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v

 Introduction 

 This resource covers the Mathematics Extension 2 syllabus and is designed to be used in conjunction 
with  CambridgeMATHS Mathematics Advanced Year 12  and  Extension 1 Year 12.  It is based on the 
authors’ Extension 2 resource developed for the previous syllabus, and retains the same design and 
structure, but has been re-written to cover the new syllabus implementing in 2020. 

 The online Curriculum Grid, Scope and Sequence, and Teaching Program are provided to guide you in 
planning a sound mathematical journey through a complex syllabus. 

 The Exercises are divided into Foundation, Development and Enrichment to gradually lead you to 
achieve your highest potential. The Enrichment questions are particularly challenging. 

 Essential rules, formulae and important concepts are highlighted in numbered boxes for quick reference 
and revision. 

 Chapter review exercises are provided for all chapters. 

 The Interactive Textbook powered by Cambridge HOTmaths offers selected worked solutions (as an 
option that teachers can choose to enable for student access), workspaces with self-assessment tools, and 
access to a downloadable PDF textbook for offl ine use. 

 The Online Teaching Suite provides a test for each chapter. 

  Cambridge Extension 2 teaching and learning package   
•   Print Textbook  
•   Interactive Textbook powered by Cambridge HOTmaths  
•   Downloadable PDF Textbook  
•   Online Teaching Suite powered by Cambridge HOTmaths              
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  The  exercises
No-one should try to do all the questions! The exercises are deliberately long so that everyone will fi nd 
enough questions of a suitable standard — each student will need to select from them, and there should 
be plenty left for revision. The book provides a great variety of questions, and representatives of all types 
should be selected.

The Foundation section contains routine questions designed to reinforce the elementary concepts and 
skills that must be mastered before more abstract and sophisticated questions can be attempted.

The Development section is graded from reasonably straightforward to diffi c ult. The harder questions 
may be more complicated algebraically or they may require deeper thinking. These questions are 
designed to provide students with the opportunity to attempt a wide variety of problem types.

The Enrichment section is intended to extend and challenge the best students while at the same time 
matching the standard of the hardest questions in the past Extension 2 HSC papers. We assume that the 
examinations for the new courses will continue to contain some very demanding questions.  

Syllabus coverage of the chapters

Chapter 1: Complex numbers (part 1)
Syllabus References: N1.1

N1.2

N2.1

N2.2

Complex numbers is covered over two chapters because some of the applications of de Moivres 
theorem are very demanding and need to be delayed until later in the course. The chapter starts with the 
straightforward arithmetic of complex numbers in Section 1A and then moves on to quadratic equations 
with complex roots in Section 1B. The Argand diagramis introduced in Section 1C which allows the 
introduction of the modulus-argument form in Section 1D. Then the vector representation of a complex 
number is used in Section 1E to solve geometric problems in the complex plane. In Section 1F, both 
algebraic and geometric approaches are used to sketch curves in the complex plane. Finally, we discuss 
complex conjugate zeroes of polynomials with real coeffi cients in Section 1G. 

 Chapter 2: Proof
Syllabus References: P1

P2
Mathematical proof requires precise logic and clarity of explanation. Section 2A introduces the 
terminology and symbolic notation required in this chapter. It also emphasises the fact that logic can not 
only be conveyed symbolically, but also using simple words such as and and or. In Section 2B, proofs 
involving numbers (mostly positive integers) are treated. Many of these proofs are based on divisibility 
arguments. Section 2C introduces indirect proof: proof by contradiction and by the contrapositive. 
In Section 2D, inequalities are proven by algebraic techniques. One of the most important ideas is to 

Rationale
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understand that proving LHS > RHS is equivalent to proving LHS − RHS > 0. Section 2E is proof 
by mathematical induction. This builds upon and extends the work done in Chapter 2 of the Year 12 
Extension 1 book. For instance, many inequalities can be proven by induction. The syllabus doesnt 
specifically mention it, but a treatment of inequalities would be incomplete without a discussion of 
inequalities in calculus and geometry. Such problems have occurred frequently in past Extension 
examination papers. This material is covered in Section 2F. It may be appropriate to delay this section to 
later in the course, such as at the end of Chapter 4, Integration.

Chapter 3: Complex numbers (part 2)
Syllabus References: N1.3

N2.1

N2.2

In Section 3A, de Moivres theorem is proven by induction and the exercise focuses on powers of complex 
numbers. Sections 3B and 3C are demanding. De Moivres theorem is used in 3B to prove some 
complicated trigonometric identities, and it is used again in 3C to find the complex roots of certain 
polynomial equations: most typically zn =  ±1. This then leads to the factorisation of various polynomials. 
Section 3D introduces the exponential form of a complex number via Eulers formula eiq = cos q + i sin q . 
Then there are some applications of the exponential form in Section 3E.

Chapter 4: Integration
Syllabus References: C1

The intention in Section 4A is that students become familiar with the standard integrals. There was a 
more comprehensive and user-friendly list provided in the previous course which would be a useful 
supplement for students. Section 4B is a short section focusing on some simple algebraic tricks 
for manipulating the integrand so that the primitive can easily be found. For example, copying the 
denominator into the numerator of a fraction. Sections 4C to 4F develop the standard methods for 
integration: substitution, partial fractions, quadratic denominators and integration by parts. Then in 
Section 4G these methods are applied to trigonometric integrals. Sequences of integrals are introduced in 
the difficult Section 4H, where reduction formulae are covered. Section 4I is a miscellaneous collection 
of problems, where the student must determine which method is most appropriate. Often there is more 
than one way to find a primitive.

Chapter 5: Vectors
Syllabus References: V1.1

V1.2

V1.3

This topic has been delayed because students will need to have completed Chapter 8 of the Extension 1  
book on vectors in two dimensions. Section 5A introduces coordinates in three dimensions, along 
with some basic three-dimensional coordinate geometry. This will promote the transition from two-
dimensional thinking to three dimensions. Section 5B then introduces column and component vectors 
in three dimensions. In Section 5C, the dot (scalar) product is defined for three-dimensional vectors, 
and then applied to a wide variety of problems in Section 5D. The vector equation of a line in both two 
and three dimensions is discussed in Section 5E, followed by vector equations of circles and spheres in 
Section 5F. The vector equation of a plane is also included, as it is mentioned in the support material.  
The Cartesian form of a line in three dimensions is not discussed.
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viii

 Chapter 6: Mechanics
Syllabus References: M1.1

M1.2

M1.3

M1.4

Section 5A examines forces and the resultant acceleration in terms of t, x or v. Constant and non-constant 
forces are included, as well as concurrent forces. Newtons laws are used to determine equations of motion. 
Simple harmonic motion is treated in Sections 5B and 5C. The time equations are the focus of 5B, while 
the displacement equations are dealt with in 5C. Horizontal and vertical resisted motion are discussed in 
Sections 5D and 5E, while projectile motion is the focus of Section 5F, following on from the work in 
Chapter 10 of the Extension 1 book. Section 5G is a miscellaneous set of problems, some of which are 
very challenging. The intention here is to expose students to a wide variety of interesting problems. 

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

Cambridge University Press



ix

 David Sadler is currently teaching senior mathematics part-time at Talent 100. He taught for 36 years 
at Sydney Grammar School and was Head of Mathematics for 7 years. He also taught at UNSW for 
one year. He was an HSC marker for many years and has been a presenter at various conferences and 
professional development courses. He has a strong passion for excellence in mathematics education and 
has previously co-authored several senior texts for Cambridge University press. 

 Derek Ward has taught Mathematics at Sydney Grammar School since 1991, and is Master in Charge 
of Examination Statistics. He has an MSc in Applied Mathematics and a BScDipEd, both from the 
University of NSW, where he was subsequently Senior Tutor for three years. He has an AMusA in Flute, 
and sings in the choir of Christ Church St Laurence. 

  About the authors  

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

Cambridge University Press



Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

Cambridge University Press



1
Complex Numbers I

Chapter Overview: One of the significant properties of the real numbers is
that any of the four arithmetic operations of addition, subtraction, multiplication
and division can be applied to any pair of real numbers, with the exception that
division by zero is undefined. As a result, every linear equation

ax + b = 0 where a 6= 0

can be solved.

The situation is not so satisfactory when quadratic equations are considered.
There are some quadratic equations that can be solved, but others, like

x2 + 2x + 3 = 0 ,

have no real solution. This apparent inconsistency, that some quadratics have a
solution whilst others do not, can be resolved by the introduction of a new type
of number, the complex number.

But there is more to complex numbers than just solving quadratic equations. In
this chapter the reader is shown an application to geometry and how they can be
used in higher degree polynomials. These new numbers have many applications
beyond this course, such as in evaluating certain integrals and in solving problems
in electrical engineering. Complex numbers also provide links between seemingly
unrelated quantities and areas of mathematics. Here is a stunning example. The
four most significant real numbers encountered so far are 0, 1, e and π. As will be
shown in a later chapter on complex numbers, these four numbers are connected
in a remarkably simple equation involving the special complex number i, namely

eiπ + 1 = 0 .

1A The Arithmetic of Complex Numbers

Introducing A New Type of Number: The investigation is begun by examining
the roots of various quadratic equations. For convenience in presenting the new
work, the method of completing the square is used exclusively.

First consider only those quadratic equations with rational solutions, such as the
equation x2 − 4x − 12 = 0 . Completing the square:

(x − 2)2 = 16

so x − 2 = 4 or − 4

which leads to the two roots

.
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2 CHAPTER 1: Complex Numbers I 1A

α = 6 and β = −2 .

Note that α + β = 4 and αβ = −12 .

Repeating this process for a number of quadratics with rational solutions, it soon
becomes evident that if ax2 + bx + c = 0 has solutions α and β then

α + β = − b

a
and αβ =

c

a
.

Further investigation reveals that there are some quadratic equations which do
not have rational solutions, such as x2 − 4x − 1 = 0 . Completing the square:

(x− 2)2 = 5 .

Herein lies a problem since there is no rational number which when squared
equals 5 . This problem is overcome by introducing a new type of number, in

this case the irrational number
√

5 which has the property that
(√

5
)2

= 5 .

Assuming that the normal rules of algebra apply to this new number, it follows

that
(

−
√

5
)2

=
(√

5
)2

= 5 , so that 5 has two square roots, namely
√

5 and −
√

5 .

If the introduction of this new type of number is valid then the solution may
proceed. Thus

x − 2 =
√

5 or −
√

5

which leads to the two roots

α = 2 +
√

5 and β = 2−
√

5 .

Note that α + β = 4 and αβ = −1 .

Repeating this process for a number of quadratics with irrational solutions, it
soon becomes evident that if ax2 + bx + c = 0 has irrational roots α and β then

α + β = − b

a
and αβ =

c

a
.

Since this is consistent with the quadratic equations with rational solutions, it
seems that the introduction of surds into the number system is valid. Indeed
surds have been used since Year 8 and students will be proficient in their use.

Yet further investigation reveals that there are some quadratic equations which
have neither rational nor irrational solutions, such as x2−4x+5 = 0 . Completing
the square yields:

(x− 2)2 = −1 .

Again there is a problem since there is no known number which when squared
equals −1 . Just as before, this problem is overcome by introducing a new type
of number. In this case the so called imaginary number i is introduced which has
the property that i2 = −1. Assuming that the normal rules of algebra apply to
this new number, it follows that (−i)2 = i2 = −1 , so that −1 has two square
roots, namely i and −i . If the introduction of this new type of number is valid
then the solution may proceed. Thus

x − 2 = i or − i

which leads to the two roots

α = 2 + i and β = 2− i .

Note that α + β = 4 and

αβ = (2 − i)(2 + i)

.
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1A The Arithmetic of Complex Numbers 3

= 22 − i2 (difference of two squares)

= 4 + 1

= 5 .

Repeating this process for a number of quadratics with solutions which involve
the imaginary number i, it soon becomes evident that if ax2 + bx + c = 0 has
solutions α and β then

α + β = − b

a
and αβ =

c

a
.

Since this is consistent with all previously encountered quadratic equations, it
seems reasonable to include the imaginary number i in the number system.

A New Number in Arithmetic: The imaginary number i is now formally included
into the system of numbers. It has the special property that i2 = −1. This new
number i will be treated as if it were an algebraic pronumeral when it is combined
with real numbers using the four arithmetic operations of addition, subtraction,
multiplication and division.

1

A NEW NUMBER: The new number i has the special property that

i2 = −1 .

It may be used like a pronumeral with real numbers in addition, subtraction,

multiplication and division.

It is instructive to write out the first four positive powers of i. They are:

i1 = i i2 = −1

(by definition)

i3 = i2 × i

= −1 × i

= −i

i4 = i3 × i

= −i × i

= 1

Writing out the next four powers of i, it is found that this sequence repeats.

i5 = i4 × i

= 1 × i

= i

i6 = i4 × i2

= 1 × (−1)

= −1

i7 = i4 × i3

= 1 × (−i)

= −i

i8 =
(
i4
)2

= 1

It should be clear from these calculations that the sequence continues to cycle.
In general, the result can be determined from the remainder when the index is
divided by 4.

2

POWERS OF THE IMAGINARY NUMBER: A power of i may take only one of four possible

values. If k is an integer, then these values are:

i4k = 1 , i4k+1 = i , i4k+2 = −1 , i4k+3 = −i .

WORKED EXAMPLE 1: Simplify: (a) i23 (b) i7 + i9

SOLUTION:

(a) i23 = i4×5+3

= −i

(b) i7 + i9 = −i + i

= 0

.
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4 CHAPTER 1: Complex Numbers I 1A

Complex Numbers: Since i has been included in the number system and since it
is to be treated as a pronumeral, the number system must now include the real
numbers plus new quantities like

2i , −7i , 5 + 4i and
√

6 − 3i .

The set which includes all such quantities as well as the real numbers is given
the symbol C. Each quantity in C is called a complex number. Thus 5, 2i and√

6 − 3i are all examples of complex numbers. In the first case, 5 is also a real
number, and the real numbers form a special subset of the complex numbers. The
number 2i is an example of another special subset of the complex numbers. This
set consists of all the real multiples of i , which are called imaginary numbers.
Thus −7i is another example of an imaginary number.

3

TWO NEW TYPES OF NUMBERS: Let a and b be real numbers.

COMPLEX NUMBERS: Numbers of the form a + ib are called complex numbers.

The set of all complex numbers is given the symbol C.

IMAGINARY NUMBERS: Numbers of the form ib, that is the complex numbers for

which a = 0, are called imaginary numbers.

Again noting that i is treated as a pronumeral, the addition, subtraction and
multiplication of complex numbers presents no problem.

(2 − 3i) + (5 + 7i) = 7 + 4i ,

3(−5 + 7i) = −15 + 21i ,

(7 + 2i) − (5 − 3i) = 2 + 5i ,√
3(2 + i

√
3) = 2

√
3 + 3i .

The following worked examples of multiplication involve binomial expansions and
the property that i2 = −1.

WORKED EXAMPLE 2: Simplify:

(a) (2−3i)(5+7i) (b) (3− 2i)2 (c) (4 + 3i)2 (d) (2+5i)(2−5i)

SOLUTION:

(a) (2− 3i)(5 + 7i) = 10− i− 21i2

= 10− i + 21

= 31− i

(b) (3− 2i)2 = 9− 12i + 4i2

= 9− 12i− 4

= 5− 12i

(c) (4 + 3i)2 = 16 + 24i + 9i2

= 16 + 24i− 9

= 7 + 24i

(d) (2 + 5i)(2− 5i) = 4− 25i2

= 4 + 25

= 29

The last three examples above demonstrate the expansions of (x+ iy)2, (x− iy)2

and (x + iy)(x − iy) for real values of x and y . Note that in the final example,
the result is the sum of two squares and is a real number. This will always be
the case, regardless of the values of x and y .

4

THE SUM OF TWO SQUARES: Let x and y be real numbers, then

(x + iy)(x− iy) = x2 + y2

which is always a real number.

Complex Conjugates: The last result is significant and will be used frequently.
Clearly the pair of numbers x + iy and x − iy have a special relationship. They
are called complex conjugates. Thus the complex conjugate of 3 + 2i is 3 − 2i.
Similarly the conjugate of 7 − 5i is 7 + 5i.

.
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1A The Arithmetic of Complex Numbers 5

When the conjugate is required, the complex number is written with a bar above
it. Thus:

2 + i = 2 − i

−1 + 4i = −1 − 4i

−3i = 3i

−3 − 5i = −3 + 5i

5

COMPLEX CONJUGATES: Let x and y be real numbers, then the two complex numbers

x + iy and x − iy are called complex conjugates.

A: The conjugate of x + iy is x + iy = x − iy .

B: The conjugate of x − iy is x − iy = x + iy .

Division: Just like real numbers, division by zero is undefined. Dividing a complex
number by any other real number presents no problem. As with rational numbers,
fractions should be simplified wherever possible by cancelling out common factors.

6 + 8i

2
= 3 + 4i

√
2 − 2i√

2
= 1 − i

√
2

−2 − 6i

3
= −2

3 − 2i

−12 + 21i

15
=

−4 + 7i

5
or − 4

5 + 7
5 i

There is a potential problem if one complex number is divided by another, such
as in 2+i

3−i
. As it stands, it is not clear that this sort of quantity is even allowed

in the new number system, since it is not in the standard form x + iy.

The problem is resolved by taking a similar approach to that used to deal with
surds in the denominator. The process here is called realising the denominator.
Thus if the divisor is an imaginary number then simply multiply the fraction
by i/i, as in the following two examples.

WORKED EXAMPLE 3: Realise the denominators of: (a)
1

4i
(b)

1 + 2i

3i

SOLUTION:

(a)
1

4i
=

1

4i
× i

i

=
i

4i2

= −1
4 i

(b)
1 + 2i

3i
=

1 + 2i

3i
× i

i

=
i + 2i2

3i2

=
2− i

3

If on the other hand the denominator is a complex number then the method is
to multiply top and bottom by its conjugate, as demonstrated here.

WORKED EXAMPLE 4: Realise the denominators: (a)
5

2 + i
(b)

5 + 2i

3 − 4i

SOLUTION:

(a)
5

2 + i
=

5

2 + i
× 2 − i

2 − i

=
5(2 − i)

4 + 1

= 2 − i

(b)
5 + 2i

3 − 4i
=

5 + 2i

3− 4i
× 3 + 4i

3 + 4i

=
15 + 26i− 8

9 + 16

=
7 + 26i

25

.
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6 CHAPTER 1: Complex Numbers I 1A

6

REALISING THE DENOMINATOR: There are two cases.

A: If the denominator is an imaginary number, multiply top and bottom by i.

B: If the denominator is complex, multiply top and bottom by its conjugate.

There is now significant evidence that the complex numbers form a valid number
system. It has been seen on the previous pages that the four basic arithmetic
operations of addition, subtraction, multiplication and division all behave in a
sensible way, consistent with real arithmetic.

A Convention for Pronumerals: It is often necessary in developing the theory
of complex numbers to perform algebraic manipulations with unknown complex
numbers. In order to help distinguish between real and complex variables, the
convention that will be used in this text is that the pronumerals x, y, a and b
will represent real numbers and the pronumerals z and w will represent complex
numbers. Thus in a statement like “ Let z = x+iy” it is automatically understood
that x and y are real whilst z is complex.

Real and Imaginary Parts: Given the complex number z = x + iy, the real part
of z is the real number x, and the imaginary part of z is the real number y. It
is convenient to define two new functions of the complex variable z for these two
quantities. Thus

Re(z) = x and Im(z) = y

from which it is clear that

z = Re(z) + i Im(z) .

WORKED EXAMPLE 5: Determine Re(z2 − iz) when z = 3 − i .

SOLUTION: Expanding the quadratic in z first,

z2 − iz = (3− i)2 − i(3− i)

= 8− 6i− 3i− 1

= 7− 9i ,

so Re(z2 − iz) = 7 .

If two complex numbers z and w are equal, by analogy with surds, it is natural
to expect that Re(z) = Re(w) and Im(z) = Im(w). This is in fact the case.

7

EQUALITY OF COMPLEX NUMBERS: If two complex numbers z and w are equal then

Re(z) = Re(w) and Im(z) = Im(w) .

Proof: Let z = x + iy and w = a + ib, and suppose that z = w. Then

x + iy = a + ib .

Rearranging i(y − b) = a − x . (∗∗)
By way of contradiction, suppose that y − b 6= 0, then

i =
a − x

y − b
, which is a real number.

But i is an imaginary number and so there is a contradiction. Thus y−b = 0 and
hence y = b . It follows from equation (∗∗) that x = a , and the proof is complete.
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1A The Arithmetic of Complex Numbers 7

The careful reader will have noticed that the definitions of Re(z) and Im(z) given
above are not in terms of the variable z. Both of these functions can be expressed
in terms of z by first writing down z and its conjugate.

z = x + iy

z = x − iy

This pair of simultaneous equations can be solved for x and y to obtain:

Re(z) = 1
2
(z + z) and Im(z) = 1

2i
(z − z) .

8

REAL AND IMAGINARY PARTS: These can be written as functions of z.

Re(z) = 1
2(z + z) and Im(z) = 1

2i(z − z) .

The Arithmetic of Conjugates: Since taking the complex conjugate of z simply
changes the sign of the imaginary part, when it is applied twice in succession the
end result leaves z unchanged. Thus

(z) =
(
x + iy

)
= x − iy = x + iy = z .

Another important property of taking conjugates is that it commutes with the
four basic arithmetic operations. For example, with addition,

(3 + i) + (2 − 4i) = 5 − 3i

= 5 + 3i ,

and 3 + i + 2− 4i = 3 − i + 2 + 4i

= 5 + 3i .

Thus (3 + i) + (2 − 4i) = 3 + i + 2 − 4i .

Notice that it does not matter whether the addition is done before or after taking
the conjugate, the result is the same. Here is an example with multiplication.

(3 + i)(2− 4i) = 10 − 10i

= 10 + 10i ,

and 3 + i × 2 − 4i = (3 − i)(2 + 4i)

= 10 + 10i .

Thus (3 + i)(2− 4i) = 3 + i× 2 − 4i .

Again notice that it does not matter whether the multiplication is done before
or after taking the conjugate, the result is the same. This is always the case for
addition, subtraction, multiplication and division.

9

THE ARITHMETIC OF CONJUGATES: The taking of complex conjugates is commutative

with addition, subtraction, multiplication and division.

(a) w + z = w + z (c) wz = w × z

(b) w − z = w − z (d) w ÷ z = w ÷ z

The proof of these results is left as a question in the exercise. There are two
special cases of these results. To get the conjugate of a negative, put w = 0
into (b).

(−z) = 0 − z

= 0 − z

thus (−z) = −z .
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8 CHAPTER 1: Complex Numbers I 1A

For the conjugate of a reciprocal, put w = 1 in (d) to get

z−1 = 1 ÷ z

= 1 ÷ z

= 1 ÷ z

thus z−1 = (z)−1 .

Integer Powers: The careful reader will have noted that several of the examples used
above involve powers of a complex number despite the fact that the meaning of zn

has not yet been properly defined. If the index n is a positive integer then the
meaning of zn is analogous to the real number definition. Thus

zn = z × z × . . .× z
︸ ︷︷ ︸

n factors

or, the recursive definition may be used:

z1 = z ,

zn = z × zn−1 for n > 1 .

Just like the real numbers, if z = 0 then z0 is undefined. For all other complex
numbers, z0 = 1. Again continuing the analogy with the real numbers, a negative
integer power yields a reciprocal. Thus if n is a positive integer then

z−n =
1

zn
, z 6= 0 .

As with other division by complex numbers, the denominator is usually realised
by multiplying by the conjugate. The case when n = 1 occurs frequently and
should be learnt.

z−1 =
1

z
=

z

zz

Indices which are not integers will not be considered in this text.

Exercise 1A

1. Use the rule given in Box 2 to simplify:

(a) i2

(b) i4
(c) i7

(d) i13
(e) i29

(f) i2010
(g) i3 + i4 + i5

(h) i7 + i16 + i21 + i22

2. Evaluate:

(a) 2i (b) 3 + i (c) 1 − i (d) 5 − 3i (e) −3 + 2i

3. Express in the form a + ib, where a and b are real.

(a) (7 + 3i) + (5 − 5i)

(b) (−8 + 6i) + (2 − 4i)

(c) (4 − 2i)− (3− 7i)

(d) (3 − 5i)− (−4 + 6i)

4. Express in the form x + iy, where x and y are real.

(a) (4 + 5i)i

(b) (1 + 2i)(3− i)

(c) (3 + 2i)(4− i)

(d) (−7 + 5i)(8− 6i)

(e) (5 + i)2

(f) (2− 3i)2

(g) (2 + i)3

(h) (1 − i)4

(i) (3 − i)4
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1A The Arithmetic of Complex Numbers 9

5. Use the rule for the sum of two squares given in Box 4 to simplify:

(a) (1 + 2i)(1− 2i)

(b) (4 + i)(4− i)

(c) (5 + 2i)(5− 2i)

(d) (−4 − 7i)(−4 + 7i)

6. Express in the form x + iy, where x and y are real.

(a)
1

i

(b)
2 + i

i

(c)
5 − i

1 − i

(d)
6 − 7i

4 + i

(e)
−11 + 13i

5 + 2i

(f)
(1 + i)2

3 − i

7. Let z = 1 + 2i and w = 3 − i. Find, in the form x + iy :

(a) (iz) (b) w + z (c) 2z + iw (d) Im(5i− z) (e) z2

8. Let z = 8 + i and w = 2− 3i. Find, in the form x + iy :

(a) z − w (b) Im(3iz + 2w) (c) zw (d) 65 ÷ z (e) z ÷ w

9. Let z = 2 − i and w = −5 − 12i. Find, in the form x + iy :

(a) −zw (b) (1 + i)z − w (c)
10

z
(d)

w

2 − 3i
(e) Re

(

(1 + 4i)z
)

D E V E L O P M E N T

10. By equating real and imaginary parts, find the real values of x and y given that:

(a) (x + iy)(2− 3i) = −13i

(b) (1 + 4i)(x + iy) = 6 + 7i

(c) (1 + i)x + (2 − 3i)y = 10

(d) x(1 + 2i) + y(2− i) = 4 + 5i

(e)
x

2 + i
+

y

2 + 3i
= 4 + i

11. Express in the form x + iy, where x and y are real.

(a)
1

1 + i
+

2

1 + 2i

(b)
1 + i

√
3

2
+

2

1 + i
√

3

(c)
3 + 2i

2 − 5i
+

3 − 2i

2 + 5i

(d)
−8 + 5i

−2 − 4i
− 3 + 8i

1 + 2i

12. Given that z = x + iy and w = a + ib, where a, b, x and y are real, prove that:

(a) z + w = z + w

(b) z − w = z − w

(c) zw = z w

(d) z2 = (z)
2

(e)

(
1

z

)

=
1

z
, z 6= 0

(f)

(
z

w

)

=
z

w
, w 6= 0

13. Let z = a + ib, where a and b are real and non-zero. Prove that:

(a) z + z is real,

(b) z − z is imaginary,

(c) z2 + (z)
2

is real,

(d) zz is real and positive.

14. Let z = a + ib, where a and b are real. If
z

z − i
is real, show that z is imaginary or 0.

15. Prove that if z2 = (z)
2

then z can only be purely real or purely imaginary.

16. If z = x+ iy, where x and y are real, express in the form a+ ib, where a and b are written
in terms of x and y .

(a) z−1 (b) z−2 (c)
z − 1

z + 1

.
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10 CHAPTER 1: Complex Numbers I 1B

E N R I C H M E N T

17. If both z + w and zw are real, prove that either z = w or Im(z) = Im(w) = 0 .

18. Given that z = 2(cos θ + i sin θ), show that Re

(
1

1 − z

)

=
1 − 2 cosθ

5 − 4 cosθ
.

19. Show that
1 + sin θ + i cosθ

1 + sin θ − i cosθ
= sin θ + i cos θ .

20. If z = cos θ + i sin θ, show that
2

1 + z
= 1 − it, where t = tan θ

2 .

1B Quadratic Equations

Now that the arithmetic of complex numbers has been satisfactorily developed,
it is appropriate to return to the original problem of solving quadratic equations.
To reflect the fact that the solutions may be complex, the variable z will be used.

Quadratic Equations with Real Coefficients: The simplest quadratic equations
are the perfect square

(z − λ)2 = 0

for which z = λ ,

and the difference of two squares

z2 − λ2 = 0

for which z = −λ or λ .

It is now also possible to solve equations involving the sum of two squares, using
the result of Box 4 in Section 1A.

Given z2 + λ2 = 0

(z + iλ)(z − iλ) = 0 (the sum of two squares)

so z = −iλ or iλ .

Thus there are three possible cases for a simple quadratic equation: a perfect
square, the difference of two squares, or the sum of two squares.

WORKED EXAMPLE 6: Find the two imaginary solutions of z2 + 10 = 0.

SOLUTION: From the sum of two squares

(z + i
√

10)(z − i
√

10) = 0

so z = −i
√

10 or i
√

10

For more general quadratic equations, it is simply a matter of completing the
square in z to obtain one of the same three situations: a perfect square, the
difference of two squares, or the sum of two squares.

WORKED EXAMPLE 7: Find the complex solutions of z2 + 6z + 25 = 0.

SOLUTION: Completing the square:

(z + 3)2 + 16 = 0

so (z + 3 + 4i)(z + 3− 4i) = 0 (sum of two squares)

thus z = −3 − 4i or − 3 + 4i .
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1B Quadratic Equations 11

Notice that the sum of two squares situation always yields two roots which are
complex conjugates.

10

QUADRATIC EQUATIONS WITH REAL COEFFICIENTS: Complete the square in z to obtain

one of the following situations:

A. A PERFECT SQUARE: There is only one real root.

B. THE DIFFERENCE OF TWO SQUARES: There are two real roots.

C. THE SUM OF TWO SQUARES: There are two conjugate complex roots.

There are several of ways of proving the assertion that complex solutions to
quadratic equations with real coefficients must occur as conjugate pairs. The
approach presented here will later be extended to encompass all polynomials
with real coefficients.

Proof: Let Q(z) = az2 + bz + c, where a, b and c are real numbers. Suppose
that the equation Q(z) = 0 has a complex solution z = w. It follows that

aw2 + bw + c = 0 .

Take the conjugate of both sides of this equation to get

aw2 + bw + c = 0 .

Now the conjugate of a real number is the same real number. Further, as noted
in Box 9, taking a conjugate is commutative with addition and multiplication.
Thus the last equation becomes

a(w)2 + b(w) + c = 0 ,

that is, Q(w) = 0 .

Hence z = w is also a complex root of Q(z) = 0. That is, Q(z) = 0 must have
two conjugate complex roots, z = w and z = w, and the proof is complete.

WORKED EXAMPLE 8: Find a quadratic equation with real coefficients given that
one of the roots is w = 5 − i.

SOLUTION: The coefficients are real so the roots occur in conjugate pairs. Hence
the other root is w = 5 + i. Thus the monic quadratic equation is:

(
z − (5− i)

)(
z − (5 + i)

)
= 0

or
(
(z − 5) + i

)(
(z − 5) − i

)
= 0

thus (z − 5)2 + 1 = 0 .

Finally z2 − 10z + 26 = 0 .

In general, a quadratic equation with real coefficients which has a complex
root z = α is

z2 − 2 Re(α) z + α α = 0 ,

as can be observed in the three worked examples above. The proof is quite
straightforward, and is one of the questions in the exercise.

11

REAL QUADRATIC EQUATIONS WITH COMPLEX ROOTS: A quadratic equation with real

coefficients which has a complex root z = α is

z2 − 2 Re(α) z + α α = 0 .

.
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12 CHAPTER 1: Complex Numbers I 1B

The Quadratic Method: Many readers will know the quadratic formula as

x =
−b ±

√
b2 − 4ac

2a
.

There is a problem with this formula when complex numbers are involved. When
applied to real numbers, the symbol

√
means the positive square root, but it is

unclear what “positive” means when applied to complex numbers. It might be
tempting to say that i is positive and −i is negative, but then what is to be said
about numbers like (−1+ i) or (1− i)? In short, it does not make sense to speak
of positive and negative complex numbers, and so the positive square root has
no meaning. Thus it is not appropriate to blindly use the quadratic formula to
solve an equation with complex roots.

Recall that the quadratic formula arose from applying the method of completing
the square. Here that process is reviewed.

Given az2 + bz + c = 0 ,

z2 + b
az = − c

a

so
(
z + b

2a

)2
= ∆

(2a)2
, where ∆ = b2 − 4ac .

Now suppose there exists a number λ, possibly complex, such that ∆ = λ2.

Then
(
z + b

2a

)2 −
(

λ
2a

)2
= 0

whence
(
z + b+λ

2a

) (
z + b−λ

2a

)
= 0 (the difference of two squares)

and so z = −b−λ
2a or −b+λ

2a .

Thus if there is a number λ, possibly complex, for which λ2 = ∆, then the
solution to the quadratic equation can be written using the last line above. If the
quadratic formula is to be applied then this method should always be followed.

12

THE QUADRATIC METHOD: Use the following steps to solve az2 + bz + c = 0 .

1. First find ∆ = b2 − 4ac .

2. Next find a number λ, possibly complex, such that λ2 = ∆.

3. Finally, the roots are z =
−b − λ

2a
or

−b + λ

2a
.

WORKED EXAMPLE 9: Solve z2 + 2z + 6 = 0 .

SOLUTION: ∆ = 22 − 4 × 1 × 6

= −20

=
(

2i
√

5
)2

,

hence z =
−2 − 2i

√
5

2
or

−2 + 2i
√

5

2

= −1 − i
√

5 or − 1 + i
√

5 .

Complex Square Roots: Before extending the above work to the case of a quadratic
equation with complex coefficients, it is necessary to develop methods for finding
the square roots of complex numbers.

.
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1B Quadratic Equations 13

The first thing to notice is that, just like real numbers, every complex number has
two square roots. The proof is quite straightforward. Suppose that the complex
number z is a square root of another complex number w then

z2 = w .

Further (−z)2 = z2

= w .

Hence w has a second square root which is the opposite of the first, namely (−z).
Thus for example −2i has two opposite square roots, (1− i) and (−1 + i). This
is not really very surprising since all real numbers (other than zero) have two
opposite square roots. For example, 9 has square roots 3 and −3, whilst −5 has
square roots i

√
5 and −i

√
5 . The proof that there are no more than two square

roots is left as an exercise.

Complex Square Roots and Pythagoras: A simple way to find complex square
roots is to equate the real and imaginary parts of z2 = w in order to obtain a
pair of simultaneous equations.

Given (x + iy)2 = a + ib , where x, y, a and b are real,

x2 − y2 + 2ixy = a + ib .

Equating real and imaginary parts yields

x2 − y2 = a

and xy = 1
2
b .

In many cases this pair of equations can be easily solved by inspecting the factors
of 1

2
b, as in the following example.

WORKED EXAMPLE 10: Find the square roots of 7 + 24i.

SOLUTION: Let (x + iy)2 = 7 + 24i , where x and y are real,

then (x2 − y2) + 2ixy = 7 + 24i .

Equating real and imaginary parts yields the simultaneous equations

x2 − y2 = 7

and xy = 12 .

Inspecting the factors of 12, it is clear that x = 4 and y = 3, or x = −4 and
y = −3. Hence the square roots of 7 + 24i are the opposites

4 + 3i and − 4 − 3i .

Some readers will have noticed in the above example that 7 and 24 are the first
two numbers of the Pythagorean triad 7, 24, 25. This is no coincidence. It is

often the case that if b is even and the numbers |a|, |b| and
√

a2 + b2 form a
Pythagorean triad then the resulting equations for x and y can be simply solved
by inspecting the factors of 1

2
b .
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14 CHAPTER 1: Complex Numbers I 1B

13

COMPLEX SQUARE ROOTS AND PYTHAGORAS: Given (x + iy)2 = a + ib, equate the real

and imaginary parts to get the simultaneous equations

x2 − y2 = a

xy = 1
2
b .

If b is even and the numbers |a|, |b| and
√

a2 + b2 form a Pythagorean triad

then these equations can often be solved by inspecting the factors of 1
2

b .

Quadratic Equations with Complex Coefficients: Simple quadratic equations
with complex coefficients can now be solved. All that is needed is to combine the
above method for finding the roots of a complex number with either the method
of completing the square or the quadratic method in Box 12.

WORKED EXAMPLE 11: Complete the square to solve z2−(2+6i)z+(−5+2i) = 0.

SOLUTION: Rearranging

z2 − 2(1 + 3i)z = 5 − 2i

so (z − (1 + 3i))2 = (1 + 3i)2 + 5 − 2i

= −8 + 6i + 5 − 2i ,

thus (z − (1 + 3i))2 = −3 + 4i .

Let (x + iy)2 = −3 + 4i

then x2 − y2 = −3

and xy = 2

so by inspection one solution is x = 1 and y = 2 .

Hence (z − (1 + 3i))2 = (1 + 2i)2

and thus z = (1 + 3i) + (1 + 2i) or (1 + 3i) − (1 + 2i)

that is z = 2 + 5i or i .

Whilst the focus here is on the quadratic method and completing the square,
those two methods should only be used when required. It is always preferable to
solve a quadratic equation by factors whenever they can be easily identified.

WORKED EXAMPLE 12: Solve z2 + 4i z − 3 = 0 .

SOLUTION: Noting that −3 = i × 3i and 4i = i + 3i ,

(z + i)(z + 3i) = 0

hence z = −i or − 3i .

Harder Complex Square Roots: Often the simultaneous equations given in Box 13
cannot be solved by inspection. Fortunately there is an identity that can be used
to help solve these equations. Recall that if

(x + iy)2 = a + ib

then x2 − y2 = a (1)

and 2xy = b . (2)

Squaring these and adding:

a2 + b2 = (x2 − y2)2 + (2xy)2

.
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1B Quadratic Equations 15

= (x2)2 + 2x2y2 + (y2)2

= (x2 + y2)2 .

Hence x2 + y2 =
√

a2 + b2 (3)

Equations (1) and (3) now form a very simple pair of simultaneous equations to
solve. Equation (2) is used to determine whether x and y have the same sign,
when b > 0, or opposite sign, when b < 0.

14

SQUARE ROOTS OF A COMPLEX NUMBER: Given (x + iy)2 = a + ib then x and y are

solutions of the pair of simultaneous equations

x2 − y2 = a

x2 + y2 =
√

a2 + b2

with the same sign if b is positive, and opposite sign if b is negative.

WORKED EXAMPLE 13: Determine the two square roots of −4 + 2i .

SOLUTION: Let (x + iy)2 = −4 + 2i . Since Im(−4 + 2i) > 0, x and y have the
same sign. Further, (−4)2 + 22 = 20, so solve

x2 − y2 = −4 (1)

and x2 + y2 = 2
√

5 (2)

Adding (1) and (2) yields

2x2 = −4 + 2
√

5

so x = −
√

−2 +
√

5 or

√

−2 +
√

5 .

Subtracting (1) from (2) yields

2y2 = 4 + 2
√

5

so y = −
√

2 +
√

5 or

√

2 +
√

5 .

Hence x + iy = −
√

−2 +
√

5 − i

√

2 +
√

5 or

√

−2 +
√

5 + i

√

2 +
√

5 .

In fact, the result in Box 14 can be used to develop a formula for the square
roots of any complex number, which is derived in one of the Exercise questions.
However that formula is not part of the course and should not be memorised.

Harder Quadratic Equations: Any quadratic equation can now be solved, including
those with complex discriminants. Box 14 is used to find the square roots of
discriminants that cannot be found by inspection.

WORKED EXAMPLE 14: [A Hard Example] Solve z2 + (4 − 2i)z + 1 = 0 by
using the quadratic method.

SOLUTION: ∆ = (4 − 2i)2 − 4

= 12 − 16i− 4

= 8 − 16i .

Let (x + iy)2 = 8 − 16i.

Now Im(8 − 16i) < 0 so x and y have opposite sign, with

.
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16 CHAPTER 1: Complex Numbers I 1B

x2 − y2 = 8 (1)

and x2 + y2 =
√

82 + 162

or x2 + y2 = 8
√

5 (2)

Adding and subtracting equations (1) and (2) yields

2x2 = 8 + 8
√

5

x2 = 4(1 +
√

5)
and

2y2 = −8 + 8
√

5

y2 = 4(−1 +
√

5) .

Thus ∆ =

(

2

√

1 +
√

5 − 2i

√

−1 +
√

5

)2

and so z = 1
2

(

−4 + 2i + 2

√

1 +
√

5 − 2i

√

−1 +
√

5

)

or 1
2

(

−4 + 2i − 2

√

1 +
√

5 + 2i

√

−1 +
√

5

)

that is z =

((

−2 +

√

1 +
√

5

)

+ i

(

1 −
√

−1 +
√

5

))

or

((

−2 −
√

1 +
√

5

)

+ i

(

1 +

√

−1 +
√

5

))

Exercise 1B

1. Solve for z.

(a) z2 + 9 = 0

(b) (z − 2)2 + 16 = 0

(c) z2 + 2z + 5 = 0

(d) z2 − 6z + 10 = 0

(e) 16z2 − 16z + 5 = 0

(f) 4z2 + 12z + 25 = 0

2. Write as a product of two complex linear factors.

(a) z2 + 36

(b) z2 + 8

(c) z2 − 2z + 10

(d) z2 + 4z + 5

(e) z2 − 6z + 14

(f) z2 + z + 1

3. Form a quadratic equation with real coefficients given that one root is:

(a) i
√

2 (b) 1 − i (c) −1 + 2i (d) 2 − i
√

3

4. In each case, find the two square roots of the given number by the inspection method.

(a) 2i

(b) 3 + 4i

(c) −8 − 6i

(d) 35 + 12i

(e) −5 + 12i

(f) 24 − 10i

(g) −15 − 8i

(h) 9 − 40i

D E V E L O P M E N T

5. (a) Find the two square roots of −3 − 4i.

(b) Hence solve z2 − 3z + (3 + i) = 0.

6. (a) Find the two square roots of −8 + 6i.

(b) Hence solve z2 − (7− i)z + (14− 5i) = 0.

7. Use the method outlined in Box 12 to solve for z.

(a) z2 − z + (1 + i) = 0

(b) z2 + 3z + (4 + 6i) = 0

(c) z2 − 6z + (9− 2i) = 0

(d) (1 + i)z2 + z − 5 = 0

(e) z2 + (2 + i)z − 13(1− i) = 0

(f) iz2 − 2(1 + i)z + 10 = 0
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1B Quadratic Equations 17

8. (a) Find the value of w if i is a root of the equation z2 + wz + (1 + i) = 0.

(b) Find the real numbers a and b given that 3−2i is a root of the equation z2+az+b = 0.

(c) Given that 1− 2i is a root of the equation z2 − (3 + i)z + k = 0, find k and the other
root of the equation.

9. Find the two complex numbers z satisfying zz = 5 and
z

z
=

1

5
(3 + 4i).

10. (a) Solve z2 − 2z cos θ + 1 = 0 for z by completing the square.

(b) Rearranging the equation in part (a) gives cos θ =
1

2

(

z +
1

z

)

. Confirm this result

for each of the solutions to part (a) by substitution.

11. By first factoring the sum or difference of two cubes, solve for z.

(a) z3 = −1 (b) z3 + i = 0

12. Consider the quadratic equation az2+bz+c = 0, where a, b and c are real and b2−4ac < 0.
Suppose that ω is one of the complex roots of the equation.

(a) Explain why aω2 + bω + c = 0.

(b) By taking the conjugate of both sides of the result in (a), and using the properties of

conjugates, show that a (ω)
2
+ b ω + c = 0.

(c) What have you just proved about the two complex roots of the equation?

13. Suppose that z = α is a complex solution to a quadratic equation with real coefficients.

(a) Which other number is also a solution of this quadratic equation?

(b) Hence prove that one such quadratic equation is z2 − 2 Re(α)z + α α = 0.

14. Let (x + iy)2 = a + ib, then we have x2 − y2 = a and 2xy = b .

(a) For the moment, assume that both a and b are positive.

(i) Sketch the graphs of these two equations on the same number plane.

(ii) What feature of your sketch indicates that there are two square roots of a + ib?

(b) Investigate how the sketch changes when either a or b or both are negative or zero.

15. Use the results of Box 14 to find the two square roots of:

(a) −i (b) −6 + 8i (c) 2 + 2i
√

3 (d) 10 − 24i (e) 2 − 4i

16. Find the discriminant and its square roots, and hence solve:

(a) z2 + (4 + 2i)z + (1 + 2i) = 0

(b) z2 − 2(1 + i)z + (2 + 6i) = 0

(c) z2 + 2(1− i
√

3)z + 2 + 2i
√

3 = 0

(d) z2 + (1 − i)z + (i− 1) = 0

E N R I C H M E N T

17. Let α and β be the two complex roots of z3 = 1. Show that:

(a) β = α, (b) α2 = β and β2 = α, (c) 1 + α + α2 = 0,

(d) the sum of the first n terms of the series 1 + α + α2 + α3 + . . . is either 0, 1 or −α2,
depending on the remainder when n is divided by 3.

18. Let a, b and c be real with b2 − 4ac < 0, and suppose that the quadratic equation
az2 + bz + c = 0 has complex solutions α = x + iy and β = u + iv .

(a) By considering the sum and product of the roots, show that

Im(α + β) = 0 and Im(αβ) = 0 .

(b) Hence show that α = β .

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

Cambridge University Press



18 CHAPTER 1: Complex Numbers I 1C

19. Let (x + iy)2 = a + ib, where b 6= 0. Use the result of Box 14 to prove the formula:

x + iy = ±
(√

1

2

(√

a2 + b2 + a
)

+ i
b

|b|

√

1

2

(√

a2 + b2 − a
)
)

.

Explain the significance of the term b/|b| in this formula.

1C The Argand Diagram

Mathematics requires a knowledge of numbers, and throughout high school that
understanding of numbers has been enhanced by being able to plot them on a
number line, to visualise their properties and relationships. Initially there were
the natural numbers, shown at discrete intervals on the number line.

x0 1 2 3 4

When negative numbers were included to create the integers, the number line
was extended to the left of the origin to show these new numbers.

x-1 0 1 2 3-2-3

Next came the rationals, the fractions which exist in the spaces between integers.
Eventually the irrationals were discovered and included, which fit in the gaps
that are somehow left between rationals. Some irrational numbers like

√
2 can

be constructed geometrically, but others like e and π can only be approximated
to so many decimal places. The construction for

√
2 is shown here along with the

positions of −1
2
, 3

4
, e and π.

x-1 0 1 2 33
4

1
2-

p

eÖ2

The number line is now full, the reals have filled it up, and there is no space left
for any new objects like complex numbers. Further, since complex numbers come
in two parts, real and imaginary, there is no satisfactory way of representing them
on a number line. A two dimensional representation is needed.

The Complex Number Plane: Keeping to things that are familiar, the number
plane would seem to be a convenient way to represent complex numbers. More
formally, for each complex number z = x+iy there corresponds a point Z(x, y) in
the Cartesian plane. Equally, given any point W (a, b) in the real number plane,
the associated complex number is w = a + ib.

x

y

4-3

1

3

-1 2

-2

-4

A

B

C

D

Thus in the diagram on the right, the complex numbers
4 + i and −3 + 3i are represented by the points A and B
respectively. The points C and D represent the complex
numbers −1 − 2i and 2 − 4i. Several different names
are used to describe a coordinate plane that is used to
represent complex numbers. One name is the Argand

diagram, after the French mathematician Jean-Robert
Argand, born in Geneva in 1768. The terms complex

number plane or z-plane are also used.
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1C The Argand Diagram 19

15

THE ARGAND DIAGRAM: The complex number z = x+iy is associated with the point

Z(x, y) in the real number plane. A complex number may be represented by

a point, and a point may be represented by a complex number.

As a convenient abbreviation, the point Z(x, y) will sometimes be simply referred
to as the point z in the Argand diagram. It is important to remember that
the complex number plane is just a real number plane which is used to display
complex numbers. By the nature of this representation, if two complex numbers
are equal then they represent the same point. The converse is also true.

The Real and Imaginary Axes: If Im(z) = 0, that is z = x + 0i, then z is a real
number and the corresponding point Z(x, 0) in the Argand diagram lies on the
horizontal axis. Thus the horizontal axis is called the real axis.

Likewise, if Re(z) = 0, that is z = 0 + iy, then z is an imaginary number and
the corresponding point Z(0, y) in the Argand diagram lies on the vertical axis.
Thus the vertical axis is called the imaginary axis.

Some Simple Geometry: Now that the complex plane has been introduced, it is
immediately possible to observe the geometry of some simple complex number
operations. The simplest of these are the geometries of conjugates, opposites,
and multiplication by i, which are now investigated.

Let z = x + iy , then the conjugate is

z = x − iy ,

x

y

Z
1

Z
2

-2

2

321-1

1
that is, y has been replaced by −y. This was encountered
in the work on graphs and is known to be a reflection in
the real axis. This is clearly evident in the example of
z1 = 3 + 2i and z2 = 3− 2i = z1 shown on the right.

16
THE GEOMETRY OF CONJUGATES: The points z and z in the Argand diagram are

reflections of each other in the real axis.

Next, let z = x + iy , then the opposite is

−z = −x − iy .

x

y

-1 1

-2

2

Z
1

Z
2

p
In this case, x and y have been replaced by −x and −y
respectively. Thus the result is obtained by reflecting the
point in both axes in succession. Alternatively, it is a
rotation by π about the origin. The diagram on the right
with z1 = 1 − 2i and z2 = −1 + 2i = −z1 demonstrates
this rotation.

17
THE GEOMETRY OF OPPOSITES: The points z and −z in the Argand diagram are

rotations of each other by π about the origin.

Now let z1 = a + ib , then z2 = i z1 is given by

z2 = −b + ia .

Z a,( )
1

b

Z b,( )-
2

a

x

y

O

Consider the corresponding points Z1 and Z2 shown in
the Argand diagram on the right, where neither a nor b
is zero. The product of the gradients of OZ1 and OZ2 is

.
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20 CHAPTER 1: Complex Numbers I 1C

b

a
× a

−b
= −1 .

Hence OZ2 is perpendicular to OZ1 and the conclusion is that multiplication by i
is equivalent to an anticlockwise rotation by π

2 about the origin. The situation is
the same even when z1 is real or imaginary, but not zero, and the proof is left as
an exercise.

18
THE GEOMETRY OF MULTIPLICATION BY i: The point iz in the Argand Diagram is the

result of rotating the point z by π
2

anticlockwise about the origin.

Note that multiplication by i twice in succession yields a rotation of 2 × π
2

= π.

This is consistent with the geometry of opposites, since i(iz) = i2z = −z.

WORKED EXAMPLE 15: Let z = x+iy. Determine i z and hence give a geometric
interpretation of the result.

SOLUTION: i z = i(x− iy)

= y + ix .

This is just z with x and y swapped. Thus it is a reflection in the line y = x.

Curves in the Argand Diagram: So far attention has been given to individual
points in the complex plane. Often an equation in z will correspond to a well
known line or curve in the Argand diagram. In the simple cases dealt with here,
the equation can be found by putting z = x + iy.

x

y

2

-1

Re( ) = 2z

Im( ) =z -1

WORKED EXAMPLE 16: Graph the following:
(a) Re(z) = 2, (b) Im(z) = −1.

SOLUTION: The equations give:
(a) the vertical line x = 2 and
(b) the horizontal line y = −1,
as shown in the diagram on the right.
Note that these two lines intersect at z = 2 − i.

19

VERTICAL AND HORIZONTAL LINES: In the Argand diagram:

• the equation Re(z) = a is the vertical line x = a

• the equation Im(z) = b is the horizontal line y = b

• these two lines intersect at z = a + ib.

x

y

O

3

3

WORKED EXAMPLE 17: Let the point P in the complex
plane represent the number z = x+iy. Given that z z = 9,
find the curve that P is on, and sketch it.

SOLUTION: The given equation becomes

(x + iy)(x− iy) = 9

so x2 + y2 = 32

that is, a circle with centre the origin and radius 3.

In some examples it is best to manipulate the given equation in z first, and then
substitute x+iy. It is also important to note any restrictions on z before starting.
Both of these points feature in the following example.

.
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1C The Argand Diagram 21

WORKED EXAMPLE 18: Find and describe the curve specified by

1

z
+

1

z
= 1 .

x

y

2

1

1
-1

SOLUTION: Note that in the given equation z 6= 0, since
the LHS is undefined there. Multiply both sides by the
lowest common denominator to get

z + z = z z

so 2x = x2 + y2

or 0 = x2 − 2x + y2

thus 1 = (x − 1)2 + y2

that is, the circle with radius 1 and centre (1, 0), excluding the origin.

Exercise 1C
1. Write down the coordinates of the point in the complex plane that represents:

(a) 2

(b) i

(c) −3 + 5i

(d) 2 + 2i

(e) −5(1 + i)

(f) (2 + i)i

2. Write down the complex number that is represented by the point:

(a) (−3, 0) (b) (0, 3) (c) (7,−5) (d) (a, b)

3. Let z = 1 + 3i, and let A, B, C and D be the points representing z, iz, i2z and i3z
respectively.

(a) Plot the points A, B, C and D in the complex plane.

(b) What type of special quadrilateral is ABCD?

(c) What appears to be the geometric effect of multiplying a complex number by i?

4. Let z = 3+ i and w = 1+2i. Plot the points representing each group of complex numbers
on separate Argand diagrams, and describe any geometry you observe.

(a) z, iz, −z, −iz

(b) w, iw, −w, −iw

(c) z, z, w, w

(d) z, w, z + w

(e) z, w, z − w

(f) z, w, w − z

5. Graph the following sets of points in the Argand diagram.

(a) Re(z) = −3

(b) Im(z) = 2

(c) Im(z) < 1

(d) Re(z) ≥ −2

(e) Re(z) = Im(z)

(f) 2 Re(z) = Im(z)

(g) Re(z) ≤ 2 Im(z)

(h) Re(z) > − Im(z)

D E V E L O P M E N T

6. Let the point P represent the complex number z = 2(cos π
6

+ i sin π
6
), and let the points

Q, R, S and T , represent z, −z, iz and 1
z

respectively. Plot all these points on an Argand
diagram.

7. Show that the point representing −z is a reflection of the point representing z in the y-axis.

8. Consider the points represented by the complex numbers z, z, −z and −z .
Show that these points form a rectangle by using:

(a) coordinate geometry to show that the diagonals are equal and bisect each other,

(b) the geometry of conjugates and opposites.

9. In the text it was proven that when z is complex, iz is a rotation by π
2

about the origin.
Prove the same result when z is: (a) real, (b) imaginary.

.
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22 CHAPTER 1: Complex Numbers I 1D

10. The numbers z = a + ib and w = iz are plotted in the complex plane at A and B
respectively.

(a) By considering gradients, show that OA ⊥ OB.

(b) Use the distance formula to show that OA = OB.

(c) What type of triangle is 4OAB?

11. The point P in the complex plane represents the number z. Find and describe the curve
that P is on given that

1

z
− 1

z
= i .

12. The complex number z is represented by the point C in the Argand diagram. Find and
describe the curve that C is on if

Re

(
z − 6

z

)

= 0 .

13. Show that (z − 2) (z − 2) = 9 represents a circle in the Argand diagram.

14. Find and describe the curve in the Argand diagram specified by

zz =
(

Re(z − 1 + 3i)
)2

.

E N R I C H M E N T

15. Sketch the curve in the complex plane specified by the given equation for real values of c.

(a) Im
(
z2
)

= 2c2 (b) Re
(
z2
)

= c2

16. Show that the point representing −iz is a reflection of the point representing z in y = −x.

17. Show that 1
z is a reflection and enlargement of z.

1D Modulus-Argument Form

x

y

q

P x  y( , )
r

O

Recall that in the study of trigonometry it was found
that the location of a point P could be expressed either
in terms of its horizontal and vertical positions, x and y,
or in terms of its distance OP = r from the origin and the
angle θ that the ray OP makes with the positive x-axis.
The situation is shown in the number plane on the right.

The Modulus and Argument of a Complex Number: In the Argand diagram
the distance r is called the modulus of z, and owing to its geometric definition as
a distance it is written as |z|. On squaring:

|z|2 = r2

= x2 + y2

= (x + iy)(x− iy) (sum of two squares)

hence |z|2 = zz .

The angle θ is called the argument of z, and is written θ = arg(z). Just as with
trigonometry, θ can take infinitely many values for the same point P . It is often
necessary to restrict the angle to just one value called the principal argument,
which is written Arg(z). The value of the principal argument is always in the
range −π < Arg(z) ≤ π. Note the strict inequality on the left hand side, and the
use of radian measure.

.
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1D Modulus-Argument Form 23

There is a problem with measuring θ when z = 0 because then P coincides with
the origin and there is no angle to measure. For this reason, both arg(0) and
Arg(0) are undefined. However, it should be clear |0| is defined and that |0| = 0.

20

MODULUS AND ARGUMENT: Let P represent the complex number z = x + iy in the

Argand diagram, with origin O.

• The modulus of z is the distance |z| = r = OP . Note that |z|2 = zz.

• The argument of z 6= 0 is any angle arg(z) = θ that the ray OP can make

with the positive real axis. However, arg(0) is undefined.

• The principal argument of z 6= 0 is the unique angle Arg(z) = θ which is in

the range −π < θ ≤ π. However, Arg(0) is undefined.

From the trigonometric definitions it is clear that

x = r cos θ (1)

and y = r sin θ , (2)

from which it follows that

z = r cos θ + ir sin θ .

Notice that the modulus r is a common factor in this last expression and it is
more commonly written as

z = r(cos θ + i sin θ)

or z = r cis θ for short.

In order to contrast the two ways of writing a complex number, z = x + iy
is called real-imaginary or Cartesian form whilst z = r(cos θ + i sin θ) is called
modulus-argument form, or mod-arg form for short. Another name for mod-arg
form is polar form, because the radius is measured from the origin which acts as
a pole. Equations (1) and (2) above serve to link the two forms.

WORKED EXAMPLE 19: Express each complex number in real-imaginary form.

(a) z = 4 cisπ (b) z = 2 cis π
6

(c) z = cis 2π
3

SOLUTION:

(a) z = 4 cosπ + 4i sinπ

= −4

(b) z = 2 cos π
6

+ 2i sin π
6

=
√

3 + i

(c) z = cos 2π
3

+ i sin 2π
3

= −1
2

+
√

3
2

i

WORKED EXAMPLE 20: Express each complex number in mod-arg form using
the principal argument. In part (c) give Arg(z) correct to two decimal places.

(a) z = 5i (b) z = 3− 3i (c) z = −4 − 3i

SOLUTION: In each case let z = r cis θ, with Z the point in the Argand diagram.

(a) In this case Z is on the positive imaginary axis so

r = 5

and θ = π
2

,

hence z = 5 cis π
2 .

.
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24 CHAPTER 1: Complex Numbers I 1D

x

y

1 2 3

-1
-2
-3

r

q

Z

(b) Now Z is in the fourth quadrant with

r2 = 32 + 32

or r = 3
√

2 .

Thus cos θ =
1√
2

and θ = −π
4 ,

hence z = 3
√

2 cis
(
−π

4

)
.

x

y

-2-4

-3Z

r q

(c) In this case there is a Pythagorian triad so

r = 5.

Now cos θ = −4
5

and Z is in the third quadrant

so θ = −π + cos−1 4
5

=.. −2·50 radians,

hence z =.
. 5 cis(−2·50) .

21

FORMS OF A COMPLEX NUMBER:

• x + iy is called the real-imaginary form or Cartesian form of z.

• r(cos θ + i sin θ) = r cis θ is called the modulus-argument form of z.

• The equations relating the two forms are:

x = r cos θ and y = r sin θ

Note that some people prefer to use tan θ = y
x

to find Arg z. This alternative
formula should only be used when the quadrant is known for θ, otherwise there
is a potential problem. By way of example, suppose that z = k(1 + i) for some
constant k. The alternative formula would then give

tan θ = 1 .

It would be tempting at this point to write Arg z = π
4 . Whilst this is correct

when k > 0, it is wrong when k ≤ 0. In fact when k < 0, z lies in the third
quadrant and so Arg z = −3π

4
. And, of course, Arg z is undefined when k = 0.

Some Simple Algebra: As will be revealed over the remainder of this chapter, the
use of mod-arg form is a powerful tool, both in simplifying much algebra and in
providing geometric interpretations.

Perhaps the most obvious thing to notice is that | cisθ| = 1. The geometry of
the situation makes the result obvious since if z = cos θ + i sin θ then the point
Z(cos θ, sin θ) lies on the unit circle. Hence |z| = OZ = 1. Here is an algebraic
derivation of the same result.

| cos θ + i sin θ|2 = cos2 θ + sin2 θ

= 1 ,

hence | cis θ| = 1 .

This identity has immediate applications in quadratic equations. If cis θ is one
of the roots, then the constant term of the monic quadratic must be 1, as the
following worked example demonstrates.

WORKED EXAMPLE 21: Find a quadratic equation with real coefficients given
that one root is z = cis θ .

.
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1D Modulus-Argument Form 25

SOLUTION: The coefficients are real so the other root must be cis θ. Thus:

(z − cis θ)(z − cis θ) = 0

or z2 − (cis θ + cis θ)z + cis θ × cis θ = 0

that is z2 − 2 Re(cis θ)z + | cis θ|2 = 0

thus z2 − 2z cos θ + 1 = 0 .

The Product of Two Complex Numbers: The modulus-argument form of the
product of two numbers is a particularly important result. Let w = a cis θ and
z = b cisφ, with a 6= 0 and b 6= 0. Then:

wz = a(cos θ + i sin θ) × b(cosφ + i sinφ)

= ab
(

(cos θ cos φ − sin θ sinφ) + i(cos θ sin φ + sin θ cosφ)
)

= ab
(
cos(θ + φ) + i sin(θ + φ)

)
,

= ab cis(θ + φ) .

Thus |wz| = ab and arg(wz) = θ + φ .

This yields the following two significant results:

|wz| = |w| |z|
and arg(wz) = arg(w) + arg(z) .

WORKED EXAMPLE 22: Let w =
√

3 + i and z = 1 + i.

(a) Evaluate wz in real-imaginary form.

(b) Express w and z in mod-arg form and hence evaluate wz in mod-arg form.

(c) Hence find the exact value of cos 5π
12

.

SOLUTION:

(a) wz = (
√

3 + i)(1 + i)

= (
√

3 − 1) + i(
√

3 + 1) .

(b) Now w = 2 cis π
6

z =
√

2 cis π
4

,

hence wz = 2
√

2 cis(π
6 + π

4 )

= 2
√

2 cis 5π
12

.

(c) Equating the real parts of parts (a) and (b) yields

2
√

2 cos 5π
12

=
√

3 − 1

hence cos 5π
12 =

√
3 − 1

2
√

2
.

22

THE PRODUCT OF TWO COMPLEX NUMBERS: Let w and z be two complex numbers.

• The modulus of the product is the product of the moduli, that is:

|wz| = |w| |z| .
• The argument of the product is the sum of the arguments, that is:

arg(zw) = arg(w) + arg(z) (provided w 6= 0 and z 6= 0 .)

A question in the exercise deals with the case of division of complex numbers.
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26 CHAPTER 1: Complex Numbers I 1D

Some Simple Geometry Again: It is instructive to re-examine the geometry of
conjugates, opposites and multiplication by i using mod-arg form. Beginning
with the conjugate, recall that the result is a reflection in the real axis. Thus the
modulus should be unchanged, and the argument should be opposite.

Let z = r cis θ then

z = r cos θ − ir sin θ

= r cos(−θ) + ir sin(−θ)

= r cis(−θ)

hence |z| = |z|
and arg(z) = − arg(z)

that is, the modulus is unchanged and the angle is opposite, as expected.

The cases of opposites and multiplication by i are more simply dealt with. Recall
that these operations represented rotations in the complex plane by π and π

2
respectively. Thus, again, the modulus should be the same, and the argument
should be increased appropriately. Looking at opposites first:

| − z| = |(−1)× z| = | − 1| × |z| = |z| ,
and arg(−z) = arg(−1× z) = arg(−1) + arg(z) = π + arg(z) .

That is, the moduli of opposites are equal and the arguments differ by π.

Similarly |iz| = |i| |z| = |z| ,
and arg(iz) = arg(i) + arg(z) = π

2 + arg(z) .

That is, the moduli of z and iz are equal and the arguments differ by π
2

. In both
cases the results are exactly as expected. Also notice that the principal arguments
of −1 and i have been used. As an exercise, justify why this is correct.

The Geometry of Multiplication: Aside from the special cases above, the geometry
of multiplication is evident in the results of Box 22. The product of the moduli
indicates an enlargement with centre the origin, and the sum of the arguments
represents an anticlockwise rotation about the origin.

Consider these two transformations individually and let w = r cis θ. When θ = 0
the product wz reduces to wz = rz, which is an enlargement without any rotation.
Thus both z and rz lie on the same ray.

When |w| = r = 1 the product wz becomes wz = z cis θ. Using Box 22:

|wz| = |w||z|
= |z|

and arg(wz) = arg w + arg z

= θ + arg z .

This is simply a rotation without any enlargement. Thus z and z cis θ both lie on
a circle of radius |z|. The following example serves to demonstrate the situation.

WORKED EXAMPLE 23: Let z = 1 + i.

(a) Find, in Cartesian form, the complex number w such that wz is a rotation
of z by π

3
about the origin.

(b) Evaluate wz in Cartesian form.

(c) Verify that |wz| = |z|, then plot z and wz on an Argand diagram.
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1D Modulus-Argument Form 27

SOLUTION:

(a) Clearly w = cis π
3

= 1
2(1 + i

√
3) .

(b) wz = 1
2
(1 + i

√
3)(1 + i)

= 1
2

(

(1 −
√

3) + i(1 +
√

3)
)

.

(c) Now |wz|2 = 1
4

(

(1−
√

3)2 + (1 +
√

3)2
)

= 1
4(1 + 3 + 1 + 3)

= 2 .

Hence |wz| =
√

2

= |z| .

x

y

O

Ö2

z
wz

p
3

23

THE GEOMETRY OF MULTIPLICATION: Let w = r cis θ. Then the complex number wz

is the result of a rotation of z by θ anti-clockwise about the origin and an

enlargement of z by factor r with centre the origin.

The corresponding geometry for the division of complex numbers is similar and
is dealt with in one of the exercise questions.

Shifting in the Complex Plane: Recall that, for a real number x, the value of |x|
is the distance from the origin to x. Shifting this, |x − a| is the distance from a
to x. Although it will not be proven here, the results for shifting can also be
applied to the Argand diagram. Thus since |z| is the distance from the origin
to z, it follows that |z − w| is the distance from w to z. An algebraic proof of
this important result is the subject of a question in the exercise.

x

y

w

z

arg( - )z w

| - |z w

Likewise, since arg(z) is the angle at the origin between z
and the positive real axis, the value of arg(z − w) is the
angle at the vertex w between z and the right half of the
horizontal line through w. The situation is shown in the
diagram on the right.

WORKED EXAMPLE 24: Let points W and Z represent
w = 2 + 2i and z = −1 + 5i respectively. Find:

(a) the length of WZ,

(b) the angle θ that WZ makes with the positive x-axis.

arg( - )z w

x

y

q

2

5

-1 2

Z

W
SOLUTION: First note that z − w = −3 + 3i.

(a) WZ = |z − w|
= | − 3 + 3i|
= 3

√
2

(b) θ = Arg(z − w) (corresponding angles, parallel lines)

= Arg(−3 + 3i)

=
3π

4
.

.
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28 CHAPTER 1: Complex Numbers I 1D

24

SHIFTING IN THE COMPLEX PLANE: Functions of complex numbers can be shifted in a

similar way to functions of real numbers. In particular:

• |z − w| is the distance from w to z.

• arg(z − w) is the angle at the vertex w between z and the right half of the

horizontal line though w.

Exercise 1D

1. Find |z| given:

(a) z = 3

(b) z = −5i

(c) z = 1 − i

(d) z = −
√

3 − i

(e) z = −3 + 4i

(f) z = 15 + 8i

2. Find Arg(z) given:

(a) z = −2

(b) z = 4i

(c) z = 2 − 2i

(d) z = 1 +
√

3 i

(e) z = −3 + 3i

(f) z = −
√

3 − i

3. Express each complex number in the form r(cos θ + i sin θ), where r > 0 and −π < θ ≤ π .

(a) 2i

(b) −4

(c) 1 + i

(d)
√

3 − i

(e) −1 +
√

3 i

(f) − 1√
2
− 1√

2
i

4. Repeat the previous question for each of these complex numbers, writing θ in radians
correct to two decimal places.

(a) 3 + 4i (b) 12− 5i (c) −2 + i (d) −1 − 3i

5. Express in the form a + ib, where a and b are real.

(a) 3 cis 0

(b) 5 cis
(
−π

2

)
(c) 4 cis π

4

(d) 6 cis
(
−π

6

)
(e) 2 cis 3π

4

(f) 2 cis
(
−2π

3

)

6. Given that z = 1 − i, express in mod-arg form:

(a) z (b) z (c) −z (d) iz (e) z2 (f) (z)
−1

7. Simplify each expression, leaving your answer in mod-arg form.

(a) 5 cis π
12 × 2 cis π

4

(b) 3 cisθ × 3 cis 2θ

(c) 6 cis π
2 ÷ 3 cis π

6

(d)
3 cis 5α

2 cis 4α

(e)
(
4 cis π

5

)2

(f)
(
2 cis 2π

7

)3

8. Find the distance |z − w| between the following pairs of numbers in the complex plane.

(a) w = −1 + i, z = 1 + 3i

(b) w = 4 + 2i, z = 1 − i

(c) w = 1 + i
√

3, z = 4 − 2i
√

3

(d) w = −3 + i
√

3, z = 3 + 3i
√

3

(e) w = −1 − 3i, z = 2 + i

(f) w = −1 + i, z = −2 − i

9. Find Arg(z − w) for each pair of numbers in the previous question. Approximate your
answers to 2 decimal places where necessary.

10. Suppose that multiplying a complex number by w produces a rotation of θ radians about
the origin. Find w in Cartesian form for the given values of θ.

(a) π
2

(b) π

(c) π
3

(d) 3π
4

(e) 5π
6

(f) −π
2

(g) −π
4

(h) −2π
3

.
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1D Modulus-Argument Form 29

D E V E L O P M E N T

11. Let z be a non-zero complex number such that 0 < arg z < π
2 . Indicate points A, B,

C and D in the complex plane representing the complex numbers z, −iz, (2 cis π
3
)z and

(
1
2

cis(−π
4
)
)
z .

12. Replace z with z ÷ w in Box 22 to prove that for z 6= 0 and w 6= 0:

(a)

∣
∣
∣
∣

z

w

∣
∣
∣
∣
=

|z|
|w| (b) arg

(
z

w

)

= arg z − argw

13. Suppose that z1 =
√

3 + i and z2 = 2
√

2 + 2
√

2 i.

(a) Write z1 and z2 in mod-arg form. (b) Hence write z1z2 and
z2

z1
in mod-arg form.

14. Repeat the previous question for z1 = −
√

3 + i and z2 = −1 − i.

15. (a) Express
1 + i

√
3

1 + i
in real-imaginary form.

(b) Write 1+ i and 1+ i
√

3 in mod-arg form and hence express
1 + i

√
3

1 + i
in mod-arg form.

(c) Hence find cos π
12

in surd form.

16. Let z1 = 1 + 5i and z2 = 3 + 2i, and let z =
z1

z2
.

(a) Find |z| without finding z.

(b) Find tan(tan−1 5 − tan−1 2
3), and hence find arg z without finding z.

(c) Hence write z in the form x + iy, where x and y are real.

17. Show that for any non-zero complex number z = r cis θ:

(a) z z = |z|2 , (b) arg(z2) = 2 arg(z) , (c) if |z| = 1 then z = z−1.

18. Let z be any non-zero complex number. By considering arg(|z|2), use the result in part (a)
of the previous question to prove that arg z = − arg z .

19. Let z = cos θ + i sin θ. Determine z2 in two different ways and hence show that:

(a) cos 2θ = cos2 θ − sin2 θ (b) sin 2θ = 2 sin θ cos θ

20. The complex number z satisfies the equation |z − 1| = 1. Prove that |z|2 = 2 Re(z) by:

(a) letting z = x + iy,

(b) squaring the equation and then using the result |z|2 = zz.

21. Given that z is a complex number satisfying |2z − 1| = |z − 2|, prove that |z| = 1 by:

(a) letting z = x + iy,

(b) squaring the equation and then using the result |z|2 = zz.

22. Let z = 1 + cos θ + i sinθ, where −π < θ < π.

(a) Show that |z| = 2 cos θ
2 and arg z = θ

2 . (b) Hence show that z−1 = 1
2 − 1

2 i tan θ
2 .

E N R I C H M E N T

23. Let w = x1 + iy1 and z = x2 + iy2.

(a) Show that the distance WZ between the points w and z is |z − w|.
(b) Show that the angle that the line WZ makes with the positive real axis is arg(z−w).
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30 CHAPTER 1: Complex Numbers I 1E

24. Let z = cis θ and w = cisφ, noting that |z| = |w| = 1. Evaluate z+w in mod-arg form and
hence show that arg(z + w) = 1

2(arg z + arg w) . [Hint: Use the sum to product identities

cos θ + cos φ = 2 cos
(

θ+φ
2

)

cos
(

θ−φ
2

)

and sin θ + sin φ = 2 sin
(

θ+φ
2

)

cos
(

θ−φ
2

)

.]

25. (a) Prove that Re(z) ≤ |z|. Under what circumstances are they equal?

(b) Prove that |z + w| ≤ |z|+ |w|. Begin by writing |z + w|2 = (z + w)(z + w).

1E Vectors and the Complex Plane

The geometry of multiplication and division became evident with the introduction
of the modulus-argument form in the previous section. Since the arguments are
added or subtracted, it is clear that a rotation is involved. Since the moduli are
multiplied or divided, it is clear that an enlargement is involved.

So far, the observed geometry of addition and subtraction has been limited. A
better understanding of these two operations is desirable and can be achieved
by yet another representation of complex numbers, this time as vectors. In this
section, a few vector tools will be introduced to help better understand complex
numbers. A more detailed study of vectors is given in the Extension 1 course.

Vectors: In the simple geometric definition used in this section, a vector has two
characteristics, a magnitude and a direction. Thus the instruction on a pirate
treasure map “walk 40 paces east” is an example of a displacement vector. The
magnitude is “40 paces” and the direction is “east”. A train travelling from
Sydney to Perth across the Nullarbor at 120 km/h is an example of a velocity
vector. The magnitude is 120 km/h and the direction is west.

In the number plane, a vector is represented by an arrow, which is more properly
called a directed line segment. The length of the arrow indicates the magnitude
of the vector and the direction of the arrow is the direction of the vector. In
particular, in the Argand diagram an arrow joining two points will be used to
represent the vector from one complex number to another. When naming a
vector, the two letter name of the line segment is used with an arrow above it to
indicate the direction, as in the following two examples.

x

y

1O

ZÖ3

−→
OZ is the vector from the origin to
z = 1 + i

√
3 .

x

y

-1 1

1

2

3

W

Z

−−→
WZ is the vector from w = 1+ i to
z = −1 + 3i .

Vectors and Complex Numbers: Look further at the examples above. In the first,

it is natural to assume that the vector
−→
OZ represents the complex number z. But

what complex number does the vector
−−→
WZ represent in the second example?

.
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1E Vectors and the Complex Plane 31

The magnitude of a vector is the distance between the end-points of its arrow.

That is, the magnitude of
−−→
WZ is |z−w|. The direction of a vector may be specified

by the angle its arrow makes with the horizontal. That is, the direction of
−−→
WZ

is given by Arg(z − w). Since any complex number is completely determined by

its modulus and argument, it follows that the
−−→
WZ must represent the complex

number (z − w). This is always the case, regardless of the values of z and w.

25
VECTORS AND COMPLEX NUMBERS: Let the vector from w to z in the Argand diagram

be
−−→
WZ . Then the vector

−−→
WZ represents the complex number (z − w).

Equal Vectors: Suppose that two vectors
−−→
AB and

−−→
PQ represent the same complex

number. That is, both vectors have the same magnitude and direction. It makes
sense to say that these vectors are equal and to write

−−→
AB =

−−→
PQ

since there is nothing to distinguish between them.

By way of example, let Z0, Z1 and Z2 represent the complex numbers 1+2i, 2+i
and 3 + 3i respectively. Then by Box 25,

−−→
OZ0 = (1 + 2i) − 0

= 1 + 2i

and
−−−→
Z1Z2 = (3 + 3i) − (2 + i)

= 1 + 2i.

Z1

Z0

Z2

x

y

1 2 3

1

2

3

O

That is, the same complex number is represented by both
vectors, and hence

−−→
OZ0 =

−−−→
Z1Z2 .

The diagram to the right shows the situation. Notice that
both vectors clearly have the same length and direction.

26
EQUAL VECTORS: Vectors with the same magnitude and direction are equal. Equal

vectors represent the same complex number.

x

y

O

A

B

C

z

z w+

z w-

w

Addition and Subtraction: Consider the three points A,
B and C which represent the complex numbers w, w + z

and z. Now
−−→
OB = (z+w) and, by Box 25,

−→
AC = (z−w).

So the diagonals of OABC have special significance. Does
this quadrilateral have any other special characteristics?

The magnitude of
−−→
AB is

|(w + z) − w| = |z| ,

thus AB = OC. Likewise, the magnitude of
−−→
CB is

|(w + z) − z| = |w| ,
thus CB = OA. Now since OABC has opposite sides of equal length, it must be
a parallelogram. Consequently the opposite sides are also parallel.

.
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32 CHAPTER 1: Complex Numbers I 1E

Hence
−−→
OC =

−−→
AB

and
−→
OA =

−−→
CB .

Thus in order to add or subtract two complex numbers geometrically, simply

construct the parallelogram OABC from the vectors
−→
OA and

−−→
OC. Then the sum

is the vector
−−→
OB and the difference is

−→
AC. This result is most useful in solving

certain algebraic problems geometrically.

WORKED EXAMPLE 25: Given two non-zero complex numbers w and z with equal
moduli and acute arguments, show that Arg(w + z) = 1

2

(
Arg(w) + Arg(z)

)
.

x

y

O

A

B

C

SOLUTION: Consider the points OABC in the z-plane
representing the complex numbers 0, w, w + z and z
respectively. Now OABC is a parallelogram. Further
OA = OC , since |w| = |z| . Thus in fact OABC is a
rhombus. Since the diagonal OB of the rhombus bisects
the angle at the vertex O, it follows that

Arg(w + z) = 1
2

(
Arg(w) + Arg(z)

)
.

27

THE GEOMETRY OF ADDITION AND SUBTRACTION: Let the points O, A and C represent

the complex numbers 0, w and z. Construct the parallelogram OABC. The

diagonal vector
−−→
OB represents the complex number (z + w) and the other

diagonal vector
−→
AC represents the complex number (z − w).

WORKED EXAMPLE 26: The points OABC represent the complex numbers 0, w,
w + z and z. Given that z − w = i(z + w), explain why OABC is a square.

SOLUTION: Firstly OABC is a parallelogram, where
−−→
OB represents z + w and−→

AC represents z − w. Since z − w = i(z + w) it follows that

arg(z − w) = arg(i(z + w))

= arg(i) + arg(z + w)

= π
2

+ arg(z + w) ,

and |z − w| = |i(z + w)|
= |i| × |z + w|
= |z + w| .

Thus the diagonals OB and AC are at right angles to each other and have the
same length. Hence OABC is a square.

The Triangle Inequality: An important identity encountered with the absolute
value of real numbers is the triangle inequality

∣
∣
∣|x| − |y|

∣
∣
∣ ≤ |x + y| ≤ |x|+ |y| .

Given that the absolute value of a real number is analogous to the modulus of a
complex number, it is not surprising that the same result holds for the modulus
of complex numbers, that is

∣
∣
∣|z| − |w|

∣
∣
∣ ≤ |z + w| ≤ |z|+ |w| .

.
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1E Vectors and the Complex Plane 33

x

y

O

A

B

| + |z w

| |w

| |z

This result can be explained in terms of the geometry
of the addition of complex numbers. Consider only the
points O, A and B as defined previously and shown in
the diagram on the right. Recall that the three vectors−→
OA,

−−→
AB and

−−→
OB represent the complex numbers w, z

and z + w respectively. Hence the three moduli |w|, |z|
and |z + w| are the lengths of the sides of 4OAB.

It is a well known result of Euclidean geometry that the length of one side of a
triangle must be less than or equal to the sum of the other two, thus

|z + w| ≤ |z|+ |w| ,
with equality when O, A and B are collinear. Similarly the length of one side is
greater than or equal to the difference of the other two, thus

∣
∣
∣|z| − |w|

∣
∣
∣ ≤ |z + w| ,

with equality again when the points are collinear. Combining these two yields
∣
∣
∣|z| − |w|

∣
∣
∣ ≤ |z + w| ≤ |z|+ |w| ,

and replacing w with −w throughout gives
∣
∣
∣|z| − |w|

∣
∣
∣ ≤ |z − w| ≤ |z|+ |w| .

These inequalities are called the triangle inequalities, after their geometric origins.

28

THE TRIANGLE INEQUALITIES: For all complex numbers z and w,

•
∣
∣
∣|z| − |w|

∣
∣
∣ ≤ |z + w| ≤ |z|+ |w|

•
∣
∣
∣|z| − |w|

∣
∣
∣ ≤ |z − w| ≤ |z|+ |w|

Multiplication and Division: The geometry of these two operations has already
been satisfactorily explained as a rotation and enlargement. This interpretation
is further demonstrated by the following example.

x

y

O

AB

C

U

The diagram below shows the points O, U , A, B and C which correspond to the
complex numbers 0, 1, w, z and wz respectively. In 4UOA and 4BOC,

6 BOC = arg(wz)− arg(z)

= arg(w) + arg(z)− arg(z)

= arg(w)

= 6 UOA ,

and
OC

OB
=

|wz|
|z|

= |w|

=
OA

OU
.

Hence 4BOC ||| 4UOA (SAS)

Note that the similarity ratio is OB : OU = |z| : 1.

.
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34 CHAPTER 1: Complex Numbers I 1E

This provides a novel way of constructing the point C for any given complex
numbers w and z. First construct 4UOA, then use the base OB to construct
the similar triangle 4BOC by applying the similarity ratio |z| : 1.

Other than being an application of similar triangles, this construction method is
rarely required. The geometry of the situation should always be remembered as
a rotation of w by arg(z) and an enlargement by factor |z|.

Two Special Cases: A vector approach is very helpful in analysing the geometry
in two special cases of division. Let z1, z2, z3 and z4 be four complex numbers
corresponding to the points A, B, C and D, and let

z2 − z1

z3 − z4
= λ ,

so that z2 − z1 = λ(z3 − z4) .

Suppose that λ is real and non-zero, then one vector is a multiple of the other.
Hence both vectors have the same direction if λ > 0 (but may differ in length)
and opposite direction if λ < 0. In either case the lines AB and CD are parallel.

In the case where λ is imaginary, the two vectors must be perpendicular, since
multiplication by i is equivalent to a rotation by π

2
. Hence AB ⊥ CD. The sign

of Im(λ) determines whether the rotation is anticlockwise or clockwise.

WORKED EXAMPLE 27: Let z1 and z2 be any two complex numbers representing
the points A and B in the complex plane. Consider the complex number z given

by the equation
z − z1

z2 − z1
= t where t is real. Let the point C represent z.

(a) Show that A, B and C are collinear.

(b) Hence show that AC : BC = |t| : |1 − t|.

SOLUTION:

(a) First note that
−−→
AB represents z2 − z1 and that

−→
AC represents z − z1. Since

z − z1

z2 − z1
is real it follows that AB and AC are parallel. Further since A is

common to both lines, it follows that A, B and C are collinear.

| |t r

| |1- t r

| |1- t r

| |1- t r

r

| |t r

r

| |t r

r

C
A

B

t < 0

0 < t < 1

1 < t

A
C

B

A
B

C

(b) If t < 0 then
−→
AC has the opposite direction to

−−→
AB

and the order of the points is CAB.
If t = 0 then A and C coincide.
If 0 < t < 1 then both

−→
AC and

−−→
AB have the same

direction and
−−→
AB has the greater magnitude. Hence

the order of the points is ACB.
If t = 1 then C and B coincide.
If t > 1 then the vectors have the same direction
but

−→
AC has greater magnitude, so the order is ABC.

In each case let |z2 − z1| = r. Then:

AC : AB = |z − z1| : |z2 − z1|
= |t|r : r

= |t| : 1 .

Hence in all cases AC : BC = |t| : |1− t|. The three
non-zero cases are shown on the right.
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1E Vectors and the Complex Plane 35

Exercise 1E

x

y

A i(5 + )

C i(2 + )3

B

O

1. In the diagram on the right, OABC is a parallelogram. The
points A and C represent 5 + i and 2 + 3i respectively. Find
the complex numbers represented by:

(a) the vector OB,

(b) the vector AC,

(c) the vector CA.

x

y

P i(4 + )3

O

Q

R

2. In the diagram on the right, OPQR is a square. The point P
represents 4 + 3i. Find the complex numbers represented by:

(a) the point R,

(b) the point Q,

(c) the vector QR,

(d) the vector PR.

x

y

O

P

Q
A

B
3. In the diagram on the right, intervals AB, OP and OQ are equal

in length, OP is parallel to AB and 6 POQ = π
2
. If A and B

represent the complex numbers 3+5i and 9+8i respectively, find
the complex number which is represented by Q.

x

y

O

A

B

C

4. In the diagram on the right, OABC is a square. The point A
represents the complex number 2 + i.

(a) Find the numbers represented by B and C.

(b) If the square is rotated 45◦ anticlockwise about O to give
OA′B′C′, find the number represented by B′.

x

y

B i(5 + )3

C i(9 + )6
A

O

5. In the diagram on the right, AB = BC and 6 ABC = 90◦. The
points B and C represent 5 + 3i and 9 + 6i respectively. Find the
complex numbers represented by:

(a) the vector BC,

(b) the vector BA,

(c) the point A.

x

y

A i(9 + )

B i(4 + )13

C

D

6. The diagram on the right shows a square ABCD in the complex
plane. The vertices A and B represent the complex numbers
9 + i and 4 + 13i respectively. Find the complex numbers that
correspond to:

(a) the vector AB,

(b) the vertex D.

D E V E L O P M E N T

x

y

O

P

Q

7. In the diagram on the right, the points P and Q correspond to
the complex numbers z and w respectively. The triangle OPQ is
isosceles and the angle POQ is a right angle.
Prove that z2 + w2 = 0.

.
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36 CHAPTER 1: Complex Numbers I 1E

x

y

O

E

F
A

B

C

D
8. In the Argand diagram on the right, ABCD is a square,

and OE and OF are parallel and equal in length to AB and
AD respectively. The vertices A and B correspond to the
complex numbers w1 and w2 respectively. What complex
numbers correspond to the points E, F , C and D?

x

y

O

A

B

C

D
9. In the diagram on the right, the vertices of a triangle ABC are

represented by the complex numbers z1, z2 and z3 respectively.
The triangle is isosceles, and right-angled at B.

(a) Explain why (z1 − z2)
2 + (z3 − z2)

2 = 0.

(b) Suppose that D is the point such that ABCD is a square.
Find, in terms of z1, z2 and z3, the complex number that the
point D represents.

x

y

O

C

A( )w

B10. In the Argand diagram on the right, OABC is a rectangle, with
OC = 2OA. The vertex A corresponds to the complex number ω.

(a) What complex number corresponds to the vertex C?

(b) What complex number corresponds to the point of intersection
D of the diagonals OB and AC?

11. The vertices of an equilateral triangle are equidistant from the origin. One of its vertices
is at 1 +

√
3i. Find the complex numbers represented by the other two vertices.

[Hint: What is the angle subtended by the vertices at the origin?]

12. Given z = 3 + 4i, find the two possible values of w so that the points representing 0, z
and w form a right-angled isosceles triangle with right-angle at the point representing:

(a) 0 (b) z (c) w

13. Given that z1 = 1 + i, z2 = 2 + 6i and z3 = −1 + 7i, find the three possible values of z4

so that the points representing z1, z2, z3 and z4 form a parallelogram.

14. Suppose that the complex number z has modulus one, and that 0 < Arg z < π
2
.

Prove that 2 Arg(z + 1) = Arg z.

15. The vertices of the quadrilateral ABCD in the complex plane represent the complex
numbers z1, z2, z3 and z4 respectively.

(a) If z1 − z2 = z4 − z3, show that the quadrilateral ABCD is a parallelogram.

(b) If z1 − z2 = z4 − z3 and z1 − z3 = i(z4 − z2), show that ABCD is a square.

16. A triangle has vertices at points in the Argand diagram which
represent the complex numbers z1, z2 and z3.

If
z2 − z1

z3 − z1
= cos π

3
+ i sin π

3
, show that the triangle is equilateral.

P
1

P
2P

3

x

y

O

17. In the diagram on the right, the points P1, P2 and P3 represent

the complex numbers z1, z2 and z3 respectively. If
z2

z1
=

z3

z2
, show

that OP2 bisects 6 P1OP3.

.
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1F Curves and Regions in the Argand Diagram 37

18. Let z1 = 2i and z2 = 1 +
√

3 i.

(a) Express z1 and z2 in mod-arg form.

(b) Plot in the complex plane the points P , Q, R and S representing z1, z2, z1 + z2 and
z1 − z2 respectively.

(c) Find the exact values of: (i) arg(z1 + z2) (ii) arg(z1 − z2)

19. (a) Prove that for any complex number z, |z|2 = zz.

(b) Hence prove that for any complex numbers z1 and z2:

|z1 + z2|2 + |z1 − z2|2 = 2
(
|z1|2 + |z2|2

)

(c) Explain this result geometrically.

x

y

P

Q

O

20. In the diagram on the right, the points P and Q represent the
complex numbers z and w respectively.

(a) Explain why |z − w| ≤ |z| + |w|.
(b) Indicate on the diagram the point R representing z + w.

(c) What type of quadrilateral is OPRQ?

(d) If |z − w| = |z + w|, what can be said about the complex

number
w

z
?

21. (a) Prove that the points z1, z2 and z3 are collinear if
z3 − z1

z2 − z1
is real.

(b) Hence show that the points representing 5 + 8i, 13 + 20i and 19 + 29i are collinear.

E N R I C H M E N T

22. The complex numbers ω1 and ω2 have modulus 1, and arguments α1 and α2 respectively,
where 0 < α1 < α2 < π

2
.

Show that Arg (ω1 − ω2) = 1
2(α1 + α2 − π).

23. [Circle Geometry] It is known that arg

(
z4 − z1

z2 − z1

)

+ arg

(
z2 − z3

z4 − z3

)

= π. Explain

why the points representing these complex numbers are concyclic.

24. [Circle Geometry] The points representing the complex numbers 0, z1, z2 and z3 are

concyclic and in anticlockwise order. Prove that the points representing
1

z1
,

1

z2
and

1

z3

are collinear. [Hint: Show that
z−1
1 − z−1

2

z−1
1 − z−1

3

is real.]

1F Curves and Regions in the Argand Diagram

In many situations a set of equations or conditions on a variable complex number z
yields a set of points in the Argand diagram which is a familiar geometric object,
such as a line or a circle. The main aim of this section is to provide a geometric
description for a curve or region specified algebraically. Therefore the examples
in this text have been grouped by the various geometries.

.
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38 CHAPTER 1: Complex Numbers I 1F

There are two basic approaches used in this section, algebraic or geometric. The
advantage of the algebraic approach is that most readers will already be proficient
at manipulating equations in x and y. Unfortunately the geometry of the situation
may be obscured by the algebra. The advantage of the geometric approach is that
it will often provide a very elegant solution to the problem, but may also require
a keen insight. Both methods should be practised, with the aim to become
proficient at the geometric approach.

Straight Lines: Some simple straight lines have already been encountered in 1C,
such as the vertical line Re(z) = a. Here are some other examples and their
geometric interpretations.

