

3
11 a Use the trapezoidal rule with two subintervals to approximate J 2% dx.
1

3
b Use the trapezoidal rule with five function values to approximate J log o x dx. Give your answer
correct to two significant figures. !

12 a Find %(3x + 4)°,
b Hence find:

i J18(3x + 4)dx i J9(3x + 4) dx

13 a Findi(x2 — 1)
dx

b Hence find:
i J6x(x2 — 1)%dx i Jx(xz — 1) dx
14 Find these indefinite integrals using the reverse chain rule.
a J’3x2(x3 + D*dx b sz dx
(xz _ 5)3

1

15 Use the reverse chain rule to show that J X x=2- \/5
04/x2 4+ 3

16 Explain why these integrals are meaningless.

4 4 4 4
a J ¥dx b J\/9—3xdx c J log, (x — 2)dx d J ! dx
0 0 0 0

(x — 1)? 2 -2
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The éxponent NAnd 5
logarithmicgu logish

Chapter 9 of the Year 11 book began to extend calculus beyond algebraic functions to
exponential functions and trigonometric functions. This chapter completes what is needed
of the calculus of exponential functions, and introduces the calculus of the logarithmic
functions. Chapter 6 will then bring the trigonometric functions into calculus as well.

The special number e = 2.7183 was introduced as the most satisfactory base to use for
the powers and logarithms discussed in Chapter 7 last year, and we established the two
standard derivatives,

d _x _ aX ad ax+b
o e’ =e and ae

We sketched the graphs of y = e* and its inverse function y = loge X, transformed them

in various ways, and developed some ideas about exponential growth and decay. All this is

assumed knowledge in the present chapter and is quickly reviewed in Section 5A and 5F, apart

from exponential growth and decay, which will be reviewed in Chapter 7 on motion and rates.

— aeax+b.

Sections 5A—-5E deal mostly with exponential functions base e, Sections 5F—-5J deal mostly
with logarithmic functions base e, and the final Section 5K uses the change-of-base formula
to extend the topic to exponential and logarithmic functions with bases other than e.

Digital Resources are available for this chapter in the Interactive Textbook and Online
Teaching Suite. See the overview at the front of the textbook for details.




236 Chapter 5 The exponential and logarithmic functions

m Review of exponential functions base e

Section 5A and Section 5F will review the ideas in Sections 9A-9F in the Year 11 book. Two small topics,
however, are new in these two review sections.

e Dilations of exponential (Section 5SA) and logarithmic (Section 5F) functions.

* Exponential and logarithmic equations reducible to quadratics (Section SF).

The text will not mention again the index laws and the logarithmic laws that were covered in Chapter 7 of
that book and revisited in Chapter 9, but some early exercises will review them.

The exponential function y = e* is the subject of Sections SA-5E. Section SF then brings the logarithmic
function y = log,x into the discussion.

The number e and the function y = e*
The fundamental result established in Chapter 9 of the Year 11 book is that

y A
the function y = e” is its own derivative, B /
di e’ = e, that is, gradient equals height. 24
X
1
The number e = 2.7183 is defined to be the base so that the exponential graph /
y = e* has gradient exactly 1 at the y-intercept. It is an irrational number, >
Z1 T

and it plays a role in exponential functions similar to the role that z plays in
trigonometric functions.

To the right is a sketch of y = e”. Its most significant properties are listed in Box 1.

1 THE FUNCTION y = e

There is only one exponential function y = e* that is its own derivative, and the number

e = 2.7183 is defined to be the base of this function. Thus
i X X

= e

e )
dx
e The gradient at the y-intercept is 1.

that is, at each point, gradient equals height.

e The domain is all real numbers, and the range is y > 0.
e Theline y = 0 is a horizontal asymptote.

¢ The function is one-to-one, that is, its inverse relation is a function.
2
 Differentiating again, — e* = e*,
dx?
so the function is always concave up, increasing at an increasing rate.

Sections 5A-5E occasionally require the inverse function log, x of ¢*, and we need the two inverse function
identities:

log, e* = x for all real x and e°%* = x forx > 0.
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5A Review of exponential functions base e 237

Using the calculator

On the calculator, means log, x and means log;x. The function e* is usually on the same button as
log, x, and is accessed using followed by , or by some similar sequence.

Transformations of y = e*

We applied translations and reflections to the curves, as in the next worked examples. The first part shows
the graph of y = ¢, which is just as important in science as y = e”* because y = e¢” governs exponential
growth, and y = e ™" governs exponential decay.

Example 1 5A
Sketch each function using a transformation of the graph of y = e sketched to VA

the right. Describe the transformation, show and state the y-intercept and the e

horizontal asymptote, and write down the range.

a y=e”* b y=¢"+3 C y=e"?

Which transformations can also be done using a dilation? /

SOLUTION 1 x
a YA b VA c v 4

: /
e+ 3
\ 3 L
2

=V

-1 x _
1 X
To graphy = e, To graph y = e* + 3, To graph y = ¢* 2,
reflect y = e” in y-axis. shifty = ¢*up 3. shift y = e”* right 2.
y-intercept: (0, 1) y-intercept: (0, 4) y-intercept: (O, e7?)
asymptote: y = 0 asymptote: y = 3 asymptote: y = 0
range: y>0 range: y>3 range: y>0

® The equation y = ¢ in part a is a reflection in the y-axis, and any reflection in the y-axis can be
regarded as a horizontal dilation with factor —1.

® The equation y = e* ~2in part € can be written as y = e™2 x e*, soitis also a vertical dilation of
y = e” with factor e 7% = 0.135.

Dilations of y = e*

Dilations were only introduced in Section 2G of this book. In the context of exponential and logarithmic
functions, dilations need further attention because some of them have an interesting property — they can be
done with a shift in the other direction, as we have already seen in part € above.
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238 Chapter 5 The exponential and logarithmic functions _

Example 2 5A

Use dilations of y = e* to generate a sketch of each function. Identify which dilation is also a shift in the
other direction.

ay=e> b y=3e"
SOLUTION
a b
L’/—/ > >
X X
Dilate y = ¢* vertically with factor 1. Dilate y = ¢* vertically with factor 3.

* y = 3e“canbewrittenas y = ¢'°%3 x ¥ = ¢* 1923 50 it can also be regarded as a shift left by log, 3.

Tangents and normals to the exponential function

We applied the derivative to sketches of exponential functions. Here is a shortened form of the worked
example (Example 7) given in Section 9D of the Year 11 book.

Example 3 5A

Let A be the point on the curve y = 2¢” where x = 1.

a Find the equations of the tangent and normal at the point A.

b Show that the tangent at A passes through the origin, and find the point B where the normal meets
the x-axis.

¢ Sketch the situation and find the area of AAOB.

SOLUTION
a Substituting into y = 2e¢* shows that A = (1, 2e).
Differentiating y = 2e¢* gives y’ = 2e%,
soat A(1,2e), where x = 1, y’ = 2e¢ (which we know because gradient = height).
Hence, using point-gradient form, the tangent at A is
y —y1 = mx — xy)
y —2e = 2e(x — 1)
y = 2ex.

The normal at A has gradient — zi (it is perpendicular to the tangent),
e

so its equation is y — 2e = — %(x - 1)
e

2ey — 4e? = —x + 1

x+26y=462+1.
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c

5A Review of exponential functions base e

The tangent passes through the origin O because its y-intercept is zero.

To find the x-intercept B of the normal, VA
put y =0, e A
thus x = 4e? + 1,
so B has coordinates (4e2 + 1, 0). )
. < B x

Hence area AAOB = 1 x base X height 0 | a2l

=1 X (4e* + 1) x 2e

= e(4e2 + 1) square units.

FOUNDATION

Note: You will need the function on your calculator. This will require followed by , or some
similar sequence of keys.

239

1 Simplify these expressions using the index laws.
a 22 x 27 b e* x &3 c 26+ 2? d e® = e’ e (2% fo(e)°
2 Simplify these expressions using the index laws.
a er X eSx b ele - eSx c (eZX)S d er X e—7x e et = e—4x f (€—3X)4
3 Write each expression as a power of ¢, then use your calculator to approximate it correct to four
significant figures. . .
a e’ b e™3 c e d - e Ve f —
¢ Ve
4 a Write down the first and second derivatives of y = e™.
b Hence copy and complete the sentence, ‘The curve y = e* is always concave . . ., and is always . . .
at...rate.’
5 a Find the gradient of the tangent to y = e* at P (1, e), then find the equation of the tangent at P and
show that it has x-intercept 0.
b Similarly find the equation of the tangent at Q (0, 1), and show that its x-intercept is —1.
Find the equation of the tangent at R (—1, }), and show that its x-intercept is —2.
6 a Whatis the y-coordinate of the point P on the curve y = ¢* — 1 where x = 1?
) . d
b Find o for this curve, and the value of s when x = 1.
dx dx
¢ Hence find the equations of the tangent and normal at P (in general form).
7 Sketch each curve using a single transformation of y = e*, and describe the transformation.
1
ay=e" +1 b y=e¢"-2 cC y=1e* d y=e¢"
8 Sketch each curve using a single transformation of y = ¢, and describe the transformation.
ay=e*-1 b y=—-e" C y=e ™
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240 Chapter 5 The exponential and logarithmic functions

DEVELOPMENT
9 The graph to the right is a dilation of y = e". Describe the dilation, 1y A

and write down the equation of the curve. 3 |1 R
10 Expand and simplify: -3

a (e"+ (e - 1) b (e* + 3)(e™ + 3)

c (e—3x _ 2)e3x d (e—2x + 62x)2
11 Write as a sum of powers of e:

4x 3x 2x _ ,3x 10x 20x -X —2x
, ¢ te h ¢ e o ¢ + Se d6e + e
e2x e4x e—le 3€3x

12 a What is the gradient of the tangent to y = e* at its y-intercept?

b What transformation maps y = e*toy = ¢™*?

¢ Use this transformation to find the gradient of y = ¢~ at its y-intercept.

d Sketchy = e¢*and y = ¢~ on one set of axes.

e How can the transformation be interpreted as a dilation?

13 Write down the first four derivatives of each function. For which curves is it true that at each point on the

curve, the gradient equals the height?

ay=e¢"+5 b y=e"+x° c y=4e* d y=5e* + 5x2

14 Find the gradient, and the angle of inclination correct to the nearest minute, of the tangent to y = e™ at

the points where:
a x=20 h x=1 c x=-2 d

Draw a diagram of the curve and the four tangents, showing the angles of inclination.

15 a What is the y-coordinate of the point P on the curve y = e* — 1 where x = 1?

b Find @ for this curve, and the value of @ when x = 1.
dx dx

¢ Hence find the equation of the tangent at the point P found in part a.

x=15

CHALLENGE

16 a Use, and describe, a dilation to sketch y = e2*.

b Use, and describe, a subsequent translation to sketch y = 2D

¢ Use, and describe, a subsequent dilation to sketch y = %ez(x -b,

d Use, and describe, a subsequent translation to sketch y = %ez(x -D _ 9,
17 a Interpret the transformation from y = e“toy = e**?

as a translation. Then interpret it as a dilation.

b Interpret the transformation from y = e*toy = 2e¢" as a dilation. Then interpret it as a translation by

first writing the coefficient 2 as ¢!°%2,
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5B Differentiation of exponential functions 241

m Differentiation of exponential functions

We can now develop the calculus of functions involving e*, picking up the story at differentiation, where two
standard forms were established in Chapter 9 (Year 11),

d
X X and 7eax+b —

L. eax+b.
dx dx

a

Using the two standard forms

The second standard form above requires the chain rule with u = ax + b. It is proven again in worked
Example 5 C below.

Example 4 5B
\—— )

Differentiate: ’
1
a y=e¢" +e* b y=5€4x_3 c y=e2_5x d y=+Ve* +
ex
SOLUTION
a Given y=-¢e'+ e b Given y = 5¢%73.
Fore™,a = —land b = 0, Here a = 4and b = -3,
) y =e' — e, SO y' = 20e%73,
. 2Ly X 1
¢ Given y = e“ 2% d Here y= Ve +
Here a = -1andb =2, 1 et
— X —X
S0 y' = —Le275%, V= e T
2 A
SO y = jexr — je 2

Differentiating using the chain rule

The chain rule can be applied in the usual way. As always, the full setting out should continue to be used
until readers are very confident with missing some of the steps.

Example 5 5B

Use the chain rule to differentiate:

a y= el =¥ b y= (¥ - 3)* ¢ y = e“*P (the standard form)
SOLUTION
a Here y= el =, Let u=1-x2
Applying the chain rule, Then y = e“
dl=dlxdi Henced—u=—2x
dx du  dx ) dx
= —2xe' 7. and 2 = e
du
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Chapter 5 The exponential and logarithmic functions _

242
b Here y = (e — 3)* Let u=e* -3
Applying the chain rule, Then y = u®.
d d
l:lxdl Henced—u=262)C
dx du dx dx
= 4(e™ - 3)° x 2> d
(ezx 2 ) 3 ¢ and £ 4’
= 8e (e — 3)°. du
¢ Here y = e®*P Let u=ax + b.
Applying the chain rule, Then y = e
dl_dlx@ Henced—uza
- dx
dx du dx
= ae™*h. and d e
du
A formula for the chain rule
Some people prefer to learn a formula for chain rule differentiation that can be used for part a above. The
formula can be written in two ways, using « and using f(x),
a e = e" du OR a /0 = ef(x)f’(x).
dx dx dx
This is not recommended, particularly at first. But it is perfectly valid — use one or the other form if you
prefer. In the next worked example, part a of the previous example is done again using both forms of the
formula. Make sure that you are using the right formula, and that you show at least u or f(x) on the right.
Notice that part b requires the formula for differentiating powers of functions of x, as reviewed in Section 41,
d 1 du d " (i
au” = nu" I OR I (f(x)) = n(f(x)) ().
Example 6 5B
Use the chain rule, with a shorter setting out, to differentiate:
2
a yzel—x b y:(BZx_3)4
SOLUTION
a y=e ¥ Let wu=1-x% OR Let f(x)=1—x%
o 1 —x2
y' = —2xe Then @ _ —2x Then f'(x) = —2x
dx
A u _ gudt A ) = of@pr (),
dx dx dx
b y= (> - 3)7* Let u=e* — 3. OR Let f(x) = e* — 3.
r_o2 2 3
y' = 8e™ x (e” = 3) Then du _ 2% Then f'(x) = 2%
i d 4 3
4 _ 430U _ )
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5B Differentiation of exponential functions

2 THREE STANDARD DERIVATIVES FOR EXPONENTIAL FUNCTIONS

° iex — ex
dx
A ieax+b — aeax+b
dx
e du_ udt op A 2 ()
dx dx dx

Using the product rule

A function such asy = x3

differentiated by the product rule.

Often the result can be factored, allowing any stationary points to be found.

Example 7

243

e* is the product of the two functions u = x> and v = e*. Thus it can be

5B

Find the derivatives of these functions. Then factor the derivative and write down all the stationary points.

a y= x3e* b y= xedx=2
SOLUTION
a Here y = x’e. Let u=
Applying the product rule, and v =
dl = vdﬂ + udl Then g
dx dx dx dx
_ X 2 3 X
=e* X 3x° + x” X e, and?
and taking out the common factor x2e”, *
d
Y x2e*(3 + x).
dx
dy
Henced—has zeroes at x = 0 and x = -3,
b
and the stationary points are (0, 0) and (-3, —27e‘3).
b Here y = xe>* 2 Let u=
Applying the product rule, and v
y' =vu' + w' Then u’
= e 2 x 1 4+ x X 572 and v’ =

and taking out the common factor X2,
vy = e*72(1 + 5x).
Hence y’ has a zero at x = —

and the stationary point is (—
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Using the quotient rule
Sx

A function such as y = ¢ is the quotient of the two functions u = e>*and v = x. Thus it can be
X

differentiated by the quotient rule.

Example 8

Differentiate these functions, then find the x-values all stationary points.

v =

5x X
a & b —£
X = &
SOLUTION
eSx
a Let y = —. Then applying the quotient rule, Let u
X
and v
v du _ u dv du
@ _ dx dx Thena =
dx V2 P
5xe> — > and d*v
— - - X
$2
and taking out the common factor ¢* in the numerator,
dy _ eX(5x — 1)
dx x2 ‘
Hence there is a stationary point where x = %
e)C
b Let y= — Then applying the quotient rule, Let u
1 - and v
y’ = u Thenu’
V2 d
an
(- x2)e* + 2xe*
(1 - 2?7

and taking out the common factor e* in the numerator,
e (1 + 2x — x?)

(1 — x2)?

’

Hence there is a stationary point where x> —2x—-1=0,
and calculating A = 8 first, x = 1 + V2orx =1 - V2.
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FOUNDATION

Technology: Programs that perform algebraic differentiation can be used to confirm the answers to many of
these questions.

1 Use the standard form di e®Hh = e +b (o differentiate:
X
a y=e” b y=4e* C y=—e*
d y = et e y=—e fy=—te™
2 Use the same standard form to differentiate:
ay= ex—3 b y = 83x+4 c y= er—l
d y = e4x—3 e y= e—3x+4 f y = e—2x—7
3 Differentiate:
- 2x —3x et —e™*
ay=e"+e b y=e"—-e¢ C y= 5
X —X 2x 3x 4x 5x
d — % e y= e + e f y = € + e
4 Use the index laws to write each expression as a single power of ¢, then differentiate it.
a y=e"xe¥ b y=e¢*xe™ c y=(eh? d y=(e¥?
4x X
e e 1 1
e y=— fy= ; g y= E h y= ;
5 a i For the function f(x) = ¢, find f'(x), f"(x), f”(x) and f® (x).
Il What is the pattern in these derivatives?
b i For the function f(x) = e, find f'(x), f"(x), f”(x) and f @ (x).
Il What is the pattern in these derivatives?
DEVELOPMENT
6 Expand the brackets and then differentiate:
a e“(e* + 1) b e*Q2e™ - 1) c (e* + 1)
d (e + 3)° e (ef — 1) fo(ef — 2)
g (ex + e—X)(ex _ e—X) h (e5x + e—Sx)(eSX _ e—SX)
7 Use the chain rule with full setting-out to differentiate:
a y=e>t! b y= e’ Coy=e 5 d y= ex t1
e y= el—xz f y = ex2+2x g y= e6+x—x2 h y = %e3x2—2x+1
8 Use the product rule to differentiate:
a y=xe* b y=uxe™ c y=(x-1)e* d y=(x+ e *
e y=x’e* foy=@2x—1)e* g y= (x2=5)e" h y=x3e®
9 Use the quotient rule to differentiate:
e* X e* x2
ay=— b y== c y=— d y==—
Y= Yy o Yy 2 y o
e* x + 1 x—3 1 — x?
y T+ y o gy 2 y o
ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press

Photocopying is restricted under law and this material must not be transferred to another party.



246 Chapter 5 The exponential and logarithmic functions

10 Expand and simplify each expression, then differentiate it.

a (e + e +2) b (e + 3)(e® - 2) c
d (e = D(e™ - 5) e (e*+ D"+ 1) f
11 Use the chain rule to differentiate:
ay= (- by = (M -9 cy=,cl1
e —

(e™™ + 2)(e™ + 4)
(e = 1)(e™ + 4)

1

d y=—7-——
(e + 4)

d
12 a Show by substitution that the function y = ¢ satisfies the equation d—y = 5y.
X

d
b Show by substitution that the function y = 3 e satisfies the equation d—y = 2y.
X

¢ Show by substitution that the function y

d
5¢~* satisfies the equation d—y = —4y.
X

d
d Show by substitution that the function y = 2e 3 satisfies the equation d—y = —3y.
X

13 Determine the first and second derivatives of each function below. Then evaluate both derivatives at the

value given.

a f(x) =eXtlatx =0 b f(x) = e atx
2
¢ f(x) = xeFatx =2 d f(x) =e™ atx
14 Use the standard formie“’”’b = ae™*? (o differentiate:
X
ay=e* b y=e® c y=Ael
PX 4 eT9*
e v = ePrta f — CePxta = ¢
y e y e gy ,

15 Use the product, quotient and chain rules as appropriate to differentiate:

=1
=0
d y=Be ™
ax —px
h < 4+ ¢
a p

a y=("+1)7> b y= (" + e C y= (1 +x3)el*”
_ * T+ 1
d y= (x? = x)e>! e y=—° fy="¢
y=( ) Y et + 1 Y er — 1
16  Write each expression as the sum of powers of e, then differentiate it.
e’ + 1 e 4 ef 2 —ef
ay=—x by=—F7— cy=T4
3+ e* e* + ¥ — 3e¥ e 4+ 2eF + 1
d y= Z e y= < fy= Y
e X e e X
CHALLENGE
17 Differentiate these functions. ; | |
ay=vVe' b y=+ve' cC y= d y=
Vex \3/gx
1 1
e e\/; f e_\/; g ex h e™x
1 x
I e 7x ] e°
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5B Differentiation of exponential functions 247

X -X X _ ,—x
18 Define the two functions cosh x = % and sinhx = ¢

a Show that 4 cosh x = sin hx and isinh x = cosh x.
dx dx

Find the second derivative of each function, and show that they both satisfy y” = y.
Show that cosh®x — sinh®x = 1.