In coordinate geometry, given the coordinates of two points A and B, the task of
finding the equation of the perpendicular bisector of AB is a lengthy one. The
equivalent complex equation is remarkably simple.

WORKED EXAMPLE 28: Let z1 = 4 and z2 = −2i, and let the variable point z
satisfy the equation |z − z1| = |z − z2|.
(a) Put z = x+ iy and hence show that z lies on the straight line y +2x−3 = 0.

(b) Describe this line geometrically in terms of z1 and z2.

x

y

-1
-2

3

2 4

y =+ 2 - 3x 0

z1

z2

SOLUTION:

(a) Substitute the values of z1 and z2, then square to get

(x − 4)2 + y2 = x2 + (y + 2)2

or (x − 4)2 − x2 = (y + 2)2 − y2

thus −4(2x − 4) = 2(2y + 2)

so 4 − 2x = y + 1

hence y + 2x − 3 = 0 .

A

B

P
(b) Let z, z1 and z2 be the points P , A and B in the

Argand diagram. Since the modulus is a distance,
the given equation yields

PA = PB .

Thus either 4APB is always isosceles, or P bisects
AB. Hence P is on the perpendicular bisector of AB.

29

THE PERPENDICULAR BISECTOR OF AN INTERVAL: Let z1 and z2 be the fixed points A

and B in the Argand diagram, and let z be a variable point P . If

|z − z1| = |z − z2|
then P is on the perpendicular bisector of AB.

WORKED EXAMPLE 29: Let z0 = a + ib be the fixed point T and let z = x + iy
be a variable point P in the complex plane. It is known that

z − z0 = ikz0 ,

where k is a real number. It is also known that P is on a straight line.

(a) Find the equation of that straight line in terms of x and y.

(b) What is the geometry of the situation?

.
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1F Curves and Regions in the Argand Diagram 39

x

y

P
T

O

SOLUTION:

(a) The given equation expands to

x + iy − (a + ib) = ik(a + ib) .

Equating real and imaginary parts yields

x − a = −kb

and y − b = ka .

Eliminating k from this pair of equations gives

b(y − b) = −a(x − a)

or ax + by = a2 + b2

(b) Some readers will recognise this equation as the tangent to a circle. This
geometry is confirmed by examining the given equation more closely.

Since multiplication by i represents a rotation of π
2
, it follows that for k 6= 0

the vector
−→
TP is perpendicular to

−→
OT . That is, P lies on a line perpendicular

to OT . Further, when k = 0, z = z0, so this line passes through T . That
is, PT is the tangent to the circle with radius OT , as shown above.

Rays: The horizontal and vertical lines in 1C and the first example above demonstrate
some of the geometry of the recently introduced functions Re(z), Im(z) and |z|.
The new function Arg(z) describes a ray in the z-plane.

WORKED EXAMPLE 30: The complex number z satisfies Arg(z) = π
3

.

(a) Let |z| = r. Write z in modulus-argument form.

(b) Plot z when r = 1, 2, 3, 4, and observe that z lies on a ray.

(c) Explain why the origin must be excluded.

(d) Use shifting to sketch Arg(z − 2 − i) = π
3 .

SOLUTION:

(a) z = r(cos π
3

+ i sin π
3
) .

(b) See the first graph on the right.

(c) Arg(0) is undefined so the origin
is not included.

(d) Arg(z − 2 − i) = Arg(z − (2 + i))
so the ray has been shifted to the
point 2 + i, as shown on the right. x

y

1 2

Ö3

p
3

r = 1

r = 2

r = 3

r = 4

x

y

2

1
p
3

30

RAYS IN THE ARGAND DIAGRAM:

• The equation Arg(z) = θ represents the ray which makes an angle θ with the

positive real axis, omitting the origin.

• The graph Arg(z − z0) = θ is the result of shifting the above ray from the

origin to the point z0 .

Circles and Parabolas: The circle can easily be written as an equation of a complex
variable. The parabola can also be written as an equation in z, though it is
somewhat contrived and is not a significant result. The geometric definitions of
each in terms of distances is the key.

.
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40 CHAPTER 1: Complex Numbers I 1F

WORKED EXAMPLE 31: Consider the equation |z−z0| = r for some fixed complex
number z0 = a + ib and positive real number r.

(a) Explain why this represents a circle. State the centre and radius.

(b) Confirm the result by putting z = x+ iy and finding the Cartesian equation.

(c) Expand |z − 1|2 in terms of z and z. Hence determine the curve specified by
|z|2 = z + z.

x

y

Z0
r

a

b

SOLUTION:

(a) The equation specifies that the distance between z
and z0 is fixed. This is the geometric definition of a
circle. The centre is z0 and the radius is r.

(b) Begin by squaring both sides:

|z − z0|2 = r2

so |(x− a) + i(y − b)|2 = r2

thus (x − a)2 + (y − b)2 = r2 .

x

y

1 2

-1

1

(c) From |w|2 = w w it follows that

|z − 1|2 = (z − 1) (z − 1)

= (z − 1)(z − 1)

= |z|2 − (z + z) + 1 .

Since |z|2 = z + z , it also follows that

|z − 1|2 = 1 ,

that is, the circle with centre z = 1 and radius 1 .

31

CIRCLES IN THE ARGAND DIAGRAM: Let z0 be the fixed point C in the Argand diagram,

and let z a variable point P . If

|z − z0| = r

then the point P is on the circle with centre C and radius r .

WORKED EXAMPLE 32: Let S be the fixed point 1 + 2i and z be the variable
point P in the Argand diagram. It is known that |z − (1 + 2i)| = Im(z). Show
algebraically that P lies on a parabola by putting z = x + iy.

x

y

1

1

2 S

SOLUTION: Squaring both sides of the given equation:

(x − 1)2 + (y − 2)2 = y2

so (x− 1)2 = y2 − (y − 2)2

= 4y − 4

thus (x− 1)2 = 4(y − 1) .

This is the equation of a parabola with vertex at 1 + i,
as shown on the right.

This last worked example may seem a little contrived, but it demonstrates that
there are many situations where further insight into a problem may be achieved
by considering a corresponding problem in the complex plane.

.
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1F Curves and Regions in the Argand Diagram 41

Regions: In many instances a curve divides the plane into two or more regions. In
simple cases a region is defined by the corresponding inequation. When more
intricate regions are required, two or more simple regions may be combined by
taking the union or intersection of the corresponding inequations. Some common
examples follow.

WORKED EXAMPLE 33: Sketch the following regions in the complex plane.

(a) 1 ≤ Re(z) ≤ 3

(b) 0 ≤ Arg(z) ≤ π
4

(c) |z − 2 + i| < 1

(d) |z| > |z + 2 − 2i|

SOLUTION: The first three can be easily explained geometrically.

x

y

1 3

(a)

This is 1 ≤ x ≤ 3, the vertical strip
between x = 1 and x = 3 .

x

y(b)

Put z = r cis θ to get 0 ≤ θ ≤ π
4
,

which defines a wedge excluding the
origin, since Arg(0) is undefined.

x

y

1 2 3

-1

-2

(c)

The boundary curve is the circle
with radius 1 and centre 2−i, and is
not included. The region includes
the centre of the circle since the
LHS of the inequality is zero there.

x

y

-2 -1

1

2
-2+2i

(d)

The perpendicular bisector of the
segment from 0 to −2 + 2i is the
boundary, and is not included. The
region includes the point −2 + 2i,
since the RHS of the inequality is
zero there.

WORKED EXAMPLE 34:

(a) Sketch the regions (i) |z − i| ≤ 1 and (ii) −π
6

< Arg(z + 1 − i) < π
6

.

(b) Hence sketch (i) the union and (ii) the intersection of these regions.

SOLUTION:

x

y

-1 1

1

2
(a) (i)

x

y

-1 1

1

2

(ii)

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



42 CHAPTER 1: Complex Numbers I 1F

(b) The boundaries intersect at −1 + i and, from trigonometry, they intersect

again at 1
2

+ i (1 +
√

3
2

) and 1
2

+ i (1−
√

3
2

) . Here are the graphs.

x

y

-1 1

1

2
(i)

x

y

-1 1

1

2
(ii)

Circle Geometry: Many of the circle geometry theorems encountered in Year 10 may
be expressed in terms of a complex number. One significant result is included
here, with other examples to be found in the exercise.

WORKED EXAMPLE 35: [A Hard Example] Let z1 = 3 + i and z2 = 1 − i.

Describe and sketch the set of points z, where arg

(
z − z1

z − z2

)

= π
4 .

x

y

C

B

A

P

p
4

1

31
-1

SOLUTION: Let z1, z2 and z represent the points A, B and P respectively. First
note that the equation can be written as

arg(z − z1) − arg(z − z2) = π
4

.

Recall that z − z1 is the vector
−→
AP , so arg(z − z1) is the direction of this vector.

Likewise arg(z − z2) is the direction of vector
−−→
BP . Thus the difference is the

angle between them and is always π
4
. Using the converse of the angles in the

same segment theorem, it follows that P must lie on the arc of a circle with
chord AB. Further, since

6 APB = π
4 < π

2

it is a major arc. As P moves along the arc from A
to B, it moves anticlockwise about the centre, because
angles are measured anticlockwise. Lastly, since arg(0)
is undefined, the endpoints of the arc are not included.
It simply remains to find the centre and radius of this
circle. Let C be the centre, then

6 ACB = π
2

(Angles at the centre and circumference)

hence 6 CAB = π
4 (base angles of isosceles triangle.)

Since Arg(z1 − z2) = π
4

it follows that AC is horizontal, as the alternate angles are equal. Thus BC is
vertical. Hence C = 1 + i is the centre of the circle and AC = 2 is its radius.

32

THE ARC OF A CIRCLE: Let points A and B represent the complex numbers z1 and z2.

Let the variable point P represent z. The equation

Arg

(
z − z1

z − z2

)

= α where 0 < α < π ,

is the arc AB of a circle with the endpoints excluded. As P moves along the

arc from A to B its motion is anticlockwise about the centre.

.
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1F Curves and Regions in the Argand Diagram 43

Exercise 1F

1. Sketch each straight line by using the result of Box 29, then find its Cartesian equation.

(a) |z + 3| = |z − 5| (b) |z − i| = |z + 1| (c) |z + 2 − 2i| = |z| (d) |z−i| = |z−4+i|

2. Sketch the rays specified by the following equations. Box 30 may be of help.

(a) arg(z − 4) = 3π
4 (b) arg(z + 1) = π

4 (c) arg(z − 1− i
√

3) = π
3

3. Use Box 31 to sketch these circles.

(a) |z + 1 − i| = 1 (b) |z − 3 − 2i| = 2 (c) |z − 1 + i| =
√

2

4. In each case sketch the boundary or boundaries of the region and then shade the region.

(a) |z − 8i| ≥ |z − 4|
(b) |z − 2 + i| ≤ |z − 4 + i|
(c) |z + 1 − i| ≥ |z − 3 + i|

(d) 0 ≤ arg(z) ≤ 3π
4

(e) −π
3

< arg(z) < π
6

(f) −π
4 ≤ arg(z +2+ i) < π

4

(g) |z| > 2

(h) |z + 2i| ≤ 1

(i) 1 < |z − 2 + i| ≤ 2

D E V E L O P M E N T

5. In each case sketch (i) the intersection and (ii) the union of the given pair of regions.

(a) |z − 2 + i| ≤ 2, Im(z) ≥ 0

(b) 0 ≤ Re(z) ≤ 2, |z − 1 + i| ≤ 2

(c) |z − z| < 2, |z − 1| ≥ 1

(d) Re(z) ≤ 4, |z − 4 + 5i| ≤ 3

(e) |z − 1 − i| ≤ 2, 0 ≤ arg(z − 1 − i) ≤ π
4

(f) |z| ≤ 1, 0 ≤ arg(z + 1) ≤ π
4

(g) |z + 1 − 2i| ≤ 3, −π
3
≤ arg z ≤ π

4

(h) |z − 3 − i| ≤ 5, |z + 1| ≤ |z − 1|

6. Put z = x + iy to help sketch these hyperbolas.

(a) z2 − (z)2 = 16i (b) z2 − (z)2 = 12i

7. In each case the given equation represents a parabola. Find the Cartesian equation by
putting z = x + iy, and hence sketch the parabola.

(a) |z−3i| = Im(z) (b) |z + 2| = −Re(z) (c) |z| = Re(z + 2) (d) |z − i| = Im(z + i)

8. By putting z = x + iy, or otherwise, sketch the graph defined by the equation:

(a) Im(z) = |z| (b) Re

(

1− 4

z

)

= 0 (c) Re

(

z − 1

z

)

= 0

9. Sketch the arcs of circles specified by the following equations, showing the centre and
radius in each case.

(a) arg

(
z − 2

z

)

=
π

2

(b) arg

(
z − 1 + i

z − 1 − i

)

=
π

2

(c) arg

(
z − i

z + i

)

=
π

4

(d) arg

(
z + 1

z − 3

)

=
π

3

(e) arg

(
z − 2i

z + 2i

)

=
π

6

(f) arg

(
z

z + 4

)

=
3π

4

10. A complex number z satisfies arg z = π
3 .

(a) Use a diagram to show that |z−2i| ≥ 1 . (b) For which value of z is |z − 2i| = 1?

x

y

-3

3Ö3
11. Consider the graph in the Argand diagram on the right.

(a) Write down an equation for this graph in terms of z.

(b) Find the modulus and argument of z at the point where |z|
takes its minimum value.

(c) Hence find z in Cartesian form when |z| takes its least value.
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44 CHAPTER 1: Complex Numbers I 1F

12. (a) A complex number z satisfies |z−1| = 2. Draw a diagram and hence find the greatest
and least possible values of |z|.

(b) If z is a complex number such that Re(z) ≤ 2 and |z − 3| = 2, show with the aid of a

diagram that 1 ≤ |z| ≤
√

7.

13. (a) A complex number z satisfies |z − 2| = 1.

(i) Sketch the graph of |z − 2| = 1. (ii) Show that −π
6
≤ Arg z ≤ π

6
.

(b) The complex number z is such that |z| = 1. Use your answers to part (a) to explain
why −π

6
≤ Arg(z + 2) ≤ π

6
.

14. The complex number w satisfies |w| = 10 and 0 ≤ Argw ≤ π
2 , and the complex number

z is specified by z = 3 + 4i + w.

(a) Sketch the graph of z = 3 + 4i + w..

(b) Use your sketch to determine the maximum value of |z| .
(c) What is the value of z for which this maximum occurs?

15. (a) Show that the circle equation |z − z0| = r is equivalent to

z z − (z z0 + z z0) + z0 z0 − r2 = 0 .

[Hint: Square both sides of |z − z0| = r and use the result |w|2 = w w .]

(b) Use part (a) to write these equations in the form |z − z0| = r, and hence state the
centre and radius of each circle.

(i) z z+2(z+z) = 0 (ii) z z−(1+i)z−(1−i)z+1 = 0 (iii)
1

z
+

1

z
= 1

16. Sketch the graph of the points z for which
z − 1

z − i
is: (a) real, (b) imaginary (non-zero).

17. Sketch the graph of: (a) arg(z + i) = arg(z − 1) (b) arg(z + i) = arg(z − 1) + π

18. (a) The variable complex number z satisfies |z − 2 − i| = 1. Use a diagram to find the
maximum and minimum values of: (i) |z| (ii) |z − 3i|

(b) A complex number z satisfies |z| = 3. Use a sketch to find the greatest and least
values of |z + 5 − i|.

(c) The variable complex number z satisfies |z − z0| = r. Use a similar approach to
parts (a) and (b) to find the maximum and minimum values of: (i) |z| (ii) |z − z1|

(d) Confirm your answers to the previous parts by using the triangle inequality
∣
∣|z| − |w|

∣
∣ ≤ |z + w| ≤ |z|+ |w|.

E N R I C H M E N T

19. Describe the graph of arg

(
z − z1

z − z2

)

= α, where α is constant, if:

(a) α = 0 (b) 0 < α < π
2

(c) α = π
2

(d) π
2

< α < π (e) α = π

20. [Pythagoras] Describe the graph defined by the equation |z−z1|2+|z−z2|2 = |z1−z2|2 .

21. Suppose that k|z − z1| = `|z − z2|, where k 6= ` and both are positive real numbers.

(a) Show that the graph specified by the equation is a circle with centre
k2z1 − `2z2

k2 − `2
and

radius
kl|z2 − z1|
|k2 − `2| ,

(i) by letting z = x + iy, (ii) by geometric methods.

(b) What happens in the limit as k approaches `?
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1G Polynomials and Complex Numbers 45

1G Polynomials and Complex Numbers

A significant application of complex numbers is in the study of polynomials. This
section further develops the work on polynomials already done in the Mathematics
Extension 1 course. That work is assumed knowledge though some parts of the
theory are repeated here for the sake of convenience. The focus is on polynomials
with real coefficients and the relationships with the zeroes, particularly when they
are either complex, or real and repeated.

The crux of the work is later in this section where the Fundamental Theorem of
Algebra is presented along with some of its consequences. The theorem is left
unproven as any proof is beyond the scope of the course.

Polynomials with Integer Coefficients: If a polynomial with integer coefficients
has an integer zero x = k, then k is a factor of the constant term. This is a
significant aid in factorising a polynomial.

WORKED EXAMPLE 36: It is known that the polynomial P (x) = x3−x2 −8x−6
has only one integer zero. Find it and hence factorise P (x) completely.

SOLUTION: The zero is a factor of 6, so the possible values are: ±1,±2,±3,±6.
Testing these one by one:

P (1) = −14 , P (−1) = 0 ,

and there is no need to continue further. By the factor theorem, (x + 1) is a
factor of P (x). Performing the long division:

x2 − 2x − 6

(x + 1)
)

x3 − x2 − 8x − 6

x3 + x2

− 2x2 − 8x − 6
− 2x2 − 2x

− 6x − 6
− 6x − 6

0

Thus P (x) = (x + 1)(x2 − 2x− 6)

= (x + 1)
(

(x − 1)2 − 7
)

(completing the square)

= (x + 1)(x− 1 −
√

7)(x − 1 +
√

7) (difference of two squares.)

33

INTEGER COEFFICIENTS AND ZEROES: If the polynomial

P (x) = a0 + a1x + a2x
2 + . . . + anxn

with integer coefficients a0, a1, a2, . . . , an, has an integer zero x = k, then k is

a factor of the constant term a0.

Proof: Since P (k) = 0, it follows that

a0 + a1k + a2k
2 + . . . + ankn = 0

so a1k + a2k
2 + . . . + ankn = −a0

thus k × (a1 + a2k + . . . + ankn−1) = −a0 .

.
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46 CHAPTER 1: Complex Numbers I 1G

Since all the terms in the brackets are integers, it follows that the result is also
an integer. Thus the left hand side is the product of two integers. Hence, as
asserted, k is a factor of a0.

Polynomials and Complex Numbers: Consider the general polynomial

P (x) = a0 + a1x + a2x
2 + . . . + anxn .

Each term in this expression involves an integer power and multiplication by a
constant. The terms are then simply added. Since integer powers, multiplication
and addition are all natural operations with complex numbers, it follows that
the polynomial can be evaluated when x is a complex number. For example if
P (x) = x2 − 2x + 4 then at x = i its value is

P (i) = i2 − 2i + 4

= 3 − 2i .

In some examples the polynomial will be written as a function of z in order to
emphasise the fact that complex numbers may be substituted. Thus the above
example may be written as P (z) = z2 − 2z + 4 .

Remainders and Factors: Here is a quick summary of certain important results
from the Mathematics Extension 1 course. In the usual notation, let P (x)
and D(x) be any pair of polynomials, where D(x) 6= 0. There is a unique pair of
polynomials Q(x) and R(x), such that

P (x) = D(x)× Q(x) + R(x) ,

and where either

deg(D) > deg(R) or R(x) = 0 .

This is known as the division theorem. As a consequence, if D(x) = (x − α)
then R(x) must be a constant, either zero or non-zero. Let this constant be r.
Re-writing the division theorem:

P (x) = (x − α) × Q(x) + r ,

whence P (α) = r ,

which is known as the remainder theorem.

If R(x) = 0 then from the division theorem

P (x) = D(x)× Q(x) ,

so that P (x) is a product of the factors D(x) and Q(x). In particular, x−α is a
factor of P (x) if and only if P (α) = 0 . This is known as the factor theorem.

The division theorem, the remainder theorem and the factor theorem are valid
for complex numbers as well as real numbers. Though these claims will not be
proven here, the results may be freely applied to solve problems.

WORKED EXAMPLE 37: Let P (x) = x3 − 2x2 − x + k , where k is real.

(a) Show that P (i) = (2 + k) − 2i .

(b) When P (x) is divided by x2 +1 the remainder is 4−2x. Find the value of k.

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



1G Polynomials and Complex Numbers 47

SOLUTION:

(a) P (i) = i3 − 2i2 − i + k

= −i + 2 − i + k

= (2 + k) − 2i .

(b) By the division theorem,

P (x) = (x2 + 1)× Q(x) + 4 − 2x .

Thus P (i) = 4− 2i

hence (2 + k) − 2i = 4− 2i .

Equating the real parts gives k = 2 .

Real Coefficients and Remainders: Suppose that the polynomial P (z) has real
coefficients. If the remainder when P (z) is divided by (z − α) is β then the
remainder when P (z) is divided by (z − α) is β . Using the remainder theorem,
this is equivalent to the statement that if P (α) = β then P (α) = β .

WORKED EXAMPLE 38:

(a) Use the remainder theorem to find the remainder when
P (z) = z3 − 2z2 + 3z − 1 is divided by (z − i) .

(b) Hence find the remainder when P (z) is divided by (z + i) .

SOLUTION:

(a) The remainder is:

P (i) = i3 − 2i2 + 3i − 1

= 1 + 2i .

(b) It is: P (−i) = P ( i )

= 1 + 2i

= 1 − 2i .

34
REAL COEFFICIENTS AND REMAINDERS: If the polynomial P (z) has real coefficients and

if P (α) = β then P (α) = β .

The proof is not too difficult and is dealt with in a question of the exercise.

Real Coefficients and Complex zeroes: Suppose that the polynomial P (z) has
real coefficients. If P (z) has a complex zero z = α then it is guaranteed to have a
second complex zero z = α . Further, by the factor theorem, there exists another
polynomial Q(z) such that:

P (z) = (z − α)(z − α) × Q(z)

= (z2 − (α + α)z + αα) × Q(z)

= (z2 − 2 Re(α)z + |α|2)× Q(z) .

Thus P (z) has a quadratic factor with real coefficients: (z2 − 2 Re(α)z + |α|2) .

WORKED EXAMPLE 39: Consider the polynomial P (z) = 2z3 − 3z2 + 18z + 10 .

(a) Given that 1 − 3i is a zero of P (z), explain why 1 + 3i is another zero.

(b) Find the third zero of the polynomial.

(c) Hence write P (z) as a product of:

(i) linear factors,

(ii) a linear factor and a quadratic factor, both with real coefficients.

.
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48 CHAPTER 1: Complex Numbers I 1G

SOLUTION: (a) Since P (z) has real coefficients, (1− 3i) = 1 + 3i is also a zero.

(b) Let the third zero be a , then by the sum of the roots:

a + (1− 3i) + (1 + 3i) = 3
2

so a + 2 = 3
2

and a = −1
2

.

(c) (i) By the factor theorem:

P (z) = 2(z + 1
2)(z − 1 + 3i)(z − 1 − 3i)

= (2z + 1)(z − 1 + 3i)(z − 1 − 3i) .

(ii) P (z) = (2z + 1)(z2 − 2z + 10) .

35

REAL COEFFICIENTS AND ZEROES: If the polynomial P (z) has real coefficients and a

complex zero z = α then it is guaranteed to have a second complex zero z = α .

Consequently P (z) has (z2 − 2 Re(α)z + |α|2) as a factor, which is a quadratic

with real coefficients.

Proof: Suppose that the complex number z = α is a zero of the polynomial

P (z) = a0 + a1z + a2z
2 + . . . + anzn ,

where the coefficients a0, a1, . . . , an are all real. That is P (α) = 0 . Then

P (α) = a0 + a1α + a2α
2 + . . . + anα n

= a0 + a1α + a2α2 + . . . + anαn (since z n = zn)

= a0 + a1α + a2α2 + . . . + anαn (since c z = cz for real c)

= a0 + a1α + a2α2 + . . . + anαn (since w + z = w + z)

= P (α)

= 0

= 0 .

Hence z = α is also a zero of the polynomial P (z). Further, as shown above:

P (z) = (z2 − 2 Re(α)z + |α|2)× Q(z) .

Multiple Zeroes: Recall that if P (x) = (x − α)mQ(x), where Q(α) 6= 0, then the
value x = α is called a zero of multiplicity m. It is also the case that x = α is a zero
of P ′(x) with multiplicity (m− 1). In fact this result is also true for polynomials
with complex zeroes but the general proof is beyond the scope of this course.
However, it is possible to prove the result in the special case of a polynomial
with real coefficients and a complex zero with multiplicity 2. This is dealt with
in a question of the exercise, and extending this to arbitrary multiplicity may be
suitable as a class investigation.

In Extension 1, the derivative result may have been applied a second time to find
a triple zero. In fact it can be extended to the general case of a polynomial P (x)
with real coefficients which has a real zero x = α of multiplicity m. The value
x = α is also a zero of each of the derivatives P (j)(x), for j = 1, . . . , (m− 1) .

.
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1G Polynomials and Complex Numbers 49

36

MULTIPLE ZEROES AND HIGHER DERIVATIVES: Suppose that the polynomial P (x) with

real coefficients has a real zero x = α with multiplicity m > 1 .

Then x = α is a zero of each of the derivatives P (j)(x) , for j = 1, . . . , (m−1) .

This result can be proved relatively easily by induction and is left as an exercise
for the chapter on proof. It is also true for real polynomials with complex zeroes,
and can likewise be proved by induction.

The Fundamental Theorem of Algebra: All the work encountered so far in this
section deals with finding the zeroes of various polynomials. Up to this point it
has been possible to sidestep an important question: does every polynomial have
a zero? For there is no point in searching for one if none exists.

In order to emphasise this point, consider the polynomial P (x) = x2 +1. Clearly
this function has no real zero, and there is no point in searching for one. Yet the
polynomial does indeed have two zeroes, both of which happen to be complex
numbers: namely i and −i. Could it be that there is another polynomial which
has neither real nor complex zeroes?

The answer to this question is: every polynomial with degree ≥ 1 has at least one
zero, though that zero may be complex. This is such an important and basic fact
in the study of mathematics that it is given a title — The Fundamental Theorem

of Algebra.

37
THE FUNDAMENTAL THEOREM OF ALGEBRA: Every polynomial with degree ≥ 1 has at

least one zero, though that zero may be complex.

Several eminent mathematicians worked on this theorem including Leibniz, Euler
and Argand. But credit is usually given to Gauss for the first proof, which he
presented in his doctoral thesis in 1799. This, or any other proof of the theorem,
is beyond the scope of this course. Although the wording given in the box above
is imprecise, it is usually sufficient for the problems encountered at this level.

The Degree and the Number of Zeroes: Although the Fundamental Theorem of
Algebra cannot be proven here, it is possible to prove two significant consequences
of the theorem. The first is that every polynomial of degree n ≥ 1 with complex
coefficients has precisely n zeroes, as counted by their multiplicities.

This is also true for polynomials with real coefficients. To demonstrate the result,
the cubic P (x) = x3 −3x2 +4 = (x−2)2(x+1) has three zeroes: the simple zero
x = −1 and the double zero x = 2.

38
THE DEGREE AND THE NUMBER OF ZEROES: Every polynomial of degree n ≥ 1 with

complex coefficients has precisely n zeroes, as counted by their multiplicities.

Proof: This proof uses induction, and may be better left as an exercise for the
chapter on proof.

A. Consider the general polynomial of degree one with complex coefficients:

P1(x) = a0 + a1x , where a1 6= 0 .

Clearly this polynomial has one zero x = α1, where

.
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50 CHAPTER 1: Complex Numbers I 1G

α1 = −a0a1

|a1|2
.

Thus the result is true for n = 1.
B. Suppose that the result is true for some integer k ≥ 1. That is, suppose that

every polynomial of degree k with complex coefficients

Pk(x) = a0 + a1x + . . . + akxk , where ak 6= 0 ,

has k zeroes, x = α1, . . . , αk, as counted by their multiplicities. (∗∗)
The statement is now proven true for n = k + 1. That is, it is proven that
every polynomial of degree k + 1 with complex coefficents

Pk+1(x) = a0 + a1x + . . . + ak+1x
k+1 , where ak+1 6= 0 ,

has k + 1 zeroes as counted by their multiplicities.

Now for any particular polynomial Pk+1(x), that polynomial has at least one
zero by the Fundamental Theorem of Algebra. Let this zero be x = αk+1.
Then, by the factor theorem, it follows that

Pk+1(x) = (x− αk+1)Qk(x)

for some polynomial Qk(x) of degree k. But by the induction hypothesis
above (∗∗), Qk(x) has k zeroes, all of which are thus inherited by Pk+1(x).

Hence Pk+1(x) has k + 1 zeroes, x = α1, . . . , αk, αk+1, as counted by their
multiplicities. Clearly this follows for each and every polynomial Pk+1(x).

C. It follows from parts A and B by mathematical induction that the statement
is true for all integers n ≥ 1.

Real Linear and Quadratic Factors: The second significant consequence of the
Fundamental Theorem of Algebra is that every polynomial of degree n ≥ 1 with
real coefficients can be written as a product of factors which are either linear
or irreducible quadratics, each with real coefficients. In this context the word
irreducible is used to indicate that the quadratic has no real zero.

In order to demonstrate the result, notice that the polynomial P (x) = x3 −1 can
be written as the product

P (x) = (x − 1)(x2 + x + 1) .

The quadratic factor (x2 + x + 1) is irreducible since it has no real zero.

39

REAL LINEAR AND QUADRATIC FACTORS: Every polynomial of degree n ≥ 1 which has

real coefficents can be written as a product of factors which are either linear

or irreducible quadratics, each with real coefficients.

Proof: Let Pn(x) = a0 + a1x + . . . + anxn be a polynomial with degree n ≥ 1
which has real coefficients. By the previous result, this polynomial has n zeroes.
Let these zeroes be x = α1, . . . , αn. If none of these zeroes is complex then the
result is obviously true since then

Pn(x) = an

n∏

k=1

(x− αk) .

If all of the zeroes are complex then the result is again obviously true. Since
Pn(x) has real coefficients, the roots come in conjugate pairs, by which it is
known that n is even. Thus

.
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1G Polynomials and Complex Numbers 51

Pn(x) = an

n/2
∏

k=1

(x − αk) × (x − αk)

= an

n/2
∏

k=1

(

x2 − 2 Re(αk)x + |αk|2
)

.

Lastly, if some of the zeroes are complex numbers then once again they occur
as conjugate pairs, since the coefficients of Pn(x) are real. Let the number of
conjugate pairs be j, where 1 < 2j < n. Now re-order and re-label the zeroes
with the conjugate pairs listed first. Thus the first conjugate pair is x = α1, α1 ,
and the last conjugate pair is x = αj , αj .

If there are any other zeroes then they are real. The first of these is x = α2j+1

and the last is x = αn . So by the factor theorem, and using product notation:

Pn(x) = an ×
(

j
∏

k=1

(x − αk)(x− αk)

)

×





n∏

`=2j+1

(x − α`)





= an ×
(

j
∏

k=1

(

x2 − 2 Re(αk)x + |αk|2
)
)

×





n∏

`=2j+1

(x − α`)



 .

In each of the three cases the result is a product of factors with real coefficients,
which are either linear or irreducible quadratic factors. Put more simply, multiply
all the complex factors together in conjugate pairs to get irreducible quadratic
factors with real coefficients, and any remaining factors are both linear and real.

Exercise 1G
1. It is known that in each case the given polynomial P (x) has only one integer zero. Find

it and hence factorise P (x) completely.

(a) P (x) = x3 − 6x + 4 (b) P (x) = x3 +3x2−2x−2 (c) P (x) = x3−3x2−2x+4

2. It is known that 1 + i is a zero of the polynomial P (x) = x3 − 8x2 + 14x − 12.

(a) Why is 1 − i also a zero of P (x) ?

(b) Use the sum of the zeroes to find the third zero of P (x).

3. It is known that 1 − 2i is a zero of the polynomial P (x) = x3 + x + 10.

(a) Write down another complex zero of P (x), and give a reason for your answer.

(b) Hence show that x2 − 2x + 5 is a factor of P (x).

(c) Find the third zero, and hence write P (x) as a product of factors with real coefficients.

4. It is known that −3i is a zero of the polynomial P (z) = 2z3 + 3z2 + 18z + 27.

(a) Write down another complex zero of P (z). Justify your answer.

(b) Hence write down a quadratic factor of P (z) with real coefficients.

(c) Write P (z) as a product of factors with real coefficients.

5. Let P (z) = 2z3 − 13z2 + 26z − 10.

(a) Show that P (3 + i) = 0.

(b) State the value of P (3 − i), and give a reason for your answer.

(c) Hence write P (z) as a product of:

(i) linear factors,

(ii) a linear factor and a quadratic factor, both with real coefficients.

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



52 CHAPTER 1: Complex Numbers I 1G

D E V E L O P M E N T

6. Consider the polynomial Q(x) = x4 − 6x3 + 8x2 − 24x + 16.

(a) It is known that Q(2i) = 0. Why does it follow immediately that Q(−2i) = 0 ?

(b) By using the sum and the product of the zeroes of Q(x), or otherwise, find the other
two zeroes of Q(x).

(c) Hence write Q(x) as a product of:

(i) four linear factors,

(ii) three factors with real coefficients,

(iii) two factors with integer coefficients.

7. (a) Solve the equation x4 − 3x3 + 6x2 + 2x − 60 = 0 given that x = 1 + 3i is a root.

(b) Solve the equation x4 − 6x3 + 15x2 − 18x + 10 = 0 given that x = 1 − i is a root.

8. Consider the polynomial equation x4 − 5x3 + 4x2 + 3x + 9 = 0.

(a) Show that x = 3 is a double root of the equation.

(b) Hence solve the equation.

9. Two of the zeroes of P (z) = z4 − 12z3 + 59z2 − 138z + 130 are a + ib and a + 2ib, where
a and b are real and b > 0.

(a) Find the value of a by considering the sum of the zeroes.

(b) Use the product of the zeroes to show that 4b4 + 45b2 − 49 = 0, and hence find b.

(c) Hence express P (z) as the product of quadratic factors with real coefficients.

10. Suppose that P (x) = x3 + kx2 + 6, where k is real.

(a) Show that P (2i) = (6− 4k)− 8i .

(b) When P (x) is divided by x2 + 4 the remainder is −4x − 6 . Find the value of k .

11. Let P (x) = x3 − x2 + mx + n, where both m and n are integers.

(a) Show that P (−i) = (1 + n) + i(1− m) .

(b) When P (x) is divided by x2 +1 the remainder is 6x−3 . Find the values of m and n .

12. Suppose that P (x) = x3 + x2 + 6x − 3 .

(a) Use the remainder theorem to find the remainder when P (x) is divided by x + 2i .

(b) Hence find the remainder when P (x) is divided by: (i) x − 2i , (ii) x2 + 4 .

13. Let P (z) = z8 − 5
2
z4 + 1. Suppose that w is a root of P (z) = 0.

(a) Show that iw and 1
w are also roots of P (z) = 0.

(b) Find one of the roots of P (z) = 0 in exact form.

(c) Hence find all the roots of P (z) = 0.

14. Suppose that P (x) = x4 + Ax2 + B, where A and B are positive real numbers.

(a) Explain why P (x) has no real zeroes.

(b) Given that ic and id are zeroes of P (x), where c and d are real and c 6= −d, write
down the other two zeroes of P (x), and give a reason.

(c) Prove that c4 + d4 = A2 − 2B.
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15. The polynomial P (x) = x3 + cx + d, where c and d are real and non-zero, has a negative
real zero k, and two complex zeroes. The graph of y = P (x) has two turning points.

(a) What can be said about the two complex zeroes of P (x), and why?

(b) By considering P ′(x), show that c < 0.

(c) Sketch the graph of y = P (x).

(d) If a ± ib, where a and b are real, are the complex zeroes of P (x), deduce that a > 0.

(e) Prove that d = 8a3 + 2ac.

16. Consider the polynomial function f(x) = x3−3x+k, where k is an integer greater than 2.

(a) Show that f(x) has exactly one real zero r, and explain why r < −1.

(b) Give a reason why the two complex zeroes of f(x) form a conjugate pair.

(c) If the complex zeroes are a + ib and a− ib, use the result for the sum of the roots two
at a time to show that b2 = 3(a2 − 1).

(d) Find the three zeroes of f(x) given that k = 2702, and that a and b are integers.

17. Prove that P (x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
, where n ≥ 2, has no multiple zeroes.

18. Consider the polynomial P (z) = z4 + 4z3 + 14z2 + 20z + 25.

(a) Show that P (−1 + 2i) and P ′(−1 + 2i) are both zero.

(b) What can we deduce from (a)?

(c) Explain why −1 − 2i is also a double zero of P (z).

(d) Hence factorise P (z) over the complex numbers and then over the real numbers.

E N R I C H M E N T

19. In the text it was proven that if P (z) is a polynomial with real coefficients and if P (α) = 0
then P (α) = 0. Use a similar approach to prove that if P (α) = β then P (α) = β .

20. Let P (x) = a0 +a1x+a2x
2 + . . .+anxn be a polynomial with integer coefficients. Suppose

that P (x) has a rational zero x = p
q where p and q have highest common factor 1. Show

that p is a factor of a0 and that q is a factor of an .

21. Use the Fundamental Theorem of Algebra to carefully explain why every polynomial of
odd degree with real coefficients has at least one real zero.

22. The polynomial P (z) has real coefficients and a double complex zero z = α.

(a) Prove that z = α is also a double zero.

(b) Explain why
(
z2 − 2 Re(α)z + |α|2

)2
is a factor of P (z).

(c) Hence prove that P ′(α) = 0.

(d) Try to generalise this result to complex zeros with higher multiplicity.

23. (a) Let u and v be two numbers of the form u = a + b
√

c, where a, b and c are rational
numbers, with

√
c an irrational constant. Let the notation u∗ indicate the value of u

when the sign of b is reversed. That is, u∗ = a − b
√

c.

(i) Show that u∗ + v∗ = (u + v)∗.

(ii) Show that λu∗ = (λu)∗ whenever λ is a rational number.

(iii) Prove by induction that (un)∗ = (u∗)n for positive integers n.

(b) Suppose that u = a + b
√

c is a zero of a certain polynomial with rational coefficients.
Use the results of part (a) to show that u∗ = a− b

√
c is also a zero of this polynomial.
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54 CHAPTER 1: Complex Numbers I 1H

1H Chapter Review Exercise

Exercise 1H

1. If z = 3 − i and w = 17 + i, find:

(a) 6z − w (b) z3 (c)
w

z

2. Write as a product of two complex linear factors.

(a) z2 + 100 (b) z2 + 10z + 34

3. Solve each quadratic equation for z.

(a) z2 − 8z + 25 = 0 (b) 16z2 + 16z + 13 = 0

4. Find the square roots of:

(a) 5− 12i (b) 7 + 6
√

2 i

5. Solve for z:

(a) z2 − 5z + (7 + i) = 0 (b) z2 − (6 + i)z + (14 + 8i) = 0

6. If 3i is a zero of a polynomial P (z) with real coefficients, explain why z2 + 9 is a factor
of P (z).

7. It is known that 2 + 5i is a zero of the polynomial P (z) = z3 − 8z2 + 45z − 116.

(a) Why is 2 − 5i also a zero of P (z)?

(b) Use the sum of the zeroes to find the third zero of P (z).

(c) Hence write P (z) as a product of two factors with real coefficients.

8. Express each complex number in modulus-argument form.

(a) 1− i (b) −3
√

3 + 3i

9. Express each complex number in Cartesian form.

(a) 4 cis π
2 (b)

√
6 cis(−3π

4 )

10. Simplify:

(a) 2 cis π
2 × 3 cis π

3 (b)
10 cis 10θ

5 cis 5θ
(c) (3 cis 3α)2

11. Sketch the graph in the complex plane represented by the equation:

(a) |z − 2i| = 2

(b) |z| = |z − 2 − 2i|

(c) arg(z + 2) = −π
4

(d) arg

(
z − 1

z + 1

)

=
π

2

12. Shade the region in the complex plane that simultaneously satisfies |z| ≥ 1, Re(z) ≤ 2
and −π

3 ≤ arg z ≤ π
3 .

13. Suppose that z = −1 +
√

3 i and w = 1 + i.

(a) Find
z

w
in the form a + ib, where a and b are real.

(b) Write z and w in modulus-argument form.

(c) Hence write
z

w
in modulus-argument form.

(d) Deduce that cos 5π
12 =

√
6 −

√
2

4
.
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1H Chapter Review Exercise 55

14. Sketch the graph specified by the equation:

(a) zz = z + z (b) z = iz (c) |z + 2| = 2|z − 4|
15. A triangle PQR in the complex plane is isosceles, with 6 P = 90◦. The points P and Q

represent the complex numbers 4 − 2i and 7 + 3i respectively. It is also known that the
points P , Q and R are in anticlockwise order. Find the complex numbers represented by:

(a) the vector PQ, (b) the vector PR, (c) the point R.

16. If z1 = 4− i and z2 = 2i, find in each case the two possible values of z3 so that the points
representing z1, z2 and z3 form an isosceles right-angled triangle with the right-angle at:

(a) z1 (b) z2

17. In an Argand diagram, O is the origin and the points P and Q represent the complex
numbers z1 and z2 respectively.

If triangle OPQ is equilateral, prove that z1
2 + z2

2 = z1z2.

18. If z1 = 2 cis π
12 and z2 = 2i, find:

(a) arg(z1 + z2) (b) arg(z2 − z1)

19. If z1 and z2 are complex numbers such that |z1| = |z2|, prove that

arg(z1z2) = arg
(
(z1 + z2)

2
)

.

20. If z = cis θ, show that
z2 − 1

z2 + 1
= i tanθ.

21. The points A, B, C and O represent the numbers z,
1

z
, 1 and 0 respectively in the complex

plane. Given that 0 < arg z < π
2
, prove that 6 OAC = 6 OCB.

22. (a) By drawing a suitable diagram, prove the triangle inequality |z1 − z2| ≥ |z1| − |z2|.

(b) Hence find the maximum value of |z| given that

∣
∣
∣
∣
z − 4

z

∣
∣
∣
∣
= 2.
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2

Proof

Chapter Overview: There are many opportunities for presenting or reading
proofs in the Extension 1 and Extension 2 Mathematics courses. In this chapter,
the basic concepts, terminology and notation are discussed, and a few common
methods of proof are presented. Logic plays an important part in proof, but the
emphasis here is on clear argument rather than fancy notation.

Section 2A introduces the necessary language. The remaining sections each focus
on a common type of proof. Section 2B investigates various simple problems in
number theory, that is, the basic structures of the integers. Proof by contradiction
is presented in Section 2C. Algebraic inequalities are proven in Section 2D, whilst
2E introduces harder types of induction. The final section considers inequalities
in calculus, which some may prefer to postpone until after the Integration chapter.

2A The Language of Proof

This long first section introduces some basic concepts, terminology and notation
which are used in the proofs throughout the remainder of the chapter.

Statements: Statements are the basic building blocks of proof. Despite being so
fundamental, it is rather difficult to define what a statement is. Two of the
definitions given in The Macquarie Dictionary are as follows:

1. something stated
2. a communication or declaration in speech or writing setting forth facts,

particulars, etc.

The latter is perhaps more relevant to mathematical proof. Thus a statement
can be a simple sentence, such as:

n is a multiple of 3.

It may also be a mathematical declaration, such as:

let p be a prime number.

A statement may take the form of an assertion or definition, such as:

even numbers are divisible by 2,

or it may be a claim to be proven or a deduction which has already been proven,
such as:

every multiple of 6 is also a multiple of 3.

Although these four examples do not say precisely what a statement is, they will
enable discussions about statements with some agreement about what is meant.
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2A The Language of Proof 57

Logical Values: Every statement must take one of two logical values: true or false.
Using the first example of a statement above,

n is a multiple of 3

is true if it is known that n = 6, but is clearly false if it is known that n = 7.

1 LOGICAL VALUES: A statement must take one of two logical values: true or false.

Notice in this example that the logical value of a statement may change with
circumstance, but it cannot be simultaneously both true and false. There is no
integer n which is both a multiple of 3 and not a multiple of 3. Likewise a
statement cannot be neither true nor false. Given an integer n, it must always
fall into one of two categories: a multiple of 3, or not a multiple of 3.

A Proven Statement: Whilst some statements may change logical value due to
circumstance, other statements never change their logical value. The statement

34 is a Fibonacci number

is always true, as is determined by simply writing out the first few terms:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

A statement which is shown to be true is said to be proven, and the evidence
used to establish the truth is called the proof. Thus the statement “34 is a
Fibonacci number” is proven, and the proof is the listing of the first few terms
of the sequence.

2
A PROVEN STATEMENT: A statement which is shown to be true is said to be proven,

and the evidence used to establish the truth is called the proof.

Examples and Counterexamples: Whilst it is rarely feasible, a statement can be
shown to be true by example, but care must be taken to examine every possible
case. One statement where this is feasible is:

every prime on a regular die is also a Fibonacci number.

The primes on a die are 2, 3 and 5, which are also Fibonacci numbers, so the
statement is proven. Clearly this is a contrived situation, but it serves as a
reminder that proof by exhaustive examples is sometimes possible.

In contrast, the statement

all primes are odd

is clearly false, since 2 is both prime and even. When a statement is shown to
be false by example in this way, that example is called a counterexample, and
the statement is said to be disproved. It is important to note that only one
counterexample is needed in order to disprove a statement.

3
A COUNTEREXAMPLE: A statement may be disproved (shown to be false) by a single

example, called a counterexample.
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58 CHAPTER 2: Proof 2A

Negation: The negation of a statement changes its logical value. In English, negation
is commonly associated with the word not . Thus, whilst the statement

all Fibonacci numbers are odd

is clearly false, its negation

not all Fibonacci numbers are odd

is equally clearly true. In English, this last statement might be considered clumsy,
and so may be replaced with

some Fibonacci numbers are even.

Thus, whilst the presence of the word “not” clearly indicates a negation, its
presence as an indicator cannot always be relied upon.

1

2

3
5

4

6

F

S

F
_

It is sometimes convenient to associate negation with
complementary sets or events. By way of example:

let x be a Fibonacci number on a die

is true when x = 1, 2, 3 or 5 and false when x = 4 or 6.
In contrast:

let x be a non-Fibonacci number on a die

is false when x = 1, 2, 3 or 5 and true when x = 4 or 6. Notice that, whilst the
“not” has been modified into the prefix “non-”, the logical value of the statement
has been changed as expected. All this is clearly evident in the Venn diagram
showing the set of Fibonacci numbers F and its complementary set F .

4
NEGATION: The negation of a statement changes its logical value. It is commonly

associated with the word not, and with complementary sets.

Notation: It is sometimes convenient to present and manipulate statements in an
algebraic manner. Pronumerals are used to represent statements, as in:

suppose that p is the statement ‘x is a multiple of 2.’

The letter p is often used as it is the first letter of the word proposition, a synonym
for a statement. There are two symbols which are commonly used to negate a
statement. These are ¬ and ∼. Thus ¬p = ∼p, which is said “not-p” and means:

x is not a multiple of 2.

12

35
4

6

F

S

T

And, Or and Negation: In the Advanced and Extension 1 work on probability
it was established that and corresponds to the intersection of sets, whilst or

corresponds to the union. Thus if F is the set of Fibonacci numbers and T is the
set of triangular numbers on a die, then

F and T = F ∩ T

= {1, 3} ,

whereas F or T = F ∪ T

= {1, 2, 3, 5, 6} .

It makes sense to extend this correspondence to negation and so write:

¬(F and T ) = F ∩ T ,

with ¬(F or T ) = F ∪ T .
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2A The Language of Proof 59

12

35
4

6

F

S

T

Here is the Venn diagram of F ∩ T .

12

35
4

6

F

S

T

And here is the Venn diagram of F ∩ T .

Analysing the latter diagram carefully, it should be clear that the result is

12

35
4

6

F

S

T

F

12

35
4

6

F

S

T

or T

12

35
4

6

F

S

T

or both.

That is, F ∩ T = F ∪ T . Hence by analogy ¬(F and T ) = ¬F or ¬T .

A practical example may help make it clear. Suppose that a school offers two
languages: French and Japanese. A student who does not study both French and
Japanese, either does not study French, or does not study Japanese, or does not
study any language.

Similar analysis gives ¬(F or T ) = ¬F and ¬T , which is left as an exercise.

5

AND, OR AND NEGATION: The rules are analogous to the complements of intersections

of sets and unions of sets.

• The negation of and is or , so that ¬(F and T ) = ¬F or ¬T .

• The negation of or is and , so that ¬(F or T ) = ¬F and ¬T .

Implication: An implication is the relationship between two statements by which one
is a logical consequence of the other. By way of example, if

n is a multiple of 3

then it logically follows that

2n is also a multiple of 3.

In English, this is often written as a single if ... then ... statement. Thus:

if n is a multiple of 3 then 2n is also a multiple of 3.

Other words used in English for such logical deductions include: hence, thus, so,
so that, consequently, and therefore. These words will have been regularly seen
in the proofs of various theorems given in Year 11 mathematics.

Sometimes the order of the two statements is reversed in English, so care must
be taken to determine which statement is the logical conclusion of the other. For
example, the logical order of the deduction

a2 is odd because a is odd

is made far clearer when it is re-written as:

if a is odd then a2 is odd.

It is good practice when writing mathematics to put the conclusion second in this
way. This order should be followed whenever it is practical to do so.

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



60 CHAPTER 2: Proof 2A

Two other words commonly associated with implications are each and all . Here
is a similar example written all three ways.

All odd squares are one more than a multiple of 4.

Each odd square is one more than a multiple of 4.

If a number is odd then its square is one more than a multiple of 4.

The careful reader will have also realised from the examples given so far that
implication is commonly associated with subsets. Thus the odd squares form a
subset of those numbers which are 1 more than a multiple of 4.

1
2

3
5
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This is perhaps more easily seen in a simpler example.
Consider the prime numbers P and Fibonacci numbers F

on a die, as shown in the Venn diagram. Quite clearly:

all primes on a die are Fibonacci numbers

and it is equally clear that P ⊆ F .

6

IMPLICATION: An implication is the relationship between two statements by which

one is a logical consequence of the other. In English, it is often written as an

if ... then ... statement. Implication is also often associated with subsets.

The mathematical notation used for implication is a double tailed arrow ⇒ which
points towards the conclusion. Thus, returning to the example of odd squares:

a is odd ⇒ a2 is 1 more than a multiple of 4.

Whilst this notation is a useful tool, it should be used sparingly.

Quantifiers: The words all and some have been used in various examples above.
These words, and their synonyms, are called quantifiers because they indicate a
quantity. Thus, from above,

all of the primes on a die are Fibonacci numbers,

whereas, in contrast,

some of the primes on a die are odd.

1
23

5
4

6

D

S

PWhilst all often indicates subsets, the word some is often
associated with intersections of sets. This is made clear
in the Venn diagram of the second example, where D is
the set of odds and P is the set of primes.

7

QUANTIFIERS: The words all and some, and their synonyms, are called quantifiers.

• All is associated with subsets.

• Some is associated with intersections.

An important synonym for some is there exists. Thus, continuing with the odds
and primes on a die, it is also true to state that:

there exists a prime on a die that is odd,

there exists a prime on a die that is not odd.

It was mentioned above that, whilst logic notation is a useful tool, it should be
used sparingly. Indeed it is often clearer to write a statement in words than in
symbols. To make this point, some more useful symbols will now be introduced.
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2A The Language of Proof 61

Recall that:

all odd squares are one more than a multiple of 4.

The symbol ∀ means for all . Thus the above implication might be written as:

∀ a odd, a2 is 1 more than a multiple of 4.

Next observe that the value of a can always be written as a = 2m + 1, where
m ∈ Z. That is, m is an integer. So

∀ m ∈ Z, (2m + 1)2 = (multiple of 4) + 1.

Lastly, the multiple of 4 can always be found. For example, 52 = 6×4+1. To put
it another way, there exists an integer k which is the multiple of 4. The symbol
for there exists is ∃. So finally the statement becomes:

∀ m ∈ Z, ∃ k ∈ Z such that (2m + 1)2 = 4k + 1.

Compare this last jumble of symbols with the clear prose given in the statement
at the top of the page. The symbols have got in the way and hindered an easy
reading of the implication. Here is another pair of statements to show that the
use of symbols can be a distraction.

Not all primes are odd.

∃ x ∈ {primes} such that x 6= 2m + 1, ∀ m ∈ Z.

Of course, these symbols will be needed in certain problems, and students will
be expected to understand them when they are used in questions. Nevertheless,
symbols used in a proof or logical argument in this course should be the exception
rather than the rule.

Sufficient and Necessary: Two other terms are strongly associated with implication
and are often used in mathematical proofs or discussions about proofs. It is easiest
to explain these terms when the statement is written in if ... then ... form. So,
here is the statement about primes on a die written in that way.

If a number on a die is prime then it is a Fibonacci number.

The first part of an if ... then ... statement is called a sufficient condition. That
is, it is sufficient to know that a number on a die is a prime to guarantee that it
is a Fibonacci number. The second part of an if ... then ... statement is called
a necessary condition. That is, it is necessary to know that a number on a die is
a Fibonacci number in order for it to be prime. However, it does not guarantee
that it is a prime. It could be the number 1.

The situation is once again made clear by the fact that on the die, the primes
form a subset of the Fibonacci numbers. The subset corresponds to the sufficient
condition, and the superset corresponds to the necessary condition. A practical
example should help make it clear.

If I travel by bus then I use public transport.

It is sufficient that I travel by bus in order to use public transport, but it is
necessary that I use public transport in order to travel by bus.

8

SUFFICIENT AND NECESSARY: In the statement if A then B,

• A is a sufficient condition for B,

• B is a necessary condition for A.

.
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62 CHAPTER 2: Proof 2A

Converse Statements: Consider the following two statements.

If x is a multiple of 4 then x is even.

If x is even then x is a multiple of 4.

When the two parts of an if ... then ... statement are swapped in this way,
the result is called the converse. In this case, clearly the first statement is true,
and the converse is false. This is clear because the multiples of 4 form a strict
subset of the evens, so the converse cannot possibly be true. In other words, the
converse of a statement is not the same as the original statement.

In contrast, here are two converse statements from Year 9 geometry.

If a quadrilateral is a rhombus then it has four equal sides.

If a quadrilateral has four equal sides then it is a rhombus.

In this case both statements are true, but it is important to realise that the
converse statement is still not the same as the original. In the first statement, it
is given that the quadrilateral is a rhombus. This is called the premise, and the
conclusion is that it has four equal sides. The second statement differs because
the premise is now that the quadrilateral has four equal sides, and the conclusion
is that it is a rhombus.

9

CONVERSE STATEMENTS:

The converse of the statement if A then B is the statement if B then A.

A statement and its converse may have different logical values.

Equivalent Statements: Two statements are called equivalent if each is a logical
consequence of the other. When solving an equation, the separate steps were
called equivalent equations, which are examples of equivalent statements. Thus

2x + 3 = 11 and 2x = 8

are equivalent. The latter can be obtained by subtracting 3 from both sides of
the first. The former can be obtained by adding 3 to both sides of the second.
So each is a logical consequence of the other. This symmetry means that the two
statements can be written as an if ... then ... statement and its converse, both
of which are true.

If 2x + 3 = 11 then 2x = 8.

If 2x = 8 then 2x + 3 = 11.

10

EQUIVALENT STATEMENTS: Two statements are equivalent if each is a consequence

of the other. This symmetry means that the two statements can be written as

an if ... then ... statement and its converse, both with the same logical value.

Clearly equivalent statements are important and so they have special terminology
and notation. The two implications are often abbreviated into one statement
using the words if and only if . Thus, from the geometry example above:

a quadrilateral is a rhombus if and only if it has four equal sides.

When written, the words if and only if may be abbreviated to iff, or the symbol ⇔
may be used. Here is the same statement written in those two ways.

A quadrilateral is a rhombus iff it has four equal sides.

A quadrilateral is a rhombus ⇔ a quadrilateral has four equal sides.
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2A The Language of Proof 63

Whichever of the new terminology or symbol is used, it is important to remember
that the statement is always an abbreviation of two implications. Thus

n is divisible by 3 iff the sum of its digits is divisible by 3

is a mathematical abbreviation for the two implications

if n is divisible by 3 then the sum of its digits is divisible by 3,

if the sum of the digits of n is divisible by 3 then n is divisible by 3.
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Since equivalent statements can be written as a pair of
implication statements, it follows that each corresponds
to a subset of the other. Consider the the powers of 2 on
a die, which are 1, 2 and 4, denoted by set T . These are
also the proper factors of 8, denoted by set E. Thus:

x is a power of 2 on a die iff it is a proper factor of 8,

x ∈ T ⇔x ∈ E.

Since each set is a subset of the other, it follows that both sets are equal. That
is T = E, as shown in the Venn diagram above.

11
EQUIVALENT STATEMENTS AND SETS: The sets corresponding to equivalent statements

are equal.

Recall that an implication is associated with the words sufficient and necessary.
Writing the last example of equivalence as an implication and its converse:

if x is a power of 2 on a die then it is a proper factor of 8,

if x is a proper factor of 8 on a die then it is a power of 2.

From the first of these, it is sufficient that x is a power of 2 on a die for it to be
a proper factor of 8. From the second, it is necessary that x is a power of 2 on a
die for it to be a proper factor of 8. In other words, x is a power of 2 on a die
is both a necessary and sufficient condition for it to be a proper factor of 8. A
similar situation will hold for any pair of equivalent statements.

12
NECESSARY AND SUFFICIENT: When two statements are equivalent, each is both a

necessary and sufficient condition for the other to be true.

The Contrapositive: There are many examples of pairs of equivalent statements,
but one particular situation plays an important part in many proofs. By way of
example, recall that

if x is a prime on a die then it is a Fibonacci number.

This is logically equivalent to the contrapositive statement

if x is not a Fibonacci number on a die then it is not a prime.

Notice that the two parts of the if ... then ... statement have been negated and
the order swapped. This is always the case with the contrapositive statement. It
is also always the case that an implication and its contrapositive are equivalent.

A practical example may help cement this new concept. Thus

if I own a dog then I have a pet

is logically equivalent to its contrapositive

if I do not have a pet then I do not own a dog.
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64 CHAPTER 2: Proof 2A

This means that an implication and its contrapositive can be written in the form
of an if and only if statement:

A implies B if and only if not B implies not A,

or, writing this entirely in symbols:

(A⇒B)⇔ (∼B ⇒∼A).

13
THE CONTRAPOSITIVE: An implication, if A then B, is logically equivalent to its

contrapositive, if not B then not A.

The situation is clear from the Venn diagram of the primes and Fibonacci numbers
on a die. In that case P ⊆ F , and consequently F ⊆ P . That is, if x is not a
Fibonacci number on a die then it is not prime. Here are Venn diagrams with F

and P shaded to demonstrate that F ⊆ P .

1
2

3
5

4

6

F

S

P
1

2

3
5

4

6

F

S

P

It is further confirmed that F ⊆ P by listing the elements of each set. Thus
F = {4, 6} whilst P = {1, 4, 6}.

Exercise 2A

1. Identify each of these symbols.

(a) = (b) ⇒ (c) ⇔ (d) ∀ (e) ∃
2. Write down the converse of each statement, and state whether the converse is true or false.

(a) If a triangle has two equal sides, then it has two equal angles.

(b) If a number is odd, then its square is odd.

(c) If I am a horse, then I have four legs.

(d) If a number ends with the digit 6, then it is even.

(e) Every square is a rhombus.

(f) If
√

n ∈ R, then n ≥ 0.

3. Indicate whether each statement is true or false.

(a) Having four legs is a necessary condition for being a cat.

(b) Having four legs is a sufficient condition for being a cat.

(c) Owning a car is a necessary condition for holding a driver’s licence.

(d) Owning a car is a sufficient condition for holding a driver’s licence.

(e) If two statements are equivalent, then each is a necessary condition for the other to
be true.

(f) If two statements are equivalent, then each is a sufficient condition for the other to be
true.

4. Write down the negation of each statement.

(a) All cars are red.

(b) a > b

(c) Hillary likes steak and pizza.

(d) Bill is correct or Dave is correct.

(e) If I live in Tasmania, then I live in Australia.

(f) If Nikhil doesn’t study, then he will fail.

(g) −3 ≤ x ≤ 8

(h) x < −5 or x ≥ 0

.
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5. Write down the contrapositive of each statement.

(a) If I water my plants, then they will grow.

(b) If you do not live in Australia, then you do not live in Melbourne.

(c) If a triangle has three equal sides, then it has three equal angles.

(d) If I like cycling, then I do not like motorists.

(e) If a number is even, then the next number is odd.

(f) If a and b are both positive and a > b, then 1
a

< 1
b
.

6. Write down (in ‘if. . . then’ form) the two converse statements equivalent to each ‘if and
only if’ statement.

(a) A number is divisible by 15 if and only if it is divisible by both 3 and 5.

(b) A triangle has two equal angles if and only if it has two equal sides.

(c) An integer n greater than one is prime if and only if its only divisors are 1 and n.

(d) A quadrilateral is a parallelogram if and only if a pair of opposite sides are equal and
parallel.

D E V E L O P M E N T

7. State whether each statement is true ∀x ∈ R. If it is false, provide a counterexample.

(a) x − 3 < x

(b) 3x ≥ x

(c) 10x > 0

(d) x ≤ x2

(e) | − x| = x

(f) |x| =
√

x2

8. State whether each statement is true ∀ a, b ∈ R. If it is false, provide a counterexample.

(a) If a > b, then a2 > b2

(b) If a2 > b2, then a > b

(c) If a > b, then a3 > b3

(d) If a, b < 0 and a < b, then 1
a > 1

b .

(e) |a + b| ≥ |a|+ |b|
(f) |a − b| ≥

∣

∣|a| − |b|
∣

∣

9. Assuming that all variables are real variables, insert the correct symbol ⇒ or ⇔ in each
statement below.

(a) it is raining . . . there are clouds in the sky

(b) 3a = 6 . . . 5a = 10

(c) a > b . . . −b > −a

(d) x = 5 . . . x2 = 25

(e) x = 5 . . . x3 = 125

(f) a is an integer . . . a2 is an integer

10. Answer true or false. Assume that a, b, c 6= 0.

(a) θ = π
6
⇔ sin θ = 1

2

(b) sin θ = − 1√
2
⇔ tan θ = ±1

(c) x2 + y2 < 1⇔(x, y) is a point inside the circle x2 + y2 = 1

(d) α and β are the roots of ax2 + bx+ c = 0⇔ 1
α

and 1
β

are the roots of cx2 + bx+a = 0.

11. Suppose that p is the statement ‘Jack does Extension 2 Mathematics’ and q is the state-
ment ‘Jack is crazy’. Write each of the following as English sentences.

(a) p⇒ q

(b) ∼ (p⇒ q)

(c) ∼ p⇒ q

(d) ∼ q⇒ p

(e) ∼ p⇒ ∼ q

(f) p 6⇒ q

12. Write each statement as an English sentence, without any use of symbols.

(a) ∀n ∈ Z ∃m ∈ Z such that m > n (b) a ∈ R and a > 0 ⇒ a +
1

a
≥ 2

.
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66 CHAPTER 2: Proof 2B

13. An implication is false if the premise is true but the conclusion is false. Otherwise it is
true. State whether each statement is true or false.

(a) 1 + 1 = 3⇒ 2 + 2 = 4

(b) 1 + 1 = 2⇒ 2 + 2 = 3

(c) 1 + 1 = 3⇒2 + 2 = 3

(d) 1 + 1 = 2⇒2 + 2 = 4

14. (a) Explain why “1 < 0” and “1 is a negative number” are equivalent statements.

(b) Combine them into an if ... then ... statement. Is the result true?

15. Consider the following statements:

(1) If I do not do my homework then I will fail.
(2) If I study hard then I will pass.

If statements (1) and (2) are both true and I passed, then:

(a) Did I do my homework? (b) Did I study hard?

E N R I C H M E N T

16. Consider this statement:

‘If either Anna or Bryan passed the exam, then either Anna and Chris both passed or
Bryan and Chris both passed.’

If the statement is false, determine whether Chris passed or failed.

17. On a train, Pender, Sadler and Ward are the the fireman, guard and driver, but NOT
respectively. Also aboard the train are three passengers who have the same names: Dr Pen-
der, Mr Sadler and Mr Ward.

1. Mr Sadler lives in Sydney.
2. The guard lives exactly half way between Melbourne and Sydney.
3. Mr Ward earns exactly $100 000 per year.
4. The guard’s nearest neighbour, one of the passengers, earns exactly three times as much
as the guard.
5. Pender beats the fireman at pool.
6. The passenger whose name is the same as the guard’s lives in Melbourne.

Who is the driver? Clearly explain your reasoning.

2B Number Proofs

Now that the basic concepts, terminology and notation of proof are understood,
they can be put together to write proofs of simple results. The geometry studied
in Years 7 to 10 involved many such proofs, and it would be worth reviewing some
of those in light of this new understanding. In this section and in 2C, however,
attention is focused on some basic results in number theory, that is, the study of
the structures and number patterns in:

Z the integers . . .− 3,−2,−1, 0, 1, 2, 3, . . .

Z
+ the positive integers 1, 2, 3, . . .

N the natural numbers 0, 1, 2, 3, . . .

A proper investigation of number theory would occupy an entire book, so only a
few simple results in divisibility are proven here.

.
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2B Number Proofs 67

Divisibility: It is important to begin with a clear definition of what divisibility means.
Let a, b, m ∈ Z and suppose that b = am. The numbers a and m are called factors
of b. Furthermore b is said to be divisible by a. (Equally, b is divisible by m.)
To put it another way, if b and a are integers and b is divisible by a then there
exists an integer m such that b = am.

14 DIVISIBILITY: If a, b ∈ Z and b is divisible by a then ∃m ∈ Z such that b = am.

This definition will be essential in the following worked examples, and in the
exercise questions. Although the wording of the definition may seem obscure, in
practice it is quite obvious. For example, 12 is divisible by 4 because 12 = 4× 3.

WORKED EXAMPLE 1: Let a and b be two integers divisible by 3.

(a) Prove that (a + b) is divisible by 3.

(b) Prove that (ax + by) is divisible by 3, for all x, y ∈ Z.

SOLUTION:

(a) By the definition of divisibility, there exist m, n ∈ Z such that

a = 3m

and b = 3n

Hence (a + b) = (3m + 3n)

= 3(m + n)

That is, (a + b) is divisible by 3.

(b) Likewise, for all x, y ∈ Z,

(ax + by) = (3mx + 3ny)

= 3(mx + ny)

That is, (ax + by) is divisible by 3.

WORKED EXAMPLE 2: Prove that a2 − a is even for all a ∈ Z.

SOLUTION: Factoring, a2 − a = a(a − 1).
Now, if a is odd, then (a − 1) is even,
and if a is even, then (a − 1) is odd.
In either case, the product of an odd and even is even.
Hence a2 − a is even.

Note: this is essentially proof by example, with every case examined.

WORKED EXAMPLE 3: A student claims that if an integer n is divisible by both 4
and 6 then the number is divisible by 4 × 6 = 24.

(a) Disprove this claim by finding a counterexample.

(b) Explain what has gone wrong, and determine the correct conclusion.

SOLUTION:

(a) Clearly 12 = 4× 3 and 12 = 6 × 2,
hence 12 is divisible by both 4 and 6,
but it is not divisible by 24.

(b) The problem is that 4 and 6 have common factor 2.
Since n is divisible by 4 and 6, there exist integers k and ` such that

.
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68 CHAPTER 2: Proof 2B

n = 4k

and n = 6`

so 4k = 6`

or 2k = 3` .

Since 2 and 3 are primes, k is divisible by 3 (and ` is even),

so there exists an integer m such that k = 3m.

Hence n = 4 × 3m

= 12m

That is, if n is divisible by both 4 and 6 then it is divisible by 12.

WORKED EXAMPLE 4: Let n = 10x+y, where n, x, y ∈ Z
+, the positive integers.

(a) Prove that if n is divisible by 7 then (x − 2y) is also divisible by 7.

(b) Further, prove that the converse is true.

(c) Write the result as an iff statement.

(d) Hence determine whether or not 3871 is divisible by 7.

SOLUTION:

(a) Since n is divisible by 7, ∃m ∈ Z
+ such that

10x + y = 7m

The key to the proof is that y has been doubled:

so 20x + 2y = 7 × (2m)

thus −x + 2y = 7(2m− 3x) (subtracting 21x from both sides)

or x − 2y = 7(3x− 2m)

Hence (x− 2y) is divisible by 7.

(b) Since the equations in part (a) are equivalent, it follows that
[

10x + y = 7m
]

⇔
[

x − 2y = 7(3x− 2m)
]

.

Hence if (x − 2y) is divisible by 7 then n = 10x + y is also divisible by 7.

(c) That is, combining parts (a) and (b),

n = 10x + y is divisible by 7 if and only if (x − 2y) is divisible by 7.

(d) Since the result is an equivalence relation, the divisibility test can be applied
recursively. Thus:

3871 is divisible by 7 iff 387− 2× 1 = 385 is divisible by 7.

385 is divisible by 7 iff 38 − 2 × 5 = 28 is divisible by 7.

Now 28 = 7 × 4 is clearly divisible by 7.

Hence 3871 is divisible by 7.

Exercise 2B

Note: In this exercise you may assume that all pronumerals represent integers.

1. (a) If a and b are even, prove that a + b is even.

(b) If a and b are odd, prove that a + b is even.

(c) If a is even and b is odd, prove that a + b is odd.

.
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2B Number Proofs 69

2. (a) If a and b are even, prove that ab is even.

(b) If a and b are odd, prove that ab is odd.

(c) If a is even and b is odd, prove that ab is even.

3. Prove that:

(a) the square of an even number is even,

(b) the square of an odd number is odd.

4. Prove that:

(a) if b and b + c are both divisible by a, then c is divisible by a,

(b) if b and b − c are both divisible by a, then c is divisible by a.

5. If b and c are both divisible by a, prove that bx + cy is divisible by a for any x, y ∈ Z.

6. If a, b, c and d are consecutive integers, prove that:

(a) a + d = b + c (b) ad = bc − 2 (c) a2 + d2 = b2 + c2 + 4

D E V E L O P M E N T

7. Prove that if a − b is even, then a2 − b2 is divisible by 4.

8. Suppose that 2a + b and 3a + 2b are both divisible by n. Prove that a and b are both
divisible by n.

9. Suppose that a2 + a and a2 − a are both divisible by 4. Prove that a is even.

10. Prove that a3 − a is divisible by 6 ∀ a ∈ Z.

11. If a is even, prove that a3 + 2a2 is divisible by 8.

12. Prove that a number is divisible by 6 if and only if it is divisible by both 2 and 3.
(Remember that to prove A⇔B, you must prove B ⇒A and A⇒B.)

13. Prove that an integer is the sum of 7 consecutive integers if and only if it is divisible by 7.

14. (a) If n is odd, prove that the sum of n consecutive numbers is divisible by n.

(b) If n is even, is the sum of n consecutive numbers divisible by n? Explain your answer.

15. Prove that a 4-digit number is divisible by 3 if and only if the sum of its digits is divisible
by 3.

16. Let n = 10x + y, where n, x, y ∈ Z
+.

(a) Prove that if n is divisible by 13, then x + 4y is also divisible by 13.

(b) Prove that the converse of part (a) is true.

(c) Combine (a) and (b) into an ‘if and only if’ statement using mathematical symbols.

(d) Use part (a) recursively to show that 8112 is divisible by 13.

17. (a) Show that xn − 1 = (x − 1)(xn−1 + xn−2 + xn−3 + · · ·+ x2 + x + 1).

(b) Hence prove that:

(i) 7n − 1 is divisible by 6 ∀ n ∈ Z
+,

(ii) if an − 1 is prime, then a = 2 for a > 0.

18. Suppose that n = paqb, where p and q are primes and p 6= q.

(a) Use combinatorics (a counting argument) to explain why n has (a + 1)(b+ 1) factors.

(b) Hence determine the number of factors of 80 000.

19. Prove the statement: a − c is a divisor of ab + cd⇒a − c is a divisor of ad + bc.

.
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E N R I C H M E N T

20. (a) Factorise a4 + 4b4 by adding and subtracting 4a2b2.

(b) Hence prove that 5454 + 4545 is not a prime number.

21. (a) Prove that the square of an even number is divisible by 4.

(b) Prove that the remainder is 1 when the square of an odd number is divided by 8.

(c) Hence prove that if a and b are both odd, then a2 + b2 is not a square.

22. Suppose that p is a prime number greater than 30. Prove that when p is divided by 30,
the remainder is either 1 or prime.

23. Numbers such as 6 and 28 are known as perfect numbers because they are equal to the
sum of their factors, excluding the number itself.

(a) Confirm that 6 and 28 are perfect numbers.

(b) Prove that if 2n − 1 is prime, then 2n−1(2n − 1) is a perfect number.
[Hint: Separate the factors of 2n−1(2n − 1) into two groups: those that are strictly
powers of 2 and those that have the factor 2n − 1.]

24. Suppose that I choose six of the first ten positive integers. Prove that I must have chosen
two numbers such that one is a divisor of the other. [Hint: Write each of the 10 numbers
as a power of 2 multiplied by an odd number, then use the pigeonhole principle.]

2C Proof by Contraposition and by Contradiction

Two methods of proof commonly used in mathematics involve negation. These are
called proof by contraposition and proof by contradiction. The latter is also given
the Latin name reductio ad absurdum, which literally means reduce to absurdity .
The reason for this will be explained later.

Proof by Contraposition: This style of proof takes advantage of the fact that an
implication is equivalent to its contrapositive. Thus when an implication is not
easy to prove directly, it may be suitable to use proof by contraposition instead.
It is important to clearly state what is being done at the outset.

WORKED EXAMPLE 5: Prove that if n2 is even then n is even.

SOLUTION: The contrapositive is proven instead. That is:

if n is not even then n2 is not even,

or, more naturally:

if n is odd then n2 is odd.

Let n = 2m + 1, then n is odd and

n2 = (2m + 1)2

= 4m2 + 4m + 1

= 2(2m2 + 2m) + 1

which is one more than a multiple of 2, and is thus odd.

Hence, by the contrapositive, if n2 is even then n is even.

15
PROOF BY CONTRAPOSITION: An implication and its contrapositive are equivalent.

Hence an implication may be proven by proving its contrapositive instead.

.
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Proof by Contradiction: This style of proof is based on the fact that a statement
can only have one of two values, true or false, and the negated statement must
have the opposite value. That is, if a statement is true then its negation must
be false. Hence proving a statement is equivalent to showing that its negation is
false. Thus when a statement is not easy to prove directly, it may be suitable to
show instead that the negated statement is false.

The first step is to write down the negation as an assumption. It is then shown
that this leads to an absurd statement, like −1 > 2, or it leads to a contradiction
of the initial assumption. This is why the method is also called reductio ad

absurdum . Since the negation is equivalent to a false statement, the negation is
also false. It must therefore hold that the proposition is true.

WORKED EXAMPLE 6: Prove that
√

2 is irrational.

SOLUTION: By way of contradiction, assume that
√

2 is rational.

That is, assume there exist m, n ∈ N (natural numbers) such that
√

2 =
m

n

where n ≥ 1 and the HCF (highest common factor) of m and n is 1.

That is, the fraction has been reduced to lowest terms.

Squaring and re-arranging gives

2n2 = m2 .

Thus m2 is divisible by 2.

Now if m were not divisible by 2 then m2 would not be divisible by 2.

Hence m is also divisible by 2. So let m = 2p and write

2n2 = 4p2

or n2 = 2p2 .

Thus n2 is divisible by 2.

Now if n were not divisible by 2 then n2 would not be divisible by 2.

Hence n is also divisible by 2.

That is, 2 is a common factor of m and n.

But the HCF is 1, so there is a contradiction.

Hence
√

2 is irrational.

16

PROOF BY CONTRADICTION: Proving a statement is equivalent to showing that its

negation is false. Begin by writing down the negation and show this leads to

a contradiction.

Notice the careful use of two contrapositive statements in the above proof. Each
is a restatement of what was proven in Worked Example 5. The proof that

√
3

is irrational requires similar steps. That is:

if m were not divisible by 3 then m2 would not be divisible by 3.

A problem arises at this point because that claim has not been proven. Likewise,
the proof that

√
7 is irrational leads to the claim that

if m were not divisible by 7 then m2 would not be divisible by 7

which also has not been proven. In this course, all such claims will be taken to
be intuitively obvious unless a proof is specifically required by the question.

.
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The next worked example follows a slightly different argument to show that log2 3
is irrational. This result is extremely important in music. Musicians will know
that when a fifth is played on a piano, say from A to E, it is not a pure fifth but
slightly short. A pure fifth has frequencies in the ratio 2 : 3. Thus using A440
should give E660, but on a piano it is approximately E659. This is done so that
the cycle of fifths works, and it comes about because log2 3 is irrational.

WORKED EXAMPLE 7: Prove that log2 3 is irrational.

SOLUTION: By way of contradiction, assume that log2 3 is rational.

That is, assume there exist m, n ∈ N such that

log2 3 =
m

n

where n ≥ 1 and the HCF of m and n is 1.

That is, the fraction has been reduced to lowest terms.

From the definition of logs, this can be re-written as

3 = 2
m

n .

Take the nth power of both sides to get

3n = 2m

Now since n ≥ 1 it follows that 3 is a factor of the LHS.

But clearly 3 is not a factor of the RHS, so there is a contradiction.

Hence log2 3 is irrational.

The Fundamental Theorem of Arithmetic: In the last proof it was assumed that
a positive power of 3 cannot equal a positive power of 2. Intuition and experience
certainly seem to suggest this is true, but it has not been proven. The result is
a specific case of a more general theorem. The theorem effectively states that
there is only one way to write a number in prime factored form. This is such
an important result in number theory that it is given the name the fundamental

theorem of arithmetic . Although any proof of this result is beyond the scope of
this course, it is such an important theorem that a proof has been included in
the appendix to this chapter.

Exercise 2C

1. Prove by contradiction that log7 13 is irrational.

Start by assuming that log7 13 is rational, so log7 13 = m
n

, where m, n ∈ Z and m, n have
no common factors other than 1.

2. Prove by contradiction that
√

5 is irrational.

Start by assuming that
√

5 is rational, so
√

5 = m
n

, where m, n ∈ Z and m, n have no
common factors other than 1.

3. Consider this statement for a ∈ N: ‘If a2 is odd then a is odd.’

(a) Write down the contrapositive of the statement.

(b) Prove the statement by proving its contrapositive.

4. By proving the contrapositive, prove that if m2 + 4m + 7 is even, then m is odd.

5. Suppose that a, b ∈ Z
+. By proving the contrapositive, prove that if ab is even, then a is

even or b is even.

.
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D E V E L O P M E N T

6. (a) Prove that log3 5 is irrational.

(b) Hence prove that log3 15 is irrational.

7. (a) Prove that
√

11 is irrational.

(b) Hence prove that
√

44 is irrational.

8. Suppose that the number n is composite and has two distinct prime factors p1 and p2.
Use contradiction to prove that at least one of p1 and p2 is less than

√
n.

9. Suppose that ∃ n ∈ N such that n2 + 2 is divisible by 4.

(a) Deduce that n is even.

(b) Hence prove by contradiction that no such n exists.

10. (a) Explain why every odd number is one more or one less than a multiple of 4.

(b) Prove that the product of any two positive integers of the form 4n + 1, where n is a
positive integer, is also of the form 4n + 1.

(c) Hence prove by contradiction that any composite number of the form 4n − 1 must
have at least one prime factor of the form 4n − 1.

11. Prove by contradiction that if n ∈ Z
+, then

√
4n − 2 is irrational.

12. Prove by contradiction that
√

3 + 1 is irrational.

13. (a) Prove that
√

6 is irrational.

(b) Hence prove that
√

3 +
√

2 is irrational.

14. Prove that if 2n − 1 is prime then n is prime by proving the contrapositive.

15. Prove by contradiction that there are infinitely many prime numbers.
[Hint: Assume that p is the largest prime number and consider the number p! + 1, which
is not divisible by any number from 2 to p.]

E N R I C H M E N T

16. Consider the following theorem about prime numbers.

If
(

∀ a, b ∈ Z
+, p|ab⇒p|a or p|b

)

then p is prime.

(a) State the contrapositive of the theorem.

(b) Prove the theorem by proving the contrapositive.
[Hint: Put a = p1, where p1 is a prime divisor of p, and b = p

p1

.]

17. Suppose that a, b, c and d are positive integers and c is not a square.

(a) Prove that if
a

b +
√

c
+

d√
c

is rational, then b2d = c(a + d).

(b) Hence prove by contradiction that
a

1 +
√

c
+

d√
c

is irrational.

18. Suppose that p is a prime number greater than 3 and that for some n ∈ N, pn is a 20-digit
number. Prove that among these 20 digits, there are at least three that are equal.
[Hint: Use proof by contradiction and the test for divisibility by 3.]

19. Prove by contradiction that ∀ a, b ∈ Z
+, (36a + b)(36b + a) is not a power of 2.

[Hint: Assume that 2k is the smallest power of 2 equal to (36a + b)(36b + a).]
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2D Algebraic Inequalities

Two fundamental assumptions about inequalities will be used throughout this
course. They should be intuitively obvious from previous work on equations and
inequations. Those assumptions are, for real numbers a, b and c :

if a > b then a + c > b + c ,

if a > b and c > 0 then ac > bc ,

with similar results for a < b. The first statement means that an inequality is
unchanged when the same amount is added to both sides. In the second case
the inequality is unchanged when both sides are multiplied by the same positive
amount. A particular case of the first statement is when c = −b, which gives

if a > b then a − b > 0 .

That is, if a > b then (a − b) is positive. The converse is also assumed true.

There is an amazing number of types of algebraic inequalities, but most can be
assigned to one of four broad categories for proving. Those are:

• put everything on one side,
• squares of reals cannot be negative,
• combinations of inequalities,
• begin with a known result.

The first category takes advantage of the last statement above.

Put Everything on One Side: In a few instances the inequality can easily be proved
by moving all terms to one side and considering the sign of that expression.

WORKED EXAMPLE 8: Let a < b be real numbers. Prove that the average of the
squares of a and b is greater than the square of the average.

SOLUTION: The corresponding inequality to prove is

a2 + b2

2
>

(

a + b

2

)2

.

Now LHS − RHS =
a2 + b2

2
− a2 + 2ab + b2

4

=
a2 − 2ab + b2

4

=
(a − b)2

4
> 0 (since squares cannot be negative.)

Hence
a2 + b2

2
−

(

a + b

2

)2

> 0

and so
a2 + b2

2
>

(

a + b

2

)2

.

Squares Cannot be Negative: The crucial step in the previous worked example was
that the square of a real number cannot be negative. That fact can be deduced
from the assumptions at the start of this section, and the proof is left as an
exercise. This important result can be used to solve numerous other inequalities.

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



2D Algebraic Inequalities 75

Arithmetic and Geometric Means: Recall from sequences and series that if a

and b are positive real numbers then the sequence a, x, b will be arithmetic if

x =
a + b

2
.

The value of x is called the arithmetic mean of a and b.

Likewise, the sequence a, y, b will be geometric if

y =
√

ab .

The value of y is called the geometric mean of a and b.

17

ARITHMETIC AND GEOMETRIC MEANS: Suppose that a and b are positive.

• The arithmetic mean of a and b is
a + b

2
.

• The geometric mean of a and b is
√

ab .

The AM/GM Inequality: One very important result is that the arithmetic mean
is at least as large as the geometric mean. This is sometimes called the AM/GM
inequality. It is proved by noting that squares of real numbers cannot be negative.

WORKED EXAMPLE 9: Prove the AM/GM inequality.

SOLUTION: Let a and b be two positive real numbers.
Since squares cannot be negative,

(√
a −

√
b
)2

≥ 0 .

Expanding a − 2
√

ab + b ≥ 0

so a + b ≥ 2
√

ab

or
a + b

2
≥

√
ab .

18

THE AM/GM INEQUALITY: The arithmetic mean and geometric mean of two positive

numbers a and b are related by the inequality

a + b

2
≥

√
ab .

The AM/GM inequality can also be proven using circle geometry and that is
done in a worked example in Section 2E.

Combinations of Inequalities: Having established an inequality, it can be restated
using other variables and the results combined to form a new inequality.

WORKED EXAMPLE 10:

(a) Suppose that 1 ≤ k ≤ n.

(i) Show that n ≤ k(n − k + 1).

(ii) Explain why
√

n ≤
√

k(n − k + 1) ≤ n + 1

2
.

(b) Hence prove that, for all positive integers n,

√
nn ≤ n! ≤

(

n + 1

2

)n

.

.
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76 CHAPTER 2: Proof 2D

SOLUTION:

(a) (i) The right hand side is a quadratic in k with negative leading coefficient:

k(n + 1) − k2 .

Hence its graph is concave down, and any minimum will occur at an end
point of the domain. Direct substitution of the two end points gives

1× n = n × 1 = n.

(ii) The left hand inequality follows directly from part (i).
By the AM/GM inequality,

√

k(n − k + 1) ≤ k + (n − k + 1)

2

≤ n + 1

2
.

(b) By part (a) it follows that

√
n ≤

√
1 × n ≤ n + 1

2
(k = 1)

√
n ≤

√

2(n − 1) ≤ n + 1

2
(k = 2)

√
n ≤

√

3(n − 2) ≤ n + 1

2
(k = 3)

...
√

n ≤
√

n × 1 ≤ n + 1

2
(k = n)

Now multiply all these results together to get

(√
n

)n ≤
√

(

1× 2 × . . .× n
)

×
(

n × (n − 1) × . . .× 1
)

≤
(

n + 1

2

)n

hence
√

nn ≤
√

n! × n! ≤
(

n + 1

2

)n

or
√

nn ≤ n! ≤
(

n + 1

2

)n

This example happened to use multiplication of inequalities. Other examples
may require addition, subtraction or division. Multiplication and division should
be avoided unless it is guaranteed that the quantities involved do not change sign.
Otherwise it is not known whether the direction of the inequality is affected.

Begin with a Known Result: Many problems begin with a known result from which
another inequality is to be obtained. An important example of this is the relation

|x|+ |y| ≥ |x + y| ≥
∣

∣

∣
|x| − |y|

∣

∣

∣

which is known as the triangle inequality. This was proven in the chapter on
complex numbers by using geometry. In the following Worked Example the left
hand inequality is proven algebraically.

.
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WORKED EXAMPLE 11: Use the fact that |a| ≥ a to prove that |x|+ |y| ≥ |x+y|.

SOLUTION: Square the left hand side to get

(|x|+ |y|)2 = x2 + 2|x||y|+ y2

≥ x2 + 2xy + y2 (since |a| ≥ a)

so (|x|+ |y|)2 ≥ (x + y)2 .

Now take the square root of both sides to get

|x|+ |y| ≥ |x + y| (since
√

a2 = |a| on the RHS.)

The proof of the other part of the triangle inequality is left as an exercise.

In other problems restrictions are placed on the variables, such as a + b + c = 1,
from which it follows that ab + ac + bc < 1

3
. The usual approach is to begin

manipulating the expression and at crucial steps apply the given restrictions.

In some instances the solution also involves changing the value of a fraction by
altering the numerator or denominator. For example, decreasing the numerator
or increasing the denominator will reduce the value of the fraction. This is clearly
evident in the following numerical example.

3

5
>

2

5
>

2

7

The strategy is used twice in the next worked example, along with a restriction.

WORKED EXAMPLE 12: Let a, b and c be three positive real numbers. It is known
that a + b ≥ c.

(a) Show that
a + b

1 + a + b
≥ c

1 + c
.

(b) Hence show that
a

1 + a
+

b

1 + b
− c

1 + c
≥ 0 .

SOLUTION:

(a) LHS − RHS =
(a + b)(1 + c) − c(1 + a + b)

(1 + a + b)(1 + c)

=
(a + b) − c

(1 + a + b)(1 + c)

≥ c− c

(1 + a + b)(1 + c)
(since a + b ≥ c)

Thus LHS − RHS ≥ 0 , and hence LHS ≥ RHS .

(b)
a

1 + a
+

b

1 + b
− c

1 + c
≥ a

1 + a
+

b

1 + b
− a + b

1 + a + b
(by part (a))

=
a

1 + a
+

b

1 + b
− a

1 + a + b
− b

1 + a + b

≥ a

1 + a
+

b

1 + b
− a

1 + a
− b

1 + b
,

since decreasing the denominators increases the subtracted fractions.

Hence
a

1 + a
+

b

1 + b
− c

1 + c
≥ 0 .
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Exercise 2D

1. Given that a > 1, prove that a2 > 1 by proving that LHS − RHS > 0.

2. Prove these inequalities for a, b ∈ R. [Hint: Begin with LHS − RHS.]

(a) a2 + b2 ≥ 2ab (b)
a2

b2
+

b2

a2
≥ 2 (c)

a2 + b2

2
≥

(

a + b

2

)2

3. Prove that a +
1

a
≥ 2 for a > 0.

4. Prove, for a, b > 0, that:

(a) 1
2
(a + b) ≥

√
ab (b) 1

3
a + 3

4
b ≥

√
ab

5. If a > b > 0, prove that:

(a) a2 − b > b2 − a (b) a3 − b3 > a2b − ab2

6. (a) Given that x and y are non-negative, prove that x + y ≥ 2
√

xy.

(b) Hence prove that (x + y)(x + z)(y + z) ≥ 8xyz, where z is also non-negative.

D E V E L O P M E N T

7. Suppose that p, q and r are real and distinct.

(a) Prove that p2 + q2 > 2pq.

(b) Use part (a) three times to prove that p2 + q2 + r2 > pq + qr + rp.

(c) Given that p + q + r = 1, prove that pq + qr + rp < 1
3
.

[Hint: Begin with (p + q + r)2 = 1 and use part (b).]

8. Suppose that a, b and c are real numbers.

(a) Prove that a4 + b4 + c4 ≥ a2b2 + a2c2 + b2c2.

(b) Hence show that a2b2 + a2c2 + b2c2 ≥ a2bc + b2ac + c2ab.

(c) Deduce that if a + b + c = d, then a4 + b4 + c4 ≥ abcd.

9. Suppose that a, b and c are positive.

(a) Prove that a2 + b2 ≥ 2ab.

(b) Hence prove that a2 + b2 + c2 ≥ ab + bc + ca.

(c) Given that a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc− ca),
prove that a3 + b3 + c3 ≥ 3abc.

(d) If x, y and z are positive, show that x + y + z ≥ 3 (xyz)
1

3 .

10. (a) Prove that 1 + x ≥ 2
√

x for x > 0.

(b) Suppose that x, y, z > 0 and (1 + x)(1 + y)(1 + z) = 8. Prove that xyz ≤ 1.

11. (a) Expand

(

a

b
− b

a

)4

.

(b) Hence prove that
a4

b4
+

b4

a4
+ 6 ≥ 4

(

a2

b2
+

b2

a2

)

for a, b ∈ R.

(c) Deduce that
x2

y2
+

y2

x2
+ 6 ≥ 4

(

x

y
+

y

x

)

for x, y > 0.

12. (a) Suppose that a, b, c and d are positive.

Use the fact that a2 + b2 ≥ 2ab to show that
a2 + b2 + c2 + d2

4
≥

√
abcd.

(b) Hence show that
w + x + y + z

4
≥ 4

√
wxyz for w, x, y, z > 0.
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13. (a) Show that a2 + b2 ≥ 2ab for all real numbers a and b.

(b) Hence show that a2 + b2 + c2 − ab − bc − ca ≥ 0.

(c) Deduce that for all positive real numbers a, b and c:

(a + b + c)2 ≥ 3(ab + bc + ca)

(d) Suppose that a, b and c are the side lengths of a triangle.

(i) Explain why (b − c)2 ≤ a2.

(ii) Deduce that (a + b + c)2 ≤ 4(ab + bc + ca).

14. Suppose that a, b and c are positive.

(a) Prove that
a

b
+

b

a
≥ 2.

(b) Hence show that (a + b + c)

(

1

a
+

1

b
+

1

c

)

≥ 9.

(c) (i) Prove that a3 + b3 ≥
(

a

c
+

b

c

)

abc, and write down similar inequalities for b3 + c3

and c3 + a3.

(ii) Hence prove that a3 + b3 + c3 ≥ 3abc.

(iii) Deduce that
a

b
+

b

c
+

c

a
≥ 3.

15. In the previous question we proved that
a

b
+

b

a
≥ 2 for a, b > 0. Use this result to prove

that ab(a + b) + bc(b + c) + ca(c + a) ≥ 6abc for a, b, c > 0.

16. Suppose that x and y are positive.

(a) Prove that
1

x
+

1

y
≥ 4

x + y
.

(b) (i) Prove that
1

x2
+

1

y2
≥ 2

xy
.

(ii) Use part (i) and the square of part (a) to prove that
1

x2
+

1

y2
≥ 8

(x + y)2
.

17. It is known that |a| ≥ a for any real number a.

Let x and y be any two real numbers. Use the above result to prove the triangle inequality

|x− y| ≥
∣

∣|x| − |y|
∣

∣ .

[Hint: Begin with LHS2 − RHS2.]

18. [Triangle inequality with complex numbers]

(a) Let z = x + iy be a complex number. Prove algebraically that Re(z) ≤ |z|.
(b) Let z and w be two complex numbers. Prove that |z + w| ≤ |z|+ |w|.

Begin by writing |z + w|2 = (z + w)(z + w) .

(c) Under what circumstances is |z + w| = |z| + |w|?
E N R I C H M E N T

19. Given a, b, c > 0 and abc = 1, use the AM/GM inequality with three terms to prove that

1 + ab

1 + a
+

1 + bc

1 + b
+

1 + ca

1 + c
≥ 3.
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20. (a) Suppose that a, b, c, a+ b − c, a + c − b and b + c− a are all positive.

(i) Prove that (a + b − c)(a + c − b) ≤ a2.

(ii) Hence prove that (a + b − c)(a + c− b)(b + c − a) ≤ abc.

(b) Now consider a triangle ABC with side lengths a, b and c.

(i) Prove that sin2 1
2
A =

(a + b − c)(a + c− b)

4bc
.

(ii) Deduce that sin 1
2
A sin 1

2
B sin 1

2
C ≤ 1

8
.

21. If a, b, c > 0, prove that
a

b + c
+

b

a + c
+

c

a + b
≥ 3

2
.

[Hint: Begin by adding one to each fraction on the LHS.]

2E Induction

Induction is an important topic in the Mathematics Extension 1 course, and
candidates in Extension 2 are expected to be proficient at the two main styles
already met, sums and divisibility. The Exercise questions include problems
which review this work. Induction will further be applied to inequalities and
verifying formulae for sequences specified recursively.

Review of Induction: Recall that there are three main parts to an induction proof.
First, the statement is verified for any initial terms. The second step proves the
implication that if the statement is true for some integer k then it is true for the
next integer (k + 1). Each proof then concludes with an appeal to the principle
of mathematical induction.

WORKED EXAMPLE 13: Prove by mathematical induction that

n
∑

j=1

(−1)j j2 = 1
2
(−1)n n(n + 1)

for all positive integers n.

SOLUTION: This is just the nth partial sum of the sequence Tj = (−1)j j2,

so let Sn =

n
∑

j=1

Tj

= −12 + 22 − 32 + . . . + (−1)n n2 .

Also recall that for the partial sums of any sequence

Sn+1 = Sn + Tn+1 .

A. When n = 1, LHS = (−1)1 × 12

= −1

and RHS = 1
2(−1)1 × 1 × 2

= −1

= LHS

so the result is true for n = 1.
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2E Induction 81

B. Assume the statement is true for the positive integer n = k.

That is, assume that Sk = 1
2
(−1)k k(k + 1) (†)

Now prove the statement for n = k + 1. That is, prove that

Sk+1 = 1
2
(−1)k+1 (k + 1)(k + 2).

But LHS = Sk + Tk+1

so by the induction hypothesis (†):
LHS = 1

2
(−1)k k(k + 1) + (−1)k+1(k + 1)2

= 1
2(−1)k+1(k + 1)

(

− k + 2(k + 1)
)

= 1
2(−1)k+1 (k + 1)(k + 2)

= RHS.

C. It follows from parts A and B by mathematical induction that the result is
true for all integers n ≥ 1.

Harder questions may involve divisibility problems. In other cases the statement
may only be true for values of n in some specified sequence. The easiest way to
manage this is to replace n with the formula for the mth term of the sequence.
The next Worked Example demonstrates both situations.

WORKED EXAMPLE 14: Prove by mathematical induction that 3n−2n is divisible
by 5 when n is a positive even integer.

SOLUTION: Since n is even, put n = 2m.

Now show that 32m − 22m is divisible by 5 for m ∈ Z
+.

A. When m = 1, 32m − 22m = 9 − 4

= 5 × 1

so the result is true for m = 1.

B. Assume the statement is true for the positive integer m = k.

That is, assume that 32k − 22k = 5p, for some integer p. (†)
Now prove the statement for m = k + 1.

That is, prove that 32(k+1) − 22(k+1) is divisible by 5.

Now 32(k+1) − 22(k+1) = 32k × 9 − 22k × 4

so by the induction hypothesis (†):
32(k+1) − 22(k+1) = (5p + 22k)× 9 − 22k × 4

= 45p + 22k × 5

= 5(9p + 22k)

which is divisible by 5.

C. It follows from parts A and B by mathematical induction that the result is
true for all integers m ≥ 1, and hence is true for all positive even integers n.

Proving Inequalities: Often it is necessary to prove an inequality by induction, thus
combining the techniques of this section with those presented in Section 2D. In
many cases, the best approach for the inequality is to put everything on one side.
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82 CHAPTER 2: Proof 2E

WORKED EXAMPLE 15: Prove by mathematical induction that 2n > n3 for all
integers n ≥ 10.

SOLUTION:

A. When n = 10, LHS = 210

= 1024

and RHS = 103

= 1000

so the result is true for n = 10.

B. Assume the statement is true for the positive integer n = k.

That is, assume that 2k > k3 (†)
Now prove the statement for n = k + 1. That is, prove that

2k+1 > (k + 1)3 .

This will be done by proving LHS − RHS > 0.

LHS − RHS = 2k+1 − (k + 1)3

= 2 × 2k − (k3 + 3k2 + 3k + 1) ,

so by the induction hypothesis (†):
LHS − RHS > 2k3 − (k3 + 3k2 + 3k + 1)

= k3 − (3k2 + 3k + 1)

> k3 − (3k2 + 3k2 + 3k2) (since k > 1)

= k2(k − 9)

> 0 (since k ≥ 10.)

C. It follows from parts A and B by mathematical induction that the result is
true for all integers n ≥ 10.

Proving Recursive Formulae: Recall that sequences can be defined using an initial
value and a recursive formula. For example, consider the sequence defined by

Tn = Tn−1 + 2n , for n > 1, where T1 = 2 .

The first few terms of that sequence are 2, 6, 12, 20, 30, 42, . . . It appears that a
simpler formula for this sequence is

Tn = n2 + n

and this can be proved by mathematical induction.

WORKED EXAMPLE 16: For the sequence defined recursively by

Tn = Tn−1 + 2n , for n > 1, where T1 = 2 ,

prove by mathematical induction that

Tn = n2 + n , for all n ≥ 1.

SOLUTION:

A. When n = 1, RHS = 12 + 1

= 2

so the result is true for n = 1.

.
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B. Assume the statement is true for the positive integer n = k.

That is, assume that Tk = k2 + k (†)
Now prove the statement for n = k + 1. That is, prove that

Tk+1 = (k + 1)2 + (k + 1)

= k2 + 3k + 2 .

From the given recursion formula:

LHS = Tk + 2(k + 1)

so by the induction hypothesis (†):
LHS = k2 + k + 2(k + 1)

= k2 + 3k + 2

= RHS .

C. It follows from parts A and B by mathematical induction that the result is
true for all integers n ≥ 1.

Notice how easy this last induction proof was. It is generally the case that
recursive formulae are easy to prove by induction, but there are exceptions.

Exercise 2E

1. Prove by induction that for all positive integer values of n:

(a)

n
∑

r=1

r = 1
2n(n + 1)

(b)

n
∑

r=1

r(r + 1) = 1
3n(n + 1)(n + 2)

(c)

n
∑

r=1

r2 = 1
6
n(n + 1)(2n + 1)

(d)

n
∑

r=1

(2r − 1)2 = 1
3n(2n − 1)(2n + 1)

(e)

n
∑

r=1

1

r(r + 1)
=

n

n + 1

(f)

n
∑

r=1

1

(2r − 1)(2r + 1)
=

n

2n + 1

2. Prove by induction that for all positive integer values of n:

(a) 5n + 3 is divisible by 4

(b) 23n + 6 is divisible by 7

(c) 5n + 2n+1 is divisible by 3

(d) 9n+2 − 4n is divisible by 5

(e) 6n − 5n + 4 is divisible by 5

(f) 4n + 6n − 1 is divisible by 9

D E V E L O P M E N T

3. Prove by induction that for all positive integer values of n:

(a) 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + · · ·+ n) = 1
6
n(n + 1)(n + 2)

(b) 13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)
2

[Hint: Use question 1 part (a).]

4. Prove by mathematical induction that for even positive values of n:

(a) n2 + 2n is a multiple of 8 (b) n3 + 2n is a multiple of 12

5. Prove by mathematical induction that for odd positive values of n:

(a) 7n + 2n is divisible by 9 (b) 7n + 13n + 19n is divisible by 13

6. Prove these inequalities by mathematical induction:

(a) n2 ≥ 3n − 2 for n ≥ 1 (b) 2n ≥ 1 + 3n for n ≥ 4

.
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84 CHAPTER 2: Proof 2E

7. (a) Prove by induction that (1+ c)n > 1 + cn for all integers n ≥ 2, where c is a non-zero
constant greater than −1.

(b) Hence show that

(

1 − 1

2n

)n

>
1

2
for all integers n ≥ 2.

8. (a) Solve the inequation x2 > 2x + 1.

(b) Hence prove by induction that 2n > n2 for all integers n ≥ 5.

9. In each case a sequence has been defined recursively and then a formula given for the nth
term. Use mathematical induction to prove each formula.

(a) If T1 = 1 and Tn = Tn−1 + n for n ≥ 2, then Tn = 1
2
n(n + 1) for n ≥ 1.

(b) If T1 = 1 and Tn = 2Tn−1 + 1 for n ≥ 2, then Tn = 2n − 1 for n ≥ 1.

(c) If T1 = 5 and Tn = 2Tn−1 + 1 for n ≥ 2, then Tn = 6 × 2n−1 − 1 for n ≥ 1.

(d) If T1 = 1 and Tn =
3Tn−1 − 1

4Tn−1 − 1
for n ≥ 2, then Tn =

n

2n − 1
for n ≥ 1.

10. (a) By differentiating from first principles, show that
d

dx

(

x
)

= 1.

(b) Use mathematical induction and the product rule to show that
d

dx

(

xn
)

= nxn−1 for

all positive integer values of n.

11. Prove by induction that the interior angle sum of a polygon with n sides is (n−2)×180◦.
[Hint: Dissect the (k + 1)-gon into a k-gon and a triangle.]

12. Prove by induction that a polygon with n sides has 1
2n(n − 3) diagonals.

13. Prove by induction that n lines in the plane, no two being parallel and no three concurrent,
divide the plane into 1

2(n2 + n + 2) regions. [Hint: The (k + 1)th line will cross the other
k lines in k distinct points, and so will add k + 1 regions.]

14. Prove by mathematical induction that every set with n members has 2n subsets. [Hint:
When a new member is added to a k-member set, then every subset of the resulting
(k + 1)-member set either contains or does not contain the new member.]

15. Prove by induction that for all positive integer values of n:

(a)
1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
≤ 2− 1

n

(b)
1× 3 × · · · × (2n− 1)

2 × 4× · · · × 2n
≥ 1

2n

16. Prove by induction that n3 − n is divisible by 24 for odd positive values of n.

17. [Formulae for APs and GPs] Use mathematical induction to prove each result.

(a) If T1 = a and Tn = Tn−1 + d for n ≥ 2, then Tn = a + (n − 1)d for n ≥ 1.

(b) If T1 = a and Tn = r Tn−1 for n ≥ 2, then Tn = arn−1 for n ≥ 1.

(c) If S1 = a and Sn − Sn−1 = a + (n − 1)d for n ≥ 2, then

Sn = 1
2n

(

2a + (n − 1)d
)

for n ≥ 1.

(d) If S1 = a and Sn − Sn−1 = arn−1 for n ≥ 2 and r 6= 1, then

Sn =
a (rn − 1)

r − 1
for n ≥ 1.
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2E Induction 85

18. Suppose that a, b > 0 and n is a positive integer.

(a) Prove the inequality an+1 + bn+1 ≥ anb + bna.

(b) Hence prove by induction that

(

a + b

2

)n

≤ an + bn

2
for all positive integers n.

19. (a) By rationalising the numerator, prove that
√

n + 1 −
√

n >
1

2
√

n + 1
.

(b) Hence prove by induction that 1 +
1

2
+

1

3
+ · · ·+ 1

n
<

√
n, for n ≥ 7.

20. (a) Prove the identity 2 cosA sinB = sin(A + B) − sin(A − B).

(b) Hence prove by induction that for all positive integers n,

1
2 + cos θ + cos 2θ + · · ·+ cos(n − 1)θ =

sin(n − 1
2
)θ

2 sin 1
2
θ

.

21. (a) Prove that for positive values of x and y,

x

y
+

y

x
≥ 2.

(b) Hence prove by induction that for positive values of a1, a2, . . . , an,

(

a1 + a2 + · · ·+ an

)

(

1

a1
+

1

a2
+ · · ·+ 1

an

)

≥ n2.

(c) Deduce that cosec2 θ + sec2 θ + cot2 θ ≥ 9 cos2 θ.

E N R I C H M E N T

22. In each case a sequence has been defined recursively and then a formula given for the nth
term. Use a stronger form of induction to prove each formula.

(a) If T1 = 3, T2 = 6, and Tn = 3 Tn−1−2 Tn−2−1 for n ≥ 3, then Tn = n+2n for n ≥ 1.

(b) If T1 = 8, T2 = 34, and Tn = 8 Tn−1−15 Tn−2 for n ≥ 3, then Tn = 5n +3n for n ≥ 1.

(c) If T1 = 12, T2 = 30, and Tn = 5 Tn−1 − 6 Tn−2 for n ≥ 3, then

Tn = 3 × 2n + 2 × 3n for n ≥ 1.

(d) If T0 = T1 = 2, and Tn = 2 Tn−1 + Tn−2 for n ≥ 2, then

Tn =
(

1 +
√

2
)n

+
(

1 −
√

2
)n

for n ≥ 0.

23. (a) Prove the inequality
(

1 − 1

2

)

+

(

1

3
− 1

4

)

+

(

1

5
− 1

6

)

+ · · ·+
(

1

2k − 1
− 1

2k

)

>
k

(2k + 1)(2k + 2)
.

(b) Hence prove by induction that for all n ≥ 2,

n

(

1 +
1

3
+

1

5
+ · · ·+ 1

2n − 1

)

>
(

n + 1
)

(

1

2
+

1

4
+

1

6
+ · · ·+ 1

2n

)

.

24. Define Sn as the sum of the products of all the pairs of distinct integers that can be formed
from the first n positive integers.

So, for example, S3 = 1 × 2 + 1 × 3 + 2 × 3.

Prove by mathematical induction that Sn = 1
24(n − 1)(n)(n + 1)(3n + 2) for n ≥ 2.

.
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25. A squad of n footballers put their training tops out to wash. When the washing has
finished drying, each player takes a training top, but it is found that no-one has their own.
This situation is called a derangement. Let Dn be the number of derangements.

(a) In some derangements, Ben and another player have each other’s top. Explain why
the number of these derangements is (n − 1)Dn−2, for n > 2.

(b) Find a similar formula for the remaining derangements and hence show that

Dn = (n − 1)Dn−1 + (n − 1)Dn−2 , for n > 2 .

(c) Use the above result to show that

Dn − nDn−1 = (−1)×
(

Dn−1 − (n − 1)Dn−2

)

, for n > 2 .

(d) Find D1 and D2, then prove by induction that Dn − nDn−1 = (−1)n, for n > 1.

(e) Hence prove by induction that Dn = n!

n
∑

r=0

(−1)r

r!
for all n ∈ Z

+.

2F Inequalities in Geometry and Calculus

The questions in this section often require the calculus of integration or curve
sketching. Consequently it may be appropriate to delay this section to later in
the course, such as at the end of the Extension 2 Integration chapter.

An Inequality Using Geometry: The AM/GM inequality was proven algebraically
in Section 2D. Here is a geometric proof of this important result. It has the
advantage of allowing readers to see how the inequality works, and identify the
special case of equality.

WORKED EXAMPLE 17: Prove the AM/GM inequality for positive real numbers a

and b using circle geometry. That is, prove that

a + b

2
≥

√
ab

and identify when the two sides are equal.

r

a b

x

P Q
O

W

U

V

SOLUTION:

Construct line segment PQ with |PQ| = a + b.
Construct the circle with diameter |PQ| and centre O.
The radius of this circle is clearly

r =
a + b

2
(the arithmetic mean.)

Let V be the point that divides PQ in the ratio a : b.

Construct chord UW perpendicular to PQ at V .

Hence V bisects UW , so let UV = V W = x.

Now x2 = ab (product of intercepts of intersecting chords)

so x =
√

ab (the geometric mean.)

Finally, the longest chord in a circle is a diameter, hence

r ≥ x

that is
a + b

2
≥

√
ab

with equality when UV is also a diameter. That is, a = b.

.
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2F Inequalities in Geometry and Calculus 87

An Inequality Using Calculus:

1

21 x

y

x
y = 1

1
2

Many inequalities arise through the study of calculus and
geometry. As a very simple example, using an upper and
a lower rectangle to approximate the area between the
hyperbola y = 1

x
and the x-axis for 1 < x < 2 gives

1
2

< log 2 < 1 .

Often knowledge of other topics is also required. The
following worked example makes use of calculus and a
geometric series to find an approximation for log 3

2
which

is accurate to two decimal places.

WORKED EXAMPLE 18: Consider the geometric series

S2n = 1 − h + h2 − . . . + h2n,

where 0 < h < 1.

(a) Show that S2n−1 <
1

1 + h
< S2n.

(b) Integrate the previous result between h = 0 and h = x, where 0 < x < 1,
and hence write down a polynomial inequality for log(1 + x).

(c) Use n = 3 to estimate the value of log 3
2

.

SOLUTION:

(a) Now S2n−1 = 1 − h + h2 − h3 + . . .− h2n−1

=
1 − (−h)2n

1 − (−h)
(by GP theory)

=
1 − h2n

1 + h

<
1

1 + h
(increase numerator)

and S2n = 1 − h + h2 − . . . + h2n

=
1 − (−h)2n+1

1 − (−h)
(by GP theory)

=
1 + h2n+1

1 + h

>
1

1 + h
(decrease numerator)

hence S2n−1 <
1

1 + h
< S2n .

(b)

∫ x

0

S2n−1 dh <

∫ x

0

1

1 + h
dh <

∫ x

0

S2n dh

or

[

h − h2

2
+ . . .− h2n

2n

]x

0

<
[

log(1 + h)
]x

0
<

[

h − h2

2
+ . . . +

h2n+1

2n + 1

]x

0

so x − x2

2
+

x3

3
− . . .− x2n

2n
< log(1 + x) < x − x2

2
+

x3

3
− . . . +

x2n+1

2n + 1

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



88 CHAPTER 2: Proof 2F

(c) Put n = 3 and x = 1
2

to get

1
2
− 1

8
+ 1

24
− 1

64
+ 1

160
− 1

384
< log 3

2
< 1

2
− 1

8
+ 1

24
− 1

64
+ 1

160
− 1

384
+ 1

896

so 259
640

< log 3
2

< 909
2240

or 0·4047 < log 3
2

< 0·4058

These calculations suggest that log 3
2 =.

. 0·405, correct to three decimal places.
The actual value is 0·40547, correct to five decimal places.

Exercise 2F

A

B

O

1. (a) A regular dodecagon is drawn inside a circle of radius 1 cm
and centre O so that its vertices lie on the circumference, as
shown in the first diagram. Determine the area of 4OAB,
and hence find the exact area of the inscribed dodecagon.

G

H

O

(b) (i) Use the formula for tan2θ to show that tan15◦ = 2−
√

3.

(ii) Another regular dodecagon is drawn with centre O, so
that each side is tangent to the circle, as shown in the
second diagram. Find the area of 4OGH and hence find
the exact area of the circumscribed dodecagon.

(c) By considering the results in parts (a) and (b), show that

3 < π < 12(2−
√

3) =.
. 3·24 .

2. (a) Use Simpson’s rule with three function values to approximate
the area under y = sinx between x = 0 and x = π

3 .

(b) Hence show that π =.
. 18

13(4 −
√

3), which is accurate to two
decimal places.

1 2

A

B

x

y

1

P
M

N
C D

3
2

3. The points A, P and B on the curve y =
1

x
have x-coordinates

1, 11
2

and 2 respectively. The points C and D are the feet of the
perpendiculars drawn from A and B to the x-axis. The tangent
to the curve at P cuts AC and BD at M and N respectively.

(a) Find the areas of trapezia ABDC and MNDC.

(b) Hence show that 2
3

< ln 2 < 3
4
.

x

y

A

B

C O

M

N

P

Q

4. The diagram shows the points A(0, 1) and B(−1, e−1) on the curve
y = ex, and the point C(−1, 0) on the x-axis. The tangent at

P (−1
2
, e−

1

2 ) intersects OA at M and BC at N .

(a) Determine the exact area of the region bounded by the curve,
BC, CO and OA.

(b) Find the area of trapezium OABC.

(c) Show that the area of OMNC is equal to CO×PQ, and hence
find the area of the trapezium.

(d) Hence show that 1
2
(3 +

√
5) < e < 3.

5. Suppose that m ≤ f(x) ≤ M in the interval a ≤ x ≤ b. Use a diagram to help prove that

m(b − a) ≤
∫ b

a

f(x) dx ≤ M(b − a) .

.
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2F Inequalities in Geometry and Calculus 89

D E V E L O P M E N T

1

y

x1 3 5

6. The diagram shows upper rectangles for the graph of y =
1

x
.

(a) By considering appropriate areas, show that

1 +
1

2
+

1

3
+ . . . +

1

n
≥ log(n + 1) .

(b) What do you conclude about the infinite series

1 +
1

2
+

1

3
+ . . .?

7. (a) Show, using calculus, that the graph of y = ln x is concave down throughout its
domain.

(b) Sketch the graph of y = ln x, and mark two points A(a, lna) and B(b, lnb) on the
curve, where 0 < a < b.

(c) Find the coordinates of the point P that divides the interval AB in the ratio 2 : 1.

(d) Using parts (b) and (c), deduce that 1
3

lna + 2
3

ln b < ln(1
3
a + 2

3
b).

8. Let f(x) = xn e−x, where n > 1.

(a) Show that f ′(x) = xn−1e−x(n − x).

(b) Show that (n, nne−n) is a maximum turning point of the graph of f(x), and hence
sketch the graph for x ≥ 0. (Don’t attempt to find points of inflexion.)

(c) Explain why xne−x < nne−n for x > n. Begin by considering the graph of f(x) for
x > n.

(d) Deduce from part (c) that (1 + 1
n)n < e.

9. The function f(x) is defined by f(x) = x − loge(1 + x2).

(a) Show that f ′(x) is never negative.

(b) Explain why the graph of y = f(x) lies completely above the x-axis for x > 0.

(c) Hence prove that ex > 1 + x2, for all positive values of x.

10. Consider the function y = ex

(

1 − x

10

)10

.

(a) Find the two turning points of the graph of the function.

(b) Discuss the behaviour of the function as x → ∞ and as x → −∞.

(c) Sketch the graph of the function.

(d) From your graph, deduce that ex ≤
(

1 − x

10

)−10

, for x < 10.

(e) Hence show that

(

11

10

)10

≤ e ≤
(

10

9

)10

.

11. (a) Let a, b and c be the lengths of the sides of a triangle and let 6 A be opposite side a.
Use the cosine rule to help prove that |b − c| ≤ a ≤ b + c.
That is, prove that one side of a triangle is longer than the difference between the
other two sides and shorter than the sum of the other two sides.

(b) Hence prove for any two complex numbers z and w that
∣

∣

∣
|z| − |w|

∣

∣

∣
≤ |z ± w| ≤ |z|+ |w| .

(c) Under what circumstances is
∣

∣

∣
|z| − |w|

∣

∣

∣
= |z + w|?

.
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12. In this question you may assume that simple exponential curves are concave up.

(a) Show by direct calculation that: (i) 66 < 3 × 56, (ii) 5 × 66 < 2× 76.

(b) The points A
(

−1
6
, 3−

1

6

)

and B(0, 1) lie on the exponential curve y = 3x. The points

B and C
(

1
6
,
(

5
2

)
1

6

)

lie on the exponential curve y =
(

5
2

)x
.

(i) Use part (a) to show that the gradient of chord AB is greater than 1 and the
gradient of chord BC is less than 1.

(ii) Hence show that 5
2 < e < 3.

13. Let |t| < 1 and let N be a positive integer.

(a) Show that 1 + t2 + t4 + . . . + t2N <
1

1− t2
.

(b) Show that the difference between the two is
t2N+2

1 − t2
.

(c) Integrate the result in part (a) between 0 and x, where 0 < x < 1. Hence show that:

x +
x3

3
+

x5

5
+ . . . +

x2N+1

2N + 1
< 1

2
log

(

1 + x

1− x

)

.

(d) Explain why

∫ x

0

t2N+2

1 − t2
dt ≤

∫ x

0

x2N+2

1− t2
dt .

(e) Use parts (b) to (d) to show that

lim
N→∞

(

x +
x3

3
+

x5

5
+ . . . +

x2N+1

2N + 1

)

= 1
2

log

(

1 + x

1 − x

)

.

(f) Hence find log 2 correct to three decimal places.

t

y

1

1

xa/2

14. The diagram shows the graph of y =
1

t
, for t > 0.

Let x > 1 and α > 0.

(a) By considering upper and lower rectangles, show that

0 < 1
2
α logx < xα/2 .

(b) Hence show that lim
x→∞

(

logx

xα

)

= 0, for all α > 0.

15. (a) Let n > 1 and k be positive integers. Use lower rectangles to prove that

1− 1
n ≤

∫ nk+1

nk

1

x
dx .

(b) Hence prove that

∫ nk

1

1

x
dx → ∞ as k → ∞ regardless of the choice of n.

16. Consider the integral

∫ n+x

n

1

t
dt.

(a) Use upper and lower rectangles to show that
x

1 + x
n

< n log
(

1 + x
n

)

< x .

(b) Hence show that lim
n→∞

(

1 + x
n

)n
= ex for any given value of x.

(c) Use trial and error to determine how big n needs to be so that
(

1 + x
n

)n
=.
. ex correct

to three decimal places when x = 0·1.

.
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E N R I C H M E N T

k k+14321 x

y

17. The diagram shows the curves

y = logx and y = log(x − 1) ,

and k−1 rectangles constructed between x = 2 and x = k+1,
where k ≥ 2.

(a) Show that:

(i)

∫ k+1

2

log(x− 1) dx = k log k − k + 1

(ii)

∫ k+1

2

logx dx = (k + 1) log(k + 1) − log 4 − k + 1

(b) Deduce that kk < k! ek−1 < 1
4
(k + 1)k+1, for all k ≥ 2.

y f x= ( )

a + b
2a b x

y

M
P

N
C

D

18. The diagram on the right shows the curve y = f(x) in the interval
a ≤ x ≤ b where f ′′(x) > 0. The corresponding chord is CD

and MN is tangent to y = f(x) at P where x = a+b
2

.

(a) Use areas to briefly explain why

(b − a) f

(

a + b

2

)

<

∫ b

a

f(x) dx < (b − a)
f(a) + f(b)

2
.

(b) Hence show that, for n = 2, 3, 4, . . .,

4

(2n− 1)2
<

1

n − 1
− 1

n
<

1

2

(

1

(n − 1)2
+

1

n2

)

.

(c) Deduce that

4

(

1

32
+

1

52
+

1

72
+ · · ·

)

< 1 <
1

2
+

(

1

22
+

1

32
+

1

42
+ · · ·

)

.

(d) Show that

1

2

(

1

32
+

1

42
+

1

52
+ · · ·

)

<
1

32
+

1

52
+

1

72
+ · · · .

(e) Hence show that
3

2
<

∞
∑

n=1

1

n2
<

7

4
.

19. (a) Show that

∫ n

1

lnx dx = n lnn − n + 1.

(b) Use the trapezoidal rule on the intervals with endpoints 1, 2, 3, . . . , n to show that

∫ n

1

ln x dx > 1
2 ln n + ln(n − 1)!

(c) Hence show that n! < nn+ 1

2 e1−n. Note: This is a preparatory lemma in the proof

of Stirling’s formula n! =.
.
√

2π nn+ 1

2 e−n, which gives an approximation for n! whose
percentage error converges to 0 for large integers n.

.
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20. (a) Prove that loge x ≤ x − 1 for x > 0.

(b) Suppose that p1, p2, p3, . . . , pn are positive real numbers whose sum is 1.

Prove that

n
∑

r=1

loge(npr) ≤ 0.

(c) Let x1, x2, x3, . . . , xn be positive real numbers.

Prove that
x1 + x2 + x3 + · · ·+ xn

n
≥ (x1x2x3 . . . xn)

1

n .

21. [A proof that e is irrational]

For positive integer values of n, let Sn = 1 +
n

∑

r=1

1

r!
.

(a) Prove by induction that e − Sn = e

∫ 1

0

xn

n!
e−x dx for all positive integer values of n.

(b) From (a) deduce that 0 < e − Sn <
3

(n + 1)!
for all positive integer values of n.

(c) Use (b) to deduce that (e − Sn)n! is NOT an integer for n = 2, 3, 4, . . .

(d) Show that there cannot exist positive integers p and q such that e =
p

q
.
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2G Chapter Review Exercise

Exercise 2G

1. Write down the converse of each statement, and state whether the converse is true or false.

(a) If a quadrilateral is cyclic, then its opposite angles are supplementary.

(b) If two numbers are both odd, then their sum is even.

(c) Every rhombus is a parallelogram.

2. Write down the negation of each statement.

(a) All mathematicians are intelligent.

(b) Suzie likes Physics and Chemistry.

(c) If I am on vacation, then I am not working.

3. Write down the contrapositive of each statement.

(a) If I am a bicycle, then I have two wheels.

(b) If a number is odd, then its last digit is not 6.

(c) A square has four equal sides.

4. Write down (in ‘if. . . then’ form) the two converse statements equivalent to each ‘if and
only if’ statement.

(a) A number is even if and only if it is divisible by 2.

(b) A quadrilateral is a parallelogram if and only if its diagonals bisect each other.

(c) a is divisible by b if and only if ∃ c ∈ Z such that a = bc.

5. Prove that:

(a) the sum of three consecutive integers is divisible by 3,

(b) the product of three consecutive even numbers is divisible by 8,

(c) the product of two consecutive even numbers is divisible by 8.

6. Prove that the remainder is 1 when an odd square number is divided by 4.

7. Prove that an integer is divisible by both 3 and 5 if it is divisible by 15.

8. If n is odd, use divisibility arguments to prove that n3 − n is divisible by 24.

9. If the integer n is not divisible by 3, prove that n2 + 2 is divisible by 3.

10. (a) Show by expanding that if n is odd,

xn + 1 = (x + 1)(xn−1 − xn−2 + xn−3 − xn−4 + · · ·+ x2 − x + 1).

(b) Hence prove that if n is odd:

(i) 2n + 1 is divisible by 3,

(ii) 2mn + 1 is divisible by 2m + 1.

11. Prove by contradiction that:

(a)
√

7 is irrational, (b) log3 7 is irrational.

12. By proving the contrapositive, prove that if a2 is even then a is even.

13. (a) Prove that x + y ≥ 2
√

xy for x, y > 0.

(b) Hence prove that (a + b)(1 + ab) ≥ 4ab for a, b > 0.

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



94 CHAPTER 2: Proof 2G

14. Prove by induction that for all positive integer values of n:

(a)

n
∑

r=1

(r + 1) × 2r = n × 2n+1

(b)

n
∑

r=1

r2(r + 1) = 1
12n(n + 1)(n + 2)(3n + 1)

15. Prove by induction that for all positive integer values of n:

(a) 6n + 4 is divisible by 5,

(b) n3 + 2n is divisible by 3.

16. (a) Prove by induction that for all positive integer values of n:
(

1 − 1

22

)(

1 − 1

32

)

. . .

(

1 − 1

(n + 1)2

)

=
1

2

(

1 +
1

n + 1

)

(b) What is the value of lim
n→∞

(

1 − 1

22

)(

1 − 1

32

)

. . .

(

1 − 1

(n + 1)2

)

?

17. Prove by mathematical induction that:

(a) n(n + 2) is divisible by 4 for even positive values of n,

(b) 3n + 7n is divisible by 10 for odd positive values of n,

(c) 4n + 5n + 6n is divisible by 15 for odd positive values of n.

18. Use mathematical induction to prove that if T1 = 3 and Tn = Tn−1 + 4n for n ≥ 2,
then Tn = 2n2 + 2n − 1 for n ≥ 1.

19. For a certain sequence, a1 = 1 and an+1 =
√

2an + 1 for n ≥ 1.
Prove by induction that an < 3 for n ≥ 1.

20. Prove by induction that n! > 3n for n ≥ 7.

21. Prove by induction that, for n ≥ 1, the nth derivative of xe−x is (−1)n(x − n)e−x.

22. Prove, for n ≥ 3, that the exterior angle sum of a convex n-sided polygon is 360◦.

23. (a) Prove by induction that 2n > n, for all positive integers n.

(b) Hence show that 1 < n
√

n < 2 for n ≥ 2.

(c) Suppose that a and n are positive integers. It is known that if n
√

a is rational, then
it is an integer. What can we deduce about n

√
n, where n is a positive integer greater

than 1?

24. (a) Use the fact that
x + y

2
≥ √

xy, for x, y > 0, to prove that
a + b + c + d

4
≥ 4

√
abcd,

for a, b, c, d > 0.

(b) (i) Show that
a + b + c

3
=

1

4

(

a + b + c +
a + b + c

3

)

.

(ii) Hence prove that
a + b + c

3
≥ 3

√
abc.

25. Suppose that abc is a 3-digit number, with a−c > 1. If we subtract cba from abc and then
add the result of this subtraction to the number obtained by reversing its digits, prove
that the answer is 1089.
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Appendix: The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic is not part of the Extension 2 course.
Its proof is included here firstly because the theorem is so important in the
study of number theory and secondly to justify its use in several proofs earlier in
this chapter, most notably in proving that log2 3 is irrational. The proof of the
theorem relies on several other results, which also need explanation and proof.

Theorem: Suppose that two integers a and b have HCF = d.
Then (a − bq) is divisible by d.

Proof: Both a and b have factor d, so there exist integers m and n such that

a = md and b = nd .

Thus a − bq = md − ndq

= d(m − nq) .

Hence (a− bq) is divisible by d.

Using the division algorithm, for integers a and b it is always possible to write

a = bq1 + r1 where 0 ≤ r1 < b ,

and where q1 and r1 are integers. It follows from the above proof that both b

and r1 are divisible by d, the HCF of a and b. Now repeat the division algorithm
to get

b = r1q2 + r2 where 0 ≤ r2 < r1 ,

and where q2 and r2 are integers. Once again it follows that both r1 and r2 are
divisible by d. Now continue the process to get a decreasing sequence of positive
remainders r1, r2, . . . which must therefore terminate. Further, every term in
this sequence is divisible by d. Consequently the last term in this sequence of
remainders is d itself, the HCF of a and b. An example should help convince the
reader of this.

Finding the HCF of 81 and 66:

81 = 66× 1 + 15 [1]

66 = 15× 4 + 6 [2]

15 = 6× 2 + 3 [3]

6 = 3× 2.

Thus the HCF of 81 and 66 is 3.

More significantly, when the division algorithm is written out like this, the result
is a set of equations that can be used to write the HCF as a sum of multiples of
the original numbers. It is simply a matter of working backwards through the
equations. In this case:

3 = 15− 6 × 2 (from [3])

= 15− (66− 15× 4)× 2 (from [2])

= 15× 9 − 66 × 2

= (81− 66)× 9 − 66× 2 (from [1])

= 81× 9 − 66 × 11.

In other words, using these two algorithms, it is always possible to find the values
of x and y such that ax + by = d. In this case, x = 9 and y = −11.

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



96 CHAPTER 2: Proof 2H

It is appropriate to pause at this point to give a remarkable proof that
√

n is
either an integer or irrational whenever n is a positive integer.

Theorem: If n ∈ Z then either
√

n ∈ Z or
√

n is irrational.

Proof: Suppose that
√

n is rational. Then ∃ a, b ∈ Z such that

√
n =

a

b

or b
√

n = a (∗∗)
where b ≥ 1 and the HCF of a and b is 1. Thus, from above, there exist integers x

and y such that

ax + by = 1 .

Multiply this equation by
√

n to get
√

n = (a
√

n)x + (b
√

n)y .

Now use the result of equation (∗∗) to get:√
n = (bn)x + (a)y .

The RHS of this last equation is a sum of products of integers, and must therefore
be an integer. Hence if

√
n is rational then it must be an integer. Otherwise

√
n

is irrational.

Here is another useful theorem that will be needed.

Theorem: If the HCF of prime p and integer a is 1, and if integer ab is divisible
by p, then b is divisible by p.

Proof: Since the HCF of p and a is 1, ∃x, y ∈ Z such that

ax + py = 1

thus abx + pby = b .

But ab is divisible by p, so put ab = mp to get

mpx + bpy = b

that is p(mx + by) = b ,

by which b is divisible by p.

As a consequence of this proof, if an integer n is divisible by prime p then p

divides at least one factor of n. The proof of this stronger result can be done by
induction, and is left as an exercise. With these tools, it is now possible to prove
the fundamental theorem of arithmetic for positive integers.

Theorem: If a positive integer n can be written as the product of its primes
in two ways, then one is a rearrangement of the other.

Proof: Suppose, by way of contradiction there exists a positive integer n which
can be written as the product of its prime factors in two different ways. Then let
those products be

n = p1 × p2 × . . .× pk = q1 × q2 × . . .× q` ,

where, for the sake of simplicity, it is assumed k < `. Then, by definition,

q1 × q2 × . . .× q` is divisible by p1 .

It follows from above that p1 must divide one of these prime factors. Let this
be qj . But if one prime divides another then they must be equal. That is p1 = qj .
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Appendix: The Fundamental Theorem of Arithmetic 97

Now re-order and re-label the primes so that p1 = q1. That is:

n = p1 × p2 × . . .× pk = q1 × q2 × . . .× q` with p1 = q1 .

Cancel this prime p1 so that

n

p1
= p2 × p2 × . . .× pk = q2 × q3 × . . .× q` .

Now repeat the above argument with p2, p3, . . . pk, (or write it out properly using
induction) to get

n

p1 × p2 × . . .× pk
= 1 = qk+1 × qk+2 × . . .× q` .

But a product of primes cannot equal 1. Hence k = ` and each prime pi is equal
to a corresponding prime qi.

19

THE FUNDAMENTAL THEOREM OF ARITHMETIC: If a positive integer n can be written as

two different products of primes

n = p1 × p2 × . . .× pk = q1 × q2 × . . .× q` ,

then k = ` and the primes p1, p2, . . . , pk are a re-arrangement of the primes

q1, q2, . . . , q`.

Note that the above proof can be adapted to include negative integer values of n,
and this is left as an exercise.

.
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3

Complex Numbers II:

de Moivre and Euler

Chapter Overview: This chapter continues the study of complex numbers
begun in Chapter 1. In that chapter it was shown that the Extension 1 work on
polynomials could be broadened to include complex numbers. In this chapter,
complex polynomial equations are investigated further by considering equations
of the type zn − 1 = 0 , which have as their solutions the complex roots of unity.

The key to solving these equations is de Moivre’s theorem, which is presented in
Section A. One consequence of this theorem is that trigonometric identities can
be quickly and easily developed, and some common identities are investigated
in Section B. Section C deals with finding the complex roots of numbers, and
deducing relationships between those roots. Complex polynomials are then used
to develop Euler’s famous result

eiθ = cos θ + i sin θ

which is the focus of Section D. The chapter concludes with applications of this
formula to trigonometry and roots of complex numbers.

3A Powers of Complex Numbers

Recall that when complex numbers are mulitplied the arguments are added, viz:

arg(wz) = arg(w) + arg(z) .

Now put w = z = cis θ. That is, both are equal and have modulus 1. Then:

z2 = z × z

= cis(θ + θ) (adding arguments)

= cis 2θ .

Next put w = z2, so that

z3 = z2 × z

= cis(2θ + θ) (again by adding arguments)

= cis 3θ .

These initial calculations suggest the simple relationship

zn = cisnθ ,

whenever |z| = 1, at least for positive integers n . In fact the result is true for all
integers, which is now proven.
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3A Powers of Complex Numbers 99

de Moivre’s Theorem: Let z = cos θ + i sinθ . It can be proven that

zn = cosnθ + i sinnθ

for all integers n. The proof is in two parts, beginning with a proof by induction
for n ≥ 0. Conjugates are then used to extend the proof to negative integers.

Proof: As always with proof by induction, first prove the result true for the
starting value.
A. When n = 0

LHS = z0

= 1 ,

since z 6= 0.

RHS = cos 0 + i sin 0

= 1 + 0i

= LHS .

Hence the statement is true for n = 0.
B. Suppose that the result is true for some integer k ≥ 0, that is

zk = cos kθ + i sinkθ . (†)
Now prove the statement for n = k + 1. That is, prove that

zk+1 = cos
(

(k + 1)θ
)

+ i sin
(

(k + 1)θ
)

.

LHS = zk × z

= (coskθ + i sinkθ) × (cos θ + i sin θ) (by the hypothesis (†))
= cos

(

(k + 1)θ
)

+ i sin
(

(k + 1)θ
)

(by the sum of arguments)

= RHS .

Hence the result is true for n = k + 1.
C. It follows from parts A and B by mathematical induction that the statement

is true for all integers n ≥ 0.
D. Finally, extend the result to the negative integers.

To do this, consider the value of z−n when n is a positive integer.

z−n =
(

z−1
)n

= ( z )
n

(since |z| = 1)

=
(

cos(−θ) + i sin(−θ)
)n

= cos(−nθ) + i sin(−nθ) (by part C, since n is positive,)

and the proof is complete.

1

DE MOIVRE’S THEOREM: Let z = cos θ+i sin θ be a complex number with modulus 1.

Then for all integers n,

zn = cosnθ + i sinnθ .

One immediate consequence of the above theorem is that if z = r cis θ then
zn = rn cisnθ. Thus if r > 1 and θ > 0 then as n increases so too does the
modulus and argument of zn. That is, the points representing zn lie on an
anticlockwise spiral.

-2 4 x

y

2

-2

2

By way of example, the table below shows the values
of zn in the case when z = i

√
2 for integer values of n

between −4 and 4.

n −4 −3 −2 −1 0 1 2 3 4

zn 1
4

i 1
2
√

2
−1

2
−i 1√

2
1 i

√
2 −2 −i2

√
2 4

.
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100 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3A

The corresponding points are shown in the graph above and are joined with a
smooth curve. Notice that the spiral does not cut the axes at right angles.

A more practical application is to quickly simplify integer powers of complex
numbers, as in the following example.

WORKED EXAMPLE 1: (a) Write z = −
√

3 + i in modulus-argument form.

(b) Hence express z7 in factored real-imaginary form.

SOLUTION: (a) It should be clear that z = 2(cos 5π
6

+ i sin 5π
6

).

(b) Using de Moivre’s theorem,

z7 = 27(cos 5π
6 + i sin 5π

6 )7

= 128(cos 35π
6

+ i sin 35π
6

)

= 128(cos −π
6

+ i sin −π
6

)

= 64(
√

3 − i) .

WORKED EXAMPLE 2: For which values of k is (1 + i)k imaginary?

SOLUTION: Now (1 + i) =
√

2(cos π
4 + i sin π

4 )

so (1 + i)k =
√

2k(cos kπ
4

+ i sin kπ
4

) (by de Moivre)

which is imaginary when kπ
4

is an odd multiple of π
2
.

Thus kπ
4

= (2n+1)π
2

where n is an integer,

that is k = 4n + 2 ,

hence k = . . . ,−6,−2, 2, 6, 10, . . .

Exercise 3A

1. Write each expression in the form cisnθ:

(a) (cos θ + i sinθ)5

(b) (cos θ + i sinθ)−3

(c) (cos 2θ + i sin 2θ)4

(d) cos θ − i sinθ

(e) (cos θ − i sinθ)−7

(f) (cos 3θ − i sin 3θ)2

2. Simplify as fully as possible:

(a)
(cos θ + i sinθ)6(cos θ + i sin θ)−3

(cos θ − i sinθ)4
(b)

(cos 3θ + i sin 3θ)5(cos 2θ − i sin 2θ)−4

(cos 4θ − i sin4θ)−7

3. Write each expression in the form a + ib, where a and b are real:

(a) (cos π
4

+ i sin π
4
)4

(b) (cos π
2 + i sin π

2 )3
(c) (cos π

6
+ i sin π

6
)5

(d) (cos 2π
3 + i sin 2π

3 )−2

(e) (cos 3π
8
− i sin 3π

8
)−6

(f) (cos 5π
12 − i sin 5π

12 )4

4. (a) Write 1 + i in the form r(cos θ + i sinθ).

(b) Hence, or otherwise, find (1 + i)17 in the form a + ib, where a and b are integers.

5. Let z = 1 + i
√

3.

(a) Express z in mod-arg form.

(b) Express z11 in the form a + ib, where a and b are real.

6. Let z = −
√

3 + i.

(a) Find the values of |z| and arg z.

(b) Hence, or otherwise, show that z7 + 64z = 0.
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3B Trigonometric Identities 101

7. (a) Express
√

3− i in mod-arg form.

(b) Express (
√

3 − i)7 in mod-arg form.

(c) Hence express (
√

3 − i)7 in the form x + iy, where x and y are real.

8. (a) Express −1 − i
√

3 in mod-arg form.

(b) Express (−1 − i
√

3)5 in mod-arg form.

(c) Hence express (−1 − i
√

3)5 in the form x + iy, where x and y are real.

9. (a) Express z =
√

2 − i
√

2 in mod-arg form.

(b) Hence write z22 in the form a + ib, where a and b are real.

D E V E L O P M E N T

10. Show that:
(a) (1 + i)10 is purely imaginary

(b) (1− i
√

3)9 is real

(c) −1 + i is a fourth root of −4

(d) −
√

3 − i is a sixth root of −64

11. If k is a multiple of 4, prove that (−1 + i)k is real.

12. (a) Find the minimum value of the positive integer m for which (
√

3 + i)m is:

(i) real, (ii) purely imaginary.

(b) Evaluate (
√

3 + i)m for each of the above values of m.

13. (a) Prove that (1 + i)n + (1− i)n is real for all positive integer values of n.

(b) Determine the values of n for which (1 + i)n + (1 − i)n = 0.

14. Use de Moivre’s theorem to prove that

(−
√

3 + i)n − (−
√

3 − i)n = 2n+1 sin 5πn
6 i .

15. (a) Show that if n is divisible by 3 then (1 +
√

3 i)2n + (1 −
√

3 i)2n = 22n+1.

(b) Simplify the expression if n is not divisible by 3.

16. Show that

(

1 + cos 2θ + i sin 2θ

1 + cos 2θ − i sin 2θ

)n

= cis 2nθ.

17. Prove that (1 + cos α + i sinα)k + (1 + cosα − i sinα)k = 2k+1 cos 1
2
kα cosk 1

2
α.

E N R I C H M E N T

18. Let z = cis π
n
, where n is a positive integer. Show that:

(a) 1 + z + z2 + · · ·+ z2n−1 = 0 (b) 1 + z + z2 + · · ·+ zn−1 = 1 + i cot π
2n

3B Trigonometric Identities

A useful application of De Moivre’s theorem involves combining it with binomial
expansions to obtain various trigonometric identities.

WORKED EXAMPLE 3:

(a) Express cos 3θ in terms of powers of cos θ.

(b) Hence show that x = cos π
9

is a solution of 8x3 − 6x − 1 = 0.

(c) Find the value of cos π
9 cos 5π

9 cos 7π
9 .
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102 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3B

SOLUTION:

(a) Let z = cos θ + i sin θ, then

z3 = (cos θ + i sinθ)3

so by de Moivre’s theorem

cos 3θ + i sin3θ = cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ .

Take the real part to get

cos 3θ = cos3 θ − 3 cos θ sin2 θ

= cos3 θ − 3 cos θ(1 − cos2 θ)

= 4 cos3 θ − 3 cos θ .

(b) Let x = cos θ, so that

4x3 − 3x = cos 3θ .

Thus 4x3 − 3x = 1
2 when θ = π

9 .

Hence 8x3 − 6x− 1 = 0 has solution x = cos π
9

.

(c) The roots of the cubic in (b) are x = cos θ where cos 3θ = 1
2 . The solutions

of cos 3θ = 1
2 which give distinct values of cos θ are θ = π

9 , 5π
9 and 7π

9 . Hence,
by the the product of the roots,

cos π
9

cos 5π
9

cos 7π
9

= 1
8

.

WORKED EXAMPLE 4:

(a) Let z = cos θ + i sin θ. Show that zn − z−n = 2i sinnθ.

(b) Expand (z − z−1)5.

(c) Use parts (a) and (b) to show that 16 sin5 θ = sin 5θ − 5 sin3θ + 10 sin θ .

(d) Hence find

∫ π

2

π

4

sin5 θ dθ .

SOLUTION:

(a) zn − z−n = zn − zn (since |z| = 1)

= 2i Im(zn)

= 2i Im(cosnθ + i sinnθ) (by de Moivre)

= 2i sinnθ .

(b) (z − z−1)5 = z5 − 5z3 + 10z − 10z−1 + 5z−3 − z−5 .

(c) Rearranging part (b),

(z − z−1)5 = (z5 − z−5) − 5(z3 − z−3) + 10(z − z−1)

so (2i sinθ)5 = 2i sin5θ − 10i sin3θ + 20i sinθ (by part (a))

thus 16 sin5 θ = sin 5θ − 5 sin 3θ + 10 sinθ .

(d) Dividing by 16 and integrating yields
∫ π

2

π

4

sin5 θ dθ =
1

16

∫ π

2

π

4

sin 5θ − 5 sin 3θ + 10 sinθ dθ

=
1

16

[

−cos 5θ

5
+

5 cos3θ

3
− 10 cos θ

]
π

2

π

4

= 0 − 1

16

(

1

5
√

2
− 5

3
√

2
− 10√

2

)

=
43

√
2

120
.
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3B Trigonometric Identities 103

Exercise 3B

1. (a) Use the identity cos 3θ + i sin 3θ = (cos θ + i sin θ)3 to show that:

(i) cos 3θ = 4 cos3 θ − 3 cos θ (ii) sin 3θ = 3 sin θ − 4 sin3 θ

(b) Show that tan3θ =
3 tan θ − tan3 θ

1 − 3 tan2 θ
.

2. Use similar methods to the previous question to show that:

(a) cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

(b) sin 4θ = 4 cos3 θ sin θ − 4 cosθ sin3 θ

(c) tan4θ =
4 tan θ − 4 tan3 θ

1 − 6 tan2 θ + tan4 θ

3. Let z = cos θ + i sin θ.

(a) Use de Moivre’s theorem to show that zn + z−n = 2 cosnθ.

(b) Show that (z + z−1)4 = (z4 + z−4) + 4(z2 + z−2) + 6.

(c) Hence show that cos4 θ = 1
8
cos 4θ + 1

2
cos 2θ + 3

8
.

4. Repeat the methods of the previous question to show that:

sin4 θ = 1
8 cos 4θ − 1

2 cos 2θ + 3
8 .

(Start by showing that zn − z−n = 2i sinnθ.)

D E V E L O P M E N T

5. (a) Use the methods of question 3 to show that

cos5 θ = 1
16 (cos 5θ + 5 cos3θ + 10 cos θ) .

(b) Hence evaluate

∫ π

2

0

cos5 θ dθ.

6. (a) Use de Moivre’s theorem to prove the identity

cos 6α = 32 cos6 α − 48 cos4 α + 18 cos2 α − 1.

(b) Hence show that the polynomial equation 32x6 − 48x4 + 18x2 − 1 = 0 has roots
x = cos nπ

12
, for n = 1, 3, 5, 7, 9, 11.

(c) Use the product of these six roots to deduce that cos π
12 cos 5π

12 = 1
4 .

7. The identity tan4θ =
4 tan θ − 4 tan3 θ

1 − 6 tan2 θ + tan4 θ
was derived in Question 2.

(a) Use this identity to show that the equation x4 + 4x3 − 6x2 − 4x + 1 = 0 has distinct
roots x = tan π

16
, tan 5π

16
, tan 9π

16
, tan 13π

16
.

(b) Hence show that tan2 π
16

+ tan2 3π
16

+ tan2 5π
16

+ tan2 7π
16

= 28.

8. (a) Use de Moivre’s theorem to show that

sin 5θ = 16 sin5 θ − 20 sin3 θ + 5 sin θ.

(b) Hence show that the equation 16x5−20x3 +5x−1 = 0 has roots x = 1, sin π
10

, sin 9π
10

,
sin 13π

10
, sin 17π

10
.

(c) By equating coefficients, or otherwise, find the values of b and c for which
16x4 + 16x3 − 4x2 − 4x + 1 = (4x2 + bx + c)2, and hence explain why the equation
16x4 + 16x3 − 4x2 − 4x + 1 = 0 has two double roots.

(d) Use part (b) to show that the equation 16x4 + 16x3 − 4x2 − 4x + 1 = 0 has roots
x = sin π

10
, sin 9π

10
, sin 13π

10
, sin 17π

10
. Does this contradict part (c) which asserts that

the equation has two double roots?

(e) Hence find exact values for sin π
10 and sin 3π

10 .

.
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104 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3B

9. (a) Express cos 7θ in the form A cos7 θ + B cos5 θ + C cos3 θ + D cos θ.

(b) Use the substitution x = 4 cos2 θ to show that the equation x3 − 7x2 + 14x − 7 = 0
has roots x = 4 cos2 π

14
, 4 cos2 3π

14
, 4 cos2 5π

14
.

(c) Hence evaluate:

(i) cos2 π
14 + cos2 3π

14 + cos2 5π
14 (ii) cos4 π

14 + cos4 3π
14 + cos4 5π

14

10. (a) Show that sin5 θ = 1
16

(sin 5θ − 5 sin 3θ + 10 sin θ).

(b) Hence solve the equation 16 sin5 θ = sin5θ for 0 ≤ θ < 2π.

11. (a) Use de Moivre’s theorem to show that tan5θ =
5 tan θ − 10 tan3 θ + tan5 θ

1− 10 tan2 θ + 5 tan4 θ
.

(b) Hence show that the equation x4 − 10x2 + 5 = 0 has roots x = ± tan π
5
, ± tan 2π

5
.

(c) Deduce that tan π
5

tan 2π
5

=
√

5 and that tan2 π
5

+ tan2 2π
5

= 10.

12. Let z = cos θ + i sin θ.

(a) Show that 2 cosnθ = zn +
1

zn
and that 2i sinnθ = zn − 1

zn
.

(b) Hence show that:

128 cos3 θ sin4 θ =

(

z7 +
1

z7

)

−
(

z5 +
1

z5

)

− 3

(

z3 +
1

z3

)

+ 3

(

z +
1

z

)

(c) Deduce that cos3 θ sin4 θ = 1
64

(cos 7θ − cos 5θ − 3 cos 3θ + 3 cosθ).

13. Consider the polynomial equation 5z4−11z3 +16z2−11z +5 = 0, which has four complex
roots with modulus one.
Let z = cis θ.

(a) Show that 5 cos 2θ − 11 cosθ + 8 = 0.

(b) Hence determine the four roots of the equation in the form a + ib, where a and b are
real.

14. (a) Use de Moivre’s theorem to express
sin 8θ

sin θ cos θ
as a polynomial in s, where s = sin θ.

(b) Hence solve the equation x6 − 6x4 + 10x2 − 4 = 0, leaving the roots in trigonometric
form.

E N R I C H M E N T

15. Let n be a positive integer.

(a) Use de Moivre’s theorem to show that:

sin(2n + 1)θ = 2n+1C1 cos2n θ sin θ − 2n+1C3 cos2n−2 θ sin3 θ + · · ·+ (−1)n sin2n+1 θ

(b) Hence show that the polynomial P (x) = 2n+1C1 xn − 2n+1C3 xn−1 + · · ·+ (−1)n has

zeroes of the form cot2
(

kπ

2n + 1

)

where k = 1, 2, 3, . . . , n.

(c) Deduce that cot2
(

π

2n + 1

)

+ cot2
(

2π

2n + 1

)

+ · · ·+ cot2
(

nπ

2n + 1

)

=
n(2n − 1)

3
.

(d) Use the fact that cot θ < 1
θ

for 0 < θ < π
2

to show that:
(

1

12
+

1

22
+

1

32
+ · · ·+ 1

n2

)

(2n + 1)2

2n(2n − 1)
>

π2

6

.
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3C Roots of Complex Numbers 105

3C Roots of Complex Numbers

Recall from a previous worked exercise that the points in the Argand diagram
which represent zn, where n is an integer, lie on a spiral whenever |z| 6= 1. When
|z| = 1, it should be clear that the points lie on the unit circle. Further, if
z = cos θ + i sinθ then the angle at the origin subtended by successive points is

arg(zn)− arg(zn−1) = arg

(

zn

zn−1

)

= arg(z)

= θ .

That is, the angle is constant. Thus successive points are regularly spaced about
the unit circle.

x

y

z1

z2z3

z4

z5

z6

1-1

For example, the sketch on the right shows the points zn

for n = 1, 2, 3, 4, 5, 6 , where z = cos 1
2
+ i sin 1

2
. Note that

arg(z) = 1
2

=.
. 28◦39′ ,

which is the angle subtended at the origin by any pair of
successive points. It should be clear that 2π ÷ 1

2
= 4π

is irrational, and hence none of the points coincide, even
for larger values of n. In that sense, this is not a very
interesting example.

Roots of Unity: Significant configurations of points arise when equations of the form

zn = 1

are solved. There are always n solutions and the points are equally spaced about
the unit circle in the complex plane. These numbers are called the roots of unity,
for obvious reasons.

2

ROOTS OF UNITY: These are the real and complex solutions of the equation

zn = 1

where n is an integer. When the solutions are plotted in the Argand diagram,

the n points are equally spaced around the unit circle.

The situation is best demonstrated by example.

WORKED EXAMPLE 5:

(a) Solve z6 = 1.

(b) Plot the solutions on the unit circle in the complex plane.

(i) What is the angle subtended at the origin by successive roots?

(ii) What regular polygon has these points as vertices?

(c) Let α = cis(−π
3 ). Show that the list 1, α, α2, α3, α4 and α5 includes all six

roots of z6 = 1.

(d) Let β = cis 2π
3

. Which roots of z6 = 1 can be written in the form βm,
where m is an integer? What polygon has these points as vertices?

.
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106 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3C

SOLUTION:

(a) Let z = cis θ and note that 1 = cis 2kπ, where k is an integer. Thus

cis 6θ = cis 2kπ (by de Moivre)

so 6θ = 2kπ

hence θ = kπ
3

.

Apply the restriction −π < θ ≤ π to obtain all the distinct solutions. Thus

−π < kπ
3 ≤ π

so −3 < k ≤ 3 .

Hence the six roots of z6 = 1 are

cis(−2π
3

), cis(−π
3
), 1, cis π

3
, cis 2π

3
and −1.

x

y

-1 1

p
3

p
3cis2p

3cis

p
3-cis(    )2p

3-cis(     )

(b) The graph on the right shows these six roots.

(i) Clearly the angle at the centre is π
3 .

(ii) These are the vertices of a regular hexagon.

(c) Using de Moivre’s theorem, the given list is:

1 , cis(−π
3 ) , cis(−2π

3 ) , cis(−3π
3 ) = −1 ,

cis(−4π
3

) = cis 2π
3

and cis(−5π
3

) = cis π
3

.

This is the same list as given in the answer to part (a), but simply in a
different order.

(d) Now βm = cis 2mπ
3 by de Moivre’s theorem. Hence arg(βm) is a multiple

of 2π
3

. Thus the only possible values that βm may take are:

cis(−2π
3

), 1 and cis 2π
3

.

That is, only these three roots can be written as a power of β. The points in
the Argand diagram form the vertices of an equilateral triangle.

There are several important features to observe in the worked exercise above.
First, there are six solutions, as assured by the fundamental theorem of algebra.
Secondly, the principal argument of 1 is deliberately not used in the working.
The reasoning is that if the sixth power of a complex number is equal to one
then 6θ, the argument of the sixth power, could exceed the limits of the principal
argument before being reduced. This is borne out by the root z = cis(−2π

3
) for

which z6 = cis(−2π) = cis 0. Nevertheless, the values of the roots in the solution
are written with their principal arguments.

3

FINDING THE ROOTS OF UNITY: To solve zn = 1, begin by letting z = cos θ + i sin θ

and by noting that 1 = cos 2kπ + i sin2kπ. Thus, by de Moivre’s theorem:

cosnθ + i sinnθ = cos 2kπ + i sin2kπ

so that nθ = 2kπ. Then apply −π < θ ≤ π to find the restrictions on k.

Further, any power of a root will always coincide with one or other of the roots.
In the case of αm in the Worked Example, each of the other roots was visited
one by one as m increased. In the case of βm, only some of the other roots were
obtained.

.
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3C Roots of Complex Numbers 107

Roots of Complex Numbers: The technique for finding roots of unity can be
adapted to find the roots of any complex number. The trick is to allow both
the modulus and the argument to be unknown. It is then a matter of equating
moduli and arguments. Once again, the roots are equally spaced around a circle.

WORKED EXAMPLE 6: Find the cube roots of 8i.

x

y

-2i

2

p
6cis

5p
6cis

2p
3

SOLUTION: That is, solve the equation z3 = 8i.

Begin by letting z = r cis θ and putting 8i = 8 cis(π
2 + 2kπ), then:

r3 cis 3θ = 8 cis(π
2

+ 2kπ) (by de Moivre.)

Equate the moduli to get r = 2, and from the arguments

θ = (4k+1)π
6 .

For the principal argument in the solution

−π <
(4k+1)π

6
≤ π

so −6 < 4k + 1 ≤ 6

thus k = −1, 0, 1

and the three roots are: 2 cis(−π
2
), 2 cis π

6
and 2 cis 5π

6
.

That is −2i,
√

3 + i and −
√

3 + i , which lie on the circle with radius 2.

The techniques can now be used to find the exact values of the trigonometric
functions at certain rational multiples of π, as in the following worked exercise.

WORKED EXAMPLE 7: Consider the equation z5 + 1 = 0.

(a) Find the roots of this equation and show them on the Argand diagram.

(b) Factorise z5 + 1:

(i) as a product of linear factors,

(ii) as a product of linear and quadratic factors with real coefficients.

(c) Evauate cos π
5

+ cos 3π
5

.

(d) Let α be a complex root of z5 + 1 = 0, that is α 6= −1.

(i) Show that 1 − α + α2 − α3 + α4 = 0 .

(ii) Find a quadratic equation with roots (α4 − α) and (α2 − α3).

(e) Put α = cis π
5

in part (d), and hence evaluate cos π
5
.

SOLUTION:

(a) Let z = cis θ and note that −1 = cis(2k + 1)π, where k is an integer. Thus

cis 5θ = cis(2k + 1)π (by de Moivre)

so 5θ = (2k + 1)π

hence θ = (2k+1)π
5

.

Apply the restriction −π < θ ≤ π to obtain all the distinct solutions. Thus

−π <
(2k+1)π

5
≤ π

so −5 < (2k +1) ≤ 5

or −3 < k ≤ 2 .

x

y

-1 1

p
5cis3p

5cis

2p
5

p
5-cis(    )3p

5-cis(     )

Hence the five roots are:

cis(−3π
5

), cis(−π
5
), cis π

5
, cis 3π

5
and −1 ,

or in conjugate pairs,

cis π
5 , cis π

5 , cis 3π
5 , cis 3π

5 and −1 .

.
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108 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3C

(b) Using the roots of the given equation,

z5 + 1 = (z + 1)(z − cis π
5
)(z − cis π

5
)(z − cis 3π

5
)(z − cis 3π

5
)

= (z + 1)(z2 − 2z cos π
5 + 1)(z2 − 2z cos 3π

5 + 1) .

(c) By the sum of the roots

cis π
5

+ cis π
5

+ cis 3π
5

+ cis 3π
5
− 1 = 0

hence 2 cos π
5 + 2 cos 3π

5 = 1 ,

that is cos π
5

+ cos 3π
5

= 1
2

.

(d) (i) Since α is a complex root,

α5 + 1 = 0

so (α + 1)(1− α + α2 − α3 + α4) = 0 (from GP theory)

thus 1 − α + α2 − α3 + α4 = 0 (since α 6= −1)

(ii) The sum of the roots is −α + α2 − α3 + α4 = −1 from part (i).
The product of the roots is

(α4 − α)(α2 − α3) = α6 − α7 − α3 + α4

= −α + α2 − α3 + α4 (since α5 = −1)

= −1 .

Hence the required quadratic is z2 + z − 1 = 0 .

(e) With α = cis π
5

the roots of the equation in part (d) are

α4 − α = −α−1 − α (since α5 = −1)

= −(α + α) (since |α| = 1)

= −2 cos π
5

,

and α2 − α3 = α2 + α−2 (since α5 = −1)

= α2 + α2 (since |α| = 1)

= 2 cos 2π
5

.

Also, by direct calculation

z = −1−
√

5
2

or −1+
√

5
2

,

hence, matching the positive and negative roots,

cos π
5 = 1+

√
5

4 and cos 2π
5 = −1+

√
5

4 .

Exercise 3C

1. (a) Find the three cube roots of unity, expressing the complex roots in both r cis θ and
x + iy form. Use the restriction −π < θ ≤ π.

(b) Show that the points in the complex plane representing these three roots form an
equilateral triangle.

(c) If ω is one of the complex roots, show that the other complex root is ω2.

(d) Write down the values of:

(i) ω3 (ii) 1 + ω + ω2

(e) Show that:

(i) (1 + ω2)3 = −1

(ii) (1− ω − ω2)(1− ω + ω2)(1 + ω − ω2) = 8

(iii) (1− ω)(1− ω2)(1− ω4)(1− ω5) = 9

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press
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2. (a) Solve the equation z6 = 1, expressing the complex roots in the form a + ib,
where a and b are real.

(b) Plot these roots on an Argand diagram, and show that they form a regular hexagon.

(c) If α is the complex root with smallest positive principal argument, show that the other
three complex roots are α2, α−1 and α−2.

(d) Show that z6 − 1 = (z2 − 1)(z4 + z2 + 1).

(e) Hence write z4 + z2 + 1 as a product of quadratic factors with real coefficients.

3. (a) Find, in the form a + ib, the four fourth roots of −1.

(b) Hence write z4 + 1 as a product of two quadratic factors with real coefficients.

4. (a) Find, in the form a + ib, the six roots of the equation z6 + 1 = 0.

(b) Hence show that z6 + 1 = (z2 + 1)(z2 −
√

3 z + 1)(z2 +
√

3 z + 1).

(c) Divide both sides of this identity by z3, and then let z = cis θ to show that:

cos 3θ = 4 cos θ(cos θ − cos π
6 )(cos θ − cos 5π

6 )

5. (a) Find, in mod-arg form, the five fifth roots of i.

(b) Find, in mod-arg form, the four fourth roots of −i.

(c) Find, in the form a + ib, the four fourth roots of −8 − 8
√

3 i.

(d) Find, in mod-arg form, the five fifth roots of 16
√

2 − 16
√

2 i.

D E V E L O P M E N T

6. (a) Find the five fifth roots of −1, writing the complex roots in mod-arg form.

(b) If α is the complex root with least positive principal argument, show that α3, α7 and
α9 are the other three complex roots.

(c) Show that α7 = −α2 and that α9 = −α4.

(d) Use the sum of the roots to show that α + α3 = 1 + α2 + α4.

7. (a) Find the seven seventh roots of unity.

(b) By considering the sum of the roots, show that cos 2π
7 + cos 4π

7 + cos 6π
7 = −1

2 .

(c) Write z7 − 1 as a product of one linear and three quadratic factors, all with real
coefficients.

(d) If α is the complex seventh root of unity with the least positive principal argument,
show that α2, α3, α4, α5 and α6 are the other five complex roots.

(e) A certain cubic equation has roots α+α6, α2 +α5 and α3 +α4. Use the relationships
between the roots and coefficients to show that the equation is x3 + x2 − 2x− 1 = 0.

8. (a) (i) Find the five fifth roots of unity, writing the complex roots in mod-arg form.

(ii) Show that the points in the complex plane representing these roots form a regular
pentagon.

(iii) By considering the sum of these five roots, show that cos 2π
5

+ cos 4π
5

= −1
2
.

(b) (i) Show that z5 − 1 = (z − 1)(z4 + z3 + z2 + z + 1).

(ii) Hence show that z4 + z3 + z2 + z + 1 = (z2 − 2 cos 2π
5

z + 1)(z2 − 2 cos 4π
5

z + 1).

(iii) By equating the coefficients of z in this identity, show that cos π
5

= 1+
√

5
4

.

(c) (i) Use the substitution x = u+
1

u
to show that the equation x2 +x−1 = 0 has roots

2 cos 2π
5 and 2 cos 4π

5 .

(ii) Deduce that cos π
5 cos 2π

5 = 1
4 .

.
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9. (a) Find the ninth roots of unity.

(b) Hence show that:

z6 + z3 + 1 = (z2 − 2 cos 2π
9 z + 1)(z2 − 2 cos 4π

9 z + 1)(z2 − 2 cos 8π
9 z + 1)

(c) Deduce that:

2 cos3θ + 1 = 8(cosθ − cos 2π
9

)(cos θ − cos 4π
9

)(cos θ − cos 8π
9

)

10. Let ω = cis 2π
9

.

(a) Show that ωk, where k is an integer, is a solution of the equation z9 = 1.

(b) Show that ω + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8 = −1.

(c) Hence show that cos 2π
9

+ cos 4π
9

= cos π
9
.

(d) Deduce that cos π
9

cos 2π
9

cos 4π
9

= 1
8
.

11. Let ρ = cos 2π
7

+ i sin 2π
7

. The complex number α = ρ + ρ2 + ρ4 is a root of the quadratic

equation x2 + ax + b = 0, where a and b are real.

(a) Prove that 1 + ρ + ρ2 + . . . + ρ6 = 0.

(b) The second root of the quadratic equation is β. Express β in terms of positive powers
of ρ. Justify your answer.

(c) Find the values of the coefficients a and b.

(d) Deduce that − sin π
7

+ sin 2π
7

+ sin 3π
7

=
√

7
2

.

E N R I C H M E N T

12. (a) (i) Use de Moivre’s theorem to express cos 4θ and sin 4θ in terms of cos θ and sin θ.

(ii) Hence prove that tan4θ =
4 tan θ − 4 tan3 θ

1 − 6 tan2 θ + tan4 θ
.

(iii) Deduce that tan−1 24
7

= 4 tan−1 1
3
.

(b) Hence find the four fourth roots of 7 + 24i in Cartesian form.

13. (a) Show that the equation (z + 1)8 − z8 = 0 has roots z = −1
2
, −1

2

(

1 ± i cot kπ
8

)

, where
k = 1, 2, 3.

(b) Hence show that:

(z + 1)8 − z8 = 1
8
(2z + 1)(2z2 + 2z + 1)(4z2 + 4z + cosec2 π

8
)(4z2 + 4z + cosec2 3π

8
)

(c) By making a suitable substitution into this identity, deduce that:

cos16 θ − sin16 θ = 1
16

cos 2θ(cos2 2θ + 1)(cos2 2θ + cot2 π
8
)(cos2 2θ + cot2 3π

8
)

14. Suppose that ω3 = 1 and ω 6= 1.
Let k be a positive integer.

(a) What are the two possible values of 1 + ωk + ω2k ?

(b) Use the binomial theorem to expand (1 + ω)n and (1 + ω2)n, where n is a positive
integer.

(c) Let ` be the largest integer for which 3` ≤ n.
Show that:

(n

0

)

+
(n

3

)

+
(n

6

)

+ · · ·+
( n

3`

)

= 1
3

(

2n + (1 + ω)n + (1 + ω2)n
)

(d) If n is a multiple of 6, show that:
(n

0

)

+
(n

3

)

+
(n

6

)

+ · · ·+
(n

n

)

= 1
3
(2n + 2)

.
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3D Exponential Form: Euler’s Formula 111

15. Consider the equation (z + 1)2n + (z − 1)2n = 0, where n is a positive integer.

(a) Show that every root of the equation is purely imaginary.

(b) Let the roots be represented by the points P1, P2, . . .,P2n in the Argand diagram, and
let O be the origin.
Show that:

OP1
2 + OP2

2 + · · ·+ OP2n
2 = 2n(2n − 1)

3D Exponential Form: Euler’s Formula

It was established in Chapter 1 that integer powers of a complex variable z

behave predictably, according to the normal rules of arithmetic and algebra. In
particular, polynomials in z have been studied and polynomial equations have
been solved, such as finding the nth roots of unity earlier in this chapter. It
is appropriate to now turn attention to other functions and consider how they
behave when the variable is a complex number. The calculus of functions of
complex variables is not available in this course and so any investigation will
naturally be severely retricted. Consequently, this section will concentrate on
one significant result which can be derived through integer powers of z. That
result is:

ez = ex+iy = ex(cos y + i sin y)

or more specifically, dividing through by ex,

eiy = cos y + i siny .

This last identity is known as Euler’s formula.

Extending the Exponential Function: In Year 9 the trigonometric functions were
introduced using right angled triangles. In Years 10 and 11 those definitions were
extended to include angles of any magnitude. This was done very carefully so
that the new definitions still worked in right angled triangles.

Similarly, polynomial functions were introduced in Years 10 and 11. These were
then extended to include complex polynomials in the first chapter on complex
numbers. This was done carefully so that all the results were consistent with real
polynomials.

This idea of extending functions will now be applied to the exponential function
to allow complex numbers to be used. It will be done carefully so that the results
for complex numbers are consistent with the real function ex. The index rule for
multiplication plays a key part in the process. Thus, for real numbers a and b:

ea × eb = ea+b .

The rule needs to be the same even when a and b are replaced with complex
numbers. That is:

ez1 × ez2 = ez1+z2 .

That means that when z1 = x is real and z2 = iy is imaginary, the result is

ex+iy = ex × eiy ,

however, there is still the problem of understanding what eiy means.

.
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112 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3D

Trying to evaluate ex×eiy poses all sorts of problems. If y = 0 and x is a rational
number like 1

2 then all is good, but what if x is irrational? Irrational powers have
not been defined or studied at high school. Worse still, if y 6= 0 then the second
factor has an imaginary index and, as yet, there is no way of knowing whether
or not such quantities even exist.

Addressing the first objection; expressions with irrational powers, like e
√

2, can
be defined through sequences. In this case put

e
√

2 = lim
n→∞

eun ,

where un is a sequence with limiting value
√

2.

The problem of imaginary indices can be overcome using a process called analytic
continuation. This technique is a very powerful tool which is studied in detail at
university level. In the context of this course, the process is greatly simplified.
Essentially ex is redefined using a polynomial and a limit. The polynomial is then
evaluated replacing x with iy and the limit taken. Finally, the result is assumed
to be the value of eiy in order to be consistent with the definition of ex.

Two methods are presented in this text for this task. One is given below and the
other is given in a series of questions in the following exercise. Both methods are
very difficult and it is not expected that they be memorised. Nevertheless they
should be followed and understood.

Redefining the Exponential Function: Consider the following sequence of special
polynomials, each with repeated zero at x = −n and with degree n.

En(x) =

(

1 +
x

n

)n

where n ≥ 1.

The first three such polynomials are:

E1(x) = 1 + x ,

E2(x) = 1 + x +
x2

4
,

E3(x) = 1 + x +
x2

3
+

x3

27
.

It can be shown, for all real values of x, that lim
n→∞

En(x) = ex. That is:

ex = lim
n→∞

(

1 +
x

n

)n

.

A question in the exercise develops a proof of this. The value of eiy is now defined
to be the result when x is replaced by iy. That is:

eiy = lim
n→∞

En(iy)

= lim
n→∞

(

1 +
iy

n

)n

.

The advantage of using this expression as the definition of eiy is that En(iy) is
a complex polynomial and so it behaves predictably. The disadvantage of doing
this is that the right hand side involves a limit. Fortunately, that limit can be
greatly simplified.

.
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3D Exponential Form: Euler’s Formula 113

Euler’s Formula: Let

(

1 +
iy

n

)

= r(cos θ + i sin θ). Then:

En(iy) =
(

r(cos θ + i sin θ)
)n

= rn(cosnθ + i sinnθ) (by de Moivre’s theorem,)

hence eiy = lim
n→∞

rn(cosnθ + i sinnθ) .

Now the modulus is given by r2 =
(

1 + ( y
n)2

)

.

Thus rn =
(

1 + ( y
n
)2

)
n

2

and so lim
n→∞

rn = lim
n→∞

(

(1 + y2

n2 )n2
)

1

2n

= lim
n→∞

(

ey2
)

1

2n

(by the definition of ex for real x)

= 1 .

Notice that the limit was applied in two stages: first the bracketed term and
then the index. Splitting a limit up like this can often lead to the wrong answer.
Although it will not be proven here, splitting the limit gives the correct answer
in this case because both limits exist and are finite.

y
n

q

1
O A

B

C

D
Next consider lim

n→∞
(cosnθ+i sin nθ). The value of nθ can

be determined in this limit from geometry.

In the diagram on the right, the point D represents the
complex number r(cos θ+i sin θ) and O is the origin. The
real and imaginary axes have been omitted to simplify
the diagram. Clearly OC = 1 and CD = y

n
. Sector

OBC has been added and the point A is the foot of the
perpendicular from B to OC.

Notice that 4OAB and 4OCD have equal angles and so are similar. From the
hypotenuse of each, the similarity ratio is

OB : OD = 1 :

√

1 + y2

n2 ,

and hence the ratio of areas is 1 : (1 + y2

n2 ).

Now consider the areas of the two triangles and sector. It should be clear that
∣

∣4OAB
∣

∣ ≤
∣

∣sector OBC
∣

∣ ≤
∣

∣4OCD
∣

∣ .

Thus, using the usual formulae for
∣

∣sector OBC
∣

∣ and
∣

∣4OCD
∣

∣, and applying the

ratio of areas to determine
∣

∣4OAB
∣

∣, this inequality gives

1
2
× 1× y

n

1 + y2

n2

≤ 1
2
θ ≤ 1

2
× 1 × y

n

and thus
y

1 + y2

n2

≤ nθ ≤ y .

Hence in the limit as n → ∞ this gives:

y ≤ lim
n→∞

nθ ≤ y .

That is lim
n→∞

nθ = y .

.
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114 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3D

Finally, combining this limit with the one above for rn yields the desired result:

eiy = lim
n→∞

rn(cosnθ + i sinnθ)

= 1 × (cos y + i sin y) .

That is eiy = cos y + i sin y ,

exactly as stated at the start of this section. This is often referred to as Euler’s
formula, as it was first published by the Swiss mathematician Leonard Euler in
1748 in his Introductio in analysin infinitorum. It is a remarkable result. It
shows that the trigonometric and exponential functions are all related by way
of the imaginary number i. Because of this connection with trigonometry, the
pronumeral y in Euler’s formula is often replaced with an angle θ.

4

EULER’S FORMULA: For real numbers θ the value of eiθ is defined to be

eiθ = cos θ + i sin θ.

This means there are now three ways to write a complex number z.

x + iy = r(cos θ + i sin θ) = r eiθ

The last expression is sometimes called the complex exponential form. Each of
the last two expressions is called polar form, since each involves a radius r and
an angle θ. As encountered in the previous chapter on complex numbers, the
principal argument is normally used for θ.

A Check for Consistency: It is important that this new result is consistent with the
definition of the exponential function for real variables. There are two essential
characteristics: that e0 = 1 and that ea × eb = ea+b. These characteristics are
now checked. Firstly:

e0 = cos 0 + i sin0

= 1 + i × 0

= 1 .

Now let z1 = x1 + iy1 and z2 = x2 + iy2. Then:

ez1 × ez2 = ex1+iy1 × ex2+iy2

= ex1(cos y1 + i siny1)× ex2(cos y2 + i sin y2)

= ex1+x2

(

cos(y1 + y2) + i sin(y1 + y2)
)

= ex1+x2+i(y1+y2)

= ez1+z2 (after re-ordering the index.)

Applications: Euler’s formula has been derived and checked for consistency with the
definition of the exponential function for real variables. It can now be confidently
applied to solving various problems involving complex numbers.

WORKED EXAMPLE 8: Write z = −1 + i
√

3 in complex exponential form.

p
3

Ö3

x

y

-1

2

z
SOLUTION: The Argand diagram on the right shows the

situation. Clearly r = 2 and θ = 2π
3

. Hence z = 2e
2iπ

3 .

Notice that if w = 2e
14iπ

3 then w and z represent the
same point in the complex plane, because their arguments
differ by a multiple of 2π. As usual, the principal value
of the argument is given in the solution above.

.
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3D Exponential Form: Euler’s Formula 115

WORKED EXAMPLE 9: Show that eiπ + 1 = 0, known as Euler’s identity.

SOLUTION: Re-write the LHS in mod-arg form to get

eiπ + 1 = cosπ + i sinπ + 1

= −1 + i× 0 + 1

= 0

WORKED EXAMPLE 10: Use Euler’s formula to write cos θ in terms of e.

SOLUTION: Euler’s formula is

eiθ = cos θ + i sin θ .

Replacing θ with −θ, and using the symmetry of cosine and sine, yields

e−iθ = cos θ − i sin θ .

Adding these:

2 cosθ = eiθ + e−iθ

or cos θ = 1
2

(

eiθ + e−iθ
)

.

Two important observations can be made at this point. The first is that the
conjugate of eiθ is its reciprocal e−iθ, as shown in the first few lines of working.
This makes sense because it was previously established that

1

cos θ + i sin θ
= (cos θ + i sin θ) .

Secondly, the result for cos θ now makes it algebraically clear why it is an even
function. Replacing θ with −θ:

cos(−θ) = 1
2

(

e−iθ + eiθ
)

= 1
2

(

eiθ + e−iθ
)

= cos θ .

This is hardly surprising. The exponential form of cos θ was derived using the
fact that cos θ is even.

Euler and de Moivre: De Moivre’s theorem can now be written using complex
exponential form, though its proof is best done by relying on mod-arg form.

WORKED EXAMPLE 11: Prove the exponential form of de Moivre’s theorem:
(

eiθ
)n

= einθ for integer values of n .

SOLUTION: First revert to mod-arg form:
(

eiθ
)n

= (cos θ + i sinθ)n (by Euler)

= cos nθ + i sinnθ (by de Moivre)

= einθ (by Euler)

It is essential to note here that de Moivre’s theorem was only proved for integer
values of n. Hence the index rule for powers of complex exponentials is only valid
when the power is an integer.

5

EULER AND DE MOIVRE: The complex exponential form of de Moivre’s theorem is
(

eiθ
)n

= einθ provided n is an integer.

.
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116 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3D

Exercise 3D

1. Simplify:

(a)
(

eiθ
)3

(b)
(

e−iθ
)6

(c)
(

e2iθ
)4

(d)
(

e−5iθ
)−2

2. Simplify as fully as possible:

(a) eiθ × e−2iθ

(b)
e6iθ

e3iθ

(c)
(

e4iθ
)−2 ×

(

e−2iθ
)−5

(d)

(

e2iθ
)3 ×

(

e−3iθ
)−4

(e−iθ)
2

3. Express each of these complex numbers in exponential form.

(a) 2i

(b) 1 + i

(c) −6

(d) −1 +
√

3 i

(e) −3 − 3i

(f) 2
√

3 − 2i

4. Express each of these complex numbers in Cartesian form.

(a) 5eiπ

(b) eiπ/3

(c) 4e−iπ/2

(d) 2e5iπ/6

(e) 2
√

2e−iπ/4

(f) 4
√

3e−2iπ/3

D E V E L O P M E N T

5. Let z = 1 +
√

3 i and w = 1 − i. Find, in exponential form:

(a) zw

(b)
w

z

(c) z3w

(d)
z2

w

6. By first converting to exponential form, find, in Cartesian form:

(a)
(√

3 + i
)6

(b)
(

−1 + i
)5

(c)
(

1
2
−

√
3

2
i
)−8

(d)
(

−3 − 3
√

3 i
)4

7. Suppose that z =
1 + i√

2
and w =

1 − i√
2

.

Use the exponential forms of z and w to show that:

(a) z10 − w10 = 2i (b) 1 + z + z2 + z3 + z4 =
(√

2 + 1
)

i

8. Use the exponential forms of 1 +
√

3 i and 1 − i to show that:

(a)
(

1 +
√

3 i
)5

(1 − i)4 +
(

1 −
√

3 i
)5

(1 + i)4 = −128

(b)

(

1 +
√

3 i
)5

(1 − i)
4 +

(

1 −
√

3 i
)5

(1 + i)
4 = −8

9. If z = eiθ, prove that:

(a) 1 + z4 = 2 cos 2θ cis 2θ (b)
1 + z4

1 + z−4
= cis 4θ

10. If z = reiθ, prove that:

(a) (1− i)z2 =
√

2 r2e
1

4
i(8θ−π) (b)

1 +
√

3 i

z
=

2e
1

3
i(π−3θ)

r

.
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3D Exponential Form: Euler’s Formula 117

11. Express the number in brackets in exponential form, and hence find the positive values
of n for which:

(a) (1 + i)
n

is real,

(b) (1 − i)
n

is purely imaginary,

(c)
(√

3 − i
)n

is real,

(d)
(

1 +
√

3 i
)n

is purely imaginary.

12. (a) Use the fact that eiθ = cos θ + i sin θ to prove that:

(i) eniθ + e−niθ = 2 cosnθ (ii) eniθ − e−niθ = 2i sinnθ

(b) Hence find trigonometric expressions for:

(i) e3iθ − e−3iθ

(ii)
(

eiθ + e−iθ
)2

(iii)
(

eiθ − e−iθ
)3

(iv) e2iθ + eiθ + 2 + e−iθ + e−2iθ

(v) e3iθ − eiθ + e−iθ − e−3iθ

13. (a) Find an expression for cos θ in terms of e.

(b) Hence show algebraically that cos θ is an even function.

(c) Similarly, show that sin θ is an odd function.

(d) Determine whether tan θ, cot θ, sec θ and cosec θ are even, odd or neither.

14. Expand fully:

(a)
(

z + 2eiπ/2
) (

z − 2eiπ/2
)

(b)
(

z − eiπ/3
)(

z − e−iπ/3
)

(c) (z + 2)
(

z − 2eiπ/3
)(

z − 2e−iπ/3
)

(d)
(

z −
√

2 eiπ/4
) (

z −
√

2 e−iπ/4
) (

z −
√

2 e3iπ/4
) (

z −
√

2 e−3iπ/4
)

15. Suppose that reiθ = seiφ, where both r and s are positive, and where both θ and φ are
the principal values.

(a) Show algebraically that r = s.
[Hint: Take the modulus of both sides and use the fact that r and s are positive.]

(b) Show that −2π < φ − θ < 2π, and hence show that θ = φ.

(c) Why is the result obvious from geometry?

E N R I C H M E N T

1 x

y

1
n1+

1

16. The diagram to the right shows y =
1

x
for x > 0. Consider the

portion of this curve for 1 ≤ x ≤ 1 +
1

n
, where n is a positive

integer.

(a) By comparing areas, show that

1

n + 1
≤ log

(

1 +
1

n

)

≤ 1

n
.

(b) Hence show that lim
n→∞

(

1 +
1

n

)n

= e .

(c) Use a suitable substitution in the result of part (b) to show that

lim
n→∞

(

1 +
x

n

)n

= ex.

.
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t

y

x

1

17. In this question we will derive an infinite series for ex.

(a) The graph on the right clearly shows that et ≥ 1 for 0 ≤ t ≤ x.
Integrate both sides of the inequality from 0 to x to show that
ex ≥ 1 + x.

(b) From part (a), et ≥ 1 + t for 0 ≤ t ≤ x. Integrate both sides
of the inequation from 0 to x to show that ex ≥ 1 + x + 1

2x2.

(c) Continue to integrate in a similar fashion to show that

ex ≥ E(x) for x ≥ 0, where E(x) =

∞
∑

n=0

xn

n!

(d) Now consider the function h(x) = e−x × E(x). Show that h′(x) = 0 for all real x.

(e) Hence show that in fact ex = E(x) for all real x. This is called the power series of ex.

18. In this question we will derive infinite series for cosx and sin x. The previous question
used integration. A different approach is used here.

(a) Suppose that cos x can be approximated with a polynomial. Since cosx is even, the
polynomial should also be even, so let this be

c(x) = a0 + a2x
2 + a4x

4 + ...

(i) Substitute x = 0 into cos x and c(x) to find the value of a0 .

(ii) Given that
d2

dx2
cosx = − cosx, it makes sense to put c′′(x) = −c(x). Equate the

coefficients of like powers of x to find a2 and a4 .

(iii) Show that c(x) =

∞
∑

n=0

(−1)nx2n

(2n)!
. This is called the power series of cosx.

(b) Suppose that sin x can be approximated with a polynomial. Since sinx is odd, the
polynomial should also be odd, so let this be

s(x) = a1x + a3x
3 + a5x

5 + ...

(i) Substitute x = 0 into the derivatives of sinx and s(x) to find the value of a1 .

(ii) Given that
d2

dx2
sinx = − sin x, it makes sense to put s′′(x) = −s(x). Equate the

coefficients of like powers of x to find a3 and a5 .

(iii) Show that s(x) =

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!
. This is the power series of sinx.

(c) Now consider the special function h(x) = (c(x)− cosx)2 + (s(x)− sinx)2.

(i) Show that c′(x) = −s(x) and that s′(x) = c(x).

(ii) Show that h′(x) = 0 and hence deduce that h(x) = 0 for all real x.

(iii) Explain why c(x) = cosx for all real x, and s(x) = sinx for all real x.

19. The function E(x) in Question 17 involves powers of x. Hence it is expected to behave
properly when x is replaced with the imaginary number iθ.

(a) Let eiθ = E(iθ). Write out and simplify the power series for eiθ.

(b) Re-arrange this power series and hence show that

eiθ = cos θ + i sin θ .

.
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3E Applications of Exponential Form 119

3E Applications of Exponential Form

Euler’s formula is a powerful tool that can be used to write elegant solutions to
problems involving exponential identities, trigonometric identities and roots of
complex numbers.

Exponential Identities: A significant characteristic of the exponential form is that
it is periodic. This is easy to prove using the corresponding trigonometric form.