19 a Show thaty = 23" is a solution of each equation by substituting separately into the LHS and RHS:
iy/:3y ii y//_yzo

d
b Show that y le™3* + 4is a solution of d—y = —3(y — 4) by substituting y into each side of the
X

equation.

¢ Show by substitution that each function is a solution of the equation y” + 2y’ + y = 0.

i y=e™ i y=xe™

Ax

20 Find the values of A that make y = ¢** a solution of:

a y”  4+3y —10y=0 by +y —-y=0
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m Applications of differentiation

Differentiation can now be applied in the usual ways to examine functions involving e*. Sketching of such
curves is an important application. Some of these sketches require some subtle limits that would normally be
given if a question needed them.

The graphs of e* and e™*

The graphs of y = ¢*and y = ¢~ are the fundamental graphs of this chapter. Because x is replaced by —x
in the second equation, the two graphs are reflections of each other in the y-axis.

X -2 -1 0 1 2

Fory = e*:
1 1 )
y 22 e 1 e e
X -2 -1 0 1 2

Fory = e™:
T ) [T
y e e 1 e o2

The two curves cross at (0, 1). The gradient of y = e”* at (0, 1) is 1, so by reflection, the gradient of y = ¢™*

at (0, 1) is —1. This means that the curves are perpendicular at their point of intersection.

As remarked earlier, the function y = e~ is just as important as y = e” in applications. It describes a great
many physical situations where a quantity ‘dies away exponentially’, like the dying away of the sound of a
plucked string.

An example of curve sketching

The following curve-sketching example illustrates the use of the six steps of our informal curve-sketching
menu in the context of exponential functions. One special limit is given in part d so that the sketch may be
completed.

Example 9 5C

Sketch the graph of y = xe ™ after carrying out these steps.

a Write down the domain.

b Test whether the function is even or odd or neither.

¢ Find any zeroes of the function, and examine its sign.

d Examine the function’s behaviour as x — oo and as x — —oo, noting any asymptotes. (You may
assume that as x — oo, xe ™ — 0.)

D

Find any stationary points and examine their nature.
f Find any points of inflection, and examine the concavity.

ISBN 978-1-108-76626-5 © Pender et al. 2019 Cambridge University Press
Photocopying is restricted under law and this material must not be transferred to another party.



5C Applications of differentiation

SOLUTION

a

b

The domain of y = xe ™ is the whole real number line.

f(=x) = —xe*, which is neither f(x) nor —f(x), so the function is neither even nor odd.
The only zero is x = 0. From the table of signs, y is positive X -1
for x > 0 and negative for x < 0.
y —e
As given in the question, y — 0 as x — oo, so the x-axis is a sign - 0

horizontal asymptote on the right. Also,y —» —ocoasx — —oo.

Differentiating using the product rule, Let u=x
f(x) =vu' + w' and v =e™™"
=e* — xe Then u’ =

= e (1 — x). and v = —e N

249

Hence f'(x) = 0 when x = 1 (notice that e ~* can never be zero), so (1, }) is the only stationary point.

Differentiating again by the product rule, Let u=1-x
f"(x) = vu" + uv’ and =e¢ N
= —¢ % - (1 —x)e ™ Then u’ = —1
=e*(x — 2), and v/ = —e N
so f"(1) = —e ! <0, and (1, e_l) is thus a maximum turning point.
f f"(x) = e (x — 2)hasazeroat x = 2, and taking test
values around x = 2, L
- A 73
x 0 2 3 1) \2 X
1. ¢!
frl@ -2 0 e
(2,2¢72)

Thus there is an inflection at (2, 2e _2) = (2,0.27).

The curve is concave down for x < 2 and concave up for x > 2.

Example 10

[Transforming graphs]

Use a suitable transformation of the graph sketched in the previous worked
example to sketch y = —xe”.

SOLUTION

y = xe “becomes y = —xe” when x is replaced by —x. Graphically, this

transformation is a reflection in the y-axis, hence the new graph is as sketched

to the right.
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250 Chapter 5 The exponential and logarithmic functions _

A difficulty with the limits of xe* and xe™*

Sketching the graph of y = xe ™ above required knowing the behaviour of xe ™ as x — oo. This limit
is puzzling, because when x is a large number, e ~* is a small positive number, and the product of a large
number and a small number could be large, small, or anything in between.

In fact, e ™* gets small as x — oo much more quickly than x gets large, and the product xe " gets small.
The technical term for this is that e ™" dominates x. A table of values should make it reasonably clear that
limxe™ = 0.

X 0 1 2 3 4 5 6 7
. 1 2 3 4 S 6 A
xe 0 e 2 o3 ot e 6 o7
approx 0 0.37 0.27 0.15 0.073 0.034 0.015 0.006

Limits such as this would normally be given in any question where they were needed.

Similarly, when x is a large negative number, ¢” is a very small number, so it is unclear whether xe™ is large
or small. Again, e* dominates x, meaning that xe* — 0 as x — —oo. A similar table should make this
reasonably obvious.

X 0 -1 -2 -3 —4 -5 —6 -7
E 1 _2 _3 _4 _3 _6 _ 7
e 0 e e? e3 et ed e e’
approx 0 —-0.37 —-0.27 —-0.15 —-0.073 —-0.034 -0.015 -0.006

Again, this limit would normally be given in any question where it is needed.

FOUNDATION

Technology: Graphing programs can be used in this exercise to sketch the curves and then investigate the
effects on the curve of making small changes in the equations. It is advisable, however, to puzzle out most of
the graphs first using the standard methods of the curve-sketching menu.

=1 where x = 1.

, and show that the gradient of the tangent at A is 2.

1 Find the y-coordinate of the point A on the curve y = e

Find the derivative of y = 2!

O T

Hence find the equation of the tangent at A, and prove that it passes through O.

3x+1

2 a Write down the coordinates of the point R on the curve y = ¢ where x = —

wl—

d
b Find d—y and hence show that the gradient of the tangent at R is 3.
by

¢ What is the gradient of the normal at R?
d Hence find the equation of the normal at R in general form.
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5C Applications of differentiation 251

Find the gradient of the tangent to y = e~ * at the point P(—1, ¢).

Thus write down the gradient of the normal at this point.

Hence determine the equation of this normal.

Find the x- and y-intercepts of the normal.

Find the area of the triangle whose vertices lie at the intercepts and the origin.

Use the derivative to find the gradient of the tangent to y = e* at B(0, 1).

Hence find the equation of this tangent and show that it meets the x-axis at F'(—1, 0).
Use the derivative to find the gradient of the tangenttoy = e " at B(0, 1).

Hence find the equation of this tangent and show that it meets the x-axis at G (1, 0).
Sketchy = e*and y = e™* on the same set of axes, showing the two tangents.
What sort of triangle is ABFG, and what is its area?

Find the gradient of the tangenttoy = x — e*atx = 1.
Write down the equation of the tangent, and show that it passes through the origin.

DEVELOPMENT

O Q O T QD

~
T o

10 a

c

11 a
b
c
d

Find the first and second derivatives for the curve y = x — e™.

Deduce that the curve is concave down for all values of x.

Find any stationary points, then determine their nature using the second derivative.
Sketch the curve and write down its range.

Finally, sketch y = e* — x by recognising the simple transformation.

Use the product rule to differentiate y = (1 — x)e™.
Find the equation of the tangenttoy = (1 — x)e*atx = —1.
Hence find the x-intercept of the tangent.

Show that the equation of the tangenttoy = (x + l)e *atx = —lisy = e(x + 1).
Find the x-intercept and y-intercept of the tangent.
Hence find the area of the triangle with its vertices at the two intercepts and the origin.

Find the first and second derivatives of y = 36,

Explain why every tangent to the curve has positive gradient, and why the curve is concave up at
every point.

Find the point on the curve where the gradient is 3.

Find the gradients of the tangent and normal at the y-intercept.

2
Use the chain rule to differentiate y = ¢~ .
Find the equation of the normaltoy = e~

Determine the x-intercept of the normal.

2
* at the point where x = 1.

Show that the equation of the tangentto y = 1 — ¢~ at the originis y = x.

Deduce the equation of the normal at the origin without further use of calculus.

What is the equation of the asymptote of this curve?

Sketch the curve, showing the points 7" and N where the tangent and normal respectively cut the
asymptote.

Find the area of AOTN.
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252 Chapter 5 The exponential and logarithmic functions _

12 a Show that the tangent to y = e* at T'(#, e’) has gradient e’.
b Find the equation of the tangent at x = 7, and show that its x-intercept is t — 1.
¢ Compare this result with Question 4 above, and explain geometrically what is happening.

A 13 [Technology]
This question is intended to justify and extend the remarks made in the text about dominance. Any

¥ curve-sketching question would normally give these limits if they are required.
X

e
a Use your calculator to complete the table of values fxor y== » ) 5 10 20 40

to the right. (This table is intended to confirm that e; - © y
asx — 00.)

_ X
b Use your calculator to complete the table of values for y = xe Y -2 —5 _10 —20 —40

to the right. Then use the table to help you guess the value of

lim xe™. %
¢ Use your calculator to complete the table of values for x -2 =5 —-10 =20 —-40
—X
y = ¢ tothe right. (This table is intended to confirm that y
e *
— > —0asx - —o0.)
X
d Use your calculator to complete the table of values fory = xe™ = 2 5 10 20 40
to the right. Then use the table to help you guess the value of
limxe ™.

These questions can all be easily extended and plotted using a spreadsheet.

14 Consider the curve y = xe™.

Where is the function zero, positive and negative? Is it even, odd or neither?
Show that y’ = (1 + x)e*and y” = (2 + x)e™.

Show that there is one stationary point, and determine its nature.

Find the coordinates of the lone point of inflection.

What happens to y, y’ and y” as x — oo?

Given that y — 0 as x — —oo, sketch the curve, then write down its range.

Q - 0 Q O T 9

Hence also sketch y = —xe ™" by recognising the simple transformation.

15 The function y = ¢~ is the basis of the normal distribution in Chapter 10.

Show that the function is even. When is it zero, positive and negative?

1.2 1.2
Show that y’ = —xe ™2 andy” = (x% — 1)e™2
Show that this curve has a maximum turning point at its y-intercept.

Find the two points of inflection.

X

Explain why y — Oasx - ooandasx — —oo.
Sketch the graph and write down its range.
2
Hence also sketchy = 1 + P by recognising the simple transformation.

Q = 0 Qo 60 T D

16 Consider the functiony = (1 — x)e".
a Find the zero and draw up a table of signs.

b Showthaty’ = —xe*andy” = —(x + 1)e™.
¢ Show that this curve has a maximum turning point at its y-intercept, and a point of inflection at (—1,2e~ b,
d What happensto y,y’and y” asx — oo?
e Giventhaty — 0asx — —oo, sketch the graph and write down its range.
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5C Applications of differentiation 253

CHALLENGE

e¥ + e
17 We define the new function coshx = ————

a Show that y = cosh x is an even function, and is always positive.
d
b Find d—y and show there is a stationary point at the y-intercept.
by
¢ Show that the function is always concave up.
What happens to y as x — oo?
e Sketch the graph of y = cosh x.

18 a Giventhaty = x?e¢ ™, showthaty’ = x(2 — x)e Yandy” = (2 — 4x + x> e
b Show that the function has a minimum turning point at the origin and a maximum turning point at
(2,4¢72).
¢ i Showthaty” = Oatx =2 — V2andx = 2 + V2.
il Use a table of values for y” to show that there are inflection points at these values.
d Giventhaty — 0asx — oo, sketch the graph and write down its range.
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m Integration of exponential functions

Finding primitives is the reverse of differentiation. Thus the new standard forms for differentiation can now
be reversed to provide standard forms for integration.

Standard forms for integration

Reversing the standard forms for differentiating exponential functions gives the standard forms for
integrating them.

. d .
Reversing d—ex =e* gives Jexdx = ¢* + C, forsome constant C.
X

. d .
Reversing d—e"”b = ae™*t gives |ae®™*tldx = e™tb,
x

and dividing through by a, J Pt gy = ée“x +b 4 C, for some constant C.

3 STANDARD FORMS FOR INTEGRATION

. Jexdx = ¢* + C, for some constant C

o Je‘”‘”’dx = le"x”’ + C, for some constant C
a

There is also an associated formula for the reverse chain rule, but it is not required in the course. For
reference, this formula has the usual two forms:

dx

Example 11 5D

Find these indefinite integrals.

Je“dudx =e"+ C OR Jef(x)f’(x)dx =/ 4 C.

a Je3x+2dx b J(l —x + eNdx

SOLUTION

a J'e3x+2dx=§e3X+2+C (a=3andb = 2)

b J (1 —x+ e)dx =x — %xz + e+ C (integrating each term separately)
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5D Integration of exponential functions 255

Definite integrals

Definite integrals are evaluated in the usual way by finding the primitive and substituting.

Example 12 5D
=

Evaluate these definite integrals.

2 3
a J e*dx bj e~ dx
0 2
SOLUTION
2 2 3 3
a J etdx = [ex} b J e Fdx = — é[es_zx} (a = =2and b = 5)
0 0 2 2
=e¢2 - ¢ =—%(e_1—e)
=e? - 1 11
T 2<e - e)
_ e? — 1
T 2e

Given the derivative, find the function

As before, if the derivative of a function is known, and the value of the function at one point is also known,
then the whole function can be determined.

Example 13 5D
\——)

It is known that f"(x) = e* and that f(1) = 0.
a Find the original function f(x).
b Hence find f(0).

SOLUTION

a Itis given that f(x) = e
Taking the primitive, f(x) = e¢* + C, for some constant C.
It is known that (1) = 0, so substituting x = 1,

0=e¢' +C
C = —e.
Hence f(x) =e* — e.
b Substituting x = 0 into this function,
f(0) = ¢ — e
=1 - e
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Example 14 5D

a If f/(x) =1 + 2¢*and f(0) = 1, find f(x).
b Hence find f(1).

SOLUTION

a Itis given that f(x)y =1+ 27
Taking the primitive, f(x) = x — 2¢™* + C, for some constant C.
It is known that f(0) = 1, so substituting x = 0,

1=0-2"+cC

1=0-2+20C
C = 3.
Hence f(x) = x — 2¢e™* + 3.

b Substituting x = 1 into this function,
f)y=1=2¢"+3
=4 - 271

Given a derivative, find an integral

The result of any differentiation can be reversed. This often allows a new primitive to be found.

Example 15 5D
\—— )

2
a Use the chain rule to differentiate e” .

1
b Hence ﬁndJ 2xex2dx.
-1

SOLUTION

x2 2
a Lety =¢e". Let u = x-.
Applying the chain rule, Then y = e".

dy dy du du
dx  du ) dx enee dx *

= 2xe*. d
and 2 = e,

du

b From part a, i.e)‘2 = 2xex2.
dx

Reversing this to give a primitive,

2
J2xex dx = e*.
1 1
exz]

Hence J 2xex2dx = [
-1 1
1 1

e — e
= 0.
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Note: The fact that the definite integral is zero could have been discovered without ever finding the primitive.

. 2. .
The function f(x) = xe" is an odd function, because

f=2) = (=3¢

= —xe*

= —f(x).

Hence the definite integral over the interval [—1, 1] is zero.

Using a formula for the reverse chain rule

There are some situations where the reverse chain rule formula from Section 41 can be used.

Example 16 5D

2x
Use the reverse chain rule formula to find J L
(1 — e*)

SOLUTION

2x
eid _ 2x _ 2x
J 7 X Let u=1-¢e"" OR Let f(x)=1-e"
(I - ) Then u’ = —2¢%%, Then f'(x) = —2¢.

B -2
I IR & s du u=> - (f)
= -ix (=4) x 1 -7 J” &= 2 JW)) foydx = ———
= L + C, for some constant C.

4(1 = e*)?
FOUNDATION

Technology: Some algebraic programs can display the primitive and evaluate the exact value of an integral.
These can be used to check the questions in this exercise and also to investigate the effect of making small
changes to the function or to the limits of integration.
1 Use the standard form J e@Hbgy = le“x *b 4+ Cto find each indefinite integral.
a

a Jezxdx b JeSxdx c Je;xdx

d Je;xdx e [IOezxdx f J12e3xdx

2 Use the standard form J e®Hbgy = leax *+b 4+ Cto find each indefinite integral.
a

a Je4x+5dx b J.e4x_2dx c j6e3x+2dx
d J4e4x+3dx e [67—2xdx f Jéel—hdx
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258 Chapter 5 The exponential and logarithmic functions _
Evaluate these definite integrals.
-1 2 3
a e*dx b e*dx (¥ e tdx
J J J-1
~0 -2 cl
d e “dx e e dx f e dx
J_2 Jo J—1
-2 ol 3
g 20e ¥ dx h 8e *dx i 9e%%dx
J-1 J-3 J—1
Evaluate these definite integrals.
2 el 0
a e ldx b e dx c e 3dx
Jo J-1 J2
- 4 B
d eI ax e e~ Pdx f et ¥y
J_2 J_1 J_1
2 3
2 3 2
g | 6e¥Fax h | 12e™dx i 12e373%dx
J1 J2 J1
Express each function using negative indices instead of fractions, and hence find its primitive.
a i b i c L d - i e i f 8
e er e3x e3x er e—2x
a A function f(x) has derivative f'(x) = ¢**. Find the equation of f(x), which will involve an arbitrary
constant.
b TItis also known that f(0) = —2. Find the arbitrary constant and hence write down the equation of f(x).
Find (1) and f(2).
DEVELOPMENT
Find f(x) and then find f(1), given that:
a f/(x) =1+ 2e*and f(0) =1 b f'(x) =1 — 3e"and f(0) = —1
¢ f'(x) =2+ e rand f(0) =0 d f'(x) =4 — ¢ "and f(0) = 2
e f(x)= e land f(1) =3 i @) =e' "*andf(}) =2
g0 f(x) = e *tland f(-2) = -4 h f(x) = es*"2and f(—6) = 2
Expand the brackets and then find primitives of:
a e(e*+ 1) b e*(e* - 1) cC e *Re™* -1
d (ef + 1) e (e + 3)° fo(ef=1)7
g (ex _ 2)2 h (ex + e—x)(ex _ e—x) i (eSx + e—Sx)(eSx _ e—Sx)
Use the standard form J e@Hbgy = le"x *+b 4 Cto find these indefinite integrals.
a
a Jezx"'bdx b [e7x+qu c Je3x_kdx
d Je6x_’1dx e [e“x+3dx f Jesx"'ldx
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g [emx_zdx h Jekx_ldx i Jpep“'qu
j Jmem)”kdx k JAe‘”‘_’a’x I JBekx_de
10 Express each function below as a power of ¢, and hence find its primitive.
a L b ! c !
ex—l e3x—1 62x+5
d 4 e 10 f 12
e2x—1 eZ—Sx e3x—5
11 By writing each integrand as the sum of powers of e, find:
X 2x X _
Je —Z dx b Je:ldx c Je 1dx
e e er
X _ 2x _ x x _ 2x
0 | o |23 e
e3x e4x e3x
12 a Find y as a function of xif y’ = e*~ | and y = 1 when x = 1. What is the y-intercept of this curve?
b The gradient of a curve is given by y’ = ¢2~*, and the curve passes through the point (0, 1). What is
the equation of this curve? What is its horizontal asymptote?
¢ Ttis known that f/(x) = e + % and that f(=1) = —1. Find £(0).
d Given that f'(x) = e* — e ¥ and that y = f(x) is horizontal as it passes through the origin, find f(x).
13 By first writing each integrand as a sum of powers of ¢, find:
1 o1
a | eX(2e* — 1)dx b (e* + 2)%dx
Jo J-
N
¢ | (e = D(e™ + 1)dx !
Jo d (e + e™)(e® — e ) dx
J—1
1 3¢ X e _
e L f € I dx
Jo er J_1 er
CHALLENGE
14 a i Differentiate e* *3. ii Hence find [2xex2+3dx.
b i Differentiate e* ~2+3. ii Hence find | (x — 1)ex2_2x+3dx.
¢ i Differentiate ¢3 +4+1, ii Hence find | (3x + 2)e3x2+4x+1dx.
o
d i Differentiate y = e i Hence find | x2e* dx.
Jo1
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15 Write each integrand as a power of e, and hence find the indefinite integral.
a J ! dx b J ! dx c J\/:x dx
(e")? (€’
3 1 1
d J Ve*dx e J dx f J dx
2

16 a i Differentiate y = xe* — e”. ii Hence ﬁndJ xe*dx.
0

0
b i Differentiate y = xe™ + e ii Hence ﬁndJ xe *dx.
-2

17 By first simplifying each integrand, determine:
X _ =X x =

18 a Show that f(x) = xe™*" is an odd function.