WORKED EXAMPLE 12: Show that the exponential function eiθ is periodic with
period 2π. That is, prove the identity ei(θ+2kπ) = eiθ for all θ ∈ R.

SOLUTION: ei(θ+2kπ) = cos(θ + 2kπ) + i sin(θ + 2kπ)

= cos θ + i sin θ

= eiθ

6

THE EXPONENTIAL FUNCTION IS PERIODIC: The exponential function eiθ is periodic with

period 2π. That is:

ei(θ+2kπ) = eiθ for all θ ∈ R.

This result will be essential when using the exponential form to find the roots of
complex numbers, later in this section.

Trigonometric Identities: The trigonometric identities developed in Section 3B can
also be proven using exponential forms. In many cases, it is simply a matter of
replacing z with eiθ. To demonstrate, compare the following with Question 3 of
Exercise 3B.

WORKED EXAMPLE 13: Use the exponential form of cos θ to show that

cos4 θ = 1
8

(

cos 4θ + 4 cos2θ + 3
)

.

SOLUTION: First note that cos θ = 1
2

(

eiθ + e−iθ
)

. Thus:

cos4 θ = 1
16

(

eiθ + e−iθ
)4

= 1
16

(

ei4θ + 4ei2θ + 6 + 4e−i2θ + e−i4θ
)

= 1
8

(

1
2
(ei4θ + e−i4θ) + 4× 1

2
(ei2θ + e−i2θ) + 3

)

= 1
8

(

cos 4θ + 4 cos2θ + 3
)

.

The solution above relied on the exponential form of cos θ, which was derived in
Section 3D. The exponential form of sin θ is equally important and its derivation
is left as an exercise. The result for tan θ is simply the ratio of these two.

7

THE EXPONENTIAL FORMS OF SIN AND COS: Euler’s formula can be used to write these

functions in exponential form. They are:

cos θ = 1
2

(

eiθ + e−iθ
)

and sin θ = 1
2i

(

eiθ − e−iθ
)

The above exponential forms of sine and cosine can also be used to confirm other
trigonometric identities. Here is a harder example.

.
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120 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3E

WORKED EXAMPLE 14: Use the exponential forms to verify that

cosα − cosβ = −2 sin

(

α + β

2

)

sin

(

α − β

2

)

.

SOLUTION: To make the algebra easier, let λ =
α + β

2
and µ =

α − β

2
.

Next note that (λ + µ) = α and (λ − µ) = β. Then:

RHS = −2 × 1
2i

(

eiλ − e−iλ
)

× 1
2i

(

eiµ − e−iµ
)

= 1
2

(

ei(λ+µ) − ei(λ−µ) − e−i(λ−µ) + e−i(λ+µ)
)

= 1
2

(

eiα − eiβ − e−iβ + e−iα
)

= 1
2
(eiα + e−iα) − 1

2
(eiβ + e−iβ)

= LHS .

Roots of Complex Numbers: The exponential form can also be used to find roots
of complex numbers. The periodic nature of eiθ is a crucial part of the solution.

WORKED EXAMPLE 15: Find the cube roots of 2 + 2i in exponential form.

SOLUTION: First note that 2 + 2i = 2
3

2 ei π

4
+2ikπ. Let z = r eiθ be a cube root,

then z3 = 2 + 2i

gives r3ei3θ = 2
3

2 ei π

4
+2ikπ (by de Moivre)

Equating the moduli and arguments:

r3 = 2
3

2

so r =
√

2

and 3θ = π
4

+ 2kπ

so θ = π
12

+ 2kπ
3

=
π(1 + 8k)

12
hence, using the principal arguments (k = −1, 0, 1),

θ = −7π

12
or

π

12
or

3π

4
.

Finally, z =
√

2e−
7iπ

12 or
√

2e
iπ

12 or
√

2e
3iπ

4 .

Exercise 3E

1. Consider the equation z2 = 2i, whose roots are the two square roots of 2i.

(a) Write 2i in exponential form with principal argument.

(b) Hence write 2i in exponential form with a general argument.

(c) If z = reiθ, show that r =
√

2 and θ =
(4k + 1)π

4
.

(d) Hence write down the two roots of the equation in exponential form with principal
arguments.

(e) Express the two roots in Cartesian form.

.
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3E Applications of Exponential Form 121

2. Consider the equation z4 = −1, whose roots are the four fourth roots of −1.

(a) Write −1 in exponential form with principal argument.

(b) Hence write −1 in exponential form with a general argument.

(c) If z = reiθ, show that r = 1 and θ =
(2k + 1)π

4
.

(d) Hence write down the four roots of the equation in exponential form with principal
arguments.

(e) Express the four roots in Cartesian form.

3. Consider the equation z3 = −i, whose roots are the three cube roots of −i.

(a) Write −i in exponential form with principal argument.

(b) Hence write −i in exponential form with a general argument.

(c) If z = reiθ, show that r = 1 and θ = −(4k + 1)π

6
.

(d) Hence write down the three roots of the equation in exponential form with principal
arguments.

(e) Express the three roots in Cartesian form.

4. (a) Use the result eiθ = cos θ + i sin θ to show that eniθ + e−niθ = 2 cosnθ.

(b) Show that
(

eiθ + e−iθ
)3

=
(

e3iθ + e−3iθ
)

+ 3
(

eiθ + e−iθ
)

.

(c) Use parts (a) and (b) to derive the identity cos3 θ = 1
4 cos 3θ + 3

4 cos θ.

5. Use similar methods to the previous question to prove the identity sin3 θ = 3
4

sin θ− 1
4

sin 3θ.

D E V E L O P M E N T

6. (a) Show that z4 + 16 =
(

z − 2eiπ/4
)(

z − 2e−iπ/4
)(

z − 2e3iπ/4
) (

z − 2e−3iπ/4
)

.

(b) Hence show that z4 + 16 =
(

z2 − 2
√

2 z + 4
) (

z2 + 2
√

2 z + 4
)

.

(c) Confirm the factorisation in the previous part by writing z4 + 16
as

(

z4 + 8z2 + 16
)

− 8z2.

7. (a) Show that z5 + 1 = (z + 1)
(

z − eiπ/5
)(

z − e−iπ/5
) (

z − e3iπ/5
) (

z − e−3iπ/5
)

.

(b) Hence show that z5 + 1 = (z + 1)
(

z2 −
(

2 cos π
5

)

z + 1
)(

z2 +
(

2 cos 2π
5

)

z + 1
)

.

(c) Deduce that 2 cos 2π
5

− 2 cos π
5

+ 1 = 0, and hence find the exact values of cos π
5

and cos 2π
5 .

8. (a) Derive the exponential forms of cos θ and sin θ given in Box 7.

(b) Use these results to verify the following trigonometric identities.

(i) cos 2θ = cos2 θ − sin2 θ

(ii) sin 2θ = 2 cos θ sin θ

(iii) cos(α + β) = cosα cos β − sin α sin β

(iv) sin(α + β) = sinα cosβ + cos α sin β

9. (a) Use the methods of question 4 to write cos6 θ in terms of cos 6θ, cos 4θ and cos 2θ.

(b) Hence show that

∫ π

4

0

cos6 θ dθ =
15π + 44

192
.

10. (a) Find sin3 θ and sin5 θ in terms of sines of multiples of θ.

(b) Hence show that sin3 θ cos2 θ = 1
16

(2 sin θ + sin3θ − sin 5θ).

(c) Hence, or otherwise, evaluate

∫

π
3

0

sin3 θ cos2 θ dθ.

.
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122 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3E

11. Consider the polynomial equation 5z4−11z3 +16z2−11z +5 = 0, which has four complex
roots with modulus one, and let z = eiθ.

(a) Show that eniθ + e−niθ = 2 cosnθ.

(b) Hence show that 5 cos 2θ − 11 cos θ + 8 = 0.

(c) Find the four roots of the equation in Cartesian form.

12. Suppose that 1 − i = ea+ib, where a, b ∈ R and −π
2

< b < π
2
.

Find the exact values of a and b.

13. (a) Express cos(A + B) + cos(A − B) in terms of cos A and cos B.

(b) Hence prove that cosα + cosβ = 2 cos α+β
2

cos α−β
2

.

(c) Similarly, prove that sinα + sinβ = 2 sin α+β
2

cos α−β
2

.

(d) Given that α and β are real, deduce that eiα + eiβ = 2 cos α−β
2 e

1

2
i(α+β).

14. (a) Use the exponential forms of cos θ and sin θ given in Box 7 to verify each identity.

(i) cosα + cosβ = 2 cos α+β
2

cos α−β
2

(ii) sin α + sin β = 2 sin α+β
2

cos α−β
2

(b) Write down the exponential form of tan θ.

(c) Hence verify that tan2θ =
2 tanθ

1 − tan2 θ
.

15. (a) Write down the sum of the geometric series z + z2 + z3 + · · ·+ zn.

(b) Hence, by putting z = eiθ, show that:

sin θ + sin 2θ + sin 3θ + · · ·+ sin nθ =
sin 1

2
nθ sin 1

2
(n + 1) θ

sin 1
2θ

(c) Deduce that sin π
n

+ sin 2π
n

+ sin 3π
n

+ · · ·+ sin (n−1)π
n

= cot π
2n

.

E N R I C H M E N T

16. Use the exponential form of tan θ found in Question 14 to verify that

tan(α + β) =
tanα + tan β

1 − tan α tan β
.

17. Consider the equation z2n+1 = 1, where n is a positive integer.

(a) Find the roots of the equation, expressing them in exponential form.

(b) Hence show that

z2n + z2n−1 + z2n−2 + · · ·+ z2 + z + 1 =

n
∏

k=1

(

z2 −
(

2 cos 2kπ
2n+1

)

z + 1

)

.

(c) Deduce that 2n sin π
2n+1 sin 2π

2n+1 sin 3π
2n+1 · · · sin nπ

2n+1 =
√

2n + 1.

.
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3F Chapter Review Exercise

Exercise 3F

1. Simplify:

(a) (cos θ + i sinθ)3(cos 2θ + i sin 2θ)2 (b)
(cos θ + i sin θ)4

(cos θ − i sin θ)2

2. Evaluate

(

e−i π

7

)3

(

ei π

7

)4 .

3. (a) Write 1 − i in mod-arg form.

(b) Hence find (1 − i)
13

in Cartesian form.

4. (a) Use de Moivre’s theorem to evaluate (
√

3 + i)12 + (
√

3 − i)12.

(b) If n is a positive integer:

(i) prove that (
√

3 + i)n + (
√

3− i)n is real,

(ii) determine the values of n for which (
√

3 + i)n + (
√

3 − i)n is rational.

5. (a) Use de Moivre’s theorem to find cos 6θ and sin 6θ in terms of powers of cos θ and sin θ.

(b) Hence show that tan6θ =
2t

(

3 − 10t2 + 3t4
)

1 − 15t2 + 15t4 − t6
, where t = tan θ.

6. (a) Expand

(

z +
1

z

)4

and

(

z − 1

z

)4

.

(b) By letting z = cos θ + i sin θ, prove that cos4 θ + sin4 θ = 1
4
(cos 4θ + 3).

7. Suppose that ω is a complex cube root of −1.

(a) Show that the other complex root is −ω2.

(b) Evaluate (6ω + 1)(6ω2 − 1).

8. Solve the equation z3 − 8i = 0, writing the roots in the form reiθ.

9. Find, in mod-arg form:

(a) the three cube roots of 2 + 2i, (b) the six sixth roots of i.

10. Suppose that z = 4
√

3eiπ/3 − 4e5iπ/6.

(a) Simplify z, writing your answer in exponential form.

(b) Show that
z

8
+ i

(

z

8

)2

+

(

z

8

)3

= 2i.

(c) Find the three cube roots of z in exponential form.

11. (a) Show that (z − z−1)7 = (z7 − z−7) − 7(z5 − z−5) + 21(z3 − z−3) − 35(z − z−1).

(b) If z = cos θ + i sin θ, show that z − z−1 = 2i sinθ and that (zn − z−n) = 2i sinnθ.

(c) Hence prove that sin7 θ = 1
64 (35 sinθ − 21 sin3θ + 7 sin 5θ − sin 7θ).

(d) Find

∫

(

35 sin θ − 64 sin7 θ
)

dθ.

12. (a) Use de Moivre’s theorem to prove that cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ.

(b) Hence solve the equation 16x4 − 20x2 + 5 = 0, giving the roots in trigonometric form.

(c) Show that cos π
10

cos 3π
10

=
√

5
4

.

(d) If u = 2x2 − 1, show that 4u2 − 2u − 1 = 0.

(e) Deduce the exact value of cos π
5 .

.
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124 CHAPTER 3: Complex Numbers II: de Moivre and Euler 3F

13. (a) Derive the exponential forms of cos θ and sin θ given in Box 7.

(b) Use these results to verify each trigonometric identity.

(i) 2 cos2 θ = 1 + cos 2θ

(ii) 2 sin2 θ = 1 − cos 2θ

(iii) cos(α − β) = cosα cos β + sin α sin β

(iv) sin(α − β) = sinα cosβ − cos α sin β

14. (a) Find the seven seventh roots of −1 in mod-arg form.

(b) Hence show that:

(i) cos π
7

+ cos 3π
7

+ cos 5π
7

= 1
2

(ii) z7 + 1 = (z + 1)
(

z2 − 2z cos π
7 + 1

) (

z2 − 2z cos 3π
7 + 1

) (

z2 − 2z cos 5π
7 + 1

)

(iii) z6 − z5 + z4 − z3 + z2 − z + 1
=

(

z2 − 2z cos π
7 + 1

) (

z2 − 2z cos 3π
7 + 1

) (

z2 − 2z cos 5π
7 + 1

)

(c) Divide both sides of the identity in (b)(iii) by z3, and hence show that:

2 cos3θ − 2 cos 2θ + 2 cos θ − 1 = 8
(

cos θ − cos π
7

) (

cos θ − cos 3π
7

) (

cos θ − cos 5π
7

)

15. (a) Find the fifth roots of unity in exponential form.

(b) Let α be the complex fifth root of unity with the smallest positive argument, and
suppose that u = α + α4 and v = α2 + α3.

(i) Find the values of u + v and u − v.

(ii) Deduce that cos 2π
5

= 1
4

(√
5 − 1

)

.

16. Let z = cos θ + i sin θ and suppose that n is a positive integer.

(a) Show that zn + z−n = 2 cosnθ.

(b) Prove that 2 cosA sinB = sin (A + B) − sin (A − B).

(c) Hence show that
(

z2n + z2n−2 + z2n−4 + · · ·+ z−2n
)

sin θ = sin (2n + 1) θ.

(d) Use the previous part and the result cos 3A = 4 cos3 A− 3 cosA to prove the identity:

8 cos3 2θ + 4 cos2 2θ − 4 cos 2θ − 1 =
sin 7θ

sin θ

17. Use the exponential forms of cos θ and sin θ given in Box 7 to verify that

sinα − sinβ = 2 cos α+β
2 sin α−β

2

18. Suppose that n is an integer greater than 2 and ω is an nth root of unity, where ω 6= 1.

(a) By expanding the left-hand side, show that
(

1 + 2ω + 3ω2 + 4ω3 + · · ·+ nωn−1
)

(ω − 1) = n.

(b) Using the identity
1

z2 − 1
=

z−1

z − z−1
, or otherwise, prove that

1

cos 2θ + i sin 2θ − 1
=

cos θ − i sin θ

2i sinθ
.

(c) Hence, if ω = cos 2π
n

+ i sin 2π
n

, find the real part of
1

ω − 1
.

(d) Deduce that 1 + 2 cos 2π
5

+ 3 cos 4π
5

+ 4 cos 6π
5

+ 5 cos 8π
5

= −5
2
.

(e) By expressing the left-hand side of the result in part (d) in terms of cos π
5

and cos 2π
5

,
find the exact value of cos π

5 .

.
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4
Integration

Chapter Overview: The art of integration is a skill that all mathematicians
must possess, as integrals arise in all areas of mathematics. For example, in the

seemingly unrelated topic of prime numbers the integral

∫

dx

logx
appears.

As integration is an art form, it requires plenty of practice to become proficient.
Thus students are encouraged to attempt as many of the exercise questions as
possible in the time they have available.

The work in this chapter builds on the content of the Mathematics Extension 1
course. A methodical approach is needed to study the material. In particular,
it is important to be able to recognise the different forms of integrals, and to
quickly determine which method is best used.

The first five sections are relatively straightforward, being based on algebraic
manipulation. In Section 4F the new method of integration by parts is introduced,
which is based on the product rule for differentiation. Section 4G covers various
harder types of Trignometric integrals. Section 4H introduces the concept of
integrals that can be referenced by an index, and the corresponding reduction
formulae. The chapter concludes with a set of miscellaneous questions. These
provide an opportunity to practise choosing the most efficient method to apply.

4A The Standard Integrals

Students will know that each examination is accompanied by a Reference Sheet,
which includes various integrals. Most of these have already been encountered
in the Mathematics Extension 1 course. The appendix to this chapter includes
a table of similar integrals as well as some other common integrals that will be
needed in this course. The ability to manipulate any integral formula in simple
ways is expected of all students.

x1

y

1
2

1
3

WORKED EXAMPLE 1: Evaluate

∫ 1

2

0

dx

3 + 4x2
.

SOLUTION: Take out a factor of 1
4

to get:
∫ 1

2

0

dx

3 + 4x2
=

1

4

∫ 1
2

0

dx

(
√

3
2

)2 + x2

=
1

4
× 2√

3

[

tan−1

(

2x√
3

)]
1
2

0

(Reference Sheet)

.
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126 CHAPTER 4: Integration 4A

=
1

2
√

3
tan−1 1√

3

=
π

12
√

3
.

Exercise 4A

1. Use the Integral Calculus section of the HSC Reference Sheet to determine each of these
indefinite integrals.

(a)

∫

e4x dx

(b)

∫

sin 5x dx

(c)

∫

sec2 1
2x dx

(d)

∫

1

3x − 4
dx

(e)

∫

2√
x

dx

(f)

∫

3x dx

2. Use the Integral Calculus section of the Reference Sheet to find:

(a)

∫

1

(2x− 1)2
dx

(b)

∫

1√
25 − x2

dx

(c)

∫

x2ex3

dx

(d)

∫

1

9 + x2
dx

(e)

∫

4x + 2

x2 + x + 1
dx

(f)

∫

2x(x2 + 1)4dx

3. Use the Integral Calculus section of the HSC Reference Sheet to evaluate each of these
definite integrals.

(a)

∫ 4

0

e
x

2 dx

(b)

∫ π

6

0

sec2 2x dx

(c)

∫ 4

−4

1

16 + x2
dx

(d)

∫ 1

0

1√
2 − x2

dx

(e)

∫ −1

−2

3

2 − 3x
dx

(f)

∫ π

4

0

cos x sin3 x dx

D E V E L O P M E N T

4. Find:

(a)

∫

− 1

x2
e

1
x dx

(b)

∫

cos 3x

1 + sin 3x
dx

(c)

∫

x sec2 x2 dx

(d)

∫

52x dx

(e)

∫

1 + sec2 x

x + tanx
dx

(f)

∫

ex

√
1 − e2x

dx

5. Evaluate:

(a)

∫ 4

0

(1 − x)3 dx

(b)

∫ 1

0

x2

1 + x3
dx

(c)

∫ 1

0

dx

1 + 3x2

(d)

∫ 1

0

e2x

e2x + 1
dx

(e)

∫ 1
3

0

dx√
4 − 9x2

(f)

∫ π

4

0

sec2 x

1 + tan x
dx

E N R I C H M E N T

6. Evaluate

∫ e2

e

1

x lnx
dx.

7. Use the derivative of
ln x

x
to find

∫

ln x

x2
dx.

8. Use the derivative of x sin−1 x to show that

∫ 1
2

0

sin−1 x dx =
π

12
+

√
3

2
− 1.

9. Use the derivative of tan3 x to find

∫ π

4

0

tan4 x dx.

.
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4B Algebraic Manipulation 127

4B Algebraic Manipulation

Many of the integrals encountered contain fractions which require some sort of
rearrangement before proceeding. In the first worked example that follows the
numerator is almost identical to the denominator.

WORKED EXAMPLE 2: Determine

∫

x2 − 1

x2 + 1
dx .

SOLUTION: Noting that x2 − 1 = (x2 + 1)− 2 the fraction may be separated.
∫

x2 − 1

x2 + 1
dx =

∫

x2 + 1

x2 + 1
− 2

x2 + 1
dx

=

∫

1 − 2

x2 + 1
dx

= x − 2 tan−1 x + C .

In harder problems long division may be required. In some cases the numerator
is close to a multiple of the denominator, as in the next worked example.

WORKED EXAMPLE 3: Find

∫

4x3 − 2x2 + 1

2x − 1
dx .

SOLUTION:

∫

4x3 − 2x2 + 1

2x − 1
dx =

∫

2x2(2x− 1) + 1

2x − 1
dx

=

∫

2x2 +
1

2x− 1
dx

= 2
3
x3 + 1

2
log |2x− 1|+ C .

Using a Common Factor: Some rational functions are easier to deal with after
multiplication or division by a common factor. The result is a numerator which
is the derivative of the denominator.

WORKED EXAMPLE 4: Evaluate

∫ 1

−1

e2x − 1

e2x + 1
dx .

-1

1

1

-1

x

ySOLUTION: Multiply numerator and denominator by e−x to get:
∫ 1

−1

e2x − 1

e2x + 1
dx =

∫ 1

−1

ex − e−x

ex + e−x
dx

=
[

log(ex + e−x)
]1

−1

= log(e + e−1) − log(e−1 + e)

= 0 . (Why is this obvious from the graph?)

Notice in the solution that the primitive log(ex + e−x) is written without an
absolute value. This is because ex+e−x is always positive, and hence the absolute
value function is redundant. In this text, the absolute value will normally be
omitted whenever it is redundant.

Two New Integrals: The final two integrals in the appendix will be new to most
readers. The result for the last integral is proven here using a very clever trick.
Like the previous worked example, multiply through by a common factor.

.
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128 CHAPTER 4: Integration 4B

∫

1√
x2 + a2

dx =

∫

(x +
√

x2 + a2)√
x2 + a2 (x +

√
x2 + a2)

dx

=

∫ ( x√
x2+a2

+ 1)

(x +
√

x2 + a2)
dx

=

∫ (1 + x√
x2+a2

)

(x +
√

x2 + a2)
dx .

Looking carefully at the last line, notice that the numerator is the derivative of
the denominator and hence

∫

1√
x2 + a2

dx = log(x +
√

x2 + a2) + C .

The second last integral in the table may be done in a similar way, which is a
question at the end of the exercise.

Exercise 4B
1. Determine the following by rewriting the numerator in terms of the denominator.

(a)

∫

x

x − 1
dx (b)

∫

x − 1

x + 1
dx (c)

∫

x + 1

x − 1
dx

2. Evaluate the following.

(a)

∫ 1

0

x − 1

x + 1
dx (b)

∫ 2

0

x

2x + 1
dx (c)

∫ 1

0

3− x2

1 + x2
dx

3. Evaluate the following. In each case, begin by rewriting the given fraction as two fractions
by separating the terms in the numerator.

(a)

∫

√
3

2

0

1 − x√
1 − x2

dx (b)

∫ 1

0

2x + 1

1 + x2
dx (c)

∫ 1

0

1− x

1 + x2
dx (d)

∫ 2

0

1 + x

4 + x2
dx

4. (a) Let y = log(x +
√

x2 + a2). Find and simplify
dy

dx
.

(b) Hence find a formula for

∫

1√
x2 + a2

dx .

(c) Use this formula to determine: (i)

∫

1√
x2 + 3

dx, (ii)

∫ 4

−4

1√
x2 + 9

dx

D E V E L O P M E N T

5. (a) Given that x3 = x(x2 + 1)− x, determine

∫

x3

x2 + 1
dx.

(b) Given that x3 = (x3 + 1)− 1 and that x3 + 1 = (x + 1)(x2 − x + 1),

determine

∫

x3

x + 1
dx.

(c) Use similar approaches to those shown in parts (a) and (b) to determine the following.

(i)

∫

x3

x − 1
dx

(ii)

∫

x4

x2 + 1
dx

(iii)

∫

1

1 + ex
dx

(iv)

∫

x√
2 + x

dx

(v)

∫

x√
1 − x

dx

(vi)

∫

x3

x2 + 4
dx

6. Evaluate these by first muliplying or dividing by an appropriate factor.

(a)

∫ 2

1

e2x + 1

e2x − 1
dx (b)

∫ 1

0

ex

ex + e−x
dx (c)

∫

√
3

1

2 + 1
x

x + 1
x

dx

.
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4C Substitution 129

7. By using long division or otherwise, determine:

(a)

∫

x2 + x + 1

x + 1
dx (b)

∫

x3 − 2x2 + 3

x − 2
dx (c)

∫

(x + 1)2

1 + x2
dx

8. (a) Let y = log(x +
√

x2 − a2), where x > |a|. Find and simplify
dy

dx
.

(b) Hence find a formula for

∫

1√
x2 − a2

dx , where x > |a|.

(c) Use this formula to determine: (i)

∫

1√
x2 − 5

dx (ii)

∫ 3

√
5

1√
x2 − 4

dx

E N R I C H M E N T

9. Divide numerator and denominator by an appropriate factor to help determine
∫

1

x +
√

x
dx .

10. Use a similar approach to that shown in the text to prove that, for |x| > |a|,
∫

1√
x2 − a2

dx = log
∣

∣

∣
x +

√

x2 − a2
∣

∣

∣
+ C .

4C Substitution

Many of the techniques used in integration are derived from differentiation. This
is not so surprising since the two processes are essentially mutually inverse. One
particularly useful technique is substitution which is the integration equivalent of
the chain rule for differentiation, and is sometimes called the reverse chain rule.

The Integral Form of the Chain Rule: Suppose that F is a function of u, which
is in turn a function of x. Further suppose that F (u) is a primitive of f(u).
Differentiating F with respect to x and applying the chain rule gives:

d

dx
F (u) =

dF

du
× du

dx

so
d

dx
F (u) = f(u) × u′ .

Integrating both sides of this result
∫

(

d

dx
F (u)

)

dx =

∫

f(u) × u′ dx

or F (u) + C =

∫

f(u) × u′ dx .

It is this last result which proves most useful for integration. Thus if an integrand
can be expressed as a product, where one factor is a chain of functions f(u) and
the other factor is u′ then the primitive can immediately be written down.

1

THE INTEGRAL FORM OF THE CHAIN RULE: If F (u) is a primitive of f(u) then
∫

f(u)× u′ dx = F (u) + C .

.
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130 CHAPTER 4: Integration 4C

Substitutions: In the simplest examples, the primitive can be determined mentally.
For example, an easy integral involving the exponential function is

∫

2x ex2

dx = ex2

+ C .

In harder examples a formal procedure should be followed.

WORKED EXAMPLE 5: Determine

∫

x2

√
x3 + 1

dx by a suitable substitution.

SOLUTION: Let I =

∫

x2

√
x3 + 1

dx and put u = x3 + 1, then

du

dx
= 3x2

or 1
3du = x2 dx (treating the derivative like a fraction.)

Thus I =

∫

1

3
√

u
du

= 2
3

√
u + C .

Hence I = 2
3

√

x3 + 1 + C .

Notice that the final step of the solution is a back substitution to get the integral I
in terms of x. It is important to remember to do this.

Substitutions and Definite Integrals: It is equally important to follow this formal
procedure when definite integrals are involved, paying particular attention to the
limits of integration. However, the back substitution step is not needed.

WORKED EXAMPLE 6: Use a suitable substitution to find

∫ π

2

0

sin x

(1 + cosx)3
dx .

y

x

1

-1

p

2

SOLUTION: Let I =

∫ π

2

0

sin x

(1 + cosx)3
dx and put u = 1 + cos x to get

du

dx
= − sinx

so −du = sin x dx .

When x = 0 , u = 2 ,

and when x = π
2

, u = 1 ,

thus I =

∫ 1

2

−1

u3
du

=

[

1

2u2

]1

2

= 1
2
− 1

8

= 3
8

.

The step where the limits are expressed in terms of the substitute variable is
important. Had this step not been done then the wrong answer is obtained since

∫ π

2

0

−1

u3
du =

[

1

2u2

]
π

2

0

which is undefined at the lower limit. Again notice that the derivative is treated
like a fraction in the third line of the solution.

.
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4C Substitution 131

Harder Examples: In simple examples like those above, candidates are expected to
determine the appropriate substitution for themselves. In harder problems the
substitution will be given. Implicit differentiation may also be required.

WORKED EXAMPLE 7: Use the substitution u =
√

x to determine

∫

1

x +
√

x
dx .

SOLUTION: Let I =

∫

dx

x +
√

x
and note that u2 = x, so:

2u
du

dx
= 1

or 2u du = dx .

Hence I =

∫

2u du

u2 + u

=

∫

2 du

u + 1
= 2 log(u + 1) + C

= 2 log(
√

x + 1) + C .

Take Care with Substitutions: There are many integrals which require a careful
choice of substitution so as to avoid subsequent difficulties. For example, the
correct choice of substitution in the previous worked example is u =

√
x .

On first inspection, it would seem to make no difference to make the alternate
substitution u2 = x, however observe what happens in the denominator.

x +
√

x = u2 +
√

u2 = u2 + |u| .
Thus in this case a new complication has been introduced, namely the absolute
value function. In general, the best choice of substitution is of the form u = f(x).

In some instances it is more natural to use a substitution of the form x = g(u).
Then the domain of u is restricted to avoid any later complication. This is often
the case with trigonometric substitutions.

WORKED EXAMPLE 8: Evaluate

∫ 1

0

√

4 − x2 dx using a suitable substitution.

y

x21

2

-2

SOLUTION: Let I =

∫ 1

0

√

4 − x2 dx.

The integrand is the upper semi-circle with radius 2,
so put x = 2 sin θ with −π

2
≤ θ ≤ π

2
.

This means that cos θ ≥ 0.

Differentiating dx = 2 cos θ dθ .

When x = 0 , θ = 0 ,

and when x = 1 , θ = sin−1(1
2
) = π

6
.

Thus I =

∫ π

6

0

2 cos θ
√

4 − 4 sin2 θ dθ

=

∫ π

6

0

4 cos θ
√

cos2 θ dθ (by the Pythagorean identity)

=

∫ π

6

0

4 cos2 θ dθ (since cos θ ≥ 0)

.
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132 CHAPTER 4: Integration 4C

=

∫ π

6

0

2(1 + cos 2θ) dθ (by the double-angle formula)

=
[

2θ + sin 2θ
]

π

6

0

= π
3

+
√

3
2

.

Notice that in the solution
√

cos2 θ = | cosθ|, but this is further simplified to cos θ

since it is known that cos θ ≥ 0 in the specified domain. Further observe that the
same outcome would have been achieved by substituting θ = sin−1 x

2
, since the

range of inverse sine is also −π
2
≤ θ ≤ π

2
. A trigonometric substitution should

always be made in this manner, with the inverse function in mind.

Two Guidelines for Substitutions: The infinite variety of integrals that may be
encountered makes it impractical to give a specific recipe for choosing the correct
substitution. However the following two guidelines may help, and can be observed
in practice in the previous worked examples.

• Try to replace the part of the integral which causes difficulty, such as the
innermost function in a chain of functions. In particular, if the integral
involves square-roots of sums or differences of squares then a trigonometric
substitution is likely to work.

• It is better to use a substitution which is a function u = f(x) rather than a
relation x = g(u). If a relation must be used then it is often best to restrict
the domain in a similar manner to an inverse function.

Exercise 4C

1. Find these integrals by the reverse chain rule, then do them again using a suitable substi-
tution.

(a)

∫

2x(x2 + 1)4 dx

(b)

∫

3x2(1 + x3)6 dx

(c)

∫

6x2

(1 + x3)2
dx

(d)

∫

4x

(3− x2)5
dx

(e)

∫

x√
x2 − 2

dx

(f)

∫

x3

√
1 + x4

dx

2. Use a suitable substitution where necessary to find:

(a)

∫

cos x

sin3 x
dx

(b)

∫

sec2 x

(1 + tanx)2
dx

(c)

∫

(lnx)2

x
dx

(d)

∫

cos
√

x√
x

dx

(e)

∫

x

1 + x4
dx

(f)

∫

x2

√
1 − x6

dx

3. Use a suitable substitution where necessary to evaluate:

(a)

∫ 1

0

x3(1 + 3x4)2 dx

(b)

∫ 1

0

x√
4− x2

dx

(c)

∫ 4

3

x + 1√
x2 + 2x + 3

dx

(d)

∫ π

2

0

sin4 x cosx dx

(e)

∫ π

4

0

tan2 x sec2 x dx

(f)

∫ e2

1

ln x

x
dx

D E V E L O P M E N T

4. (a) Use a suitable substitution to help evaluate

∫ 1

0

x(x− 1)5 dx .

(b) How could this integral have been evaluated using just algebraic manipulation?

.
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5. Use the given substitution to find:

(a)

∫

x
√

x + 1 dx [put u =
√

x + 1]

(b)

∫

1

1 +
√

x
dx [put u = 1 +

√
x]

(c)

∫

1

1 + x
1
4

dx [put u = x
1
4 ]

(d)

∫

1√
e2x − 1

dx [put u =
√

e2x − 1]

6. In each case, use the given substitution to evaluate the integral.

(a)

∫ 1

0

2− x

(2 + x)3
dx [put u = 2 + x]

(b)

∫ 4

0

x
√

4− xdx [put u =
√

4 − x]

(c)

∫ 4

0

1

5 +
√

x
dx [put u =

√
x]

(d)

∫ 12

4

1

(4 + x)
√

x
dx [put u =

√
x]

7. In each case, use the given substitution to determine the primitive.

(a)

∫

1

(1 + x)
√

x
dx [put u =

√
x] (b)

∫

x√
x + 1

dx [put u =
√

x + 1]

8. In each case use the given trigonometric substitution to evaluate the integral. You may
assume that 0 ≤ θ < π

2
.

(a)

∫

1

(1 + x2)
3
2

dx [put x = tan θ]

(b)

∫

x2

√
4 − x2

dx [put x = 2 sin θ]

(c)

∫

1

x2
√

25 − x2
dx [put x = 5 cosθ]

(d)

∫

1

x2
√

1 + x2
dx [put x = tan θ]

9. (a) Use a suitable substitution to help evaluate

∫

√
2

0

x3

√
x2 + 1

dx .

(b) How could this integral have been evaluated using just algebraic manipulation?

10. (a) Use a suitable substitution to show that

∫ 2

1

√

4− x2 dx = 2π
3
−

√
3

2
.

(b) Redo this problem by geometric means.

11. Let I =

∫ π

2

0

sinx

sinx + cosx
dx.

(a) Use the substitution u = π
2 − x to show that I =

∫ π

2

0

cosx

sin x + cos x
dx.

(b) By adding the two equal integrals, find the value of I .

12. (a) Show that

∫ π

0

sin x

1 + cos2 x
dx = π

2
.

(b) Let I =

∫ π

0

x sinx

1 + cos2 x
dx.

(i) Use the substitution u = π − x to show that I = π2

2
− I .

(ii) Hence evaluate I .

E N R I C H M E N T

13. (a) Use a trigonometric substitution to show that

∫ 1
2

0

x2

√
1 − x2

dx = π
12

−
√

3
8

.

(b) How could this integral have been evaluated using algebra then geometry?

.
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134 CHAPTER 4: Integration 4D

14. Consider the indefinite integral I =

∫

dx

x
√

x2 − 1
. Clearly the domain of the integrand is

disjoint, being x > 1 or x < −1 . Thus it seems appropriate to use a different substitution
in each part of the domain.

(a) Find I for x > 1 by using the substitution u =
√

x2 − 1 .

(b) Find I for x < −1 by using the substitution u = −
√

x2 − 1 .

15. (a) Use a suitable substitution to determine

∫ 4

2+ε

dx

x2
√

x2 − 4
, where ε > 0 .

(b) Take the limit of this result as ε → 0+ and hence find

∫ 4

2

dx

x2
√

x2 − 4
.

4D Partial Fractions

In arithmetic, when given the sum of two fractions, the normal procedure is to
combine them into a single fraction using the lowest common denominator. Thus

1

3
+

1

2
=

5

6
.

Unfortunately when the fractions are functions and integration is involved, this
is exactly the wrong thing to do. Whilst it is true that

3

x + 2
+

2

x − 1
=

5x + 1

x2 + x − 2
,

when considering the corresponding integrals,
∫

3

x + 2
+

2

x − 1
dx =

∫

5x + 1

x2 + x − 2
dx ,

it should be clear that the left hand side is far simpler to determine than the
right hand integral. So:

∫

5x + 1

x2 + x − 2
dx =

∫

3

x + 2
+

2

x − 1
dx

= 3 log |x + 2| + 2 log |x − 1| + C .

This example is typical of integrals of rational functions. It is easiest to first
split the fraction into its simpler components. In mathematical terminology, the
fraction is decomposed into its partial fractions.

A Theorem About Partial Fractions: Consider the rational function

P (x)

A(x)× B(x)
,

where P , A and B are polynomials, with no common factors between any pair,
and where deg P < deg A + deg B. It is always possible to write

P (x)

A(x)× B(x)
=

RA(x)

A(x)
+

RB(x)

B(x)
,

where the remainders RA and RB are polynomials with deg RA < deg A and
deg RB < deg B. However, the proof is beyond the scope of this course.

.
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4D Partial Fractions 135

Linear Factors: In the simplest examples, A(x) and B(x) are linear. Since the
degrees of RA and RB are less, they must be constants, yet to be found.

WORKED EXAMPLE 9: (a) Decompose
x + 1

(x − 1)(x + 3)
into its partial fractions.

(b) Hence evaluate

∫ 6

2

x + 1

(x − 1)(x + 3)
dx .

SOLUTION: (a) Let
x + 1

(x− 1)(x + 3)
=

A

x − 1
+

B

x + 3
, where A and B are unknown

constants. Multiply this equation by (x− 1)(x + 3) to get:

x + 1 = A(x + 3) + B(x − 1)

or x + 1 = (A + B)x + (3A − B) .

Equating coefficients of like powers of x yields the simultaneous equations

A + B = 1

3A − B = 1 .

These can be solved mentally to get A = 1
2 and B = 1

2 . Thus

y

x62

1

-1

-3

x + 1

(x− 1)(x + 3)
=

(1
2
)

x − 1
+

(1
2
)

x + 3
.

(b) Hence

∫ 6

2

x + 1

(x − 1)(x + 3)
dx

= 1
2

∫ 6

2

1

x − 1
+

1

x + 3
dx

= 1
2

[

log(x− 1) + log(x + 3)
]6

2

= 1
2

(

(log 5 + log 9) − (log 1 + log 5)
)

= log 3 .

This method of equating coefficients of like powers of x is usually only convenient
in straightforward examples like this one.

Finding the Constants by Substitution: A more general method of finding the
unknown constants in partial fractions uses substitution. In many cases it is also
a quicker method.

WORKED EXAMPLE 10: Decompose
3x − 5

(x − 3)(x + 1)
into partial fractions.

SOLUTION: Let
3x− 5

(x − 3)(x + 1)
=

A

x − 3
+

B

x + 1
, where A and B are unknown

constants. Multiply this equation by (x− 3)(x + 1) to get:

3x− 5 = A(x + 1) + B(x − 3) .

When x = 3, 4 = 4A

so A = 1 .

When x = −1, −8 = −4B

so B = 2 .

Thus
3x − 5

(x − 3)(x + 1)
=

1

x − 3
+

2

x + 1
.

.
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136 CHAPTER 4: Integration 4D

The careful reader will have noticed a point of contention with the solution. The
fraction is undefined when x = 3 and when x = −1, yet these values were used
in the substitution steps. How can this be valid? The answer is that some of the
detail of the solution has been omitted. Here is a more complete explanation.

Since
3x − 5

(x− 3)(x + 1)
=

A

x − 3
+

B

x + 1
where x 6= −1, 3 ,

it follows that 3x − 5 = A(x + 1) + B(x − 3) where x 6= −1, 3 .

Now this last equation is true whenever x 6= −1, 3. That is, it is a linear equation
which is true for at least two other values of x. Hence it is an identity, and so it is
true for all x, including x = −1 and x = 3. Thus these values can be substituted
to determine A and B. It is not necessary to give this complete explanation as
part of a solution, but students should be aware of it.

Numerators with Higher Degree: In slightly harder problems, the degree of the
numerator is greater than or equal to the degree of the denominator. In such
cases, the fraction should be expressed as a sum of a polynomial and the partial
fractions. Long division may be used at this step, but it is often easier to use a
polynomial with unknown coefficients, as in the following worked example.

WORKED EXAMPLE 11: Determine

∫

x3 + x − 3

x2 − 3x + 2
dx .

SOLUTION: First note that
x3 + x − 3

x2 − 3x + 2
=

x3 + x − 3

(x − 2)(x− 1)
,

so let
x3 + x − 3

(x − 2)(x− 1)
= Ax + B +

C

x − 2
+

D

x − 1
,

thus x3 + x − 3 = (Ax + B)(x − 2)(x− 1) + C(x − 1) + D(x− 2) .

Equating the coefficients of x3, A = 1.

At x = 1 −1 = −D so D = 1 .

At x = 2 7 = C .

At x = 0 −3 = 2B − 7 − 2

so B = 3 .

Finally

∫

x3 + x − 3

x2 − 3x + 2
dx =

∫

x + 3 +
7

x − 2
+

1

x − 1
dx

= 1
2
x2 + 3x + 7 log |x − 2|+ log |x − 1| + E .

The Cover-up Rule: There is an even quicker method to determine the constants
of the partial fractions, provided that the original denominator is a product of
distinct linear factors, and provided that the degree of the numerator is less than
the degree of the denominator. The trick is to multiply by just one linear factor
at a time.

WORKED EXAMPLE 12: Express
7 − 5x

(x + 1)(x− 2)(x− 3)
in partial fractions form.

SOLUTION: Let
7 − 5x

(x + 1)(x− 2)(x− 3)
=

C1

x + 1
+

C2

x − 2
+

C3

x − 3
. (∗)

(∗)× (x + 1) gives
7 − 5x

(x − 2)(x− 3)
= C1 +

C2(x + 1)

x − 2
+

C3(x + 1)

x − 3

.
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so at x = −1 C1 =
12

(−3)(−4)
= 1 .

(∗)× (x − 2) gives
7 − 5x

(x + 1)(x− 3)
=

C1(x − 2)

x + 1
+ C2 +

C3(x − 2)

x − 3

so at x = 2 C2 =
−3

3 × (−1)
= 1 .

Finally
7 − 5x

(x + 1)(x− 2)
=

C1(x − 3)

x + 1
+

C2(x − 3)

x − 2
+ C3

so at x = 3 C3 =
−8

4 × 1
= −2 .

Hence
7 − 5x

(x + 1)(x− 2)(x− 3)
=

1

x + 1
+

1

x − 2
− 2

x − 3
.

This method of finding the constants is sometimes called the cover-up rule. Look
carefully at how the three constants are determined. For each constant, the
matching linear factor is effectively omitted, or “covered up”. Thus for C1, (x+1)
is left out of the original fraction. For C2, (x−2) is excluded, and for C3, (x−3)
is omitted from the original fraction. In each case, the resulting rational function
is then evaluated at the corresponding value of x. With practice, most students
should be able to determine the constants mentally using this method.

Proof of the Cover-up Rule — Extension: Here is a proof for the general case.

Proof: Consider the rational function
P (x)

Q(x)
where deg P < deg Q, and where

Q(x) is a product of distinct linear factors, that is

Q(x) = C × (x − a1)× (x − a2) × . . .× (x − an)

= C

n
∏

i=1

(x − ai) (note the use of product notation,
∏

.)

Let
P (x)

Q(x)
=

C1

x − a1
+

C2

x − a2
+ . . . +

Ck

x − ak

+ . . . +
Cn

x − an

Multiply this last equation by (x − ak) to get

P (x)(x − ak)

Q(x)
=

C1(x− ak)

x − a1
+

C2(x − ak)

x − a2
+ . . . + Ck + . . . +

Cn(x − ak)

x − an

.

Now take the limit as x → ak . All terms except Ck on the right hand side are
zero and so:

Ck = lim
x→ak

P (x)(x − ak)

Q(x)

= lim
x→ak

P (x)

C

n
∏

i=1

i6=k

(x− ai)

(that is, cancel the kth linear factor)

hence Ck =
P (ak)

C

n
∏

i=1

i6=k

(ak − ai)

.

The mathematical notation may seem difficult, but the result is exactly as before.
To get the kth coefficient Ck, omit the kth linear factor from the denominator
and evaluate the rest of the fraction at x = ak.

.
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138 CHAPTER 4: Integration 4D

Quadratic Factors: In certain instances, the denominator of the rational function
being considered will have a quadratic factor with no real zero. For example, in

3x + 10

(x− 2)(x2 + 4)

the quadratic factor (x2 + 4) has no real zero. Thus the denominator of the
rational function cannot be expressed as a product of real linear factors.

Nevertheless, the method for finding the partial fraction decomposition remains
essentially the same. And since the only requirement is that the degree of the
numerator is less than the degree of the denominator, it follows that for any
quadratic factor the numerator can be a linear polynomial.

WORKED EXAMPLE 13: (a) Rewrite
3x + 10

(x − 2)(x2 + 4)
in its partial fractions.

(b) Hence determine

∫

3x + 10

(x − 2)(x2 + 4)
dx .

SOLUTION: (a) Let
3x + 10

(x− 2)(x2 + 4)
=

A

x − 2
+

Bx + C

x2 + 4
, where A, B and C are

unknown constants. Then

3x + 10 = A(x2 + 4) + (Bx + C)(x − 2)

At x = 2 16 = 8A so A = 2 .

Equating coefficients of x2 yields

0 = 2 + B so B = −2 .

At x = 0 10 = 8− 2C

so C = −1 .

Thus
3x + 10

(x− 2)(x2 + 4)
=

2

x − 2
− 2x + 1

x2 + 4
.

(b) Hence

∫

3x + 10

(x − 2)(x2 + 4)
dx =

∫

2

x − 2
− 2x

x2 + 4
− 1

x2 + 4
dx

= 2 log |x − 2| − log |x2 + 4| − 1
2

tan−1(x
2
) + C .

2

PARTIAL FRACTIONS: Here is a summary of the techniques in this section.

• Make each numerator have degree one less than its denominator.

• Use the cover up rule when there are distinct linear factors.

• Substitution, simultaneous equations or equating coefficients may also be used

to determine unknown constants.

• Use a polynomial with unknown coefficients or long division for numerators

with higher degree.

Repeated Factors: Recall that a polynomial factor which has degree greater than
one is called a repeated factor. For example in the denominator of the fraction

8 − x

(x− 2)2(x + 1)
,

the factor (x − 2)2 is a repeated factor since its index is two. When a partial
fraction question involves repeated factors, normally the initial decomposition
is given in the question and it is simply a matter of finding the values of the
unknown constants.

.
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4D Partial Fractions 139

WORKED EXAMPLE 14: (a) Find the real numbers A, B and C such that

8 − x

(x− 2)2(x + 1)
=

A

x − 2
+

B

(x − 2)2
+

C

x + 1
.

(b) Hence evaluate

∫ 1

0

8 − x

(x − 2)2(x + 1)
dx .

SOLUTION:

(a) Now 8 − x = A(x − 2)(x + 1) + B(x + 1) + C(x − 2)2 .

At x = −1 9 = 9C so C = 1 .

At x = 2 6 = 3B so B = 2 .

At x = 3 5 = 4A + 8 + 1

so A = −1 .

(b) Hence

∫ 1

0

8 − x

(x − 2)2(x + 1)
dx

=

∫ 1

0

1

x + 1
+

2

(x− 2)2
− 1

x − 2
dx

=

[

log(x + 1) − 2

x − 2
− log |x− 2|

]1

0

= (log 2 + 2 − log 1) − (log 1 + 1− log 2)

= 1 + 2 log2 .

Exercise 4D

-1

2

1 2 x

y

1. Decompose the following fractions into partial fractions.

(a)
2

(x− 1)(x + 1)

(b)
1

(x− 4)(x− 1)

(c)
4x

x2 − 9

(d)
x

x2 − 3x + 2

(e)
x − 1

x2 + x − 6

(f)
3x + 1

(x − 1)(x2 + 3)

2. Find:

(a)

∫

2

(x− 4)(x− 2)
dx

(b)

∫

4

x2 + 4x + 3
dx

(c)

∫

3x − 2

(x − 1)(x− 2)
dx

(d)

∫

2x + 10

x2 + 2x− 3
dx

(e)

∫

4x + 5

(2x + 3)(x + 1)
dx

(f)

∫

10x

2x2 − x − 3
dx

3. Evaluate:

(a)

∫ 6

4

1

x2 − 4
dx

(b)

∫ 4

2

3

x2 + x − 2
dx

(c)

∫ 5

2

11

2x2 + 5x − 12
dx

(d)

∫ 0

−1

1

3x2 − 4x + 1
dx

4. Determine:

(a)

∫

x2 − 2x + 5

(x− 2)(x2 + 1)
dx (b)

∫

6 − x

(2x + 1)(x2 + 3)
dx (c)

∫

x2 + x + 3

x3 + x
dx

5. Find the value of:

(a)

∫ 1
2

0

1 + 2x − 4x2

(x + 1)(4x2 + 1)
dx (b)

∫ 1

−1

7 − x

(x + 3)(x2 + 1)
dx (c)

∫

√
2

1

x2 − 4

x3 + 2x
dx

.
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D E V E L O P M E N T

6. Find:

(a)

∫

2x + 3

(x− 1)(x− 2)(2x− 3)
dx (b)

∫

4x + 12

x3 − 6x2 + 8x
dx

7. Evaluate:

(a)

∫ 7

2

3x + 5

(x − 1)(x + 2)(x + 1)
dx (b)

∫ 2

1

13x + 6

x3 − x2 − 6x
dx

8. (a) (i) Let
2x2 + 1

(x − 1)(x + 2)
= A +

B

x − 1
+

C

x + 2
. Find the values of A, B and C.

(ii) Hence find

∫

2x2 + 1

(x− 1)(x + 2)
dx

(b) Use a similar technique to part (a) in order to find:

(i)

∫

x2 − 2x + 3

(x + 1)(x− 2)
dx (ii)

∫

3x2 − 66

(x + 4)(x − 5)
dx

9. (a) (i) Find the values of A, B, C and D such that

x3 − 3x2 − 4

(x + 1)(x− 3)
= Ax + B +

C

x + 1
+

D

x − 3
.

(ii) Hence evaluate

∫ 1

0

x3 − 3x2 − 4

(x + 1)(x− 3)
dx .

(b) Use a similar method to evaluate

∫ 4

2

x3 + 4x2 + x − 3

(x + 2)(x− 1)
dx .

10. (a) (i) Find the values of A, B and C such that

3x2 − 10

x2 − 4x + 4
= A +

B

x − 2
+

C

(x − 2)2
.

(ii) Hence find

∫

3x2 − 10

x2 − 4x + 4
dx.

(b) (i) Find the integers A, B, C and D such that

3x + 7

(x− 1)2(x − 2)2
=

A

x − 1
+

B

(x− 1)2
+

C

x − 2
+

D

(x− 2)2
.

(ii) Hence find

∫

3x + 7

(x− 1)2(x − 2)2
dx .

11. Show that:

(a)

∫ 6

4

x2 − 8

x3 + 4x
dx = 3

2
ln 2 − 2 ln 3

2
. (b)

∫ 2

0

1 + 4x

(4 − x)(x2 + 1)
dx = 1

2
ln 20.

12. (a) Let
x2 − 1

x4 + x2
=

A

x
+

B

x2
+

Cx + D

x2 + 1
. Find A, B, C and D.

(b) Hence show that

∫

√
3

1√
3

x2 − 1

x4 + x2
dx = 1

3(π − 2
√

3).

13. Use appropriate methods to find:

(a)

∫

x2 + 1

x2 − 1
dx

(b)

∫

x2 + 1

x2 − x
dx

(c)

∫

x3 + 1

x3 + x
dx

(d)

∫

x2

x2 − 5x + 6
dx

(e)

∫

x3 + 5

x2 + x
dx

(f)

∫

x4

x2 − 3x + 2
dx

.
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E N R I C H M E N T

14. Use a similar approach to Question 10 for repeated factors to show that
∫ 1

2

−1
2

5x − x2

(x + 1)2(x − 1)
dx = 4− 3 ln 3 .

15. (a) In the notation of the text, if Q(x) is a product of distinct linear factors, one of which

is (x − ak), then Ck = lim
x→ak

P (x)(x− ak)

Q(x)
. Use this result to prove that

Ck =
P (ak)

Q′(ak)
.

[Hint: What is the value of Q(ak)?]

(b) Use this formula to redo Questions 6(b) and 7(b).

4E Denominators with Quadratics

Many practical applications yield integrals with a quadratic in the denominator.
In the simplest cases it is a matter of applying the following four results:

∫

1

a2 + x2
dx =

1

a
tan−1 x

a

∫

1√
a2 − x2

dx = sin−1 x

a

∫

1√
x2 − a2

dx = ln
∣

∣

∣
x +

√

x2 − a2
∣

∣

∣

∫

1√
x2 + a2

dx = ln
(

x +
√

x2 + a2
)

Another common integral is

∫

dx

x2 − a2
. Although a formula exists for this, it is

not part of the course. It is expected that candidates determine the primitive by
use of partial fractions whenever this type of integral is encountered.

WORKED EXAMPLE 15: Evaluate

∫ 1

−1

4

x2 − 4
dx .

-2 2 x

y

-1

SOLUTION: Now
4

x2 − 4
=

4

(x − 2)(x + 2)
,

so let
4

(x− 2)(x + 2)
=

A

x − 2
+

B

x + 2
.

Then by the cover-up rule A = 1 and B = −1.

Hence

∫ 1

−1

4

x2 − 4
dx =

∫ 1

−1

1

x − 2
− 1

x + 2
dx

=
[

log |x− 2| − log(x + 2)
]1

−1

= (log 1 − log 3)− (log 3 − log 1)

= −2 log 3 .

Quadratics with Linear Terms: Frequently the quadratic will have a linear term,
such as in 3 + 2x − x2. In these instances the method is to complete the square
to obtain either the sum of two squares or the difference of two squares.

.
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142 CHAPTER 4: Integration 4E

WORKED EXAMPLE 16: Find

∫

1√
3 + 2x − x2

dx .

SOLUTION: Completing the square in the denominator:
∫

1√
3 + 2x− x2

dx =

∫

1
√

4 − (x− 1)2
dx

=

∫

1√
4 − u2

du where u = x − 1

= sin−1 u
2 + C

= sin−1 x−1
2 + C .

Notice that the solution uses a substitution. This step may be omitted by using a
result from the Mathematics Extension 1 course. Recall that if F (x) is a primitive
of f(x) then

∫

f(ax + b) dx = 1
a
F (ax + b) + C .

The result is a combination of shifting and stretching along the x-axis. A shift
does not affect the area under a graph, but a stretch does, hence the factor 1

a
.

In Worked Example 16 above, f(x) =
1√

4 − x2
, the primitive is F (x) = sin−1 x

2
,

with a = 1 and b = 1. Thus it is permissible to write
∫

1
√

4 − (x − 1)2
dx = sin−1 x−1

2
+ C ,

without showing any working. Here is a similar example.

WORKED EXAMPLE 17: Find the value of

∫ 1

−1

9

7 + 4x + x2
dx .

-2 -1 1

3

y

x

SOLUTION: Completing the square in the denominator:
∫ 1

−1

9

7 + 4x + x2
dx =

∫ 1

−1

9

3 + (4 + 4x + x2)
dx

=

∫ 1

−1

9

3 + (2 + x)2
dx

= 9√
3

[

tan−1 x+2√
3

]1

−1

= 3
√

3
(

π
3 − π

6

)

= π
√

3
2

.

3

QUADRATICS WITH LINEAR TERMS: Complete the square, then use the result
∫

f(ax + b) dx = 1
a
F (ax + b) + C ,

where F (x) is the primitive of f(x) .

Linear Numerators: So far in all the worked examples the numerator has been a
constant. When the numerator is linear it is best to carefully split it into two
parts. The first term should be a multiple of the derivative of the quadratic in
the denominator. The second term will then be a constant.

.
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4E Denominators with Quadratics 143

WORKED EXAMPLE 18: Determine

∫

4x + 3

x2 + 9
dx .

SOLUTION:

∫

4x + 3

x2 + 9
dx = 2

∫

2x

x2 + 9
dx +

∫

3

x2 + 9
dx

= 2 log(x2 + 9) + tan−1 x
3 + C .

In harder examples the quadratic will also contain a linear term. The following
is such an example and requires the last integral formula in the appendix.

WORKED EXAMPLE 19: Evaluate

∫ 0

−1

2x + 3√
x2 + 2x + 2

dx .

x

y

2

-2

-1

3

2-SOLUTION:
∫ 0

−1

2x + 3√
x2 + 2x + 2

dx

=

∫ 0

−1

2x + 2√
x2 + 2x + 2

dx +

∫ 0

−1

1
√

(x + 1)2 + 1
dx

=
[

2
√

x2 + 2x + 2
]0

−1
+

[

log
(

(x + 1) +
√

(x + 1)2 + 1
)

]0

−1

= 2
√

2− 2 + log(1 +
√

2)− log 1

= 2(
√

2 − 1) + log(1 +
√

2) .

4
LINEAR NUMERATORS: When the numerator is linear it is best to split it into a

multiple of the derivative of the quadratic in the denominator plus a constant.

Rationalising the Numerator: In much previous work it has been convenient to
rationalise the denominator when a surd appears. In contrast, when calculus is
involved it is often more convenient to rationalise the numerator instead.

WORKED EXAMPLE 20: Find

∫

√

x + 1

x + 7
dx .

SOLUTION: Rationalising the numerator
∫

√

x + 1

x + 7
dx =

∫

x + 1√
x2 + 8x + 7

dx

=

∫

x + 4√
x2 + 8x + 7

dx −
∫

3√
x2 + 8x + 7

dx

=

∫

x + 4√
x2 + 8x + 7

dx −
∫

3
√

(x + 4)2 − 32
dx

=
√

x2 + 8x + 7 − 3 log
∣

∣

∣
(x + 4) +

√

(x + 4)2 − 32
∣

∣

∣
+ C .

Notice that in the first line of working, by rationalising, the numerator has become
linear. This is typical of the questions done in this section.

5
RATIONALISING THE NUMERATOR: When calculus is involved it is often convenient to

rationalise the numerator.

.
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Exercise 4E

Note: Two further standard integrals are required in this exercise:
∫

1√
x2 + a2

dx = ln
(

x +
√

x2 + a2
)

and

∫

1√
x2 − a2

dx = ln
∣

∣

∣
x +

√

x2 − a2
∣

∣

∣

1. Find these integrals. Parts (e) and (f) require the two new standard integrals above.

(a)

∫

1

9 + x2
dx

(b)

∫

1√
9 − x2

dx

(c)

∫

1

x2 − 9
dx

(d)

∫

1

9 − x2
dx

(e)

∫

1√
9 + x2

dx

(f)

∫

1√
x2 − 9

dx

2. Determine the following. Parts (e) and (f) require the two new standard integrals above.

(a)

∫

1

x2 + 4x + 5
dx

(b)

∫

1

x2 − 4x + 20
dx

(c)

∫

1√
9 + 8x − x2

dx

(d)

∫

1√
20− 8x − x2

dx

(e)

∫

1√
x2 − 6x + 13

dx

(f)

∫

1√
4x2 + 8x + 6

dx

3. Evaluate the following. Parts (e) and (f) require the two new standard integrals above.

(a)

∫ 3

1

1

x2 − 2x + 5
dx

(b)

∫ 5

1

4

x2 − 6x + 13
dx

(c)

∫ 0

−1

1√
3 − 2x− x2

dx

(d)

∫ 1

0

3√
3 + 4x − 4x2

dx

(e)

∫ 3

−1

1√
x2 + 2x + 10

dx

(f)

∫ 1

1
2

2√
x2 − x + 1

dx

D E V E L O P M E N T

4. Find:

(a)

∫

2x + 1

x2 + 2x + 2
dx

(b)

∫

x

x2 + 2x + 10
dx

(c)

∫

x√
6x − x2

dx

(d)

∫

x + 3√
4 − 2x − x2

dx

(e)

∫

x√
x2 + 2x + 10

dx

(f)

∫

x + 3√
x2 − 2x − 4

dx

5. Find the value of:

(a)

∫ 2

0

x + 1

x2 + 4
dx

(b)

∫ 2

1

x + 1

x2 − 4x + 5
dx

(c)

∫ 2

1

2x − 3

x2 − 2x + 2
dx

(d)

∫ 0

−1

x√
3 − 2x− x2

dx

(e)

∫ 3

−1

1− 2x√
x2 + 2x + 3

dx

(f)

∫ 1

0

x + 3√
x2 + 4x + 1

dx

6. Determine each primitive.

(a)

∫

√

1 + x

1 − x
dx (b)

∫

√

3 − x

2 + x
dx (c)

∫

√

x − 1

x + 1
dx

7. Evaluate:

(a)

∫ 0

−1

√

1 − x

x + 3
dx (b)

∫ 0

−1

√

x + 2

1 − x
dx (c)

∫ 1

0

√

x + 1

x + 3
dx

E N R I C H M E N T

8. (a) Why is it not valid to evaluate

∫ 2

0

√

x

4 − x
dx using the techniques of this section?

(b) Nevertheless, show that its value is lim
ε→0+

∫ 2

ε

√

x

4 − x
dx = π − 2 .

.
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4F Integration by Parts 145

9. (a) Show that x3 + 3x2 + 5x + 1 = (x + 1)(x2 + 2x + 2) + (x − 1) .

(b) Hence or otherwise show that
∫ 0

−1

x3 + 3x2 + 5x + 1√
x2 + 2x + 2

dx = 1
3
(5
√

2 − 4)− 2 ln(1 +
√

2 ) .

4F Integration by Parts

Whilst there are well known and relatively simple formulae for the derivatives of
products and quotients of functions, there are no such general formulae for the
integrals of products and quotients. Nevertheless, as was found in the previous
two sections, certain quotients can be integrated relatively easily. In this section,
a method of integration is developed that can be applied to certain types of
products. It begins with the product rule for differentiation.

Now
d

dx
(uv) = u′v + u v′ .

Swapping sides and integrating yields
∫

u′v dx +

∫

u v′ dx = uv ,

hence

∫

u v′ dx = uv −
∫

u′v dx .

This last equation provides a way to rearrange an integral of one product into an
integral of a different product. The formula is applied with the aim that the new
integral is in some way simpler. The process is called integration by parts.

WORKED EXAMPLE 21: Use integration by parts to find

∫

xex dx .

SOLUTION:

Let I =

∫

xex dx

=

∫

u v′ dx ,

where u = x and v′ = ex

so u′ = 1 and v = ex .

Hence I = uv −
∫

u′v dx

= xex −
∫

ex dx

= xex − ex + C

or I = ex(x − 1) + C .

Notice the lack of any constant of integration until the process is finished.

6

INTEGRATION BY PARTS: The integral of the product u v′ can be rearranged using

integration by parts, viz:
∫

u v′ dx = uv −
∫

u′v dx .

.
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146 CHAPTER 4: Integration 4F

Reducing Polynomials: When one of the factors of the integrand is a polynomial,
it is common to let u be that polynomial. In that way the new integral, which
depends on u′, will contain a polynomial of lesser degree. That is, the aim is to
reduce the degree of the polynomial.

-1 p

y

x

WORKED EXAMPLE 22: Evaluate

∫ π

0

(x + 1) sinx dx .

SOLUTION:

Let I =

∫ π

0

(x + 1) sinx dx

=

∫ π

0

u v′ dx ,

where u = (x + 1) and v′ = sinx

so u′ = 1 and v = − cosx .

Thus I =
[

uv
]π

0
−

∫ π

0

u′v dx

=
[

− (x + 1) cosx
]π

0
+

∫ π

0

cosx dx

= (π + 1) + 1 +
[

sinx
]π

0
,

hence I = π + 2 .

7
REDUCING POLYNOMIALS: Integration by parts may be used to reduce the degree of

a polynomial. Let u be that polynomial and v′ the other factor.

Repeated Applications: It may be necessary to apply integration by parts more
than once in order to complete the process of integration. In simpler examples it
may be possible to do some of the steps mentally.

WORKED EXAMPLE 23: Evaluate

∫ 1

0

x2e−x dx .

y

x1

1

e

SOLUTION:

Let I =

∫ 1

0

x2e−x dx

and put u = x2 and v′ = e−x

so u′ = 2x and v = −e−x .

Then I =
[

− x2e−x
]1

0
+

∫ 1

0

2xe−x dx (by parts.)

The second term is another integral of a product.

So put u = 2x and v′ = e−x

with u′ = 2 and v = −e−x .

Thus I = −e−1 +

(

[

− 2xe−x
]1

0
+

∫ 1

0

2e−x dx

)

(by parts again)

= −e−1 − 2e−1 −
[

2e−x
]1

0

= 2 − 5e−1 .

.
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4F Integration by Parts 147

Exceptions with Polynomials: Although it is common to reduce the degree of a
polynomial using integration by parts, there are many exceptions. In this course
these exceptions typically involve the logarithm function.

WORKED EXAMPLE 24: Determine

∫

x logx dx .

SOLUTION:

Let I =

∫

x logx dx

and put u = logx and v′ = x

so u′ = 1
x

and v = 1
2
x2 .

Thus I = 1
2
x2 logx −

∫

1
2
x2 × 1

x
dx (by parts)

= 1
2
x2 logx −

∫

1
2
x dx

= 1
2
x2 logx − 1

4
x2 + C

or I = 1
4
x2(2 logx − 1) + C .

Integrands where v
′ = 1: The prime number 5 has only two distinct factors,

namely 1 × 5 . A function may be treated like a prime in a similar way:

sin−1 x = 1 × sin−1 x .

This somewhat artificial form of factoring is applied to facilitate integration by
parts. It is then usual to put u equal to the function and v′ = 1 .

WORKED EXAMPLE 25: Find the value of

∫ 1
2

0

sin−1 x dx .

1-1 x

y
p

2

p

2-

1

2

p

6

SOLUTION:

Let I =

∫ 1
2

0

sin−1 x dx

=

∫ 1

2

0

1 × sin−1 x dx .

Put u = sin−1 x and v′ = 1

so u′ =
1√

1 − x2
and v = x .

Thus I =
[

x sin−1 x
]

1
2

0
−

∫ 1
2

0

x√
1 − x2

dx (by parts)

=
[

x sin−1 x +
√

1 − x2
]

1
2

0

=

(

1
2
× π

6
+

√

3
4

)

− (0 + 1)

= π
12

+
√

3
2

− 1 .

The careful reader will have seen that there is a much simpler way to do this
integral. The key is in the diagram. The area shaded is the difference between
the areas of the rectangle, width 1

2
and height π

6
, and the unshaded portion. That

unshaded portion involves a very simple integral along the y-axis.

.
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148 CHAPTER 4: Integration 4F

This example highlights the importance of a diagram to see the most efficient
solution. In this case, it would be better to integrate along the y-axis than to use
integration by parts. It is left as an exercise to show the result is the same.

A Recurrence of the Integral: Integration by parts may lead to a recurrence of
the original integral. It is then simply a matter of collecting like terms.

WORKED EXAMPLE 26: Find a primitive of ex sinx .

SOLUTION:

Let I =

∫

ex sin x dx

and put u = sinx and v′ = ex

so u′ = cosx and v = ex .

Then I = ex sinx −
∫

ex cos x dx (by parts)

Now put u = cosx and v′ = ex

so u′ = − sinx and v = ex .

Thus I = ex sinx −
(

ex cosx +

∫

ex sin x dx

)

(by parts again)

= ex(sinx − cos x)− I

or 2I = ex(sinx − cos x)

hence I = 1
2
ex(sinx − cos x) + C is the general primitive.

In this example it was important to apply the method consistently. Notice that u

was always the trigonometric function and v′ was always the exponential function.
As an exercise to highlight the significance of these choices, repeat the worked
exercise but put u = ex and v′ = cos x at the second integration by parts.

As a final note, there is no constant of integration in the second last line of the
solution to Worked Example 26, yet the last line includes a constant. There is
nothing to be alarmed about here. The process has led to a specific primitive
I = 1

2
ex(sinx − cosx) and, as with any indefinite integral, the general primitive

is then obtained by simply adding a constant at the last step.

Exercise 4F

1. Find:

(a)

∫

xex dx

(b)

∫

xe−x dx

(c)

∫

(x + 1)e3x dx

(d)

∫

x cosx dx

(e)

∫

(x − 1) sin2x dx

(f)

∫

(2x− 3) sec2 x dx

2. Evaluate:

(a)

∫ π

0

x sinx dx

(b)

∫ π

2

0

x cosx dx

(c)

∫ π

4

0

x sec2 x dx

(d)

∫ 1

0

xe2x dx

(e)

∫ 1

0

(1− x)e−x dx

(f)

∫ 0

−2

(x + 2)ex dx

3. Use integration by parts with v′ = 1 to find:

(a)

∫

lnx dx (b)

∫

ln(x2) dx (c)

∫

cos−1 x dx

.
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4F Integration by Parts 149

4. Find the value of:

(a)

∫ 1

0

tan−1 x dx (b)

∫ e

1

ln x dx (c)

∫ e

1

ln
√

x dx

5. In each case use integration by parts to increase the power of x.

(a)

∫

x lnx dx (b)

∫

x2 lnx dx (c)

∫

ln x

x2
dx

D E V E L O P M E N T

6. Use repeated applications of integration by parts in order to find:

(a)

∫

x2ex dx (b)

∫

x2 cosx dx (c)

∫

(lnx)2 dx

7. These integrals are more naturally done by substitution. However, they can also be done
by parts. Use integration by parts and then redo each integral using a suitable substitution,
in order to compare the efficiency and ease of each method.

(a)

∫ 1

0

x(x − 1)5 dx (Q4) (b)

∫ 1

0

x
√

x + 1 dx (c)

∫ 4

0

x
√

4 − xdx (Q6b)

8. Determine: (a)

∫

ex cosx dx (b)

∫

e−x sinx dx

9. Evaluate: (a)

∫ π

2

0

e2x cosx dx (b)

∫ π

4

0

ex sin 2x dx

10. Use integration by parts to evaluate:

(a)

∫

√
3

2

0

sin−1 x dx (b)

∫

√
3

2

−
√

3

2

cos−1 x dx (c)

∫ 1

0

4x tan−1 x dx

11. Show that:

(a)

∫ π

0

x2 cos 2x dx = π
2

(b)

∫ π

0

x2 sin 1
2x dx = 8π − 16

(c)

∫ e

1

sin(lnx) dx = 1
2e(sin 1 − cos 1) + 1

2

(d)

∫ e

1

cos(lnx) dx = 1
2e(sin 1 + cos 1)− 1

2

12. (a) Determine

∫

x lnx dx. (b) Hence find

∫

x(ln x)2 dx.

13. Use trigonometric identities and then integration by parts to show that:

(a)

∫ π

2

0

x sinx cosx dx = π
8

(b)

∫ π

2

0

x sin2 x dx = 1
16

(π2 + 4)

(c)

∫ π

4

0

x tan2 x dx = π
4 − π2

32 − 1
2 ln 2

(d)

∫ π

0

x2(cos2 x − sin2 x) dx = π
2

E N R I C H M E N T

14. Determine formulae for the following:

(a)

∫

√

a2 − x2 dx (b)

∫

ln(x +
√

x2 + a2 ) dx (c)

∫

ln(x +
√

x2 − a2 ) dx

15. Determine:

(a)

∫

x sinx cos 3x dx (b)

∫

x cos 2x cosx dx (c)

∫

ex sin 2x cosx dx

16. Evaluate: (a)

∫ 1
2

0

x sin−1 x dx (b)

∫ 1

0

x2 tan−1 x dx

17. Let s be a positive constant. Show that lim
N→∞

∫ N

0

te−st dt =
1

s2
.

.
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150 CHAPTER 4: Integration 4G

4G Trigonometric Integrals

Trigonometric integrals arise frequently in practical applications. This section
contains those integrals more commonly encountered, and is grouped by type.

Powers of Cosine and Sine: There are two methods for the integral
∫

cosm x sinn x dx

depending on whether the constants m and n are odd or even. If both are even
then it is best to use the double angle identities.

WORKED EXAMPLE 27: Evaluate

∫ π

2

0

4 cos2 x sin2 x dx

y

xp-p
p

2
p

2-

1

SOLUTION: Apply the double angle formula for sine to get:
∫ π

2

0

4 cos2 x sin2 x dx

=

∫ π

2

0

sin2 2x dx

= 1
2

∫ π

2

0

1 − cos 4x dx (cosine double angle formula)

= 1
2

[

x − 1
4 sin 4x

]
π

2

0

= π
4

.

In the second method one or both of m and n is odd. Work with cosine if m

is odd, otherwise work with sine. The odd index of the chosen trigonometric
function can be reduced to 1 via the Pythagorean identity, cos2 x + sin2 x = 1. It
is then a matter of making a substitution for the other trigonometric function.
The result is a polynomial integral.

WORKED EXAMPLE 28: Determine

∫

cos3 x sin2 x dx .

SOLUTION:

Let I =

∫

cos3 x sin2 x dx

=

∫

cosx(1 − sin2 x) sin2 x dx (by Pythagoras.)

Put u = sinx ,

so that du = cosx dx ,

then I =

∫

(1 − u2)u2 du

=

∫

u2 − u4 du

= 1
3
u3 − 1

5
u5 + C

= 1
3
sin3 x − 1

5
sin5 x + C .

.
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4G Trigonometric Integrals 151

8
POWERS OF COSINE AND SINE: Given an integral of the form

∫

cosm x sinn x dx:

• if m and n are both even then use the double angle identities,

• if either m or n is odd then use the Pythagorean identity and a substitution.

Powers of Secant and Tangent: There are three general methods for the integral
∫

secm x tann x dx ,

again depending on whether the constants m and n are odd or even. There are
also two special cases which should be dealt with first.

When m = 0 and n = 1 the situation is trivial, viz:
∫

tan x dx =

∫

sinx

cosx
dx

= − log | cosx| + C .

A very clever trick is required for the other special case when m = 1 and n = 0.
∫

sec x dx =

∫

sec x(sec x + tanx)

(sec x + tanx)
dx

=

∫

sec x tanx + sec2 x

sec x + tan x
dx

= log | sec x + tanx| + C .

Notice that in both special cases the result is a logarithmic function since the
numerator of the integrand is the derivative of the denominator.

9

THE INTEGRALS OF THE TANGENT AND SECANT FUNCTIONS:
∫

tanx dx = − log | cosx| + C

∫

sec x dx = log | sec x + tanx| + C

Now for the general cases. If m and n are both even then separate out a factor
of sec2 x and substitute u = tanx to get a polynomial integral. The Pythagorean
identity 1 + tan2 x = sec2 x may be required, particularly when m = 0.

WORKED EXAMPLE 29: Find

∫

tan4 x dx .

SOLUTION:
∫

tan4 x dx =

∫

tan2 x sec2 x dx−
∫

tan2 x dx (by Pythagoras)

=

∫

tan2 x sec2 x dx−
∫

sec2 x − 1 dx (by Pythagoras again)

=

∫

u2 du−
∫

sec2 x dx +

∫

1 dx where u = tan x

= 1
3u3 − tanx + x + C

= 1
3 tan3 x − tan x + x + C .

.
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152 CHAPTER 4: Integration 4G

WORKED EXAMPLE 30: Show that

∫ π

4

0

sec4 x tan2 x dx = 8
15

.

SOLUTION: Let I =

∫ π

4

0

sec4 x tan2 x dx

so I =

∫ π

4

0

sec2 x (tan2 x + 1) tan2 x dx (by Pythagoras.)

Put u = tanx ,

then I =

∫ 1

0

(u2 + 1)u2 du

=

∫ 1

0

u4 + u2 du

=
[

1
5
u5 + 1

3
u3

]1

0

= 8
15 .

p

2

4

y

xp

4
p

2-

If n is odd then factor out the term sec x tanx and substitute u = sec x to obtain
a polynomial integral. The Pythagorean identity may be required.

WORKED EXAMPLE 31: Determine the value of

∫ π

3

0

sec3 x tanx dx .

p

2
p

3
p

2-

y

x

8Ö3

SOLUTION: Let I =

∫ π

3

0

sec3 x tanx dx ,

so I =

∫ π

3

0

sec2 x × sec x tanx dx .

Put u = sec x ,

then I =

∫ 2

1

u2 du

=
[

1
3
u3

]2

1

= 7
3
.

Whenever m is odd and n is even it is best to integrate by parts. Once again the
Pythagorean identity may be required.

WORKED EXAMPLE 32: Find

∫

sec3 x dx .

SOLUTION:

Let I =

∫

sec3 x dx

=

∫

sec2 x × sec x dx .

Put u = sec x and v′ = sec2 x

so u′ = sec x tanx and v = tanx .

Then I = sec x tanx −
∫

sec x tan2 x dx (by parts)

= sec x tanx −
∫

sec x(sec2 x − 1) dx (by Pythagoras.)

.
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4G Trigonometric Integrals 153

Thus I = sec x tanx −
∫

sec3 x dx +

∫

sec x dx ,

so I = sec x tanx − I + log | secx + tanx| (from the special case)

or 2I = sec x tanx + log | secx + tanx| ,
hence I = 1

2

(

sec x tanx + log | secx + tan x|
)

+ C .

10

POWERS OF SECANT AND TANGENT: Given an integral of the form

∫

secm x tann x dx:

• if m and n are both even then factor out sec2 x and substitute u = tanx

• if n is odd then factor out the term sec x tanx and substitute u = sec x

• if m is odd and n is even then use integration by parts

Products to Sums: There are three standard formulae for converting products of
trigonometric functions to sums. These will be familiar to some readers and are
easily proved by expanding each right hand side.

11

PRODUCTS TO SUMS:

sin A cosB = 1
2

(

sin(A − B) + sin(A + B)
)

cos A cosB = 1
2

(

cos(A − B) + cos(A + B)
)

sin A sinB = 1
2

(

cos(A − B) − cos(A + B)
)

These formulae can be applied to simplify an integral, as in the following example.

WORKED EXAMPLE 33: Find

∫

cos 3x cos 2x dx .

SOLUTION:

∫

cos 3x cos 2x dx = 1
2

∫

cos x + cos 5x dx (products to sums)

= 1
2 sin x + 1

10 sin 5x + C .

The t-substitution: The t-substitution, namely t = tan x
2
, should be well known to

all readers, being part of the Mathematics Extension 1 course. The aim here is
to transform a trigonometric integrand into a rational function.

WORKED EXAMPLE 34: Show that

∫ π

2

0

4

3 + 5 cosx
dx = log 3 .

p

2

y

x

4

3
1

2

cos ( )-
-1 3

5

SOLUTION: Let I =

∫ π

2

0

4

3 + 5 cosx
dx .

Put t = tan x
2

then
dt

dx
= 1

2
sec2 x

2

= 1
2
(1 + t2) .

So dx =
2 dt

1 + t2
,

with cosx =
1− t2

1 + t2
.

.
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154 CHAPTER 4: Integration 4G

Thus I =

∫ 1

0

4

3 + 5 1−t2

1+t2

× 2 dt

1 + t2

=

∫ 1

0

8

8 − 2t2
dt

=

∫ 1

0

4

4 − t2
dt .

Let
4

(2 + t)(2 − t)
=

A

2 + t
+

B

2 − t
(partial fractions)

then A = 1 and B = 1 (by the cover-up method.)

Hence I =

∫ 1

0

1

2 + t
+

1

2 − t
dt

=
[

log(2 + t) − log(2− t)
]1

0

= log 3 .

12

THE t -SUBSTITUTION: Use this to transform a trigonometric integrand into a rational

function. Let t = tan x
2
, then:

tanx =
2t

1 − t2
cosx =

1 − t2

1 + t2
sin x =

2t

1 + t2
with dx =

2 dt

1 + t2

Exercise 4G

1. Find:

(a)

∫

cosx dx (b)

∫

sinx dx (c)

∫

tanx dx (d)

∫

cot x dx

2. Find each of the following integrals by substituting either u = sinx or u = cosx. You may
also need to apply the Pythagorean identity cos2 x + sin2 x = 1.

(a)

∫

cosx sin2 x dx

(b)

∫

cos2 x sinx dx

(c)

∫

sin3 x dx

(d)

∫

cos3 x dx

(e)

∫

cos5 x dx

(f)

∫

sin3 x cos3 x dx

3. Use the double angle formulae to evaluate:

(a)

∫ π

2

0

sin2 x dx (b)

∫ π

3

π

6

cos2 x dx (c)

∫ π

0

sin2 x cos2 x dx

4. Use the substitution u = tanx to find the following. You may also need to apply the
Pythagorean identity 1 + tan2 x = sec2 x.

(a)

∫

sec2 x dx (b)

∫

tan2 x dx (c)

∫

sec4 x dx (d)

∫

tan4 x dx

D E V E L O P M E N T

5. Evaluate:

(a)

∫ π

2

0

cos3 x sinx dx

(b)

∫ π

6

0

cos3 x dx

(c)

∫ π

3

0

sin3 x cosx dx

(d)

∫ π

3

0

sin5 x dx

(e)

∫ π

0

sin3 x cos2 x dx

(f)

∫ π

4

0

sin2 x cos3 x dx

.
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6. Determine:

(a)

∫

cos4 x dx (b)

∫

sin4 x dx (c)

∫

sin4 x cos4 x dx

7. Show that:

(a)

∫ π

3

0

sec2 x tan2 x dx =
√

3

(b)

∫ π

3

−π

6

sec2 x tan3 x dx = 22
9

(c)

∫ π

4

0

sec4 x tanx dx = 3
4

(d)

∫ π

4

0

tan5 x dx = 1
4
(2 ln 2− 1)

8. Use the t-substitution to evaluate:

(a)

∫ π

2

0

1

1 + sinx
dx (b)

∫ π

2

0

1

4 + 5 cosx
dx (c)

∫ π

2

−π

2

1

5 + 3 sinx
dx

9. In each case use a suitable trigonometric substitution to evaluate the integral.

(a)

∫ 1

0

√

1 − x2 dx (b)

∫ 1

0

x3
√

1 + x2 dx (c)

∫ 1

0

x2
√

1 − x2 dx

10. Let I =

∫

sin x cosx dx .

(a) Find I using a suitable substitution. (b) Find I by the double angle formulae.

(c) Show that the answers to parts (a) and (b) are equivalent.

11. Evaluate:

(a)

∫ π

4

0

(

tan3 x + tanx
)

dx (b)

∫ π

3

−π

3

(

cosx − cos3 x
)

dx

12. Evaluate:

(a)

∫ π

3

0

sin3 x sec2 x dx (b)

∫ π

3

0

sin3 x sec4 x dx

13. Find these integrals by first converting the products to sums.

(a)

∫

sin 3x cosx dx (b)

∫

cos 3x sinx dx (c)

∫

cos 6x cos 2x dx

14. Evaluate these definite integrals by first converting the products to sums.

(a)

∫ π

4

0

sin 3x sinx dx (b)

∫ π

4

0

cos 4x cos 2x dx (c)

∫ π

3

0

sin 4x cos 2x dx

15. Use the substitution t = tan x
2

to determine:

(a)

∫

1

1 + cosx
dx (b)

∫

1

1 + sin x − cos x
dx (c)

∫

1

3 sinx + 4 cosx
dx

16. (a) Use the t-substitution to show that

∫

secx dx = ln

∣

∣

∣

∣

1 + tan x
2

1 − tan x
2

∣

∣

∣

∣

+ C

(b) Show that the primitive in (a) is equivalent to ln |sec x + tanx| + C.

E N R I C H M E N T

17. In the chapter on complex numbers it was shown that (cis θ)3 = cis 3θ. Use this result to

help determine

∫

cos3 θ dθ.

18. Use integration by parts and the fact that

∫

sec x dx = ln |sec x + tan x|+ C to show that

∫ π

4

0

sec3 x dx = 1√
2

+ 1
2
ln

(

1 +
√

2
)

.

.
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4H Reduction Formulae

Readers will be familiar with sequences and series, such as the odd numbers,

1, 3, 5, 7, . . . or un = 2n − 1 ,

or the powers of 2,

1, 2, 4, 8, . . . or un = 2n−1 .

In this section, sequences of integrals are considered, such as the sequence
∫ π

2

0

sin x dx ,

∫ π

2

0

sin2 x dx ,

∫ π

2

0

sin3 x dx , . . . or In =

∫ π

2

0

sinn x dx .

Of particular interest are the equations which relate the terms of the sequence.

Continuing with this example, it can be shown that

In = n−1
n

× In−2 for n ≥ 2 .

Such equations are called reduction formulae, because they enable the index to
be reduced, in this case from n to n − 2. In practical terms, this means that
if one of the integrals in the sequence is known then other terms can be simply
calculated from it without the need for further integration. Returning to the
example above, since

I1 =

∫ π

2

0

sinx dx = 1 ,

it follows that I3 = 2
3
I1 = 2

3
,

and I5 = 4
5I3 = 8

15 .

This is obviously a significant saving of effort since it was not necessary to find
the primitives of sin3 x and sin5 x in order to evaluate I3 and I5 . It should be
clear from this that reduction formulae are of particular importance.

Note that the convention is to evaluate the sequence index before the integral is
evaluated. Thus, once again using the same example,

I0 =

∫ π

2

0

1 dx

= π
2 .

Identities: In a few cases the reduction formula can be generated by use of an identity,
as in the following example.

WORKED EXAMPLE 35: Let In =

∫ π

4

0

tann x dx .

(a) Show that In =
1

n − 1
− In−2 for n ≥ 2 .

(b) Evaluate I1 and hence find I5.

SOLUTION:

(a) In =

∫ π

4

0

tann−2 x (sec2 x − 1) dx (by Pythagoras, for n ≥ 2)

=

∫ π

4

0

tann−2 x sec2 x dx −
∫ π

4

0

tann−2 x dx

.
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thus In =

[

tann−1 x

n − 1

]

π

4

0

− In−2

=
1

n − 1
− In−2 for n ≥ 2 .

y = (tan x)
5

y

x

1

-1

p

2
p

4
p

2-

(b) I1 =

∫ π

4

0

tanx dx

=
[

− log(cosx)
]

π

4

0

= 1
2

log 2 .

Thus I3 = 1
2 − I1

= 1
2
− 1

2
log 2 ,

and I5 = 1
4
− I3

= 1
2 log 2 − 1

4 .

By Parts: Many examples of reduction formulae use integration by parts.

WORKED EXAMPLE 36: Let In =

∫ e

1

(logx)n dx

(a) Show that In = e − nIn−1 for n ≥ 1.

(b) Hence show that I3 = 6− 2e .

SOLUTION:

(a) In =

∫ e

1

1 × (logx)n dx

=
[

x(logx)n
]e

1
−

∫ e

1

x × n
x
(logx)n−1 dx (by parts)

= (e − 0)− n

∫ e

1

(logx)n−1 dx

= e − nIn−1 .

(b) I0 =

∫ e

1

1 dx

= e − 1 .

Thus I1 = e − I0

= 1 ,

I2 = e − 2I1

= e − 2 ,

and I3 = e − 3I2

= 6 − 2e .

y

xe1

1

y = (log x)
3

By Parts with an Identity: Some examples use integration by parts and an identity.

WORKED EXAMPLE 37: Let In =

∫ 1

0

x2(1 − x2)n dx .

(a) Use the identity x2 ≡ 1 − (1 − x2) to show that In = 2n
2n+3In−1 for n ≥ 1.

(b) Evaluate I0 and hence find I3 .

.
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158 CHAPTER 4: Integration 4H

SOLUTION:

(a) Apply integration by parts first to get:

In =

∫ 1

0

x2(1− x2)n dx

=
[

1
3
x3(1 − x2)n

]1

0
−

∫ 1

0

1
3
x3 × (−2nx)(1− x2)n−1 dx

= 0 + 2n
3

∫ 1

0

x2 × x2(1− x2)n−1 dx

= 2n
3

∫ 1

0

x2(1− x2)n−1 − x2(1− x2)n dx (by the identity)

so In = 2n
3

In−1 − 2n
3

In .

thus 2n+3
3

In = 2n
3

In−1

or In = 2n
2n+3

In−1 for n ≥ 1 .

y = 1 -(x x
2 2 3

)

1

-1

1

4

y

x

1

2
27

256(  ,    )

(b) I0 =

∫ 1

0

x2 dx

= 1
3 .

Thus I1 = 2
5
I0

= 2
15

,

I2 = 4
7
I1

= 8
105 ,

and I3 = 6
9
I2

= 16
315

.

Exercise 4H

1. (a) Given that In =

∫

tann x dx, prove that In =
tann−1 x

n − 1
− In−2 for n ≥ 2.

(b) Hence show that I6 = 1
5
tan5 x − 1

3
tan3 x + tanx − x + C

2. (a) If In =

∫

xnex dx, show that In = xnex − nIn−1 for n ≥ 1.

(b) Hence show that

∫

x3ex dx = (x3 − 3x2 + 6x− 6)ex + C .

3. (a) If In =

∫ e

1

x(lnx)n dx, show that In = 1
2
e2 − 1

2
nIn−1 for n ≥ 1.

(b) Find I0 and hence show that I4 = 1
4(e2 − 3) .

4. Let un =

∫

π
2

0

cosn x dx .

(a) Use integration by parts with v′ = cos x to show that

un = (n − 1)

∫

π
2

0

sin2 x cosn−2 x dx for n ≥ 2.

(b) Hence show that un = (n − 1)(un−2 − un).

(c) Deduce that un = n−1
n

un−2 for n ≥ 2, and hence evaluate u5.

.
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D E V E L O P M E N T

5. Let Tn =

∫

π
4

0

secn x dx .

(a) Show that Tn =
(
√

2)n−2

n − 1
+

n − 2

n − 1
Tn−2 for n ≥ 2.

You will need to use integration by parts and a trigonometric identity.

(b) Deduce that T6 = 28
15

.

6. Let Cn =

∫

π
2

0

xn cos x dx , where n ≥ 0 .

(a) Prove that Cn = (π
2 )n − n(n − 1)Cn−2, for n ≥ 2 . (b) Hence evaluate C6.

7. Suppose that In =

∫

xn

1 + x2
dx.

(a) Use algebraic manipulation to show that In =
xn−1

n − 1
− In−2.

(b) Hence find

∫

x5

1 + x2
dx.

8. (a) If In =

∫ 1

0

(1− x2)n dx, show that In =
2n

2n + 1
In−1 for n ≥ 1.

(b) Evaluate I0 and hence find I4.

9. (a) If un =

∫ 1

0

x(1 − x3)n dx , show that un =
3n

3n + 2
un−1 for n ≥ 1.

(b) Show that u0 = 1
2

and hence evaluate u4.

10. Suppose that Jn =

∫

xn

√
1− x2

dx .

(a) Show that Jn = 1
n

(

(n − 1)Jn−2 − xn−1
√

1 − x2
)

for n ≥ 2.

[Hint: Do this by parts with u = xn−1 and v′ =
x√

1 − x2
.]

(b) Hence determine

∫

x2

√
1 − x2

dx .

11. Let un =

∫

π
2

0

sinn x cos2 x dx.

(a) Show that un =
(

n−1
n+2

)

un−2, for n ≥ 2 .

[Hint: Do this by parts with u = sinn−1 x and v′ = sin x cos2 x.]

(b) Hence show that u4 = π
32

.

12. Consider the integral In =

∫ 1

0

xn

√
1 + x

dx .

(a) Show that I0 = 2
√

2 − 2 .

(b) Show that In−1 + In =

∫ 1

0

xn−1
√

1 + x dx for n ≥ 1.

(c) Use integration by parts to show that In =
2
√

2 − 2nIn−1

2n + 1
for n ≥ 1.

(d) Hence evaluate I2 .

.
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13. (a) Show that (1 + t2)n−1 + t2(1 + t2)n−1 = (1 + t2)n.