\/5 2
b Hence evaluate J xe ™" dx without finding a primitive.
-V2
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E Applications of integration

The normal methods of finding areas by integration can now be applied to functions involving e*.

Finding the area between a curve and the x-axis

A sketch is essential here, because the definite integral attaches a negative sign to the area of any region
below the x-axis (provided that the integral does not run backwards).

Example 17 5E
\—— )

a Use shifting to sketch y = ¢* — e, showing the intercepts and asymptote.
b Find the area of the region between this curve, the x-axis and the y-axis.

SOLUTION
a Move the graph of y = e* down e units. VA
To find the y-intercept, put x = 0, / >
then y = e — e 1%
=1 - e
To find the x-intercept, put  y = 1, I-e
then ef =e¢e /
x = 1. ¢
The horizontal asymptote moves downtoy = —e.

1

1
b J (e* — e)dx = [ex — ex (the number e is a constant)
0

0
= (' —e) = (" - 0)
(e —e)— (1 -0)
= -1
This integral is negative because the region is below the x-axis.
Hence the required area is 1 square unit.

Finding areas between curves

Ifacurve y = f(x) is always above y = g(x) in aninterval a < x < b, then the area of the region between
the curves is

b
area between the curves = J (f (x) — g(x))dx.

a
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Example 18 5E

a Sketchthe curvesy = e*andy = x

2 in the interval —2 <x <2

b Find the area of the region between the curves, from x = O tox = 2.

SOLUTION

The graphs are drawn to the right.
Note that for x > 0,y = e”is always above y = x~.

2

Using the standard f2c>rmula above, y=¢é"
y!\
area = [ex - §x3] o2
2 0 y=x2
= (-8 - (-0 y
= e — 32 square units 8,7
Y
< ; .
—2 12 X

FOUNDATION

Technology: Graphing programs that can calculate the areas of specified regions may make the problems in
this exercise clearer, particularly when no diagram has been given.

1 a Use the standard form Jexdx = e* + C to evaluate each definite integral. Then approximate it

correct to two decimal places.

1 0 0 0
i J e’ dx i J edx iii J e’dx iv J e’dx

0 -1 -2 -3
The graph below shows y = e* fromx = —5to x = 1, with a scale of 10 divisions to 1 unit, so that
100 little squares equal 1 square unit. |

By counting squares under the curve from x = 0to x = 1, find an approximation to J e dx, and

compare it with the approximation obtained in part a. 0

Count squares to the left of the y-axis to obtain approximations to:

0 0 0
i J e*dx, iii [ e*dx, iii J e*dx,
-1 -2 -3

and compare the results with the approximations obtained in part a.
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d Continue counting squares to the left of x = —3, and estimate the total area under the curve to the
left of the y-axis.
y
s s
3
2
1
—4 -3 -2 -1 0 1 x
2 Find the area between y = e” and the x-axis for:
a -1 <x<0 b 1<x<3 c -1 <x<1 d -2<x<1

3 Answer these questions first in exact form, then correct to four significant figures. In each case use the

standard form Jeax+bdx — %ea“'b L C

a Find the area between the curve y
3,
b Find the area between the curve y

i fromx = 0tox

i fromx =0tox = 1,

¢ Find the area between the curve y

i fromx = 0tox = 3,

¢ and the x-axis:

ii fromx =

e " and the x-axis:

ii fromx =

1 .
e3" and the x-axis:

ii fromx =

—3tox = 0.
—1tox = 0.
—3tox = 0.

4 In each case find the area between the x-axis and the given curve between the given x-values. Use the

standard form J e™tbgy =

Q@ ®© O o
~ e 2 <

=" for0 < x <
=21 for0 <
=e ! for—1 < x

Find the area of the region bounded by the

curve y = e*, the x-axis, the y-axis and the

line x = 2.
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Find the area of the region bounded by the

1 . .
curve y = e2%, the x-axis, and the lines

x=—-land x = 2.

Cambridge University Press



264 Chapter 5 The exponential and logarithmic functions

Find the area of the region bounded by the
curve y = e~ the x-axis, the y-axis and the

Find the area of the region bounded by the
curve y = e_%x, the x-axis, and the lines

line x = 1. x =—-land x = 2.
DEVELOPMENT
6 a Find the area between the curve y = e + 1 and the x-axis, fromx = Otox = 2.
b Find the area between the curve y = 1 — " and the x-axis, fromx = —1tox = 0.
¢ Find the area between the curve y = ¢* + ¢ and the x-axis, fromx = —=2tox = 2.
d Find the area between the curve y = x2 + ¢*and the x-axis, fromx = —=3tox = 3.
7 a YA VA
A N
e—1
< 1 > R
. 1\ x
2v X
Find the area of the region bounded by the Find the area of the region in the first
curvey = ¢ *and the linesx = 2andy = 1 quadrant bounded by the coordinate axes and
the curve y = ¢ — ™.
c . VA ya A

=V

4
Find the area between the x-axis, the curve
y = e* — l and the line x = —1.

e \ p
-1
—e+1\\\\\\3

—e

Find the area of the region bounded by the

—X

=V

curve y = e — e and the coordinate axes.
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What is the area bounded by x = 2,
y = e * — 2, the x-axis and the y-axis?

=V

>

/-1 2 X
Find the area of the region bounded by the
curve y = 3 — e, the x-axis, and the lines
x = —landx = 2.
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8 a Sketchthe curvesy = e*and y = x + 1, and shade the region between them, from x =

Then write down the area of this region as an integral and evaluate it.

b Sketch the curves y = e*and y = 1 — x, and shade the region between them, from x =

Then write down the area of this region as an integral and evaluate it.

9 The diagram to the right shows the region above the x-axis, below VA
bothy = e*and y = e™*, between x = —l and x = 1.

Otox = 1.

Otox = 1.

a Explain why the area of this region may be written
1

as area = 2J e Ydx.

° »

b Hence find the area of this region. -

10 The diagram to the right shows the region above the x-axis, below VA

bothy = e — e fandy = e — e". ‘N
a Explain why the area of this region may be written 1
1

as area = 2] (e — e”) dx.
0

b Hence find the area of this region. /_ 1
11 The diagram to the right shows the region between the curve y = e* — ™, VA

the x-axis and the lines x = —3 and x = 3.

a Show thaty = ¢* — e¢™"is an odd function.

/
=V

b Hence write down the value of J (e* — e™) dx without finding
a primitive. -3

¢ Explain why the area of this region may be written v
3

as area = ZJ (e* — e ™) dx.
0
d Hence find the area of this region.

**+1intersectat x = —1.

12 a Show that the curves y = x? and y=e
Hence sketch the region in the second quadrant between these two curves and the y-axis.

¢ Find its area.

13 a Show thatthe curves y = e*andy = (¢ — 1)x + 1 meetat A(0,1) and B(1,e).
b Sketch the graphs, and find the area contained between the line and the curve.

(O8]
=V

14 Sketch the region between the graphs of y = e*and y = x, between the y-axis and x = 2, then find

its area.

15 In this question, give all approximations correct to four decimal places.

a Find the area between the curve y = e” and the x-axis, for 0 < x < 1, by evaluating an appropriate

integral. Then approximate the result.

b Estimate the area using the trapezoidal rule with two subintervals (that is, with three function values).
Is the trapezoidal-rule approximation greater than or less than the exact value? Give a geometric

explanation.
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16 In this question, give all approximations correct to four decimal places.
a Use the trapezoidal rule with five function values to approximate the area between the curve
y = ¢~ and the x-axis, from x = Otox = 4.
b Use the trapezoidal rule with four subintervals to approximate the area between the curve y = evand

the x-axis, fromx = 1tox = 3.

CHALLENGE

-0

17 a | Evaluate the integral | e*dx.
In

il What is its limit as N — —o0?
N

b i Evaluate the integral | e™dx.
JO

il Whatis its limitas N — oo?
. . —x2 . N —x2
18 a Differentiate e ™ and hence write down a primitive of xe ™ .
2 i
b Hence find the area between the curve y = xe ™ and the x-axis from x = 0to x = 2, and from

x=—-2tox = 2.
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m Review of logarithmic functions

Section 5A reviewed exponential functions from Sections 9A—9F of the Year 11 book, and this section will
complete the review of those sections with a summary of logarithms base e. The two small topics that are
new are:

¢ Dilations of logarithmic functions.

e Exponential and logarithmic equations reducible to quadratics.

The function y = log, x

As discussed in the Year 11 book, an exponential function is one-to-one, and logarithmic functions are the
inverse functions of exponential functions. One should remember that

3 = logy 8 means 8 = 23 and y = loggx means x = e”.
‘The log is the index, when the number is written as a power of the base.’

Algebraically, the fact that y = log, x is the inverse function of y = e* means that the composite of the two
functions, in either order, is the identity function,

log, e* = x, for all real x and elo%e* = x forall x > 0.

Geometrically, when the functions are sketched on one graph,

they are reflections of each other in the diagonal line y = x.

* Both graphs have gradient 1 at their intercepts, y = e” at its y-intercept, )
and y = log, x at its x-intercept. 1 / >

N <

¢ Their domains and ranges are reversed, which is more easily seen with

V=

bracket interval notation:

Fory = e%, domain = (—o0, ), range = (0, ).

Fory = log,x, domain = (0,), range = (—o0, ).

® y = ¢" has a horizontal asymptote y = 0.
y = log, x has a vertical asymptote x = 0.
e Both are increasing throughout their domain, y = e* at an increasing rate, y = log, x at a decreasing rate.

4 THE FUNCTION y = log.x OR In x

The function y = log, x is the inverse function of y = &%,

y = log, x means that x =e.
* The composition of the functions y = e* and y = log, x, in any order,
is the identity function,
log, e* = x, for all real x and el°%* = x forall x > 0.
* The graphs of y = e*and y = log, x are reflections of each other in y = x.
e This reflection exchanges the domain and range, exchanges the asymptotes,
and exchanges the intercepts with the axes.
* The tangents to both curves at their intercepts have gradient 1.
e y = ¢"isalways concave up, and y = log, x is always concave down.
» Both graphs are one-to-one, and both graphs are increasing, y = e”* at an increasing rate,
y = log, x at a decreasing rate.

The derivative of y = log, x will be obtained in Section 5G.
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Notation and the calculator
Write the function as y = log,xoras y = In x (‘logs naperian’ or ‘logs natural’). We have used the notation
log, x more often than In x in order to emphasise to readers that the base is e, but In x is also standard

notation.

In mathematics, but not elsewhere, interpret log x as log, x. Be particularly careful on the calculator, where

means log, x and means logj x.

Example 19 5F
Sketch each function using a transformation of the graph of y = log, x sketched  ya

to the right. Describe the transformation, write down the domain, and show 1

and state the x-intercept and the vertical asymptote.

a y = log.,(—x) b y=log,x — 2 c y=log.(x + 3) =
Which transformations can also be done using a dilation? ! ¢
SOLUTION

a VA b VA Cc loge 3 A

|
Q
| /
—
L am—
I
| —
— =V
I
o =
\‘}
—_
-
o
"/
|
(O8]
|
\®)
|
w
+
[ A
—
=V

To graph y = log,(—x), To graph y = log,x — 2, To graph y = log,(x + 3),
reflect y = log, x in y-axis. shift y = log, x down 2. shift y = log, x left 3.
domain: x <0 domain: x>0 domain: x> =3
x-intercept: (—1,0) Xx-intercept: (e2,0) x-intercept: (—2,0)
asymptote: x = 0 asymptote: x = 0 asymptote: x = —3

® The equation y = log,(—x) in part a is a reflection in the y-axis, and any reflection in the y-axis
can be regarded as a horizontal dilation with factor —1.

¢ In part b, the equation y = log,x — 2 = log,x — log, e’ = loge(e_zx) can be regarded as a
horizontal dilation with factor e = 7.39.

Dilations of y = log.x
Dilations of logarithmic functions share an interesting property with dilations of exponential functions —
some of them can be done with a shift in the other direction, as we saw in part b above.

Example 20 5F

Use dilations of y = log, x to generate a sketch of each function. Identify which dilation is also a shift in

the other direction.
a y = log,3x b y=3log,x
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SOLUTION
a y = log,3x b y=3log,x
YA yA
3
1 77777/
T X .
3 3 /l v %
Dilate y = log, x horizontally factor §. Dilate y = log, x vertically factor 3.

* y = log, 3x can be written as y = log,x + log, 3, so it is shift up log, 3.

Using the inverse identities

We conclude with a review of some of the manipulations needed when using logarithms base e. First, some

simple examples of using the two inverse identities

log, e* = x for all real x and e°%* = x forall x > 0.

Example 21
\—— )

Simplify: ’
a log,e® b log,e ¢ log,! d log, —
e
SOLUTION
a logee6 =6 b log,e = logee1
=1

d logeL = logee_% e el = 10

e

ol—

Conversion between exponential statements and logarithm statements

We recommended that the following sentence be committed to memory:
logr 8 = 3 because 8§ = 23
® The base of the power is the base of the log.

® The log is the index, when the number is written as a power of the base.

This pattern applies in exactly the same way when the base is e.
log,x =y means x =e’.

Example 22
=

Convert each statement to the other form.
3

a x=e b log,x = —1 ¢ x = log, 10

SOLUTION

a log,x =3 b x=1 c e =10
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The change-of-base formula

We developed the general change of base formula. What is needed here is conversion to base e from a base b,
which must be a positive number not equal to 1,

log, x
log, b’

Example 23 5F

a Locate log, 100 and logz 100 between two whole numbers.
b Use logarithms base e to solve 2* = 100 and 3* = 100 correct to three decimal places.

forall x > 0.

logpx =

SOLUTION

a 2% < 100 < 27, s01log, 100 lies between 6 and 7.
3* < 100 < 3%, 50 logs 100 lies between 4 and 5.

b 2* =100 3* = 100
x = log, 100 x = logs 100
_ log, 100 _ log, 100
~ log,2 "~ log,3
= 6.644 = 4.192

Alternatively, take logarithms base e of both sides.

5 THE CHANGE-OF-BASE FORMULA

Suppose that the new base b is a positive number not equal to 1. Then
log, x
log,x = .
e log, b

“The log of the number over the log of the base.’

Exponential and logarithmic equations reducible to quadratics
Exponential and logarithmic equations can sometimes be reduced to quadratics with a substitution (although the
working is sometimes easier without the substitution). This approach can be used whether or not the base is e.

Example 24 5F

a Use the substitution # = 2" to solve the equation4* — 7 x 2* + 12 = 0.
b Use the substitution u = e* to solve the equation 3¢ — 11e* — 4 = 0.

0 with and without the substitution u = log, x.

¢ Solve log,x —
log, x
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SOLUTION
a Writing 4° = (2%)?, the equation becomes
(22 =7 x 2"+ 12 =0.

Substituting u = 2%, u?> —Tu+12=0
(u—4)(u—-3) =0
u =4 or 3,
and returning to x, 2*=4o0r2"=3
x = 2 or log, 3.

b Writing e = (e*)?, the equation becomes
3(e¥)? — 1le* — 4
Substituting u = &%, 3u? — 1lu — 4
3u? — 12u 4+ u — 4
Bu(u — 4) + (u — 4) =
Gu+ 1D)u—-4)=0

0.
0 (a+p=-1l,af =3 %X (-4) =-12)
0 (aandpare —12and 1)

I
o

u = —% or 4,
and returning to x, e*=—1ore =4
Because e” is never negative, e* =4

x = log, 4.

C The equationis log,x — 2 _ 0.
log, x
Substituting . = log,x, 7 — % — 0
(> = 9) =0
(u—3)u+3)=0
u =3 or —3,
and returning to x, log,x = 3 or 3.
Hence x=eor e’
Alternatively, log,x — =0
log,x
(log,x)> — 9 = 0
(log,x)* = 9
log,x = 3 or -3
3

X =e or e

Remember that on the calculator, means log,x and means logjyx. We have used the notation
log, x more often than In x in order to emphasise the base.

1 Use the calculator’s button to approximate, correct to four significant figures:
a log, 10 b log,0.1 ¢ In123456 d 1n 0.000006 e log,50 f log,0.02
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2 Use the identities log, e* = x for all real x, and e'°%* = x for x > 0, to simplify:
a log,e’ b log,e™! c logee‘—2 d log,Ve
e s f oIn0.05 g ! h elne
3 a Use your calculator to confirm that log, 1 = 0.
b Write 1 as a power of e, then use the identities in question 2 to explain why log, 1 = 0.
¢ Use your calculator to confirm that log,e = 1. (You will need to find e = e! first.)
d Write e as a power of e, then use the identities in question 2 to explain why log,e = 1.
4 Convert each exponential statement to logarithm form, and each logarithmic statement to exponential
form.
a x=¢b b log,x = =2 c x=1n24 d e* =1
5 Use the change-of base formula to express each logarithms in terms of logarithms base e. Then
approximate it correct to four significant figures.
a logy7 b logip25 ¢ logz0.04
6 a What transformation maps y = e*toy = log,x, and how can this transformation be used to find the
gradient of y = log, x at its x-intercept?
b What transformation maps y = log,xto y = log,(—x), and how can this transformation also be
interpreted as a dilation?
¢ Sketchy = log,x and y = log,(—x) on one set of axes.
7 Sketch each curve using a single transformation of y = log, x, and describe the transformation.
a y=log,x + 1 b y=log,x — 2 c y= logeex) d y = 1ilog.x
8 Sketch each curve using a single transformation of y = log,(—x), and describe the transformation.
ay= loge(_x) -1 b y = _loge(_x) c y= 310ge(_x)
DEVELOPMENT
9 The graph drawn to the right is a dilation of y = log,(—x). A
Describe the dilation, and write down the equation of the curve. \ 1
o
2] >
10 a Use the substitution u = 2*tosolve 4* — 9 x 2* + 14 = 0. ‘_% X
Use the substitution 4 = 3* to solve 3% — 8 x 3* — 9 = 0.
Use similar substitutions, or none, to solve:
I 255 -26 x5 +25=0 i 9 -5%x3"+4=0
il 3% -3 -20=0 V7T + T+ 1=0
v 3% = 93 Vi -3 x2tl 423 =0
11 Use the substitution u = e* oru = e>* to reduce these equations to quadratics and solve them. Write
your answers as logarithms base e, unless they can be further simplified.
a e¥ -2 +1=0 b e¥ +e¢* -—6=0
c e¥ —10e™ +9=0 d e —e™ =0
12 Use a substitution, or none, to solve:
a (log,x)> — 5log,x +4 =0 b (log,x)> = 3log, x
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13 a Use the laws for logarithms to simplify:

I log,e® i log,(log, e®) iii log,(log,(log, e®))
b Use the laws for logarithms to express as a single logarithm:
I In5+ In4 ii In30 — log,6 il n12 = In15 + In 10
CHALLENGE

14 Use a substitution such as u = 4" to solve each equation. Give each solution as a rational number, or
approximate correct to three decimal places.
a 2% -7 x 2%+ 12=0

b 100 - 10 =1 =0

2x X

c (1) -7x (L) +10=0

15 a Use, and describe, a dilation of y = log, x to sketch y = log, 2x.

b Use, and describe, a subsequent translation to sketch y = log,2(x — 1).
¢ Use, and describe, a subsequent dilation to sketch y = 1log,2(x — 1).
d

Use, and describe, a subsequent translation to sketch y = $log,2(x — 1) — 2.