(b) Put Pn =

∫ x

0

(

1 + t2
)n

dt . Use integration by parts and part (a) to show that

Pn = 1
2n+1

(

(

1 + x2
)n

x + 2nPn−1

)

for n ≥ 1.

(c) Hence determine P4:

(i) by the reduction formula, (ii) by using the binomial theorem.

(d) Hence write 1 + 4
3
x2 + 6

5
x4 + 4

7
x6 + 1

9
x8 in powers of (1 + x2).

14. Let Tn =

∫ 1

0

xn
√

1 − xdx .

(a) Deduce the reduction formula Tn =
2n

2n + 3
Tn−1 for n ≥ 1.

(b) Show that T3 = 32
315 .

(c) Use the reduction formula to help prove by induction that Tn =
n!(n + 1)!

(2n + 3)!
4n+1 .

E N R I C H M E N T

15. Let In =

∫ 1

0

(1− x2)n dx and Jn =

∫ 1

0

x2(1− x2)n dx .

(a) Apply integration by parts to In to show that In = 2n Jn−1 for n ≥ 1.

(b) Hence show that In =
2n

2n + 1
In−1 for n ≥ 1.

(c) Show that Jn = In − In+1 , and hence deduce that Jn =
1

2n + 3
In .

(d) Hence write down a reduction formula for Jn in terms of Jn−1 .

16. For n = 0, 1, 2, . . . let In =

∫ π

4

0

tann θ dθ .

(a) Show that I1 = 1
2
ln 2 .

(b) Show that, for n ≥ 2 , In + In−2 =
1

n − 1
.

(c) For n ≥ 2 , explain why In < In−2 , and deduce that

1

2(n + 1)
< In <

1

2(n − 1)
.

(d) Use the reduction formula in part (b) to find I5 , and hence deduce that 2
3

< ln 2 < 3
4
.

17. Suppose that In =

∫ π

3

0

cos nx secx dx.

(a) Prove that In =
2

n − 1
sin

(n − 1)π

3
− In−2 for n ≥ 2.

[Hint: Write nx as (n − 2)x + 2x.]

(b) Evaluate

∫ π

3

0

cos 5x secx dx.

.
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4I Miscellaneous Integrals

As was stated in the chapter overview, integration is an art form and requires
much practice. In particular, it is important to be able to recognise the different
forms of integrals, and to quickly determine which method is best used. To that
end, this section has been included. The exercise contains a mixture of all integral
types. Some questions can be done by more than one method. It is up to the
reader to determine which method is the most efficient.

Exercise 4I
1. Evaluate:

(a)

∫ 1

−1

x2

(5 + x3)2
dx

(b)

∫ π

0

x sinx dx

(c)

∫ 3

2

2x + 2

(x + 3)(x − 1)
dx

(d)

∫ 2

0

x − 1

x + 1
dx

(e)

∫ π

2

π

4

3 cosx

sin4 x
dx

(f)

∫ 1
3

0

1√
4 − 9x2

dx

2. Find:

(a)

∫

x√
1 + x2

dx

(b)

∫

1 + x

1 + x2
dx

(c)

∫

sinx cos4 x dx

(d)

∫

1

2x2 + 3x + 1
dx

(e)

∫

x3 lnx dx

(f)

∫

sin3 2x dx

(g)

∫

1

x2 + 6x + 25
dx

(h)

∫

3x cos 3x dx

(i)

∫

x√
4 + x

dx

3. Show that:

(a)

∫ 1

0

x2e−x dx = 2 − 5
e

(b)

∫ π

2

0

sin3 x cos5 x dx = 1
24

(c)

∫ 1

0

x

(x + 1)(x2 + 1)
dx = 1

8(π − 2 ln 2)

(d)

∫ 1
2

0

(1− x2)−
3
2 dx = 1√

3

(e)

∫ 1

0

1 − x2

1 + x2
dx = π

2
− 1

(f)

∫ 4

2

x√
6x − 8 − x2

dx = 3π

(g)

∫ 1

0

√
x

1 + x
dx = 1

2
(4 − π)

(h)

∫

√
3

0

tan−1 x dx = π√
3
− ln 2

(i)

∫ π

4

0

sin 2x cos 3x dx = 1
10(3

√
2 − 4)

(j)

∫ π

0

e−x cos x dx = 1
2
(1 + e−π)

D E V E L O P M E N T

4. (a) Find the rational numbers A, B and C such that

x − 1

x3 + 1
=

A

x + 1
+

Bx + C

x2 − x + 1
.

(b) Hence show that

∫ 1

0

x3 + x

x3 + 1
dx = 1 − 2

3
ln 2.

5. Use integration by parts to show that

∫

x3e−x2

dx = −1
2e−x2

(1 + x2) + C .

6. (a) Evaluate

∫ π

3

0

sec4 x dx .

(b) Hence evaluate

∫ π

3

0

sec6 x dx .

.
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7. In each case let t = tan x
2

in order to show that:

(a)

∫ π

2

0

1

3 + 5 cosx
dx = 1

4
ln 3 (b)

∫ π

2

0

1

cosx − 2 sinx + 3
dx = π

4

8. (a) Find the values of A, B, C and D such that

4t

(1 + t)2(1 + t2)
=

A

1 + t
+

B

(1 + t)2
+

Ct + D

1 + t2
.

(b) Hence use the t-substitution to evaluate

∫ π

2

0

sinx

1 + sinx
dx .

9. Use the substitution u = 6
√

x to show that

∫ 64

1

1√
x + 3

√
x

dx = 11− 6 ln 3
2
.

10. Find

∫

√

a2 − x2 dx using:

(a) the substitution θ = sin−1 x
a
, (b) integration by parts.

11. (a) Show that

∫ 1

0

5 − 5x2

(1 + 2x)(1 + x2)
dx = 1

2
(π + ln 27

16
) .

(b) Hence find

∫ π

2

0

cos x

1 + cosx + 2 sinx
dx using the substitution t = tan x

2
.

12. (a) Find integers P and Q such that

8 sinx + cosx − 2 = P (3 sinx + 2 cosx − 1) + Q(3 cosx − 2 sinx) .

(b) Hence find

∫

8 sinx + cosx − 2

3 sinx + 2 cosx − 1
dx .

13. (a) If Tn =

∫ π

0

sinn x dx, show that Tn = n−1
n

Tn−2 for n ≥ 2.

(b) Hence show that T5T6 = π
3 .

14. (a) Let In =

∫ e

1

(lnx)n dx and show that In = e − nIn−1 for n ≥ 1.

(b) Hence evaluate I3.

E N R I C H M E N T

15. Let In =

∫ 1

0

xn−1

(x + 1)n
dx , for n = 1, 2, 3, . . .

(a) Show that I1 = ln2 .

(b) Use integration by parts to show that In+1 = In − 1

n 2n
.

(c) The maximum value of
x

x + 1
, for 0 ≤ x ≤ 1 , is 1

2
.

Use this fact to show that In+1 < 1
2In .

(d) Deduce that In <
1

n 2n−1
.

(e) Use the reduction formula in part (b) and the inequality in part (d) to show that

2
3

< ln 2 < 17
24

.

.
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16. Given that

∫ π

0

1

5 + 3 cosx
dx = π

4 , show that

∫ π

0

cosx + 2 sinx

5 + 3 cosx
dx = 1

12(16 ln2 − π) .

17. (a) Use the substitution u = t − t−1 to show that

∫

1 + t2

1 + t4
dt = 1√

2
tan−1

√
2(t2−1)

2t
+ C .

(b) Alternatively, use the result (1+ t4) = (1+ t2)2− (
√

2 t)2 and partial fractions to show

that

∫

1 + t2

1 + t4
dt = 1√

2
tan−1(

√
2 t + 1) + 1√

2
tan−1(

√
2 t − 1) + C .

(c) The formulae in parts (a) and (b) agree when applied to the integral

∫ q

p

1 + t2

1 + t4
dt

provided pq > 0. When pq ≤ 0 the formula in (a) is incorrect. Why might that be?

18. Consider the two new functions cosh x = 1
2
(ex + e−x) and sinhx = 1

2
(ex − e−x) .

Show that

∫ ln 2

0

1

5 coshx − 3 sinhx
dx = 1

2
tan−1 1

3
.

19. Suppose that I =

∫ 1

0

ln(1 + x)

1 + x2
dx.

(a) Use the substitution x = tan θ to show that I =

∫ π

4

0

ln(1 + tan θ) dθ.

(b) Next, use the substitution u = π
4
− θ to show that I =

∫ π

4

0

ln

(

2

1 + tan θ

)

dθ.

(c) Finally, deduce that I = 1
8
π ln 2.

.
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4J Chapter Review Exercise
Exercise 4J

1. Find:

(a)

∫

xex2

dx

(b)

∫

3x

x2 + 1
dx

(c)

∫

x(1 + x2)5 dx

(d)

∫

cos3 x sinx dx

(e)

∫

4x

x2 − 2x − 3
dx

(f)

∫

xe−2x dx

2. Find:

(a)

∫

tan2 x dx

(b)

∫

x√
3 + x

dx

(c)

∫

1

x2 + 2x + 5
dx

(d)

∫

x cos 1
3x dx

(e)

∫

x + 2

x + 1
dx

(f)

∫

3x2 + 2

x3 + x
dx

3. Use the given substitution to find:

(a)

∫

1

(4− x2)
3
2

dx [put x = 2 sinθ]

(b)

∫

ex

e2x − 1
dx [put u = ex]

(c)

∫

1

2 +
√

x
dx [put u =

√
x]

(d)

∫

1

5 + 4 cosx
dx [put t = tan 1

2x]

4. Evaluate:

(a)

∫ 2

−1

x2
√

x3 + 1 dx

(b)

∫ 5

4

2x

x2 − 4x + 3
dx

(c)

∫ π

3

0

sin3 x dx

(d)

∫ 1

0

8x

3 + 4x
dx

(e)

∫ 1

0

x2
√

1− xdx

(f)

∫ π

4

0

sin 5x cos 3x dx

5. Evaluate:

(a)

∫ π

3

0

x sin 3x dx

(b)

∫ 2

0

3 − 7x√
4x− x2

dx

(c)

∫ π

2

0

sin2 x cos3 x dx

(d)

∫ 3

0

x2 + x + 18

x3 + 9x2 + 9x + 81
dx

(e)

∫ 4

2

√

16− x2 dx

(f)

∫ 1
2

0

e2x sin πx dx

6. Use the given substitution to find:

(a)

∫ 15

8

1

(x − 3)
√

x + 1
dx [put u =

√
x + 1]

(b)

∫ π

3

0

1

9 − 8 sin2 x
dx [put t = tanx]

(c)

∫ 2

0

√

x(4 − x) dx [put x = 4 sin2 θ]

(d)

∫ π

3

0

1

cos x
dx [put t = tan 1

2
x]

7. (a) Given that In =

∫ 1

0

xnex dx, prove that In = e − nIn−1 .

(b) Hence show that I5 = 120− 44e.

8. (a) Derive a reduction formula for In in terms of In−1 given In =

∫

x3(lnx)n dx.

(b) Hence show that

∫

x3(lnx)3 dx =
1

128
x4

(

32(lnx)3 − 24(lnx)2 + 12 lnx − 3

)

+ C.

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



4J Chapter Review Exercise 165

9. (a) If I2n =

∫ π

2

0

sin2n x dx, prove that I2n =
2n − 1

2n
I2n−2.

(b) Hence find

∫ π

2

0

sin6 x dx.

10. (a) If In =

∫ 1

0

(1 + x2)n dx, prove that (2n + 1)In = 2n + 2nIn−1.

(b) If Jn =

∫ π

4

0

sec2n θ dθ, show that Jn = In−1 and hence find a reduction formula for Jn.

(c) Evaluate

∫ π

4

0

sec6 θ dθ.

11. (a) Given that In =

∫

sin 2nx

sinx
dx, prove that In =

2

2n − 1
sin(2n − 1)x + In−1.

(b) Hence find

∫ π

2

0

sin 6x

sinx
dx.

12. (a) Use the substitution u = a − x to prove that

∫ a

0

f(x) dx =

∫ a

0

f(a − x) dx.

(b) Hence show that

∫ π

0

x sinx

3 + sin2 x
dx =

π ln 3

4
.
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166 CHAPTER 4: Integration 4K

Appendix: A Short Table of Integrals

Here is a short table of integrals. Each integral in the first group is a simplified
form of one found in the examination Reference Sheet. Students may find this
table helpful whilst studying this chapter, but should aim to become proficient
at using the examination Reference Sheet as soon as possible.

The group of three extra integrals at the bottom are only occasionally needed
in Mathematics Extension 2, and do not appear in the examination Reference
Sheet. Students are expected to be able to apply unfamiliar integral formulae
like these when they are given.

COMMON INTEGRALS

∫

(ax + b)n dx =
(ax + b)n+1

a(n + 1)
+ C

∫

eax+b dx =
1

a
eax+b + C

∫

f ′(x)

f(x)
dx = ln

∣

∣f(x)
∣

∣ + C

∫

sin(ax + b) dx = − 1

a
cos(ax + b) + C

∫

cos(ax + b) dx =
1

a
sin(ax + b) + C

∫

sec2(ax + b) dx =
1

a
tan(ax + b) + C

∫

1√
a2 − x2

dx = sin−1 x

a
+ C

∫

1

a2 + x2
dx =

1

a
tan−1 x

a
+ C

OTHER INTEGRALS

∫

sec ax tanax dx =
1

a
sec ax + C , a 6= 0

∫

1√
x2 − a2

dx = ln
(

x +
√

x2 − a2
)

+ C , x > a > 0

∫

1√
x2 + a2

dx = ln
(

x +
√

x2 + a2
)

+ C

.
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5

Vectors

Chapter Overview: The work on vectors, begun in the Extension 1 course, is
now broadened to include vectors in three dimensions. Once again, the focus is
on geometric problems involving points, lines and angles. Three dimensions often
makes these problems more complicated, but in many cases the theory developed
in Extension 1 applies in a similar way.

A good knowledge of the coordinate system is essential to better understand how
vectors work in three dimensions. The first section in this chapter introduces that
coordinate system and presents some of its basic features. Section 5B formally
extends vectors to three dimensions, and adds the new basis vector k

˜
to the list of

standard basis vectors, i
˜

and j
˜
. The dot product is reviewed in Section 5C. The

definition is extended to three dimensions, and several applications are considered
in Section 5D. Then follows a section on vector proofs in geometry. Section 5F
develops the vector equation of a line. This is necessarily a long section, as it
compares and contrasts the vector equations with previous work in coordinate
geometry. The chapter concludes with a number of other applications of vectors,
including circles, spheres, planes and some simple curves.

5A Coordinates in Three Dimensions

5
4
3
2
1

-1 54321-1 x

y

?

Right-handed Coordinates: The familiar two-dimensional
coordinate system has the x-axis drawn horizontally with
positive to the right, and has the y-axis drawn vertically
with positive up the page. Consequently, a rotation about
the origin from the positive x-axis to the positive y-axis is
anticlockwise. The configuration is called a right-handed

system. This is because when a person’s right hand is
placed with the edge of the palm resting on the page,
such as when holding a pencil, the fingers curl in the
same anticlockwise direction. The situation is shown in
the diagram on the right.

The Coordinate Axes in Three Dimensions: A third axis is required for drawing
graphs in three dimensions, which is labelled the z-axis. The direction of the
z-axis needs to be determined. Following the conventions established for two
dimensions, the three axes should be at right angles to each other, and oriented
in a right-handed way.

.
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168 CHAPTER 5: Vectors 5A

x

y

z

C

Start with an xy-coordinate plane. Then imagine that a
right-handed screw is placed upright at the origin. The
direction the screw advances when turned anticlockwise,
from x-axis to y-axis, is taken to be the positive direction
of the z-axis. This is also the direction of the thumb on
the right hand, with fingers curled anticlockwise. The
configuration is shown in the diagram on the right.

x

y

zAnother way to view this is to sit on the floor in the
corner of a room where two walls and the floor meet, all
at right angles to each other. To the right, along the line
where one wall meets the floor, is the positive x-axis. To
the left, along the line where the other wall meets the
floor, is the positive y-axis. The positive z-axis is up the
vertical line where the two walls meet.

How to draw the axes: Drawing a good representation of a three dimensional
object on a page requires perspective, which may be difficult for those who are
not artistically talented. Mathematicians use two common approaches to draw
simple objects like cubes and rectangular prisms. Here they are showing the unit
cube (with edge length 1) with one corner at the origin.

x

y

z

1
1

1

x

y

z

1

1

1

In the first instance, the y-axis is horizontal and the z-axis is vertical as though
they lie in the plane of the page. The x-axis is drawn at about 40◦ to the
horizontal, below and to the left of the origin on the page. This is a simplistic
attempt to show perspective, as though the x-axis is coming up out of the page.
It represents what is seen when standing in a room looking at the corner where
two walls and the floor all meet. It has the advantage of being easy to draw,
but is not a correct representation of perspective, and so some figures will look
distorted when drawn this way.

In the second case, the x-axis is horizontal and the z-axis is vertical as though
they lie in the plane of the page. The y-axis is drawn at about 40◦ to the
horizontal, above and to the right of the origin on the page. This is another
simplistic attempt to show perspective, as though the y-axis is heading into the
page. It represents what is seen when looking into a glass display cabinet near the
bottom left corner. Again, it has the advantage of being easy to draw, but is not
a correct representation of perspective, and so some figures will look distorted.

It is worthwhile practising these two approaches so that realistic looking pictures
and graphs can be drawn quickly. Of course, those who are artistically talented
may wish to draw the axes and other objects in genuine perspective. In many
instances, the diagrams in this text have been drawn in true perspective.

.
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5A Coordinates in Three Dimensions 169

The Coordinate Planes: Each pairing of the variables x, y and z corresponds to
a coordinate plane. Thus there are three coordinate planes in three dimensions:
the xy-plane, the xz-plane and the yz-plane. Each pair of planes meets at right
angles along a line which is the common axis. Thus the xy-plane and yz-plane
meet at the y-axis. All three planes meet at a single point, the origin.

xy-plane

xz-plane

yz-plane
x

z

y

In one dimension, the origin divides the number line into
two opposite rays. In two dimensions, the two axes divide
the plane into four regions called quadrants. In three
dimensions, the three coordinate planes divide space into
eight regions called octants. This is demonstrated in the
diagram of the coordinate planes on the right.

x
y

z

1 3

2

Planes Parallel with the Coordinate Planes: Recall that
in two dimensions the equation x = 1 represented a line
parallel with the y-axis. In three dimensions it is a plane
parallel with the yz-plane. Likewise the equation y = 3
is a plane parallel with the xz-axis. The equation z = 2
is a plane parallel with the xy-plane. Notice that in each
case, the two letters not used in the equation indicate
the parallel plane. Further observe that the three planes,
together with the coordinate planes, form the six faces of
a rectangular prism, as shown in the diagram.

The Coordinates of Points: Notice that the three planes x = 1, y = 3 and z = 2
in the last example intersect at a point. The coordinates of this point are written
(1, 3, 2). That is, the coordinates of a point are written as an ordered triple,
in alphabetic order (x, y, z). Also notice that this point is in the octant where
all three coordinates are positive. This is called the first octant. Though rarely
needed in this course, octants are numbered from 1 to 4 with z > 0, corresponding
to the four quadrants in two dimensions, and from 5 to 8 with z < 0.

1

THE COORDINATES OF POINTS: The coordinates of a point in three dimensions are

written as an ordered triple, in alphabetic order, (x, y, z). The point with

coordinates (a, b, c) is where the three planes x = a, y = b and z = c intersect.

x

y

z

O

R

P

Q

x

y

z

Pythagoras: The formula for the distance between two points can be extended to
three dimensions. Consider the distance OP , from the origin to the arbitrary
point P = (x, y, z) in the diagram below. Let Q be the foot of the perpendicular
to the xy-plane, and let R be the foot of the perpendicular from Q to the x-axis.
Using Pythagoras’ theorem in 4OPQ,

OP 2 = OQ2 + z2 ,

and in 4OQR,

OQ2 = x2 + y2 .

Combining these two gives the result

OP 2 = x2 + y2 + z2 .

Now suppose that the distance is measured to S(x1, y1, z1) instead. Then, by the
shifting results established in Extension 1,

.
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170 CHAPTER 5: Vectors 5A

SP 2 = (x − x1)
2 + (y − y1)

2 + (z − z1)
2 .

Notice that the change of equation for shifting in three dimensions works in the
same way as in two dimensions. That is, in order to shift up by z1, replace z with
(z − z1). Finally, for the specific point T = (x0, y0, z0), the distance formula in
three dimensions is

ST 2 = (x0 − x1)
2 + (y0 − y1)

2 + (z0 − z1)
2 .

2

THE DISTANCE FORMULA: The distance from S(x1, y1, z1) to T = (x0, y0, z0) is

ST 2 = (x0 − x1)
2 + (y0 − y1)

2 + (z0 − z1)
2 .

WORKED EXAMPLE 1: Find the distance from A(1,−2, 1) to B(−1, 3, 5).

SOLUTION: Applying the formula above,

AB2 = (−1 − 1)2 + (3 + 2)2 + (5− 1)2

= 4 + 25 + 16

= 45

Hence AB = 3
√

5

Midpoint Formula: The midpoint formula in two dimensions can be stated in words
as the averages of the coordinates. In three dimensions, the statement is the
same. Thus if M(x, y, z) is the midpoint of the interval joining P (x1, y1, z1) and
Q(x2, y2, z2) then

x =
x1 + x2

2
, y =

y1 + y2

2
and z =

z1 + z2

2
.

The usual proof of the formula in two dimensions uses congruent triangles. That
method of proof works equally well in three dimensions, and is left as an exercise.
Later in this chapter it will be possible to prove the result in three dimensions
using vectors.

WORKED EXAMPLE 2: Find the midpoint of AB in the first worked example.

SOLUTION: Taking the averages of the coordinates, the midpoint is (0, 1
2
, 3).

3

THE MIDPOINT FORMULA: Let M(x, y, z) be the midpoint of the interval joining

P (x1, y1, z1) and Q(x2, y2, z2) then

x =
x1 + x2

2
, y =

y1 + y2

2
and z =

z1 + z2

2
.

Graphing Objects and Relations: Graphing relations in three dimensions can be
notoriously difficult. Fortunately, often all that is needed in this course is a simple
rectangular prism, so plot the vertices and then join them.

WORKED EXAMPLE 3: Draw the rectangular prism with faces parallel with the
coordinate planes, for which the end points of one space diagonal are the origin
and the point (−2, 2, 4). Add this space diagonal to the diagram and find the
centre of the prism.

.
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5A Coordinates in Three Dimensions 171

x
y

z

O

A B

C

D

E F

G

Note: a space diagonal joins opposite vertices and passes
through the solid. In this case, because of symmetry, it
passes through the centre of the prism.

SOLUTION: The eight vertices are: O(0, 0, 0), A(−2, 0, 0),
C(0, 2, 0), B(−2, 2, 0), D(0, 0, 4), E(−2, 0, 4), G(0, 2, 4)
and F (−2, 2, 4).

The space diagonal OF is shown dashed and blue in the diagram. The centre of
the prism is the midpoint of OF , (−1, 1, 2).

Exercise 5A

1. Name the three coordinate planes and write down their corresponding equations.

2. In which octant does each of these points lie?

(a) (−2, 3, 1)

(b) (2, 3,−1)

(c) (2,−3, 1)

(d) (−2, 3,−1)

(e) (2,−3,−1)

(f) (−2,−3, 1)

3. Suppose that P is the point (3, 2, 5). Write down the coordinates of the image of P under
each of these transformations. (Assume that the orientation of the axes is the same as the
diagram in Worked Example 3.)

(a) P is translated 6 units down,

(b) P is translated 8 units backwards,

(c) P is translated 10 units to the right,

(d) P is translated 5 units forwards and 7 units up,

(e) P is translated 3 units to the left and 4 units down,

(f) P is reflected in the xy-plane,

(g) P is reflected in the yz-plane,

(h) P is reflected in the xz-plane,

(i) P is rotated about the x-axis through 180◦.

A
B

C
D

O

P

Q
R

z

x y

4. The diagram shows a cube of side 2 units.

(a) Write down the coordinates of its vertices.

(b) Find the length of a face diagonal.

(c) Hence find the length of a space diagonal of the cube.

(d) Write down the equations of the planes corresponding to the
faces of the prism.

A
B

C
D

O
P

Q
R

x y

z

(2, 4, 3)

5. The diagram shows a rectangular prism with vertex C which has
coordinates (2, 4, 3).

(a) Write down the coordinates of A, B, D, P, Q and R.

(b) Find the length of the face diagonal OB.

(c) Hence find the length of the space diagonal BR.

(d) Write down the equations of the planes corresponding to the
faces of the prism.

x y

z

A B

C

O
3 4

5

6. The diagram shows a triangular pyramid OABC.

(a) Find the area of the base OAB.

(b) Hence find the volume of the pyramid.

.
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172 CHAPTER 5: Vectors 5A

D E V E L O P M E N T

7. A triangle has vertices O(0, 0, 0), A(2, 6, 3) and B(−3, 5,−8).

(a) Find the lengths of the three sides.

(b) Hence show that the triangle is right-angled.

8. A triangle has vertices A(3,−1,−3), B(1,−5, 7) and C(−1, 3, 3). If M and N are the
midpoints of AB and AC respectively, show that MN is half the length of BC.

9. An interval has endpoints P (−6,−8, 14) and Q(−10, 20, 22).

(a) Find the midpoint M of the interval PQ.

(b) Hence find the points X and Y that divide the interval PQ in the ratios 1 : 3 and
3 : 1 respectively.

10. Show that the points P (1, 0, 0), Q(−3,−1, 1) and R(−2, 3, 4) lie on a sphere with centre
C(−1, 1, 2).

11. If the distance from the point (x, x+5, x−2) to the point (1, 0,−1) is 2
√

6 units, find the
value of x.

12. A triangle has vertices A(4, 2, 6), B(−2, 0, 2) and C(10,−2, 4).

(a) Show that the triangle is isosceles.

(b) Show that the exact area of the triangle is 6
√

19u2.

13. The equation 3x + 4y + 6z = 12 represents a plane in three dimensions.

(a) What is the equation of the intersection of this plane with the xy-plane?

(b) Write down the equations of the intersection of the given plane with each of the other
coordinate planes.

(c) What type of geometric object is each of these intersections?

(d) What geometric fact is confirmed in this question about two non-parallel planes?

E N R I C H M E N T

x
y

z

O
R

S

T

P
( , , )a  b  c14. The diagram shows a rectangular prism with vertex P which has

coordinates (a, b, c).

Use the converse of Pythagoras’ theorem to prove that angles
PRO, PSO and PTO are right-angles.

15. Consider the surface in three dimensional space with equation x2 + y2 = 4.

(a) What is the significance of the fact that there is no term in z?

(b) What is the intersection of the surface with the horizontal plane z = k?

(c) Describe the surface.

(d) Sketch the surface.

16. Consider the paraboloid with equation z = x2 + y2.

(a) Explain why z ≥ 0.

(b) What is the intersection of the paraboloid with the horizontal plane z = k?

(c) What is the intersection of the paraboloid with the xz-plane?

(d) Sketch the paraboloid.
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5B Vectors in Three Dimensions 173

5B Vectors in Three Dimensions

Vectors were developed carefully in the Extension 1 course and so many of the
results are unchanged in three dimensions. Nevertheless, here is a quick review
of that work.

A Review of Vectors: A vector has two characteristics, a length and a direction.
Thus there is a strong connection between a vector and a directed line segment.

There are three ways to denote a vector,
−→
OA, a

˜
, or a. The first two notations will

be used in this text. The length of vector a
˜

is indicated by |a
˜
|. The zero vector 0

˜has zero length, that is |0
˜
| = 0, and has no specified direction.

a~

a~
b~

b~a~ b~+

a~ b~-

O

A
B

PVectors may be treated as pronumerals when combined
with real numbers in addition and subtraction, such as
3a
˜

+2b
˜
. Addition and subtraction may be represented as

the diagonals of a parallelogram. Thus in OAPB, where−→
OA = a

˜
and

−−→
OB = b

˜
, the diagonals are

−−→
OP = a

˜
+ b

˜
and

−−→
BA = a

˜
− b

˜
.

The product of a number and a vector, such as 3a
˜
, is called scalar multiplication.

The number itself is called a scalar. The result is a new vector. If b
˜

= λa
˜

and if
λ > 0 then b

˜
has the same direction as a

˜
but |b

˜
| = λ|a

˜
|. If λ < 0 then b

˜
has the

opposite direction. When λ = 0, b
˜

= 0
˜

and |b
˜
| = 0.

All these results are also true in three dimensions, however there is an issue with
drawing vectors in three dimensions. In two dimensions, the direction of a vector
is simply shown by a directed line interval. When a three dimensional problem
is drawn on a page, there is potential for ambiguity. The most obvious examples
of this are optical illusions. Consequently, many problems will rely more heavily
on component form, column vectors and ordered triples, instead of diagrams.

x

y

z

k~

i~

j
~

O

A

B

C

D
E

F
G

WORKED EXAMPLE 4: The diagram shows the unit cube OABCDEFG. Let−→
OA = i

˜
,
−−→
OC = j

˜
and

−−→
OD = k

˜
. By writing each expression in terms of i

˜
, j
˜

and k
˜
,

show that
−→
OA +

−−→
AB +

−−→
BF =

−−→
OC +

−−→
CG +

−−→
GF

and describe the resultant vector.

SOLUTION: LHS = i
˜

+ j
˜

+ k
˜

RHS = j
˜

+ k
˜

+ i
˜

= i
˜

+ j
˜

+ k
˜

(addition of vectors is commutative)

= LHS .

The resultant vector is
−−→
OF which is the space diagonal of the unit cube.

Component Form in 3D: The vectors i
˜

and j
˜

in the last worked example are the

familiar basis vectors used in two dimensions. In three dimensions, a third vector
must be included in the basis, which is the unit vector k

˜
, aligned with the z-axis.

These three vectors, i
˜
, j
˜

and k
˜
, are the standard right-handed orthonormal basis

vectors in three dimensions.

.
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174 CHAPTER 5: Vectors 5B

Corresponding to each point A(x, y, z) in three dimensions is the position vector

a
˜

=
−→
OA which can be written in component form as

a
˜

= xi
˜

+ yj
˜

+ zk
˜

.

Like the two dimensional situation, vectors in three dimensions can be combined
by taking the same combination of their components. Thus for the two vectors
u
˜

= x1i˜
+ y1j

˜
+ z1k˜

and v
˜

= x2i˜
+ y2j

˜
+ z2k˜

, and for the two scalars λ and µ,

λu
˜

+ µv
˜

= (λx1 + µx2)i˜
+ (λy1 + µy2)j

˜
+ (λz1 + µz2)k˜

.

WORKED EXAMPLE 5: Find 2u
˜
− v

˜
when u

˜
= i

˜
+ 4j

˜
− 3k

˜
and v

˜
= 2i

˜
− j

˜
+ k

˜
.

SOLUTION: 2u
˜
− v

˜
= (2 × 1 − 2)i

˜
+ (2 × 4 + 1)j

˜
+ (2× (−3)− 1)k

˜
= 9j

˜
− 7k

˜
.

Of course, such simple calculations will be done mentally in future.

4
BASIS VECTORS IN 3D: These are the unit vectors i

˜
, j
˜

and k
˜
, aligned with each of

the coordinate axes.

Column Vectors in 3D: In many instances, manipulating vectors in component
form is unwieldy, and it is better to use column vectors, as in two dimensions. Of
course, in three dimensions the column vectors have one more component. Thus,
the vector a

˜
= xi

˜
+ yj

˜
+ zk

˜
is written either using brackets

a
˜

=




x

y

z


 or using parentheses a

˜
=




x

y

z


 .

Like the situation in two dimensions, there is a strong link between the vector
a
˜

= xi
˜
+yj

˜
+zk

˜
and the point A(x, y, z), and a

˜
may be called the position vector

of A. In order to avoid confusion between a column vector and the coordinates
of a point, square-brackets are mostly used for column vectors in this text.

It immediately follows that in this notation the basis vectors are

i
˜

=




1
0
0


 , j

˜
=




0
1
0


 , k

˜
=




0
0
1


 ,

and the zero vector is 0
˜

=




0
0
0


 .

Vector combinations can now be written more compactly, with all components
grouped in the one place rather than spread across the page. Thus for the two
vectors u

˜
= x1i˜

+ y1j
˜

+ z1k˜
and v

˜
= x2i˜

+ y2j
˜

+ z2k˜
, and the scalars λ and µ,

λu
˜

+ µv
˜

= λ




x1

y1

z1


 + µ




x2

y2

z2




=




λx1 + µx2

λy1 + µy2

λz1 + µz2


 .

.
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5B Vectors in Three Dimensions 175

5

COLUMN VECTORS IN 3D:

• The vector a
˜

= xi
˜

+ yj
˜

+ zk
˜

is written as

a
˜

=




x

y

z


 or a

˜
=




x

y

z


 .

• The basis vectors are

i
˜

=




1
0
0


 , j

˜
=




0
1
0


 , k

˜
=




0
0
1


 .

• Vectors are combined in the natural way. Thus,

λ




x1

y1

z1


 + µ




x2

y2

z2


 =




λx1 + µx2

λy1 + µy2

λz1 + µz2


 .

WORKED EXAMPLE 6: Given a
˜

= i
˜

+ j
˜

and b
˜

= i
˜

+ j
˜

+ 3k
˜
, determine a

˜
+ b

˜
.

Draw the situation, showing the vectors as position vectors, and indicating the
parallelogram for addition of vectors.

z

y

x

a b~ + ~

a~

b~

SOLUTION:

a
˜

+ b
˜

=




2
2
3




The diagram on the right shows the parallelogram in true
perspective. In this case, the parallelogram is easily seen
because a

˜
and b

˜
lie in a vertical plane. In many problems

the parallelogram will be harder to observe.

The Magnitude of a Vector: Suppose that the point A(x, y, z) corresponds to

the position vector a
˜

=
−→
OA. That is a

˜
= xi

˜
+ yj

˜
+ zk

˜
. Then it is clear that

|a
˜
| = |OA|, the distance from the origin to the point A. The distance formula in

three dimensions was developed in Section 5A, and applying it here gives

|a
˜
|2 = x2 + y2 + z2 .

Notice that if z = 0 then this reduces to the familiar two dimensional formula.

WORKED EXAMPLE 7: Find the unit vector in the same direction as

a
˜

= −2i
˜
− j

˜
+ 3k

˜
.

SOLUTION: Clearly |a
˜
|2 = 14, so the unit vector with the same direction is

â
˜

=
1√
14



−2
−1
3


 .

.
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6

THE MAGNITUDE OF A VECTOR: The magnitude of a
˜

= xi
˜

+ yj
˜

+ zk
˜

is given by

|a
˜
|2 = x2 + y2 + z2 .

In two dimensions, the direction of a non-zero vector was often associated with
the angle it made with an axis. This is harder to visualise in three dimensions,
but the angle a vector makes with each of the three axes can still be calculated.

WORKED EXAMPLE 8: Calculate the angle that a
˜

=
−→
OA makes with the x-axis,

where A = (2, 3, 4). Give your answer correct to the nearest degree.

A(2, 3, 4)
z

x

y

O
B

SOLUTION: The situation is sketched on the right. The
angle required is 6 AOB, which lies in the sloping plane
of 4AOB.

|a
˜
|2 = 29

so OA =
√

29

and OB = 2 (the x-coordinate of A .)

Thus 6 AOB = cos−1 2√
29

=.
. 68◦ (to the nearest degree.)

Ratio Division: Vectors can be used to derive a formula for the coordinates of a point
that divides a given interval into a specified ratio. Suppose that the position
vectors of the points A and B are a

˜
and b

˜
respectively. Further suppose that AB

is divided into the ratio k : ` by the point P with position vector p
˜
. The diagram

below on the right shows the situation.

A
P

B

O

p
~

a~

b~

From the given ratio it follows that AP = k

k+`
AB and so

−→
AP = k

k+`

−−→
AB

= k

k+`
(b
˜
− a

˜
) .

Hence, by vector addition,
−−→
OP =

−→
OA +

−→
AP

= a
˜

+ k

k+`
(b
˜
− a

˜
)

= (1− k

k+`
)a
˜

+ k

k+`
b
˜

= `

k+`
a
˜

+ k

k+`
b
˜
.

That is p
˜

= 1
k+`

(`a
˜

+ kb
˜
) .

Once the components of p
˜

have been calculated by this formula, the coordinates

of P can immediately be written down.

WORKED EXAMPLE 9:

(a) Find the coordinates of P that divides interval AB in the ratio 1 : 2, where
A = (1,−3, 2) and B = (−5, 6,−1).

(b) Check the result by calculating
∣∣∣
−−→
AB

∣∣∣ and
∣∣∣
−→
AP

∣∣∣.

.
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5B Vectors in Three Dimensions 177

SOLUTION:

(a) In this case k = 1 and ` = 2, so from the above result

p
˜

=
1

3


2 ×




1
−3
2


 +



−5
6
−1







=
1

3



−3
0
3




=



−1
0
1




Hence P = (−1, 0, 1).

(b) First, using subtraction of vectors
−−→
AB = b

˜
− a

˜
=



−6
9
−3




thus AB2 = 36 + 81 + 9

= 126

and AB = 3
√

14 .

Likewise
−→
AP =



−2
3
−1




so AP =
√

14

= 1
3
AB (as expected.)

7

RATIO DIVISION: Suppose that interval AB is divided into the ratio k : ` by point P .

Further suppose that the corresponding position vectors are a
˜
, b
˜

and p
˜
. The

coordinates of P can be found by the vector equation

p
˜

= 1
k+`

(`a
˜

+ kb
˜
) .

When P lies between A and B, as in the above derivation of the formula, it is
said that P divides AB internally. When P lies outside the interval AB it is said
that P divides AB externally. The only change to the formula in this case is that
one of k or ` is made negative. The proof of this result is left as an exercise.

Exercise 5B

1. For the given point P in each part, express the vector
−−→
OP , where O is the origin, first

(i) as a column vector, then (ii) as a component vector.

(a) P (2,−3, 5) (b) P (−4, 0, 13) (c) P (a,−2a,−3a)

2. Find the length of a
˜

and a unit vector in the direction of a
˜

if:

(a) a
˜

= 4i
˜
− 3k

˜
(b) a

˜
= i

˜
+ 2j

˜
− 2k

˜
3. Find |v

˜
| and find v̂

˜
in column vector form given: (a) v

˜
= −1i

˜
−4j

˜
+k

˜
(b) v

˜
= 5i

˜
+3j

˜
−4k

˜

.
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4. If p
˜

=




4
−2
7


 and q

˜
=



−3
−6
9


, find:

(a) 2p
˜

+ q
˜

(b) |2p
˜

+ q
˜
| (c) p

˜
− 5q

˜
(d) |p

˜
− 5q

˜
|

5. The points P and Q have position vectors 2i
˜
+ 7j

˜
− k

˜
and 5i

˜
− 5j

˜
+ 3k

˜
respectively. Find:

(a)
−−→
PQ (b)

−−→
QP (c) the distance PQ

6. The position vectors
−→
OA and

−−→
OB are




6
0
−3


 and



−2
−3
−1


 respectively. Find:

(a)
−−→
BA (b)

−−→
AB (c) |−−→AB|

D E V E L O P M E N T

7. Given that a
˜

=




3
5
−1


 and b

˜
=



−2
−4
4


, find λ1 and λ2 such that λ1a˜

+ λ2b˜
=




14
26
−18


.

8. Given that a
˜

=



−1
2
0


, b

˜
=




0
−2
1


 and c

˜
=




4
3
−2


, find λ1, λ2 and λ3 such that

λ1a˜
+ λ2b˜

+ λ3c˜
=




−7
−14
7


.

9. Points A, B, C and D have position vectors



−1
4
−3


,




0
2
1


,




3
2
5


 and




0
8
−7


 respectively.

(a) Show that
−−→
AB and

−−→
CD are parallel.

(b) Determine whether
−−→
AD and

−−→
BC are parallel.

10. Use vectors to show that the points A(−2,−1, 0), B(0, 5,−2) and C(4, 17,−6) are collinear.

11. Given the points A(5, 4, 7), B(7,−1,−4), C(−1,−3,−5) and D(−3, 2, 6), use vectors to
show that ABCD is a parallelogram.

12. The points A, B and C have position vectors 3i
˜
− 8j

˜
− 2k

˜
, 2i

˜
+ 4j

˜
+ 5k

˜
and −2i

˜
− 2j

˜
+ k

˜
respectively. Find the position vector of the point D so that ABCD is a parallelogram.

13. Suppose that A is the point (2, 1, 3). Follow the method of Worked Example 8 to determine,

to the nearest degree, the respective angles that
−→
OA makes with the x, y and z axes.

14. The points A and B have position vectors




2
−1
−2


 and




5
5
−8


 respectively. Find the

position vector of the point that:

(a) divides the line segment AB internally in the ratio 1 : 2,

(b) divides the line segment AB externally in the ratio 1 : 2.

15. The points A and B have position vectors −4i
˜
− 3j

˜
+ 5k

˜
and 6i

˜
− 8j

˜
+ 10k

˜
respectively.

Find the position vector of the point that:

(a) divides the line segment AB internally in the ratio 2 : 3,

(b) divides the line segment AB externally in the ratio 2 : 3.

.
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5C The Dot Product 179

x
y

z

O
A

B
C

D
E

F

G

1
1

1

16. The diagram shows a cube of side length one unit.

(a) Write
−→
AG in component form.

(b) Find |−→AG|.
(c) Use vectors to find |−−→OH|, where H is the centre of the

square face BCGF .

17. Suppose that a
˜

=




a1

a2

a3


 and b

˜
=




b1

b2

b3


. Carefully write proofs of these distributive laws.

(a) (λ1 + λ2)a˜
= λ1a˜

+ λ2a˜
, where λ1, λ2 ∈ R. (b) λ(a

˜
+ b

˜
) = λa

˜
+ λb

˜
, where λ ∈ R.

E N R I C H M E N T

18. Three vectors a
˜
, b
˜

and c
˜

in 3-dimensions are said to be linearly independent if the only
solution to the equation λ1a˜

+ λ2b˜
+ λ3c˜

= 0
˜

is the trivial solution λ1 = λ2 = λ3 = 0.

Determine whether or not each set of vectors is linearly independent.

(a) a
˜

=




1
1
1


, b

˜
=




1
2
0


, c

˜
=




0
−1
1




(b) a
˜

=




1
1
1


, b

˜
=




1
2
0


, c

˜
=




0
−1
2




19. The points A(−2, 2, 5), B(5, 7, 3) and C(−3, 4, 1) are three vertices of a parallelogram.
Find the three possibilities for the point D, the fourth vertex of the parallelogram.

20. Suppose that a
˜

and b
˜

are non-zero and non-parallel. Show that if λa
˜

+ µb
˜

= `a
˜

+ mb
˜

then
λ = ` and µ = m.

5C The Dot Product

Recall from Mathematics Extension 1 that the dot product is also called the
scalar product. The reason for this is that the result is a scalar. However, in this
text the term dot product is used, so as to avoid potential confusion with scalar
multiplication of a vector.

The Dot Product in Geometric Form: Geometrically, the dot product in two
dimensions is identical to three dimensions. Both situations involve the angle
between two position vectors. There are three points associated with the position
vectors and in three dimensions there is only one plane that passes through those
three points. Thus, despite the extra freedom of configuration available in three
dimensions, the action takes place in a plane. In other words, the dot product is
always a two dimensional operation regardless of the situation.

Since there is no difference, any result established geometrically in two dimensions
can equally be applied in three dimensions. In particular, for non-zero position
vectors a

˜
and b

˜
, the dot product is defined to be:

a
˜
· b
˜

= |a
˜
| |b

˜
| cosθ

where θ is the non-reflex angle between them. But if either vector is zero, then
the dot product is zero. Thus,

a
˜
· 0
˜

= 0 .

.
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8

THE DOT PRODUCT IN GEOMETRIC FORM: The geometric definition of the dot product

for three dimensions is the same as for two dimensions.

• a
˜
· b
˜

= |a
˜
| |b

˜
| cos θ whenever a

˜
6= 0

˜
and b

˜
6= 0

˜• a
˜
· b
˜

= 0 whenever a
˜

= 0
˜

or b
˜

= 0
˜

Other useful results that follow from the two-dimensional case include:

Magnitude: a
˜
· a
˜

= |a
˜
|2, thus |a

˜
| =

√
a
˜
· a
˜

Commutative Law: a
˜
· b
˜

= b
˜
· a
˜

Associative Law: λ(a
˜
· b
˜
) = (λa

˜
) · b

˜
Distributive Law: a

˜
· (b

˜
+ c

˜
) = a

˜
· b
˜

+ a
˜
· c
˜

The Cosine Rule: |a
˜
− b

˜
|2 = |a

˜
|2 + |b

˜
|2 − 2a

˜
· b
˜

All these results apply to any vectors. Of particular importance, however, is the
following result for non-zero perpendicular vectors.

For all a
˜
6= 0

˜
and b

˜
6= 0

˜
, a

˜
· b
˜

= 0 if and only if a
˜
⊥ b

˜
.

9 PERPENDICULAR VECTORS: For all a
˜
6= 0

˜
and b

˜
6= 0

˜
, a

˜
· b
˜

= 0 if and only if a
˜
⊥ b

˜
.

From the geometric definition of the dot product in Box 8, and from the range
of cos θ, it follows that

−|a
˜
| |b

˜
| ≤ a

˜
· b
˜
≤ |a

˜
| |b

˜
| ,

which is sometimes called the Cauchy-Schwarz inequality . Thus the dot product
and magnitude of a vector are consistent with the absolute value function for real
numbers, for which

−|x| ≤ x ≤ |x| .
The vector inequality can also be derived using the dot product and the fact that
the magnitude of a vector must be positive.

Consider the quadratic function Q(t) = |a
˜
− tb

˜
|2. Clearly Q(t) ≥ 0 for all t ∈ R.

Now Q(t) = (a
˜
− tb

˜
) · (a

˜
− tb

˜
)

= |a
˜
|2 − 2ta

˜
· b
˜

+ t2|b
˜
|2

The coefficient of t2 is positive so Q(t) has a minimum value at

t =
a
˜
· b
˜|b

˜
|2

for which Qmin = |a
˜
|2 −

(a
˜
· b
˜
)2

|b
˜
|2 .

Hence 0 ≤ |a
˜
|2 −

(a
˜
· b
˜
)2

|b
˜
|2 .

Rearranging, (a
˜
· b
˜
)2 ≤ |a

˜
|2|b

˜
|2

and hence −|a
˜
| |b

˜
| ≤ a

˜
· b
˜
≤ |a

˜
| |b

˜
| .

The Triangle Inequality In Vector Form: The triangle inequality has been derived
for real numbers and for complex numbers. In vector form, this inequality is

∣∣∣|a
˜
| − |b

˜
|
∣∣∣ ≤ |a

˜
+ b

˜
| ≤ |a

˜
|+ |b

˜
| .

Here is a proof of the right hand inequality. Begin by squaring the middle term.

.
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5C The Dot Product 181

|a
˜

+ b
˜
|2 = (a

˜
+ b

˜
) · (a

˜
+ b

˜
)

= |a
˜
|2 + 2a

˜
· b
˜

+ |b
˜
|2 .

And so, from the Cauchy-Schwarz inequality developed above,

|a
˜

+ b
˜
|2 ≤ |a

˜
|2 + 2|a

˜
| |b

˜
| + |b

˜
|2

= (|a
˜
| + |b

˜
|)2 .

Hence |a
˜

+ b
˜
| ≤ |a

˜
| + |b

˜
| .

The proof of the left hand inequality is a question in the exercise.

WORKED EXAMPLE 10: Verify the inequality |a
˜

+ b
˜
| ≤ |a

˜
|+ |b

˜
| for the vectors

a
˜

=




1
−2
3


 and b

˜
=




2
3
1


 .

SOLUTION: It should be clear in this case that |a
˜
| = |b

˜
|, and

|a
˜
|2 = a

˜
· a
˜

= 1 + 4 + 9

= 14,

so |a
˜
| + |b

˜
| = 2

√
14 .

Also a
˜

+ b
˜

=




3
1
4




thus |a
˜

+ b
˜
|2 = 26 .

Now |a
˜

+ b
˜
|2 = 26 and

(
|a
˜
|+ |b

˜
|
)2

= 56 ,

so |a
˜

+ b
˜
|2 ≤

(
|a
˜
|+ |b

˜
|
)2

,

hence |a
˜

+ b
˜
| ≤ |a

˜
| + |b

˜
| .

10

THE TRIANGLE INEQUALITY IN VECTOR FORM: For all a
˜

and b
˜
,

∣∣∣|a
˜
| − |b

˜
|
∣∣∣ ≤ |a

˜
+ b

˜
| ≤ |a

˜
|+ |b

˜
| .

The Dot Product in Component Form: Suppose a
˜

and b
˜

are the non-zero vectors

a
˜

=




a1

a2

a3


 and b

˜
=




b1

b2

b3


 .

Notice the use of subscripts in the components, with 1
for the x-component, 2 for y, and 3 for z. This notation
may be new to some readers, but it is commonly used by
mathematicians when dealing with vectors.

a b~ - ~

a~
b~

O

A
B

qAs in two dimensions, the component form of the dot
product is obtained by applying the cosine rule to the
associated triangle, as shown in the diagram on the right.

Thus
∣∣∣
−−→
BA

∣∣∣
2

=
∣∣∣
−→
OA

∣∣∣
2

+
∣∣∣
−−→
OB

∣∣∣
2

− 2
∣∣∣
−→
OA

∣∣∣
∣∣∣
−−→
OB

∣∣∣ cos θ

.
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so |a
˜
− b

˜
|2 = |a

˜
|2 + |b

˜
|2 − 2|a

˜
| |b

˜
| cosθ [1]

but |a
˜
− b

˜
|2 = (a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2

=
(
a1

2 + a2
2 + a3

2
)

+
(
b1

2 + b2
2 + b3

2
)

− 2
(
a1b1 + a2b2 + a3b3

)

thus |a
˜
− b

˜
|2 = |a

˜
|2 + |b

˜
|2 − 2

(
a1b1 + a2b2 + a3b3

)
. [2]

Equating the right hand sides of [1] and [2], it is clear that

|a
˜
| |b

˜
| cosθ = a1b1 + a2b2 + a3b3 ,

that is, a
˜
· b
˜

= a1b1 + a2b2 + a3b3 .

Clearly the last line is valid even if a
˜

= 0
˜

or b
˜

= 0
˜
. Consequently this algebraic

expression is sometimes used as the definition of the dot product, instead of the
geometric definition. Also notice that if a

˜
and b

˜
lie in the xy-plane then

a
˜
· b
˜

= a1b1 + a2b2 (because a3 = b3 = 0 in the xy-plane.)

In other words, the component formula in three dimensions is consistent with the
two dimensional formula.

WORKED EXAMPLE 11: Verify the inequality −|a
˜
| |b

˜
| ≤ a

˜
· b
˜
≤ |a

˜
| |b

˜
| for

a
˜

= i
˜
− 2j

˜
+ 3k

˜
and b

˜
= 2i

˜
+ 3j

˜
+ k

˜
.

SOLUTION: From Worked Example 10, |a
˜
| = |b

˜
| =

√
14, so

|a
˜
| |b

˜
| = 14.

Also a
˜
· b
˜

= 2 − 6 + 3

= −1.

Thus −14 ≤ −1 ≤ 14

that is, −|a
˜
| |b

˜
| ≤ a

˜
· b
˜
≤ |a

˜
| |b

˜
| , as expected.

11

THE DOT PRODUCT IN COMPONENT FORM:

Let a
˜

= a1i˜
+ a2j

˜
+ a3k˜

and b
˜

= b1i˜
+ b2j

˜
+ b3k˜

then

a
˜
· b
˜

= a1b1 + a2b2 + a3b3 ,

which is valid even when a
˜

= 0
˜

or b
˜

= 0
˜

.

Although it will not be needed very often in this course, this last formula may
also be written using summation notation.

a
˜
· b
˜

=

3∑

i=1

aibi .

WORKED EXAMPLE 12: Consider the three vectors

u
˜

=




1√
2

1√
2

0


 , v

˜
=




−1
2

1
2

1√
2


 , w

˜
=




1
2

−1
2

1√
2


 .

Use appropriate dot products to show that the three vectors are orthonormal.
That is, they are mutually perpendicular, and each is a unit vector.

.
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SOLUTION: First calculate the magnitudes of the vectors.

|u
˜
|2 = u

˜
· u
˜

= 1
2 + 1

2 + 0

= 1

|v
˜
|2 = v

˜
· v
˜

= 1
4 + 1

4 + 1
2

= 1

|w
˜
|2 = w

˜
· w
˜

= 1
4 + 1

4 + 1
2

= 1

Thus all three are unit vectors. Now check they are perpendicular.

u
˜
· v
˜

= − 1
2
√

2
+ 1

2
√

2
+ 0

= 0

u
˜
· w
˜

= 1
2
√

2
− 1

2
√

2
+ 0

= 0

v
˜
· w
˜

= −1
4 − 1

4 + 1
2

= 0

Hence the three vectors are unit vectors and mutually perpendicular.

WORKED EXAMPLE 13: Find any values of λ for which a
˜

and b
˜

are perpendicular,

where a
˜

=




λ

1
2


 and b

˜
=




λ − 1
2
−4




SOLUTION: The vectors will be perpendicular if a
˜
· b
˜

= 0.

a
˜
· b
˜

= λ2 − λ + 2− 8

thus λ2 − λ − 6 = 0 ,

so λ = −2 or 3 .

When λ = −2 the vectors are a
˜

=



−2
1
2


 and b

˜
=



−3
2
−4


 ,

and when λ = 3 the vectors are a
˜

=




3
1
2


 and b

˜
=




2
2
−4


 .

Exercise 5C

1. Find the value of a
˜
· b
˜

if:

(a) |a
˜
| = 4, |b

˜
| = 6 and the angle between a

˜
and b

˜
is 45◦,

(b) |a
˜
| = 5, |b

˜
| = 8 and the angle between a

˜
and b

˜
is 120◦.

2. Find a
˜
· b
˜

given:

(a) a
˜

= 3i
˜
− j

˜
+ 5k

˜
and b

˜
= 2i

˜
+ 6j

˜
+ k

˜

(b) a
˜

=




x1

y1

z1


 and b

˜
=




x2

y2

z2




(c) a
˜

= a1i˜
+ a2j

˜
+ a3k˜

and b
˜

= b1i˜
+ b2j

˜
+ b3k˜

3. Given a
˜

= a1i˜
+ a2j

˜
+ a3k˜

, prove that a
˜
· a
˜

= |a
˜
|2.

4. Suppose that a
˜

= 2i
˜
− 7j

˜
+ 3k

˜
and b

˜
= −4i

˜
+ j

˜
+ 5k

˜
.

(a) Find a
˜
· b
˜
.

(b) What can we conclude about a
˜

and b
˜
?

5. Given a
˜

=




13
23
7


, b

˜
=




2
1
−7


 and c

˜
=




3
−2
1


, show that a

˜
is perpendicular to both b

˜
and c

˜
.
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184 CHAPTER 5: Vectors 5C

6. Given a
˜

=



−3
9
6


 and b

˜
=




8
4

−10


, find:

(a) a
˜
· a
˜

(b) 2b
˜
· b
˜

(c) a
˜
· b
˜

(d) a
˜
·
(
a
˜

+ b
˜
)

D E V E L O P M E N T

7. Confirm that the Cauchy-Schwarz inequality is satisfied in each case below.

(a) a
˜

=




1
2
2


 , b

˜
=




2
6
−3


 (b) a

˜
= −i

˜
+ 3j

˜
, b
˜

= −6j
˜

+ 2k
˜

8. Confirm that the triangle inequality holds for each part in the previous question.

9. The points A, B, C and D have respective position vectors




2
3
5


,




4
1
3


,



−2
9
−5


 and



−3
1
2


.

Show that
−−→
AB and

−−→
CD are perpendicular.

10. Find any values of λ for which a
˜

and b
˜

are perpendicular.

(a) a
˜

=




2
−2
−5


, b

˜
=




3
λ

−2


 (b) a

˜
=




−4
λ + 3

2


, b

˜
=




λ

5
−λ2




11. Find a vector that is perpendicular to both i
˜
− j

˜
+ 2k

˜
and 2i

˜
+ j

˜
− 3k

˜
.

12. Given a
˜

=




a1

a2

a3


, b

˜
=




b1

b2

b3


 and λ ∈ R, prove that a

˜
·
(
λb
˜
)

= λ
(
a
˜
· b
˜
)
.

13. Let a
˜

= a1i˜
+ a2j

˜
+ a3k˜

, b
˜

= b1i˜
+ b2j

˜
+ b3k˜

and c
˜

= c1i˜
+ c2j

˜
+ c3k˜

.

Prove the distributive law: a
˜
·
(
b
˜

+ c
˜
)

= a
˜
· b
˜

+ a
˜
· c
˜
.

14. A set of three vectors in three dimensions is called orthonormal if each is a unit vector
and the three vectors are mutually orthogonal (that is, perpendicular). In each part show
that the three vectors are orthonormal.

(a) u
˜

=
1√
2




1
1
0


, v

˜
=

1√
2



−1
1
0


, w

˜
=




0
0
1




(b) u
˜

=
1√
2




1
0
1


, v

˜
=

1

2
√

2




1√
6

−1


, w

˜
=

1

2
√

2



−
√

3√
2√
3




15. Given three non-zero vectors a
˜
, b
˜

and c
˜
, prove that:

(a) if a
˜
·
(
b
˜

+ c
˜
)

= b
˜
·
(
a
˜
− c

˜
)

then c
˜
·
(
a
˜

+ b
˜
)

= 0,

(b) if
(
a
˜
· b
˜
)
c
˜

=
(
b
˜
· c
˜
)
a
˜

then a
˜

and c
˜

are parallel or b
˜

is perpendicular to both.

16. Given two non-zero vectors a
˜

and b
˜
, prove that:

(a) if a
˜

+ b
˜

and a
˜
− b

˜
are perpendicular then |a

˜
| = |b

˜
|,

(b) if |a
˜

+ b
˜
| = |a

˜
− b

˜
| then a

˜
and b

˜
are perpendicular.

17. The points A, B and C have position vectors a
˜
, b
˜

and c
˜

respectively relative to the origin O.

If
−−→
AB ⊥ −−→

OC and
−−→
BC ⊥ −→

OA, prove that
−→
AC ⊥ −−→

OB.

.
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5D Applications of the Dot Product 185

18. Given that |a
˜
| = 2, |b

˜
| = 3 and a

˜
· b
˜

= 5, find |a
˜

+ b
˜
|.

19. Given that |u
˜
| = 2

√
2, |v

˜
| = 2

√
3 and u

˜
· v
˜

= −4, find |u
˜
− v

˜
|.

20. In the notes, the right hand inequality of the triangle inequality is proven. Adopt a similar
approach to prove the left hand inequality, that is,

∣∣|a
˜
| − |b

˜
|
∣∣ ≤ |a

˜
+ b

˜
|.

E N R I C H M E N T

21. Two vectors a
˜

and b
˜

are such that a
˜

+ b
˜

is perpendicular to a
˜

and |b
˜
| = |a

˜
|
√

2. Show that
2a
˜

+ b
˜

is perpendicular to b
˜
.

22. A vector in 3-dimensional space makes angles of α, β and γ with the x, y and z axes
respectively. Prove that cos2 α + cos2 β + cos2 γ = 1.

5D Applications of the Dot Product

The most obvious use of the dot product is to find the angle between two position
vectors. Rearranging the geometric formula for the dot product gives

cos θ =
a
˜
· b
˜|a

˜
| |b

˜
| .

The right hand side is evaluated using the algebraic definition in Box 11. Note
that there will only ever be one solution to the trigonometric equation. This is
because the geometry of the situation requires that the angle must be non-reflex.
That is, 0◦ ≤ θ ≤ 180◦, and so

θ = cos−1

(
a
˜
· b
˜|a

˜
| |b

˜
|

)
.

WORKED EXAMPLE 14: Find the angle at the origin subtended by AB for the
points A = (1, 1, 2) and B = (−2, 3,−1). Round the answer to the nearest degree.

SOLUTION: Let 6 AOB = θ, and let a
˜

=
−→
OA and b

˜
=

−−→
OB, then

a
˜

=




1
1
2


 and b

˜
=



−2
3
−1


 ,

so |a
˜
|2 = 1 + 1 + 4

or |a
˜
| =

√
6 ,

and |b
˜
|2 = 4 + 9 + 1

so |b
˜
| =

√
14

with a
˜
· b
˜

= −2 + 3 − 2

= −1 .

Thus cos θ =
−1

2
√

21
and hence θ =.

. 96◦ (to the nearest degree.)

Direction Cosines: In two dimensions, it is easy to demonstrate the direction of a
vector by drawing a graph. If the angles with the axes are needed then they can
be measured from that graph. The problem with this is that any measurement is
just an approximation, and in three dimensions the angles cannot be measured
from a graph because perspective distorts the angles.

.
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186 CHAPTER 5: Vectors 5D

One way to deal with the angles between a vector and the coordinate axes is to
use the dot product. Suppose that the angle θ between a

˜
and the unit vector û

˜is required, where û
˜

is aligned with one of the coordinate axes. Then

a
˜
· û
˜

= |a
˜
| × 1 × cos θ

so cos θ = 1
|a
˜
|a˜

· û
˜

.

But 1
|a
˜
|a˜

is simply the unit vector â
˜

so

cos θ = â
˜
· û
˜

.

Thus replacing the unit vector û
˜

with each basis vector gives the cosine of the
angle between â

˜
and the corresponding coordinate axis. Hence they are called

direction cosines . But

â
˜
· i
˜

= â1 , â
˜
· j
˜

= â2 , â
˜
· k
˜

= â3 .

In other words, the direction cosines of a vector are simply the components of the
corresponding unit vector. It is therefore not surprising that the direction of a
vector in three dimensions is completely determined if the three direction cosines
are known.

WORKED EXAMPLE 15: Evaluate the direction cosines for a
˜

=
−→
OA, where A is

the point (2, 3, 4). Hence give the angle to each axis correct to the nearest degree.

SOLUTION: First calculate |a
˜
|.

|a
˜
|2 = 4 + 9 + 16

= 29 .

Hence the direction cosines of a
˜

are:

â1 = 2√
29

, â2 = 3√
29

, and â3 = 4√
29

.

The corresponding angles with the axes are:
6 AOX =.

. 68◦ , 6 AOY =.
. 56◦ and 6 AOZ =.

. 42◦ .

12

DIRECTION COSINES: The direction cosines of a vector a
˜

are the components of the

unit vector â
˜
, viz:

â
˜
· i
˜

= â1 , â
˜
· j
˜

= â2 , â
˜
· k
˜

= â3 .

Projections in 3D: Like the dot product, a projection involves two non-zero vectors
and hence the action takes place in a plane. Thus the results for projections
established in two dimensions apply equally in three dimensions. Nevertheless,
here is a quick derivation of the formula for the projection of a

˜
onto b

˜
.

P
B

A

O

a~

p
~

b~

Let a
˜

=
−→
OA and b

˜
=

−−→
OB in three dimensions. Once

again, there is only one plane which passes through all
three points. Thus it is possible to find a point P in OB

such that 4AOP lies in this plane and OB ⊥ PA.

Now
−−→
OP = λb

˜
(OP ||OB)

so
−→
PA =

−→
OA − −−→

OP

= a
˜
− λb

˜
.

.
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5D Applications of the Dot Product 187

Also
−−→
OB · −→PA = 0 (OB ⊥ PA.)

Hence b
˜
· (a

˜
− λb

˜
) = 0

or b
˜
· a
˜
− λb

˜
· b
˜

= 0

thus λ =

(
b
˜
· a
˜

b
˜
· b
˜

)
.

The vector
−−→
OP = λb

˜
is called the projection of a

˜
onto b

˜
, and is written

projb
˜
a
˜

=

(
b
˜
· a
˜

b
˜
· b
˜

)
b
˜
.

WORKED EXAMPLE 16: Find the projection of
−→
OA onto

−−→
OB for A = (4, 2,−3)

and B = (−1, 1, 1).

SOLUTION: Let a
˜

=
−→
OA and b

˜
=

−−→
OB. Clearly b

˜
· b
˜

= 3.

a
˜
· b
˜

= −4 + 2 − 3

= −5 ,

so proja
˜

b
˜

= −5

3



−1
1
1


 .

13

PROJECTIONS IN 3D: The formula is the same as for two dimensions, viz:

projb
˜
a
˜

=
b
˜
· a
˜

b
˜
· b
˜

b
˜
.

The above formula is often the most convenient way to calculate the projected
vector. However, it can also be determined from the unit vector b̂

˜
by observing

that b
˜
· b
˜

= |b
˜
|2. Thus:

projb
˜

a
˜

=
b
˜
· a
˜|b

˜
|

b

|̃b
˜
|

so projb
˜

a
˜

=
(
b̂
˜
· a
˜

)
b̂
˜

or projb
˜

a
˜

= (|a
˜
| cosθ)̂b

˜
.

From this alternative formula, it is clear that the length of the projection is

|projb
˜
a
˜
| = |a

˜
| cos θ ,

which could have been deduced just as easily from trigonometry in 4OAP .

A special case of projection onto a unit vector occurs when b̂
˜

is one of the basis

vectors. For example, when b̂
˜

= k
˜
,

proj
k

˜
a
˜

= |a
˜
| cosθk

˜
= |a

˜
| a3

|a
˜
| k
˜

(from the direction cosine)

= a3k˜
.

That is, the projection of a vector onto a basis vector gives the corresponding
component vector. Of course, this is intuitively obvious, but at least the example
demonstrates that the projection does what is expected.

.
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188 CHAPTER 5: Vectors 5D

14
PROJECTIONS AND COMPONENTS: The projection of a vector onto a basis vector gives

the corresponding component vector.

A

B

Q

Pb~
p
~

Perpendicular Distance: A projection can be used to find
the perpendicular distance between a point and a line.
The diagram to the right shows line AB with point P

not on the line. Let Q be the point on the line that is

closest to P , then PQ ⊥ AB. More significantly
−→
AQ

is the projection of
−→
AP onto

−−→
AB. The distance that is

required is then |−−→PQ| = |−→AQ − −→
AP |.

For simplicity, put
−−→
AB = b

˜
and

−→
AP = p

˜
. Then

−→
AQ = projb

˜
p
˜

thus
−−→
PQ = projb

˜
p
˜
− p

˜
and hence |−−→PQ| =

∣∣∣proj
b

˜
p
˜
− p

˜

∣∣∣ .

WORKED EXAMPLE 17: Find the perpendicular distance from P = (2, 1, 0) to
the line through A = (−1, 0, 2) and B = (1, 1, 3).

SOLUTION: Let p
˜

=
−→
AP = 3i

˜
+ 1j

˜
− 2k

˜
and b

˜
=

−−→
AB = 2i

˜
+ 1j

˜
+ 1k

˜
. Then

|b
˜
|2 = 6

b
˜
· p
˜

= 5

so projb
˜
p
˜

=
5

6




2
1
1




Thus if Q is the point on AB nearest to P then
−−→
PQ = projb

˜
p
˜
− p

˜

=
5

6




2
1
1


 −




3
1
−2




=
1

6



−8
−1
17




hence |−−→PQ| =
√

354
6 (about 3·1358.)

15

PERPENDICULAR DISTANCE: To find the perpendicular distance from the point P to

the line AB, first let b
˜

=
−−→
AB and p

˜
=

−→
AP . Then

distance =
∣∣∣projb

˜
p
˜
− p

˜

∣∣∣ .

Although the above derivation of the distance formula assumed that P was not
on the line, the formula also works when P is on the line. The proof of this result
is left as an exercise.

.
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Exercise 5D

1. If a
˜

=




1
2
1


 and b

˜
=




2
1
−1


, find:

(a) a
˜
· b
˜

(b) |a
˜
| and |b

˜
| (c) the angle between a

˜
and b

˜
.

2. Find cos θ, where θ is the angle between a
˜

and b
˜
.

(a) a
˜

=




2
0
0


, b

˜
=




2
1
−2


 (b) a

˜
=




1
−1
−1


, b

˜
=




2
1
−1




3. If θ is the angle between a
˜

=




3
−2
−3


 and b

˜
=



−1
3
−4


, show that cos θ =

3

2
√

143
.

4. Find, correct to the nearest degree, the angle between v
˜1 and v

˜2 given:

(a) v
˜1 =




3
2
1


, v

˜2 =




1
2
3


 (b) v

˜1 =




5
3
−1


, v

˜2 =



−2
2
−6




5. Suppose that a
˜

=




3
−2
5


. Use the standard result projb

˜
a
˜

=

(
a
˜
· b
˜

b
˜
· b
˜

)
b
˜

to confirm that

the respective projections of a
˜

onto each of the standard basis vectors i
˜
, j
˜

and k
˜

are the

components of a
˜
, that is, 3i

˜
,−2j

˜
and 5k

˜
.

D E V E L O P M E N T

6. Find the projection of a
˜

onto b
˜

given:

(a) a
˜

= i
˜

+ j
˜
− k

˜
, b
˜

= 2i
˜
− 2j

˜
− k

˜
(b) a

˜
=




3
2
2


, b

˜
=




4
1
−1




7. Find the length of the projection a
˜

onto b
˜

given:

(a) a
˜

= 2
˜
i+3j

˜
−2k

˜
, b
˜

= 4i
˜
−2j

˜
+5k

˜
(b) a

˜
=




1
1
3


, b

˜
=




8
4
1




8. 4ABC has vertices A(2, 7,−12), B(−1, 5,−5) and C(4, 1,−4).

(a) Write
−−→
BA and

−−→
BC in component form.

(b) Hence show that 6 ABC = 90◦.

(c) Find the side lengths of the triangle and show that they satisfy Pythagoras’ theorem.

9. 4ABC has vertices A(3,−3, 1), B(−2, 1, 2) and C(4, 0,−1).

(a) Write
−−→
AB and

−→
AC as column vectors.

(b) Hence find 6 BAC correct to the nearest degree.

10. 4PQR has vertices P (−4,−1, 6), Q(−5, 3, 4) and R(−3, 4,−7). Use the scalar product
to find 6 PQR to the nearest minute.

11. 4ABC has vertices A(1, 0,−1), B(1, 1, 1) and C(0, 1,−1).

(a) Show that cos 6 ACB = 1√
10

.

(b) Use the formula area = 1
2ab sinC to find the area of 4ABC.

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



190 CHAPTER 5: Vectors 5D

12. Let P , A and B be the points (−4, 3,−1), (3, 2, 1) and (0,−4, 1) respectively.

(a) Find
−→
AP and

−−→
AB.

(b) Find projb
˜
p
˜
, where

−→
AP = p

˜
and

−−→
AB = b

˜
.

(c) Find the perpendicular distance d from P to the line AB using d =
∣∣∣projb

˜
p
˜
− p

˜

∣∣∣.

13. Use the approach of the previous question to find the perpendicular distance from the
point P to the line through A and B.

(a) P = (3,−2, 1), A = (1,−11,−4), B = (9, 3, 8)

(b) P = (0, 0, 3), A = (1, 2, 1), B = (4, 0, 0)

14. A cube with side length a has vertices at O(0, 0, 0), A(a, 0, 0), B(a, a, 0), C(0, a, 0),
D(0, 0, a), E(a, 0, a), F (a, a, a) and G(0, a, a). Use vector methods to show that the acute
angle between the diagonals AG and CE is arccos 1

3 .

15. A rectangular prism is 1 unit by 2 units by 3 units. By giving its vertices appropriate
coordinates, find the three possible values of cos θ, where θ is the acute angle between a
pair of diagonals of the prism.

A

B
C

D

16. The diagram shows a triangular pyramid. Its base is a right-angled
isosceles triangle, and its perpendicular height AD is equal to the
length of the equal sides of the base. By giving the vertices of
the pyramid appropriate coordinates, use vector methods to show
that the acute angle between the front face ABC and the base
BCD is cos−1 1√

3
.

17. The position vectors of the vertices of a tetrahedron (that is, a triangular pyramid) ABCD

are
−→
OA = −5i

˜
+ 22j

˜
+ 5k

˜
,
−−→
OB = i

˜
+ 2j

˜
+ 3k

˜
,
−−→
OC = 4i

˜
+ 3j

˜
+ 2k

˜
and

−−→
OD = −i

˜
+ 2j

˜
− 3k

˜
respectively.

(a) Find 6 CBD.

(b) Show that AB is perpendicular to both BC and BD.

(c) Calculate the volume of the tetrahedron.

18. The points A and B have position vectors
−→
OA = 2i

˜
+ j

˜
− 2k

˜
and

−−→
OB = 6i

˜
− 3j

˜
+ 2k

˜
. The

point P lies on AB and AP : PB = λ : 1− λ, where λ ∈ R.

(a) Show that
−−→
OP = (2 + 4λ)i

˜
+ (1 − 4λ)j

˜
+ (4λ − 2)k

˜
.

(b) Find the value of λ for which
−−→
OP and

−−→
AB are perpendicular.

(c) Find the value of λ for which 6 AOP = 6 BOP .

19. Find the possible values of λ if the angle between a
˜

=




6
−2
3


 and b

˜
=



−2
−4
λ


 is cos−1 4

21 .

20. The points A, B and P have position vectors a
˜
, b
˜

and p
˜

= λa
˜

+ (1 − λ)b
˜
, where λ ∈ R.

(a) Prove that A, B and P are collinear.

(b) Given that a
˜

= i
˜
+ j

˜
, b
˜

= 4i
˜
− 2j

˜
+ 6k

˜
and O is the origin, find the two values of λ for

which 6 AOP = 60◦.
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E N R I C H M E N T

21. The position vectors of the points A, B and C are
−→
OA = 9i

˜
+ 7j

˜
− k

˜
,
−−→
OB = 3i

˜
− 11j

˜
+ 5k

˜
and

−−→
OC = 5i

˜
− 5j

˜
− k

˜
.

(a) Find the area of 4ABC.

(b) Suppose that D lies on AB so that AD : AB = 1 : 3 and E is the midpoint of CD.
Find the position vectors of D and E.

(c) Show that
−−→
OE is perpendicular to the plane ABC by showing

that it is perpendicular to both
−−→
AB and

−→
AC.

(d) Hence find the volume of the tetrahedron OABC.

x
y

z

( , 0, 0)a ( , , 0)0 b

( , )0, 0 c

A

C

B

22. The diagram on the right shows a triangular pyramid OABC. Let
|4XY Z| denote the area of 4XY Z.

Prove that |4AOB|2 + |4BOC|2 + |4COA|2 = |4ABC|2.

5E Vector Proofs in Geometry

Whilst vectors provide a powerful tool for tackling problems, in many instances
in geometry the Euclidean proofs studied in Years 7 to 10 are by far the simplest
and best. However, there are a few cases where vector proofs are both efficient
and elegant. This short section considers some of those proofs. As a general rule,
the problems involve lengths or right angles.

WORKED EXAMPLE 18: Point C is outside a circle with centre O. The points

of contact of the two tangents from C to the circle are A and B. Let
−→
OA = a

˜
,

−−→
OB = b

˜
and

−−→
OC = c

˜
. Prove the following.

(a) Tangents CA and CB subtend equal angles at the centre O.

(b) CA = CB.

A

O

B

C

a~ c~

b~

SOLUTION: Let the radius of the circle be r.

(a) The angle between a radius and tangent at the point of contact is 90◦.

Hence (c
˜
− a

˜
) · a

˜
= 0

thus c
˜
· a
˜

= a
˜
· a
˜

= r2 .

Likewise c
˜
· b
˜

= r2 .

Thus c
˜
· a
˜

= c
˜
· b
˜

or |c
˜
|r cos 6 AOC = |c

˜
|r cos 6 BOC

so 6 AOC = 6 BOC .

(b) Next consider the square of the length of AC.

|c
˜
− a

˜
|2 = (c

˜
− a

˜
) · (c

˜
− a

˜
)

= |c
˜
|2 − 2c

˜
· a
˜

+ |a
˜
|2

= |c
˜
|2 − 2c

˜
· b
˜

+ |b
˜
|2 (by part (a))

= |c
˜
− b

˜
|2 .

Hence |c
˜
− a

˜
| = |c

˜
− b

˜
| ,

that is, AC = BC .
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192 CHAPTER 5: Vectors 5E

Exercise 5E

1. Use vectors to prove that a quadrilateral is a parallelogram if its diagonals bisect each other.

a~

c~

O A

BC

90°

2. The diagram on the right shows rectangle OABC with diagonals

that are perpendicular. Let
−→
OA = a

˜
and

−−→
OC = c

˜
.

(a) What is the value of a
˜
· c
˜
?

(b) Write
−−→
OB and

−→
AC in terms of a

˜
and c

˜
.

(c) Hence prove that OABC is a square.

a~ m~
b~

O

A BM

3. In the diagram on the right, O is the centre of the circle and OM

bisects the chord AB. Let
−→
OA = a

˜
,
−−→
OB = b

˜
and

−−→
OM = m

˜
.

(a) Show that a
˜
· a
˜

= b
˜
· b
˜
.

(b) Show that
(
m
˜
− a

˜
)
·
(
m
˜
− a

˜
)

=
(
m
˜
− b

˜
)
·
(
m
˜
− b

˜
)
.

(c) Hence prove that OM ⊥ AB.

4. Using a similar approach, prove the converse of the theorem in the previous question.

D E V E L O P M E N T

a~ d~

c~b~

A

B C

D

O

5. In the diagram on the right, AB and CD are equal chords of a

circle with centre O. Let
−→
OA = a

˜
,
−−→
OB = b

˜
,
−−→
OC = c

˜
and

−−→
OD = d

˜
.

(a) Explain why |b
˜
− a

˜
|2 = |d

˜
− c

˜
|2.

(b) Use part (a) to show that a
˜
· b
˜

= c
˜
· d
˜
.

(c) Hence show that 6 AOB = 6 COD.

O A

BC

M N

6. The diagram on the right shows trapezium OABC with OA||CB.
The midpoints of the non-parallel sides OC and AB are M and

N respectively. Let
−→
OA = a

˜
,
−−→
OB = b

˜
and

−−→
OC = c

˜
.

(a) Show that
−−→
MN = 1

2

(
a
˜

+ b
˜
− c

˜
)
.

(b) Explain why b
˜
− c

˜
= k a

˜
, where k is a constant.

(c) Hence show that MN is parallel to OA and CB.

7. A quadrilateral is a four sided figure in a plane. In this question, suppose that the
definition of a quadrilateral is extended to include the case in three dimensions where
the four vertices do not all lie in a plane. Let OABC be such a quadrilateral with vertices
at O(0, 0, 0), A(a1, a2, a3), B(b1, b2, b3) and C(c1, c2, c3).

Given that M, N, P and R are the respective midpoints of OA, AB, BC and CO, use
vectors to prove that MNPR is a parallelogram.

8. The cube OABCDEFG has vertices O(0, 0, 0), A(a, 0, 0), B(a, a, 0), C(0, a, 0), D(0, a, a),
E(0, 0, a), F (a, 0, a) and G(a, a, a), where a > 0.

(a) Use a scalar product to find the angle between the two face diagonals OF and OD.

(b) What type of special triangle is 4OFD?

(c) What special name is given to the triangular pyramid OBDF?

(d) Find 6 FXD, where X is the centre of the cube. (This angle is the bonding angle of
carbon tetrachloride.)
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5F The Vector Equation of a Line 193

A B

C

L

MN

P

9. In the diagram on the right, PL and PM are the perpendicular
bisectors of sides AB and BC of 4ABC, and N is the midpoint

of AC. Let
−−→
AB = u

˜
,
−−→
BC = v

˜
and

−→
PL = w

˜
.

(a) Find
−−→
PN in terms of v

˜
and w

˜
.

(b) Hence prove that the three perpendicular bisectors of the sides

of a triangle are concurrent by proving that
−−→
PN · −→AC = 0.

A
B

C

D

M
2

M
1

10. [A Theorem of Euler] The diagram shows convex quadrilateral
ABCD in two dimensions. The midpoint of diagonal AC is M1

and the midpoint of diagonal BD is M2. It is known that

AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4(M1M2)
2 .

That is, the sum of squares of the sides is equal to the sum of
squares of the diagonals plus 4 times the square of the distance
between their midpoints.

Use the result |v
˜
|2 = v

˜
·v
˜

to write a vector proof of this theorem. Begin by letting
−−→
AB = b

˜
,

−→
AC = c

˜
and

−−→
AD = d

˜
.

E N R I C H M E N T

11. Suppose that OABC is a trapezium with parallel sides OA and CB such that OA = 3 CB.
If E and F are the respective midpoints of the diagonals OB and AC, use vectors to prove
that EFBC is a parallelogram.

12. As in Question 7, suppose that the definition of a quadrilateral is extended to include the
case in three dimensions where the four vertices do not all lie in a plane. Use a vector
approach to prove that the sum of the squares of the sides of such a quadrilateral is equal
to the sum of the squares of the diagonals plus four times the square of the distance
between the midpoints of the diagonals. That is, repeat Question 10 in three dimensions.

[Hint: Take the origin as one of the vertices and then specify general coordinates for the
other three vertices.]

5F The Vector Equation of a Line

One of the advantages of vectors is that the derivation of certain results and
the equations of certain objects are the same both in two dimensions and in
three dimensions. For example, the formula for the projection of one vector onto
another is always

proj
b

˜
a
˜

=

(
b
˜
· a
˜

b
˜
· b
˜

)
b
˜
.

The focus of this section is on the vector equations of lines, as they too have the
same form in both two dimensions and three dimensions.

O

B
R

r~

b~

Lines Through the Origin: Let O be the origin and let B

be another point with position vector b
˜
. Consider the

line OB. Let R be a variable point in OB with position
vector r

˜
. It follows that OR||OB and hence

r
˜

= λb
˜
.

.
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194 CHAPTER 5: Vectors 5F

Thus the position vector of every point in OB is obtained as λ varies, as shown
in the diagram above, and this is the vector equation of the line OB.

The proper name for the equation is a parametric vector equation , since it involves
a parameter λ. Notice that the argument used to derive this equation is valid
regardless of whether the situation is in two dimensions or in three dimensions.

WORKED EXAMPLE 19: Find the vector equation of the line through the origin
and the point B(2, 3).

SOLUTION: The point B has position vector b
˜

= 2i
˜

+ 3j
˜
. Let r

˜
= xi

˜
+ yj

˜
. Then

the equation of OB is

r
˜

= λb
˜
,

that is

[
x

y

]
= λ

[
2
3

]
.

16

LINES THROUGH THE ORIGIN: The line through the origin and another point B with

position vector b
˜

has vector equation

r
˜

= λb
˜
.

The Parametric Equations: The components of the vector equation in the last
worked example are

x = 2λ

y = 3λ .

These are called the parametric equations of the straight line. They form a pair
of simultaneous equations with parameter λ. The parameter can be eliminated
to give the familiar Cartesian equation

y = 3
2x .

In the worked example there is no restriction on the domain of the parameter,
and so the whole line is obtained. However, setting 0 ≤ λ ≤ 4 would yield

y = 3
2
x with 0 ≤ x ≤ 8 (since x = 2λ.)

That is, the result is the portion of the line between the origin and (8, 12).

There are many curves which can be defined through parametric equations. Some
of these will be encountered in the next section. In simple cases like the one
above, the parameter is eliminated and any restrictions noted in order to find the
Cartesian equation.

WORKED EXAMPLE 20: Determine the Cartesian equation of the line
[

x

y

]
= µ

[
2
−4

]
with − 1 ≤ µ ≤ 1.

SOLUTION: The parametric equations are

x = 2µ with − 2 ≤ x ≤ 2

and y = −4µ = −2(2µ) .

Hence the result is the line segment

y = −2x , −2 ≤ x ≤ 2.

.
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5F The Vector Equation of a Line 195

Note that in this example the parameter was labelled µ. Any symbol can be used.
However, the Greek letter λ is often used for problems involving lines because it
is equivalent to the letter `.

The Direction Vector and the Gradient: In two dimensions, the direction vector
b
˜

of the vector equation r
˜

= λb
˜

and the gradient m of the Cartesian equation
y = mx are closely related. The vector b

˜
= b1i˜

+b2j
˜

specifies how x and y change

as λ varies. In particular, the coordinates of R for λ = 0 and 1 are:

λ = 0, R = (0, 0) and λ = 1, R = (b1, b2).

From this it is clear that b2 is the rise and b1 is the run. Hence the gradient is

m =
b2

b1
provided b1 6= 0 .

The restriction b1 6= 0 means that the line cannot be vertical.

Thus it is sometimes convenient to put b1 = 1 so that b2 = m and the gradient
appears explicitly in the vector equation. This gives

[
x

y

]
= λ

[
1
m

]
.

WORKED EXAMPLE 21: Write the equation of the line y = −2x in vector form.

SOLUTION:

[
x

y

]
= λ

[
1
−2

]

17

THE DIRECTION VECTOR AND THE GRADIENT: The two equations of a non-vertical line

through the origin in two dimensions are r
˜

= λb
˜

and y = mx. From this

m =
b2

b1
(b1 6= 0), and putting b1 = 1 gives b

˜
=

[
1
m

]
.

The Direction Vector and General Form: Whilst the connection between the
direction vector and the gradient is important, it fails for vertical lines in two
dimensions. The situation is made much clearer when the vector equation is
compared with the general form of the equation of a straight line.

As before, let b
˜

= b1i˜
+ b2j

˜
. Then r

˜
= λb

˜
has parametric equations

x = b1λ

y = b2λ

from which it follows that

b1y = b2x .

So in general form the equation is

b2x − b1y = 0 .

Now compare this with the usual notation for general form,

Ax + By = 0 .

The simplest solution is that b1 = −B and b2 = A. Since the right hand side of
each equation is zero, another solution is b1 = B and b2 = −A.
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196 CHAPTER 5: Vectors 5F

Either solution will work because −Bi
˜
+Aj

˜
and Bi

˜
−Aj

˜
are opposite vectors, and

opposite vectors are parallel. Thus the two solutions give parallel lines through
the origin, that is, the same line. Hence it is a matter of convenience which
direction vector is used when solving a problem. Using these two identities, it is
easy to switch between vector form and Cartesian form.

WORKED EXAMPLE 22: Write down the vector form of the line 3y = 4x.

SOLUTION: The general form of the equation is 4x− 3y = 0.
In this case put b1 = 3 and b2 = 4, so the equation is

[
x

y

]
= λ

[
3
4

]
.

18

THE DIRECTION VECTOR AND GENERAL FORM: If the vector equation r
˜

= λb
˜

represents

the same line as Ax + By = 0 then either

b
˜

=

[
−B

A

]
or b

˜
=

[
B

−A

]
.

The advantage of using Box 18 to convert between vector and Cartesian form is
that it works for all lines, including vertical lines. When deciding which direction
vector formula to use, choose the one which gives fewer negatives in the answer.

WORKED EXAMPLE 23: Find the vector equations of the x-axis and y-axis.

SOLUTION: The equation of the x-axis is y = 0. Choosing the second solution in

Box 18 gives b
˜

=

[
1
0

]
= i

˜
. Thus the vector equation of the x-axis is r

˜
= λi

˜
.

The equation of the y-axis is x = 0. Choosing the first solution in Box 18 gives

b
˜

=

[
0
1

]
= j

˜
. Thus the vector equation of the y-axis is r

˜
= µj

˜
.

In fact both answers were obvious from the definitions of i
˜

and j
˜
.

O

B

R

r~
a~

b~

A

lThe Line Through a Given Point: Let O be the origin and
let A and B be two other points with position vectors a

˜and b
˜

respectively. Consider the line ` through A parallel
with OB. Let R be a variable point in ` with position
vector r

˜
. It follows that AR||OB and hence

r
˜
− a

˜
= λb

˜
.

Thus the position vector of every point in ` is obtained as λ varies, as shown in
the diagram above, and this is the parametric vector equation of the line.

It is important to observe that the equation r
˜
−a

˜
= λb

˜
is consistent with the way

a function changes when its graph is shifted. The line OB with equation r
˜

= λb
˜has been shifted so that it passes through the point A with position vector a
˜
.

Consequently the variable vector r
˜

has been replaced with r
˜
− a

˜
. Despite this

significant result, it is more common to write the equation as

r
˜

= a
˜

+ λb
˜
.
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5F The Vector Equation of a Line 197

WORKED EXAMPLE 24: Find the vector equation of the line through A parallel
with OB, where A = (−2,−1, 3) and B = (1, 0, 1). Then determine whether or
not C = (0,−1, 4) is on this line.

SOLUTION: The vector equation is simply



x

y

z


 =



−2
−1
3


 + λ




1
0
1


 .

The point C will be on the line if there is a solution to


0
−1
4


 =



−2
−1
3


 + λ




1
0
1




so λ




1
0
1


 =




0
−1
4


 −



−2
−1
3




or λ




1
0
1


 =




2
0
1


 .

Clearly this last equation has no solution and hence C does not lie on the line.

19

THE LINE THROUGH A GIVEN POINT: The vector equation of the line with direction b
˜which passes through a point with position vector a

˜
is

r
˜

= a
˜

+ λb
˜
.

Alternatively, shift r
˜

= λb
˜

by a
˜

to get r
˜
− a

˜
= λb

˜
.

WORKED EXAMPLE 25: Show that

[
x

y

]
=

[
0
c

]
+ λ

[
1
m

]
is equivalent to the

gradient–intercept formula in two dimensional coordinate geometry.

SOLUTION: The parametric equations are

x = λ

y = λm + c

thus by substitution it is clear that

y = mx + c ,

which is the gradient–intercept formula in coordinate geometry.

The Line Through Two Given Points: In the two point method of coordinate
geometry, the first step is to use the given points to determine the gradient of
the line. Likewise, for the vector equation, the first step is to find the direction
vector of the line. Let the points A and B have position vectors a

˜
and b

˜
. Then

the direction is given by

−−→
AB = (b

˜
− a

˜
) .

It is now a trivial matter to write down the vector equation of AB, which is

r
˜

= a
˜

+ λ(b
˜
− a

˜
) .

.
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198 CHAPTER 5: Vectors 5F

WORKED EXAMPLE 26: Consider the points A(−1,−2, 3) and B(−2, 1, 0).

(a) Evaluate
−−→
AB.

(b) Hence determine the vector equation of AB.

SOLUTION: Let
−→
OA = a

˜
and

−−→
OB = b

˜
.

(a)
−−→
AB = b

˜
− a

˜
=



−2
1
0


 −



−1
−2
3




=



−1
3
−3


 .

(b) Thus the line is


x

y

z


 =



−1
−2
3


 + λ



−1
3
−3


 .

20

THE LINE THROUGH TWO GIVEN POINTS: Suppose that A has position vector a
˜

and B

has position vector b
˜
. The vector equation of the line AB is

r
˜

= a
˜

+ λ(b
˜
− a

˜
).

Line Segments: A line segment is simply the result of restricting the parameter in
the vector equation of a line. The most significant example is the case of the line
through two points, viz

r
˜

= a
˜

+ λ(b
˜
− a

˜
).

Re-arrange this equation to get

r
˜

= (1− λ)a
˜

+ λb
˜

or r
˜

= 1
(1−λ)+λ

(
(1− λ)a

˜
+ λb

˜

)

which is a special case of the ratio division formula in given Box 6. That is,
the point R divides the interval AB in the ratio λ : (1 − λ). Thus as λ varies
between 0 and 1, the point R occupies every location in the interval AB. Hence
the equation of the line segment is

r
˜

= a
˜

+ λ(b
˜
− a

˜
) for 0 ≤ λ ≤ 1.

Clearly λ = 0 gives r
˜

= a
˜
, the position vector of A, and λ = 1 gives r

˜
= b

˜
, the

position vector of B. Thus as λ increases, the point R moves from A to B.

WORKED EXAMPLE 27: Find the vector equation of the line segment AB where
A = (−1, 2) and B = (3, 3).