16 a Interpret the transformation from y = log,xto y = log,(5x) as a dilation. Then interpret it as a
translation.
b Interpret the transformation from y = log,xtoy = log,x + 2 as a translation. Then interpret it as a
dilation by writing 2 as log, e’.
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m Differentiation of logarithmic functions

Calculus with the exponential function y = e” requires also the calculus of

Q<
>

its inverse function y = log, x.

[N}

The diagram to the right shows once again the graphs of both curves drawn

on the same set of axes — they are reflections of each other in the diagonal

line y = x. Using this reflection, the important features of y = log, x are: ) } X
¢ The domain is x > 0 and the range is all real x. L2 e
® The x-intercept is 1, and the gradient there is 1. /

® The y-axis is a vertical asymptote.
e Asx — oo,y — oo (look at its reflection y = e* to see this).
¢ Throughout its whole domain, log, x is increasing at a decreasing rate.

Differentiating the logarithmic function

The logarithmic function = log, x can be differentiated easily using the known derivative of its inverse
function e”.

Let y = log, x.

Then x = e”, by the definition of logarithms.

Differentiating, Z;C = e”, because the exponential function is its own derivative,
= X, because ¢’ = x,

and taking reciprocals, di: = i

Hence the derivative of the logarithmic function is the reciprocal function.
6 THE DERIVATIVE OF THE LOGARITHMIC FUNCTION IS THE RECIPROCAL FUNCTION

ilog le
dx ¢ X

The next worked example uses the derivative to confirm that y = log, x has two properties that were already
clear from the reflection in the diagram above.

Example 25 5G

a Find the gradient of the tangent to y = log, x at its x-intercept.
b Prove that y = log, x is always increasing, and always concave down.

SOLUTION
a The function is y = log, x. { .,
Differentiating, y' = l ‘ _
N - . 1 2 e
The graph crosses the x-axis at (1, 0), and substituting x = 1 into y’, _
gradient at x-intercept = 1. /L y =log,x
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5G Differentiation of logarithmic functions 275

b The domainisx > 0,and y’ = %is positive for all x > 0.

"

Differentiating again, y' == Lz’ which is negative for all x > 0.
X

Hence y = e is always increasing, and always concave down.

Example 26 5G
Differentiate these functions using the standard form above.
a y=ux+ log,x b y=5x> - 7log,x
SOLUTION
a y=ux+ logx b y=5x>-7logx
d d
Y _y + 1 Y qox - !
dx x dx X

Further standard forms

The next worked example uses the chain rule to develop two further standard forms for differentiation.

Example 27 5G
Differentiate each function using the chain rule. (Part b is a standard form.)
a log,(3x + 4) b log,(ax + b) ¢ log,(x*> + 1)
SOLUTION
a Let y = log,(3x + 4). Let u=3x + 4.
d d Th = 1 .
Then &2 = & x i (chain rule) SR
dx du dx du
Hence — = 3
1 dx
= X 3
3x + 4 dy 1
and — = —.
_ 3 du u
S 3x + 47
b Let y = log,(ax + b). Let u = ax + b.
d d Th = | .
Then 2 = & » 4 (chain rule) oY= l0geu
dx du dx du
Hence — = a
1 dx
= b X a d |
ax + and Y —.
_ a du u
S ax + b’
C Let y= loge(x2 + 1). Let u=x>+1.
d d Th =1 .
Then S X i (chain rule) oy OB ¥
dx du dx du
Hence I = 2x
= I X 2x dx
X+ 1 and . l
. 2x du u
x2 + 1
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276 Chapter 5 The exponential and logarithmic functions _

Standard forms for differentiation

It is convenient to write down two further standard forms for differentiation based on the chain rule, giving
three forms altogether.

7 THREE STANDARD FORMS FOR DIFFERENTIATING LOGARITHMIC FUNCTIONS

ilo x = 1
dx Ee X
d a
—1 + b) =
dx Oge (ax ) ax + b
d u’ d J'(x)
—1 = — OR —1 =
gy 08t = 7y 108 Jf(x) 70

The second of these standard forms was proven in part b of the previous worked example. Part a was an
example of it.

The third standard form is a more general chain-rule extension — part ¢ of the previous worked example was
a good example of it. This standard form will be needed later for integration. For now, either learn it — in
one of its two forms — or apply the chain rule each time.

Example 28 5G

Using the standard forms developed above, differentiate:

a y=log,(4x — 9) b y=log. (1 —1x) c y=log, (4 + x?)
SOLUTION
a Fory = log,(4x — 9), use the second standard form withax + b = 4x — 9.
4
Thus y' = .
4 4x - 9
b Fory = log,(1 — }x), use the second standard form withax + b = — Jx + 1.
1
Thusy’ = —2*—
-1lx+1
- > after multiplying top and bottom by —2.
x —
¢ Fory = log, (4 + x2), Let u =4+ x% OR Let f(x) =4 + x°
, 2 Then u’ = 2x. Then f'(x) = 2x.
—_— 2. ’ !/
b L 1ogou = - iog, f(x) = LD
dx u dx f(x)
Alternatively, use the chain rule, as in the previous worked example.
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These two rules are used in the usual way.
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Example 29
\—— )

Differentiate:

5G

In(1 +
a x’lnx by the product rule, b n(7)C)by the quotient rule.
X
SOLUTION
a Let y-= x3Inx. Let u=x>
Then y" = vu' + uv’ and v =Inx
Then u’ = 3x?
=?>lenx+x3><l e *
* d v’ !
an =.
= x2(1 + 31Inx). x
In(1 +
b Let yzy. Let u= In(l + x)
) ) and v = x
vu' — uv
Th =
o 2 Then u’ = L
1 + x
X
— In(1 + x and v/ =1
1 +x ( )
x2

x — (1 + x)In(1 + x)

x2(1 + x)

Using the log laws to make differentiation easier

The next worked example shows the use of the log laws to avoid a combination of the chain and quotient rules.

Example 30

5G

Use the log laws to simplify each expression, then differentiate it.

a loge7x2
SOLUTION
a Let y= loge7x2.
Then y = log,7 + log, x?
= log,7 + 2log, x
dy _ 2
so — ==
dx x
b Let y=log,(3x — 7)°.
Then y = 5log,(3x — 7)
dy 15
SO — = .
dx 3x — 7

ISBN 978-1-108-76626-5
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b log,(3x — 7)° C loge

(log of a product is the sum of the logs)
(log of a power is the multiple of the log),

(log,7 is a constant, withderivative zero).

(log of a power is the multiple of the log),
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278 Chapter 5 The exponential and logarithmic functions _

1N

1 —x

Then y = log,(1 + x) — log.(1 — x) (log of a quotient is the difference of the logs),
dy 1 1

— = + :

dx 1 +x 1 -—x

¢ Let y = log,

SO

FOUNDATION

Note: Remember that on the calculator, means log, x and means logq x. We have used the notation
log, x more often than In x in order to emphasise the base.

to differentiate:

1 Use the standard form a log, (ax + b) = d
dx ax +

a y=log.(x + 2) b y=log,(x —3) ¢ y=log,(3x + 4)
d y=log,(2x — 1) e y=log,(—4x + 1) f y=1log.(-3x + 4)
g yvy=In(-2x — 7) h y=3mn2x + 4) i y=5InGx - 2)
2 Differentiate these functions.
a y = log, 2x b y = log,5x c y = log,3x d y = log, 7x
e y=4In7x f y=3In5x g y=4In6x h y=3In9%
d d
3 Find 2 for each function. Then evaluate d—y atx = 3.
X X
a y=log.(x +1) b y=1log,(2x — 1) ¢ y=log,(2x — 5)
d y = log,(4x + 3) e y=5Ihnx+1) f y=6In2x +9)
4 Differentiate these functions.
a 2+ log.x b 5 —log.(x + 1) ¢ x + 4log.x
d 2x* + 1 + 3log, x e In(2x — 1) + 3x? f x3=3x+4+InGx—-7)
DEVELOPMENT
5 Use the log laws to simplify each function, then differentiate it.
a y=Inx’ b y=lInx? c y=1Inx>

d y=1Inx2 ey=1n\/; f y=Invx+1

6 Differentiate these functions.

a y=log,tx b y = log, ix c y = 3log, tx
d y=—6log,ix e y=x+ log,tx fy=dx® - loglx
7 Use the full setting-out of the chain rule to differentiate:
a In(x2+ 1) b In2 — x?) ¢ In(1 + &%
8 Use the standard form ilogeu =% ORrR iloge flx) = AC)) to differentiate:
dx u dx f(x)
a log, (x> + 3x + 2) b log,(1 + 2x3) ¢ In(e* — 2)
d x +3 = In(x? + x) e x2 + In(x® = x) f o4xd — 5x2 + In(2x* = 3x + 1)
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9 Find the gradient, and the angle of inclination correct to the nearest minute, of the tangent to y = In x at
the points where:
a x=1 h x=3 cx:% d x=4
Draw a diagram of the curve and the four tangents, showing the angles of inclination.
10 Differentiate these functions using the product rule.
a xlog,x b xlog,(2x + 1) c (2x + 1) log, x d x*log, x
e (x+3)log,(x+3) f (x—1)log.(2x +7) g e*log,x h e *log,x
11 Differentiate these functions using the quotient rule.
1 1
ay= 0g, X byzogex 6 y= X
X x2 log, x
2 1 X
d y = X e y = Ogex f y = ¢
log, x e’ log, x
12 Use the log laws to simplify each function, then differentiate it.
3 4 3 4
a y = log,5x b y = log,3x c y= loge\/;c d y= loge\/;c
ey=10ge% fy=loge5£ g y=Inv2 —x h y=Inv5 + 2
X
13 Find the first and second derivatives of each function, then evaluate both derivatives at the value given.
a f(x) =log(x — 1)atx =3 b f(x) =log(2x + 1)atx =0
¢ f(x) =logxZatx =2 d f(x) = xlogxatx =e¢
14 Differentiate each function using the chain, product or quotient rules. Then find any values of x for which
the derivative is zero. o
X
a y=uxlog,x —x b y = x2log,x cC y= Ee
X
d y = (log.x)? e y = (log.0)* fy=—1—
1 + log,x
1 .
g y = (2log.x — 3)* hy=; iy = log, (log,x)
0g, X
15 Find the point(s) where the tangent to each curve is horizontal.
a y=xlInx by=l+lnx
X
CHALLENGE
16 a Find the derivative of y = ——.
In x
X . . . dy y y\? o
b Hence show that y = —— is a solution of the equation — = |=] — (=] by substituting
nx dx X X
separately into the LHS and the RHS.
17 Use the log laws to simplify these functions, then differentiate them.

a y = log,(x + 2)(x + 1) b y=log(x+50Gx —4) ¢ y=lni+x
- X
3x — 1 (x — 4 e
Y nx+2 Y Oge3x+1 Y 08 XVX +
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280 Chapter 5 The exponential and logarithmic functions _

18 Use the log laws to simplify these functions, then differentiate them.

a y = log,2* b y = log,e* ¢ y = log,x"

19 This result will be used in Section 5.

.., forx >0,
a Copy and complete the statement log, |x| =

.., forx < O.

b Use part a to sketch the curve y = log, |x|.
¢ By differentiating separately the two branches in part a, show that

d 1
Eloge|x| =0 for all x # 0.

d Why was x = 0 excluded in this discussion?
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5H Applications of differentiation of log, x 281

m Applications of differentiation of log, x

Differentiation can now be applied in the usual way to study the graphs of functions involving log, x.

The geometry of tangents and normals

The derivative can be used as usual to investigate the geometry of tangents and normals to a curve.

Example 31 5H

a Show that the tangent to y = log, x at T'(e, 1) has equation x = ey.

b Find the equation of the normal to y = log, x at T'(e, 1).

¢ Sketch the curve, the tangent and the normal, and find the area of the triangle formed by the y-axis and
the tangent and normal at 7'.

SOLUTION

d
a Differentiating, Y _ l,
dx x 1
so the tangent at 7'(e, 1) has gradient —,
e
and the tangentis y — 1 = é(x —e)

ey —e=x —e¢

X = ey
X
y=-.
e

Notice that this tangent has gradient } and passes through the origin.

b The tangent at T (e, 1) has gradient 1, so the normal there has gradient —e.

Hence the normal has equationy — 1 = —e(x — e)
y = —ex + (62 + 1).
¢ Substituting x = 0, the normal has y-intercept N (0, e> + 1).
Hence the base ON of AONT is (e2 + 1) and its altitude is e.
Thus the triangle AONT has area %e (e2 + 1) square units.

An example of curve sketching

Here are the six steps of our informal curve-sketching menu applied to the function y = x log, x.

Example 32 5H

Sketch the graph of y = x log, x after carrying out these steps.

a Write down the domain.

b Test whether the function is even or odd or neither.

¢ Find any zeroes of the function and examine its sign.

d Examine the function’s behaviour as x — oo and as x — —oo, noting any asymptotes. (You may
assume that x log,x — Oasx — 07

D

Find any stationary points and examine their nature.
f Find any points of inflection, and examine the concavity.
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SOLUTION

a The domainis x > 0, because log, x is undefined for x < 0.

b The function is undefined when x is negative, so it is neither even nor odd.

¢ The only zero is at x = 1, and the curve is continuous for x > 0.

We take test values at x = e and at = l
e

Whenx = e, y = elog, e Whenx = e~ !, y = e 'log,e”!
=ex 1 =e ! x (1)

= e. = —¢ L,
X 0 e ! 1 e ye

y *  —e”l 0 e
sign * - 0 4+

Hence y is negative for 0 < x < 1 and positive for x > 1.

V&=

d As givenin the hint,y — Oasx — 0%
Also,y — ocoasx — oo.

e Differentiating by the product rule,

f'(x) = v + u' Let u=x
_ 1 and = log, x.
—logex+x><x Thenu’ = 1
= log,x + 1, and v = 1
1 x
and f"(x) = pot

Putting f'(x) = 0 gives log,x = —1
-1

x=ce
Substituting, f”(e_l) =e>0
and f(e_l) = —e~!, asabove,

SO (e_l, —e_l) is a minimum turning point.
(A point: f'(x) — —oco as x — 07, so the curve becomes vertical near the origin.)

f Because f”(x) is always positive, there are no inflections, and the curve is always concave up.

I
A difficulty with the limits of x log, x and %

The curve-sketching example above involved knowing the behaviour of x log, x as x — 0%. When xis a
small positive number, log, x is a large negative number, so it is not immediately clear whether the product
x log, x becomes large or small as x — 0%.
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5H Applications of differentiation of log, x 283

In fact, xlog,x — 0asx — 0%, and x is said to dominate log, x, in the same way that e* dominated x in
Section 5C. Here is a table of values that should make it reasonably clear that lir8+x log,x = O:
X—

1 1 1 1 1 1 1

* € e? e3 et ed e e’
_1 _2 _3 _4 _5 _6 _1

xlog, x o2 3 o o5 6 o7

approx. -037 -027 -0.15 -0.073 -0.034 -0.015 -0.006

Such limits would normally be given in any question where they are needed.
log, x

A similar problem arises with the behaviour of as x — oo, because both top and bottom get large

log, x

when x is large. Again, x dominates log, x, meaning that — 0asx — oo, as the following table

should make reasonably obvious:

2 3 4 5 6 7

X e e e e e e e
log, x 1 2 3 4 S 6 A
T e o2 JE o4 o5 6 o7

approx. 0.37 0.27 0.15 0.073 0.034 0.015 0.006

Again, this limit would normally be given if it is needed.

FOUNDATION

1 a Write down the derivative of y = log, x.
b Use the derivative to find the gradient of the tangent to y = log,x at P (e, 1).
¢ Hence find the equation of the tangent at P, and prove that it passes through O.

2 a Similarly find the gradient of the tangent to y = log,x at Q (1,0).
b Hence find the equation of the tangent at Q, and prove that it passes through A (0, —1).

3 a Find the gradient of the tangent to y = log, x at R (L, —1).
b Hence find the equation of the tangent at R, and prove that it passes through B (0, —2).

4 a Find the gradient of the tangent to y = log, x at the point A (1, 0).
Show that the gradient of the normal is —1.
Hence find the equation of the normal at A, and its y-intercept.

5 Find, giving answers in the form y = mx + b, the equations of the tangent and normal to:

a y = 4log,x at the point Q (1, 0), b y = log,x + 3 atthe point R(1, 3),
¢ y = 2log,x — 2 atthe point S(1, —2), d y =1 — 3log,xatthe point T(1, 1).
6 a Show that the point P (1, 0) lies on the curve y = log,(3x — 2).
b Find the gradients of the tangent and normal at P.
¢ Find the equations of the tangent and normal at P, and their y-intercepts.
d Find the area of the triangle formed by the tangent, the normal and the y-axis.
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284 Chapter 5 The exponential and logarithmic functions

DEVELOPMENT

Find the gradient of the tangenttoy = Inx — % + latx = 1.

b Write down the equation of the tangent, and show that it passes through the origin.
8 a Find the equation of the tangenttoy = (2 — x)Inxatx = 2.
b Hence find the y-intercept of the tangent.
9 a Write down the domain of y = log, x and the derivative of y = log, x.
b Hence explain why the gradient of every tangent to y = log, x is positive.
¢ Explain also why the gradient of every normal to y = log, x is negative.
d Draw the graph of y = log, x to confirm your answers to parts ¢ and d.
e Find y” and show that it is always negative. What aspect of the curve does this describe?

10 a Find the coordinates of the point on y = log, x where the tangent has gradient §. Then find the
equation of the tangent and normal there, in the form y = mx + b.

b Find the coordinates of the point on y = log, x where the tangent has gradient 2. Then find the
equation of the tangent and normal there, in the form y = mx + b.

11 a In Question 1 you showed that the tangent at P (e, 1) on the curve y = log, x passes through the
origin. Sketch the graph, showing the tangent, and explain graphically why no other tangent passes
through the origin.

b Again arguing geometrically from the graph, classify the points in the plane according to whether
0, 1 or 2 tangents pass through them.

12 a Write down the natural domain of y = x — log, x. What does this answer tell you about whether the

function is even, odd or neither?
b Determine its first two derivatives.
¢ Show that the curve is concave up for all values of x in its domain.
d Find the minimum turning point.
e Sketch the curve and write down its range.
f Finally sketch the curve y = log, x — x by recognising the simple transformation.

13 a Write down the domain of y = 1 + In x.
X
b Show that the first and second derivatives may be expressed as single fractions as y’ = o _2 L and
, 2 —x X
x3
¢ Show that the curve has a minimum at (1, 1) and an inflection at (2, % + In2).
d Sketch the graph and write down its range.
14 This quest101.1 will <.:onﬁrm the. re.marks about dommance. in « 2 5 10 20 40 4000
the text of this section. Such limits would normally be given
in a question that needed them. Y
lo
a Use your calculator to complete the table of values for y = % to the right. Then use the table to
lo
help you guess the value of lim Ee &
X—00 X
b Use your calculator to complete the table of values for N 1 1 1 1 1 1
. 2 5 10 20 40 4000
y = xlog, x to the right. Then use the table to help you
guess the value of lin(r)l L x log, x. Y
X—
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15 Consider the curve y = xlog, x.

a

b
c
d

Write down the domain and x-intercept.

Show thaty” = 1 + log,x and find y”.

Hence show there is one stationary point and determine its nature.

Given thaty — 0~ as x — 07 and that the tangent becomes closer and closer to vertical as x — 07,
sketch the curve and write down its range.

CHALLENGE

16 Consider the curve y = xlog,x — x.

- 0 QO O T 9

17 a

«Q =~ O

18

{<\)

19 a

20 a

Write down the domain and x-intercept.

Draw up a table of signs for the function.

Show that y’ = log, x and find y".

Hence show that there is one stationary point and determine its nature.

What does y” tell you about the curve?

Giventhat y — 0~ as x — 0%, and that the tangent approaches vertical as x — 0%, sketch the curve
and write down its range.

Write down the domain of y = log, (1 + x2).

Is the curve, even, odd or neither?

Find where the function is zero, and explain what its sign is otherwise.
2x ,_ 20 —x%

1 + x (1 + x%)

Hence show that y = log, (1 + x2) has one stationary point, and determine its nature.

Show that y’ =

Find the coordinates of the two points of inflection.
Hence sketch the curve, and then write down its range.

Find the domain of y = (In x)2.
Find where the function is zero, and explain what its sign is otherwise.
2(1 — Inx)

x2

Hence show that the curve has an inflection at x = e.

Find y’ and show that y” =

Classify the stationary point at x = 1, sketch the curve, and write down the range.

1
Write down the domain of y = % .

1 - logexandy,, _ 2 log,x — 3‘

x2 x3

Find any stationary points and determine their nature.

Show that y’ =

Find the exact coordinates of the lone point of inflection.
Sketch the curve, and write down its range. You may assume that y — 0 as x — oo, and that
y - —oasx — 0.

Show that the tangent to y = log, x at A(a, log,a)is x — ay = a(1 — log,a).
Hence show that the only point on y = log, x where the tangent passes through the origin is (e, 1).
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m Integration of the reciprocal function

The reciprocal function y = —is an important function — we have seen that it is required whenever two
X
quantities are inversely proportional to each other. So far, however, it has not been possible to integrate the
reciprocal function, because the usual rule for integrating powers of x gives nonsense:
n+1

+ 1
which is nonsense because of the division by zero.

0

. -1 X
ives dx = =—,
g Jx x 0

Whenn = _1’an dx = =X
n

yl\
Yet the graph of y = 1 to the right shows that there should be no problem ol
X =<
with definite integrals involving % , provided that the integral does not cross the 1 -
2 1
discontinuity at x = 0. For example, the diagram shows the integral J 1 dx, 2 s >
which the little rectangles show has a value between 1 and 1. ! L2 o

Integration of the reciprocal function

Reversing the standard form for differentiating log x will now give the necessary standard forms for

. 1
integrating —.
X

We know that a log, x l,
dx X
and reversing this, J i dx = log, x + C, for some constant C.

This is a new standard form for integrating the reciprocal function.
The only qualification is that x > 0, otherwise log, x is undefined, so we have

J)lcdx = log, x + C, provided that x > 0.

Example 33 51
\—— )

2
a Find the definite integral J 1 dx sketched above.
1X

b Approximate the integral correct to three decimal places and verify that

2
%<J1dx<1.

X
SOLUTION
21 2
=dx = |1
a L P 0g, X
= log,2 — log, 1
= log, 2, because log, 1 = 0.
?
b HenceJ p dx = 0.693,
1

which is indeed between } and 1, as the diagram above indicated.
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A characterisation of e
Integrating the reciprocal function from 1 to e gives an amazingly simple result: ~ ya

e

‘1
—d 1
LX ) [Ogexl

= log, e — log, 1 1
=1-0 >
= 1. 1 e x

The integral is sketched to the right. The example is very important because it characterises e as the real

e
number satisfying J 1 dx = 1. In other expositions of the theory, this integral is taken as the definition of e.
1 X

1
X
So far our primitive is restricted by the condition x > 0, meaning that we can only deal with definite

The primitive of y = — on both sides of the origin

integrals on the right-hand side of the origin. The full graph of the reciprocal function y = 1/x, however, is a
hyperbola, with two disconnected branches separated by the discontinuity at x = 0.

Clearly there is no reason why we should not integrate over a closed interval e

such as —4 < x < —1 on the left-hand side of the origin. We can take

any definite integrals of 1 provided only that we do not work across the
X

asymptote at x = 0. If x is negative, then log(—x) is well defined, and using —4 -1

=V

our previous standard forms,

ilog(—x) = —(_1) = l,

dx X X

and reversing this, log(—x) is a primitive of 1 when x is negative,
X

J)lcdx = log,(—x) + C, provided that x < 0.

The absolute value function is designed for just these situations. We can combine the two results into one
standard form for the whole reciprocal function,

Jl dx = log, |x| + C, provided that x # O.
x

Question 19 of Exercise 9G gives more detail about this standard form.

Challenge: each branch may have its own constant of integration

Careful readers will realise that because y = 1 has two disconnected branches, there can be different
X

constants of integration in the two branches. So the general primitive of —is
X

Jld _ Jlog,x + A, forx > 0,
X log(—=x) + B, forx < 0,
If an initial or boundary condition is given for one branch, this has no implication at all for the constant of

where A and B are constants.

integration in the other branch.

In any physical interpretation, however, the function would normally have meaning in only one of the two
branches, so the complication discussed here is rarely needed, and the over-simplified forms in Box 8 below
are standard and generally used — the qualification is understood and taken account of when necessary.
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288 Chapter 5 The exponential and logarithmic functions _

Three standard forms

As always, reversing the other standard forms for differentiation gives two more standard forms.

8 STANDARD FORMS FOR INTEGRATING RECIPROCAL FUNCTIONS

. Jldx=loge|x|+C
X
. J ! dleloge|ax+b|+C
ax + b a
. Judx=loge|u|+C OR Jf(x)dx=loge|f(x)|+C
u fx)

No calculation involving these primitives may cross an asymptote.

The final warning always applies to the primitive of any function, but it is mentioned here because it is such
an obvious issue.

Example 34 51
\——)

Evaluate these definite integrals using the first two standard forms above.

& 4 5
a J édx b J L c J Ly
e X 11— 2x 1x =2
SOLUTION
825 &
a J “dx = 5[loge | x|
€ X @
= 5(log, e — log, ¢)
=52 -1)
=5
4 4
J dx = —MHlog, [1 — 2x|| (herea = —2andb = 1)
1 1 — 2x 1
= _%(loge |_7| - loge |_1|)
= _%(10g27 - 0)
= —1llog,7

¢ This definite integral is meaningless because it crosses the asymptote at x = 2.

Using the third standard form
The vital point in using the third standard form,
Ju/dx = log, |ul OR Jf )
u f(x)

is that the top must be the derivative of the bottom. Choose whichever form of the reverse chain rule you are

dx = log, [ f(x)],

most comfortable with.
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51 Integration of the reciprocal function 289

Example 35 51
Evaluate these definite integrals using the third standard form above.
1 5 2

a J s dx b J S c J Skt dx

0x2 + 2 49 — x2 01 — x°
SOLUTION
a Let u=x*>+2 OR f(x) = x* + 2.

Then u = 2x f(x) = 2x.

, the top is the derivative of the bottom.

')
f(x)

Hence in the fraction

x4+ 1
Thus, using Ju dx = log, |f(x)] OR J
u

1
J 2x d
0x2 +2

Note: The use of absolute value signs here is unnecessary (but is not wrong) because x? + 2 is never

1

log, (x> + 2)}
0

= log, 3 — log, 2.

negative.
b Let u=9— x? OR f(x) =9 — x%

Then u = —2x f(x) = =2x.

The first step is to make the top the derivative of the bottom:
5 s /

— X

{ X gx = - ;J 2X_ i, which has the forme S
49 — x? 49 — x? f )

5
= é[loge 9 — x2|}

4
- %(loge |_16| - loge |_7|)

= — (4 1log, 2 — log, 7)

= —2log, 2 + }log, 7.

¢ This definite integral is meaningless because it crosses the asymptote at x = 1.

Given the derivative, find the function
Finding the function from the derivative involves a constant that can be found if the value of y is known for
some value of x.

Example 36 51

a Find f(x),if f'(x) = 3 2 and the graph passes through the origin.

b Hence find f(2).
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SOLUTION
, 2
a Here f(x)=—".
3 —x
Taking the primitive, f(x) = =2In|3 — x| + C, for some constant C.
Because f(0) = 0, 0=-2In3 + C
C =2In3.
Hence f(x) =2In3 — 2In|3 — x.
b Substituting x = 2 givesf(2) = 2In3 — 21In1
= 21In3.
Note: As remarked above, this working is over-simplified, because each branch may have its own constant of
integration. But there is no problem in this question because the asymptote is at x = 3, and the given point
(0, 0) on the curve, and the value x = 2 in part b, are both on the same side of the asymptote.
A primitive of log, x
The next worked example is more difficult, but it is important because it produces a primitive of log, x, which
the theory has not yielded so far. There is no need to memorise the result.
Example 37 51
a Differentiate x log, x by the product rule.
b Show by differentiation that x log, x — x is a primitive of log, x.
@
¢ Use this result to evaluate J. log, x dx.
1
SOLUTION
a Differentiating by the product rule, Let u=x
i(xlogex) — '+ and v = log, x.
dx 1 Then u" =1
= log,x + x X T 1
=1 + log, x. and v =5
b Let y = xlog,x — x.
Then y' = (1 + log,x) — 1, using the result of part a,
= log, x.
Reversing this result gives the primitive of log, x,
Jlogexdx = xlog,x — x + C.
¢ Part b can now be used to find the definite integral,
e e
J log, x dx = |xlog,x — x
1 1
= (elog,e —e) — (llog,1 — 1)
= (elog,e —e) — (0 — 1)
= (e —e¢)+ 1
= 1,
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1 First rewrite each integral using the result

standard form J % dx = log, |x| + C to integrate it.

51 Integration of the reciprocal function

FOUNDATION

J % dx = k J i dx, where k is a constant. Then use the

a J 2 dx b [ &) dx c J s dx
X X 2x
d J 1S dx e J 4 dx f J 3 dx
3x S5x 2x
2 Use the standard formj +b dx = % log, |ax + b| + C to find these indefinite integrals.
ax
a ! dx b ! dx (¥ 6 dx
J4x + 1 J5x — 3 J3x + 2
d 15 e 4 de f dx
J5x + 1 J4x + 3 J3 —x
g dx h 4 dx i 12 dx
JT7 — 2x JS5x -1 1 — 3x
3 Evaluate these definite integrals. Simplify your answers where possible.
5 3 -2
a J ldx b J ldx (¥ J ldx
1 X 1 X 8 X
9 4 =5
d J e e J dx f J dx
3X 1 2x —15 5x

4 Evaluate these definite integrals, then use the function labelled on your calculator to approximate

each integral correct to four significant figures.

1

9 dx b dx c dx
Jox + 1 J7x + 2 Jg x =2
(—2 (2
d dx o dx f 3 d
J13x — 1 J_s2x + 3 Ji15 — 2x
(1 (4 (11
g 3 dx h 6 dx i de
J_17 — 3x Ji1dx — 1 Jo 2x — 11
5 Evaluate these definite integrals. Simplify your answers where possible.
(¢ dx ¢ dx ¢ dx
e |
J1 X 1 X e X
6 Find primitives of these function by first writing them as separate fractions.
x+1 p Xt 3 d 1 — 8
X 5x 9x
e3)c2—2)c f2xz+x—4 33 4+ 4x - 1 hx4—x+2
xz X 2 x2
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DEVELOPMENT

7 1In each case show that the numerator is the derivative of the denominator. Then use the result

Jb;dx = log, |f(x)| OR J‘j}((x)) dx = log, | f(x)| + C to integrate the expression.
X
a 2x b 6x + 1 c 2x + 1
2_9 3x2 4+ x x>+ x -3
d 5 — 6x e x+ 3 f 3 —x
2 + 5x — 3x? x4+ 6x - 1 12x — 3 — 2«7
X —X X —X
g —° ho_¢ et —e
1 +e* 1 +e* et + e

Why is it unnecessary (but not wrong) to use absolute value signs in the answers to parts g—i?

8 Find f(x), and then find f(2), given that:

a flo=1+ %andf(l) -1 b f(x) = 2x + ?%andf(l) -2
X
¢ f(x) =3+ 2x5_ Cand f(1) = 0 d f(x) = 622 + 3x1i Jand f(1) = 5 1nS

9 a Find yasafunctionof xify’ = 4i andy = 1 whenx = 2. Where does this curve meet the x-axis
X

on the right-hand side of the origin?

b The gradient of a curve is given by y' = , and the curve passes through the point (0, 1). What

. . . x+1
is the equation of this curve?

¢ Find y(x), given that y’ = 2 ES and y = 1 when x = 1. Hence evaluate y (0).

x2 4 5x + 4 2+ x
d  Write down the equation of the family of curves with the property y’ = — Hence find the curve

that passes through (1, 1) and evaluate y at x = 2 for this curve.

e Given that /" (x) = %, f'(1) = 0and f(1) = 3, find f(x) and hence evaluate f(e).

X
10 Use the standard formj dx = 1 log, |ax + b| + C to find these integrals.
ax + b a
J L dx b J c J I dx
2x + b 3x — ax + 3
J L dx e J f J A dx
mx — 2 px sx — t
u' fx ,
11 Use one of the forms | — dx = log, |u| + C or I dx = log, |f(x)| + C to find:
u x
2 3 3 _
=5 X+ x-5 x* — 6x?
3 _ 32,2 2e
dJ 102° = 70 eJSx L fJ2x+2dx
5x* — 7x% + 8 2 x3 —x e x? + 2x
2
12 a Given that the derivative of £(r)is "+ Land (1) = 11, find f(x).
X
: o . 2x3 — 3x — 4
b Given that the derivative of g (x) is — and g(2) = =3 In2, find g (x).
X
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51 Integration of the reciprocal function

CHALLENGE

13

14

15

16

17

18

19

20

e 1 2
FindJ (x + ) dx.
1 2

a Differentiate y = x log, x — x.
b Hence find:

e
i J log, x dx, ii J\/; log, x dx.

a Show that the derivative of y = 2x2 log, x — x2is y' = 4xlog, x.

b Hence write down a primitive of x log, x.
2

¢ Use this result to evaluate J x log, x dx.
e

a Differentiate (log, x)? using the chain rule.

¢ lo
b Hence determine J % dx.
e

Differentiate In(In x) and hence determine the family of primitives of .
xInx

Stella found the primitive of the function SL by taking out a factor of 1,
X

1 111
Jsxdx = Sdex = Llog, x| + Cy, for some constant C;.

Magar used the second standard form in Box 6 witha = Sand b = 0,

JSlx dx = Llog,|5x| + C,, for some constant Cj.

Explain what is going on. Will this affect their result when finding a definite integral?

a Find the value of a if a is positive and:

a e
i Jldx=5, iiJldx=5.

1 X aX

b Find the value of a if a is negative and:

-1 a

i J Liv = -2, i J Liv = -2,

X

a

Although it is not required in this course, it can be shown that:

ledx=loge<x+Vx2+a2>+C
x+Vx2—a2‘+C

= log,

—
§)
—_
[
&
I

Use these results to find:

1 8
aJldx bjldx
0vx2 +1

293
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294 Chapter 5 The exponential and logarithmic functions _

m Applications of integration of 1/x

The usual applications of integration can now be applied to the reciprocal function, whose primitive was
previously unavailable.

Finding areas by integration

The next worked example involves finding the area between two given curves.

Example 38 5J

a Show that the hyperbola xy = 2 and the line x + y = 3 meet at the points A (1, 2) and B(2, 1).
b Sketch the situation.
¢ Find the area of the region between the two curves, in exact form and correct to three decimal places.

SOLUTION
a Substituting A (1, 2) into the hyperbola xy = 2,
LHS =1 x 2 = 2 = RHS,
and substituting A (1, 2) into the line x + y = 3,
LHS =1 + 2 = 3 = RHS,
so A (1, 2) lies on both curves.
Similarly, B (2, 1) lies on both curves.

b The hyperbola xy = 2 has both axes as aymptotes.
The line x + y = 3 has x-intercept (3, 0) and y-intercept (0, 3).

2
¢ Area = (top curve — bottom curve) dx
I Ay
2 3 =2
- ((3 —x) - 2) dx 5
J X
! 2
- _ 12 1
= _3x 5% 2 log, |x| 1 x‘+y:¥)
= (6 -2 -2log2) - (3 -1 - 2log,1) 2
= (4 - 21og,2) - (24 - 0)
= (1% - 210g62> square units
= 0.114 square units.
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5J Applications of integration of 1/x 295

FOUNDATION

e
1 dx = 1.

1X

b This question uses the result in part a to estimate e

1 a Show thatJ

from a graph of y = i 9

The diagram to the right shows the graph of y = 1
X

fromx = Otox = 3.

The graph been drawn on graph paper with a scale 1
of 10 little divisions to 1 unit, so that 100 of the little
squares make 1 square unit. =

Count the number of squares in the column from
x = 1.0 to 1.1, then the squares in the column from

0 1
i i
\ \

EEEN

31X
i
\

x = 1.1to 1.2, and so on.

Continue until the number of squares equals 100 — the x-value at this point will be an estimate of e.
2 Answer each question by first giving your answer in exact form and then finding an approximation

correct to four significant figures. .
a Find the area between the curve y = — and the x-axis for:
X

i 1 <x<e i1 <x<5
b Find the area between the curve y = 1 and the x-axis for:
X
ih2<x<8
v 1<x<25
b
Find the area of the region bounded by the Find the area of the region bounded by the
curve y = 1, the x-axis, and the lines x = 1 curve y = l the x-axis, and the lines x = 2
and x = 2. and x = 3.
c I d o4
Find the area of the region bounded by the Find the area of the region bounded by the
curve y = % the x-axis, and the lines x = 1 curve y = l, the x-axis, and the lines x = 1
and x = 1. and x = 2.
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296 Chapter 5 The exponential and logarithmic functions _

4 Answer each question by first giving your answer in exact form and then finding an approximation
correct to four significant figures. In each case you will need to use the standard form

J I dleloge lax + b| + C.
a

ax + b
a Find the area between y = ! and the x-axis for:
2x + 1
I 2<x<5 ih1<x<4
b Find the area between y = ! and the x-axis for:
3x + 2
i 0<x<1 ii 0<x<6
¢ Find the area between y = 5 ! 5 and the x-axis for:
x —_—
i 3<x<4 i 4<x<16
d Find the area between y = 3 7 and the x-axis for:
x —
i 2<x<ed+ 1 i 3<x<12

DEVELOPMENT

5 a Find the area between the graph of y

% + 1 and the x-axis, fromx = 1tox = 2.
b Find the area between the graph of y = 1 + x and the x-axis, from x = Jtox = 2.
X

1 + x2 and the x-axis, fromx = 1tox = 3.
X

¢ Find the area between the graph of y

6 Give your answers to each question below in exact form.

a yi b ya
3
) 2

R /i 3 X
J1 30X

Find the area of the region bounded by Find the area of the region bounded by
y=3-— %, the x-axis and x = 3. y=2 - l, the x-axis, x = l and x = 3.
X
7 a 4 y b ay
3
2 3
1 4 x
Find the area of the region bounded by Find the area of the region between y = 2
. X
y=2-— zandthehney =l -1, and thelinex + 2y — 5 = 0.
X
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5J Applications of integration of 1/x

Sketch the region bounded by y = 1, x = 8 and the curve y = %

Determine the area of this region with the aid of an appropriate integral.

h b

2

Find the area of the region in the first
quadrant bounded by y = 2 — % andy = 2,

and lying between x = 1 and x = 2.