SOLUTION: In this case
−−→
AB =

[
4
1

]
, so the equation is

[
x

y

]
=

[
−1
2

]
+ λ

[
4
1

]
for 0 ≤ λ ≤ 1.

.
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5F The Vector Equation of a Line 199

Parallel and Perpendicular Lines: Consider the lines with vector equations

r
˜1 = a

˜1 + λ1b˜1 and r
˜2 = a

˜2 + λ2b˜2 .

If the lines are parallel then their direction vectors must also be parallel. That is

b
˜1 = µb

˜2 .

If the lines intersect and they are perpendicular then their direction vectors must
also be perpendicular. That is

b
˜1 · b˜2 = 0 .

x

y

z

k~

i~

j
~

O

A

B

C

D
E

F
G

It may seem strange to include the qualification that the
lines intersect when discussing perpendicular lines. It is a
necessary qualification because two direction vectors can
be perpendicular in three dimensions but the lines do not
meet. A simple example occurs in the unit cube shown on
the right. Clearly the lines OA and EF do not intersect.
Yet their direction vectors are i

˜
and j

˜
, and i

˜
· j
˜

= 0. That

is, the direction vectors are perpendicular.

In some instances it is useful to say that the lines OA and EF are perpendicular,
but this is very unusual. If the need ever arises to do this, it must be made clear
in any working that the lines do not intersect.

The proper name for lines in three dimensions that are not parallel and do not
meet is skew lines . However, the direction vectors do not need to be perpendicular
in skew lines. For example, AB and EG form another pair of skew lines in the
unit cube shown above.

WORKED EXAMPLE 28:

(a) Find the point where the following lines intersect.

r
˜1 =



−1
0
5


 + λ




1
−1
2




r
˜2 =



−5
2
5


 + µ




3
−1
−2




(b) Hence show that the two lines form a right angle at the point of intersection.

SOLUTION:

(a) At the point of intersection r
˜1 = r

˜2 . Equating the first two components:

−1 + λ = −5 + 3µ

and −λ = 2 − µ .

Adding these gives

−1 = −3 + 2µ ,

so µ = 1 and hence λ = −1. Thus from r
˜2 the point of intersection is



−5
2
5


 + 1 ×




3
−1
−2


 =



−2
1
3


 .

As a check, substituting λ = −1 into r
˜1 gives the same point.
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(b) Taking the dot product of the direction vectors:



1
−1
2


 ·




3
−1
−2


 = 3 + 1− 4

= 0

and hence the lines are perpendicular.

Note that the check in the final line of part (a) above is essential, as will be
demonstrated in a later example with skew lines.

21

PARALLEL AND PERPENDICULAR LINES: Let b
˜1 and b

˜2 be the directions of two lines.

• If the lines are parallel then b
˜1 = µb

˜2 .

• If the lines intersect and are perpendicular then b
˜1 · b˜2 = 0 .

• Lines in three dimensions that are not parallel and do not intersect are called

skew lines.

Re

Im

A x, y( )
B y, x( )-

( )-x, y-
( )y, x-

Perpendicular Vectors in Two Dimensions: For a given
vector in two dimensions it is easy to find a perpendicular
vector. Suppose a

˜
= xi

˜
+ yj

˜
is the position vector of the

point A in the Argand diagram. Thus A represents the
complex number α = x + iy. The result of rotating A by
90◦ about the origin is β = iα, and β = −y + ix. Let this
represent B with position vector b

˜
= −yi

˜
+ xj

˜
. It follows

that a
˜

and b
˜

are perpendicular, as can be checked by the
dot product.

Continuing this process, the complex numbers α, iα, i2α and i3α correspond to
the vectors a

˜
, b
˜
, −a

˜
and −b

˜
. That is, the vectors

[
x

y

]
,

[
−y

x

]
,

[
−x

−y

]
and

[
y

−x

]

form a sequence where each subsequent vector is the result of a rotation by 90◦.
Further, every vector in this sequence has the same magnitude. This feature
proves useful in certain problems.

The next worked example also requires a direction vector for a line in general
form. In this case, the line does not pass through the origin. Fortunately, the
result in Box 18 also applies to lines written in the form Ax + By + C = 0. That
is, the direction vector is either −Bi

˜
+ Aj

˜
or Bi

˜
− Aj

˜
.

WORKED EXAMPLE 29: What is the vector equation of the line perpendicular to
2x− 3y + 4 = 0 which passes through the point (−5, 6)?

SOLUTION: From Box 18, a direction vector of the given line is

[
3
2

]
.

Thus a vector perpendicular to the given line is

[
2
−3

]
.

Hence the required line is
[

x

y

]
=

[
−5
6

]
+ λ

[
2
−3

]
.

.
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22

PERPENDICULAR VECTORS IN TWO DIMENSIONS: In the sequence of vectors
[

x

y

]
,

[
−y

x

]
,

[
−x

−y

]
and

[
y

−x

]
,

each subsequent vector is the result of a rotation by 90◦. Further, every vector

in this sequence has the same magnitude.

Skew Lines and Inconsistent Equations: Skew lines do not intersect. Trying to
find a point of intersection by equating components yields a set of inconsistent
simultaneous equations.

WORKED EXAMPLE 30: Determine whether or not the following lines intersect.

r
˜1 =




2
−1
2


 + λ




1
2
−1




r
˜2 =




2
2
−1


 + µ




1
−1
−2




SOLUTION: Equating the first two components:

2 + λ = 2 + µ

and −1 + 2λ = 2 − µ .

Adding these gives

1 + 3λ = 4

by which λ = 1, and so µ = 1. Substituting these into the z-components gives

2 − 1 6= −1 − 2.

Since the equations are inconsistent, the lines do not intersect.

23
SKEW LINES AND INCONSISTENT EQUATIONS: Equating the components of skew lines

yields a set of inconsistent simultaneous equations.

Exercise 5F

Note: Throughout this exercise λ and µ are real parameters.

1. A line ` passes through the point (−1, 3) and has direction vector 2i
˜
− j

˜
.

(a) Sketch the line.

(b) Write down a vector equation for the line.

(c) What is the gradient of the line?

(d) What is the Cartesian equation of the line?

2. A line has Cartesian equation y = 2
3
x − 4.

(a) Find the position vector of the point on the line where x = 3.

(b) Use the gradient of the line to find a direction vector for the line.

(c) Hence write down a vector equation of the line.
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3. (a) Consider the line with equation x − 3y + 12 = 0.

(i) Use Box 18 to write down a direction vector for this line.

(ii) Write down the position vector of an intercept.

(iii) Hence write down the vector equation of the line.

(b) Follow the same method to find the vector equation of these lines.

(i) x + 3y = 6 (ii) y = 3 (iii) x = −5

4. By eliminating λ from a pair of parametric equations, find the Cartesian equation of each
line.

(a)

[
x

y

]
=

[
−3
5

]
+ λ

[
1
4

]
(b) r

˜
= 5i

˜
+ 2j

˜
+ λ(−2i

˜
+ 3j

˜
)

5. Determine whether or not each point lies on the line r
˜

=

[
−4
2

]
+ λ

[
3
−5

]
.

(a) (2,−8) (b) (−13, 17) (c) (8,−20)

6. Write down a vector equation for the line that:

(a) passes through the point (7, 0,−5) and is parallel to the vector −4i
˜
− 6j

˜
+ 9k

˜
,

(b) passes through the point (3, 4, 5) and has direction vector



−6
−7
−8


.

7. Write down a vector equation for the line that:

(a) passes through the point (3,−2,−4) and is parallel to the line

r
˜

= 2i
˜
− 2j

˜
+ k

˜
+ λ(5i

˜
− 3j

˜
− k

˜
),

(b) passes through the point (−1,−1, 2) and is parallel to the line

r
˜

= 1
3
i
˜
− 1

3
j
˜
− k

˜
+ λ(1

6
i
˜

+ 1
3
j
˜

+ 1
2
k
˜
).

8. Determine whether or not each point lies on the line r
˜

=




4
−7
−1


 + λ



−2
3
−6


.

(a) (8,−13, 11) (b) (−4, 5,−25)

D E V E L O P M E N T

9. (a) Consider the line with Cartesian equation x + 2y − 4 = 0.

(i) Write down a direction vector for this line.

(ii) Thus write down a direction vector which is perpendicular to this.

(iii) Hence write down the vector equation of the perpendicular line through (2,−3).

(b) Likewise find the vector equation of the line perpendicular to x − y + 3 = 0 which
passes through (1,−2)

10. Given r
˜

=

[
x

y

]
, a
˜

=

[
x1

y1

]
and b

˜
=

[
1
m

]
, show that the vector equation r

˜
= a

˜
+ λb

˜
is

equivalent to the point–gradient formula y − y1 = m(x − x1).

11. Find a vector equation for the line AB given:

(a) A(4, 3) and B(6, 0) (b) A(−7, 5) and B(−13,−8)

.
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5F The Vector Equation of a Line 203

12. Find a vector equation for the line PQ given:

(a) P (−1, 3, 1) and Q(2, 4, 5) (b) P (7,−11, 14) and Q(17, 9,−16)

13. Find the parametric vector equation of the interval AB where:

(a) A = (1,−2), B = (5, 4) (b) A = (−1, 1,−2), B = (2, 3,−1)

14. Show that the lines r
˜

=



−4
3
−1


 + λ




6
−15
−24


 and r

˜
= 2i

˜
− 5j

˜
− 4k

˜
+ λ(−4i

˜
+ 10j

˜
+ 16k

˜
)

are parallel.

15. Find the point of intersection of each pair of lines.

(a) r
˜

=




4
8
3


 + λ




1
2
1


 and r

˜
=




7
6
5


 + µ




6
4
5




(b) r
˜

=




7
−3
8


 + λ




4
−1
2


 and r

˜
=



−2
1
10


 + µ




5
−3
−4




16. Show that the lines r
˜1 = i

˜
− k

˜
+ λ(2i

˜
− j

˜
+ k

˜
) and r

˜2 = i
˜
+ j

˜
+ µ(−4i

˜
+ 3j

˜
− 3k

˜
) are skew.

(You must show that they are not parallel and do not intersect.)

17. In each case either show that the given lines are skew or find their point of intersection.

(a) v
˜1 =




3
−2
3


 + λ




2
−1
1


 and v

˜2 =



−2
−2
4


 + µ




1
2
−3




(b) v
˜1 =




3
1
4


 + λ




2
1
−1


 and v

˜2 =




2
−1
1


 + µ



−1
2
3




18. The line `1 passes through the points (2, 0, 1) and (−1, 3, 4), while the line `2 passes
through (−1, 3, 0) and (4,−2, 5).

(a) Find the point of intersection of `1 and `2.

(b) Find, to the nearest tenth of a degree, the acute angle between `1 and `2.

19. Find the value of a for which the lines r
˜

= 2i
˜

+ 9j
˜

+ 13k
˜

+ λ(i
˜
+ 2j

˜
+ 3k

˜
)

and r
˜

= ai
˜

+ 7j
˜
− 2k

˜
+ µ(−i

˜
+ 2j

˜
− 3k

˜
) intersect.

20. Consider the line with vector equation r
˜

=

[
0
−4

]
+λ

[
1
2

]
, and let P be the point (−2, 3).

(a) Write down the coordinates of any two points A and B on the line.

(b) Find
−→
AP and

−−→
AB.

(c) Find projb
˜
p
˜
, where

−→
AP = p

˜
and

−−→
AB = b

˜
.

(d) Find the perpendicular distance d from P to the given line using d =
∣∣∣projb

˜
p
˜
− p

˜

∣∣∣.

21. Repeat the previous question for the point P (1,−1, 1) and the line r
˜

=



−1
1
0


 + λ




1
0
2


.

.
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22. Consider the lines v
˜1 =




2
1
−2


 + λ




1
−2
3


 and v

˜2 =




1
−2
1


 + µ




1
−2
3




(a) Explain why the lines are parallel.

(b) Write down the position vector of a point on v
˜2.

(c) Use the method in Question 20 to find the distance between these parallel lines.

23. Suppose that a
˜

= −i
˜
− 2j

˜
, b
˜

= 3i
˜

+ 2j
˜

and c
˜

= 2i
˜

+ 3j
˜
, and let A, B, C and D be the

points in the Cartesian plane with respective position vectors a
˜
, a
˜

+ b
˜
, a
˜

+ b
˜
+ c

˜
and a

˜
+ c

˜
.

(a) Show that ABCD is a rhombus.

(b) Find vector equations for the bisectors of angles DAB and ABC.

24. Suppose that the points A, B, C and D have respective position vectors




0
1
2


,



−1
−1
0


,




4
0
1


 and




3
1
2


 relative to an origin O, and M is the midpoint of AC.

(a) Find the position vector of M .

(b) Find a vector equation for the line BD.

(c) Show that M lies on the line BD.

(d) Find the ratio BM : MD.

25. The points A and B have position vectors a
˜

and b
˜

respectively. Describe the part of the
line AB that is represented by the vector equation r

˜
= a

˜
+ λ(b

˜
− a

˜
) if:

(a) 0 ≤ λ ≤ 1 (b) λ ≥ 1 (c) λ ≤ 0

E N R I C H M E N T

26. A line ` has vector equation r
˜

=



−2
1
2


 + λ




1
0
−1


, P is a variable point on ` and A is

the point (1, 1, 1).

(a) Find |−→AP | in terms of λ.

(b) Hence find the minimum distance from A to `.

(c) Show that the minimum distance found in (b) is the perpendicular distance.

(d) Repeat (b), this time using the dot product of
−→
AP and the direction vector of `.

(e) Repeat (b) yet again, this time by choosing a point B on ` and finding the length of
the projection of BA onto `.

5G Vector Equations of Circles, Spheres and Planes

Circles in Two Dimensions: The equation of a circle in two dimensions is most
easily found by using the geometric definition. Thus, the variable point V with
position vector v

˜
will lie on the circle with radius r and centre the origin if

∣∣v
˜
∣∣ = r .

Notice that this equation is consistent with the equation of a circle in the Argand
diagram, viz |z| = r. This is hardly surprising, since vectors have already been
used in conjunction with complex numbers in an earlier chapter.

.
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WORKED EXAMPLE 31: Determine the point on the circle with centre the origin
and radius 2 which is closest to the line 2x + 4y − 15 = 0.

2

-2

2-2 x

y
3
43

P

SOLUTION: From the diagram on the right, the point P

lies in the first quadrant, and lies on the line through the
origin perpendicular to the given line.

By Box 18, a direction vector of the given line is

[
−4
2

]
.

Hence by Box 22 a perpendicular vector is

[
2
4

]
.

The corresponding unit vector is
1√
20

[
2
4

]
.

Double this to get
−−→
OP =

2√
20

[
2
4

]
with radius 2.

Hence the required point is P =
(

2√
5
, 4√

5

)
.

Circles with Other Centres: Now suppose that the circle
∣∣v
˜
∣∣ = r is shifted so that

the centre is at C with position vector c
˜
. Then, from the shifting results,

∣∣v
˜
− c

˜
∣∣ = r .

Once again, the equation is consistent with |z − α| = r, which is a circle with
centre α in the Argand diagram.

WORKED EXAMPLE 32: The line v
˜

=

[
2
1

]
+ λ

[
1
2

]
intersects the circle with

centre c
˜

=

[
1
−2

]
and radius 3 at P and Q. The midpoint of chord PQ is M .

Find the coordinates of M .

SOLUTION: The equation of the circle is
∣∣v
˜
− c

˜
∣∣ = 3. Solving simultaneously with

the equation of the line gives
∣∣∣∣
[

1
3

]
+ λ

[
1
2

]∣∣∣∣
2

= 32

so (1 + λ)2 + (3 + 2λ)2 = 9 .

Expanding brackets and collecting terms:

5λ2 + 14λ + 1 = 0 .

Then P and Q correspond to the roots of this equation.

The midpoint corresponds to the average of the roots, which is

λ = 1
2
× −14

5

= −7
5 .

Hence the midpoint has position vector

m
˜

=

[
2
1

]
− 7

5

[
1
2

]

and so M =
(

3
5
,−9

5

)

.
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24

CIRCLES IN TWO DIMENSIONS: Let v
˜

be the position vector of a variable point on the

circle with centre c
˜

and radius r. Then
∣∣v
˜
− c

˜
∣∣ = r .

Spheres: The form of the vector equation of a sphere is identical to that of a circle
in two dimensions. Thus the sphere with centre the origin and radius r is

∣∣v
˜
∣∣ = r .

Likewise, the sphere with centre c
˜

is
∣∣v
˜
− c

˜
∣∣ = r ,

where, of course, each vector has three components since the situation is now
three dimensional.

WORKED EXAMPLE 33: Find the cartesian equation of the sphere with centre
c
˜

= −i
˜
− j

˜
− k

˜
which passes through a

˜
= 2i

˜
+ 1j

˜
+ 5k

˜
.

SOLUTION: The radius is given by

r2 =
∣∣a
˜
− c

˜
∣∣2

= 32 + 22 + 62

= 49.

The equation of the sphere is
∣∣v
˜
− c

˜
∣∣2 = r2, so in Cartesian form this gives

(x + 1)2 + (y + 1)2 + (z + 1)2 = 49

25

SPHERES: In three dimensions, let v
˜

be the position vector of a variable point on

the sphere with centre c
˜

and radius r. Then
∣∣v
˜
− c

˜
∣∣ = r .

Circles and Parameters: Consider the vector equation

v
˜

= c
˜

+ a
˜

cos θ + b
˜
sin θ

where |a
˜
| = |b

˜
| = r and a

˜
·b
˜

= 0. This is the parametric vector equation of a circle
with centre c

˜
and radius r. The form of the equation is the same in both two and

three dimensions. In the simplest case, a
˜

= i
˜

and b
˜

= j
˜

in two dimensions.

WORKED EXAMPLE 34: Find the Cartesian equation of the curve with vector
equation v

˜
= (i

˜
+ 2j

˜
) + i

˜
cos θ + j

˜
sin θ.

SOLUTION: First rewrite the equation as
∣∣v
˜
− i

˜
− 2j

˜

∣∣ =
∣∣i
˜
cos θ + j

˜
sin θ

∣∣

so (x− 1)2 + (y − 2)2 = cos2 θ + sin2 θ

that is (x− 1)2 + (y − 2)2 = 1 .

.
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26

CIRCLES AND PARAMETERS: Let |a
˜
| = |b

˜
| = r and a

˜
· b
˜

= 0. Then

v
˜

= c
˜

+ a
˜

cos θ + b
˜
sin θ

is the parametric vector equation of a circle with centre c
˜

and radius r.

The proof that the equation represents a circle is easy in two dimensions.

v
˜
− c

˜
= a

˜
cos θ + b

˜
sin θ

thus
∣∣v
˜
− c

˜
∣∣2 =

∣∣a
˜

cos θ + b
˜

sin θ
∣∣2

= (a
˜

cos θ + b
˜

sin θ) · (a
˜

cos θ + b
˜

sin θ)

= |a
˜
|2 cos2 θ + 2a

˜
· b
˜
cos θ sin θ + |b

˜
|2 sin2 θ

= |a
˜
|2 cos2 θ + |b

˜
|2 sin2 θ (since a

˜
· b
˜

= 0)

= r2(cos2 θ + sin2 θ) (since |a
˜
| = |b

˜
| = r)

hence
∣∣v
˜
− c

˜
∣∣2 = r2 .

That is
∣∣v
˜
− c

˜
∣∣ = r ,

which is the equation of a circle in two dimensions.

Putting θ = 0 in this equation gives v
˜

= c
˜

+ a
˜
, and when θ = π

2 the equation
becomes v

˜
= c

˜
+ b

˜
. Thus as θ increase, the variable point with position vector

v
˜

rotates around the circle with the same orientation as the angle from a
˜

to b
˜
.

In Worked Example 34, i
˜

to j
˜

is anticlockwise, so the circle is traversed in an

anticlockwise direction, starting at (2, 2) when θ = 0.

WORKED EXAMPLE 35: Consider the vector equation v
˜

= c
˜

+ a
˜

cos θ + b
˜
sin θ

where a
˜

=

[
1
−1

]
, b
˜

=

[
−1
−1

]
and c

˜
=

[
0
2

]
.

(a) Show that this is a circle by finding its Cartesian equation.

(b) Where on the circle is θ = 0 and in which direction is the circle traversed as
θ increases?

SOLUTION:

(a) Once again, use the vector magnitudes to solve this:
∣∣∣∣∣

[
x

y

]
−

[
0
2

]∣∣∣∣∣

2

=

∣∣∣∣∣

[
1
−1

]
cos θ +

[
−1
−1

]
sin θ

∣∣∣∣∣

2

so x2 + (y − 2)2 = (cos θ − sin θ)2 + (− cos θ − sin θ)2

= cos2 θ − 2 cosθ sin θ + sin2 θ

+ cos2 θ + 2 cos θ sin θ + sin2 θ

= 2(cos2 θ + sin2 θ)

that is x2 + (y − 2)2 = 2 .

This is the equation of a circle with centre (0, 2)

and radius
√

2.

2
1

1-1 x

y

q = 0q = p
2

(b) When θ = 0, v
˜

=

[
1
1

]
and

when θ = π

2 , v
˜

=

[
−1
1

]
,

so the circle is being traversed clockwise, as seen in
the diagram on the right.

.
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Other Parametric Curves: The parametric vector equation of a circle is one of a
myriad of useful curves defined using vectors. Vector equations are often easier
to apply in three dimensions because the corresponding Cartesian equations are
too complicated or cannot easily be found. The spiral used in the diagram at the
beginning of the chapter to demonstrate right-handed coordinate systems is such
an example. Its vector equation is




x

y

z


 =




2 cos θ

2 sin θ
1
2π

θ


 for 0 ≤ θ ≤ 6π .

In contrast, curves in two dimensions can often be written in Cartesian form by
solving the simultaneous equations formed from the components of the vector
equation. When those equations involve trigonometric functions, the solution is
often found using various trigonometric identities, like the circle above.

An amazing application of parameters is a Bezier curve . This is truly modern
mathematics, being developed independently by mathematicians at two French
car manufacturers in 1959 and 1960. Originally developed for technical drawings
of automotive parts, they are now extensively used in many other applications,
particularly those involving computer graphics. The curves are remarkably simple
to construct, being based on the ratio division of intervals.

The following worked example uses a simple quadratic Bezier curve. Given three
points in vector form, the Bezier curve joins the first and last with a smooth
curve by cleverly using the middle point. In this case, the curve is a parabola.

WORKED EXAMPLE 36: Let a
˜0 =

[
−1
0

]
, a
˜1 =

[
(1
2)
3

]
and a

˜2 =

[
2

(3
2
)

]
.

(a) Find vector equations of the point B0 which divides A0A1 in the ratio t : 1−t,
and the point B1 which divides A1A2 in the same ratio.

(b) Hence find the vector equation of the point P which divides B0B1 in the
ratio t : 1− t, for 0 ≤ t ≤ 1.

(c) Show that P = A0 when t = 0, and that P = A1 when t = 1.

(d) Find the Cartesian equation of P .

SOLUTION:

(a) Using the formula in Box 6:

b
˜0 = (1− t)a

˜0 + ta
˜1

b
˜1 = (1− t)a

˜1 + ta
˜2

(b) Likewise:

p
˜

= (1 − t)b
˜0 + tb

˜1

= (1 − t)2a
˜0 + (1 − t)ta

˜1

+ t(1 − t)a
˜1 + t2a

˜2

that is p
˜

= (1 − t)2a
˜0 + 2(1− t)ta

˜1 + t2a
˜2 for 0 ≤ t ≤ 1 .

This is the quadratic Bezier Curve from A0 to A2 using A1.

(c) At t = 0, the second and third terms are clearly zero, leaving p
˜

= a
˜0.

At t = 1, the first and second terms are clearly zero, leaving p
˜

= a
˜1.

.
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3
2

3-1 x

y

A
0

A
2

A
1

(d) First write the vector equation in component form.[
x

y

]
= (1 − t)2

[
−1
0

]
+ 2(1− t)t

[
(1
2)
3

]
+ t2

[
2

(3
2
)

]

Now writing out the components as simultaneous equations:

x = −(1 − t)2 + (1 − t)t + 2t2

y = 6(1− t)t + 3
2t2 .

Expanding and simplifying these equations gives:

x = 3t − 1

2y = 12t − 9t2

= 3t(4 − 3t)

so 2y = (x + 1)(4− (x + 1)) (from A0 to A2)

that is y = 1
2(x + 1)(3− x) for − 1 ≤ x ≤ 2 .

The curve is shown as the solid curve on the right between A0 and A2. The
dashed part of the curve shows the rest of the parabola. Notice that the
intervals A0A1 and A1A2 are tangent to the parabola. This is always the
case with a quadratic Bezier curve.

Extension — Planes: The parametric vector equation of a circle in Box 26 has two
direction vectors and one parameter. Although the circle lies in a plane, only
the points on the circle can be obtained using that parameter. In order to reach
all points in a plane, two parameters are needed. A familiar example in three
dimensions is the xy-plane. Every point in the plane can be reached using

v
˜

= xi
˜

+ yj
˜

.

In this case, the parameters are the coordinates x and y, and the direction vectors
are the standard basis vectors i

˜
and j

˜
.

In general, let O be the origin and let A and B be two other points with position
vectors a

˜
and b

˜
respectively, and where a

˜
6= λb

˜
. That is, a

˜
and b

˜
are not parallel.

There is only one plane which passes through these three points, and the vectors
a
˜

and b
˜

lie in that plane. Although it will not be proven in this course, the
position vector of every point in this plane through the origin can be written as

v
˜

= λa
˜

+ µb
˜
.

One way to think of this is that λ and µ give the coordinates of each point for
the non-standard basis vectors a

˜
and b

˜
.

WORKED EXAMPLE 37: The point (3, 2, 1) lies in the plane through the origin
with equation




x

y

z


 = λ




1
1
1


 + µ




1
2
3


 .

Find the value of λ and µ.

SOLUTION: The component parametric equations are:

3 = λ + µ

2 = λ + 2µ

1 = λ + 3µ

It should be clear that λ = 4 and µ = −1.

.
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210 CHAPTER 5: Vectors 5G

Now shift the plane v
˜

= λa
˜

+ µb
˜

so that it passes through the point P with
position vector p

˜
, and so that it remains parallel with the direction vectors a

˜
and b

˜
. Then applying shifting results gives the new equation

v
˜
− p

˜
= λa

˜
+ µb

˜
.

This is more commonly written as

v
˜

= p
˜

+ λa
˜

+ µb
˜

.

WORKED EXAMPLE 38: A plane passes through the points A(1, 2, 1), B(−1, 0, 1)
and C(0,−1, 2). Find its equation:

(a) in vector form, (b) in Cartesian form.

SOLUTION:

(a) Two direction vectors for the plane are

−−→
BA =




2
2
0


 and

−−→
BC =




1
−1
1




thus, using point A, the equation of the plane is


x

y

z


 =




1
2
1


 + λ




2
2
0


 + µ




1
−1
1




(b) The component equations are

x = 1 + 2λ + µ [1]

y = 2 + 2λ − µ [2]

z = 1 + µ [3]

Now take [1]− [3] and [2] + [3] to get

x − z = 2λ

y + z = 3 + 2λ

hence y + z = 3 + x − z

or x − y − 2z = −3 .

27

PLANES: Let a
˜
6= kb

˜
. That is, a

˜
and b

˜
are not parallel. The parametric vector

equation of a plane through the point P with position vector p
˜

and parallel

with the vectors a
˜

and b
˜

is

v
˜

= p
˜

+ λa
˜

+ µb
˜

.

Exercise 5G

Note: Throughout this exercise λ and µ are real parameters.

1. A circle has centre (6,−9) and radius 2
√

7. Write down:

(a) a Cartesian equation for the circle,

(b) a vector equation for the circle,

(c) a pair of parametric equations for the circle.

.
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2. A sphere has centre (−2, 7,−4) and radius 9. Write down:

(a) a Cartesian equation for the sphere,

(b) a vector equation for the sphere.

3. Write down a Cartesian equation for:

(a) the circle

∣∣∣∣∣r˜
−

[
−5
−10

]∣∣∣∣∣ = 3
√

5 , (b) the sphere

∣∣∣∣∣∣∣
r
˜
−




3
−1
8




∣∣∣∣∣∣∣
= 11.

4. Write down a vector equation and a Cartesian equation for the circle with parametric
equations x = 5 + 2

√
2 cos θ and y = −3 + 2

√
2 sin θ for 0 ≤ θ < 2π.

5. Find a vector equation for:

(a) the circle x2 + y2 − 6x + 8y = 0, (b) the sphere x2 +y2 +z2 +x−2y−5z = 0.

6. Show that the point P (8,−5, 2) lies on the surface of the sphere

∣∣∣∣∣∣∣
r
˜
−




5
−3
−4




∣∣∣∣∣∣∣
= 7.

7. Determine whether A(−4,−5, 6) lies inside or outside the sphere

∣∣∣∣∣∣∣
r
˜
−



−2
4
−1




∣∣∣∣∣∣∣
= 3

√
15.

8. A sphere has vector equation
(
r
˜
− (2i

˜
+ j

˜
− k

˜
)
)
·
(
r
˜
− (2i

˜
+ j

˜
− k

˜
)
)

= 20. Write down the

centre and radius of the sphere.

9. A circle has vector equation r
˜
(t) = (2 cos t + 1)i

˜
+ (2 sin t − 1)j

˜
.

(a) Write down a pair of parametric equations for the circle.

(b) Eliminate the parameter to find the Cartesian equation of the circle.

D E V E L O P M E N T

10. A function is defined by the vector equation r
˜
(t) = (t − 2)i

˜
+ (t2 − 2)j

˜
, for t ≥ 0.

(a) Find the Cartesian equation of the function.

(b) Hence state the domain of the function.

(c) Sketch the graph of the function.

11. Suppose that the point A has position vector a
˜

= 3i
˜
− j

˜
.

(a) Write down a vector equation for the circle passing through A with centre at the
origin.

(b) Explain why the tangent to the circle at A has vector equation
(
r
˜
−(3i

˜
−j

˜
)
)
·(3i

˜
−j

˜
) = 0.

(c) Hence find the Cartesian equation of the tangent.

12. A line has equation r
˜

=

[
1
−1

]
+ λ

[
3
2

]
and a circle has equation

∣∣∣∣∣r˜
−

[
1
−1

]∣∣∣∣∣ =
√

13.

(a) Write down a pair of parametric equations representing the line.

(b) Hence find the points of intersection of the line and the circle.

13. Two spheres have equations

∣∣∣∣∣∣∣
r
˜
−




5
−6
3




∣∣∣∣∣∣∣
= 7 and

∣∣∣∣∣∣∣
r
˜
−



−3
2
7




∣∣∣∣∣∣∣
= 5. Show that the spheres

touch each other at a single point.

.
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212 CHAPTER 5: Vectors 5G

14. Two spheres have equations |r
˜
| = 3 and

∣∣∣∣∣∣∣
r
˜
−




0
0
5




∣∣∣∣∣∣∣
= 4.

(a) Explain why the circle of intersection of the two spheres is parallel to the xy-plane.

(b) Determine the centre and radius of the circle of intersection.

15. A line ` and a sphere S have equations r
˜

=



−3
16
−9


 + λ




7
−12
3




and (x− 3)2 + (y + 4)2 + (z + 2)2 = 81 respectively. Find the points where ` intersects S.

16. A line has vector equation r
˜

=



−2
3
4


 + λ




3
4
5


.

(a) Write down a set of three parametric equations representing the line.

(b) Hence determine the point of intersection of the line and the plane 2x + 4y − z = 55.

17. Find the Cartesian equation corresponding to each of the following vector equations.

(a) r
˜
(t) = 1

2

(
et + e−t

)
i
˜
+ 1

2

(
et − e−t

)
j
˜

(b) r
˜
(t) = (2 sin t)i

˜
+ (2 sin t tan t)j

˜
E N R I C H M E N T

18. The vector equation of a plane has the form r
˜

= a
˜

+λb
˜
+µc

˜
, where a

˜
is the position vector

of a point in the plane, and b
˜

and c
˜

are non-parallel direction vectors (that is, non-parallel
vectors that are both parallel to the plane).
Suppose that a plane P passes through the points A(1,−1, 0), B(2, 3, 1) and C(3, 4,−2).

(a) Find a vector equation for P .

(b) Find the Cartesian equation of P .

19. Show that the vector ai
˜
+bj

˜
+ck

˜
is perpendicular to the plane ax+by+cz = d by showing

that it is perpendicular to two non-parallel direction vectors of the plane.

20. Sketch the curve defined parametrically by the vector equation:

(a) r
˜
(t) = (t − 2 sin t)i

˜
+ t2j

˜
(b) r

˜
(t) = (3 cos t)i

˜
+ (3 sin t)j

˜
+ tk

˜

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



5H Chapter Review Exercise 213

5H Chapter Review Exercise

Exercise 5H

Note: Throughout this exercise λ and µ are real parameters.

1. Find the length of a
˜

and a unit vector in the direction of a
˜

given a
˜

= 6i
˜
− 3j

˜
+ 2k

˜
2. The points A and B have position vectors 3i

˜
− j

˜
−6k

˜
and −2i

˜
−5j

˜
+k

˜
respectively. Find:

(a)
−−→
AB (b)

−−→
BA (c) the distance AB

3. Show that
−−→
AB and

−−→
CD are parallel for the points A(6, 12, 7), B(10, 2,−15), C(−4, 1, 5)

and D(−2,−4,−6).

4. Use vectors to show that the points A(2, 3,−1), B(5,−1, 1) and C(−4, 11,−5) are collinear.

5. Given a
˜

=




4
−3
5


 and b

˜
=




6
2
−2


, find:

(a) a
˜
· a
˜

(b) b
˜
· b
˜

(c) a
˜
· b
˜

(d) (a
˜

+ b
˜
) · (a

˜
+ b

˜
)

6. The points A, B, C and D have position vectors



−1
4
5


,




1
0
2


,



−2
1
−3


 and




3
2
−1


 respec-

tively. Show that
−−→
AB and

−−→
CD are perpendicular.

7. Find the value of λ for which a
˜

= (λ + 4)i
˜

+ 2j
˜

+ 4k
˜

and b
˜

= 2i
˜

+ (λ − 4)j
˜

+ k
˜

are

perpendicular.

8. Find the exact value of cos θ, where θ is the acute angle between the vectors

a
˜

=



−2
−3
2


 and b

˜
=




1
−2
1


.

9. Find the projection of a
˜

onto b
˜

given a
˜

= 2i
˜

+ j
˜
− 3k

˜
and b

˜
= 4i

˜
− 3j

˜
− 2k

˜
.

10. Let P , A and B be the points (2, 3, 1), (1, 0,−2) and (0,−1, 1) respectively.

(a) Find
−→
AP and

−−→
AB.

(b) Find projb
˜
p
˜
, where

−→
AP = p

˜
and

−−→
AB = b

˜
.

(c) Find the perpendicular distance d from P to the line AB using d =
∣∣∣proj

b

˜
p
˜
− p

˜

∣∣∣.

11. 4XY Z has vertices X(−5, 7, 3), Y (5,−2, 6) and Z(3,−5,−4). Use the scalar product to
find 6 XY Z correct to the nearest degree.

12. Use vectors to prove each of these theorems.

(a) The midpoints of the sides of a rhombus are the vertices of a rectangle.

(b) The midpoints of the sides of a rectangle are the vertices of a rhombus.

13. Write the linear equation y = 2x + 3 in parametric vector form by letting x = λ.

14. Find the Cartesian equation of the line r
˜

= 2i
˜
− 4j

˜
+ λ(3i

˜
+ j

˜
).

15. A line ` has vector equation r
˜

= −6i
˜

+ 4j
˜

+ 3k
˜

+ λ(2i
˜

+ j
˜
− 2k

˜
). Find the points of

intersection of ` with the yz, xz and xy planes.

.
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214 CHAPTER 5: Vectors 5H

16. Determine whether or not each point lies on the line r
˜

=




6
−4
−3


 + λ



−5
2
7


.

(a) (−4, 0, 13) (b) (16,−8,−17)

17. Find a parametric vector equation for the line PQ given P (1, 1,−1) and Q(2,−1, 2).

18. Find the point of intersection of each pair of lines.

(a) r
˜

=




6
5
3


 + λ




2
1
4


 and r

˜
=



−3
7
2


 + µ




5
−4
−7




(b) r
˜

= −7i
˜
− 1j

˜
+ 7k

˜
+ λ(2i

˜
+ 3j

˜
− 4k

˜
) and r

˜
= 9i

˜
− 4j

˜
− 16k

˜
+ λ(4i

˜
− 3j

˜
− 5k

˜
)

19. A sphere has centre (3,−4, 2) and radius
√

7. Write down:

(a) a Cartesian equation for the sphere,

(b) a vector equation for the sphere.

20. Show that the point P (5,−1, 4) lies outside the sphere

∣∣∣∣∣∣∣
r
˜
−




2
3
−1




∣∣∣∣∣∣∣
= 7.

21. Find a vector equation for the sphere x2 + y2 + z2 − 4x − 10y + 12z + 41 = 0.

22. Find the points of intersection of the line r
˜

= 4i
˜
− 5j

˜
+ k

˜
+ λ(2i

˜
+ 13j

˜
− 11k

˜
) and the

sphere (x + 2)2 + (y − 3)2 + (z + 4)2 = 125.

23. Find the Cartesian equation corresponding to each of the following vector equations.

(a) r
˜
(t) = (2t) i

˜
+

(
2

1 + t2

)
j
˜

(b) r
˜
(t) =

(
2t

1 + t2

)
i
˜

+

(
1 − t2

1 + t2

)
j
˜

(c) r
˜
(t) = (sin t) i

˜
+ (sin 2t) j

˜

.
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Appendix: Some Geometry in 3D

The three fundamental objects of geometry are points, lines and planes. Because
they are so fundamental, it is difficult to give precise definitions of them, just as
it is difficult to define precisely what a number is. The following descriptions of
points, lines and planes don’t really say what they are, but will enable discussions
about them with some agreement about what is meant.

P Q

Point: A point marks a position. As it is a location, it has
no size. In diagrams, points are marked with a dot or
cross-hair, like those on the right. Italic capital letters
are used to label points.

l

Line: A line has no breadth, but extends infinitely in opposite
directions. In diagrams, lines are drawn with a ruler, like
the one on the right. Italic lower case letters are used to
label lines.

The word line always means straight line, and does not include curves. A line
can also be thought of as the path of a point moving in a fixed direction, like the
path of a thin beam of light. It is assumed that a straight line is the shortest
path between two points.

Plane: A plane has no thickness, but extends infinitely in all
directions. In diagrams, a plane is drawn as though it is a
sheet of paper shown in perspective, like on the right. In
this text, a region within a plane will usually be labelled
by its vertices.

In the same way that a line is the path traced by a point moving in a fixed
direction, a plane is the path traced by the line moving in a second fixed direction.
A practical example is the edge of a ruler, representing the line, as it is dragged
across a desk, representing the plane that is traced out.

The word plane always means flat plane, and does not include curved surfaces
like cylinders, cones or spheres. A line joining any two distinct points in a plane
lies entirely within it.

A
B

C

Defining a Plane: It will be assumed that there is only one
plane which passes through three distinct fixed points.
The three points are said to define the plane . It is why
a tripod never wobbles, regardless of how uneven the
ground it is placed on.

A

B

C
Now consider the line AB and the point C. Since the
same three points have been used, it is clear that there is
only one plane which passes through a line and a point
which is not on the line. Thus a plane can also be defined
in this way.

A

B
C

Further, consider the two lines AB and AC. Since the
same three points have been used, it is clear that there
is only one plane which passes through two lines that
intersect in a single point. Thus a plane can also be
defined in this way.

.
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216 CHAPTER 5: Vectors 5I

A

B
C

Finally consider the line AB and the line parallel with
AB through C. Once again, the same three points have
been used so it is clear that there is only one plane which
passes through two parallel lines. Thus a plane can also
be defined in this way.

Arrangements of Lines in a Plane: There are precisely two arrangements of lines
in planes. Either they are parallel or they intersect. This is demonstrated in
the diagrams above for the last two ways to define a plane. There are four
arrangements when there are three lines, and these are shown below.

Arrangements of Planes in Space: There is a similar arrangement of planes in
space corresponding to each of the arrangements of lines in a plane. Two planes
in space can either be parallel or intersect in a line, as shown below.

And here are the arrangements of three planes in space corresponding to the
arrangements shown above of three lines in a plane.

In addition, three planes in space can also intersect at a
point, as shown on the right. This diagram shows the
special case when each plane is at right angles to the
other two. Three planes in space intersecting at a point
do not have to be at right angles to each other. A simple
example is a tetrahedron, where pairs of triangular faces
are at 71◦ to each other, yet each group of three meets
at a common vertex.

.
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Arrangements of Two Lines in Space: As noted above, if two distinct lines are
parallel then they define a plane, and two lines which intersect in a point also
define a plane. There is a third possible configuration of two lines in space where
neither are the lines parallel nor do they intersect.

Consider two parallel planes. For any line drawn in one
plane, it is always possible to draw a line in the other
which is not parallel with the given line. An example
of the situation is shown on the right. Pairs of lines like
these which are not parallel and do not intersect are called
skew lines .

A

B

C

DOnce again, a tetrahedron provides a practical example of
the situation. The opposite edges AB and CD are clearly
not parallel and clearly do not intersect, and hence they
are skew lines. As an exercise, try to identify any pair
of parallel lines, each pair of intersecting lines, and each
pair of skew lines. Then extend the exercise to each of
the Platonic solids.

There is much more that could be said about geometry in three dimensions.
What has been included here are the essential concepts and configurations that
are likely needed in the study of points, lines and planes through vectors.

.
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6

Mechanics

Chapter Overview: Some practical applications of calculus in mechanics are
considered in this chapter. Simple mathematical models enable solutions to be
found in terms of the familiar functions of this course.

Problems later in the chapter require some knowledge of Newton’s laws of motion,
and that acceleration be written as a function of x. Preparation for that is done
in Section 6A. Next, simple harmonic motion is presented, firstly in terms of time
in Section 6B, and then in terms of displacement in Section 6C.

The work in Sections 6D and 6E takes the first step in making the theory of
motion more realistic by introducing a resistive force. Horizontal motion with
friction, and vertical motion in a resisting medium with constant gravity are
considered. In the following section, projectile motion is first reviewed and then
extended to include a resistive force proportional to the velocity, based on the
work done in 6E. The chapter concludes with a collection of various problems
which either extend the theory learnt to new situations or are harder examples
of applications of that theory. One specific example investigated is the simple
harmonic motion approximation for a pendulum.

6A Forces and Acceleration

In the problems encountered in this chapter, the equations of motion are either
specified explicitly or given indirectly, such as by a balance of forces. Whilst this
is not a course in physics, a basic understanding of the laws of motion is required.

Some Assumptions: A significant simplification is the assumption that an object
may be represented by a point mass, often called a particle. If the scale of the
motion is large compared with the object, such as in the case of a ball bearing
thrown 5m, then this assumption is reasonable. A second significant assumption
is that air is an ideal fluid and is not particulate in nature. At low to medium
speeds this is a satisfactory assumption.

A third assumption is that the forces due to the orbit of the earth around the
sun and due to the rotation of the earth on its axis are negligible in the problems
being considered. By way of example, in the problem of projectile motion without
air resistance, the acceleration due to gravity at the surface of the earth is about
9·8m/s2. The acceleration due to the orbit of the earth is about 6 × 10−4 m/s2,
and at the equator the acceleration due to the rotation of the earth is about
0·034m/s2. Thus this third assumption seems reasonable.
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6A Forces and Acceleration 219

Newton’s Laws of Motion: The equations of motion encountered in this course
are all derived from Sir Isaac Newton’s laws of motion, contained in his book
Principia, published in 1687. It is written in Latin, the scientific language of the
day. An early translation of the laws is as follows:

Law I Every body continues in its state of rest or of uniform motion in a
straight line except in so far as it be compelled by impressed force
to change that state.

Law II The rate of change of momentum is proportional to the impressed
force and takes place in the direction in which the force acts.

Law III To every action there is an equal and opposite reaction.

In the second law, momentum is defined to be mv, the product of mass with
velocity. The standard units used are kilograms, metres and seconds. The unit
of force is called the newton, with 1 N = 1 kgm s−2. If these SI units are used
then, in the second law, the constant of proportionality is 1. Thus

F =
d

dt
(mv) ,

and if the mass is constant then

F = ma where a = v̇ .

If other units are used then these equations must be appropriately modified.

It may seem strange to state that the mass is constant, but in many cases the
mass is certainly not constant, such as a rocket as its fuel is burnt. In this course,
however, the mass is always assumed to be constant.

1

NEWTON’S SECOND LAW OF MOTION: When a force F newtons is applied to a constant

mass mkg, which is free to move, the resulting acceleration is a ms−2, where

F = ma

In many situations it is simply a matter of integrating the force equation in order
to find the other details of the motion.

WORKED EXAMPLE 1: A body of mass 4 kg is acted upon by a variable force
F = 48(5 − t) newtons for 5 seconds. If the body starts from rest at x = 0 then
what is its final velocity and how far has it travelled?

SOLUTION: From Newton’s second law, after dividing through by the mass,

dv

dt
= 60 − 12t .

Integrating, v = 60t − 6t2 + C .

At t = 0 the velocity is v = 0, so C = 0 and

v = 60t − 6t2 .

Hence at t = 5, v = 150 m/s.

Integrating again gives the displacement:

x = 30t2 − 2t3 + D .

At t = 0 the body is at x = 0, so D = 0 and

x = 30t2 − 2t3 .

Hence at t = 5, x = 500 m.
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220 CHAPTER 6: Mechanics 6A

Resolution of Forces: When two or more forces act on a body, the problem can often
be solved by resolving the forces. Typically the forces are resolved horizontally
and vertically to determine the equations of motion. Usually a force diagram,
called a free-body diagram , is helpful at this step. The sum of the components
can then be used in Newton’s second law.

a

h

r

l

P

WORKED EXAMPLE 2: In a conical pendulum, particle P

of mass m hangs from a ceiling on a wire of length `. The
wire makes a constant angle α with the vertical and P

moves around a circle with constant angular velocity ω.
Let r be the radius of the circular motion and let h be
the height of the cone traced out by the wire.

(a) Draw a free-body diagram of the situation.

(b) The horizontal force required to keep the particle in circular motion is mrω2,
directed towards the axis of the cone. By resolving the forces horizontally
and vertically, obtain an expression for ω in terms of `, α and g.

(c) The period of the motion is 2π
ω

. Show that when ` = g
π2 (about 0·994 m) the

period is always less than 2 seconds.

mg

T

a

P

SOLUTION: Let T be the tension in the wire.

(a) The diagram is shown on the right.

(b) The vertical component of tension is T cosα. The only
other vertical force is due to gravity and is −mg, the minus
sign indicating a downwards force. As there is no vertical
acceleration, the sum of the vertical forces is zero. Thus

T cosα − mg = 0

or T cosα = mg (1)

The horizontal component of tension keeps the particle in
circular motion. So

T sinα = mrω2 (2)

Now in the cone sinα = r
` so from equation (2)

T r
`

= mrω2

or T = m`ω2

Substitute this result into (1) to get

m`ω2 cosα = mg

so ω2 =
g

` cosα

or ω =

√
g

` cosα
.

(c) From the given formula for the period,

period = 2π

√
` cosα

g

= 2
√

cos α (when ` = g
π2 .)

Hence the the period is always less than 2 seconds,
with period → 2− seconds as α → 0+ .
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6A Forces and Acceleration 221

x
m

Other Forms of Acceleration: There are some problems
where the equation of motion is more naturally expressed
using displacement. For example, it is easy to measure
the displacement x of one end of a spring when a mass
m is hung from it. It is found that x is proportional to
the force so the resulting equation is

v̇ = −kx (for some constant k.)

In order to do anything meaningful with this equation it is necessary to rewrite
the acceleration v̇ as a derivative in x instead of t. This is done as follows.

dv

dt
=

dv

dx
× dx

dt
(by the chain rule)

=
dv

dx
× v (by the definition of velocity)

thus
dv

dt
= v

dv

dx
.

Putting this into the equation of motion for the spring gives

v
dv

dx
= −kx

which is a variable separable differential equation.

WORKED EXAMPLE 3: A spring is hung from a ceiling and extended a distance
a metres then released from rest. It is found that the equation of motion for the
spring is ẍ = −x, where x metres is the displacement of the end of the spring at
time t seconds. Show that −a ≤ x ≤ a.

SOLUTION: Replace the acceleration ẍ with v
dv

dx
and double to get

2v
dv

dx
= −2x

which is variable separable. Next integrate both sides to get

v2 = C − x2

for some constant C. But at t = 0, x = a and v = 0 so

0 = C − a2

thus C = a2, and rearranging the equation gives

x2 + v2 = a2 .

Graphing v against x, this is the equation of a circle, and hence −a ≤ x ≤ a.
Note that this does not prove that the end of the spring ever reaches x = −a.
That will be done later in this chapter.

Notice that the equation was doubled in the first line of the solution above. This
made the integration easier. There is another approach which is often used.

d2x

dt2
= v

dv

dx

= 1
2

(
v

dv

dx
+

dv

dx
v

)

= 1
2

d

dx
(v × v) (by the product rule)

that is
d2x

dt2
=

d

dx

(
1
2v2
)

.
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222 CHAPTER 6: Mechanics 6A

WORKED EXAMPLE 4: A particle starts at the origin with velocity v = 1 m/s. It
is found that its displacement x metres at time t seconds satisfies ẍ = e−2x.

(a) Find an expression for v2 in terms of x.

(b) Explain why the velocity must always be positive.

(c) Hence show that v →
√

2 as t → ∞.

SOLUTION:

(a) From above

d

dx

(
1
2
v2
)

= e−2x

so
d

dx

(
v2
)

= 2e−2x

thus v2 = C − e−2x

for some constant C. Now apply the conditions v(0) = 1 and x(0) = 0.

1 = C − 1

so C = 2

and hence v2 = 2 − e−2x .

(b) Now at t = 0, x = 0 and v = 1, so the particle begins moving to the right.
That is, x becomes positive and v is positive. In order for v to change sign, it
must first be zero, which cannot happen for x ≥ 0. Hence v remains positive.

(c) Since v2 = 2 − e−2x, v ≥ 1 for all time and hence as t → ∞ so too x → ∞.

Thus lim
t→∞

v2 = lim
x→∞

v2

= lim
x→∞

2− e−2x

= 2 ,

and since v > 0, take the positive square root to get lim
t→∞

v =
√

2.

2

OTHER FORMS OF ACCELERATION: The four common forms of acceleration are

d2x

dt2
=

dv

dt
= v

dv

dx
=

d

dx

(
1
2
v2
)

.

In each problem, choose the form most suitable for integration.

Integrating Twice: When acceleration is written as
d

dx

(
1
2
v2
)
, integration will often

yield v2 as a function of x, such as v2 = a2−x2 in Worked Example 3. Rewriting
this equation:

(
dx

dt

)2

= a2 − x2,

which is a non-linear first order differential equation. Such equations are usually
too difficult to solve in this course, and no further progress is possible.

If, however, the sign of v can be established then the appropriate square root can
be taken and a second integration performed. The sign of v may be determined
either mathematically (as in Worked Example 4) or, more typically, from the
physics of the situation.
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6A Forces and Acceleration 223

WORKED EXAMPLE 5: Experiments suggest that acceleration due to gravity is
inversely proportional to the square of the distance to the centre of the planet.
Thus, if x is altitude and R is the radius of the earth then

d2x

dt2
=

−k

(x + R)2
where k is a positive constant.

The negative sign indicates the acceleration is downwards.

An object is dropped from x = R. Let g be the acceleration due to gravity at
the surface of the earth.

(a) Show that the object hits the ground with speed
√

Rg.

(b) Find an expression for the time taken in terms of x, R and g.

SOLUTION: Given that ẍ = −g at x = 0, it follows that −g = −kR−2.

Hence k = R2g.

(a) Rewrite the given differential equation as

d

dx

(
v2
)

= −2k(x + R)−2

so v2 = 2k(x + R)−1 + C

Using the initial condition v = 0 at x = R,

C = −kR−1.

Hence v2 =
2k

x + R
− k

R

=
k

R
× 2R − (x + R)

x + R

= Rg

(
R − x

R + x

)
(from the value of k above.)

Clearly at x = 0, v2 = Rg and hence the speed is
√

Rg.

(b) From the physical situation, the velocity is always negative. Thus

v = −
√

Rg ×
√

R − x

R + x

so taking reciprocals and rearranging yields

√
Rg × dt

dx
= −

√
R + x

R − x
.

Integrating,
√

Rg × t = −
∫

R + x√
R2 − x2

dx

= −
∫ (

R√
R2 − x2

+
x√

R2 − x2

)
dx

so
√

Rg t = −R sin−1( x
R

) +
√

R2 − x2 + D .

But x = R at t = 0 so

0 = −R sin−1 1 + D

and D = πR
2

.

Hence t =

√
R

g


π

2
− sin−1

(
x

r

)
+

√

1 − x2

R2


 .
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Exercise 6A

1. In each part, the velocity v is given as a function of x. It is known that x = 1 when t = 0.

Express: (i) t in terms of x, (ii) x in terms of t.

(a) v = 6

(b) v = −6x−2

(c) v = −6x3

(d) v = e−2x

(e) v = 1 + x2

(f) v = cos2 x

2. In each motion of the previous question, find ẍ using the result ẍ =
d

dx
(1
2
v2).

3. In each part, the acceleration ẍ is given as a function of x. By replacing ẍ with
d

dx
(1
2v2),

express v2 in terms of x given that v = 0 when x = 0.

(a) ẍ = 6x2
(b) ẍ =

1

ex
(c) ẍ =

1

2x + 1
(d) ẍ =

1

4 + x2

4. In each part, the acceleration ẍ is given as a function of v. By replacing ẍ with
dv

dt
,

express t in terms of v.

(a) ẍ =
2

v2
and when t = 0, v = 0

(b) ẍ = v2 and when t = 0, v = 1
2

(c) ẍ = 2 + v and when t = 0, v = 1

5. In each part, the acceleration ẍ is given as a function of v. By replacing ẍ with v
dv

dx
,

express x in terms of v.

(a) ẍ =
v2

4
and when x = 0, v = 1

(b) ẍ =
3

v
and when x = 0, v = 6

(c) ẍ = 2 + v and when x = 0, v = 0

6. A particle of mass m moves in a straight line subject to a force F . At time t, the
displacement of the particle is x and the velocity is v. The particle was initially at rest at
the origin.

(a) If F = 6t − 4 and m = 2, find x when t = 4.

(b) If F = 2x + 1 and m = 1·5, find the positive value of v when x = 3.

(c) If F =
1

v + 2
and m = 0·25, find t when v = 4.

(d) If F =
1

v + 2
and m = 0·5, find x when v = 3.

D E V E L O P M E N T

7. Three forces act on an object of mass 2 kg. These forces are represented by the vectors
12i
˜
+23j

˜
, 9i
˜
−7j
˜

and −5i
˜
+14j

˜
. Calculate the magnitude and direction of the acceleration

of the object.

20N15N
A

B

O
32°54°

8. The diagram on the right shows two forces of magnitude

20N and 15N represented by the vectors
−→
OA and

−−→
OB.

(a) Express
−→
OA and

−−→
OB as component vectors.

(b) Calculate the magnitude of the resultant of the two
forces, correct to the nearest newton.

(c) Determine the direction of the resultant, correct to the
nearest degree.
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6A Forces and Acceleration 225

9. Tom can paddle his canoe with a force of 20N. He starts paddling from a point on the
south bank of a river and steers the canoe at 90◦ to the bank. He experiences a force of
6N acting due east due to the current, and he also has to contend with a force of 4N due
to a breeze blowing from the north-east.

(a) Express the resultant force on Tom and his canoe as a component vector.

(b) Hence find the magnitude (in newtons to one decimal place) and direction (in degrees
to one decimal place) of the resultant force.

10. [A formula from physics] A particle moves with constant acceleration a, so that its equa-
tion of motion is ẍ = a. Its initial velocity is u. After t seconds, its velocity is v and its

displacement is s. Use
d

dx
(1
2
v2) for acceleration to show that v2 = u2 + 2as.

11. A ball is thrown vertically upwards at 20m/s. Taking g = 10m/s2, upwards as positive,
and the ground as the origin of displacement, the equation of motion is then ẍ = −10.

(a) Show that v2 = 400 − 20x, and find the greatest height.

(b) Explain why v =
√

400 − 20x while the ball is rising.

(c) Integrate to find the displacement–time function, and find how long it takes the ball
to reach its greatest height.

12. Assume that a bullet, fired at 1 km/s, moves through the air with deceleration proportional
to the square of the velocity, so that ẍ = −kv2 for some positive constant k.

(a) If the velocity after 100 metres is 10m/s, use ẍ = v
dv

dx
to find x as a function of v,

then find how far the bullet has travelled when its velocity is 1m/s.

(b) If the velocity after 1 second is 10m/s, use ẍ =
dv

dt
to find at what time the bullet has

velocity 1m/s.

13. A particle has acceleration ẍ = e−x, and initially v = 2 and x = 0. Find v2 as a function
of x, and explain why v is always positive and at least 2. Then briefly explain what
happens as time goes on.

14. A particle has velocity v = 6 − 2x, and initially the particle was at the origin.

(a) Find the acceleration at the origin.

(b) Show that t = −1
2

ln
∣∣1− 1

3
x
∣∣, and hence find x as a function of t.

(c) Describe the behaviour of the particle as t → ∞.

15. An object is initially at rest at the origin. It moves in a straight line away from the origin
with acceleration 2(1 + v)m/s2. Find, correct to 3 significant figures:

(a) how long it takes for the velocity to reach 20m/s,

(b) the distance travelled when the velocity reaches 20m/s.

16. A particle P of mass m starts from the origin O with velocity u and moves in a straight

line. When OP = x, where x ≥ 0, the velocity v of P is given by v = u +
x

k
, where k is a

positive constant.

(a) Prove that the force acting on P is at all times proportional to v, and state the
constant of proportionality.

(b) Given that the velocity is 3u at the point A, find:

(i) the distance OA in terms of k and u.

(ii) the time, in terms of k, taken by P to move from O to A.
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226 CHAPTER 6: Mechanics 6B

17. A particle of mass 0·5 kg is acted upon by a force F =
(
x − 1

2

)
newtons. Initially the

particle is at rest 5 metres on the positive side of the origin.

(a) Find v2 in terms of x, and hence explain why the particle can never be at the origin.

(b) Find where the speed of the particle is 2
√

5m/s, justifying your answer, and describe
the subsequent motion.

18. A particle of mass 2 kg is subject to a force of 6x2 newtons. Initially the particle is at
x = 1 with velocity −

√
2m/s.

(a) Find v2 as a function of x.

(b) Then find the displacement–time function, and briefly describe the motion.

19. The acceleration of a particle moving in a straight line is given by ẍ = 3(1 − x2), where
x metres is the displacement of the particle. Initially the particle was at the origin with
velocity 4m/s.

(a) Find v2 as a function of x.

(b) Does the particle ever change direction? Justify your answer with clear reasoning.

E N R I C H M E N T

20. Newton’s law of gravitation says that an object falling towards a planet has acceleration
ẍ = −kx−2, for some positive constant k, where x is the distance from the centre of the
planet. Show that if the body starts from rest at a distance D from the centre, then its

speed at a distance x from the centre is

√
2k(D − x)

Dx
.

21. A projectile is fired vertically upwards with speed V from the surface of the Earth.

(a) Assuming the same equation of motion as in the previous question, and ignoring air
resistance, show that k = gR2, where R is the radius of the Earth.

(b) Find v2 in terms of x and hence find the maximum height of the projectile above the
centre of the earth.

(c) [The escape velocity from the Earth] Given that R = 6400 km and g = 9·8m/s2, find
the least value of V so that the projectile will never return.

22. The velocity of a particle moving on the positive x-axis is given by v =
(
8 − 3e−2t

)
m/s.

(a) Show that

∫
v

8 − v
dv =

∫
2 dx.

(b) Find, correct to 3 significant figures, the distance travelled by the particle as its speed
increases from 0m/s to 7m/s.

6B Simple Harmonic Motion and Time

Many things naturally exhibit repeated patterns or oscillations. The human body
provides many examples such as the heart beating, the lungs breathing or the
vocal chords vibrating. Elsewhere in nature there are the waves on a beach, the
tides of the ocean or the phases of the moon. Man-made phenomena include the
regular motion of a piston in a steam engine or combustion engine, or the regular
ebb and flow of traffic caused by the phases of traffic lights. The mathematics
behind each of these examples is extremely complicated, but each can be based
on the oscillations observed in the graphs of the sine and cosine functions. This
is what will be studied in the next two sections.
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6B Simple Harmonic Motion and Time 227

Simple Harmonic Motion: The shape of the graph of x = sin t is called sinusoidal.
A translation, dilation or any combination of these two does not change the basic
shape. Thus the graphs of functions like x = 3 cos(2t + π

2
) are also sinusoidal.

Whenever the graph of displacement x versus time t for a particular motion is
sinusoidal, that motion is called simple harmonic motion, or SHM for short.

Accommodating the combinations of translations and dilations, both vertically
and horizontally, the equation of simple harmonic motion is commonly written
in one of two ways:

x = a cos(nt + α) + c,

x = a sin(nt + β) + c.

Sometimes a third equation is used and that will be discussed later.

t

x

x c=

x c a= -

x c a= +

2p
n

The physical meanings of the values a, n and c are the
same in both these equations. The constant c is called
the centre of motion, as the wave oscillates symmetrically
either side of the horizontal line x = c, as seen in the
graph on the right. The value a is the amplitude of the
motion because the wave moves at most a away from the
centre. Thus x always lies in the range c−a ≤ x ≤ c+a.
The constant n is used to calculate the period = 2π

n
, which

is the time between two peaks or two troughs.

At any time t the quantities (nt + α) and (nt + β) are each called the phase of
the motion, as their values determine the location, rather like the way that time
dictates the phases of the moon. The constant angles α and β are each called
the initial phase of the motion, as they determine the initial displacement. When
t = 0 the two forms of the equation give

a cosα + c = a sinβ + c

and so cos α = sinβ.

Hence the angles are complementary and β = π
2
− α, though it is not necessary

to memorise this formula.

WORKED EXAMPLE 6: A particle is moving in simple harmonic motion according
to the equation x = 2 sin(π

2
t + π

6
) + 3.

(a) Write down its centre, amplitude and extremes of displacement.

(b) Determine the period, initial phase and location at t = 0.

(c) Determine when the particle is next at the same location.

SOLUTION:

(a) The centre is x = 3, the amplitude is 2 so the extremes are x = 1 and x = 5.

(b) The period is 2π÷ π
2

= 4, with initial phase π
6
. At t = 0, x = 2 sin π

6
+3 = 4.

(c) Solving x = 4 gives

2 sin(π
2 t + π

6 ) + 3 = 4

thus sin(π
2
t + π

6
) = 1

2

so π
2
t + π

6
= π

6
, 5π

6
, 13π

6
, . . .

or π
2 t = 0, 2π

3 , 2π, . . .

that is t = 0, 4
3
, 4, . . .

Hence the particle is next at x = 4 when t = 4
3 .
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228 CHAPTER 6: Mechanics 6B

The function in this last example is the one graphed above in the discussion. By
chance, both the values of a and c are integers whilst both n and β are irrational.
In general, there are no restrictions except that each is a real number.

3

SIMPLE HARMONIC MOTION: A particle with displacement x at time t is in simple

harmonic motion if either

x = a cos(nt + α) + c or x = a sin(nt + β) + c .

The centre of motion is c, the amplitude is a and the period is 2π
n

. The

quantities (nt+α) and (nt+β) are each called the phase of the motion. Each

angle α or β is called the initial phase.

SHM and Transformations: As stated earlier, motion which is simple harmonic
may be the result of shifts or dilations. The transformations applied to x = cos t

in order to obtain x = a cos(nt+α)+ c are investigated in Extension 1. Here the
horizontal transformations will be done first and the vertical second. Of course,
that order can be reversed.

First shift x = cos t left by α to get x = cos(t + α). Both of these functions have
period 2π. Now stretch horizontally by factor 1

n
to get x = cos(nt+α) which has

period 2π
n

. Next stretch the wave vertically by factor a, giving x = a cos(nt + α).
Finally shift the graph up by c so that the centre, also called the mean position,
is at x = c. A similar sequence of transformations is applied to x = sin t. The five
graphs that follow show such a sequence from x = sin t to x = 2 sin(π

2
t + π

6
) + 3.

1

-1

2p

p x

y

x = sin t

1

-1
t

x

p
3

4p
3

5p
6

11p
6

shift left by π
6

x = sin(t + π
6 )

1

-1

t

x

5
3

17
3

11
3

stretch t by 2
π

x = sin(π
2 t + π

6 )

2

-2

t

x

5
3

17
3

11
3

stretch x by 2
x = 2 sin(π

2 t + π
6 )

5

3

1

t

x

5
3

17
3

11
3

shift up by 3
x = 2 sin(π

2 t + π
6 ) + 3

In a few cases it may be convenient to apply the horizontal transformations in
the opposite order by writing x = a cos

(
n(t + α

n
)
)

+ c. In this case a horizontal
stretch by factor 1

n
is followed by a shift left by α

n
. The value α

n
is sometimes

called the phase shift.
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6B Simple Harmonic Motion and Time 229

Choosing the Origin: In many practical problems the location of the origin is not
specified or may be changed without significantly altering the problem. In such
problems, the origin should be chosen so that the equation of simple harmonic
motion is one of the following four cases.

x = a cosnt — the motion starts at the top and moves downwards,

x = −a cos nt — the motion starts at the bottom and moves upwards,

x = a sinnt — the motion starts at the centre and moves upwards,

x = −a sinnt — the motion starts at the centre and moves downwards.

Notice that in each case c = 0. In the first case α = 0, and in the second case
α = π which accounts for the negative sign. Likewise, in the third case β = 0
and in the fourth case β = π.

WORKED EXAMPLE 7: A weight is hung from a stand on a table by a spring and
set in vertical motion. The weight oscillates between 15cm and 35 cm above the
table, and it takes 2 seconds to complete one cycle. It is found that the motion
of the weight may be modelled by simple harmonic motion.

(a) What is its height above the table 3
4s after it passes through the lowest point?

(b) For how long in each cycle is the weight at or below 18cm? Approximate the
answer correct to two decimal places.

15 cm

35 cm

x = 0

SOLUTION: Let the centre of motion be x = 0, 25cm above the table. The
problem involves time after the bottom of the wave, so let t = 0 there. The
amplitude of the motion is a = 10 and the period is 2 = 2π

n
so n = π. Hence put

x = −10 cosπt

(a) At t = 3
4

the displacement is

x = −10 cos 3π
4

= 5
√

2

hence the height is 25 + 5
√

2 =.
. 32·07 cm.

10

-10

21 t

x

-7

(b) The question is equivalent to solving

−10 cosπt ≤ −7

or cosπt ≥ 0.7

For equality, the first positive and negative solutions
are t =.

. ±0·253, thus the weight is at or below 18cm
for about 0·51 seconds each cycle.

4

CHOOSING THE ORIGIN: Whenever possible, choose the origin of displacement and

time so that the equation of motion is one of the following cases:

x = a cosnt — the motion starts at the top and moves downwards,

x = −a cosnt — the motion starts at the bottom and moves upwards,

x = a sinnt — the motion starts at the centre and moves upwards,

x = −a sinnt — the motion starts at the centre and moves downwards.

Speed and Acceleration: In simple harmonic motion the displacement x is given
as a function of time t. Hence it is easy to differentiate to find the velocity and
acceleration. For simplicity here, assume that the centre of motion is the origin.

.
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230 CHAPTER 6: Mechanics 6B

Let x = a cos(nt + α)

then ẋ = −na sin(nt + α) ,

and ẍ = −n2a cos(nt + α) .

Hence ẍ = −n2x .

Let x = a sin(nt + β)

then ẋ = na cos(nt + β) ,

and ẍ = −n2a sin(nt + β) .

Hence ẍ = −n2x .

Several important observations can be made from this algebra. The maximum
speed is |ẋ| = na, which occurs when | sin(nt + α)| = 1, or (nt + α) = π

2
+ kπ.

At these values cos(nt + α) = 0 and so x = 0. That is, the maximum speed
of an object in SHM occurs as it passes through the centre of motion. Further,
the minimum speed is zero, which occurs when (nt + α) = kπ. At these values
|x| = a. That is, the minimum speed corresponds with the turning points at the
extremes of the motion.

The maximum acceleration is |ẍ| = n2a, which occurs when | cos(nt + α)| = 1,
or (nt + α) = kπ. At these values |x| = a. That is, the maximum acceleration of
an object in SHM corresponds with the extremes of the motion, as it is changing
direction. The minimum acceleration is zero when (nt + α) = π

2 + kπ. At these
values |x| = 0. That is, the minimum acceleration occurs as the object passes
through the centre of motion.

WORKED EXAMPLE 8: An object is in simple harmonic motion with a period of
π
3 seconds. At a certain moment its position is 3 cm above the centre of motion,
and it is moving towards the centre of motion with speed 24 cm/s.

(a) Determine its equation of motion and hence find its maximum speed.

(b) Find when it next has the same displacement, correct to two decimal places.

SOLUTION: Let the centre of motion be x = 0. Let the moment it is observed
correspond with t = 0. From the period, n = 2π ÷ π

3
. That is n = 6. Since it is

initially moving downwards, the velocity is initially negative.

Let x = a cos(6t + α)

then ẋ = −6a sin(6t + α) .

At t = 0, from the given information,

a cosα = 3 (1)

and −6a sinα = −24

or a sinα = 4 . (2)

Squaring and adding, it is clear that

a2 = 25

thus a = 5 (a > 0.)

From equations (1) and (2) it follows that α is acute, so

α = cos−1 3
5

=.
. 0·9273

(a) The maximum speed is |ẋ| = 6a = 30 cm/s.

(b) The object will return to its original position when

5 cos(6t + α) = 5 cosα

so cos(6t + α) = cosα

The first time this happens is, by the symmetries of cosine, when

6t + α = 2π − α

thus t = 1
3(π − α) =.

. 0·74 s.

.
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6B Simple Harmonic Motion and Time 231

5

SPEED AND ACCELERATION:

• The maximum speed is at the centre of motion where the acceleration is zero.

• The maximum acceleration occurs at the extremes of the motion where the

speed is zero. That is, at the stationary points.

The Differential Equation for Simple Harmonic Motion: Above it was shown:

for x = a cos(nt + α)

ẍ = −n2a cos(nt + α) ,

and for x = a sin(nt + β)

ẍ = −n2a sin(nt + β) .

Look carefully at the expressions for displacement and acceleration. It should
be clear that in both cases the acceleration is related to the displacement by the
autonomous second order linear differential equation

ẍ = −n2x .

Applying Newton’s formula for force gives F = −mn2x. This means that the
force required to keep an object in SHM is proportional to its displacement. The
negative sign indicates that the force is directed towards the centre of motion. The
equation may be used to test whether or not a given motion is simple harmonic
with centre the origin. If the centre is x = c instead then this equation becomes

ẍ = −n2(x − c) ,

and the proof of this is left as an exercise.

6

THE DIFFERENTIAL EQUATION FOR SIMPLE HARMONIC MOTION: If an object is moving in

simple harmonic motion with centre x = c and period 2π
n then

ẍ = −n2(x − c) .

Consequently the force associated with this motion is directed towards the

centre. This equation may be used as a test for simple harmonic motion.

Another Form of Simple Harmonic Motion: In some problems where the initial
displacement and velocity are known, it may be best to use the following form:

x = A cosnt + B sinnt .

It is easy to show by differentiation that this is an equation for SHM.

ẋ = −nA sin nt + nB cosnt

and ẍ = −n2A cosnt − n2B sin nt

= −n2(A cosnt + B sin nt)

thus ẍ = −n2x .

By the test in Box 6, this differential equation confirms that the motion is simple
harmonic with centre x = 0 and period 2π

n
.

WORKED EXAMPLE 9: Once again, an object is in simple harmonic motion with
a period of π

3
seconds. At a certain moment its position is 3 cm above the centre

of motion, and it is moving towards the centre of motion with speed 24 cm/s. Let
the equation of motion be x = A cosnt + B sin nt .

(a) Determine the values of n, A and B.

(b) Use the t-formulae to find when the object is next at its original position.
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232 CHAPTER 6: Mechanics 6B

SOLUTION:

(a) As in the previous worked example, n = 6, and

x = A cos 6t + B sin 6t

so ẋ = −6A sin 6t + 6B cos 6t .

At t = 0 the displacement is x = 3 so

A = 3

and the velocity is ẋ = −24 so

6B = −24

thus B = −4 .

Hence x = 3 cos 6t − 4 sin6t .

(b) The object will return at the first positive solution of

3 cos 6t − 4 sin6t = 3 .

Put τ = tan3t, then this becomes

3× 1 − τ2

1 + τ2
− 4 × 2τ

1 + τ2
= 3

thus 3 − 3τ2 − 8τ = 3 + 3τ2

or 6τ2 + 8τ = 0 .

Hence for the first positive solution

τ = −4
3

,

viz t = 1
3(π − tan−1 4

3) =.
. 0·74 s (as before.)

7

ANOTHER FORM OF SIMPLE HARMONIC MOTION: In some problems for which the initial

displacement and velocity are known, it may be best to use

x = A cosnt + B sinnt .

This corresponds to simple harmonic motion with centre x = 0 and period 2π
n

.

Exercise 6B

1. A particle is moving in simple harmonic motion about the origin. Its displacement x cm
after t seconds is given by x = 12 cos π

2
t.

(a) What are the amplitude and period of the motion?

(b) Differentiate to find v and ẍ as functions of t, and then show that ẍ = −π2

4 x.

(c) What are the initial displacement and velocity of the particle?

(d) When is the particle first at the origin?

(e) How long is it between visits to the origin?

2. A particle moves so that its displacement x metres after t seconds is given by x = 2 sin 4πt.

(a) Write down the amplitude and period of the motion.

(b) Sketch the displacement function for 0 ≤ t ≤ 1.

(c) Find the velocity and acceleration as functions of time.

(d) Find the acceleration as a function of displacement and hence show that the particle
is moving in simple harmonic motion.

(e) Find the first two times at which the particle is at rest, and find the acceleration at
each of these times.

(f) What is the greatest speed of the particle?
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6B Simple Harmonic Motion and Time 233

3. A particle is moving in simple harmonic motion with displacement x = 4
π

sinπt, in units
of metres and seconds.

(a) Show that the particle is initially at the origin.

(b) Differentiate to find v and ẍ as functions of time, and show that ẍ = −π2x.

(c) What are the amplitude and period of the motion?

(d) What are the maximum distance of the particle from the origin and the maximum
speed?

(e) Sketch one period of the graphs of x, v and ẍ against time.

(f) Find the next two times the particle is at the origin, and the velocities then.

(g) Find the first two times the particle is stationary, and the accelerations then.

4. In each of the following parts find a and n, and hence write the displacement function in
the form x = a sinnt.

(a) A particle moving in SHM with centre the origin and period π seconds starts from
the origin with velocity 4m/s.

(b) A particle moving in SHM with centre the origin and amplitude 6 metres starts from
the origin with velocity 4m/s.

5. (a) A particle’s displacement is given by x = b sinnt + c cosnt, where n > 0. Find v and
ẍ as functions of t. Then show that ẍ = −n2x, and hence that the motion is simple
harmonic.

(b) By substituting into the functions for x and v:

(i) find b and c if initially the particle is at rest at x = 3,

(ii) find b, c and n, and the first time the particle reaches the origin, if the particle is
initially at rest at x = 5, and the period is 1 second.

6. A particle moving in a straight line started from the origin with velocity 4π cm/s. Its
displacement after t seconds is given by x = a sinπt.

(a) Prove that the motion is SHM.

(b) Find the value of a.

(c) Find the first two times that the speed of the particle is 2π cm/s.

7. A particle’s displacement is x = 12− 2 cos3t, in units of centimetres and seconds.

(a) Differentiate to find v and ẍ as functions of t, show that the particle is initially
stationary at x = 10, and sketch the displacement–time graph.

(b) What are the amplitude, period and centre of the motion?

(c) In what interval is the particle moving, and how long does it take to go from one end
to the other?

(d) Find the first two times after time zero when the particle is closest to the origin, and
the speed and acceleration then.

(e) Find the first two times when the particle is at the centre, and the speed and acceler-
ation then.

8. A particle is moving in SHM according to the equation x = 6 sin(2t + π
2 ).

(a) What are the amplitude, period and initial phase?

(b) Find ẋ and ẍ, and show that ẍ = −n2x, for some n > 0.

(c) Find the first two times when the particle is at the origin, and the velocity then.

(d) Find the first two times when the velocity is maximum, and the position then.

(e) Find the first two times the particle returns to its initial position, and its velocity and
acceleration then.
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D E V E L O P M E N T

9. A particle is oscillating in simple harmonic motion about the origin with period 24 seconds
and amplitude 120 metres. Initially it is at the origin with positive velocity.

(a) Write down functions for x and v, and state the maximum speed.

(b) What is the first time when it is 30 metres: (Answer correct to four significant figures.)
(i) to the right of the origin, (ii) to the left of the origin?

(c) Find the first two times its speed is half its maximum speed.

10. A particle moves in simple harmonic motion about the origin with period π
2 seconds.

Initially the particle is at rest 4 cm to the right of O.

(a) Write down displacement–time and velocity–time functions.

(b) Find how long the particle takes to move from its initial position to: (i) a point 2 cm
to the right of O, (ii) a point 2 cm on the left of O.

(c) Find the first two times when the speed is half the maximum speed.

11. The equation of motion of a particle is x = sin2 t. Use a double-angle identity to put the
equation in the form x = x0 − a cosnt, and state the centre, amplitude, range and period
of the motion.

12. A particle moves according to x = 3 − 2 cos2 2t, in units of centimetres and seconds.

(a) Use a double-angle identity to put the equation in the form x = x0 − a cosnt.

(b) Find the centre of motion, the amplitude, the range of the motion and the period.

(c) What is the maximum speed of the particle, and when does it first occur?

13. The displacement x cm of a particle after t seconds is given by x = 2 + 3 cos t + 3
√

3 sin t.

(a) Find ẍ and hence prove that the motion is simple harmonic.

(b) Where is the centre of motion?

(c) What is the period?

(d) Express 3 cos t + 3
√

3 sin t in the form A cos(t − θ), where A > 0 and 0 < θ < π
2 .

(e) Hence state the amplitude and the initial phase.

(f) Within what interval does the particle oscillate?

14. A particle’s displacement is given by x = b sinnt + c cosnt, where n > 0. Find v as a
function of t. Then find n, c and b, and the first two times the particle is at the origin, if:

(a) the period is 4π, the initial displacement is 6 and the initial velocity is 3,

(b) the period is 6 and when t = 0, x = −2 and ẋ = 3. (In this part write the times
correct to 3 decimal places.)

15. Given that x = a sin(nt + α) (in units of metres and seconds), write v as a function of
time. Find a, n and α if a > 0, n > 0, 0 ≤ α < 2π and:

(a) the period is 6 seconds, and initially x = 0 and v = 5,

(b) the period is 3π seconds, and initially x = −5 and v = 0,

(c) the period is 2π seconds and initially x = 1 and v = −1.

16. Given that x = a cos(2t + α), find a and α if a > 0, −π < α ≤ π and:

(a) initially x = 0 and v = 6, (b) initially x = 1 and v = −2
√

3 .

17. A particle is moving in simple harmonic motion according to x = a cos(π
8
t + α), where

a > 0 and 0 ≤ α < 2π. When t = 2 it passes through the origin, and when t = 4 its
velocity is 4 cm/s in the negative direction. Find the amplitude a and the initial phase α.

.
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6C Simple Harmonic Motion and Displacement 235

18. A particle is moving in simple harmonic motion with period 8π seconds according to
x = a sin(nt + α), where x is the displacement in metres, and a > 0 and 0 ≤ α < 2π.
When t = 1, x = 3 and v = −1. Find a and α correct to four significant figures.

19. A particle moving in simple harmonic motion has period π
2

seconds. Initially the particle
is at x = 3 with velocity v = 16m/s.

(a) Find x as a function of t in the form x = b sinnt + c cosnt.

(b) Find x as a function of t in the form x = a cos(nt − ε), where a > 0 and 0 ≤ ε < 2π.

(c) Find the amplitude and the maximum speed of the particle.

(d) Find the first time the particle is at the origin, using each of the above displacement
functions in turn. Prove that the two answers obtained are the same.

20. The temperature at each instant of a day can be modelled by a simple harmonic function
oscillating between 9◦ at 4:00 am and 19◦ at 4:00 pm. Find, correct to the nearest minute,
the times between 4:00 am and 4:00 pm when the temperature is:

(a) 14◦ (b) 11◦ (c) 17◦

21. The rise and fall in sea level due to tides can be modelled by simple harmonic motion. On
a certain day, a channel is 10 metres deep at 9:00 am when it is low tide, and 16 metres
deep at 4:00 pm when it is high tide. If a ship needs 12 metres of water to sail down a
channel safely, at what times (correct to the nearest minute) between 9:00 am and 9:00 pm
can the ship pass through?

22. Show that for any particle moving in simple harmonic motion, the ratio of the average
speed over one oscillation to the maximum speed is 2 : π.

E N R I C H M E N T

23. The motion of a particle in a straight line is governed by the displacement function

x = 4 sin(3t + π
6
) + 2 sin 3t.

(a) Prove that the motion is simple harmonic.

(b) Find the amplitude.

24. A particle moving in SHM about the origin starts at x = 1. At the end of each of the first

two seconds the particle is at x = 5. Prove that the period of the motion is
2π

cos−1 3
5

.

(Let the displacement function be x = a cos(nt + α).)

6C Simple Harmonic Motion and Displacement

The focus of the previous section was on the displacement-time function for simple
harmonic motion. In this section it is the differential equation

ẍ = −n2(x − c)

that takes centre stage. Firstly it will be used as a test for simple harmonic

motion. Then the identity
d2x

dt2
=

d

dx

(
1
2
v2
)

will be used with integration to find

the velocity as a function of displacement.

.
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Simple Harmonic Motion and the Differential Equation: In the last section it
was shown that if a particle is in simple harmonic motion with centre x = 0 and
period 2π

n
then

ẍ = −n2x .

There is a clever way to prove the corresponding result when the centre is not
zero. Let y = x + c, then the particle is in simple harmonic motion with centre
y = c. Now

x = y − c

so ẋ = ẏ

and ẍ = ÿ .

Hence by substitution, the above differential equation becomes

ÿ = −n2(y − c) .

Finally, since the choice of pronumeral was arbitrary, if a particle is in simple
harmonic motion with centre x = c and period 2π

n
then

ẍ = −n2(x − c) .

This equation may be taken as a test for simple harmonic motion. That is, if
the displacement of a particle satisfies this equation then the particle is in simple
harmonic motion. The proof that the motion is simple harmonic is given later.

WORKED EXAMPLE 10: The displacement x cm of a particle at time t seconds
satisfies ẍ = −4(x − 3). The particle is initially at x = 3 with velocity 6 cm/s.
Determine the displacement-time function and find when the particle is first at
the origin.

SOLUTION: Since ẍ = −22(x−3), the particle is in simple harmonic motion with
centre x = 3 and period π. The particle starts at its centre with positive velocity,
so put

x = 3 + a sin 2t .

Thus ẋ = 2a cos 2t

so at t = 0 6 = 2a

and hence x = 3 + 3 sin2t .

The particle will be at the origin when

sin 2t = −1

or 2t = . . . ,−π
2 , 3π

2 , 7π
2 , . . .

so the first positive solution is

t = 3π
4

.

8

SIMPLE HARMONIC MOTION AND THE DIFFERENTIAL EQUATION: If the displacement of a

particle satisfies the equation

ẍ = −n2(x − c)

then it is in simple harmonic motion with centre x = c and period 2π
n

.

The proof that the motion must be simple harmonic is relatively straightforward
when the centre is x = 0. The substitution y = x + c can then be used to extend
the proof to motion with other centres.

.
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6C Simple Harmonic Motion and Displacement 237

Proof: Suppose that ẍ = −n2x. Regardless of the values of x(0) and ẋ(0), it
is always possible to find a and α such that x(0) = a sinα and ẋ(0) = na cosα.
(The proof of this is left as an exercise.) Now consider the function

u = x − a sin(nt + α)

Firstly, u(0) = x(0)− a sinα

= 0 .

Next, u̇ = ẋ − na cos(nt + α)

so u̇(0) = ẋ(0)− na cosα

= 0 .

Further, ü = ẍ + n2a sin(nt + α)

= −n2x + n2a sin(nt + α)

so ü = −n2u .

Thus
d

du

(
1
2
u̇2
)

= −n2u

or
d

du

(
u̇2
)

= −2n2u

hence u̇2 = C − n2u2 for some constant C.

Now apply the initial conditions u(0) = u̇(0) = 0 to get C = 0.

Thus u̇2 = −n2u2 .

But u is a real function and squares of reals are either positive or zero. Thus the
only solution to this equation is that u = 0 for all t. Hence

x = a sin(nt + α)

and the motion is simple harmonic.

It is now possible to revisit Worked Example 3, concerning the motion of a spring.
In that problem,

ẍ = −x

and thus the motion is simple harmonic with centre x = 0. The initial conditions
are x(0) = −a and ẋ(0) = 0, so it follows that the displacement-time function is

x = −a cos t .

It is now clear that x takes all values in the range −a ≤ x ≤ a as t varies.

Velocity as a Function of Displacement: Starting with the differential equation
for acceleration

d

dx

(
1
2v2
)

= −n2(x − c)

or
d

dx

(
v2
)

= −2n2(x − c)

thus v2 = D − n2(x − c)2 .

Now at each extreme of motion, the velocity is zero, thus

0 = D − n2a2.

That is D = n2a2

and v2 = n2a2 − n2(x − c)2

or v2 = −n2
(
(x − c)2 − a2

)
.
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Notice that the term inside the outer brackets is a monic quadratic with its
square completed. This formula can be used to determine the centre, period
and amplitude of the motion, however it must be derived each time, and not
quoted. In practice it is better to first check that the motion is simple harmonic
by differentiation, thus finding the centre and n. Then set v = 0 to find the range
and amplitude.

WORKED EXAMPLE 11: The motion of a particle satisfies v2 = −2x2 + 8x + 10.
Show that the motion is simple harmonic then determine the period, centre of
motion, range and amplitude.

SOLUTION: Firstly, differentiate to find the acceleration.

ẍ =
d

dx

(
−x2 + 4x − 5

)

= −2x + 4

= −2(x − 2) .

Hence the motion is simple harmonic with n =
√

2. The period is π
√

2 and centre
is x = 2. Now put v = 0 to find the range.

x2 − 4x − 5 = 0

or (x + 1)(x− 5) = 0 ,

so the extremes of the motion are x = −1 and x = 5. Taking the average confirms
the centre is x = 2. Taking the difference and halving gives amplitude a = 3.

9

VELOCITY AS A FUNCTION OF DISPLACEMENT: First check that the motion is simple

harmonic by differentiation, and so find the centre and n. Then set v = 0 to

find the range and amplitude.

Finding the Equation of Motion from the Graph: It is easy to determine the
equation of simple harmonic motion from its graph. It is simply a matter of
determining the shifts and stretches applied to sine or cosine. A quick example
is included here as a reminder of the process.

5

-1 4 t

x

1
3

WORKED EXAMPLE 12: The motion of a body is plotted
in the graph on the right. Assuming the motion to be
simple harmonic, find the displacement-time function.

SOLUTION: The period is 4 = 2π
n hence n = π

2 .
The extremes of motion are x = −1 and x = 5.

The centre is the mean c = 5+−1
2 = 2.

The amplitude is half the range = 5+1
2

= 3.

Hence x = 2 + 3 sin(π
2
t + α) with α acute so that the initial velocity is positive.

Now ẋ = 3π
2 cos(π

2 t + α)

and the velocity is zero at the extreme when t = 1
3
. Thus

0 = cos(π
6

+ α)

whereby π
6 + α = π

2

so α = π
3

.

Hence x = 2 + 3 sin
(

π
6 (3t + 2)

)
.
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6C Simple Harmonic Motion and Displacement 239

Exercise 6C

1. The displacement x metres of a particle after t seconds is given by x = 3 cos 2t.

(a) Find expressions for v and ẍ as functions of t, and for ẍ and v2 in terms of x.

(b) Find the velocity and acceleration of the particle at x = 2.

2. The motion of a particle is governed by the equation ẍ = −9x (in units of metres and
seconds). The particle is stationary when x = 5.

(a) Integrate to find an equation for v2.

(b) Find the velocity and acceleration when x = 3.

(c) What is the speed at the origin?

3. A particle is oscillating according to the equation ẍ = −16x (in units of centimetres and
seconds), and its speed at the origin is 24 cm/s.

(a) Integrate to find an equation for v2.

(b) What are the amplitude and the period?

(c) Find the speed and acceleration when x = 2.

4. A particle moves in SHM according to the equation ẍ = −4x (in units of metres and
seconds). The amplitude is 6 metres.

(a) Find the velocity–displacement equation, the period and the maximum speed.

(b) Find the simplest form of the displacement–time equation if initially the particle is:

(i) stationary at x = 6,

(ii) stationary at x = −6,

(iii) at the origin with positive velocity,

(iv) at the origin with negative velocity.

5. (a) The motion of a ball on the end of a spring is modelled by the equation ẍ = −256x

(in units of centimetres and seconds). The ball is pulled down 2 cm from the origin
and released. Find the speed at the centre of motion.

(b) The motion of another ball on the end of a spring is modelled by ẍ + 1
4
x = 0 (in units

of centimetres and seconds), and its speed at the equilibrium position is 4 cm/s. How
far was it pulled down from the origin before it was released?

6. [In these questions use the formula v2 = n2(a2 − x2).]

(a) A particle moving in simple harmonic motion has period π
2

minutes, and it starts from
the mean position with velocity 4m/min. Find the amplitude.

(b) The motion of a buoy floating on top of the waves can be modelled as simple harmonic
motion with period 3 seconds. If the waves rise and fall 2 metres about their mean
position, find the buoy’s greatest speed.

D E V E L O P M E N T

7. A particle oscillates in SHM between two points A and B that are 20 cm apart. The period
is 8 seconds. Let O be the midpoint of AB.

(a) Find the maximum speed and maximum acceleration.

(b) Find the velocity and acceleration when the particle is 6 cm from O.

8. The amplitude of a particle moving in simple harmonic motion is 5 metres, and its accel-
eration when it is 2 metres from its mean position is 4m/s2. Find the speed of the particle
when it is at its mean position, and also when it is 4 metres from its mean position.

9. A particle is moving in SHM with period π seconds and maximum speed 8m/s. Find the
amplitude, and find the speed when the particle is 3 metres from its mean position.

.
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240 CHAPTER 6: Mechanics 6C

10. A particle moves in a straight line so that its acceleration is proportional to its displace-
ment x from the origin O. When 4 cm on the positive side of O, its velocity is 20 cm/s
and its acceleration is −62

3
cm/s2. Find the amplitude of the motion.

11. A particle moves in simple harmonic motion with centre O, and passes through O with
speed 10

√
3 cm/s. Determine the speed of the particle when it is halfway between its mean

position and an endpoint.

12. A particle moving in simple harmonic motion about the origin starts at the origin with
velocity V . Prove that the particle first comes to rest after travelling a distance of V/n.

13. [The general case] Suppose that a particle is moving in simple harmonic motion with
amplitude a and equation of motion ẍ = −n2x, where n > 0.

(a) Use integration to prove that v2 = n2(a2 − x2).

(b) Find expressions for: (i) the speed at the origin, (ii) the speed and acceleration
halfway between the origin and the maximum displacement.

14. (a) A particle moves in a straight line according to the equation v2 = −9x2 + 18x + 27.
Prove that the motion is simple harmonic, and find the centre of motion, the period
and the amplitude.