10 a y4 b

11

12

13

14

ISBN 978-1-108-76626-5

Find the area of the region bounded by

y = —l,thex—axis,x = land x = 4.
x

YA b

Find the area of the region bounded by

y = 1_ 1, the x-axis, x = 1andx = 2.
X 2

ya

1
—
-2 ;1 X

Find the area of the region bounded by

the curve y = , the y-axis and the

x+ 2
horizontal line y = 1.

ya \1

(O8]

=V

-2 —

-3

Find the area of the region bounded by

y = % — 3, the x-axis and x = 3.

yA
1

Find the area of the region bounded by

y=1- %,thex—axis,x = land x = 3.

Find the two intersection points of the curve y = 1 with the liney = 4 — 3x.
X

Determine the area between these two curves.

What is the derivative of x2 + 1?2

Find the area under the graph y = e
x2 41

Find the derivative of x> + 2x + 3.

Find the area under the graph y = S 0
x>+ 2x+3
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15

16

17

18

Chapter 5 The exponential and logarithmic functions _

a Sketch the region bounded by the x-axis,y = x,y = iand X =e.
b Hence find the area of this region by using two appropriate integrals.

2

a Find the exact value of [ 1 dx, then approximate it correct to three decimal places.
X
1

b Use the trapezoidal rule with function values at x = 1,3 and 2 to approximate the area found in part a.
In this question, give any approximations correct to four decimal places.

a Find the area between the curve y = 1 and the x-axis, for 1 < x < 3, by evaluating an appropriate
X

integral. Then approximate the result.
b Estimate the area using the trapezoidal rule with two subintervals (that is, three function values).

Use the trapezoidal rule with four subintervals to approximate the area between the curve y = In x and
the x-axis, between x = 1 and x = 5. Answer correct to four decimal places.

CHALLENGE

19

20

21

a Sketchy = log,x,for0 < x < e.
b Evaluate the area between the curve and the y-axis, betweeny = Oandy = 1.
¢ Hence find the area between the curve and the x-axis, between x = 1 and x = e.

Consider the two curves y = 6e " andy = ¢* — 1.
a Letu = e*. Show that the x-coordinate of the point of intersection of these two curves satisfies

u> —u—6=0.

Hence find the coordinates of the point of intersection.

Sketch the curves on the same number plane, and shade the region bounded by them and the y-axis.
d Find the area of the shaded region.

The hyperbola y = i + 1 meets the x-axis at(—1, 0). Find the area contained between the x-axis and

the curve from:

1

a x=—etox = —1, bh x=-1tox = —¢7", C x=—etox = —e L.
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m Calculus with other bases

In applications of exponential functions where calculus is required, the base e can generally be used. For
example, the treatment of exponential growth in Chapter 9 of the Year 11 book was done entirely using base e.

The change-of-base formula, however, allows calculus to be applied to exponential and logarithmic functions
of any base without conversion to base e. In this section, we develop three further standard forms that allows
calculus to be applied straightforwardly to functions such as y = 2*andy = 10"

Throughout this section, the other base a must be positive and not equal to 1.

Logarithmic functions to other bases

Any logarithmic functions can be expressed easily in terms of log, x by using the change-of-base formula.
For example,

1 = .
082 log,2

Thus every other logarithmic function is just a constant multiple of log, x. This allows any other logarithmic
function to be differentiated easily.

Example 39 5K
\e—— )

a Express the function y = logs x in terms of the function log, x.

b Hence use the calculator function labelled to approximate, correct to four decimal places:
i logs30 i logs2 iii logs0.07

¢ Check the results of part b using the function labelled .

SOLUTION
1
a logsx = e
log, 5
. log, 30 .. log, 2 log, 0.07
b i logs30 = —2¢ i logs2 = —2¢ i logs0.07 = —2e”!
log, 5 log, 5 log, 5
= 2.1133 = 0.4307 = —1.6523
¢ Checking these results using the function labelled :
i 52.1133 = 30 ii 50.4307 = 9 i 5—1.6523 = 0.07

9 LOGARITHMIC FUNCTIONS WITH OTHER BASES

Every logarithmic function can be written as a multiple of a logarithmic function base e:

1
log,x = ogex’ that is log,x = L X log, x.

og,a log, a
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300 Chapter 5 The exponential and logarithmic functions _

Differentiating logarithmic functions with other bases
Once the function is expressed as a multiple of a logarithmic function base e, it can be differentiated using

the previous standard forms.

Example 40 5K
\—— )

Use the change-of-base formula to differentiate:

a y=logx b y=log,x
SOLUTION
a Here y = logyx. b Here y = log,x.
Using the change-of-base formula, Using the change-of-base formula,
_ logex _ log,x
A log,2 " A log,a’
Because log,2 is a constant, Because log, a is a constant,
dy 1 1 dy 1 1
£=§Xlogez azgxlogea
_ 1 _ 1
_xloge2' _xlogea'

Part b above gives the formula in the general case:

10 DIFFERENTIATING LOGARITHMIC FUNCTIONS WITH OTHER BASES

» FEither use the change-of-base formula to convert to logarithms base e.

1
xlog,a’

* Or use the standard form di log,x =
b

Example 41 5K

a Differentiate logy x. b Differentiate log; 5 x.
SOLUTION
d 1 d 1
a —log x=——— b —lo X=—
dx 290% T Tog, 10 dh M = e 106
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A characterisation of the logarithmic function

We have already discussed in Section 5F that the tangent to y = log, x at the x-intercept has gradient exactly 1.

The worked example below shows that this property distinguishes the logarithmic function base e from all
other logarithmic functions.

Example 42 5K
\e—— )

a Show that the tangent to y = log, x at the x-intercept has gradient : .
0og.a

b Show that the function y = log, x is the only logarithmic function whose gradient at the x-intercept is

exactly 1.

SOLUTION

a Here y = log, x.
Wheny = 0, log,x = 0

7= I
so the x-intercept is (1, 0).

Differentiating, y’' = L ,
xlog, a
sowhenx = 1, y’' = 1 , asrequired.
log, a
y A
1 >
b The gradient at the x-intercept is 1 if and only if
log,a =1 1 2 o X
a = el -1
= e, y = loge‘x
that is, if and only if the original base a is equal to e.

11 THE GRADIENT AT THE x-INTERCEPT

The function y = log, x is the only logarithmic function whose gradient at the x-intercept is exactly 1.

Exponential functions with other bases

Before calculus can be applied to an exponential function y = a* with base a different from e, it must be
written as an exponential function with base e. The important identity used to do this is

elogea =a

2

which simply expresses the fact that the functions e* and log, x are inverse functions. Now a* can be written as

a® = ('°% % replacing a bye 1°%¢,

xlogea  yging the index law (¢%)* = ¢**.
Thus a* has been expressed in the form e®, where k = log, a is a constant.

=e€
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12 EXPONENTIAL FUNCTIONS WITH OTHER BASES

* Every positive real number can be written as a power of e:

a = eloge a
» Every exponential function can be written as an exponential function base e:
at = e* log, a

Example 43 5K

Express these numbers and functions as powers of e.

a2 b 2* c 5

SOLUTION . “x

a 2 = elog? b 2% = (elog62> c 5% = (elogeS>
= e¥log.2 — ¢ Xlog.5

Differentiating and integrating exponential functions with other bases

Write the function as a power of e. It can then be differentiated and integrated.

First, a® = eloged’
— exlogea‘
. -y d d
Differentiating, ~— a* = — ¢*10%¢
dx dx
d
= e¥logea log, a, because - ek = ke**,
X
= a*log,a, becausee %% = 4%,
Integrating, {axdx = [e“ogf“dx
xlog, a
e’ Uee 1
= s becauseJekx = — ek",
log, a k
a* 1
= , because ¢*'%%% = g*,
log,a

This process can be carried through every time, or the results can be remembered as standard forms.

13 DIFFERENTIATION AND INTEGRATION WITH OTHER BASES

There are two approaches.
* Write all powers with base e before differentiating or integrating.

* Alternatively, use the standard forms:
d » X X a*
—a* = a'log,a and a‘dx = 1 €
dx log, a

Note: The formulae for differentiating and integrating a” both involve the constant log, a. This constant
log, a is 1 when a = e, so the formulae are simplest when the base is e. Again, this indicates that e is the
appropriate base to use for calculus with exponential functions.
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Example 44
Differentiate y = 2*. Hence find the gradient of y = 2" at the y-intercept, correct to three significant
figures.
SOLUTION
Here y = 2~
Using the standard form, y’ = 2*log,2.
Hence whenx = 0, y' = 20 x log,2
= log,2
= 0.693.

Note: This result may be compared with the results of physically measuring this gradient in Question 1 of

Exercise 9A in the Year 11 book.

Example 45

a Show that the line y = x + 1 meets the curve y = 2*at A (0, 1) and B(1, 2).

b Sketch the two curves and shade the region contained between them.
¢ Find the area of this shaded region, correct to four significant figures.

SOLUTION

a Simple substitution of x = 0 and x = 1 into both functions verifies the result.

b The graph is drawn to the right.

Sl

¢ Area = | (upper curve — lower curve) dx
70
1

= | (x+1-2%dx

J0
- 1
X

= |12 + x - 2 }

I log,2|g
=<;+1— 2 >—<0+0— I )

log, 2 log, 2

=11 - square units

: log, 2 d
= 0.05730 square units.

log, x
log, a

1 Use the change-of-base formula log, x =

A

5K

FOUNDATION

and the function labelled on your calculator to

evaluate each expression correct to three significant figures. Then check your answers using the function

labelled [x”].

a log,3 b log,10
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304 Chapter 5 The exponential and logarithmic functions _
2 Use the change-of-base formula to express these with base e, then differentiate them.
a y=logx b y = logjgx ¢ y = 3logsx
3 Use the standard form 4 log,x = to differentiate:
dx xlog,a
a y = logzx b y=logyx ¢ y = Sloggx
4 Express these functions as powers of ¢, then differentiate them.
ay=3 b y=4 c y=2"
5 Use the standard form di a’ = a“log, a to differentiate:
x
a y=10* b y=28" c y=3x5"
6 Convert each integrand to a power of ¢ and then integrate.
a JZxdx b j6xdx c J7xdx d [3xdx
X
7 Use the result Jax dx = 1 + C to find each primitive, then evaluate the definite integral correct to
0g. a
four significant figures. ‘
1 1 1 2
a J 2% dx b j 3 dx c J 5%dx d [ 4 dx
0 0 -1 0
8 a Complete the table of values to the right, giving ; 1 1 | > 4
your answers correct to two decimal places where 4 2
necessary. log, x
b Use this table of values to sketch the three curves log, x
y = logrx, y = log,x and y = log4 x on the same
logg x
set of axes.
DEVELOPMENT
9 a Differentiate y = log, x. Hence find the gradient of the tangent to the curve at x = 1.
Hence find the equation of the tangent there.
Do likewise for:
Iy = logszx, iy = logsx.
10 Give the exact value of each integral, then evaluate it correct to four decimal places.
3 1 2
a J 2% dx b [ 3"+ 1)dx c J (10* — 10x) dx
1 -1 0
11 Use the change-of-base formula to express y = log;ox with base e, and hence find y’.
a Find the gradient of the tangent to this curve at the point (10, 1).
b Thus determine the equation of this tangent in general form.
¢ At what value of x will the tangent have gradient 1?
12 a Find the equations of the tangents to each of y = log, x, y = log,x and y = logy x at the points
where x = 3.
b Show that the three tangents all meet at the same point on the x-axis.
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Show that the curves y = 2*andy = 1 + 2x — x2 intersect at A(0, 1)and B(1, 2).
Sketch the curves and find the area between them.

14 Find the intercepts of the curve y = 8 — 2%, and hence find the area of the region bounded by this curve

and the coordinate axes.

15 a
b

16 a

Sketch the curve y = 3 — 3%, showing the intercepts and asymptote.
Find the area contained between the curve and the axes.

Show that the curves y = x + 1 and y = 4" intersect at the y-intercept and at (— 5, %)
Write the area of the region enclosed between these two curves as an integral.
Evaluate the integral found in part b.

CHALLENGE

17 a

18 a

Show that the tangent to y = logz x at x = e passes through the origin.
Show that the tangent to y = logsx at x = e passes through the origin.
Show that the same is true for y = log, x, for any base a.

Differentiate x log, x — x, and hence find J log, x dx.

10
Use the change-of-base formula and the integral in part a to evaluate J logg x dx.
1

19 As always, the three standard forms in this section have linear extensions. The pronumeral m is used

here instead of the usual a because a is being used for the base.

a Use the standard form iloga(mx + b) = n to differentiate:
dx (mx + b)log,a
iy =logzx iy =log7(2x + 3) lii y = 5logg(4 — 9x)
b Use the standard form di a"™* = ma™*b log, a to differentiate:
x
i y=10" iy =g¥3 i y=23x5""7
b amx+b
¢ Use the standard form Jamx thax = + Cto find:
mlog,a
i f35xfzx i J62x+7dx i Js x 74 dx
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306 Chapter 5 The exponential and logarithmic functions

Review activity

e Create your own summary of this chapter on paper or in a digital document.

Chapter 5 Multiple-choice quiz

e This automatically-marked quiz is accessed in the Interactive Textbook. A printable PDF worksheet
/ version is also available there.

Chapter review exercise

1 a Sketchthe graphs of y = e*and y = e~ on the same number plane. Add the line that reflects each graph
onto the other graph. Then draw the tangents at the y-intercepts, and mark the angle between them.
b Sketch the graphs of y = e*and y = log, x on the same number plane. Add the line that reflects each
graph onto the other graph. Then draw the tangents at the intercepts with the axes.

2 Use your calculator, and in some cases the change-of base formula, to approximate each expression
correct to four significant figures.
a e b e cC > d log,2
e logyo 3 f 1og,0.03 g log; 05586 h logg33

3 Use logarithms to solve these equations correct to four significant figures. You will need to apply the
change-of-base formula before using your calculator.

a 3*=14 b 2* =51 ¢ 4" = 1345 d 5 =132
4 Simplify: o2
a e¥ x X b ™ = ¢* c — d (e¥)?
eéx

5 Solve each equation using a suitable substitution to reduce it to a quadratic.
a 9% -7x3-18=0 b e* — 1le* + 28 = 0

6 Sketch the graph of each function on a separate number plane, and state its range.
a y=¢e" b y=e¢"* c y=e"+1 d y=e¢e7*-1
7 a i Explainhow y = ¢*3 can be obtained by translating y = e*, and sketch it.
i Explain how y = ¢*~3 can be obtained by dilating y = e*.
b i Explain how y = log,3x can be obtained by dilating y = log, x, and sketch it.

il Explain how y = log,3x can be obtained by translating y = log, x.

8 Differentiate:
3x

a y=e¢e* b y=e C y=e¥t3 d y=¢"*
1
e y= e—3x f y = 3er+5 g y= 4e3* h y = %eéx—S
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9 Write each function as a single power of e, and then differentiate it.

a y=e*xe? by=e—7x Cy=e—x d y= (e %>
e3x e4x
10 Differentiate each function using the chain, product and quotient rules as appropriate.
ay= e* b y= ¥’ 3% C y=xe d y=(*+1)>
ey=eix iy =ax%" g y=(*-e) hy=7e2x
X 2x + 1
11 Find the first and second derivatives of:
a y= ¥l b y= o1

12 Find the equation of the tangent to the curve y = e* at the point where x = 2, and find the x-intercept
and y-intercept of this tangent.

13 Consider the curve y = ¢ %,

a Find the gradient of the normal to the curve at the point where x = 0.
b Find y” and hence determine the concavity of the curve at the point where x = 0.

14 Consider the curve y = e* — x.
a Find y’ and y”.
b Show that there is a stationary point at (0, 1), and determine its nature.
¢ Explain why the curve is concave up for all values of x.
d  Sketch the curve and write down its range.

15 Find the stationary point on the curve y = xe ~2* and determine its nature.

16 Find:
a |edx b JlOez_sxdx c Jeéxdx d J3e5x_4dx
17 Find the exact value of:
2 1 0
a e*dx b J e dx c J e Ydx
J 0 -1
) 5 2
d e3+2 gy e J e3 " dx f J 2e2%dx
J-2 0 0
18 Find the primitive of:
a i b 3 x e* c o d (e3%)2
S5x e3x
3x 3x
e | 0 et + e h 1+ e™)?
S5x 2x
e e
19 Find the exact value of:
1 2 1
a J (1 + e™)dx b J (€2 + x)dx c szdx
0 0 0e
1
3 1 2x 1
d J e¥(1 - e~ dx e J et L f J (e* + 1)%dx
0 0 e 0
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308 Chapter 5 The exponential and logarithmic functions

20If f'(x) = ¢* — e™ — land f(0) = 3, find f(x) and then find f(1).

21 a Differentiate ex3.
1

b Hence ﬁndJ xzex3dx.
0

22 Find the area of each region correct to three significant figures.

a A b
y y= o YA
1
T
15 y={1-¢*
1 X
23 Find the exact area of the shaded region.
a VA b VA
e—1
y= er_l
-1 P
e y T e—1
o 3
=]l
/ y=|(e—Dx
24 Sketch graphs of these functions, clearly indicating the vertical asymptote in each case.
a y=logyx b y=—-logx c y=logy(x — 1) d y=logy(x + 3)
25 Sketch graphs of these functions, clearly indicating the vertical asymptote in each case.
a y=log,x b y =log.,(—x) ¢ y=log,(x —2) d y=1log.x + 1
26 Use the log laws to simplify:
a elog,e b log,e’ c lnl d 2¢ln Ve
e
27 Differentiate these functions.
a log,x b log,2x ¢ log.(x + 4)
d log,(2x — 5) e 2log,(5x — 1) f x+ log.x
g In(x%2 = 5x + 2) h In(1 + 3x°) i 4x? — 8x3 + In(x? - 2)
28 Use the log laws to simplify each function and then find its derivative.
a log,x’ b loge\/;c ¢ Inx(x + 2) d In—= 1
x —
29 Differentiate these functions using the product or quotient rule.
X X In x
a xlogx b e*logx c — d —
In x x2
30 Find the equation of the tangent to the curve y = 3 log,x + 4 at the point (1, 4).
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31 Consider the function y = x — log, x.

a Show thaty’ = ’%1

b Hence show that the graph of y = x — log, x has a minimum turning point at (1, 1).

32 Find these indefinite integrals.

a |Llax b édx ¢ | Lax d LN
Jx Sx x+7
e L & i L g 2 h C I
J2x -1 J2 - 3x J2x 4+ 9 J1 — 4x
33 Evaluate these definite integrals.
" * 1 <1 [ 1
a dx b dx c —dx d —dx
Jox + 2 Jidx = 3 J1 X Je2 X
u' o G ,
34 Use the standard form gdx = log|lu| + Cor 0 dx = log,|f(x)| + C to find:
X
2 _ 3 _
a J 2x dx b J3x 2 dx c J Y d Jx ! dx
x? + 4 Do 5 = 3 57— A

35 Find the area of the region bounded by the curve y = % , the x-axis and the lines x = 2 and x = 4.

36 a By solving the equations simultaneously, show that the curve y = % and theliney = 6 — x
intersect at the points (1, 5) and (5, 1).
b By sketching both graphs on the same number plane, find the area of the region enclosed between them.

37 Find the derivatives of:
a e* b 2* c 3* d 5*
38 Find these indefinite integrals.

a Jexdx b J2xdx c J3xdx d JSxdx
39 a Differentiate x log, x, and hence find J log, x dx.

b Differentiate x e*, and hence find Jxex dx.

(4 €

@
L = J g, b = J xetdx = 1.
1

¢ Hence prove that J
X 1

40 a Find the gradient of y = 2* at A(3, 8).
b Find the gradient of y = log, x at B(8, 3).
¢ Explain geometrically why the two gradients are reciprocals of each other.