(b) Repeat part (a) for:

(i) v2 = 80 + 64x − 16x2

(ii) v2 = −9x2 + 108x− 180

(iii) v2 = −2x2 − 8x − 6

(iv) v2 = 8− 10x− 3x2

15. (a) Show that the motion defined by x = sin2 5t (in units of metres and minutes)
satisfies ẍ = −n2(x − c), for some c and some n > 0, by:

(i) first writing the displacement function as x = 1
2
− 1

2
cos 10t,

(ii) differentiating x directly without any use of double-angle identities.

(b) Find the centre, range and period of the motion, and the next time it visits the origin.

16. A particle moves in simple harmonic motion according to the equation ẍ = −9(x − 7), in
units of centimetres and seconds. Its amplitude is 7 cm.

(a) Find the centre of motion, and hence explain why the velocity at the origin is zero.

(b) Integrate to find v2 as a function of x, complete the square in this expression, and
hence find the maximum speed.

(c) Explain how, although the particle is stationary at the origin, it nevertheless moves
away from the origin.

17. A particle is moving according to the equation x = 4 cos3t − 6 sin 3t.

(a) Prove that the acceleration is proportional to the displacement but oppositely directed,
and hence that the motion is simple harmonic.

(b) Find the period, amplitude and maximum speed of the particle, and find the magni-
tude of the acceleration when the particle is halfway between its mean position and
one of its extreme positions.

18. The motion of a particle is governed by the equation by x = 3 + sin 4t +
√

3 cos 4t.

(a) Prove that ẍ = −16(x− 3), and write down the centre and period of the motion.

(b) Express the motion in the form x = x0 + a sin(4t + α), where a > 0 and 0 ≤ α < 2π.

(c) Find the first three times that the particle is at the centre, and its speed there.
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6C Simple Harmonic Motion and Displacement 241

19. A particle moves according to the equation x = 10 + 8 sin 2t + 6 cos2t.

(a) Prove that the motion is simple harmonic, and find the centre of motion, the period
and the amplitude.

(b) Find, correct to four significant figures, when the particle first reaches the origin.

E N R I C H M E N T

8

8x

y Zorba

20. [Simple harmonic motion is the projection of circular motion onto
a diameter.] A Ferris wheel of radius 8 metres mounted in the
north–south plane is turning anticlockwise at 1 revolution per
minute. At time zero, Zorba is level with the centre of the wheel
and north of it.

(a) Let x and y be Zorba’s horizontal distance north of the centre
and height above the centre respectively.
Show that x = 8 cos2πt and y = 8 sin 2πt.

(b) Find expressions for ẋ, ẏ, ẍ and ÿ, and show that ẍ = −4π2x and ÿ = −4π2y.

(c) Find how far (in radians) the wheel has turned during the first revolution when:

(i) x : y =
√

3 : 1 (ii) ẋ : ẏ = −
√

3 : 1 (iii) ẋ = ẏ

21. A particle moves in simple harmonic motion according to ẍ = −n2x.

(a) Prove that v2 = n2(a2 − x2), where a is the amplitude of the motion.

(b) The particle has speeds v1 and v2 when the displacements are x1 and x2 respectively.
Show that the period T is given by

T = 2π

√
x1

2 − x2
2

v2
2 − v1

2
,

and find a similar expression for the amplitude.

(c) The particle has speeds of 8 cm/s and 6 cm/s when it is 3 cm and 4 cm respectively
from O. Find the amplitude, the period and the maximum speed of the particle.

22. A particle moving in simple harmonic motion has amplitude a and maximum speed V .
Find its velocity when x = 1

2a, and its displacement when v = 1
2V . Prove also the more

general results

|v| = V
√

1 − x2/a2 and |x| = a
√

1 − v2/V 2 .

23. Two balls on elastic strings are moving vertically in simple harmonic motion with the same
period 2π and with centres level with each other. The second ball was set in motion α

seconds later, where 0 ≤ α < 2π, with twice the amplitude, so their equations are

x1 = sin t and x2 = 2 sin(t − α).

Let x = sin t − 2 sin(t − α) be the height of the first ball above the second.

(a) Show that ẍ = −x, and hence that x is also simple harmonic with period 2π.

(b) Show that the greatest vertical difference A between the balls is A =
√

5 − 4 cosα.
What are the maximum and minimum values of A, and what form does x then have?

(c) Show that the balls are level when tan t =
4T

1 − 3T 2
, where T = tan 1

2α. How many

times are they level in the time interval 0 ≤ t < 2π?

(d) If the distance between the balls is known to be greatest when t = 0, what values
could α have, and what forms does x have?
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242 CHAPTER 6: Mechanics 6D

6D Horizontal Resisted Motion

If an object moves horizontally then gravity may be effectively ignored. Typically
the object is not entirely free to move as there is usually a resistive force, due to
friction for example, which acts in the opposite direction to the velocity. In the
problems of this section, the equations of motion will either be specified in the
question or will need to be determined by balancing forces.

Two Common Integrals: A large number of problems encountered in this section
and the next result in integrals of the form

∫
v′

a + bv
dx or

∫
v v′

a + bv2
dx .

Notice that in both cases the numerator is a multiple of the derivative of the
denominator. Hence the results are logarithmic functions. Thus∫

v′

a + bv
dx =

1

b
×
∫

bv′

a + bv
dx

= 1
b
log(a + bv) + C .

for some constant C. And in the second instance∫
v v′

a + bv2
dx =

1

2b
×
∫

2bv v′

a + bv2
dx

= 1
2b

log(a + bv2) + D .

Notice that in both cases no absolute values are used. In the practical problems
that require these integrals, the quantities will generally be positive, and so no
absolute value is needed. Every question should be routinely checked, however,
and the absolute values re-inserted if they are required. These formulae will be
used in the examples without further explanation.

WORKED EXAMPLE 13: A rowing eight crosses the finish line with speed 5·5m/s,
and stops rowing. In a greatly simplified mathematical model, the boat is slowed
by two drag forces. The skin drag is due to the surface area in contact with the
water and is equal to 1

10
mv2. The form drag is due to the shape of the boat

pushing the water aside and is equal to 1
100mv. Thus the force equation is

mẍ = − m(v + 10v2)

100

where x is the distance past the finish line, and v is the speed of the boat.

(a) Find v as a function of x.

(b) How far, correct to the nearest metre, does the boat eventually travel as it
comes to a stop?

SOLUTION:

(a) Divide through by the mass m and use ẍ = v′v to get

v′v = − v + 10v2

100
,

then re-arrange and integrate with respect to x:∫
10v′

1 + 10v
dx =

∫
− 1

10
dx .

.
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6D Horizontal Resisted Motion 243

So log(1 + 10v) = − x

10
+ C (for some constant C.)

At x = 0 the boat speed is v = 5·5 so

C = log(56)

hence log

(
1 + 10v

56

)
= − x

10
.

Thus
1 + 10v

56
= e−

x

10

or v = 1
10

(
56e−

x

10 − 1
)

.

(b) Let v → 0+ in the third last line above to get

− x

10
= log

(
1

56

)

thus x = 10 log(56)

=.
. 40 m

In fact, according to this mathematical model, the boat never stops moving and
only approaches this distance in the limit as t → ∞. As an exercise, find v then x

as functions of t and hence explain why this is the case.

Generalised Solutions: It is often efficient to solve a certain problem once, using
suitable pronumerals in place of the various constants. Once this generalised
solution is found, it is simply a matter of substituting the values of the constants
to get the final solution. In the next worked example it is a particularly useful
technique as a ratio of speeds is specified.

WORKED EXAMPLE 14: An object of mass m moves horizontally, starting at the
origin with velocity V0 > 0. It experiences a resistance due to friction which is
proportional to the square of its speed and in the opposite direction.

(a) Find an expression for the velocity v in terms of the displacement x.

(b) For a certain 5 kg object the resistance is equal to 1
10

v2. Find how far the
object has travelled when it has slowed to 1

4
of its initial speed.

kv
2

v

SOLUTION:

(a) Let k be the constant of proportionality for the frictional force. Since it is
opposite in direction to the velocity, and there are no other forces:

mẍ = −kv2

or v
dv

dx
= − k

m
v2

so
v′

v
= − k

m
.

Integrating with respect to x:∫
v′

v
dx = −

∫
k

m
dx .

Thus log v = − k
m

x + C (for some constant C)

or v = e−
k

m
x+C

so v = Ae−kx/m (where A = eC .)

At x = 0 V0 = A

thus v = V0e
−kx/m .

.
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244 CHAPTER 6: Mechanics 6D

(b) Here k = 1
10

, m = 5 and v = 1
4
V0. Thus

1
4

= e−x/50

or ex/50 = 4 .

Thus x = 50 log(4)

=.
. 69 m.

Other Methods: Numerous methods can be used to solve the equations encountered.
The above worked example is now extended to demonstrate two of those methods
appropriate to the course. In the first case, the derivative is treated like a fraction,
and in the second case, definite integrals are used. Teachers and students are
encouraged to investigate other techniques, such as separation of variables, using
an integrating factor, and treating (v2) like a variable.

WORKED EXAMPLE 15: Starting with v = V0e
−kx/m, find the displacement as a

function of time.

SOLUTION: First replace v with the derivative
dx

dt
.

dx

dt
= V0e

−kx/m.

Now treat the derivative like a fraction to get

dt

dx
=

ekx/m

V0
.

Thus t =
mekx/m

kV0
+ C .

Recall that at t = 0, x = 0, so

0 =
m

kV0
+ C

or C = − m

kV0

hence t =
m

kV0

(
ekx/m − 1

)
.

Finally, re-arrange this equation to get,

ekx/m =
kV0t + m

m

or x =
m

k
log

(
kV0t + m

m

)
.

WORKED EXAMPLE 16: Starting with mv̇ = −kv2, find the time taken for the
object to reduce in speed from V0 to 1

2
V0.

SOLUTION: Once again, treat the derivative like a fraction and re-arrange.

dt

dv
= − m

kv2
.

Thus the time can be written as a primitive function of v as follows:

T (v) =

∫ (
− m

kv2

)
dv .

In this question, the time required is the value of t = T (1
2
V0) − T (V0) .

But, by the Fundamental Theorem of Calculus, this is just a definite integral.

.
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6D Horizontal Resisted Motion 245

Thus t =

∫ 1

2
V0

V0

(
− m

kv2

)
dv

=

[
m

kv

] 1

2
V0

V0

=
2m

kV0
− m

kV0

=
m

kV0
.

Notice that no constant of integration needed to be found because a definite
integral was used. Now that the method of definite integrals has been established,
the technique can be used in future problems without the need for the detailed
explanation given above.

Exercise 6D

1. A certain drag-racing car of mass M kg is capable of a top speed of 288 km/h. After it
reaches this top speed, two different retarding forces combine to bring it to rest. First
there is a constant braking force of magnitude 2

3
M newtons. Secondly there is a resistive

force of magnitude 1
180

Mv2 newtons, where v m/s is the speed of the car, acting against
a parachute released from the rear-end of the vehicle. Let x metres be the distance of the
car from the point at which the two retarding forces are activated.

(a) Show that x = 90 ln

(
120 + 802

120 + v2

)
.

(b) Hence calculate, to the nearest metre, the distance that the drag-racing car travels as
it is brought from its top speed to rest.

2. A monorail of mass 10 000 kg is pulling out of a station S. Its motor provides a propelling
force of magnitude 10 000 Newtons, and as it moves it experiences a resistive force of
magnitude 100v2 Newtons, where v metres per second is its velocity.

(a) Show that the maximum speed the monorail can attain is 36 km/h.

(b) Show that x = 50 ln

(
100

100− v2

)
, where x metres is the distance the monorail has

travelled from S.

(c) What percentage (to the nearest per cent) of its maximum speed has the monorail
reached when it has travelled 50 metres?

3. A particle of mass mkg experiences a resistance of kv2 newtons when moving along the
x-axis, where k is a positive constant and v is the speed of the particle in metres per
second. The maximum speed attainable by the particle is u metres per second under a

variable propelling force of
P

v
newtons, where P is a positive constant.

(a) Show that k =
P

u3
. (b) Show that

dv

dx
=

P

m

(
1

v2
− v

u3

)
.

(c) Prove that the distance travelled as the speed changes from 1
3um/s to 2

3um/s is

mu3 ln 26
19

3P
metres.

(d) When the brakes are applied, the propelling force is no longer in operation. If the
maximum force exerted by the brakes is B Newtons, prove that the minimum distance

travelled in coming to rest from a speed of um/s is
mu3

2P
ln

(
1 +

P

Bu

)
metres.
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D E V E L O P M E N T

doorjamb door
y

4. A simple model of a door closing mechanism is a spring and
dashpot. The spring pulls the door closed and the dashpot, a
gas or oil filled piston, resists the motion, which ensures that
the door does not close too fast and slam shut. A schematic
diagram is shown on the right.

For a particular door with mass m, the force exerted by the
spring is −2my and the resistance from the dashpot is −3mẏ,
where y is the displacement of the door from the doorjamb.

(a) What is the significance of the minus sign in each force?

(b) Write down the equation of motion for the door.

(c) Show that, if y = f(t) and y = g(t) are both solutions to the equation of motion, and
if A and B are constants, then y = A f(t) + B g(t) is also a solution.

(d) It is known that the function y = ekt is a solution of the differential equation.

Show that the only possible values of the constant k are k = −1 and k = −2.

(e) From parts (c) and (d), a solution of the differential equation is

y = Ae−2t + Be−t.

When t = 0, it is known that y = 0 and
dy

dt
= 1 . Find the values of A and B.

5. The engines on a submarine of mass m deliver a maximum driving force of F newtons.
The water resists the motion with a force proportional to the square of the speed v.

(a) Explain why
dv

dt
=

1

m

(
F − kv2

)
where k is a positive constant.

(b) The submarine increases its speed from v1 to v2. Show that the distance travelled
during this period is

m

2k
× loge

(
F − kv1

2

F − kv2
2

)
.

6. As a particle of unit mass moves in a straight line, the only force acting on it is a resistance,
which is in the opposite direction to its velocity, v. The size of this force is v+v3. Initially
the particle is at the origin and has velocity Q, where Q > 0.

(a) Use partial fractions to show that the time t is given by t = 1
2 loge

(
Q2(1 + v2)

v2(1 + Q2)

)
.

(b) Hence find v2 as a function of t.

(c) Determine the limit of v as t → ∞, and hence explain why v is always positive.

(d) Show that the velocity is related to the displacement x by the formula

x = tan−1 Q − tan−1 v ,

and hence find lim
t→∞

x.

(e) Does it follow that x = tan−1

(
Q − v

1 + Qv

)
? Justify your answer.

.
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7. (a) Find the values of A and B such that
1

(2 − v)(3 + v)
=

A

(2− v)
+

B

(3 + v)
.

(b) A body with mass m = 4·5 × 106 kg is acted upon by a force of 104(6 − v)N where v

is its speed in metres per second. It also experiences a resistance proportional to the
square of its speed. That is:

dv

dt
=

104

m

(
6− v − kv2

)
.

(i) Its maximum speed is 2m/s. Find k.

(ii) Show that the body attains a speed of 1·5m/s, starting from rest, in a little over
2 minutes and 41 seconds.

8. When a jet aircraft touches down two different retarding forces combine to slow it down.
If the aircraft has mass M kg and speed v m/s then there is a constant frictional force of
2M newtons due to the brakes and a force of 1

10 000
Mv2 newtons due to the reverse thrust

of the engines. The reverse thrust does not take effect until 3 seconds after touchdown.

Let x be the distance in metres of the jet from its point of touchdown and let t be the
time in seconds after touchdown.

(a) The jet’s landing speed is 72m/s. Show that v = 66 and x = 207 at the instant the
reverse thrust of the engines takes effect.

(b) Show that when t > 3, x = 207 + 5000 ln

(
20000 + 662

20000 + v2

)
.

(c) Reverse thrust is shut down when the aircraft reaches a speed of 36m/s. How far
from the point of touchdown, correct to the nearest metre, does this happen?

(d) The brakes alone are then used to reach the taxi speed of 7m/s. How far from the
point of touchdown, correct to the nearest metre, does the plane reach its taxi speed?

9. A box of mass m is pushed across a floor with a constant force mP . As the box moves it
is also retarded by a force due to friction of mkv, where v is its velocity and k is a positive
constant. The box is initially travelling with velocity Vi.

(a) Write down a force balance equation and hence show that the speed which results in
zero nett force is V0 = P

k
.

(b) Integrate once to show that v = V0

(
1 −

(
1 − Vi

V0

)
e−kt

)
. Hence find lim

t→∞
v.

(c) Draw a graph of v versus t in the case when: (i) Vi > V0 (ii) Vi < V0

(d) Find the time taken for the box to accelerate from v = 1
3
V0 to v = 2

3
V0.

10. A particle is moving along the x-axis. Its acceleration is given by

d2x

dt2
=

5 − 2x

x3

and it starts from rest at x = 1 .

(a) Explain why the particle starts moving in the positive x direction.

(b) Let v be the velocity of the particle. Show that v =

√
x2 + 4x − 5

x
for x ≥ 1 .

(c) Describe the behaviour of the velocity of the particle after the particle passes x = 5
2 .
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248 CHAPTER 6: Mechanics 6E

11. An object is moving across a flat surface for which the friction is proportional to v3/2 and
in the opposite direction. That is, the acceleration is given by the equation

v
dv

dx
= −kv3/2 ,

where v is the velocity when the object is at x, and k is a positive constant. Initially the
particle is at the origin with speed V0 > 0 .

(a) (i) Integrate with respect to x and hence show that

√
v

V0
= 1− kx

2
√

V0

.

(ii) What values can x take, and where is the particle when it stops moving?

(b) (i) Find x as a function of the time t.

(ii) Review your answer to part (a)(ii) in light of this result.

E N R I C H M E N T

12. When a certain object is pushed across a polished floor, the resistance due to friction is
proportional to v3/2, where v is its velocity. The resulting equation for acceleration is

dv

dt
= 1 − v3/2 .

Initially the object is at rest.

(a) Use the substitution u =
√

v to show that
dt

du
=

2u

1 − u3
.

(b) Use partial fractions to show that

dt

du
=

2

3

(
1

1 − u
+

1

2
× 1 + 2u

1 + u + u2
− 3

2
× 1

(u + 1
2)2 + (

√
3

2 )2

)
.

(c) Hence show that t =
2

3

(
1

2
× log

(
1 +

√
v + v

(1−√
v)2

)
−
√

3 tan−1

( √
3v√

v + 2

))
.

6E Vertical Resisted Motion

In this section it is assumed that when a particle of mass m travels vertically
through a fluid such as air, water or oil, only two forces act on the particle,
namely a force due to gravity and a resistance R to the motion. Typically it is
found that the resistance is proportional to a power of the speed |v|. Thus

|R| = mk|v|n for some constant k .

Although n can take various values, only the cases n = 1 and n = 2 will be
studied in any detail in this course.

It is also observed that the resistance is opposite in direction to the velocity v.
Thus a more convenient form of the resistance is:

R = −mk|v|n−1v .

Normally this is further simplified by selecting a coordinate system in which the
velocity is positive, so that |v| = v and

R = −mkvn .

.
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6E Vertical Resisted Motion 249

For simplicity, the case of a projectile fired vertically is considered here. The
trajectory is naturally divided into two parts, the journey up and the journey
down. These parts will be considered separately.

y

0

The Upward Journey: Suppose that a particle of mass m is
fired upwards with initial velocity V0 through a resisting
medium under the influence of gravity g. Let y be the height
of the particle above the point of projection at time t. That
is, upwards is the positive direction as shown in the diagram
on the right. Also note that y = 0 when t = 0.

10
COORDINATES FOR THE UPWARDS JOURNEY: In most circumstances it is best to put the

origin at the initial position with upwards as the positive direction.

mg

v

R

The only forces acting on the particle are the resistive force and the weight. Thus
the net force F is

F = −mg − mkvn

or mÿ = −mg − mkvn

so ÿ = −(g + kvn) .

Thus the differential equation and set of initial conditions for the motion are:

ÿ = −(g + kvn) ,

whilst at t = 0,

ẏ = V0

and y = 0 .

In any given problem, at each step, the differential equation is integrated and then
the initial conditions are used to determine any unknown constant of integration.

11

THE UPWARD JOURNEY: For a given value of n, integrate the differential equation

ÿ = −(g + kvn) .

Determine any constant of integration by applying the initial conditions.

At t = 0 , ẏ = V0

y = 0

WORKED EXAMPLE 17: A particle is projected upwards in a medium for which
the resistance to the motion is one fifth of the mass times the velocity and opposite
in direction. The initial velocity is 30m/s. Let y be its height in metres above
the point of projection after t seconds. Use g =.

. 10m/s2, so that

ÿ = −(10 + 1
5
v) .

Find y as a function of the velocity v and hence find its maximum height.

.
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250 CHAPTER 6: Mechanics 6E

SOLUTION: Noting that ÿ = v
dv

dy
, it follows that

v
dv

dy
= − 50 + v

5

so
v

50 + v

dv

dy
= − 1

5

or

(
1 − 50

50 + v

)
dv

dy
= − 1

5
.

Integrate with respect to y to get:
∫ (

v′ − 50v′

50 + v

)
dy = −

∫
1

5
dy .

Thus v − 50 log(50 + v) = −1
5
y + C .

At t = 0, the particle is at the origin and v = 30, so

C = 30 − 50 log 80

Hence v − 50 log(50 + v) = −1
5
y + 30 − 50 log 80 .

Rearrange this equation to get, after a few lines of algebra,

y = 5

(
30 − v + 50 log

(
50 + v

80

))
.

At the maximum height v = 0, thus

ymax = 5
(
30 + 50 log 5

8

)
(about 32·5 metres.)

y

0The Downward Journey: Suppose that a particle of mass m

is allowed to fall from rest through a resisting medium under
the influence of gravity g. Let y be the distance below its
initial position at time t. That is, downwards is the positive
direction as shown in the diagram on the right. Also note
that y = 0 and ẏ = 0 when t = 0.

12
COORDINATES FOR THE DOWNWARDS JOURNEY: In most circumstances it is best to put

the origin at the initial position with downwards as the positive direction.

mg

v

R

The only forces acting on the particle are the resistive
force and the weight. Thus the net force F is

F = mg − mkvn

or mÿ = mg − mkvn

so ÿ = g − kvn .

Thus the differential equation of motion is:

ÿ = g − kvn

whilst at t = 0, the initial conditions are

ẏ = 0

and y = 0 .

.
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6E Vertical Resisted Motion 251

In any given problem, at each step, the differential equation is integrated and then
the intial conditions are used to determine any unknown constant of integration.

13

THE DOWNWARDS JOURNEY: For a given value of n, integrate the differential equation

ÿ = g − kvn .

Determine any constant of integration by applying the initial conditions. In

the case where the object is dropped from rest these are:

at t = 0 , ẏ = 0

y = 0

WORKED EXAMPLE 18: A particle falls from rest through a medium for which
the resistance is proportional to the velocity and opposite in direction. Let y be
the distance in metres below its initial position after t seconds. Assume that

ÿ = g − kv .

(a) Find v as a function of t.

(b) Hence show that the terminal velocity is lim
t→∞

v = g
k .

(c) Find y as a function of t.

(d) Show that if h is large enough then the approximate time to reach the ground
at y = h is given by t =.

. kh
g

+ 1
k
.

SOLUTION:

(a) Since ÿ = v̇ it follows that

v̇ = g − kv

so
kv̇

g − kv
= k .

Integrate with respect to time to get:
∫ −kv̇

g − kv
dt =

∫
−k dt

thus log(g − kv) = −kt + C1 .

At t = 0, the velocity is zero, thus

C1 = log g .

Hence log(g − kv) = −kt + log g .

Rearrange this equation to get

log

(
g − kv

g

)
= −kt

so
g − kv

g
= e−kt

or v = g
k

(
1 − e−kt

)
.

(b) lim
t→∞

v = lim
t→∞

g
k

(
1 − e−kt

)

= g
k (1− 0)

= g
k

.

.
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(c) From part (a), ẏ = g
k

(
1 − e−kt

)
. Integrate with respect to time to get:

y = g
k

(
t + 1

ke−kt
)

+ C2 .

At t = 0 0 = g
k
(0 + 1

k
) + C2

so C2 = − g
k2 .

Hence y = g
k

(
t + 1

k

(
e−kt − 1

))
.

(d) If h is large enough then t is also large, so that e−kt =.
. 0. Thus

h =.
. g

k

(
t − 1

k

)

and t =.
. kh

g
+ 1

k
.

Terminal Velocity: The terminal velocity of an object is most often associated with
falling bodies, but is sometimes referred to in other problems. As demonstrated
in the above worked example, one method of finding the terminal velocity is to
find v as a function of t and then determine the limit

VT = lim
t→∞

v(t) .

A simpler approach is to recognise that the terminal velocity corresponds to zero
acceleration. Thus in the above worked example

0 = g − kVT

so VT =
g

k

14 TERMINAL VELOCITY: This is easily found by putting ÿ = 0.

An Object Thrown Down: In this case, the equation of motion is the same as for
the downward journey above. Let the initial speed be U . There are three cases
of note: 0 ≤ U < VT , U = VT and U > VT . It can be shown that when U = VT

the velocity never changes, so that the displacement function is simply

y = VT t .

Students should ensure they are able to prove this result for themselves. The
other two cases are dealt with in the exercise and the following example.

WORKED EXAMPLE 19: An object is thrown downward with initial speed twice
its terminal velocity. Its motion is affected by gravity and air resistance, which is
proportional to the square of its speed. Put the origin at the point of projection
with downward as positive. The velocity v satisfies the equation

v̇ = g − kv2

with the initial condition that v(0) = 2VT , where VT =
√

g
k
.

(a) Let w =
v

VT
. Show that w satisfies the equation

ẇ = −(w2 − 1)
√

gk

and state the initial condition for w.

(b) Use partial fractions to help find t as a function of w.

(c) Hence find the time taken for the object to reduce in speed from 2VT to 11
10VT .

.
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SOLUTION:

(a) It should be clear that v = VT w and v̇ = VT ẇ, thus

VT ẇ = g − kVT
2 w2

= g − gw2

so ẇ = (1− w2)
g

VT

= −(w2 − 1)
√

gk .

The initial condition is v(0) = 2VT , so from the substitution it follows that

VT w(0) = 2VT ,

hence w(0) = 2 .

(b) Treating the derivative like a fraction

dt

dw
=

−1

(w2 − 1)
√

gk

or
√

gk
dt

dw
=

−1

(w + 1)(w − 1)

Let
−1

(w + 1)(w − 1)
=

A

w + 1
+

B

w − 1

then by the cover-up rule A = 1
2

and B = −1
2
.

And so 2
√

gk
dt

dw
=

1

w + 1
− 1

w − 1
.

Now integrate to get

2t
√

gk = log(w + 1) − log(w − 1) + C ,

and from the initial condition

0 = log 3 + C

hence 2t
√

gk = log(w + 1) − log(w − 1)− log 3 ,

or t =
1

2
√

gk
log

(
w + 1

3(w − 1)

)
.

(c) When v = 11
10

VT it follows that w = 11
10

so

t =
1

2
√

gk
log

(
11 + 10

3(11− 10)

)

=
log 7

2
√

gk
.

Notice that the equation in part (b) can be solved for w to get

w =
3e2t

√
gk + 1

3e2t
√

gk − 1

so that v = VT × 3e2t
√

gk + 1

3e2t
√

gk − 1
.

It should be clear that the numerator of the fraction is always greater than the
denominator. Hence the velocity is always greater than the terminal velocity.
More specifically, the velocity is always decreasing, quickly at first and then at a
decreasing rate as it approaches the limiting value VT from above. That is, the
graph of v(t) is concave up with a horizontal asymptote.
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Exercise 6E

1. An object of mass 5 kg is projected vertically upwards with velocity 40m/s and experiences
a resistive force in Newtons of magnitude 0·2v2, where v is the velocity of the object at
time t seconds. Assume that g = 10m/s2.

(a) Show that
dv

dt
=

−250 − v2

25
.

(b) Find, correct to the nearest tenth of a second, the time to reach its maximum height.

(c) Use
dv

dt
= v

dv

dy
to help find the maximum height, correct to the nearest metre.

2. An object of mass 0·5 kg is projected upwards with velocity 40m/s and experiences a
resistive force in Newtons of magnitude 0·2v, where v is the velocity of the object at
time t seconds. Assume that g = 10m/s2.

(a) Show that ẍ =
−50− 2v

5
.

(b) Show that the object takes 5
2

ln 13
5

seconds to reach its maximum height.

(c) Show that the maximum height reached is (100 + 125
2

ln 5
13

) metres.

3. An object of mass 100 kg is found to experience a resistive force, in newtons, of one-tenth
the square of its velocity, in metres per second, when it moves through the air. Suppose
that the object falls from rest under gravity, and take g = 9·8m/s2.

(a) Show that its terminal velocity is about 99m/s.

(b) If the object reaches 80% of its terminal velocity before striking the ground, show that
the point from which it was dropped was about 511 metres above the ground.

D E V E L O P M E N T

4. (a) An object of mass 1 kg is projected vertically upwards from the ground at 20m/s.
The body is under the effect of both gravity and air resistance which, at any time,
has a magnitude of 1

40v2, where v is the velocity at time t. Put g = 10 m/s2, and take
upwards as the positive direction.

(i) Show that the greatest height reached by the object is 20 ln 2metres.

(ii) Show that the time taken to reach this greatest height is π
2 seconds.

(b) Having reached its greatest height the particle falls back to its starting point. The
particle is still under the effect of both gravity and air resistance. Take downwards as
the positive direction.

(i) Write down the equation of motion of the object as it falls.

(ii) Find the speed of the object when it returns to its starting point.

5. An object is projected downwards with initial velocity V0. The air resistance at speed v

has magnitude mkv, where k is a positive constant. Take downwards as the positive
direction.

(a) Show that t = 1
k

loge

(
g−kV0

g−kv

)
.

(b) Hence show that v = g
k
(1 − e−kt) + V0 e−kt, and that the terminal velocity is g

k
.

(c) Integrate again to show that x = g
k
t + kV0−g

k2

(
1 − e−kt

)
.

(d) Suppose that the terminal velocity of this object is 20m/s, and that g = 10m/s2. The
object is thrown vertically downwards from a lookout at the top of a cliff at precisely
the terminal velocity. At the same instant, a similar object is dropped from the same
height. Show that the distance between the two falling objects after t seconds is

40(1− e−
1

2
t) metres, and hence state the limiting distance between them.
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6. A particle of mass 10 kg is found to experience a resistive force, in newtons, of one-tenth of
the square of its velocity in metres per second when it moves through the air. The particle
is projected vertically upwards from a point O with a velocity of u metres per second. The
point A, vertically above O, is the highest point reached by the particle before it starts to
fall to the ground again. Assume that g = 10m/s2.

(a) Show that the particle takes
√

10 tan−1 u
10

√
10

seconds to reach A from O.

(b) Show that the height OA is 50 loge(
1000+u2

1000 ) metres.

(c) Let w be the velocity of the particle when it returns to O. Show that w2 =
1000u2

1000 + u2
.

7. (a) A particle of mass m falls from rest, from a point O, in a medium whose resistance
is mkv, where k is a positive constant and v is the velocity at time t.

(i) Prove that the terminal velocity V is V =
g

k
.

(ii) Prove that the speed at time t is given by V
(
1 − e−kt

)
.

(b) An identical particle is projected upwards from O with initial velocity U in the same
medium. Suppose that both particles begin their motion simultaneously.

(i) Prove that the second particle reaches its maximum height at t = 1
k

ln g+kU
g

.

(ii) Prove that the speed of the first particle when the second particle reaches its

maximum height is
UV

U + V
.

8. A particle P1 of mass m kg is dropped from point A and falls towards point B, which
is directly underneath A. At the instant when P1 is dropped, a second particle P2, also
of mass m kg, is projected upwards from B towards A with an initial velocity equal in
magnitude to twice the terminal velocity of P1. Each particle experiences a resistance of
magnitude mkv as it moves, where v ms−1 is the velocity and k is a constant.

(a) Show that the terminal velocity of P1 is
g

k
, where g is acceleration due to gravity.

(b) Show that the time taken for particle P2 to reach velocity v is t =
1

k
ln

(
3g

g + kv

)
.

(c) Suppose that the particles collide at the instant when P1 has reached 30% of its

terminal velocity. Show that the velocity of P2 when they collide is
11g

10k
ms−1.

9. (a) Consider the function f(x) = x − g2

x
− 2g ln

(
x

g

)
, for x ≥ g .

(i) Evaluate f(g).

(ii) Show that f ′(x) =

(
1 − g

x

)2

.

(iii) Explain why f(x) > 0 for x > g.

(b) A body is moving vertically through a resisting medium, with resistance proportional
to its speed. The body is initially fired upwards from the origin with speed V0. Let y

metres be the height of the object above the origin at time t seconds, and let g be the
constant acceleration due to gravity. Thus

d2y

dt2
= −(g + kv) , where k > 0 .

You may assume that this equation is valid for all t ≥ 0.

.
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(i) Find v as a function of t, and hence show that

k2y = (g + kV0)(1− e−kt) − gkt .

(ii) Find T , the time taken to reach the maximum height.

(iii) Show that when t = 2T ,

k2y = (g + kV0) −
g2

g + kV0
− 2g ln

(
g + kV0

g

)
.

(iv) Use this result and part (a) to show that the downwards journey takes longer.

10. An object of mass 1 kg is dropped from a lookout on top of a high cliff. Let the acceleration
due to gravity be 10m/s2.

(a) At first, air resistance causes a deceleration of magnitude 1
10

v , where v m/s is the
speed of the object t seconds after it is dropped.

(i) Taking downwards as positive, explain why its equation of motion is

ẍ = 10 − 1
10

v ,

where x is the distance that the object has fallen in the first t seconds.

(ii) Show that
dv

dx
=

100 − v

10v
, and hence show that the speed V of the object when

it is 40 metres below the lookout satisfies the equation

V + 100 loge

(
1 − V

100

)
+ 4 = 0.

(b) After the object has fallen 40 metres and reached this speed V , a very small parachute
opens, and air resistance now causes a deceleration to its motion of magnitude 1

10v2 .

(i) Taking downwards as positive, write an expression for the new acceleration ẍ of
the object, where x now is the distance that the object has fallen in the first
t seconds after the parachute opens.

(ii) Show that v2 = 100 − (100 − V 2)e−
1

5
x, and hence find the terminal velocity of

the object.

(iii) Show that t seconds after the parachute opens,

t = 1
2 loge

(v + 10)(V − 10)

(v − 10)(V + 10)
.

(iv) The solution to the equation in part (ii) of part (a) is V =.
. 25·7m/s. How long

after the parachute opens does the object reach 105% of its terminal velocity?

11. A projectile is fired with velocity V = 30m/s at an angle of 45◦ to the horizontal. Air
resistance is proportional to the velocity. Thus the equations of motion are

d2x

dt2
= −k

dx

dt
and

d2y

dt2
= −g − k

dy

dt
,

where it is known that k = 1
3
. Take g = 10 m/s2.

(a) Show that, at time t, the horizontal displacement is x = 45(1− e−t/3)
√

2.

(b) Find a similar expression for the vertical displacement y as a function of t.

(c) Hence show that y = (1 +
√

2)x − 90 log

(
45

√
2

45
√

2 − x

)
.

(d) Accurately plot the function in (c) and use it to estimate the range.

(e) By way of comparison, show the trajectory for no air resistance on the same graph.
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E N R I C H M E N T

12. The case of vertical resisted motion where n = 1 can be solved without the need to divide
the journey into two parts, and was assumed in Question 9(b). Use the equation

ÿ = −(g + kv)

with initial conditions v(0) = V0 and y(0) = 0 to show that the correct terminal velocity
VT = − g

k is obtained. Also show that the height at any time after the particle reaches its
maximum height is consistent with the result given in the text for the downward journey.

13. The equations of motion for a projectile with air resistance proportional to the square of
the speed are

u̇ = −k(u2 + v2)
1

2 u and v̇ = −g − k(u2 + v2)
1

2 v ,

where u = ẋ is the horizontal component of velocity and v = ẏ is the vertical component of
velocity. There is no known solution to this pair of equations. Nevertheless the trajectory
can be approximated and plotted by following the steps below.

In this case, the initial speed of the projectile is 30m/s, the angle of projection is 45◦, and
k = 1

90
. Take g = 10m/s2 . Give your answers correct to 2 decimal places.

(a) (i) Recall that, from first principles,
du

dt
= lim

δt→0

u(t + δt) − u(t)

δt
. Hence, for δt small

enough,
du

dt
=.
. u(t + δt) − u(t)

δt
. Show that

u(t + δt) =.
. u(t)

(
1 − k δt

(
u(t)2 + v(t)2

) 1

2

)
.

(ii) Find similar expressions for x(t + δt), y(t + δt) and v(t + δt).

(b) It should be clear that u(0) = v(0) = 15
√

2 , and that x(0) = y(0) = 0.

(i) Use part (a)(i) with t = 0 and δt = 0·1 to find the approximate value of u(0·1).

(ii) Similarly find the approximate values of v(0·1), x(0·1) and y(0·1).

(c) What are the approximate values of u(0·2), v(0·2), x(0·2) and y(0·2)?

(d) Use a spreadsheet or appropriate mathematical software to continue to find x, y, u

and v in time steps of 0·1. Hence plot the trajectory of the projectile. What is the
approximate range, correct to the nearest metre?

6F Projectile Motion

In this section, harder questions on projectile motion are considered. There are
also some questions involving projectile motion with air resistance, however, these
are very limited as solutions can only be found in one case, when the resistance
is proportional to the velocity. There is no new theory, but the following two
examples indicate the difficulty of the questions that may be asked.

WORKED EXAMPLE 20: A fielder in a women’s cricket team finds she can catch
a ball with greatest ease when the height of the ball is between y1 and y2, where
y2 < y1. A ball is hit which has range R and reaches height h > y1. The fielder
will catch the ball on its downwards trajectory at height y, y2 ≤ y ≤ y1. If the
fielder positions herself to catch the ball at distance x from the point of projection,
what is the length of the interval that x can lie within? Give the answer in terms
of y1, y2, R and h. Assume air resistance is negligible.
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258 CHAPTER 6: Mechanics 6F

SOLUTION: This is a trick question, which is about roots of quadratic equations,
not projectile motion. Since the range is R the equation of the trajectory may
be written as

y = ax(R − x)

The vertex of the parabola is (1
2
R, h) so

h = 1
4
aR2

thus a =
4h

R2
.

h

R
x

y

x
1

x
1
*x

2
* x

2

y
1

y
2

From the diagram, the closest the fielder can be is at x1, where x1 and x∗
1 are

roots of the quadratic equation

ax(R − x) = y1

viz ax2 − aRx + y1 = 0 .

Now (x1 − x∗
1)

2 = (x1 + x∗
1)

2 − 4x1x
∗
1

and using the sums and products of quadratic roots

(x1 − x∗
1)

2 = R2 − 4
y1

a

= R2 − y1R
2

h
.

Hence, taking the positive square root

(x1 − x∗
1) = R

√
1 − y1

h
.

Likewise (x2 − x∗
2) = R

√
1 − y2

h
.

From the symmetry of the parabola, the required distance is

(x2 − x1) = 1
2

(
(x2 − x∗

2) − (x1 − x∗
1)
)

=
R

2

(√
1 − y2

h
−
√

1 − y1

h

)
.

WORKED EXAMPLE 21: A projectile is fired with velocity vector V
˜

= 15i
˜
+ 30j

˜
.

Air resistance is proportional to the velocity. Thus the equations of motion are

d2x

dt2
= −k

dx

dt
and

d2y

dt2
= −g − k

dy

dt
,

where k = 1
5 and g =.

. 10.

Find x(t) and y(t). Hence determine the Cartesian equation of motion.

SOLUTION: This time the question is a genuine projectile motion problem. The
differential equation for the horizontal component is:

d(ẋ)

dt
= −1

5
ẋ

which is the equation for exponential decay, thus

ẋ = Ae−t/5.

At t = 0 15 = A

hence
dx

dt
= 15e−t/5.
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6F Projectile Motion 259

Integrating a second time

x = B − 75e−t/5

and at t = 0 the projectile is at the origin so

B = 75

thus x = 75(1− e−t/5).

Now solve the differential equation for the vertical component of motion.

d(ẏ)

dt
= −1

5(50 + ẏ)

which is shifted exponential decay, thus,

ẏ = Ce−t/5 − 50

At t = 0, 30 = C − 50, so C = 80 and hence
dy

dt
= 80e−t/5 − 50

Integrating a second time

y = −400e−t/5 − 50t + D

and at t = 0 the projectile is at the origin so

D = 400

and y = 400(1− e−t/5) − 50t . (1)

Now from above

x = 75(1− e−t/5) (2)

so 75e−t/5 = 75− x

or et/5 =
75

75− x

and t = 5 log

(
75

75− x

)
. (3)

Thus combining (1), (2) and (3) gives: y =
400x

75
− 250 log

(
75

75 − x

)
.

Exercise 6F

1. A projectile is fired with velocity V = 40m/s on a horizontal plane at an angle of elevation
α = 60◦. Take g = 10m/s2, and let the origin be the point of projection.

(a) Show that ẋ = 20 and ẏ = −10t + 20
√

3, and find x and y.

(b) Find the flight time, and the horizontal range of the projectile.

(c) Find the maximum height reached, and the time taken to reach it.

(d) An observer claims that the projectile would have had a greater horizontal range if its
angle of projection had been halved. Investigate this claim by reworking the question
with α = 30◦.

2. A projectile is fired at a speed of 39m/s and at an angle of elevation of tan−1 12
5

. It just
clears a tower at a horizontal distance of 30m from the point of projection.

(a) Obtain, by integration, expressions for ẋ, ẏ, x and y, taking g = 10m/s2.

(b) Find the height of the tower.

(c) Find, in m/s correct to one decimal place, the speed of the projectile as it clears the
tower.

(d) Does the projectile reach its greatest height before or after it clears the tower?

.

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



260 CHAPTER 6: Mechanics 6F

3. A pebble is thrown from the top of a vertical cliff with velocity 20m/s at an angle of
elevation of 30◦. The cliff is 75 metres high and overlooks a river.

(a) Derive expressions for the horizontal and vertical components of the displacement of
the pebble from the top of the cliff after t seconds. (Take g = 10m/s2.)

(b) Find the time it takes for the pebble to hit the water and the distance from the base
of the cliff to the point of impact.

(c) Find the greatest height that the pebble reaches above the river.

(d) Find the values of ẋ and ẏ at the instant when the pebble hits the water. Hence
find the speed (to the nearest m/s) and the acute angle below the horizontal (to the
nearest degree) at which the pebble hits the water.

(e) The path of the pebble is a parabolic arc. By eliminating t from the equations for x

and y, find its equation in Cartesian form.

4. A plane is flying horizontally at 363·6 km/h and its altitude is 600 metres. It is to drop a
food parcel onto a large cross marked on the ground in a remote area.

(a) Convert the speed of the plane into metres per second.

(b) Derive expressions for the horizontal and vertical components of the food parcel’s
displacement from the point where it was dropped. (Take g = 10m/s2.)

(c) Show that the food parcel will be in the air for 2
√

30 seconds.

(d) Find the speed and angle at which the food parcel will hit the ground.

(e) At what horizontal distance from the cross, correct to the nearest metre, should the
plane drop the food parcel?

5. Ming hit a golf ball from level ground with initial speed 50m/s at an angle of 45◦above
the horizontal. The ball hit the clubhouse 75 metres away. Take g = 10m/s2.

(a) Show that the ball hit the clubhouse after 3
2

√
2 seconds at a point 52·5 metres above

the ground.

(b) Show that the velocity of the ball when it struck the clubhouse was 5
√

58m/s at an
angle of tan−1 2

5
above the horizontal.

6. Jeffrey hit a golf ball that was lying on level ground. Two seconds into its flight, the
ball just cleared a 28-metre-tall tree which was 24

√
5 metres from where the ball was hit.

Let V m/s be the initial speed of the ball, and let θ be the angle above the horizontal at
which the ball was hit. Take g = 10m/s2.

(a) Show that the horizontal and vertical components of the displacement of the ball from
its initial position are x = V t cos θ and y = −5t2 + V t sin θ.

(b) Show that V cos θ = 12
√

5 and V sin θ = 24.

(c) By squaring and adding, find V . Then find θ, correct to the nearest minute.

(d) Find, correct to the nearest metre, how far Jeffrey hit the ball.

D E V E L O P M E N T

7. A ball is thrown from level ground at an initial speed of V m/s and at an angle of projection
of α above the horizontal. Assume that, t seconds after release, the horizontal and vertical
displacements are given by x = V t cos α and y = V t sin α − 1

2
gt2.

(a) Show that the trajectory has Cartesian equation y =
x

cos2 α

(
sinα cosα − gx

2V 2

)
.

(b) Hence show that the horizontal range is
V 2 sin 2α

g
.
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6F Projectile Motion 261

(c) When V = 30m/s, the ball lands 45 metres away. Take g = 10m/s2.

(i) Find the two possible values of α.

(ii) A 2-metre-high fence is placed 40 metres from the thrower. Examine each trajec-
tory to see whether the ball will still travel 45 metres.

x

y

tan
−1 1

5

tan
−1 4

3

20 ms
−1

8. A ball is thrown with initial velocity 20m/s at an angle of
elevation of tan−1 4

3
.

(a) Show that the parabolic path of the ball has parametric
equations x = 12t and y = 16t − 5t2.

(b) Hence find the horizontal range of the ball, and its great-
est height.

(c) Suppose that, as shown opposite, the ball is thrown up
a road inclined at tan−1 1

5 to the horizontal. Show that:

(i) the ball is about 9 metres above the road when it reaches its greatest height,

(ii) the time of flight is 2·72 seconds, and find, correct to the nearest tenth of a metre,
the distance the ball has been thrown up the road.

9. Sofia threw a ball with velocity 20m/s from a point exactly one metre above the level
ground she was standing on. The ball travelled towards a wall of a tall building 16 metres
away. The plane in which the ball travelled was perpendicular to the wall. The ball struck
the wall 16 metres above the ground. Take g = 10m/s2.

x

y

1 m

16 m

16 m

O

(a) Let the origin be the point on the ground directly below
the point from which the ball was released. Show that,
t seconds after the ball was thrown, x = 20t cosθ and
y = −5t2 + 20t sin θ + 1, where θ is the angle above the
horizontal at which the ball was originally thrown.

(b) The ball hit the wall after T seconds. Show that
4 = 5T cos θ and 3 = 4T sin θ − T 2.

(c) Hence show that 16 tan2 θ − 80 tan θ + 91 = 0.

(d) Hence find the two possible values of θ, correct to the nearest minute.

x

y

O

2·4

144 km/h

7º10. Glenn the fast bowler runs in to bowl and releases the ball
2·4 metres above the ground with speed 144 km/h at an
angle of 7◦ below the horizontal. Take the origin to be the
point where the ball is released, and take g = 10m/s2.

(a) Show that the coordinates of the ball t seconds after its
release are given by

x = 40t cos 7◦, y = 2·4 − 40t sin 7◦ − 5t2.

(b) How long will it be (to the nearest 0·01 seconds) before the ball hits the pitch?

(c) Calculate the angle (to the nearest degree) at which the ball will hit the pitch.

(d) The batsman is standing 19 metres from the point of release. If the ball lands more
than 5 metres in front of him, it will be classified as a ‘short-pitched’ delivery. Is this
particular delivery short-pitched?
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V1

θ1 θ2

V2

A B

11. Two particles P1 and P2 are projected simultaneously from
the points A and B, where AB is horizontal. The motion
takes place in the vertical plane through A and B. The
initial velocity of P1 is V1 at an angle θ1 to the horizontal,
and the initial velocity of P2 is V2 at an angle θ2 to the
horizontal. You may assume that the equations of motion
of a particle projected with velocity V at an angle θ to the
horizontal are x = V t cos θ and y = −1

2
gt2 + V t sin θ.

(a) Show that the condition for the particles to collide is V1 sin θ1 = V2 sin θ2.

(b) Suppose that AB = 200 metres, V1 = 30m/s, θ1 = sin−1 4
5 , θ2 = sin−1 3

5 , g = 10m/s2

and that the particles collide.

(i) Show that V2 = 40m/s, and that the particles collide after 4 seconds.

(ii) Find the height of the point of collision above AB.

(iii) Find, correct to the nearest degree, the obtuse angle between the directions of
motion of the particles at the instant they collide.

12. A particle is projected from the origin with initial speed 30m/s at an angle of 60◦ above
the horizontal. It is subject to gravity as well as air resistance proportional to 1

6
of its

velocity in both the horizontal and vertical directions, so that ẍ = −1
6
ẋ and ÿ = −10− 1

6
ẏ.

(a) Show that ẋ = 15e−
1

6
t and ẏ = 15

((
4 +

√
3
)
e−

1

6
t − 4

)
.

(b) Show that x = 90
(
1 − e−

1

6
t
)
.

(c) Show that the particle reaches its greatest height when t = 6 ln

(
4 +

√
3

4

)
.

(d) Find, correct to the nearest metre, the horizontal distance travelled when the particle
reaches its greatest height.

x

y

20 m

20 m/s

h m

O

α

13. A cricketer hits the ball from ground level with a velocity of
magnitude 20m/s at an angle of elevation α. It flies towards
a high wall 20 metres away on level ground. Take the origin
at the point where the ball was hit, and take g = 10m/s2.

(a) Show that the ball hits the wall when h = 20 tanα − 5 sec2 α.

(b) Show that
d

dα
(secα) = sec α tanα.

(c) Show that the maximum value of h occurs when tanα = 2.

(d) Find the maximum height.

(e) Find the speed and angle (to the nearest minute) at which the ball hits the wall.

14. A stone is propelled at an angle of θ above the horizontal from the top of a vertical cliff
40 metres above a lake. The speed of propulsion is 20m/s. Take g = 10m/s2.

(a) Show that x(t) and y(t), the horizontal and vertical components of the stone’s dis-
placement from the top of the cliff, are given by

x(t) = 20t cos θ, y(t) = −5t2 + 20t sinθ.

(b) If the stone hits the lake at time T seconds, show that
(
x(T )

)2
= 400T 2 − (5T 2 − 40)2.

(c) Hence find, by differentiation, the value of T that maximises
(
x(T )

)2
, and then find

the value of θ that maximises the distance between the foot of the cliff and the point
where the stone hits the lake.
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6F Projectile Motion 263

15. A particle P1 is projected from the origin with speed V at an angle of elevation θ.

(a) Assuming the usual equations of motion, show that the particle reaches a maximum

height of
V 2 sin2 θ

2g
.

(b) A second particle P2 is projected from the origin with velocity 3
2
V at an angle 1

2
θ to

the horizontal. The two particles reach the same maximum height.

(i) Show that θ = cos−1 1
8
. (ii) Do the two particles take the same time to reach

this maximum height? Justify your answer.

16. (a) Prove that the horizontal range of a projectile is
V 2 sin 2α

g
, where V is the initial

speed, α is the angle of projection and g m/s2 is the acceleration due to gravity.

(b) A garden sprinkler sprays water symmetrically about its vertical axis at a constant
speed of V m/s. The initial direction of the spray varies continuously between 15◦ and
45◦ above the horizontal.

(i) Explain why, from a fixed point O on level ground, the sprinkler will wet an

annulus with centre O, inner radius
V 2

2g
metres and outer radius

V 2

g
metres.

(ii) Deduce that by appropriately locating the sprinkler relative to a rectangular gar-

den 6m by 3m, the entire garden can be watered provided that
V 2

2g
≥ 1 +

√
7.

17. A particle is projected from the origin with speed V at an angle of α above the horizontal.
It is subject to both gravity and an air resistance proportional to its velocity, so that its
horizontal and vertical components of acceleration while it is rising are given by ẍ = −kẋ

and ÿ = −g − kẏ.

(a) Show that ẋ = V cosα e−kt and ẏ =

(
g

k
+ V sinα

)
e−kt − g

k
.

(b) Hence show that x =
V cosα

k

(
1− e−kt

)
and y =

(
g

k2
+

V sinα

k

)(
1 − e−kt

)
− g

k
t.

(c) When the particle reaches its greatest height, show that it has travelled a horizontal

distance of
V 2 sin 2α

2 (g + V k sin α)
.

E N R I C H M E N T

18. A projectile is fired from the origin with velocity V and angle of elevation α, where α is
acute. Assume the usual equations of motion.

(a) Let k =
V 2

2g
. Show that the Cartesian equation of the parabolic path of the projectile

can be written as

x2 tan2 α − 4kx tanα + (4ky + x2) = 0.

(b) Show that the projectile can pass through the point (X, Y ) in the first quadrant by
firing at two different initial angles α1 and α2 only if X2 < 4k2 − 4kY .

(c) Suppose that tanα1 and tanα2 are the two real roots of the quadratic equation in
tanα in part (a). Show that tanα1 tanα2 > 1, and hence explain why it is impossible
for α1 and α2 both to be less than 45◦.
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x

y

P

V

a

bO

19. The diagram shows the parabolic path of a particle that is
projected from the origin O with speed V at an angle of α

above the horizontal. It lands at P , which lies on a plane
inclined at an angle of β to the horizontal. When the particle
hits the plane, its direction of motion is perpendicular to the
plane.

Let OP = d, and assume that the horizontal and vertical dis-
placements of the particle from O are given by x = V t cosα

and y = V t sinα − 1
2gt2.

(a) Write down the coordinates of P in terms of d and β.

(b) By substituting the coordinates of P into the displacement equations, show that

d =
2V 2 cos2 α

g cos2 β
(tanα cos β − sin β) .

(c) By resolving the horizontal and vertical components of the velocity at P , show that

cotβ =
gd cosβ

V 2 cos2 α
− tan α.

(d) Deduce that tanα = cotβ + 2 tanβ.

20. (a) Consider the function y = 2 sin(x − θ) cos x.

(i) Show that
dy

dx
= 2 cos(2x − θ). (ii) Hence, or otherwise, show that

2 sin(x− θ) cosx = sin(2x− θ) − sin θ.

P X,Y( )

x

y

R

V

β

α

(b) A projectile is fired from the origin with velocity V at an
angle of α to the horizontal up a plane inclined at β to
the horizontal. Assume that the horizontal and vertical
components of the projectile’s displacement are given
by x = V t cosα and y = V t sin α − 1

2
gt2.

(i) If the projectile strikes the plane at (X, Y ), show that

X =
2V 2 cos2 α(tanα − tanβ)

g
.

(ii) Hence show that the range R of the projectile up the plane is given by

R =
2V 2 cos α sin(α − β)

g cos2 β
.

(iii) Use part (a)(ii) to show that the maximum possible value of R is
V 2

g(1 + sinβ)
.

(iv) If the angle of inclination of the plane is 14◦, at what angle to the horizontal
should the projectile be fired in order to attain the maximum possible range?

21. A tall building stands on level ground. The nozzle of a water sprinkler is positioned at a
point P on the ground at a distance d from a wall of the building. Water sprays from the
nozzle with speed V and the nozzle can be pointed in any direction from P .

(a) If V >
√

gd, prove that the water can reach the wall above ground level.

(b) Suppose that V = 2
√

gd. Show that the portion of the wall that can be sprayed with

water is a parabolic segment of height 15
8 d and area 5

√
15

2 d2.
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6G Miscellaneous Problems

There is no new mathematical theory presented in this section. Instead it is a
collection of harder problems deemed to be within the scope of the syllabus. The
list of problems presented here is not intended to be exhaustive. Teachers and
students are encouraged to find other practical applications of the mathematics
they have encountered, and to solve those problems. When attempting questions,
students are encouraged to draw a diagram, where appropriate, as often a problem
is more simply solved from the diagram.

WORKED EXAMPLE 22: A car of mass m is travelling at a constant speed V0 m/s.
The brakes are applied, resulting in a constant deceleration until the car comes
to a stop. Given that the car stops in `m, find the force exerted by the brakes.

0 xl

V
0

SOLUTION: Let v m/s be the speed of the car xm beyond where the brakes are
first applied. Since deceleration is involved, let the acceleration of the car be −a,
with a > 0, so that

d

dx

(
1
2
v2
)

= −a .

Integrating, 1
2
v2 = −ax + C .

At x = `, v = 0 so C = a`. Thus the velocity is given by
1
2
v2 = −ax + a` .

At x = 0, 1
2V0

2 = a`

thus a =
V0

2

2`
.

Hence the force required to stop the car is:

F = m(−a)

= −mV0
2

2`
.

Notice that for any given force, the distance is proportional to the square of the
speed. Thus a car going just 10% above the speed limit will require a distance 21%
greater to stop. This is obviously a significant issue for road safety.

Variable Gravity: One particular type of problem that can be solved in this course
is motion with variable gravity, as shown in previously Worked Example 5 and
here in the following example.

WORKED EXAMPLE 23: The acceleration experienced by an object due to gravity
is inversely proportional to the square of the radius r metres between the centre
of the earth and the centre of the object, and is directed towards the centre of
the earth. Thus, ignoring all other forces, the equation of motion is:

d2r

dt2
= − k

r2
.

Assume that the earth is a sphere of radius R and that the acceleration due to
gravity at the surface of the earth is g. The object is projected vertically with
initial velocity V0.

(a) The smallest initial velocity for which the object never returns to the earth

is called the escape velocity. Show that the escape velocity is V0 =
√

2gR.

(b) Given that V0 =
√

2gR, find the time taken to reach an altitude of R.
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SOLUTION:

(a) Begin by finding the value of k. At the surface of the earth r = R, so

−g = − k

R2

hence k = gR2 .

V
0

0

r

2R

R

Next, re-write the acceleration in terms of velocity v and radius r.
d

dr

(
v2
)

= − 2gR2

r2

so v2 =
2gR2

r
+ C1 (for some constant C1) .

When t = 0, r = R and v = V0 so

V0
2 = 2gR + C1

thus C1 = V0
2 − 2gR

and v2 =
2gR2

r
+ V0

2 − 2gR .

Since the object never returns, r must always increase, otherwise r̈ < 0.

So take the limit as r → ∞ to get

lim
r→∞

v2 = V0
2 − 2gR

which must be positive or zero. (Squares cannot be negative.) Thus

V0
2 − 2gR ≥ 0

hence V0 ≥
√

2gR .

That is, the escape velocity is V0 =
√

2gR.

For the earth, these quantities are approximately:
g = 10 m/s

2
, R = 6400 km and V0 = 8

√
2 =.

. 11·3 km/s.

(b) In the case of the escape velocity, v2 = 2gR2

r
, which is continuous for r > 0,

and is never zero. Hence v can never change sign. Since it is initially positive,
it must remain positive. Thus take the positive square root to get

dr

dt
=

√
2gR2

r

or r
1

2 × dr

dt
= R

√
2g .

Integrating, 2
3
r

3

2 = Rt
√

2g + C2 (for some constant C2 .)

When t = 0, r = R so

C2 = 2
3
R

3

2 .

Thus Rt
√

2g = 2
3

(
r

3

2 − R
3

2

)

and t =
√

2
3R

√
g

(
r

3

2 − R
3

2

)
.

Hence at r = 2R the time is

t =
√

2
3R

√
g
(2R

√
2R − R

√
R )

=
√

R
3
√

g
(4−

√
2 ) (about 690 s for earth.)
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Projectile Motion: There is an enormous number of different questions that can be
asked on this topic. Some of those included in the subsequent exercise may also be
appropriate for Mathematics Extension 1 candidates. Equally, many worthwhile
questions have been omitted simply for the sake of space.

WORKED EXAMPLE 24: An object is projected from the origin O at an angle
α with initial speed V . At a particular point P (x, y) on the trajectory, the
gradient of OP is tanβ and the gradient of the tangent to the trajectory at P is
dy

dx
= − tanβ. You may assume that

y = V t sinα − 1
2gt2

and x = V t cosα .

(a) Show that the time taken to reach P is
4V sin α

3g
.

(b) Hence show that tanα = 3 tanβ.

O

P
V

y

x

a
b b

SOLUTION:

(a) At P tanβ =
y

x
and

dy

dx
= − tanβ

so
y

x
= − dy

dx
.

Also
dy

dx
=

ẏ

ẋ

thus
y

x
= − ẏ

ẋ

so
V t sin α − 1

2
gt2

V t cosα
= −V sinα − gt

V cosα

or V sin α − 1
2
gt = gt − V sin α

thus 2V sinα = 3
2
gt

and t =
4V sinα

3g
.

(b) Using the value of t found in part (a),

tanβ = − dy

dx

=
g
(

4V sin α
3g

)
− V sinα

V cosα

=
4V sin α − 3V sinα

3V cos α

thus tanβ =
sin α

3 cosα

or tan α = 3 tanβ .

Simple Harmonic Motion: A harder application of simple harmonic motion is in
the small angle approximation of the motion of a pendulum. It is also an example
of how a force may be resolved into its components in different directions, rather
like the resolution of the initial velocity in projectile motion.
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WORKED EXAMPLE 25: A mass m is suspended from a
fixed point on a light inextensible wire of length L. The
ball is set in motion, swinging back and forth along an
arc in a vertical plane. At time t the angle that the wire
makes with the vertical is θ. The only forces acting on
the ball are the tension T acting along the wire normal
to the arc, and gravity acting vertically.

(a) Resolve the force due to gravity normally to find T .

(b) Next, resolve the force tangentially to show that
d2θ

dt2
= −g sin θ

L
.

(c) Under what circumstances can the equation in part (b) be approximated with

d2θ

dt2
= −gθ

L
?

(d) At t = 0, the ball is released from rest at an angle θ = θ0, where θ0 is positive.

Use the result of part (c) to show that θ = θ0 cos
(√

g
L t
)
.

(e) What is the speed of the ball at the bottom of the swing?

q

T

mg

SOLUTION:

(a) Since the length of the wire does not change it follows that

the sum of the normal forces is zero. Thus

T − mg cos θ = 0

or T = mg cos θ .

(b) The only force acting tangentially is the component of
weight, which is mg sin θ. From observation, the force acts
in the opposite direction to the displacement, θL. Hence

m
d2

dt2

(
θL
)

= −mg sin θ

so
d2θ

dt2
= −g sin θ

L
.

(c) When θ is small, it follows that sin θ =.
. θ so

d2θ

dt2
= −gθ

L
.

(d) The previous result is the equation of simple harmonic motion with n2 = g
L
.

Hence the general solution is

θ = a cos
(√

g
L

t + φ
)

where − π
2
≤ φ ≤ π

2

so θ̇ = −a
√

g
L

sin
(√

g
L

t + φ
)

.

At t = 0, the velocity is zero. That is θ̇L = 0 , so

0 = −a

√
g
L sin (φ)

hence φ = 0 (for φ in the specified domain)

and θ = a cos
(√

g
L

t
)

.

At t = 0, the initial angle is θ0 = a cos 0

hence a = θ0

and θ = θ0 cos
(√

g
L t
)

.
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6G Miscellaneous Problems 269

Here is a simpler argument. The motion is SHM and starts from rest hence
a cosine solution is appropriate, since the cosine function has a stationary
point at t = 0. It follows that the initial displacement is the amplitude.

(e) At the bottom of the swing θ = 0, so

cos
(√

g
L

t
)

= 0

that is
√

g
L

t = π
2

+ kπ .

The speed is v =
∣∣∣θ̇L

∣∣∣, so

v =
∣∣∣−θ0L

√
g
L sin

(√
g
L t
)∣∣∣

=
∣∣∣−θ0L

√
g
L sin

(
π
2 + kπ

)∣∣∣ (at the bottom of the swing)

= θ0

√
gL .

Exercise 6G

1. An object falls from the top of a building. An office worker sees the object fall past a
window 2m high in 1

5
s. Assume that air resistance is negligible and use g = 10m/s2.

Let y be the height of the object above the bottom of the window at time t.

(a) Show that y = H − 5t2, where H is the distance from the bottom of the window to
the top of the building.

(b) Use part (a) and the information given in the question to form a pair of equations.
Solve these simultaneously to find the value of H .

2. A projectile is fired vertically under the influence of gravity alone. Let the acceleration
due to gravity be g =.

. 10m/s2. Thus the height y1 at time t satisfies ÿ1 = −10. The
projectile is fired with initial speed of 16m/s. One second later another projectile is fired
from the same point.

(a) Find the time for the first projectile to reach its maximum height. Hence find this
maximum height.

(b) Let the initial speed of the second projectile be v. Show that its height is given by
y2 = −5(t − 1)2 + v(t− 1).

(c) Find v given that the two collide when the first has reached its maximum height.

3. Ignoring air resistance, a hot-air balloon has two forces acting on it: a constant buoyancy
force B and the force due to gravity. Suppose that when the mass of the balloon is M it
descends with a downward acceleration d > 0. Ballast of mass m is thrown out and the
result is that the balloon ascends with upward acceleration a > 0.

(a) Write down two force balance equations for the information given.

(b) Hence show that m = M
a + d

a + g
.

4. The acceleration due to gravity at distance r from the centre of the moon is given by
d2r

dt2
= −gR2

r2
, where R =.

. 1 737 km is its radius and g =.
. 1·625m/s2 is the acceleration due

to gravity at the surface of the moon. A projectile is fired vertically from the surface with
initial velocity V0.

(a) Derive an expression for v2, the square of the velocity of the projectile, in terms of r.

(b) The maximum altitude of the projectile is R. Determine V0.
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5. The bob of a pendulum is released from rest. The initial angle
between the wire and the vertical is θ0 and the tension along the
wire is T0. At time t after it is released, the angle between the wire
and the vertical is θ and the tension is T . You may assume that
the only forces acting on the bob are due to the tension acting
along the wire and gravity acting vertically. Let the mass of the
bob be m and the length of the wire be L.

(a) Resolve the forces on the bob normally and tangentially to
obtain the equations of motion.

(b) Let ω =
dθ

dt
. Show that

d2θ

dt2
=

d

dθ

(
1
2
ω2
)

.

(c) Hence show that ω2 = 2
mL

(T − T0) .

6. The deck of a ship is 1m below a wharf at low tide and is 0·4m above the wharf at high
tide. On a certain day the ship has a precious cargo that can only be safely offloaded when
the deck is above the level of the wharf. On that day, low tide is at 1:10 am and again
at 1:35 pm. Given that the tide can be modelled with simple harmonic motion, between
what times in the morning can the cargo be safely offloaded?

D E V E L O P M E N T

7. (a) Show that tan(π
4

+ α
2
) =

sinα + 1

cosα
.

(b) The Cartesian equation of a projectile fired at angle β and velocity V is

y = − gx2

2V 2
sec2 β + x tanβ .

Write this equation as a quadratic in tan β.

(c) In a game of netball the Goal Attack is about to shoot for goal. The line joining the
net and the point of projection of the ball makes an angle α with the horizontal. Let h

be the height of the net above the point of projection. Let V be the minimum speed
required to score a goal. That is, there is only one angle of projection β at which the
shot may be taken with speed V .

(i) Let the coordinates of the net be (x, y). Show that V 4 − 2gyV 2 − g2x2 = 0 .

(ii) At the net, y = h and x = h cotα . Show that V 2 = gh(1 + cosecα) .

(iii) Write down an expression for tanβ and hence use part (a) to show that β = π
4
+ α

2
.

8. The Cartesian equation of a projectile fired at angle θ and velocity V may be written as

gx2

2V 2
tan2 θ − x tan θ +

(
y +

gx2

2V 2

)
= 0 . (∗)

(a) Let this quadratic equation for tan θ have two solutions, tan θ1 and tan θ2.

Show that tan(θ1 + θ2) = −x

y
.

(b) Suppose that for a certain point P (a, b) there is only one solution for θ.

Prove that this angle is θ = π
4

+ α
2
, where tan α =

b

a
.

(c) Each point that can be hit by the projectile lies on or below a parabola. By considering
the discriminant of equation (∗), find and describe that parabola.

.
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9. A number of ball bearings are fired at the same moment, from the same point and with
the same speed V but at different angles of projection in the same vertical plane. Ignoring
air resistance, the time equations for the position of each ball bearing are

x = V t cosαj and y = V t sinαj − 1
2gt2

where αj is the angle of projection of the jth ball bearing. Show that at any time, all the
ball bearings lie on a circle, and find the centre and radius of this circle.
[Hint: Eliminate αj from the above equations.]

10. A thrill-seeker goes bungy-jumping from a point O on a bridge above a river. Let x be
the distance below O and let v be the velocity of the thrill-seeker towards the river.

(a) The person free falls for a distance `. Thus
d

dx

(
1
2v2
)

= g for 0 ≤ x ≤ `.

Show that v2 = 2g` when x = ` .

(b) For x > `, the bungy cord begins to slow the person down according to the equation

d

dx

(
1
2
v2
)

= g − gk(x− `)

where k is a positive constant.

(i) Show that v2 = 2gx − gk(x− `)2 for x > ` .

(ii) Show that the furthest the thrill seeker reaches is

xmax = 1
k

(
1 + k` +

√
1 + 2k`

)
.

(iii) Find xmax in terms of ` when k` = 4 .

11. An object is fired vertically upwards with initial speed V0 m/s from ground level. Ignoring
air resistance, the acceleration due to gravity varies with height x above ground level
according to the equation

d

dx

(
1
2
v2
)

=
−10R2

(R + x)2
,

where R is the average radius of the earth, and v is the velocity of the object.

(a) What is the significance of the negative sign?

(b) Find an expression for h, the maximum height reached, in terms of R and V0.

(c) Given that R = 6·4×106 m and V0 = 500m/s, evaluate h correct to the nearest metre.

12. The temperature B of a beaker containing a hot chemical, and the temperature W of
a cooler water bath in which the beaker is placed, both satisfy Newton’s law of cooling.
Thus the temperatures are related by the equations

dB

dt
= −k(B − W ) and

dW

dt
= 3

4
k(B − W ) ,

where k is a positive constant.

(a) By differentiating 3
4
B + W , show that 3

4
B + W = C, where C is a constant.

(b) Initially the beaker is 120◦C and the water bath is 22◦C. Find C and hence show that

dB

dt
= −k(7

4
B − 112) .

(c) Solve the above equation to find B as a function of time.

(d) After ten minutes the temperature of the beaker is 92◦C. Find the temperature of the
beaker after a further ten minutes.

(e) What is the eventual temperature of the water bath?

.
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13. A model for the population, P , of elephants in Serengeti National Park is

P =
21 000

7 + 3e−t/3

where t is the time in years after the end of 2008.

(a) Show that P satisfies the differential equation

dP

dt
=

P

3

(
1 − P

3000

)
.

(b) What was the population at the end of 2008?

(c) What does the model predict that the eventual population will be?

(d) What was the annual percentage rate of growth at the end of 2008?

14. As water empties from a water cooler through a small hole at the bottom it is found that
the depth of the water satisfies the equation

dy

dt
= −k

√
y ,

where k is a positive constant and y is the depth of water. Initially the depth of the water
is y0 and it takes T seconds to fully drain.

(a) Show that

√
y

y0
= 1− t

T
for 0 ≤ t ≤ T .

(b) Suppose that it takes 15 seconds for half the water to drain out. How long does it
take to empty the full cooler?

15. A bead of mass m slides along a wire in the shape of the curve y = 3
2
x2/3, where 0 ≤ x ≤ 1.

At time t, let the bead be at P (x, y), where x and y are functions of t. The coordinates
of P satisfy the equation

1
2
mẋ2 + 1

2
mẏ2 + mgy = E ,

where E and g are constants.

(a) When t = 0 the bead is released from rest at the point (1, 3
2). Find E.

(b) Show that ẋ = x1/3ẏ , and hence show that ẏ2 =
3g(3− 2y)

3 + 2y
.

(c) Find ẏ and ẋ when the bead is at the origin.

(d) It is known that

∫ α

0

√
1 + u

1 − u
du = sin−1 α + 1 −

√
1 − α2 for 0 ≤ α ≤ 1 .

Use this result to find the time it takes for the bead to travel from (1, 3
2
) to the origin.

(e) As an exercise, use the methods of integration in Chapter 4 to prove the above result.
What is peculiar about the case α = 1?

E N R I C H M E N T

16. The equation of the trajectory of a projectile is y = x tanα − x2 × g sec2 α

2V 2
.

(a) Find the coordinates of the vertex of this trajectory.

(b) The focal length of y = bx− ax2 is 1
4a

. Find the focal length of the trajectory.

(c) The focus of this parabola lies below the vertex on the axis of symmetry. The focal
length is the distance from the vertex to the focus. Find the coordinates of the focus.

(d) Find the horizontal line one focal length above the vertex, called the directrix.

.
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17. In this question you may assume that the trajectory of a projectile is a parabola, and that
its directrix is independent of α, the angle of projection. Suppose it is found that there is
only one angle at which a projectile may be fired from point A to pass through point P .

(a) Use geometry to show that the focus of the trajectory is on the line AP .

(b) Now prove the result algebraically. You may need the results of Question 16.

6H Resisted Projectile Motion

In what follows, it is assumed that a particle of mass m is projected from the
origin with initial velocity vector u0i˜

+v0j
˜

and is under the influence of gravity in

a medium with resistance. Typically the resistance is proportional to |v
˜
| or |v

˜
|2.

The main focus of this section is the case where the resistance is proportional
to |v
˜
|2. There is no analytic solution to this problem, but solutions can be found

in various cases where it is appropriate to approximate the resistance with another
function. As will be seen, the mathematics is quite complicated but may provide
a rewarding investigation for students able to take on the challenge.

Vectors and Calculus: It is often convenient to use vectors for projectile motion.
However, rates are involved so the derivative is required, and the derivative of a
vector has not yet been defined. Here is an outline of what is required.

Suppose that a particle has position vector p
˜
(t) = x(t) i

˜
+ y(t) j

˜
at time t. The

velocity of the particle is then defined to be

v
˜

= lim
h→0

1
h

(
p
˜
(t + h) − p

˜
(t)
)

,

which is analogous with the definition for a simple function of time. Expanding
this definition to the component form gives

v
˜

= lim
h→0

(
x(t + h) − x(t)

h
i
˜

+
y(t + h) − y(t)

h
j
˜

)
,

thus v
˜

= ẋ(t)i
˜

+ ẏ(t)j
˜

.

Likewise the acceleration vector is defined to be

a
˜

= lim
h→0

1
h

(
v
˜
(t + h) − v

˜
(t)
)

= lim
h→0

(
ẋ(t + h) − ẋ(t)

h
i
˜

+
ẏ(t + h) − ẏ(t)

h
j
˜

)
,

thus a
˜

= ẍ(t)i
˜

+ ÿ(t)j
˜

.

As can be seen from each case above, it is simply a matter of differentiating the
components to obtain the required result. Though it will not be needed here, the
same is true in three dimensions, and the proof is left as an exercise.

Many interesting results arise from this definition of differentiation. The most
obvious is that the velocity vector is tangent to the path of the particle at each
point. This is easily shown in two dimensions as follows. The gradient at any
point on the path is

dy

dx
=

dy

dt
× dt

dx
(by the chain rule)

= ẏ(t) ÷ ẋ(t) (treating the derivative like a fraction.)
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But the right hand side is the gradient of the line segment which represents the
velocity vector. That is, v

˜
is parallel with the tangent at each point on the curve.

v~

R~

-mg j
~

Resistance Proportional to Velocity: As in Section 6E, the governing equations
of projectile motion for resistance proportional to velocity are

d2x

dt2
= −k

dx

dt
and

d2y

dt2
= −g − k

dy

dt
,

for some constant k. These equations may be derived by resolving the forces in
component form. The free body diagram shows a particle at p

˜
with velocity v

˜
.

There are two forces acting on the particle: its weight −mgj
˜

and a resistance R
˜

which is proportional to its speed and in the opposite direction to its velocity.

Thus R
˜

= −mk|v
˜
| v̂
˜

= −mkv
˜

and so ma
˜

= −mkv
˜
− mgj

˜
or a

˜
= −gj

˜
− kv
˜

.

The components of this vector equation give those for x

and y above, and are used in Exercise 6E Question 11.

Resistance Proportional to the Square of Velocity: The free body diagram

is essentially the same when the resistance is proportional to the square of the

velocity, however now

R
˜

= −mk|v
˜
|2 v̂
˜

= −mk|v
˜
| v
˜

and so a
˜

= −gj
˜
− k|v

˜
| v
˜

.

Writing out the components of this equation yields

u̇ = −k(u2 + v2)
1

2 u (1)

and v̇ = −g − k(u2 + v2)
1

2 v , (2)

where u = ẋ is the horizontal component of velocity and v = ẏ is the vertical
component of velocity. These are coupled highly non-linear differential equations,

due to the term |v
˜
| = (u2 + v2)

1

2 appearing in each. There is no known solution
to these equations. If a trajectory is required, the best that can be done at school
level is to approximate the curve with a series of little straight line elements. This
is the method outlined in Question 13 of Exercise 6E.

An Erroneous Approximation: Whilst the equations for projectile motion where
the resistance is proportional to the square of the velocity cannot be solved, some
progress can be made in certain cases by making suitable approximations. The

key is to simplify the term |v
˜
| = (u2 + v2)

1

2 . Great care must be taken when
making any approximation, otherwise the resulting solution will not be valid and
will have little or no meaning.

It is instructive to consider an erroneous approximation where insufficient care
has been taken. Then some correct approximations will be considered later in
light of what is discovered here.

Suppose that in the horizontal component of motion, u̇ = −k(u2 + v2)
1

2 u , the
term v2 is set to zero. This approximation gives the much simpler equation

.
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u̇ = −k
√

u2 u ,

and since u ≥ 0 by observation, it follows that

u̇ = −ku2 .

This has solution

u =
u0

1 + ku0t

and x = 1
k log(1 + ku0t)

where u0 is the horizontal component of the initial velocity.

Now suppose that in the vertical component of motion, v̇ = −g − k(u2 + v2)
1

2 v,

the term u2 is set to zero. This approximation gives the much simpler equation

v̇ = −g − k
√

v2 v ,

and replacing
√

v2 with v then gives

v̇ = −g − kv2 .

This has solution

v =
√

g
k

tan(θ −
√

gk t)

and y = 1
k log

∣∣∣∣
cos(θ −

√
gk t)

cos θ

∣∣∣∣

where θ = tan−1
(√

k
g

v0

)
and v0 is the vertical component of the initial velocity.

It may be attractive to be able to obtain a solution like this, but there are several
serious flaws in the result. The most obvious is that v → −∞ as t → 1√

gk
(θ+ π

2 ).

That is, an infinite velocity has been reached in a finite time, which is physically
impossible. Here is what has gone wrong. Clearly v changes sign over the course
of the trajectory, being positive during the upward journey and negative during

the downward journey. Thus replacing
√

v2 with v puts air resistance in the wrong
direction for the downward journey and the result is acceleration to infinity.

In reality
√

v2 = |v|, by one of the definitions of the absolute value function, and
so at this point the equation should be v̇ = −g − k|v|v . Whilst this equation
can be solved by considering upward and downward journeys separately, there is
little point in doing so as there are other issues with the original approximations.

The two different approximations for (u2+v2)
1

2 are inconsistent. In the horizontal

component v2 is set to zero so that (u2 + v2)
1

2 is replaced with u. This is a valid
approximation only if u � |v| (u is much bigger than |v|), which only happens
when the angle of projection is small, so called low-angle trajectories. In the

vertical component u2 is set to zero so that (u2 + v2)
1

2 is replaced with |v|. This
is a valid approximation only if |v| � u (|v| is much bigger than u), which only
happens when the angle of projection is great, so called high-angle trajectories.
It is not possible for a trajectory to be both low-angle and high-angle. That is,
the two approximations are inconsistent.

To emphasise the point, approximating (u2 + v2)
1

2 with u or v is the same as
approximating the hypotenuse of a right-triangle with its altitude or base. Thus
it is guaranteed that, at any moment in time, at least one of these is in error by at
least

√
2− 1 =.

. 41%. Indeed, when the velocity vector is at 45◦ to the horizontal,
both approximations are in error by this amount.
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For these reasons, the above approximations and solutions should be discarded.
The results are unreliable as they were obtained from inconsistent approximations

and an error, replacing
√

v2 with v instead of |v|. In some cases, plotting the
equations above gives a solution curve which is not far from that obtained by the
numerical approximation as outlined in Exercise 6E, but this is more a matter of
good fortune rather than good design.

Low-angle Trajectory: When the angle of projection is small, the initial vertical
component of velocity will be small. Further, the vertical velocity will approach
zero near the turning point. Thus it is clear that u � v for the entire journey.

Consequently (u2 + v2)
1

2 =.
. |u| and |u| = u, since the horizontal component of

velocity is always positive by observation. Thus equations (1) and (2) above may
be approximated with

u̇ = −ku2 (3)

and v̇ = −g − kuv . (4)

These equations are relatively easy to solve. Also, because the approximation is
valid at every point on the curve, there should be good agreement between the
solutions of (3) and (4) and the solutions of (1) and (2). Solving (3) first, which
is variable separable,

u =
u0

1 + ku0t

and x = 1
k log(1 + ku0t) .

Equation (4) then becomes

v̇ = −g − ku0v

1 + ku0t
.

This equation can be solved by rearranging it as follows.

(1 + ku0t)v̇ + ku0v = −g(1 + ku0t).

Notice that the left hand side is the derivative of a product, so
d

dt

(
(1 + ku0t)v

)
= −g(1 + ku0t)

which, after integration, applying the initial conditions and a few lines of algebra,

gives v = −g(1 + ku0t)

2ku0
+

v0 + g
2ku0

1 + ku0t

and y =
g
(
1 − (1 + ku0t)

2
)

(2ku0)2
+

(
v0 +

g

2ku0

)
1

ku0
log(1 + ku0t) .

High-angle Trajectory: When the angle of projection is nearly a right angle, the
horizontal component of velocity is tiny and so v � u for the majority of the

journey. Consequently (u2 + v2)
1

2 =.
. |v| and so equations (1) and (2) above may

be approximated with

u̇ = −ku|v| (5)

and v̇ = −g − kv|v| . (6)

As with vertical projections, the upward and downward journeys are considered
separately. For the upward journey, |v| = v so that

u̇ = −kuv

and v̇ = −g − kv2 .

.
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The solution for the vertical component was given above and is

v =
√

g
k tan(θ −

√
gk t)

and y =
1

k
log

(
cos(θ −√

gk t)

cos θ

)

where θ = tan−1
(√

k
g v0

)
and v0 is the vertical component of the initial velocity.

Notice that v = 0 when t = θ√
gk

, so this solution is valid for 0 ≤ t ≤ θ√
gk

.

The equation for u̇ then becomes

u̇ = −u
√

gk tan(θ −
√

gk t)

which is variable separable. A few lines of working yield

u =
u0 cos θ

cos(θ −√
gk t)

.

Now put φ = (θ −
√

gk t) to get

x = −u0 cos θ√
gk

∫ (θ−
√

gk t)

θ

sec φ dφ

=

[
−u0 cos θ√

gk
log

(
1 + tan φ

2

1 − tan φ
2

)](θ−
√

gk t)

θ

(see Exercise 4G Q16)

=

[
u0 cos θ√

gk
log

(
1 − tan φ

2

1 + tan φ
2

)](θ−
√

gk t)

θ

=

[
u0 cos θ√

gk
log tan

(
π
4
− φ

2

)](θ−
√

gk t)

θ

=
u0 cos θ√

gk
log

(
tan(π

4 − θ
2 + 1

2

√
gk t)

tan(π
4
− θ

2
)

)
.

For the downward journey, |v| = −v so equations (5) and (6) become

u̇ = kuv

and v̇ = −g + kv2 .

Notice that the terminal velocity is VT = −
√

g
k .

The solution of the vertical component is:

v = −
√

g

k
× eτ

√
gk − e−τ

√
gk

eτ
√

gk + e−τ
√

gk

and y =
1

k
log

(
2 sec θ

eτ
√

gk + e−τ
√

gk

)

or y =
1

k
log


 2

√
g + kv0

2

√
g
(
eτ
√

gk + e−τ
√

gk
)




where τ = t − θ√
gk

, that is, the time after starting the downward journey. Now

put the result for v into the horizontal component to get

u̇ = −ku

√
g

k
× eτ

√
gk − e−τ

√
gk

eτ
√

gk + e−τ
√

gk

.
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which is variable separable yielding

u =
2u0 cos θ

eτ
√

gk + e−τ
√

gk

although, for the purposes of integration, it is better to write

u = 2u0 cos θ × e−τ
√

gk

1 + e−2τ
√

gk
.

Thus x =
2u0 cos θ√

gk

[
π
4
− 1

2
log tan(π

4
− θ

2
) − tan−1

(
e−τ

√
gk
)]

.

Note that near the top of the trajectory v → 0 and thus u � v in that vicinity.

Consequently the approximation (u2 + v2)
1

2 =.
. |v| is not valid near the turning

point. Thus it is expected that the high-angle trajectory approximation will be
good for most of the journey, but poor near the turning point.

For those familiar with them, the integration for the downward journey would be
much simpler were the hyperbolic trigonometric functions available, since then

v = −
√

g
k

tanh(τ
√

gk ) ,

y = 1
k

log
(

sec θ sech(τ
√

gk )
)

and u = u0 cos θ sech(τ
√

gk ) .

Mid-angle Trajectory: When the angle of projection is about 45◦, both components
of the velocity will be roughly equal for a significant portion of the trajectory. It

seems reasonable then to approximate (u2 +v2)
1

2 with either
√

2u or
√

2|v|. That
is, equations (1) and (2) will be approximated with

u̇ = −k
√

2u2 (7)

and v̇ = −g − k
√

2 |v|v , (8)

Notice that these equations are similar to the erroneous approximation that began
this discussion. The two crucial differences are the factor of

√
2 and the presence

of the absolute value function |v|, with the need to divide the trajectory into
upward and downward journeys.

Further notice that equation (7) may be obtained by replacing k with k
√

2 in
equation (3). Thus equation (7) has solution

u =
u0

1 + k
√

2 u0t

and x = 1
k
√

2
log(1 + k

√
2 u0t) .

Likewise, equation (8) may be obtained by replacing k with k
√

2 in equation (6).
Thus equation (8) has solution for the upward journey

v =
√

g

k
√

2
tan(θ −

√
gk

√
2 t)

and y = 1
k
√

2
log

(
cos(θ −

√
gk

√
2 t)

cos θ

)

where θ = tan−1

(√
k
√

2
g

v0

)
and v0 is the vertical component of the initial

velocity. Notice that the vertical velocity is zero when t = θ√
gk

√
2
, so this solution

is valid for 0 ≤ t ≤ θ√
gk

√
2
. The solution for the downward journey is

.
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v = −
√

g

k
√

2
× eτ

√
gk

√
2 − e−τ

√
gk

√
2

eτ
√

gk
√

2 + e−τ
√

gk
√

2

and y =
1

k
√

2
log


 2

√
g + k

√
2 v0

2

√
g
(
eτ
√

gk
√

2 + e−τ
√

gk
√

2
)




where τ = t − θ√
gk

√
2
, that is, the time after starting the downward journey.

Graphs of the Approximations:

6
5
4
3
2
1

654321 x

y

High-angle trajectory

α = 75◦

6
5
4
3
2
1

654321 x

y

Mid-angle trajectory

α = 45◦

1

654321 x

y

Low-angle trajectory

α = 15◦

In each case the initial velocity is |v
˜0
| = 10, acceleration due to gravity is g = 10,

the coefficient of resistance is k = 0·1, the terminal velocity is VT = 10 and the
angle of projection is α. The solid line is the appropriate approximation. The
dashed line is the solution to the full equations (1) and (2) obtained numerically
using a vector form of the fourth order Runge-Kutta method, an advanced and
extremely reliable approximation method which is studied in some university
courses. The trajectory with no resistance is shown with a dash-dot line. As
predicted in the discussion above, the high-angle approximation is less accurate
near the turning point and consequently also on the downward journey, but is
close to the actual trajectory overall. The mid-angle also breaks down near the
turning point as foretold, but again is a good approximation overall.

As was expected, the low-angle approximation gives excellent results. Notice the
change in vertical scale in the third graph. Even with this vertical exaggeration,
the difference between the full equation solution and the approximation is barely
noticeable.

The Exercise Questions: There is a limited number of questions that can be asked
on resisted projectile motion. A few examples for the case where resistance is
proportional to the velocity have been included in Sections 6E and 6F.

The questions in the following exercise involve the approximations considered
above for when resistance is proportional to the square of the velocity. There
are two questions on the low-angle trajectory and one each on the other two
approximations. They are difficult, mostly due to the complicated integration
required. Consequently there are no Foundation level questions. The solutions are
lengthy, and so the style of the questions may not be suitable for an examination
or similar assessment. Each question, however, would make an excellent basis for
a project or research assignment.

.
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Exercise 6H

D E V E L O P M E N T

1. [Low-angle Trajectory] A particle is projected from the origin with speed 10 m/s at an
angle of inclination of 15◦. Resistance is proportional to the square of the speed at each
point in the trajectory and the constant of proportionality is 1

10
m where m is the mass

of the particle. Assume that the acceleration due to gravity is 10 m/s2. Also assume that

the speed may be approximated by (u2 + v2)
1

2 =.
. u. The equations of motion are thus

u̇ = − 1
10

u2 (3)

and v̇ = −10 − 1
10uv . (4)

(a) Show that the horizontal and vertical components of the initial velocity are

u0 =
5
√

2
(√

3 + 1
)

2
and v0 =

5
√

2
(√

3 − 1
)

2
.

(b) Consider the horizontal component of motion.

(i) Equation (3) is variable separable. Determine u in terms of u0 and t.

(ii) Hence determine x in terms of u0 and t.

(c) Consider the vertical component of motion.

(i) Use the answer to part (b)(i) and equation (4) to show that

d

dt

(
(10 + u0t)v

)
= −10(10 + u0t) .

(ii) Show that v = −10(10 + u0t)

2u0
+

10(v0 + 100
2u0

)

10 + u0t
and hence find y.

(d) Set v = 0 and hence find the time taken to reach the maximum height, as well as the
coordinates of that point. Give the answers correct to two decimal places.

2. [Low-angle Trajectory] A particle is projected from the origin with velocity u0i˜
+ v0j

˜with units of m/s. Resistance is proportional to the square of the speed at each point
in the trajectory and the constant of proportionality is km where m is the mass of the
particle. Assume that u0 � v0 so that the speed at each point in the trajectory may be

approximated by (u2 + v2)
1

2 =.
. u. Also assume that the acceleration due to gravity is a

constant g m/s2. Finally assume that there are no other forces acting on the particle.

(a) By considering the horizontal and vertical components of force, write down equations
for u̇ and v̇.

(b) Use the result u̇ = u
du

dx
to find u as a function of x.

(c) Hence find x(t) and thus determine u(t).

(d) Use the answers to parts (a) and (c) to show that
d

dt

(
(1 + ku0t)v

)
= −g(1 + ku0t).

(e) Show that v = −g(1 + ku0t)

2ku0
+

v0 + g
2ku0

1 + ku0t
and hence find y(t).

(f) Use x(t) and y(t) to determine the Cartesian equation of the trajectory.

(g) Determine
dy

dx
.

(h) Hence show that the trajectory has a turning point at
(

1

2k
log

(
2ku0v0 + g

g

)
,
2ku0v0 + g

(2ku0)2
log

(
2ku0v0 + g

g

)
− 2ku0v0

(2ku0)2

)
.
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E N R I C H M E N T

3. [High-angle Trajectory] A particle is projected from the origin with speed 10 m/s at an
angle of inclination of 75◦. Resistance is proportional to the square of the speed at each
point in the trajectory and the constant of proportionality is 1

10m where m is the mass

of the particle. Assume that the acceleration due to gravity is 10 m/s2. Also assume that

the speed may be approximated by (u2 + v2)
1

2 =.
. |v|. The equations of motion are thus

u̇ = − 1
10

u|v| (5)

and v̇ = −10 − 1
10v|v| . (6)

(a) Show that the horizontal and vertical components of the initial velocity are

u0 =
5
√

2
(√

3 − 1
)

2
and v0 =

5
√

2
(√

3 + 1
)

2
.