3 0

41a FindJ 2%dx andj 2%dx.
0 -3

b Explain geometrically why the first is 8 times the second.
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This chapter extends calculus to the trigonometric functions. The sine and cosine functions
are extremely important because their graphs are waves. They are therefore essential in the

modelling of all the many wave-like phenomena such as sound waves, light and radio waves,
vibrating strings, tides, and economic cycles. The alternating current that we use in our homes
fluctuates in a sine wave. Most of the attention in this chapter is given to these two functions.

y = sinx

N

775 21 31

(o8

In the second half of Chapter 9 of the Year 11 book, we introduced radian measure,
promising that it was the correct way to measure angles when doing calculus. We drew the
six trigonometric graphs in radians and discussed their symmetries in some detail, and also
developed area formula for calculating arc length and the areas of sectors and segments.
Then in the last section of Chapter 2, we applied translations, reflections and dilations to the
trigonometric graphs and developed the four ideas of amplitude, period, phase and mean
value. All this previous work is required in the present chapter.
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v' Digital Resources are available for this chapter in the Interactive Textbook and Online
r, . — Teaching Suite. See the overview at the front of the textbook for details.
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The behaviour of sin x near the origin

6A The behaviour of sin x near the origin 311

This section proves an important limit that is the crucial step in finding the derivative of sin x in the next

section. This limit establishes that the curve y = sin x has gradient 1 when it passes through the origin.

Geometrically, this means that the line y = x is the tangent to y = sin x at the origin.

Note: The limit established in this section provides the geometric basis for differentiating the trigonometric

functions, but the material is not easy, and the section could well be left to a second reading of the chapter at

a later time.

A fundamental inequality

First, an appeal to geometry is needed to establish an inequality concerning x, sin x and tan x.

1 AN INEQUALITY FOR sin x AND tan x NEAR THE ORIGIN

e Forall acute angles x, sinx < x < tan x.
e For—-7<x<0, sinx > x > tanx.

Proof

A Let x be an acute angle.
Construct a circle of centre O and any radius r,
and a sector AOB subtending the angle x at the centre O.
Let the tangent at A meet the radius OB at M

(the radius OB will need to be produced) and join the chord AB.

In AOAM,

AM
—— = tanx,
’

SO AM = rtanx.
It is clear from the diagram that

area AOAB < area sector OAB < area AOAM,
and using area formulae for triangles and sectors,

%rz sinx < %r2x < %rztanx

+ 5r sinx < x < tan x.

B Because x, sin x and tan x are all odd functions,

sinx > x > tanx, for—7 <x < 0.

The main theorem

This inequality now allows two fundamental limits to be proven:

2 TWO FUNDAMENTAL LIMITS

. sinx . tanx
Iim — =1 and lim = 1
x—=0 x x—0 x
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312 Chapter 6 The trigonometric functions _

Proof: When x is acute, sinx < x < tanx.
o . X 1
Dividing through by sin x, 1 < —< .
sinx  cosx
Asx — 0%, cosx - 1, so .x — lasx —» Ot
sin x
But — 1s even, SO 'x — lasx —» 0.
sin x sin x
Combining these two limits, .x — lasx — 0.
sin x
Finally, tanx _ sinx % 1
X X COS X
-1 X 1l,asx - 0.
y =tanx
. . 4 -
The diagram to the right shows what has been proven about the py=x
graphs of y = x, y = sinx and y = tan x near the origin. Lt \y)— Ginx
e The line y = x is a common tangent at the origin to both R
y = sinxand y = tanx. -z grx
® On both sides of the origin, y = sin x curls away from the y=sinx | -1
tangent towards the x-axis. y= o~
® On both sides of the origin, y = tan x curls away from the y=tanx

tangent in the opposite direction.

3 THE BEHAVIOUR OF sin x AND tan x NEAR THE ORIGIN

e The line y = xis a tangent to both y = sin x and y = tan x at the origin.
* When x = 0, the derivatives of both sin x and tan x are exactly 1.

Approximations to the trigonometric functions for small angles

For ‘small’ angles, positive or negative, the limits above yield good approximations for the three
trigonometric functions (the angle must, of course, be expressed in radians).

4 SMALL-ANGLE APPROXIMATIONS

* Suppose that x is a ‘small’ angle (written in radians). Then
sinx = x and cosx =1 and tan x = x.

In order to use these approximations, one needs to get some idea about how good the approximations are.
Two questions in Exercise 6A below ask for tables of values for sin x, cos x and tan x for progressively
smaller angles.
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6A The behaviour of sin x near the origin

Example 1 6A
Use the small-angle approximations in Box 4 to give approximate values of:

a sin 1° b cos1° ¢ tan 1°

SOLUTION

The ‘small angle’ of 1° is §; radians. Hence, using the approximations above:

a sinl° = % b cosl® =1 ¢ tan1° =

Example 2 6A

Approximately how high is a tower that subtends an angle of 11° when it is 20 km away?

SOLUTION

Convert 20 km to 20000 metres.
Then from the diagram, using simple trigonometry,

height o
cight _ 1
20000
height = 20000 X tan 11°.
But the ‘small’ angle 1}° expressed in radians is 35, 20 km
S0 tan 13° = .
Hence, approximately, height = 20000 X &
5007
= metres
3
= 524 metres.
Example 3 6A

The sun subtends an angle of 0°31" at the Earth, which is 150000000 km away. What is the sun’s
approximate diameter?

Note: This problem can be done similarly to the previous problem, but like many small-angle problems,
it can also be done by approximating the diameter to an arc of the circle.

313

SOLUTION
First,  0°31' = -k
60
31 b3 .
= =— X —— radians.
60 180
Because the diameter AB is approximately
equal to the arc length AB, A
diameter = r6 0°31'
= 150000000 X 2L x -
60 180
= 1353000 km. 150000000 km B
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FOUNDATION

1 a Copy and complete the following table of values, giving entries correct to six decimal places.
(Your calculator must be in radian mode.)

angle size inradians 1 0.5 0.2 0.1 0.08 0.05 0.02 0.01 0.005 0.002
sin x
sin x
X
tan x

tan x
X

COS X

b What are the limits of S2% and ©0% approach as x — 07?
X X

4
N

[Technology] The previous question is perfect for a spreadsheet approach. The spreadsheet columns can
be identical to the rows above. Various graphs can then be drawn using the data from the spreadsheet.

E;

3 a Express 2° in radians.
b Explain why sin 2° =
p y 9
¢ Taking 7 as 3.142, find sin 2°, correct to four decimal places, without using a calculator.

DEVELOPMENT

4 a Copy and complete the following table of values, giving entries correct to four significant figures. For
each column, hold x in the calculator’s memory until the column is complete.
angle size in degrees 60° 30° 10° 5° 2° 1° 20" 5 1" 30" 10"
angle size x in radians
sin x
sin x

X

tan x
tan x
X

COS X

b Write x, sin x and tan x in ascending order, for acute angles x.
Although sinx — O and tanx — 0asx — 0, what are the limits, as x — 0, of:

. sinx .. tanx
i R i —=?
X X

d Experiment with your calculator, or a spreadsheet, to find how small x must be in order for

S X > 0.999 to be true.
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6A The behaviour of sin x near the origin

[Technology] A properly prepared spreadsheet makes it easy to ask a sequence of questions like part d of
the previous question. One can ask how small x must be for each of the following three functions to be
closer to 1 than 0.1, 0.001, 0.0001, 0.00001, . ..

sin x tan x
—_—= and
X X

and COS X.

A car travels 1 km up a road that is inclined at 5° to the horizontal. Through what vertical distance
has the car climbed? (Use the fact that sin x = x for small angles, and give your answer correct to the
nearest metre.)

A tower is 30 metres high. What angle, correct to the nearest minute, does it subtend at a point 4 km
away? (Use the fact that when x is small, tan x = x.)

CHALLENGE

10

11

12

13

[Technology] Draw on one screen the graphs y = sinx, y = tanx and y = x, noting how the two
trigonometric graphs curl away from y = x in opposite directions. Zoom in on the origin until the three
graphs are indistinguishable.

[Technology] Draw the graph of y = SIY Yt is undefined at the y-intercept, but the curve around this
X

point is flat, and clearly has limit 1 as x — 0. Other features of the graph can be explained, and the

. . . tan x
exercise can be repeated with the function y = .
X

The moon subtends an angle of 31" at an observation point on Earth, 400000 km away. Use the fact
that the diameter of the moon is approximately equal to an arc of a circle whose centre is the point of
observation to show that the diameter of the moon is approximately 3600 km. (Hint: Use a diagram like
that in Example 3 in the notes above.)

A regular polygon of 300 sides is inscribed in a circle of radius 60 cm. Show that each side is
approximately 1.26 cm.

[A better approximation for cos x when x is small] The chord AB of a circle of radius r subtends an
angle x at the centre O.
a Find AB? by the cosine rule, and find the length of the arc AB.

xZ

b By equating arc and chord, show that for small angles, cos x = 1 — 5

Explain whether the approximation is bigger or smaller than cos x.
¢ Check the accuracy of the approximation for angles of 1°, 10°, 20° and 30°.

[Technology] Sketch on one screen the graphs of y = cosxandy = 1 — %xz as discussed in the
previous question. Which one is larger, and why? A spreadsheet may help you to identify the size of the
error for different values of x.

315
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316 Chapter 6 The trigonometric functions _

m Differentiating the trigonometric functions

Using the limit from Section 6A, we can now establish the derivatives of the three trigonometric functions
sin x, cos x and tan x. Because the proofs of these standard forms are difficult, they have been placed in an
Appendix at the end of the chapter. Using them to differentiate further trigonometric functions, however, is
straightforward, and is the subject of this section.

Standard forms

Here are the formulae, proven in the Appendix, for the derivatives of the first three trigonometric functions.
5 STANDARD DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

d .
e —sinx = cosx

dx
d .

e —CcoSx = —sinx
dx
d

e “tanx = sec’x
dx

The exercises ask for derivatives of the secant, cosecant and cotangent functions.

A graphical demonstration that the derivative of sin x is cos x

The upper graph in the sketch below is y = sin x. The lower graph is a rough sketch of the derivative
of y = sin x. This second graph is straightforward to construct simply by paying attention to where the
gradients of tangents to y = sin x are zero, maximum and minimum. The lower graph is periodic, with
period 27z, and has a shape unmistakably like a cosine graph.

Moreover, it was proven in the previous section that the gradient of y = sin x at the origin is exactly 1. This
means that the lower graph has a maximum of 1 when x = 0. By symmetry, all its maxima are 1 and all

its minima are — 1. Thus the lower graph not only has the distinctive shape of the cosine curve, but has the
correct amplitude as well.

1 y
21 >
3n _ T 3n 5n Tn X
-3 ol - A z b A 2n ¢ 3n 5 47
Yy
| T T
2
_ _3n _ T 3 sm 7 X
21 2" 10 l ’2‘ B 775 27 > Ri 775 4

This doesn’t prove conclusively that the derivative of sin x is cos x, but it is very convincing.
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6B Differentiating the trigonometric functions 317

Differentiating using the three standard forms

These worked examples use the standard forms to differentiate functions involving sin x, cos x and tan x.

Example 4

Differentiate these functions.
a y =sinx + cosx

Hence find the gradient of each curve when x =

SOLUTION
a The function is

Differentiating, y" = cosx — sin x.

When x = 7,

Example 5
\——)

=S
. [
N

= sinx + coSx.

[ T _ & E
Yy = cosj — sin}

Sil=

y =Xx — tanx

The functionis y = x — tanx.

Differentiating, y* = 1 — sec” x.

—z r_ 2
When x =%, y =1 — sec”]

-1 (%)

6B

6B

If f(x) = sinx, find f'(0). Hence find the equation of the tangent to y = sin x at the origin, then sketch

the curve and the tangent.

SOLUTION

Here f(x) = sinx,
and substituting x = 0, f(0) = 0,
so the curve passes through the origin.

Differentiating,
and substituting x = 0, f"(0)

so the tangent to y = sin x at the origin has gradient 1.
Hence its equationis y — 0 = 1(x — 0)

y

f'(x) = cosux,

cos 0
I,

X.

Note: This result was already clear from the limit lirr%) SIY proven in the previous section. The
X— X

simplicity of the result confirms that radian measure is the correct measure to use for angles when doing

calculus.
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318 Chapter 6 The trigonometric functions _

Using the chain rule to generate more standard forms

A simple pattern emerges when the chain rule is used to differentiate functions such as cos(3x + 4), where
the angle 3x + 4 is a linear function.

Example 6 6B

Use the chain rule to differentiate:

a y=cos(3x + 4) b y=tan(5x — 1) ¢ y = sin(ax + b)
SOLUTION
a Here y = cos(3x + 4). Let u=3x + 4.
Applying the chain rule, Then y = cosu.
dy _ dy  du
dx  du % dx Ifomes g 3
= —sin(3x + 4) X 3 dy
o au and — = —sinu.
= —3sin(3x + 4). du n u
b Here y = tan(5x — 1). Let u =5 — 1.
Applying the chain rule, Then y = tanu.
d—yzd—yxd—u Hence — = 5
dx du dx dx
= sec?(5x — d
see (25x D x5 and Y sec? u.
= Ssec”(5x — 1). du
¢ Here y = sin(ax + b). Let u = ax + b.
Applying the chain rule, Then y = sinu.
d—yzd—yxd—u Henceﬁza
dx du dx dx
= cos(ax + b) X a dy
and — = cosu.
= acos(ax + b). du

The last result in the previous worked example can be extended to the other trigonometric functions, giving

the following standard forms:
6 STANDARD DERIVATIVES OF FUNCTIONS OF ax + b

d .

e —sin(ax + b) = acos(ax + b)
dx
d .

e —cos(ax + b) = —asin(ax + b)
dx

. itan(ax + b) = asecz(ax + b)
dx
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6B Differentiating the trigonometric functions 319

Example 7 6B

Use the extended standard forms given in Box 6 above to differentiate:

a y=cos7x b y=4sin(3x—§> C y = tanix
SOLUTION
a The functionis y = cos 7x, soa = 7and b = 0,
d
and . —7 sin 7x.
dx
b The functionis y = 4sin(3x — %), soa =3andb = -3,
dy "
and ol 12 cos(3x = §>.
¢ The functionis y = tan %x, soa = %andb =0,
d
and - 3sec? 3x
dx

Using the chain rule with trigonometric functions

The chain rule can also be applied in the usual way to differentiate compound functions.

Example 8 6B
\—— )

Use the chain rule to differentiate:

a y=tan’x b y= sin(x2 - %)
SOLUTION
a Here y = tan’ x. Let u = tanx.
Applying the chain rule, Then y = u’.
d—y = d—y X ¢n Henced—u = sec’x
dx du dx dx
= 2 d
2 tan x sec” x. and dy _ o
du
b Here y = sin(x2 — %). Let u=x>— s
Applying the chain rule, Then y = sinu.
dl:d—yxd—u Henced—u=2x
dx du dx dx
_ 2 _ = d
e cos(x 4>' and 2 = cosu
du
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Using the product rule with trigonometric functions

A function such as y = e* cos x is the product of the two functions u = e* and v = cos x. It can therefore

be differentiated using the product rule.

Example 9 6B
\——)
Use the product rule to differentiate:
a y=e’cosx b y = 5cos2x cos tx
SOLUTION
a Here y = e*cosux. Let u=¢e"
Applying the product rule, and v = cosx.
d
—y=vd—u+u@ Thend—uzex
dx dx dx dx
= e*cosx — e*sinx dv :
N . and — = —sinux.
= e"(cos x — sinx). x
b Here y = 5cos2xcosix. Let u = 5cos2x
Applying the product rule, and = COS 3 X.
ro_ / Then ' = —10 sin 2x
y =vu + uv , L
= —10sin 2x cos 1x — 3 cos 2x sin 1x. andl ' — =56 5
Using the quotient rule with trigonometric functions
A function such as y = Sme is the quotient of the two functions # = sin x and v = x. Thus it can be
differentiated using the quotient rule.
Example 10 6B
=),

Use the quotient rule to differentiate:

a — sin x b y = o8 2x
X cos Sx
SOLUTION

a Here y = i X Let u
Applying the ql)fotient rule, and v

du dv Then du

dy _ e dx dx

2 v? and dv

_ Xcosx — sinx dx

2
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6B Differentiating the trigonometric functions

b Here y = coth, Let u = cos2x

cos 5x
Applying the quotient rule,

and v = cos Sx.

) , Then u’ = —2 sin 2x
L and Vv = —5 sin 5x.
2
_ —25sin 2x cos 5x + 5 cos 2x sin 5x
cos? 5x
Successive differentiation of sine and cosine
Differentiating y = sin x repeatedly,
y dy dy dy
-~ = CoS X, —— = —sinx, —— = —COS X, —— = sinx.
dx dx? dx3 dx?*

Thus differentiation is an order 4 operation on the sine function, meaning that when differentiation is

applied four times, the original function returns. Sketched below are the graphs of y = sin x and its first four

321

derivatives.
yl\
] L
-3n
27 -1 b 21 3m ¢
-1
y' A
1
-3n 21 —T B 21 w X
! _1 [
yH ‘\
1 L
3m,
=3n -2n —T T 1 X
-1
y NV‘\
& 1+ —a
-3n \—m —TT \ b w nt X
-1
YA
1 L
-3n >
F—1
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322 Chapter 6 The trigonometric functions _

Each application of differentiation shifts the wave left 5, which is a quarter of the period 2z. Thus
differentiation advances the phase by 7, meaning that

% sinx = cosx = sin(x + %) and C%Ccosx = —sinx = COS()C + %)
Double differentiation shifts the wave left z, which is a half the period 27, and thus advances the phase
by z. Double differentiation also exchanges y = sin x with its opposite function y = —sin x, with each
graph being the reflection of the other in the x-axis. It has similar effects on the cosine function. Thus both
y = sinx and y = cos x satisfy the equation y” = —y.

Four differentiations shift the wave left 2z, which is one full period, where it coincides with itself again. Thus
the differentiation transformation acting on the sine and cosine functions has order 4, and both y = sin x and

n

y = cos x satisfy the equation y”" = y.

7 DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS AS PHASE SHIFT

 Differentiation of y = sinx and y = cos x shifts each curve left 7, advancing the phase 7,

d . . d .
—sinx = cosx = sin{x + Z) and —cosx = —sinx = cos|(x + Z
dx ( 2> dx ( 2)

¢ The second derivatives of sin x and cos x reflect each curve in the x-axis,

2 a2
—,sinx = —sinx and ——5 C0SX = —COS X
dx dx
¢ Differentiation of sin x and cos x has order 4,
4 a4
—— Sinx = sinx and ——, COSX = Cosx
dx dx
The properties of the exponential function y = e* are quite similar. The first derivative of y = e*isy’ = e*
and the second derivative of y = e ¥ is y” = e~". This means there are now four functions whose fourth

derivatives are equal to themselves:
y = sinx, Yy = COS X, y=e, y=e"

This is one clue amongst many others in the course that the trigonometric functions and the exponential
functions are closely related. See also Question 14(d) in Exercise 6B.

Some analogies between x and e

In the previous chapter, and in Chapter 9 of the Year 11 book, we discussed how
choosing the special number e as the base of the exponential function makes the
derivative of y = e*is exactly y’ = e”.

In particular, the tangent to y = e” at the y-intercept has gradient exactly 1.

The choice of radian measure, based on the special number z, was motivated in
exactly the same way. As has just been explained, the derivative of y = sin x
using radian measure is exactly y’ = cos x. e

In particular, the tangent to y = sin x at the origin has gradient exactly 1. 1t

Both numbers 7 = 3.141592 ...and e = 2.718281 ... are irrational.
The number 7z is associated with the area of a circle and e is associated with areas

under the rectangular hyperbola. These things are further hints of connections

between trigonometric and exponential functions.
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6B Differentiating the trigonometric functions 323

Sketches of the six trigonometric functions in radians

These graphs are repeated from Year 11, Section 9J and were investigated in the exercise. Their key properties:

® sinx and cos x each have amplitude 1. The others do not have an amplitude.

® sinx and cos x (and their reciprocals sec x and cosec x each have period 2z, tan x (and its reciprocal cot x)
have period 7.

y = sinx

y

1
. -3
-3 _5711 “on 3211: - 1 z T 3775 21 5775 3N
y = COS X

y

1

T

e B N I IR N

y = tanx
! /
1+~
_T |
4 : /"
. 3 T Lo _3m - _m T T 3n Sn X
/3n 5 2 -7 T 3 T 5 T 5 21 5 3
fot—1
y = cosecx
1
_T
2
St — 3n — T 3n Sn X
—3n —F 2n -3 i z b I 2n I 3m
y = secx
1
- _5m —2n _3x — _I s 3n 2 Sn X
3n 7 n -3 T I I T 7 T 7 3n
/_\ /\ c—1 /\ /\
y = cotx
y
1
_n |
4 1
_ 3 _on _o _3n _ N T I 3n Sm X
3n 2T 5 T 2\ 14 7 T 5 2 5 3n
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324 Chapter 6 The trigonometric functions

Exercise 6B FOUNDATION
1 Use the standard forms to differentiate with respect to x:

a y =sinx b y=cosx C y=tanx

d y=2sinx e y = sin2x f y=23cosx

g y = cos3x h y = tan4x i y=4tanx

] y=2sin3x k y = 2tan2x Iy =4cos2x

y = —sin 2x n y = —cos2x 0 y = —tan2x

p y = tanix 0 y = cosix Iy =sin}

s y=S5tanix t y = 6cos} u y=12sin%
2 Differentiate with respect to x:

a sin2ax b tanZx ¢ 3sinx + cos Sx

d 4sinzx + 3 cos zx e sin(2x — 1) f tan(1l + 3x)

g 2cos(l — x) h cos(5x + 4) i 7sin(2 — 3x)

j 10tan(10 — x) k 6 sin(”g—‘) I 15 cos(%)

3 Find the first, second, third and fourth derivatives of:
a y = sin2x b y = cos 10x

C y = sinjx

In parts a and d, write down the amplitudes of the four resulting functions.

4 If f(x) = cos 2x, find f'(x) and then find:

a [0 b ()
5 If f(x) = sin(lx + %), find f(x) and then find:
a f(0) b f'(2n)

d y = cosix

ISBN 978-1-108-76626-5

© Pender et al. 2019
Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press



6B Differentiating the trigonometric functions 325

DEVELOPMENT
. dy
6 Find e using the product rule.
X
a y = xsinx b y = 2xtan2x C y = x2cos2x d y = x3sin3x
. dy .
7 Find I using the quotient rule.
X
: 2
sin x COS X X X
a y=—=- b y= c y= d y=——"
Y X Y X Y COS X Y 1 + sinx
d
8 Find a4 using the chain rule. Remember that cos? x means (cos x)2.
X
a y= sin(x?) b y=sin(l — x2)
c y=cos(x> + 1) d y=sinl
X
y = cos’x fy=sin’x
g y= tan? x h y= tan\/;c
9 yA
s
__1 —
i
6
1 T 2 3w 4 3]s 2 || X
2 2
1
]
[

a Photocopy the sketch above of f(x) = sin x. Carefully draw tangents at the points where
x=20,051,15,...,3,andalsoatx = 7, x, 32—”, 27.

b Measure the gradient of each tangent correct to two decimal places, and copy and complete the
following table.

x 0051 15 % 2253 1z 354 453 5556 2z
J'(x)

¢ Use these values to plot the graph of y = f'(x).
d What is the equation of this graph?
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[Technology] Most graphing programs can graph the derivative of a function. Start with y = sin x, as in
the previous question, then graph y’, y”, y” and y””
the theory introducing this exercise.

, and compare your results with the graphs printed in

11 Differentiate:
a f()C) — etanx b f(X) — esin 2x
¢ f(x) = sin(e?) d f(x) = log,(cos x)
e f(x) = log,(sinx) f f(x) = log.(cos 4x)
12 Differentiate these functions.
a y = sinxcosx b y = sin® 7x
C y = cos’3x d y= (1 — cos3x)’
e y = sin 2xsin 4x f y = tan®(5x — 4)
13 Find f’(x), given that:
1 sin x
a = b - >
Fe0 1 + sinx F 1 + cosx
¢ flx) = 1 — sinx d fx) = cosx.
CoS X COSXx + sinx
14 a Sketchy = cosx, for -3z < x < 3x.
Find y’, y”, y” and y”, and sketch them underneath the first graph.
What geometric relationship between the two graphs is indicated by the fact that:
i yl/ — _y? ii y//l/ - y?
d Find which of the functiony = e,y = ¢,y = sinxand y = x" satisfy:
i yl = y ii y// - y iii y//l — y iv y/l// = y
w 15 [Technology] The previous question is well suited to a graphing program, and the results should be
Yo compared with those of successive differentiation of sin x.
16 a Ify = e"sinx, find y’ and y”, and show that y” — 2y’ + 2y = 0.
b Ify = e *cosux, find y’ and y”, and show that y” + 2y’ + 2y = 0.
17 Consider the function y = %tan3x — tanx + x.
d
a Show thatd—y = tan’xsec’x — sec’x + 1.
X
. . 2 2 dy 4
b Hence use the identity sec“x = 1 + tan” x to show thatd— = tan" x.
X
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6B Differentiating the trigonometric functions 327

CHALLENGE

18 a Copy and complete: logb(g

b If f(x) = loge(1 + smx) show that f"(x) = sec x.

19 a The third standard form is itan x = sec?x. Look at the graph of y = tan x at the end of the text of
X

this section, and hence draw y = ditan x to confirm the standard form. In your sketches, use the fact
x
that y = tan x has gradient 1 at the origin.
b i Use the quotient rule to prove that di cotx = —cosec x.
x

ii Repeat the steps of part a to confirm this derivative of cot x.
20 a By writing sec x as (cos x)_l, show that di(sec X) = sec xtan x.
X
b Similarly, show that di(cosec X) = —cosec x cot X.
X

21 Show that di( sindx — 1 sm7 x) = sin® x cos’ x.
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m Applications of differentiation

Differentiation of the trigonometric functions can be applied in the usual way to the analysis of a number
of functions that are very significant in the practical application of calculus. It can also be used to solve
optimisation problems (meaning problems about maximise and minimise).

Tangents and normals

As always, the derivative is used to find the gradients of the relevant tangents, then point—gradient form is
used to find their equations.

Example 11 6C

Find the equation of the tangent to y = 2 sin x at the point P where x = £.

SOLUTION
When x = 2, y = 2sing
=1 (because sin Z = %),

so the point P has coordinates (g, 1).

: .y
Differentiating, — = 2 cos x.
dx

dy
Whenx =%, — = 2cosg

dx
V&) (because cos % = %\6 ),

so the tangent at P<g, 1) has gradient V3.

Hence its equationis y — y; = m(x — x1) (point—gradient form)
Va(x - ¢)
V3 4+ 1 - 2/3,

y—1

y

Example 12 6C

a Find the equations of the tangents and normals to the curve y = cos x at A(— . O) and B(g, 0).

b Show that the four lines form a square, sketch, and find the other two vertices.
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SOLUTION
a The function is y = COS X,
and the derivative is y' = —sinx.
Hence gradient of tangent atA(— £ 0) = —sin(— g) = 1,
and gradient of narmal at A(— 2 0) = -1
Similarly, gradient of tangent at B(%, 0) = —sin 7 = -1,
and gradient of normal at B(%, 0) =1.
Hence the tangent at A is y—-—0=1x (x + %)
y=x+ 73,
and the normal at A is y—-—0=-1x <x+%)
y=-x-3
Similarly, the tangent at Bis y=-0=-1x(x-12
y=-x+1
and the normal at B is y—-0=1x (x— %)
YA r
y=x-73. T2
b Hence the two tangents meet on the y-axis at T(O, %), and the two normals = B x
meet on the y-axis at NV (O, = %) Because adjacent sides are perpendicular, 2
ANBT is a rectangle, and because the diagonals are perpendicular, it is also N
a rhombus, so the quadrilateral ANBT is a square. 2 |N
Example 13 6C
a Find the equation of the tangent to y = tan 2x at the point on the curve where x = g.
b Find the x-intercept and y-intercept of this tangent.
¢ Sketch the situation.
d Find the area of the triangle formed by this tangent and the coordinate axes.
SOLUTION
a The function is y = tan 2x,
and differentiating, y" = 2 sec? 2x.
When x = g, y = tanj
1
and y = 2sec’?
=2 x (V2)?
= 4,

so the tangentis y — 1 = 4(x - %)
y=4x -7+ L

ISBN 978-1-108-76626-5 © Pender et al. 2019
Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press



330 Chapter 6 The trigonometric functions _

b Whenx = 0, y=1-1
_2-n= vA
2 7 1
andwheny =0, 0 = 4x — § + 1
dx=75-1
-2
4x=ﬂ: >
2 B

r=222

¢ The sketch is drawn opposite.

X base X height

%
1 T — 2 T -2
— X X

2 2 8

(m — 2)

= ————— square units.
32

d Area of triangle =

Curve sketching

Curve-sketching problems involving trigonometric functions can be long, with difficult details. Nevertheless,
the usual steps of the ‘curve-sketching menu’ still apply and the working of each step is done exactly the
same as usual.

Sketching these curves using either a computer package or a graphics calculator would greatly aid
understanding of the relationships between the equations of the curves and their graphs.

Note: With trigonometric functions, it is often easier to determine the nature of stationary points from an
examination of the second derivative than from a table of values of the first derivative.

Example 14 6C

Consider the curve y = sinx + cos x in the interval 0 < x < 27.
a Find the values of the function at the endpoints of the domain.
b Find the x-intercepts of the graph.

¢ Find any stationary points and determine their nature.

d Find any points of inflection and sketch the curve.

SOLUTION
a Whenx =0,y = sin0 + cos0 = 1,
and when x = 27,y = sin27x + cos2z = 1.
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b To find the x-intercepts, put y = 0. 3 N
Thensinx + cosx = 0 !
sinx = —cosx 2
tanx = —1 (dividing through by cos x). : T =
Hence x is in quadrant 2 or 4, with related angle 7,
SO x = 34—” or 74—”. n
4
¢ Differentiating, y' = cosx — sinux,
so y" has zeroes when sin x = cos x,
that is, tanx = 1 (dividing through by cos x).
Hence x is in quadrant 1 or 3, with related angle 7,
_ 5
SO x =71 or .
When x = 7, y = sinj + cos §
_ 1 1 A
=2+ W2 5
= \/55 1 /
5 1 1 4 5m
and when x = 7, y=-3 2—5\6 iy X

A
N

= —\/E 37'5\/715 21'[,
Differentiating again, " = —si — COS X,
ifferentiating again, y in x SX 3

so when x = 7, y' = ~V2,
and when x = 7, y' = V2.

Hence (%, \6 ) is a maximum turning point,
and (54—”, ~ V2 > is a minimum turning point.

d The second derivative y” has zeroes when —sin x — cosx = 0,

that is, at the zeroes of y, which are x = 3F and x = .

3n T
X 0 E z 4 2r

b 1 0 1 0 1

Hence the x-intercepts (%”, 0) and (74—”, O) are also inflections.

Note: The final graph is simply a wave with the same period 2z as sin x and cos x, but with amplitude V2.
Itis actually y = /2 cos x shifted right by 7. Any function of the formy = asinx + b cosx
has a similar graph.
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Example 15

[A harder example]

Sketch the graph of f(x) = x — sinx after carrying out these steps.

(<Y

- o QO O T

Write down the domain.

Test whether the function is even or odd or neither.

Find any zeroes of the function and examine its sign.

Examine the function’s behaviour as x — oo and as x —» —oo.
Find any stationary points and examine their nature.

Find any points of inflection.

6C

Note: This function is essentially the function describing the area of a segment, if the radius in the

formula A = %rz (x — sin x) is held constant while the angle x at the centre varies.

SOLUTION

a

b

The domain of f(x) = x — sin x is the set of all real numbers.
f(x) is odd, because both sin x and x are odd.

The function is zero at x = 0 and nowhere else,
becausesinx < x, forx > 0,
and sinx > x, forx < 0.

The value of sin x always remains between —1 and 1,

-3n-2n -1

y!

21

sofor f(x) = x — sinx, f(x) > co0asx — oo,

and f(x) > —oasx - —oo.

Differentiating, f'(x) = 1 — cosx,

so f’ (x) has zeroes whenever cos x = 1,
thatis, forx = ..., =270, 2%, 4x, . ...
But f"(x) = 1 — cos x is never negative, because cos x is never greater than 1,
thus the curve f(x) is always increasing except at its stationary points.

Hence each stationary point is a stationary inflection,

and these points are . . ., (—2xz, —2x), (0, 0), (27, 2x), (4x, 47), . . ..

Differentiating again, f” (x) = sin x,

which is zero forx = ..., —x, 0, , 27, 37, . . ..

We know that sin x changes sign around each of these points,

SO...,(—m —nr), (x, ), (3x, 3x), ... are also inflections.

Because f'(z) = 1 — (—1) = 2, the gradient at these other inflections is 2.
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FOUNDATION

w Technology: The large number of sketches in this exercise should allow many of the graphs to be drawn first
Whad ©OD A computer. Such sketching should be followed by an algebraic explanation of the features.

Many graphing packages allow tangents and normals to be drawn at specific points so that diagrams can be

drawn of the earlier questions in the exercise.

1 Find the gradient of the tangent to each curve at the point indicated.

a

d
g
j

N
Y

y =sinxatx = 0 b y=cosxatx =% C y=sinxatx =%

y =cosxatx = % e y=sinxatx =7 f y=tanxatx =0

y =tanxatx =2 h y=cos2xatx =% i y=—cosirxatx =%
y =sinjatx = ¥ k y=tan2xatx =% | y=sin2xatx = %

Show that the line y = x is the tangent to the curve y = sin x at (0, 0).
Show that the line y = x is the tangent to the curve y = tan x at (0, 0).

Show that the line y = 7 — x is the tangent to the curve y = cos x at (% 0).

DEVELOPMENT

3 Find the equation of the tangent at the given point on each curve.

a

c

e

y = sinxat (x,0) b y = tanxat (g, 1)

y = cosx at (E %) d y = cos2xat (ﬁ, O)

67
y = sin 2x at (%,g) f y = xsinxat (x, 0)

4 Find, in the domain 0 < x < 2z, the x-coordinates of the points on each curve where the gradient of the

tangent is zero.

a
(

2sinx — x
2sinx + \/gx

y = 2sinx

by
y=2cosx + x dy

5 The point P(g, %) lies on the curve y = 2sinx — cos 2x.

Show that the tangent at P has equation 24/3x — y = /3 — L.

333

1
a 3
b Show that the normal at P has equation x + 24/3 y=g¢+ V3.
6 a Showthaty = sin” x has derivative y' = 2 sin x coOS Xx.
b Find the gradients of the tangent and normal to y = sin? x at the point where x = I
¢ Find the equations of the tangent and normal to y = sin” x at the point where x = 7.
d Suppose that the tangent meets the x-axis at P, the normal meets the y-axis at Q and O is the origin.
Show that AOPQ has area é(ﬂz — 4) units %.
7 a Differentiate y = e*"*.
b Hence find, in the domain [0, 271, the x-coordinates of the points on the curve y = ¢*"* where the
tangent is horizontal.
8 a Differentiate y = ¢“*™,
b Hence find, in the domain [0, 271, the x-coordinates of the points on the curve y = ¢“*** where the
tangent is horizontal.
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334 Chapter 6 The trigonometric functions _
9 a Find the first and second derivatives of y = cosx + V3 sin x.
b Find the stationary points in the domain 0 < x < 2z, and use the second derivative to determine
their nature.
¢ Find the points of inflection.
d Hence sketch the curve, for0 < x < 27.
10 a Repeat the previous question for y = cosx — sinx.
b Verify your results by sketching y = cosx and y = —sin x on the same diagram, and then sketching
y = cosx — sinx by addition of heights.
11 a Find the derivative of y = x + sin x, and show that y” = —sin x.
b Find the stationary points in the domain —27 < x < 2, and determine their nature.
¢ Find the points of inflection.
d Hence sketch the curve, for -2z < x < 2.
12 Repeat the steps of the previous question for y = x — cos x.
13 A conical tent with top T is being designed to have a slant height of 3 metres. Let & = £TPO, where O
is the centre of the base and P is any point at the ground on the edge of the tent.
a Draw a diagram, and show that the vertical height of the tent is 4 = 3sin 6, and that the base radius
isr = 3 cos 6.
b Use the formula V = %Jrrzh for the volume V of a cone to show that
V = 3x(sin@ — sin®0).
¢ Find Z—g and hence find in degrees, correct to two decimal places, the angle @ so that the cone has
maximum volume.
d What is the exact value of the maximum volume of the tent?
CHALLENGE
14 Find any stationary points and inflections of the curve y = 2 sinx + xin the interval 0 < x < 2z, then
sketch the curve.
15 An isosceles triangle POR is inscribed in a circle with centre O of radius 1 unit, as
shown in the diagram to the right. Let ZQOR = 20, where @ is acute.
a Join PO and extend it to meet OR at M. Then prove that QM = sin 8 and
OM = cos 6.
Show that the area A of APQRis A = sin@(cos 6 + 1).
Hence show that, as 6 varies, APQR has its maximum possible area when it is
equilateral.
16 a Show thatd<2 - s1n0> _ 2 sin6) — 1.
do\ cos@ cos? 0
b Hence find the maximum and minimum values of the expression 2= Sgl 0 in the interval
0s
0 < 0 < 7, and state the values of  for which they occur.
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6D Integrating the trigonometric functions 335

m Integrating the trigonometric functions

As always, the standard forms for differentiation can be reversed to give standard forms for integration.

The standard forms for integrating the trigonometric functions

When the standard forms for differentiating sin x, cos x and tan x are reversed, they give three new standard

integrals.
. d . . . .
First, d— sinx = CoS X, and reversing this, cos x dx = sinx.
x
d . . . .
Secondly, d— COSX = —sinx, and reversing this, J(—sm XxX)dx = cosx
X
X (=1) [sinxdx = —COSX.
. d . .
Thirdly, d— tanx = sec> X, and reversing this, J8602 x dx = tan x.
x

This gives three new standard integrals. These three standard forms should be carefully memorised — pay
attention to the signs in the first two standard forms.

8 STANDARD TRIGONOMETRIC INTEGRALS

e |cosxdx = sinx + C, for some constant C

e |[sinxdx = —cosx + C, for some constant C

o |sec’xdx = tanx + C, for some constant C

No calculation involving a primitive may cross an asymptote.

Example 16 6D

The curve y = sin x is sketched below. Show that the first arch of the curve, as shaded in the diagram,
has area 2 square units.

SOLUTION

Because the region is entirely above the x-axis, y4

T
area = J sin x dx 1 \
0 . 27:/
= [—cosx] n\/
0

—coszw + cosO
=—(-1) +1

4

(S|
=V

(the graph of y = cos x shows that cos 7 = —1)
= 2 square units.
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336 Chapter 6 The trigonometric functions _

Note: This simple answer confirms again that radians are the right units to use for calculus with trigonometric
functions. Similar simple results were obtained earlier when e was used as the base for powers. For example,
Question 33c of the Chapter 5 Review gathered together three remarkably simple results:

1

e e
J la’x = J log, x dx = J xe*dx = 1
1 X 1 0

Example 17 6D

Evaluate these definite integrals.

" oo Yo
a J cos x dx b J sec” x dx c J sec” x dx
0 0 &
SOLUTION
4 T w n
a J cosxdx = [sinx] b J3 sec? x dx = [tanx]3
0 0 0 0
= sinz — sin0 = tan§ — tan0
=0 =3
(Use the graph of y = sin x to see (Here tan % = /3 and tan 0 = 0.)

that sinz = Oandsin 0 = 0.)

n

¢ This integral is meaningless because it crosses the asymptote at x = 7.

Replacing x by ax + b
Reversing the standard forms for derivatives in Section 6B gives a further set of standard forms. Again, the
constants of integration have been ignored until the boxed statement of the standard forms.

First, isin(ax + b) = acos(ax + b),
dx

SO Jacos(ax + b)dx = sin(ax + b)

and dividing by a, Jcos(ax + b)dx = lsin(ax + b).

a

d .

Secondly, d—cos(ax + b) = —asin(ax + b),
x

SO J—a sin(ax + b) dx = cos(ax + b)

and dividing by —a, Jsin(ax + b)dx = — lCo