(b) The Upward Journey: In this case |v| = v.

(i) Show that v = 10 tan(θ − t), where tan θ = 1
4

√
2
(√

3 + 1
)
.

(ii) Explain why 0 ≤ t ≤ θ.

(iii) Then show that y = 10 log

(
cos(θ − t)

cos θ

)
.

(iv) Hence show that the maximum height is ymax = 10 log

(
1
2

√
6 +

√
3

)
.

(v) Use part (i) and equation (5) to show that
d

dt

(
u cos(θ − t)

)
= 0.

(vi) Hence show that u = u0 cos θ sec(θ − t).

(vii) Given that

∫
secφ dφ = log | secφ + tanφ| + C, use the substitution φ = θ − t in

part (vi) to find an expression for x in terms of u0, θ and φ.

(viii) Hence show that the x-coordinate of the turning point is

5
√

2(
√

3− 1)√
6 +

√
3

log

(
1

4

(
2

√
6 +

√
3 +

√
2
(√

3 + 1
)))

.

(c) The Downward Journey: In this case |v| = −v.

(i) Put τ = t − θ and hence find
du

dτ
and

dv

dτ
in terms of u and v. Then write down

the corresponding initial conditions for τ = 0 in terms of u0 and θ.

(ii) Use partial fractions to show that v = −10 (eτ − e−τ )

eτ + e−τ
.

(iii) Hence show that y = 10 log

(
2 sec θ

eτ + e−τ

)
.

(iv) Put y = 0 into part (iii) to find τ and hence find the total time of flight.

(v) Now use part (ii) and equation (5) to show that
d

dτ

((
eτ + e−τ

)
u
)

= 0.

(vi) Hence show that u =
(2u0 cos θ)e−τ

1 + e−2τ
.

(vii) Show that x = u0 cos θ log(sec θ +tan θ) when τ = 0. Then use part (vi) with this
initial condition to find x in terms of u0, θ and τ .

(viii) Use the value of τ in part (iv) to determine the range of the projectile in terms
of u0 and θ, then approximate this to three decimal places.

.
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4. [Mid-angle Trajectory] A particle is projected from the origin with speed 10 m/s at an
angle of inclination of 45◦. Resistance is proportional to the square of the speed at each
point in the trajectory and the constant of proportionality is 1

10
m where m is the mass

of the particle. Assume that the acceleration due to gravity is 10 m/s2. Also assume that

the speed may be approximated by (u2 + v2)
1

2 =.
.
√

2u =.
.
√

2|v|. The equations of motion
are thus

u̇ = −
√

2
10

u2 (7)

and v̇ = −10 −
√

2
10

|v|v , (8)

(a) Use the answers to either Question 1 or Question 2, appropriately modified, to write
down u(t) and x(t).

(b) Use equation (8) to determine v(t) and hence y(t) for the upward journey. For what
values of t is this solution valid?

(c) Hence find the coordinates of the turning point of the trajectory, first in exact form,
and then approximated to two decimal places.

(d) Derive the formulae for y(τ) and v(τ) given in the text for the downward journey.
Then replace g and k with the values specified here and simplify the results. In this
case τ = t − θ

4
√

2
.

(e) Use the formula for y(τ) to determine the total time of flight.

(f) Hence determine the range of the trajectory correct to two decimal places.

.
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6I Chapter Review Exercise

Exercise 6I

1. In each part v is given as a function of x, and it is known that x = 1 when t = 0. Express:
(i) t in terms of x, (ii) x in terms of t.

(a) v = 2x − 1 (b) v = −6x2

2. In each motion of the previous question, find ẍ in terms of x.

3. In each part the acceleration ẍ is given as a function of x. Express v2 in terms of x given
that v = 0 when x = 0.

(a) ẍ = 6 (b) ẍ = sin6x

4. Given that ẍ = 4v, and v = 2 when t = 0, find t as a function of v.

5. Given that ẍ =
1

3v
, and v = 1 when x = 0, find x as a function of v.

6. A particle of mass m moves in a straight line subject to a force F . At time t, the
displacement of the particle is x and the velocity is v. The particle was initially at rest at
the origin.

(a) If F = 18t and m = 3, find x when t = 2.

(b) If F = 4x − 3 and m = 2, find the positive value of v when x = 4.

(c) If F =
1

1 + v
and m = 0·5, find t when v = 6.

(d) If F = 2 + v2 and m = 2, find x when v = 2.

7. Two forces F1 and F2 are acting on a particle P of mass 2 kg. F1 has magnitude 40N and
acts in the north-easterly direction, while F2 has components 40N due north and 20N due
east. Calculate the magnitude and direction (both to 3 significant figures) of the resultant
acceleration of P .

8. A plane lands on a runway at 100m/s. It then brakes with a constant deceleration until
it stops 2 km down the runway.

(a) Explain why the equation of motion is ẍ = −k, for some positive constant k. By
integrating with respect to x, find k, and find v2 as a function of x.

(b) Find: (i) the velocity after 1 km, (ii) where it is when the velocity is 50 m/s.

(c) Explain why, during the braking, v =
√

10 000− 5x rather than v = −
√

10 000− 5x .

(d) Integrate to find the displacement–time function, and find how long it takes to stop.

9. When fired under water, a torpedo moves with deceleration proportional to its velocity,
so that ẍ = −kv for some positive constant k. Its initial speed is 1

2
km/s, and its speed

after it has gone 50 metres is 250m/s.

(a) Use ẍ = v
dv

dx
to find v as a function of x, then find x as a function of t.

(b) Show that it takes 1
5

ln 2 seconds to go the first 50 metres, and describe the subsequent
motion of the torpedo.

10. A particle moves with acceleration ẍ = −1
2e−x m/s2.

(a) Initially it is at the origin with velocity 1m/s. Find an expression for v2.

(b) Explain why v is always positive, and hence find the displacement as a function of time.

(c) Describe what happens to the particle as t → ∞.
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11. The acceleration of a particle moving in a straight line is given by ẍ = a + bv2, where a

and b are positive constants. Initially the particle was at rest at the origin. Show that:

(a) v2 =
a

b

(
e2bx − 1

)
(b) v =

√
a√
b

tan
(√

ab t
)

12. A particle is oscillating in simple harmonic motion with acceleration ẍ = −16x. At time
t = 0, x = 1 and ẋ = 4.

(a) Show by integrating that v2 = 16(2− x2).

(b) What is the maximum displacement of the particle?

(c) Find x as a function of t in the form x = a cos(nt + α).

13. The displacement x at time t of a particle moving on the x-axis is given by

x = 5 +
√

3 sin 3t − cos 3t.

(a) Prove that the motion of the particle is simple harmonic.

(b) Express
√

3 sin 3t − cos 3t in the form R sin(3t − α), where R > 0 and 0 < α < π
2 .

(c) What are the amplitude and the centre of the motion?

(d) When does the particle first reach its maximum speed?

14. A particle is moving in simple harmonic motion. Its maximum speed and acceleration are
2m/s and 6m/s2 respectively. Find the amplitude and period of the motion.

15. A piston in a car engine is moving up and down in simple harmonic motion with an
amplitude of 5 cm. The mass of the piston is 0·5 kg and it is making 60 oscillations per
second. Find:

(a) the maximum speed of the piston, in m/s correct to one decimal place,

(b) the maximum force acting on the piston, correct to the nearest newton.

16. A particle is oscillating on the x-axis about the origin. It passes through the point A,
where x = 0·01 metres, with speed 0·09m/s and it passes through the point B, where
x = −0·02 metres, with speed 0·06m/s.

(a) Show that the amplitude of the motion is
√

10
125

metres.

(b) Show that the motion has period 2π√
15

seconds.

(c) Find, correct to the nearest hundredth of a second, the time that the particle takes
to move directly from A to B.

17. An aircraft of mass M kg moves along a horizontal runway, starting from rest. The air-
craft’s engines exert a constant thrust of T newtons and, when the speed of the aircraft
is v m/s, it experiences a resistance of magnitude kv2, where k > 0.

When the speed of the aircraft is V m/s, show that it has travelled

M

2k
ln

(
T

T − kV 2

)
metres.

18. An object of mass 2 kg is projected vertically upwards with initial speed 20m/s. It expe-
riences air resistance of magnitude 1

10
v2 newtons, where v m/s is the speed of the object

after t seconds. Take g = 10m/s2.

(a) Show that the object reaches a maximum height of 10 ln3 metres.

(b) Find, correct to 3 significant figures, the speed of the object when it reaches half its
maximum height.

.
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19. A child drops an air-filled balloon of mass 30 grams from a bridge 6 metres above a river.
The balloon experiences air resistance of magnitude 0·6v newtons, where v m/s is the
speed of the balloon after t seconds. Take g = 10m/s2.

(a) Write down an equation of motion for the balloon’s descent.

(b) Show that the terminal speed of the balloon is 0·5m/s.

(c) Show that v = 1
2

(
1 − e−20t

)
.

(d) How long does it take, to 2 significant figures, for the balloon to reach half its terminal
speed?

20. A particle of mass m falls from rest in a medium in which the resistance to its motion
is mkv, where k is a constant and v is the speed of the particle. As the particle falls,
v approaches a limiting value of V .

(a) Show that
dv

dt
=

g

V
(V − v).

(b) Find the time it takes for the particle to reach a speed of 1
2V .

(c) Show that the distance fallen when a speed of 1
2
V is reached is

V 2

g

(
ln 2 − 1

2

)
.

21. A particle P1 is projected vertically upwards from a point A with initial speed U . At the
same instant, a second particle P2, also of mass m, is dropped from a point B directly
above A. The distance H between A and B is equal to the maximum height that P1

would reach were it not to collide with P2. As the particles move, they each experience
air resistance of magnitude mkv2, where k > 0 and v is the speed. At the instant the
particles collide, P2 has reached exactly 50% of its terminal speed. Let y1 be the distance
of P1 above A, and y2 the distance of P2 below B.

(a) Show that V =

√
g

k
.

(b) Show that y1 =
1

2k
ln

(
g + kU2

g + kv1
2

)
, where v1 is the speed of P1.

(c) Hence show that H =
1

2k
ln

(
1 +

U2

V 2

)
.

(d) Given that y2 =
1

2k
ln

∣∣∣∣
g

g − kv2
2

∣∣∣∣, show that, at the instant the particles collide, P2

has fallen a distance of
1

2k
ln

4

3
.

(e) Deduce that the speed of P1 at the instant the particles collide is
V√
3
.

22. A projectile has initial velocity vector 48i
˜

+ 36j
˜
.

(a) Obtain, by integration, expressions for ẋ, ẏ, x and y, taking g = 10m/s2.

(b) Find the maximum height reached by the projectile.

(c) Find the horizontal range of the projectile.

(d) Find, as a component vector, the velocity of the particle after 1.6 seconds.

23. A particle is projected from the origin and follows a parabolic path with parametric
equations x = 12t and y = 9t − 5t2 (where x and y are in metres).

(a) Show that the Cartesian equation of the path is y = 3
4
x − 5

144
x2.

(b) Find the horizontal range R and the greatest height H .

.
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286 CHAPTER 6: Mechanics 6I

(c) Find the gradient at x = 0, and hence find the angle of projection.

(d) Find ẋ and ẏ when t = 0. Hence, by resolving these components, find the initial
velocity, and confirm the angle of projection.

(e) Find when the particle is 4 metres high, and the horizontal displacement then.

24. Eve tossed an apple to Adam who was sitting near him. Adam caught it at the same height
that Eve released it from. Suppose that the initial velocity of the apple was V = 5m/s,
at an angle of tan−1 2 above the horizontal.

(a) Find the initial values of ẋ and ẏ.

(b) Find ẋ, x, ẏ and y by integrating ẍ = 0 and ÿ = −10, taking the origin to be the
point of release of the apple.

(c) Find the greatest height above the point of release reached by the apple.

(d) Show that the apple was in the air for 2
5

√
5 seconds, and hence find the horizontal

distance travelled by the apple.

(e) Find ẋ and ẏ at the time Adam caught the apple. Then show that the final speed was
the same as the initial speed, and the final direction was the opposite of the initial
direction.

(f) The path of the apple is a parabolic arc. By eliminating t from the equations for x

and y, find its equation in Cartesian form.

25. A bullet is fired horizontally at 200m/s from a window 45 metres above the level ground
below. It doesn’t hit anything and falls harmlessly to the ground.

(a) Write down the initial values of ẋ and ẏ.

(b) Taking g = 10m/s2 and the origin at the window, find ẋ, x, ẏ and y. Hence find the
Cartesian equation of the parabolic path.

(c) Find the horizontal distance that the bullet travels.

(d) Find, correct to the nearest minute, the angle below the horizontal at which the bullet
hits the ground.

26. A ball is thrown up a hill which is inclined at 30◦ to the horizontal. The initial velocity of
the ball is 30m/s at an angle of 45◦ above the horizontal. Suppose that the ball is thrown
from the origin O at the foot of the hill, and it lands at a point P on the side of the hill.

(a) Starting with ẍ = 0 and ÿ = −10, show that the parabolic path of the ball has

parametric equations x = 15
√

2 t and y = 15
√

2 t − 5t2.

(b) Find the Cartesian equation of the parabolic path.

(c) Hence show that OP = 60
(√

3 − 1
)

metres.

27. A cannon can fire a shell with an initial speed V and a variable angle of elevation α.
Assume that t seconds after being fired, the horizontal and vertical displacements x and y

of the shell are given by x = V t cos α and y = V t sinα − 1
2
gt2.

(a) Show that the Cartesian equation of the shell’s path may be written as

gx2 tan2 α − 2xV 2 tanα + (2yV 2 + gx2) = 0.

(b) Suppose that V = 200m/s, g = 10m/s2 and the shell hits a target positioned 3 km

horizontally and 0·5 km vertically from the cannon. Show that tan α =
4 ±

√
3

3
, and

hence find the two possible values of α, correct to the nearest minute.

.
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6I Chapter Review Exercise 287

28. A small paintball is fired from the origin with velocity 14m/s towards an 8m high wall.
The origin is at ground level and is 10m from the base of the wall. Suppose that the
paintball was fired at an angle of θ above the horizontal.

(a) Starting with ẍ = 0 and ÿ = −9·8, show that x = 14t cos θ and y = 14t sin θ − 4·9t2.

(b) Show that the trajectory of the paintball has Cartesian equation

y = mx −
(

m2 + 1

40

)
x2 , where m = tan θ.

(c) If the paintball hits the wall at height h metres, show that m = 2 ±
√

3 − 0·4h and
hence determine the maximum possible value of h.

(d) Suppose that there is a large hole in the wall, the bottom of which is 3·9 metres above
the ground and the top of which is 5·9 metres above the ground. Determine the values
of m for which the paintball will pass through the hole.

29. A particle of mass m is thrown from the top, O, of a tall building with initial velocity u at
an angle of α above the horizontal. The particle experiences the effect of gravity as well
as a resistance proportional to its velocity in both the horizontal and vertical directions.
The equations of motion are given by ẍ = −kẋ and ÿ = −kẏ − g, where k is a constant
and g is the acceleration due to gravity.

(a) Show that ẋ = ue−kt cosα.

(b) Show, by differentiating, that ẏ =
1

k

(
(ku sinα + g) e−kt − g

)
satisfies the vertical

equation of motion.

(c) Find the value of t at which the particle reaches its maximum height.

(d) What is the limiting value of the horizontal displacement?

.
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Answers to Exercises

Chapter One

Exercise 1A (Page 8)
1(a) −1 (b) 1 (c) −i (d) i

(e) i (f) −1 (g) 1 (h) 0

2(a) −2i (b) 3− i (c) 1+ i (d) 5+3i (e) −3−2i

3(a) 12 − 2i (b) −6 + 2i (c) 1 + 5i (d) 7 − 11i

4(a) −5 +4i (b) 5+ 5i (c) 14 +5i (d) −26 + 82i

(e) 24 + 10i (f) −5 − 12i (g) 2 + 11i (h) −4

(i) 28 − 96i

5(a) 5 (b) 17 (c) 29 (d) 65

6(a) −i (b) 1−2i (c) 3+2i (d) 1−2i (e) −1+3i

(f) −1
5 + 3

5 i

7(a) −2− i (b) 4−3i (c) 3+7i (d) 3 (e) −3+4i

8(a) 6+2i (b) 18 (c) 19−22i (d) 8− i (e) 1+2i

9(a) 22 + 19i (b) 6 + 15i (c) 4 − 2i (d) 2 − 3i

(e) 6

10(a) x = 3 and y = −2 (b) x = 2 and y = −1

(c) x = 6 and y = 2 (d) x = 14
5

and y = 3
5

(e) x = 35
2

and y = −39
2

11(a)
9
10

− 13
10

i (b) 1 (c) − 8
29

(d) −4 − 5
2
i

16(a)
x−iy

x2+y2 (b)
x2−y2−2ixy

(x2+y2)2
(c)

x2+y2−1+2iy
(x+1)2+y2

Exercise 1B (Page 16)
1(a) z = ±3i (b) z = 2 ± 4i (c) z = −1 ± 2i

(d) z = 3 ± i (e) z = 1
2
± 1

4
i (f) z = −3

2
± 2i

2(a) (z − 6i)(z + 6i) (b) (z − 2
√

2 i)(z + 2
√

2 i)

(c) (z−1−3i)(z−1+3i) (d) (z +2− i)(z +2+ i)

(e) (z − 3 +
√

5 i)(z − 3−
√

5 i)

(f) (z + 1
2 −

√
3

2 i)(z + 1
2 +

√
3

2 i)

3(a) z2 + 2 = 0 (b) z2 − 2z + 2 = 0

(c) z2 + 2z + 5 = 0 (d) z2 − 4z + 7 = 0

4(a) ±(1 + i) (b) ±(2 + i) (c) ±(−1 + 3i)

(d) ±(6+i) (e) ±(2+3i) (f) ±(5−i) (g) ±(1−4i)

(h) ±(5 − 4i)

5(a) ±(1 − 2i) (b) z = 2 − i or 1 + i

6(a) ±(1 + 3i) (b) z = 4 + i or 3 − 2i

7(a) z = 1− i or i (b) z = −3+2i or −2i (c) z =

4+i or 2−i (d) z = −2+i or 1
2
(3−i) (e) z = −5+i

or 3 − 2i (f) z = 3 + i or −1 − 3i

8(a) w = −1 (b) a = −6 and b = 13

(c) k = 8 − i and the other root is 2 + 3i.

9 z = ±(2 + i)

10(a) cos θ + i sin θ or cos θ − i sin θ

11(a) z = −1 or 1
2 ±

√
3

2 i (b) z = i or ±
√

3
2 − 1

2 i

12(a) z = ω satisfies the equation. (c) They are

complex conjugates.

13(a) α

14(a)(i)

Öa

-Öa
x

y

15(a) ± 1√
2
(1− i) (b) ±

√
2(1 + 2i) (c) ±(

√
3 + i)

(d) ±
√

2(3 − 2i)

(e) ±
(√√

5 + 1 − i

√√
5 − 1

)

16(a) −2 − i ±
(√√

2 + 1 + i

√√
2 − 1

)

(b) 1 + i ±
(√√

5 − 1 − i

√√
5 + 1

)

(c) −1 + i
√

3 ±
(√

2 − i
√

6
)

(d)
1
2

(
−1 + i ±

(√√
13 + 2 − i

√√
13 − 2

))

19 The term b/|b| is the sign of b.

It is 1 when b > 0, and −1 when b < 0.
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Exercise 1C (Page 21)
1(a) (2, 0) (b) (0, 1) (c) (−3, 5) (d) (2,−2)

(e) (−5,−5) (f) (−1, 2)

2(a) −3 + 0i = −3 (b) 0 + 3i = 3i (c) 7 − 5i

(d) a + bi

3(a)

x

y
A

B

C

D
-3 -1

-1

-3

31 1

3

(b) A square. (c) An anticlockwise rotation of

90◦ about the origin.

4(a)

x

y

z

iz

-z

-iz

-3 -1

-1

-3

3

1

1

3
(b)

x

y

w

iw

-w

-iw
-2

-1

-1
-2

2
1

1

2

In (a) and (b) the points form a square.

(c)

x

y

1 3

1
2

-1
-2

w
z

w

z

Conjugate pairs are re-

flections in the real axis.

(d)

x

y

1

2

3

1 3 4

z

w

( + )z w

With O the points form

a parallelogram.
(e)

x

y

2
1

-1 1 3

w

z

( - )z w

(f)

x

y

2
1

-1 1-2 3

w

z( - )w z

Again, in (e) and (f) the points are the vertices of

a parallelogram.

5(a)

x

y

-3
Re( ) = -3z

(b)

x

y

2 Im( ) = 2z

(c)

x

y

1

(d)

x

y

-2

(e)

x

y

Re Im( ) = ( )z z

(f)

x

y

2Re Im( ) = ( )z z

1

2

(g)

x

y

2

1

(h)

x

y

6

x

y

1 2

-1-2

-2

-1

1

2

P

Q
T

R

S

8

x

y

z

-z z

-z

10(c) right-isosceles

11 It is the circle centre (0,−1) with radius 1,

omitting the origin.

12 It is the circle centre (3, 0) with radius 3, omit-

ting the origin.

14 It is a parabola with focus the origin and di-

rectrix x = 1.
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15(a)

x

y

c

c
-c

-c

(b)

x

y

c
c

-c

-c

Exercise 1D (Page 28)
1(a) 3 (b) 5 (c)

√
2 (d) 2 (e) 5 (f) 17

2(a) π (b)
π
2 (c) −π

4 (d)
π
3 (e)

3π
4 (f) −5π

6

3(a) 2 cis π
2 (b) 4 cisπ (c)

√
2 cis π

4 (d) 2 cis
(
−π

6

)

(e) 2 cis 2π
3 (f) cis

(
−3π

4

)

4(a) 5 cis(0·93) (b) 13 cis(−0·39)

(c)
√

5 cis(2·68) (d)
√

10 cis(−1·89)

5(a) 3 (b) −5i (c) 2
√

2 + 2
√

2 i (d) 3
√

3 − 3i

(e) −
√

2 +
√

2 i (f) −1 −
√

3 i

6(a)
√

2 cis
(
−π

4

)
(b)

√
2 cis π

4 (c)
√

2 cis 3π
4

(d)
√

2 cis π
4 (e) 2 cis

(
−π

2

)
(f)

1√
2

cis
(
−π

4

)

7(a) 10 cis π
3 (b) 9 cis 3θ (c) 2 cis π

3 (d)
3
2 cis α

(e) 16 cis 2π
5 (f) 8 cis 6π

7

8(a) 2
√

2 (b) 3
√

2 (c) 6 (d) 4
√

3 (e) 5 (f)
√

5

9(a)
π
4

(b) −3π
4

(c) −π
3

(d)
π
6

(e) 0·93 (53◦)

(f) −2·03 (−117◦)

10(a) i (b) −1 (c)
1
2 (1 + i

√
3) (d)

1√
2
(−1 + i)

(e)
1
2
(−

√
3 + i) (f) −i (g)

1√
2
(1 − i)

(h) −1
2 (1 + i

√
3)

11

x

y

A

B

C

D OD r( = )1
2

2r r

r

p
4

p
3

O

13(a) z1 = 2 cis π
6

and z2 = 4 cis π
4

(b) z1z2 =

8 cis 5π
12 and z2

z1
= 2 cis π

12

14 z1 = 2 cis 5π
6 , z2 =

√
2 cis(−3π

4 ),

z1z2 = 2
√

2 cis π
12 and z2

z1
=

√
2

2 cis 5π
12

15(a)
1
2

(
(
√

3 + 1) + i(
√

3 − 1)
)

(b)
√

2 cis π
12

(c)
1

2
√

2
(
√

3 + 1)

16(a)
√

2 (b)
π
4

(c) 1 + i

24 z + w = 2 cos
(

θ−φ
2

)
cis
(

θ+φ
2

)

25(a) When Im(z) = 0.

Exercise 1E (Page 35)
1(a) 7 + 4i (b) −3 + 2i (c) 3 − 2i

2(a) −3 + 4i (b) 1 + 7i (c) −4 − 3i (d) −7 + i

3 −3 + 6i

4(a) B represents 1 + 3i, C represents −1 + 2i

(b) −
√

2 + 2
√

2 i

5(a) 4 + 3i (b) −3 + 4i (c) 2 + 7i

6(a) −5 + 12i (b) −3 − 4i

8 E represents w2 −w1, F represents i(w2 −w1),

C represents w2 + i(w2 − w1) and D represents

w1 + i(w2 − w1).

9(a) Vectors BA and BC represent z1 − z2 and

z3 − z2 respectively, and BA is the anticlockwise

rotation of BC through 90◦ about B. So z1−z2 =

i(z3 − z2). Squaring both sides gives the result.

(b) z1 − z2 + z3

10(a) 2ωi (b)
1
2ω(1 + 2i)

11 −2 and 1 −
√

3 i

12(a) w = −4 + 3i or 4 − 3i (b) w = −1 + 7i or

7 + i (c) w = 1
2(7 + i) or 1

2 (−1 + 7i)

13 −2 + 2i, 12i, 4

18(a) z1 = 2 cis π
2
, z2 = 2 cis π

3
(c)(i)

5π
12

(ii)
11π
12

19(c) The sum of the squares of the diagonals of a

parallelogram is equal to the sum of the squares

of its sides.

20(c) parallelogram (d) arg w
z = π

2 , so w
z is purely

imaginary.

23 Use the converse of the opposite angles of a

cyclic quadrilateral.

24 Take the argument of the fraction in the hint.

The result is arg

(
z3

z2

)
− arg

(
z3 − z1

z2 − z1

)
. These

are the angles at 0 and z1 which, by the angles in

the same segment theorem, are equal. Finally, use

the result of Question 21.

Exercise 1F (Page 43)
1(a)

x

y
x = 1

1-3 5

(b)

x

y

y = -x

i

-1
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(c)

x

y

y = x + 2

-2

2
-2 + i2

(d)

x

y

y = 2 - 4x

2

- 4

-1

1 4

4 - i

2(a)

x

y

4

4

3p
4

(b)

x

y

p
4

-1

1

(c)

x

y

p
3

1

Ö3

3(a)

x

y

-1

1
1

(b)

x

y

3

2
2

(c)

x

y

-1

1
Ö2

4(a)

x

y

4

8

(b)

x

y

2 4

-1

(c)

x

y

-1
-1

1
3

(d)

x

y

3p
4

(e)

x

y

p
6

p
3

(f)

p
4

p
4

x

y

-2

-1

(g)

x

y

2

2

(h)

x

y

1-1
-1

-2

-3

(i)

x

y

2 4
1

-1

-3

5(a)(i)

x

y

-1 2 4

1

-3

(ii)

x

y

-1 2 4

1

-3

(b)(i)

x

y

-1

1
1

-1

-3

3

(ii)

x

y

-1

1
1

-1

-3

3
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(c)(i)

x

y

1 2

-1

1

(ii)

x

y

1 2

-1

1

(d)(i)

x

y

-2

-8

1 4 7

-5

(ii)

x

y

-2

-8

1 4 7

-5

(e)(i)

x

y

-1
-1

1 3

1

3
p
4

(ii)

x

y

-1
-1

1 3

1

3
p
4

(f)(i)

x

y

p
4

1-1

-1

1

(ii)

x

y

p
4

1-1

-1

1

(g)(i)

x

y

p
4

p
3

- 4

-1

-1

2

5

2

(ii)

x

y

p
4

p
3

- 4

-1

-1

2

5

2

(h)(i)

x

y

-2 3 8

- 4

6

1

(ii)

x

y

-2 3 8

- 4

6

1

6(a)

x

y

2

2

(b)

3

1

1

3

x

y

7(a)

x

y

3

d

S

(b)

x

y

-2

d
S

(c)

x

y
d

2

-2

S-2

(d)

x

y

d

S1

-1

8(a)

x

y (b)

x

y

2

2 4

-2

(c)

x

y

1-1

1

-1

9(a)

x

y

1

1 2

(b)

x

y

-1

1

1 2
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(c)

x

y

1

-1
-1

-1-Ö2

(d)

x

y

-1 1 3

1- iÖ3
2

(e)

x

y

2

-2-2Ö3

(f)

x

y

-2

- 4

-2

- 4

10(b)
√

3 cis π
3 =

√
3

2 (1 + i
√

3 )

11(a) arg(z + 3) = π
3 (b) |z| = 3

√
3

2 , arg z = 5π
6

(c) −9
4 + 3

√
3

4 i

12(a)

x

y

-1 31

-2

2

3 and 1

(b)

x

y

1 3 5

-2

2
Ö7

(2, Ö3 )

13(a)(i)

x

y

2

1
p
6

(b) This is simply part (a) shifted left by 2.

14(a)

x

y

3

4
10

z

(b) 15 (c) 9 + 12i

15(b)(i) |z + 2| = 2, centre −2, radius 2

(ii) |z − (1 + i)| = 1, centre 1 + i, radius 1

(iii) |z − 1| = 1, centre 1, radius 1

16(a) The line through 1 and i, omitting i.

(b) The circle with diameter joining 1 and i, omit-

ting these two points.

17(a)

x

y

-1
1

(b)

x

y

-1
1

18(a)

x

y

2

1

3

(i)
√

5 + 1 and
√

5− 1

(ii) 2
√

2+1 and 2
√

2−1

(b)

x

y

-5

3

3

√
26 + 3 and

√
26 − 3

(c)(i)

∣∣∣|z0| − r
∣∣∣ ≤ |z| ≤ |z0|+ r

(ii)

∣∣∣|z0 − z1| − r
∣∣∣ ≤ |z − z1| ≤ |z0 − z1|+ r

19(a) straight line external to z1 and z2 (b) major

arc (c) semi-circle (d) minor arc (e) interval

between z1 and z2

20 It is the circle with the interval joining z1 and

z2 as diameter.

21(b) The graph is the perpendicular bisector of

the line joining z1 and z2.

Exercise 1G (Page 51)
1(a) (x − 2)(x + 1 −

√
3 )(x + 1 +

√
3 )

(b) (x − 1)(x + 2 −
√

2 )(x + 2 +
√

2 )

(c) (x − 1)(x − 1 −
√

5 )(x − 1 +
√

5 )

2(a) The coefficients of P (x) are real, so complex

zeroes occur in conjugate pairs. (b) 6

3(a) 1 + 2i; the coefficients of P (x) are real, so

complex zeroes occur in conjugate pairs.

(c) P (x) = (x + 2)(x2 − 2x + 5)

4(a) 3i; the coefficients of P (z) are real, so complex

zeroes occur in conjugate pairs. (b) z2 + 9

(c) P (z) = (2z + 3)(z2 + 9)

5(b) 0; the coefficients of P (z) are real, so complex

zeroes occur in conjugate pairs.

(c)(i) P (z) = (2z − 1)(z − 3 − i)(z − 3 + i)

(ii) P (z) = (2z − 1)(z2 − 6z + 10)
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6(a) The coefficients of Q(x) are real, so complex

zeroes occur in conjugate pairs. (b) 3 +
√

5,

3 −
√

5

(c)(i) (x − 2i)(x + 2i)(x − 3 −
√

5 )(x − 3 +
√

5 )

(ii) (x2 + 4)(x − 3 −
√

5 )(x − 3 +
√

5 )

(iii) (x2 + 4)(x2 − 6x + 4)

7(a) x = 1 ± 3i, 3 or −2 (b) x = 1 ± i or 2 ± i

8(b) x = 3, −1
2 +

√
3

2 i, −1
2 −

√
3

2 i

9(a) a = 3 (b) b = 1

(c) (z2 − 6z + 10)(z2 − 6z + 13)

10(b) k = 3

11(b) m = 7, n = −4

12(a) −7 − 4i (b)(i) −7 + 4i (ii) 2x − 7

13(b) P (z) = 1
2
(z4 − 2)(2z4 − 1)

so one root is z =
4
√

2.

(c)
4
√

2, 1
4
√

2
, − 4

√
2, − 1

4
√

2
,

and i
4
√

2, 1
4
√

2
i, −i

4
√

2, − 1
4
√

2
i

14(a) P (x) has minimum value B, when x = 0.

Since B > 0, it follows that P (x) > 0 for all real

values of x. (b) −ic, −id; the coefficients of

P (x) are real, so complex zeroes occur in conju-

gate pairs.

15(a) They form a con-

jugate pair, since P (x)

has real coefficients.

x

y

d

(c)

16(a) The minimum stationary point is at x = 1.

f(1) = k − 2 > 0. Hence the graph of f(x) has

only one x-intercept which lies to the left of the

maximum stationary point at x = −1.

(b) f(x) has real coefficients (d) −14, 7 ± 12i

17 Hint: consider P (x)− P ′(x)

18(b) −1 + 2i is a double zero of P (z) (c) The

coefficients of P (z) are real and −1 +2i counts as

two of the zeroes of P (z), so its conjugate −1−2i

must also count as two zeroes.

(d) P (z) = (z+1−2i)2(z+1+2i)2 = (z2+2z+5)2

22(b) (z−α)2(z−α)2 is a factor. (c) Hint: Begin

by writing: P (z) =
(
z − 2 Re(α) + |α|2

)2 × Q(z)

Review Exercise 1H (Page 54)
1(a) 1 − 5i (b) 18 − 26i (c) 5 + 2i

2(a) (z + 10i)(z − 10i) (b) (z + 5− 3i)(z + 5 + 3i)

3(a) z = 4+3i or 4−3i (b) z = −1
2
+ 3

4
i or −1

2
− 3

4
i

4(a) ±(3 − 2i) (b) ±(3 +
√

2 i)

5(a) z = 2 + i or 3 − i (b) z = 2 + 3i or 4 − 2i

6 3i = −3i is also a zero, so (z−3i)(z+3i) = z2+9

is a factor.

7(a) The coefficients of P (z) are real. (b) 4

(c) P (z) = (z − 4)(z2 − 4z + 29)

8(a)
√

2 cis(−π
4 ) (b) 6 cis 5π

6

9(a) 4i (b) −
√

3 −
√

3 i

10(a) 6 cis 5π
6

(b) 2 cis 5θ (c) 9 cis 6α

11(a)

4

2

2-2 x

y (b)

2

1

21 x

y

y x= 2 -

2 + 2i

(c)

-2

-2 x

y (d)

1

1-1 x

y

12

1

-1

2-1

p
3

x

y

1

13(a)
1
2 (
√

3− 1)+ 1
2(
√

3+1)i (b) z = 2 cis 2π
3 and

w =
√

2 cis π
4

(c)
√

2 cis 5π
12

14(a)

1

-1

21 x

y (b)

2

-2

2-2 x

y
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(c)

4

-4

1062 x

y

15(a) 3 + 5i (b) −5 + 3i (c) −1 + i

16(a) 1 − 5i, 7 + 3i (b) 3 + 6i, −3 − 2i

18(a)
7π
24 (b)

19π
24

21 Use similar triangles.

22(b)
√

5 + 1

Chapter Two

Exercise 2A (Page 64)
1(a) equality (b) implication (c) equivalence

(d) for all (f) there exists

2(a) If a triangle has two equal angles, then it has

two equal sides. True. (b) If the square of a

number is odd, then the number is odd. True.

(c) If I have four legs, then I am a horse. False.

(d) If a number is even, then it ends with the digit

6. False. (e) Every rhombus is a square. False.

(f) If n ≥ 0, then
√

n ∈ R. True.

3(a) True (b) False (c) False (d) False (e) True

(f) True

4(a) Not all cars are red. (Alternatively, some cars

are not red.) (b) a ≤ b or a 6> b (c) Hillary does

not like steak or she does not like pizza. (d) Bill

and Dave are both wrong. (e) I live in Tasmania

and I don’t live in Australia. (f) Nikhil doesn’t

study and he passes.

(g) x < −3 or x > 8 (h) −5 ≤ x < 0

5(a) If my plants do not grow, then I haven’t wa-

tered them. (b) If you live in Melbourne, then

you live in Australia. (c) If a triangle does

not have three equal angles, then it does not have

three equal sides. (d) If I like motorists, then I

do not like cycling. (e) If a number is even, then

the previous number is odd. (f) If 1
a ≥ 1

b , then

a ≤ b or a and b are not both positive.

6(a) If a number is divisible by both 3 and 5, then

it is divisible by 15. Conversely, if a number is

divisible by 15, then it is divisible by both 3 and

5. (b) If a triangle has two equal sides, then it has

two equal angles. Conversely, if a triangle has two

equal angles, then it has two equal sides. (c) If

the only divisors of the integer n, where n > 1,

are 1 and n, then n is prime. Conversely, if n is

prime, then its only divisors are 1 and n. (d) If

a quadrilateral has a pair of opposite sides that

are equal and parallel, then it is a parallelogram.

Conversely, if a quadrilateral is a parallelogram,

then it has a pair of opposite sides that are equal

and parallel.

7(a) true (b) false, 3 × (−1) < −1 (c) true

(d) false, 1
2 >

(
1
2

)2
(e) false, | − (−1)| 6= −1

(f) true
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8(a) false, 2 > −3 but 22 < (−3)2 (b) false,

(−3)2 > 22 but −3 < 2 (c) true (d) true (e) false,

|2 + (−1)| < |2|+ | − 1| (f) true

9(a) ⇒ (b) ⇔ (c) ⇔ (d) ⇒ (e) ⇔ (f) ⇒
10(a) false (b) false (c) true (d) true

11(a) If Jack does Extension 2 Mathematics then

he is crazy. (b) Jack does Extension 2 Math-

ematics and he is not crazy. (c) If Jack does

not do Extension 2 Mathematics then he is crazy.

(d) If Jack is not crazy then he will do Extension

2 Mathematics. (e) If Jack does not do Exten-

sion 2 Mathematics then he is not crazy. (f) If

Jack does Extension 2 Mathematics then he is not

necessarily crazy.

12(a) For each integer there always exists a larger

integer. (b) The sum of any positive real number

and its reciprocal is greater than or equal to two.

13(a) true (b) false (c) true (d) true

14(a) They are both false.

(b) If 1 < 0 then 1 is a negative number. True

15(a) yes — consider the contrapositive of (1)

(b) unknown — studying hard is a sufficient condi-

tion for passing, but it is not a necessary condition

16 If either Anna or Bryan passed, then Chris

passed. So since the statement is negated, Chris

failed.

17 Pender is the driver.

Exercise 2B (Page 68)
1(a) [Hint: An even number has the form 2n,

where n ∈ Z.] (b) [Hint: An odd number has

the form 2n + 1, where n ∈ Z.]

4(a) [Hint: If b is divisible by a, then b = ka for

some k ∈ Z.]

6(a) [Hint: Let the consecutive integers be n− 1,

n, n + 1 and n + 2.]

8 [Hint: Find a pair of simultaneous equations.]

10 [Hint: Factorise the expression, then explain

why it is divisible by both 2 and 3.]

13 [Hint: Let the consecutive integers range from

n − 3 to n + 3.]

14(b) No. There will always be a remainder of n
2
.

15 [Hint: A 4-digit number with digits a, b, c, d

has value 1000a + 100b + 10c + d.]

16(c) ∀x, y,∈ Z
+ :
[
∃m ∈ Z

+ : 10x + y = 13m
]

⇔
[
∃k ∈ Z

+ : x + 4y = 13k
]

18(a) A factor of n is of the form pcqd, where

c ∈ {0, 1, 2, . . . , a} and d ∈ {0, 1, 2, . . . , b}. So

there are a + 1 possible values for c and b + 1

possible values for d. So by the multiplication

principle, there are (a + 1)(b + 1) possible factors

of n. (b) 40

19 [Hint: Consider the expression (a− c)(b−d).]

Exercise 2C (Page 72)
3(a) If a is even then a2 is even.

10(a) An odd number lies between two consecutive

multiples of 4. It is one more than the smaller

multiple of 4 or one less than the larger multiple

of 4.

16(a) If p is not prime then ∃ a, b ∈ Z
+ such that

p|ab⇒ p6 | a and p6 | b.

Exercise 2D (Page 78)
6(b) Use part (a) three times.

8(a) Use Question 6(b) with p = a2 and so on.

(b) In part (a) replace a2 with ab and so on.

(c) Use parts (a) and (b).

9(c) Use part (b).

(d) Use part (c) with a3 = x and so on.

11(a)
a4

b4 − 4a2

b2 + 6 − 4b2

a2 + b4

a4

12(a) Use the given AM/GM inequality twice on

the RHS.

13(d)(i) The triangle inequality: the length of any

side is less than (or equal to if the points are

collinear) the sum of the other two sides.

(ii) Use part (i) three times then add.

14(b) Expand the LHS and use part (a).

(c)(i) Begin with LHS − RHS.

16(a) Begin with LHS − RHS.

18(c) When z = kw, with k > 0, or when either

z = 0 or w = 0.

Exercise 2E (Page 83)
8(a) x > 1 +

√
2 or x < 1 −

√
2

25(a) Ben may pair (n − 1) other players. In each

case there are (n − 2) remaining players. In each

case, the number of derangements for those play-

ers is Dn−2. Hence multiply to get (n − 1)Dn−2.

(d) D1 = 0, D2 = 1
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Exercise 2F (Page 88)
1(a) |4OAB| = 1

4 cm2 , 3 cm2

(b)(ii) |4OGH | = (2 −
√

3) cm2,

dodecagon area = 12(2 −
√

3) cm2

2(a)
π
36

(4 +
√

3)

3(a)
3
4 and 2

3 square units.

4(a) (1 − e−1) sq. units (b)
1
2 (1 + e−1) sq. units

(c) e−
1

2 sq. units

6(b) It diverges to infinity.

7(c) (a+2b
3 , ln a+2 ln b

3 )

n x

y

y e= -x
x

n

8(b)

10(a) (0, 1) is a maximum turning point, (10, 0) is

a minimum turning point.

(b) y → ∞ as x → ∞, and y → 0 as x → −∞.

(c)

x

y

10

1

11(c) When z = kw, with k < 0, or when either

z = 0 or w = 0.

12(a)(i) 66 = 46 656, 3 × 56 = 46 875

(ii) 5 × 66 = 233 280, 2 × 76 = 235 298

13(f) 0·693

16(c) n = 9

18(b) In part (a), put f(x) = x−2, a = (n−1) and

b = n.

20(a) Put f(x) = x − 1 − logx.

Show that y = f(x) is concave up for all x > 0.

Show that f(x) has a global minimum at x = 1.

(c) Put pr = xr

x1+x2+...+xn
so that

n∑

r=1

pr = 1.

Also npr = xr

µ , where µ = x1+x2+...+xn

n .

Review Exercise 2G (Page 93)
1(a) If the opposite angles of a quadrilateral are

supplementary, then it is cyclic. True. (b) If

two numbers have an even sum, then they are

both odd. False. (c) Every parallelogram is a

rhombus. False.

2(a) Not all mathematicians are intelligent.

(b) Suzie does not like Physics or she does not like

Chemistry. (c) I am on vacation and I am

working.

3(a) If I don’t have two wheels, then I am not a

bicycle. (b) If the last digit of a number is 6,

then the number is even. (c) If a quadrilateral

does not have four equal sides, then it is not a

square.

4(a) If a number is divisible by 2, then it is even.

Conversely, if a number is even, then it is divisi-

ble by 2. (b) If the diagonals of a quadrilateral

bisect each other, then the quadrilateral is a par-

allelogram. Conversely, the diagonals of a paral-

lelogram bisect each other. (c) If ∃ c ∈ Z such

that a = bc, then a is divisible by b. Conversely, if

a is divisible by b, then ∃ c ∈ Z such that a = bc.

16(b)
1
2

23(c) From part (b), n
√

n is not an integer, so it is

not rational.
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Chapter Three

Exercise 3A (Page 100)
1(a) cis 5θ (b) cis(−3θ) (c) cis 8θ (d) cis(−θ)

(e) cis 7θ (f) cis(−6θ)

2(a) cis 7θ (b) cis(−5θ)

3(a) −1 (b) −i (c) −
√

3
2 + 1

2 i (d) −1
2 +

√
3

2 i

(e)
1√
2

+ 1√
2
i (f)

1
2 +

√
3

2 i

4(a)
√

2 cis π
4

(b) 256 + 256i

5(a) 2 cis π
3

(b) 1024 − 1024
√

3 i

6(a) 2, 5π
6

7(a) 2 cis
(
−π

6

)
(b) 128 cis 5π

6 (c) −64
√

3 + 64i

8(a) 2 cis
(
−2π

3

)
(b) 32 cis 2π

3 (c) −16 + 16
√

3 i

9(a) 2 cis
(
−π

4

)
(b) 222i

12(a)(i) 6 (ii) 3 (b) −64, 8i

13(b) n = 2, 6, 10, . . .

15(b) −22n

Exercise 3B (Page 103)
5(b)

8
15

8(c) b = 2, c = −1

(d) No, since sin π
10

= sin 9π
10

and sin 13π
10

= sin 17π
10

(e) sin π
10 =

√
5−1
4 , sin 3π

10 =
√

5+1
4

9(a) 64 cos7 θ − 112 cos5 θ + 56 cos3 θ − 7 cos θ

(c)(i)
7
4 (ii)

21
16

10(b) θ = 0, π
6 , 5π

6 , π, 7π
6 , 11π

6

13(b) z = 1
2 ±

√
3

2 i or 3
5 ± 4

5 i

14(a) 8(1 − 10s2 + 24s4 − 16s6)

(b) x = 2 sin nπ
8

for n = ±1,±2,±3

Exercise 3C (Page 108)
1(a) cis 0 = 1, cis 2π

3
= −1

2
+

√
3

2
i,

cis
(
−2π

3

)
= −1

2 −
√

3
2 i (d)(i) 1 (ii) 0

2(a) z = ±1, 1
2

+
√

3
2

i, 1
2
−

√
3

2
i, −1

2
+

√
3

2
i,

−1
2 −

√
3

2 i (e) (z2 − z + 1)(z2 + z + 1)

3(a)
1√
2
+ 1√

2
i, 1√

2
− 1√

2
i, − 1√

2
+ 1√

2
i, − 1√

2
− 1√

2
i

(b) (z2 −
√

2 z + 1)(z2 +
√

2 z + 1)

4(a) i, −i,
√

3
2 + 1

2 i,
√

3
2 − 1

2 i, −
√

3
2 + 1

2 i, −
√

3
2 − 1

2 i

5(a) cis
(
−7π

10

)
, cis

(
−3π

10

)
, cis π

10 , cis π
2 = i, cis 9π

10

(b) cis
(
−5π

8

)
, cis

(
−π

8

)
, cis 3π

8 , cis 7π
8

(c) 1 +
√

3 i, −1 −
√

3 i,
√

3 − i, −
√

3 + i

(d) 2 cis
(
−17π

20

)
, 2 cis

(
−9π

20

)
, 2 cis

(
− π

20

)
, 2 cis 7π

20
,

2 cis 3π
4

6(a) −1, cis π
5
, cis

(
−π

5

)
, cis 3π

5
, cis

(
−3π

5

)

7(a) 1, cis
(
±2π

7

)
, cis

(
±4π

7

)
, cis

(
±6π

7

)

(c) (z − 1) × (z2 − 2 cos 2π
7 z + 1)×

(z2 − 2 cos 4π
7 z + 1) × (z2 − 2 cos 6π

7 z + 1)

8(a)(i) 1, cis 2π
5 , cis

(
−2π

5

)
, cis 4π

5 , cis
(
−4π

5

)

9(a) cis 2kπ
9 for k = −4, −3, −2, −1, 0, 1, 2, 3, 4

11(b) β = ρ3 + ρ5 + ρ6
(c) a = 1, b = 2

12(a)(i) cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ,

sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ

(b) ± 1√
2

(3 + i) ,± 1√
2

(1 − 3i)

14(a) 3, when k is a multiple of 3, 0 otherwise.

(b) (1 + ω)n =

n∑

r=0

(n

r

)
ωr and

(1 + ω2)n =

n∑

r=0

(n

r

)
ω2r

15(a) The roots are −i cot
(2k−1)π

4n

for k = 1, 2, 3, . . . , 2n.

Exercise 3D (Page 116)
1(a) e3iθ

(b) e−6iθ
(c) e8iθ

(d) e10iθ

2(a) e−iθ
(b) e3iθ

(c) e2iθ
(d) e20iθ

3(a) 2eiπ/2
(b)

√
2 eiπ/4

(c) 6eiπ
(d) 2e2iπ/3

(e) 3
√

2 e−3iπ/4
(f) 4e−iπ/6

4(a) −5 (b)
1
2 +

√
3

2 i (c) −4i (d) −
√

3+i (e) 2−2i

(f) −2
√

3 − 6i

5(a) 2
√

2 eiπ/12
(b)

1√
2

e−7iπ/12
(c) 8

√
2 e3iπ/4

(d) 2
√

2 e11iπ/12

6(a) −64 (b) 4 − 4i (c) −1
2 +

√
3

2 i

(d) −648 − 648
√

3 i

11(a) n is divisible by 4 (b) n = 2, 6, 10, . . .

(c) n is divisible by 6 (d) n = 3
2
, 9

2
, 15

2
, . . .

12(b)(i) 2i sin 3θ (ii) 4 cos2 θ (iii) −8i sin3 θ

(iv) 2 cos θ (2 cos θ + 1) (v) 2 (sin 3θ − sin θ) i

13(a) cos θ = 1
2

(
eiθ + e−iθ

)
(d) tan θ, cot θ and

cosec θ are odd, sec θ is even

14(a) z2 + 4 (b) z2 − z + 1 (c) z3 + 8 (d) z4 + 4

15(b) ei(φ−θ) = 1 with −2π < φ − θ < 2π.

This has only one solution, which is φ − θ = 0.

(c) If two complex numbers are equal, then they

represent the same point in the Argand diagram.

Hence the moduli are equal and the principal ar-

guments are equal.
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Exercise 3E (Page 120)

1(a) 2i = 2eiπ/2
(b) 2i = 2ei(π

2
+2kπ), k ∈ Z

(d) z =
√

2e−3iπ/4,
√

2eiπ/4

(e) z = −1 − i, 1 + i

2(a) −1 = eiπ
(b) −1 = ei(π+2kπ), k ∈ Z

(d) z = e−3iπ/4, e−iπ/4, eiπ/4, e3iπ/4

(e) z = − 1√
2
− 1√

2
i, 1√

2
− 1√

2
i, 1√

2
+ 1√

2
i,− 1√

2
+ 1√

2
i

3(a) i = e−iπ/2
(b) −i = e−i(π/2+2kπ), k ∈ Z

(d) z = eiπ/2 , e−iπ/6, e−5iπ/6

(e) z = i,
√

3
2 − 1

2 i,−
√

3
2 − 1

2 i

7(c) cos π
5

=
√

5+1
4

, cos 2π
5

=
√

5−1
4

9(a) cos6 θ = 1
32

cos 6θ + 3
16

cos 4θ + 15
32

cos 2θ + 5
16

10(a) sin3 θ = 3
4

sin θ − 1
4

sin 3θ,

sin5 θ = 1
16 sin 5θ − 5

16 sin 3θ + 5
8 sin θ (c)

47
480

11(c) z = 1
2 ±

√
3

2 i or 3
5 ± 4

5 i

12 a = 1
2 ln 2, b = −π

4

13(a) 2 cosA cos B

14(b) tan θ =
eiθ − e−iθ

i(eiθ + e−iθ)

15(a)
zn+1−z

z−1

17(a) z = e
2kπ

2n+1
i for k = 0, 1, 2, . . . , 2n

Review Exercise 3F (Page 123)
1(a) cis 7θ (b) cis 6θ

2 −1

3(a)
√

2 cis
(
−π

4

)
(b) −64 + 64i

4(a) 213
(b)(ii) n is even or a multiple of 3

5(a) cos6 θ−15 cos4 θ sin2 θ+15 cos2 θ sin4 θ−sin6 θ,

6 cos5 θ sin θ − 20 cos3 θ sin3 θ + 6 cos θ sin5 θ

6(a) z4 + 4z2 + 6 + 4z−2 + z−4,

z4 − 4z2 + 6 − 4z−2 + z−4

7(b) −43

8 z = 2e−iπ/2, 2eiπ/6, 2e5iπ/6

9(a)
√

2 cis kπ
12 for k = −7, 1, 9

(b) cis kπ
12 for k = −11,−7,−3, 1, 5, 9

10(a) 8eiπ/6
(c) 2e−11iπ/18, 2eiπ/18, 2e13iπ/18

11(d) −7 cos 3θ + 7
5 cos 5θ − 1

7 cos 7θ + C

12(b) x = cos π
10 , cos 3π

10 , cos 7π
10 , cos 9π

10 (e)

√
5+1
4

14(a) cis kπ
7 for k = −5,−3,−1, 1, 3, 5, 7

15(a) ekiπ/5 for k = −4,−2, 0, 2, 4

(b)(i) −1 and
√

5

18(c) −1
2 (e)

1+
√

5
4

Chapter Four

Exercise 4A (Page 126)
1(a)

1
4
e4x +C (b) −1

5
cos 5x+C (c) 2 tan 1

2
x+C

(d)
1
3

ln |3x− 4| + C (e) 4
√

x + C (f)
3x

ln 3
+ C

2(a) − 1
2(2x−1) + C (b) sin−1 x

5 + C

(c)
1
3
ex3

+ C (d)
1
3

tan−1 x
3

+ C

(e) 2 ln(x2 + x + 1) + C (f)
1
5
(x2 + 1)5 + C

3(a) 2(e2−1) (b)

√
3

2 (c)
π
8 (d)

π
4 (e) ln 8

5 (f)
1
16

4(a) e
1

x + C (b)
1
3 ln(1 + sin 3x) + C

(c)
1
2 tan x2 + C (d)

52x

2 ln 5 + C

(e) ln |x + tanx| + C (f) sin−1 ex + C

5(a) −20 (b)
1
3 ln 2 (c)

π
3
√

3
(d)

1
2 ln e2+1

2 (e)
π
18

(f) ln 2

6 ln 2

7 −1+ln x
x

+ C

9
π
4 − 2

3

Exercise 4B (Page 128)
1(a) x + ln |x − 1| + C (b) x − 2 ln |x + 1| + C

(c) x + 2 ln |x− 1|+ C

2(a) 1 − ln 4 (b) 1 − 1
4 ln 5 (c) π − 1

3(a)
π
3 − 1

2 (b)
π
4 + ln2 (c)

1
4(π − ln 4)

(d)
π
8 + 1

2 ln 2

4(a)
1√

x2 + a2
(b) log(x +

√
x2 + a2) + C

(c)(i) log
(
x +

√
x2 + 3

)
+ C (ii) 2 log 3

5(a)
1
2x2 − 1

2 ln(x2 + 1) + C

(b)
x3

3
− x2

2
+ x − ln |x + 1| + C

(c)(i)
x3

3
+ x2

2
+ x + ln |x − 1| + C

(ii)
x3

3
− x + tan−1 x + C (iii) x − ln(1 + ex) + C

(iv)
2
3 (x−4)

√
2 + x+C (v) −2

3 (2+x)
√

1 − x+C

(vi)
1
2x2 − 2 ln(x2 + 4) + C

6(a) ln(e + e−1) (b)
1
2 ln e2+1

2 (c)
π
12 + ln2

7(a)
1
2x2 + ln |x +1|+C (b)

1
3x3 +3 ln |x− 2|+C

(c) x + ln(1 + x2) + C

8(a)
1√

x2 − a2
(b) log(x +

√
x2 − a2) + C

(c)(i) log
(
x +

√
x2 − 5

)
+ C

(ii) log
(

3+
√

5
1+

√
5

)
= log

(
1+

√
5

2

)

9 2 ln(1 +
√

x) + C
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Exercise 4C (Page 132)
1(a)

1
5 (x2 + 1)5 + C (b)

1
7(1 + x3)7 + C

(c) − 2
1+x3 + C (d)

1
2(3−x2)4 + C

(e)

√
x2 − 2 + C (f)

1
2

√
1 + x4 + C

2(a)
−1

2 sin2 x
+ C (b)

−1
1+tanx + C (c)

1
3 (lnx)3 + C

(d) 2 sin
√

x + C (e)
1
2

tan−1 x2 + C

(f)
1
3

sin−1 x3 + C

3(a)
7
4

(b) 2 −
√

3 (c) 3(
√

3 −
√

2)

(d)
1
5 (e)

1
3 (f) 2

4(a) − 1
42 (b) Begin by writing x = (x − 1) + 1.

5(a)
2
15(3x − 2)(1 + x)

√
1 + x + C

(b) 2
(
1 +

√
x − ln(1 +

√
x)
)

+ C

(c) 4
(
x

1
4 − 1

2

√
x + 1

3
x

3
4 − ln(1 + x

1
4 )
)

+ C

(d) tan−1
√

e2x − 1 + C

6(a)
1
9 (b)

128
15 (c) 4 + 10 ln 5

7 (d)
π
12

7(a) 2 tan−1
(√

x
)

+ C (b)
2
3(x − 2)

√
x + 1 + C

8(a)
x√

1+x2
+ C (b) 2 sin−1 x

2 − 1
2x
√

4 − x2 + C

(c) −
√

25−x2

25x
+ C (d) − 1

x

√
1 + x2 + C

9(a)
2
3 (b) Begin by writing x3 = x(x2 + 1) − x.

10(b) The region is half a segment.

11(b)
π
4

12(b)(ii)
π2

4

13(b) Begin by writing x2 = 1 − (1 − x2).

14(a) tan−1
√

x2 − 1+C1 (b) tan−1
√

x2 − 1+C2

15(a)

√
3

8 −
√

ε(4+ε)

4(2+ε) (b)

√
3

8

Exercise 4D (Page 139)
1(a)

1
x−1 − 1

x+1 (b)
1

3(x−4) − 1
3(x−1) (c)

2
x−3 + 2

x+3

(d)
2

x−2 − 1
x−1 (e)

1
5(x−2) + 4

5(x+3) (f)
1

x−1 + 2−x
x2+3

2(a) ln |x− 4| − ln |x − 2| + C

(b) 2 ln |x + 1| − 2 ln |x + 3| + C

(c) 4 ln |x− 2| − ln |x − 1| + C

(d) 3 ln |x − 1| − ln |x + 3|+ C

(e) ln |x + 1|+ ln |2x + 3| + C

(f) 2 ln |x + 1|+ 3 ln |2x− 3|+ C

3(a)
1
4 ln 3

2 (b) ln 2 (c) ln 14
3 (d)

1
2 ln 2

4(a) ln |x− 2| − 2 tan−1 x + C

(b) ln |2x + 1| − 1
2 ln(x2 + 3) + C

(c) tan−1 x + 3 ln |x| − ln(x2 + 1) + C

5(a)
π
4 − ln 3

2 (b) π + ln 2 (c) ln 4 − 3
2 ln 3

6(a) 5 ln |x − 1| + 7 ln |x − 2| − 12 ln |2x − 3| + C

(b)
3
2

ln |x| − 5 ln |x− 2|+ 7
2

ln |x− 4|+ C

7(a)
5
3

ln 3 − ln 2 (b) 2 ln3 − 8 ln 2

8(a)(i) A = 2, B = 1, C = −3

(ii) 2x + ln |x − 1| − 3 ln |x + 2| + C

(b)(i) x + ln |x− 2| − 2 ln |x + 1|+ C

(ii) 3x + 2 ln |x + 4| + ln |x− 5|+ C

9(a)(i) A = 1, B = −1, C = 2, D = −1

(ii) ln 3 + ln 2 − 1
2 (b) 12 + ln2

10(a)(i) A = 3, B = 12, C = 2

(ii) 3x + 12 ln |x − 2| − 2
x−2

+ C

(b)(i) A = 23, B = 10, C = −23, D = 13

(ii) 23 ln |x−1
x−2 | − 10

x−1 − 13
x−2 + C

12(a) A = 0, B = −1, C = 0, D = 2

13(a) x + ln |x − 1| − ln |x + 1|+ C

(b) x + 2 ln |x − 1| − ln |x|+ C

(c) x − tan−1 x + ln |x| − 1
2 ln(x2 + 1) + C

(d) x + 9 ln |x − 3| − 4 ln |x− 2|+ C

(e)
1
2
x2 − x + 5 ln |x| − 4 ln |x + 1| + C

(f)
1
3
x3 + 3

2
x2 + 7x + 16 ln |x− 2| − ln |x − 1| + C

Exercise 4E (Page 144)
1(a)

1
3

tan−1 x
3

+ C (b) sin−1 x
3

+ C

(c)
1
6 ln

∣∣∣x−3
x+3

∣∣∣+ C (d)
1
6 ln

∣∣∣ 3+x
3−x

∣∣∣+ C

(e) ln
∣∣∣x +

√
9 + x2

∣∣∣+C (f) ln
∣∣∣x +

√
x2 − 9

∣∣∣+C

2(a) tan−1(x + 2) + C (b)
1
4 tan−1

(
x−2
4

)
+ C

(c) sin−1 x−4
5 + C (d) sin−1 x+4

6 + C

(e) ln
∣∣∣x − 3 +

√
x2 − 6x + 13

∣∣∣+ C

(f)
1
2

ln

∣∣∣∣x + 1 +
√

x2 + 2x + 3
2

∣∣∣∣+ C

3(a)
π
8 (b) π (c)

π
6 (d)

π
2 (e) ln 3 (f) ln 3

4(a) ln(x2 + 2x + 2) − tan−1(x + 1) + C

(b)
1
2 ln(x2 + 2x + 10) − 1

3 tan−1 x+1
3 + C

(c) −
√

6x − x2 + 3 sin−1 x−3
3

+ C

(d) −
√

4 − 2x − x2 + 2 sin−1 x+1√
5

+ C

(e)

√
x2 + 2x + 10− ln

∣∣∣x + 1 +
√

x2 + 2x + 10
∣∣∣+

C

(f)

√
x2 − 2x − 4+4 ln

∣∣∣x − 1 +
√

x2 − 2x− 4
∣∣∣+C

5(a)
1
2 ln 2+ π

8 (b)
1
4 (3π−ln 4) (c) ln 2− π

4 (d) 2−√
3 − π

6 (e) 3 ln(3 + 2
√

2 ) − 4
√

2

(f) ln

(
1 +

√
2
3

)
+
√

6 − 1

6(a) sin−1 x −
√

1 − x2 + C

(b)

√
6 + x − x2 + 5

2
sin−1 2x−1

5
+ C

(c)

√
x2 − 1 − ln

∣∣∣x +
√

x2 − 1
∣∣∣+ C

7(a)
π
3

+
√

3 − 2 (b) 3 sin−1 1
3

(c) 2
√

2 −
√

3 + ln
(

2+
√

3
3+2

√
2

)

8(a)
x√

4x−x2
is undefined at x = 0.
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Exercise 4F (Page 148)
1(a) ex(x − 1) + C (b) −e−x(x + 1) + C

(c)
1
9e3x(3x + 2) + C (d) x sinx + cos x + C

(e) −1
2
(x − 1) cos 2x + 1

4
sin 2x + C

(f) (2x − 3) tanx + 2 ln | cosx| + C

2(a) π (b)
π
2 − 1 (c)

π
4 − 1

2 ln 2 (d)
1
4(e2 + 1)

(e) e−1
(f) 1 + e−2

3(a) x(lnx − 1) + C (b) 2x(lnx − 1) + C

(c) x cos−1 x −
√

1 − x2 + C

4(a)
π
4 − 1

2 ln 2 (b) 1 (c)
1
2

5(a)
1
4x2(2 lnx − 1) + C (b)

1
9x3(3 lnx − 1) + C

(c) − 1
x
(lnx + 1) + C

6(a) (2 − 2x + x2)ex + C

(b) x2 sin x + 2x cosx − 2 sinx + C

(c) x(lnx)2 − 2x lnx + 2x + C

7(a) − 1
42 (b)

4
15(1 +

√
2 ) (c)

128
15

8(a)
1
2ex(cosx + sin x) + C

(b) −1
2e−x(cos x + sin x) + C

9(a)
1
5 (eπ − 2) (b)

1
5 (e

π

4 + 2)

10(a)
1

2
√

3
(π −

√
3) (b)

√
3π
2 (c) π − 2

12(a)
1
4x2(2 lnx − 1) + C

(b)
1
4x2

(
2(lnx)2 − 2 lnx + 1

)
+ C

14(a)
1
2

(
x
√

a2 − x2 + a2 sin−1(x
a
)
)

+ C

(b) x ln
∣∣∣x +

√
x2 + a2

∣∣∣−
√

x2 + a2 + C

(c) x ln
∣∣∣x +

√
x2 − a2

∣∣∣−
√

x2 − a2 + C

15(a)
1
32

(sin 4x−4x cos4x+8x cos 2x−4 sin2x)+C

(b)
1
18

(3x sin 3x + cos 3x + 9x sinx + 9 cosx) + C

(c)
1
20

ex(sin 3x − 3 cos 3x + 5 sin x − 5 cos x) + C

16(a)
1
48(3

√
3 − π) (b)

1
12(π + 2 ln2 − 2)

Exercise 4G (Page 154)
1(a) sin x+C (b) − cosx+C (c) − ln | cosx|+C

(d) ln | sin x|+ C

2(a)
1
3 sin3 x + C (b) −1

3 cos3 x + C

(c)
1
3 cos3 x − cosx + C (d) sin x − 1

3 sin3 x + C

(e)
1
5 sin5 x − 2

3 sin3 x + sin x + C

(f)
1
4 sin4 x − 1

6 sin6 x + C

3(a)
π
4

(b)
π
12

(c)
π
8

4(a) tan x + C (b) tan x − x + C

(c)
1
3 tan3 x+tan x+C (d)

1
3 tan3 x−tan x+x+C

5(a)
1
4 (b)

11
24 (c)

9
64 (d)

53
480 (e)

4
15 (f)

7
60

√
2

6(a)
1
32(sin 4x + 8 sin 2x + 12x) + C

(b)
1
32(sin 4x − 8 sin 2x + 12x) + C

(c)
1

1024(24x− 8 sin4x + sin8x) + C

8(a) 1 (b)
1
3 ln 2 (c)

1
2 (tan−1 2 + tan−1 1

2 ) = π
4

9(a)
π
4

(b)
2
15

(1 +
√

2) (c)
π
16

10(a)
1
2 sin2 x + C1 (b) −1

4 cos 2x + C2

11(a)
1
2 (b)

√
3

4

12(a)
1
2 (b)

4
3

13(a) −1
8

cos 4x − 1
4

cos 2x + C

(b) −1
8

cos 4x + 1
4

cos 2x + C

(c)
1
16 sin 8x + 1

8 sin 4x + C

14(a)
1
4 (b)

1
6 (c)

3
8

15(a) tan x
2 + C (b) ln

∣∣∣ tan x

2

1+tan x

2

∣∣∣+ C

(c)
1
5 ln

∣∣∣ 1+2 tan x

2

2−tan x

2

∣∣∣+ C

17
1
3 sin 3θ + sin3 θ + C

Exercise 4H (Page 158)
3(b)

1
2(e2 − 1)

4(c)
8
15

6(b) (π
2
)6 − 30(π

2
)4 + 360(π

2
)2 − 720

7(b)
x4

4
− x2

2
+ 1

2
ln(1 + x2) + C

8(b) I0 = 1, I4 = 128
315

9(b) u4 = 243
1540

10(b) J2 = −1
2
x
√

1 − x2 + 1
2

sin−1 x + C

12(d)
1
15

(14
√

2 − 16)

13(d)
1
9

(
(1 + x2)4 + 8

7 (1 + x2)3 + 48
35(1 + x2)2

+64
35

(1 + x2) + 128
35

)

15(d) Jn =
2n

2n + 3
Jn−1

16(d) I5 = 1
4

(2 ln2 − 1)

17(b)
π
3 − 3

√
3

4

Exercise 4I (Page 161)
1(a)

1
36 (b) π (c) ln 12

5 (d) 2−2 ln 3 (e) 2
√

2−1

(f)
π
18

2(a)

√
1 + x2 + C (b) tan−1 x + 1

2
ln(1 + x2) + C

(c) −1
5 cos5 x + C (d) ln

∣∣∣ 2x+1
x+1

∣∣∣+ C

(e)
1
4x4 lnx− 1

16x4 +C (f)
1
6 cos3 2x− 1

2 cos 2x+C

(g)
1
4 tan−1 x+3

4 + C (h) x sin 3x + 1
3 cos 3x + C

(i)
2
3(x − 8)

√
4 + x + C

4(a) A = −2
3 , B = 2

3 , C = −1
3

6(a) 2
√

3 (b)
24

√
3

5

8(a) A = 0, B = −2, C = 0, D = 2 (b)
π
2 − 1

10
1
2a2 sin−1 x

a + 1
2x
√

a2 − x2 + C

11(b)
1
10(π + ln 27

16)

12(a) P = 2, Q = −1

(b) 2x− ln |3 sin x + 2 cosx − 1|+ C

14(b) 6 − 2e

17(c) If pq ≤ 0, then 0 ∈ [p, q] and u is undefined

at t = 0.
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Review Exercise 4J (Page 164)
1(a)

1
2ex2

+C (b)
3
2 ln(x2+1)+C (c)

1
12(1+x2)6+

C (d) −1
4 cos4 x+C (e) 3 ln |x−3|+ln |x+1|+C

(f) −1
2
xe−2x − 1

4
e−2x + C

2(a) tan x− x + C (b)
2
3
(3 + x)

3
2 − 6(3 + x)

1
2 + C

(c)
1
2 tan−1

(
x+1

2

)

(d) 3x sin 1
3x + 9 cos 1

3x + C (e) x + ln |x + 1|+ C

(f) 2 ln |x|+ 1
2 ln(x2 + 1) + C

3(a)
x

4
√

4−x2
+ C (b)

1
2 ln

(
ex−1
ex+1

)
+ C

(c) 2
√

x − 4 ln(2 +
√

x) + C

(d)
2
3

tan−1
(

1
3

tan 1
2
x
)

+ C

4(a) 6 (b) ln 6 (c)
5
24 (d) 2− 3

2 ln 7
3 (e)

16
105 (f)

1
4

5(a)
π
9 (b) 14 − 11π

2 (c)
2
15 (d)

π
12 + ln 4

3

(e)
8π
3 − 2

√
3 (f)

2e+π
4+π2

6(a)
1
2 ln 5

3 (b)
π
18 (c) π (d) ln(2 +

√
3)

8(a) In = 1
4x4(lnx)n − 1

4nIn−1

9(b)
5π
32

10(b) (2n − 1)Jn = 2n−1 + 2(n − 1)Jn−1 (c)
28
15

11(b)
26
15

Chapter Five

Exercise 5A (Page 171)
1 The xy-plane with equation z = 0, the xz-plane

with equation y = 0 and the yz-plane with equa-

tion x = 0.

2(a) 2nd (b) 5th (c) 4th (d) 6th (e) 8th (f) 3rd

3(a) (3, 2,−1) (b) (−5, 2, 5) (c) (3, 12, 5)

(d) (8, 2, 12) (e) (3,−1, 1) (f) (3, 2,−5)

(g) (−3, 2, 5) (h) (3,−2, 5) (i) (3,−2,−5)

4(a) A(2, 0, 0), B(2, 2, 0), C(2, 2, 2), D(2, 0, 2),

O(0, 0, 0), P (0, 2, 0),Q(0, 2, 2), R(0, 0, 2)

(b) 2
√

2 (c) 2
√

3 (d) x = 0, y = 0, z = 0,

x = 2, y = 2, z = 2

5(a) A(2, 0, 0), B(2, 4, 0),D(2, 0, 3),

P (0, 4, 0), Q(0, 4, 3), R(0, 0, 3)

(b) 2
√

5 (c)
√

29 (d) x = 0, y = 0, z = 0,

x = 2, y = 4, z = 3

6(a) 6u2
(b) 10 u3

7(a) OA = 7, OB = 7
√

2, AB = 7
√

3

(b) OA2 + OB2 = AB2 , so 6 AOB = 90◦.

8 BC = 2
√

21, MN =
√

21 = 1
2

BC

9(a) M = (−8, 6, 18)

(b) X = (−7,−1, 16) and Y = (−9, 13, 20)

11 x = −1

12(a) AB = AC = 2
√

14

13(a) 3x + 4y = 12 (b) 3x + 6z = 12 with the

xz-plane, 4y + 6z = 12 with the yz-plane (c) a

line (d) They intersect in a line.

15(a) z can take any real

value.

(b) circle x2 + y2 = 4

(c) It is the curved sur-

face of a cylinder with

radius 2. The diagram

shows the portion from

z = 0 to z = 4.

(d)

x y

z

16(a) A sum of squares

can never be negative.

(b) circle x2 + y2 = k.

(c) parabola z = x2.

(d) z

x y
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Exercise 5B (Page 177)

1(a)




2

−3

5



 , 2i
˜
− 3j
˜

+ 5k
˜

(b)




−4

0

13



 ,−4i
˜

+ 13k
˜

(c)




a

−2a

−3a



 , ai
˜
− 2aj

˜
− 3ak

˜
2(a) |a

˜
| = 5, â

˜
= 4

5
i
˜
− 3

5
k
˜

(b) |a
˜
| = 3, â

˜
= 1

3 i
˜

+ 2
3 j
˜
− 2

3k
˜

3(a) |v
˜
| = 3

√
2, v̂
˜

=
1

6




−
√

2

−4
√

2√
2





(b) |v
˜
| = 5

√
2, v̂
˜

=
1

10




5
√

2

3
√

2

−4
√

2





4(a)




5

−10

23



 (b)
√

654 (c)




19

28

−38



 (d)
√

2589

5(a) 3i
˜
− 12j

˜
+ 4k
˜

(b) −3i
˜

+ 12j
˜
− 4k
˜

(c) 13

6(a)




8

3

−2



 (b)




−8

−3

2



 (c)
√

77

7 λ1 = 2, λ2 = −4

8 λ1 = −1, λ2 = 3, λ3 = −2

9(a)
−−→
CD = −3

−−→
AB (b) They are not parallel.

10
−−→
BC = 2

−−→
AB, so

−−→
AB and

−−→
BC are parallel.

12 −i
˜
− 14j

˜
− 6k
˜

13 58◦, 74◦, 37◦

14(a)




3

1

−4



 (b)




−1

−7

4





15(a) −5j
˜

+ 7k
˜

(b) −24i
˜

+ 7j
˜
− 5k
˜

16(a)
−→
AG = −i

˜
+ j
˜

+ k
˜

(b)
√

3 (c)

√
6

2

18(a) No, since −a
˜

+ b
˜

+ c
˜

= 0
˜

(b) Yes

19 (−10,−1, 3), (4, 9,−1), (6, 5, 7)

Exercise 5C (Page 183)
1(a) 12

√
2 (b) −20

2(a) 5 (b) x1x2+y1y2+z1z2 (c) a1b1+a2b2+a3b3

4(a) 0 (b) They are perpendicular.

6(a) 126 (b) 360 (c) −48 (d) 78

7(a) −21 ≤ 8 ≤ 21 (b) −20 ≤ −18 ≤ 20

8(a) 4 ≤
√

74 ≤ 10 (b)
√

10 ≤
√

14 ≤ 3
√

10

10(a) λ = 8 (b) λ = −5
2 or 3

11 One such vector is i
˜

+ 7j
˜

+ 3k
˜
.

18
√

23

19 2
√

7

Exercise 5D (Page 189)
1(a) 3 (b) Both

√
6. (c)

π
3

2(a)
2
3 (b)

√
2

3

4(a) 44◦ (b) 87◦

6(a)
2
9 i
˜
− 2

9 j
˜
− 1

9k
˜

(b)




8
3
2
3

−2
3





7(a)
8

3
√

5
(b)

5
3

8(a)
−−→
BA = 3i

˜
+ 2j
˜
− 7k
˜
,
−−→
BC = 5i

˜
− 4j
˜

+ k
˜

(c) AB =
√

62, BC =
√

42, AC =
√

104 = 2
√

26

9(a)
−−→
AB =




−5

4

1



,
−→
AC =




1

3

−2



 (b) 78◦

10 117◦49′

11(b)
3
2 u2

12(a)
−→
AP =




−7

1

−2



 ,
−−→
AB =




−3

−6

0



 (b)




−1

−2

0





(c) 7 units

13(a) 3 units (b)
5
√

70
14 units

15
2
7
, 3

7
, 6

7

17(a) 90◦ (c)
220
3

u3

18(a)
−−→
OP =

−→
OA + λ

−−→
AB (b) λ = 1

12
(c) λ = 3

10

19 λ = 4 (λ = −44
65

for obtuse angle cos−1 −4
21

)

20(b) λ = 2
3 or 4

3

21(a) 12
√

10 u2
(b)

−−→
OD = 7i

˜
+j
˜
+k
˜
,
−−→
OE = 6i

˜
−2j
˜

(d) 80u3

Exercise 5E (Page 192)

2(a) 0 (b)
−−→
OB = a

˜
+ c
˜
,
−→
AC = c

˜
− a
˜

3(a) equal radii

5(a) equal chords

6(b)
−−→
CB ‖

−→
OA

8(a) 60◦ (b) equilateral (c) regular tetrahedron

(all 4 faces are equilateral triangles)

(d) cos−1
(
−1

3

)
=.
. 109◦28′

9(a)
1
2v
˜

+ w
˜

Exercise 5F (Page 201)

3

-1

2

-1 x

y

2 -i j~ ~

1(a) (b) Using basis vectors:

r
˜

= (−i
˜
+3j
˜
)+λ(2i

˜
−j
˜
),

λ ∈ R

(c) −1
2

(d) y = −1
2x + 5

2

2(a) 3i
˜
− 2j
˜

(b) 3i
˜
+ 2j
˜
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(c) r
˜

= 3i
˜
− 2j
˜

+ λ(3i
˜
+ 2j
˜
), λ ∈ R

3(a)(i)

[
3

1

]

(ii) The x- and y-intercepts are

[−12

0

]
and

[
0

4

]
.

(iii) Using the y-intercept,

[
x

y

]
=

[
0

4

]
+ λ

[
3

1

]
.

(b)(i)

[
x

y

]
=

[
6

0

]
+ λ

[−3

1

]

(ii)

[
x

y

]
=

[
0

3

]
+ λ

[
1

0

]

(iii)

[
x

y

]
=

[−5

0

]
+ λ

[
0

1

]

4(a) y = 4x + 17 (b) 3x + 2y = 19

5(a) yes (b) yes (c) no

6(a) r
˜

= 7i
˜
− 5k
˜

+ λ(−4i
˜
− 6j
˜

+ 9k
˜
)

(b) r
˜

=




x

y

z



 =




3

4

5



+ λ




−6

−7

−8





7(a) r
˜

= 3i
˜
− 2j
˜
− 4k
˜

+ λ(5i
˜
− 3j
˜
− k
˜
)

(b) r
˜

= −i
˜
− j
˜

+ 2k
˜

+ λ(i
˜

+ 2j
˜

+ 3k
˜
)

8(a) yes (b) yes

9(a)(i)

[
2

−1

]
(ii)

[
1

2

]
(iii)

[
x

y

]
=

[
2

−3

]
+ λ

[
1

2

]

(b)

[
x

y

]
=

[
1

−2

]
+ λ

[
1

−1

]

11(a) r
˜

= 4i
˜
+ 3j
˜

+ λ(2i
˜
− 3j
˜
)

(b) r
˜

= −7i
˜

+ 5j
˜

+ λ(6i
˜

+ 13j
˜
)

Note that there are many possible answers.

12(a) r
˜

= −i
˜
+ 3j
˜

+ k
˜

+ λ(3i
˜

+ j
˜

+ 4k
˜
)

(b) r
˜

= 7i
˜
− 11j

˜
+ 14k

˜
+ λ(10i

˜
+ 20j

˜
− 30k

˜
)

13(a)

[
x

y

]
=

[
1

−2

]
+ λ

[
4

6

]
, 0 ≤ λ ≤ 1

(b)




x

y

z



 =




−1

1

−2



+ λ




3

2

1



, 0 ≤ λ ≤ 1

15(a) (1, 2, 0) (b) (3,−2, 6)

17(a) −i
˜

+ k
˜

(b) skew

18(a) (1, 1, 2) (b) 70.5◦

19 a = −3

20(d)
11

√
5

5 units

21

√
145
5 units

22(a) v
˜1

and v
˜2

have the same direction vector.

(b) i
˜
− 2j
˜

+ k
˜

(c)
√

5

23(b) For 6 BAD: r
˜

= (−i
˜
− 2j
˜
) + λ(i

˜
+ j
˜
),

for 6 ABC: r
˜

= 2i
˜
+ µ(−i

˜
+ j
˜
)

24(a)
−−→
OM =




2
1
2
3
2



 (b) r
˜

=




−1

−1

0



+ λ




4

2

2





(d) 3 : 1

25(a) The interval or line segment AB. (b) The

ray with endpoint B in the direction of b
˜
− a
˜
.

(c) The ray with endpoint A in the direction of

a
˜
− b
˜
.

26(a)

√
2λ2 − 8λ + 10 (b)

√
2

Exercise 5G (Page 210)
1(a) (x − 6)2 + (y + 9)2 = 28

(b)

∣∣∣∣∣r˜
−
[

6

−9

]∣∣∣∣∣ = 2
√

7

(c) x = 6 + 2
√

7 cos θ, y = −9 + 2
√

7 sin θ

2(a) (x + 2)2 + (y − 7)2 + (z + 4)2 = 81

(b)

∣∣∣∣∣∣∣
r
˜
−




−2

7

−4





∣∣∣∣∣∣∣
= 9

3(a) (x + 5)2 + (y + 10)2 = 45

(b) (x − 3)2 + (y + 1)2 + (z − 8)2 = 121

4

∣∣∣∣∣r˜
−
[

5

−3

]∣∣∣∣∣ = 2
√

2, (x − 5)2 + (y + 3)2 = 8

5(a)

∣∣∣∣∣r˜
−
[

3

−4

]∣∣∣∣∣ = 5 (b)

∣∣∣∣∣∣∣
r
˜
−



−1

2

1
5
2




∣∣∣∣∣∣∣
=

√
30
2

7 inside

8 centre (2, 1,−1), radius 2
√

5

9(a) x = 2 cos t + 1, y = 2 sin t − 1 (b) (x − 1)2 +

(y + 1)2 = 4

10(a) y = (x + 2)2 − 2

(b) [−2,∞)

(c)

2

-2

-2 x

y

-2+Ö2
_

11(a) |r
˜
| =

√
10 (b) The radius and tangent are

perpendicular. (c) y = 3x − 10

12(a) x = 3λ + 1, y = 2λ − 1

(b) (−2,−3) and (4, 1)

14(a) Both spheres have centres on the z-axis.

(b) centre (0, 0, 9
5), radius 12

5

15 (4, 4,−6) and (11,−8,−3)

16(a) x = 3λ − 2, y = 4λ + 3, z = 5λ + 4

(b) (7, 15, 19)

17(a) x2 − y2 = 1 (b) y = ± x2

√
4−x2
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18(a) r
˜

=




1

−1

0



+ λ




1

4

1



+ µ




2

5

−2



 is a possible

equation. (b) 13x − 4y + 3z = 17

20(a)

6
5

2
1

321-1-2-3 x

y

p
3

2p
3

p
3

-

3

2p-t =

t = t =

t =

(b)

-3-3

3

-3

3 3

x

y

z

t < 0: dash, t ≥ 0: solid

Review Exercise 5H (Page 213)
1 |a
˜
| = 7, â

˜
= 6

7 i
˜
− 3

7j
˜

+ 2
7k
˜

2(a) −5i
˜
− 4j
˜

+ 7k
˜

(b) 5i
˜
+ 4j
˜
− 7k
˜

(c) 3
√

10

5(a) 50 (b) 44 (c) 8 (d) 110

7 λ = −1

8 cos θ = 6√
102

9
44
29

i
˜
− 33

29
j
˜
− 22

29
k
˜

10(a)
−→
AP =




1

3

3


 ,

−−→
AB =



−1

−1

3


 (b)

5
11



−1

−1

3




(c)
2
√

506
11 units

11 81◦

13 r
˜

=

[
0

3

]
+ λ

[
1

2

]

14 x − 3y = 14

15 (0, 7,−3), (−14, 0, 11), (−3, 11
2 , 0)

16(a) no (b) yes

17 r
˜

= i
˜
+ j
˜
− k
˜

+ λ(i
˜
− 2j
˜

+ 3k
˜
)

18(a) (2, 3,−5) (b) (−3, 5,−1)

19(a) (x − 3)2 + (y + 4)2 + (z − 2)2 = 7

(b)

∣∣∣∣∣∣∣
r
˜
−




3

−4

2





∣∣∣∣∣∣∣
=

√
7

21

∣∣∣∣∣∣∣
r
˜
−




2

5

−6





∣∣∣∣∣∣∣
= 2

√
6

22 (4,−5, 1) and (6, 8,−10)

23(a) y = 8
4+x2 (b) x2 + y2 = 1, where y 6= −1.

(c) y = ± 2x
√

1 − x2

Chapter Six

Exercise 6A (Page 224)
1(a) t = 1

6
(x − 1), x = 6t + 1

(b) t = 1
18

(1 − x3), x = (1 − 18t)
1
3

(c) t = 1
12(x−2 − 1), x = (12t + 1)−

1
2

(d) t = 1
2 (e2x − e2), x = 1

2 ln(2t + e2)

(e) t = tan−1 x − π
4 , x = tan(t + π

4 )

(f) t = tanx − tan 1, x = tan−1(t + tan 1)

2(a) ẍ = 0 (b) ẍ = −72x−5
(c) ẍ = 108x5

(d) ẍ = −2e−4x
(e) ẍ = 2x(1 + x2)

(f) ẍ = −2 cos3 x sin x

3(a) v2 = 4x3
(b) v2 = 2(1 − e−x) (c) v2 =

ln |2x + 1| (d) v2 = tan−1 1
2x

4(a) t = v3

6 (b) t = 2 − 1
v

(c) t = ln
∣∣ 2+v

3

∣∣
5(a) x = 4 ln |v| (b) x = 1

9v3 − 24

(c) x = v + 2 ln
∣∣∣ 2
2+v

∣∣∣
6(a) 16 (b) 4 (c) 4 (d) 9

7 17 m/s2 at an angle of tan−1 15
8

above the hori-

zontal

8(a)
−→
OA = (20 cos 32◦)i

˜
+ (20 sin32◦)j

˜
,

−−→
OB = (−15 cos 54◦)i

˜
+ (15 sin 54◦)j

˜
(b) 24N (c) 70◦ above the positive horizontal di-

rection or 020◦ T

9(a) (6 − 2
√

2)i
˜

+ (20 − 2
√

2)j
˜

(b) 17·5 N, 79·5◦
above the horizontal

11(a) 20 metres (b) Upwards is positive, so while

the stone is rising its velocity is positive.

(c) t = 2 −
√

400−20x
10

, x = 20t − 5t2,

2 seconds

12(a) x = 150 − 50 ln |v|
ln 10

, x = 150 metres

(b) t =
1000

99

(
1

v
− 1

1000

)
, t = 10 1

11
s

13 v2 = 6 − 2e−x. The acceleration is always

positive, and the velocity is initially 2. Hence

the velocity is always increasing with minimum 2.

The particle continues to accelerate, but with lim-

iting velocity
√

6.

14(a) ẍ = −12 (b) x = 3(1−e−2t) (c) As t → ∞,

the particle moves to the limiting position x = 3.

15(a) 1·52 s (b) 8·48 m

16(a)
m
k (b)(i) 2ku (ii) k ln 3

17(a) v2 = 2(x− 5)(x + 4). v2 cannot be negative.

(b) x = 6 m (x = −5 is impossible, because the
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particle can never pass through the origin). The

particle moves forwards with increasing velocity.

18(a) v2 = 2x3
(b) x =

2

(t +
√

2 )2
. The particle

starts at x = 1 and moves backwards towards the

origin, its speed having limit zero, and position

having limit the origin.

19(a) v2 = 6x − 2x3 + 16 (b) Yes. (Sketch the

graph of v2 against x.)

21(b) v2 = V 2 + 2gR2 (1/x − 1/R),

H = 2gR2/(2gR − V 2) (c) 11·2km/s

22(b) 12 ln2 − 3·5 =.
. 4·82m

Exercise 6B (Page 232)
1(a) 12 cm, 4 seconds

(b) v = −6π sin π
2 t, ẍ = −3π2 cos π

2 t (c) 12 cm,

0 cm/s (d) After 1 second (e) 2 seconds

2(a) 2 m, 1
2 s

(c) v = 8π cos 4πt,

ẍ = −32π2 sin 4πt

(d) ẍ = −16π2x

(e) ẍ = −32π2 at t = 1
8

and ẍ = 32π2 at t = 3
8

(f) 8π m/s

(b)

2

-2

1 t

x

1
4

3
4

1
2

3(b) v = 4 cosπt, ẍ = −4π sin πt

(c) a = 4
π
, T = 2 seconds (d)

4
π

m, 4 m/s

2

1
t

x

4
p

4
p-

(e)

4

-4
21 t

v

4p

-4p

21 t

a

(f) t = 1 (when v = −4 m/s) and t = 2 (when

v = 4 m/s) (g) t = 1
2 (when ẍ = −4π m/s2) and

t = 3
2 (when ẍ = 4π m/s2)

4(a) x = 2 sin 2t

(b) x = 6 sin 2
3t

5(a) v = bn cosnt − cn sinnt,

ẍ = −bn2 sin nt − cn2 cos nt = −n2x

(b)(i) c = 3 and b = 0, so x = 3 cosnt.

(ii) x = 5 cos 2πt, 1
4

s

6(b) a = 4 (c)
1
3 s, 2

3 s

14
12
10

p
3

2p
3

t

x7 (a) v = 6 sin3t,

ẍ = 18 cos3t

(b) a = 2,

T = 2π
3

seconds,

centre x = 12

(c) 10 ≤ x ≤ 14,
π
3 seconds

(d) t = 2π
3 and t = 4π

3 . At both times, |v| = 0 and

ẍ = 18 cm/s2. (e) t = π
6

and t = π
2
.

At both times, |v| = 6cm/s and ẍ = 0 cm/s2.

8(a) amplitude: 6, period: π, initial phase: π
2

(b) ẋ = 12 cos(2t + π
2 ), ẍ = −24 sin(2t + π

2 ),

ẍ = −4x, so n = 2.

(c) t = π
4 when v = −12, t = 3π

4 when v = 12

(d) t = 3π
4 and t = 7π

4 , when x = 0

(e) t = π and t = 2π, when v = 0 and ẍ = −24

9(a) x = 120 sin π
12t, v = 10π cos π

12t, 10π m/s

(b)(i)
12
π

sin−1 1
4

=.
. 0·9652 seconds

(ii) 12 + 12
π

sin−1 1
4

=.
. 12·97 seconds (c) 4 seconds

and 8 seconds

10(a) x = 4 cos 4t, v = −16 sin 4t (b)(i)
π
12 s (ii)

π
6 s

(c)
π
24 seconds and 5π

24 seconds

11 x = 1
2 − 1

2 cos 2t, x0 = 1
2 , 1

2 , 0 ≤ x ≤ 1, π

12(a) x = 2 − cos 4t (b) x0 = 2, 1 cm, 1 ≤ x ≤ 3,
π
2 s (c) 4 cm/s when t = π

8

13(b) x = 2 (c) 2π s (d) 6 cos(t − π
3
) (e) 6, −π

3

(f) −4 ≤ x ≤ 8

14 v = bn cos nt − cn sin nt

(a) n = 1
2 , c = 6, b = 6, 3π

2 s and 7π
2 s

(b) n = π
3 , c = −2, b = 9

π , about 0·582 s

and 3·582 s

15 v = an cos(nt + α) (a) n = π
3 , α = 0, a = 15

π

(b) n = 2
3 , α = 3π

2 , a = 5 (c) n = 1, α = 3π
4 ,

a =
√

2

16(a) a = 3, α = −π
2

(b) a = 2, α = π
3

17 a = 32
√

2
π

, α = π
4

18 a = 5, α =.
. 2·248

19(a) x = 4 sin 4t + 3 cos 4t (b) x = 5 cos(4t − ε),

where ε = tan−1 4
3 (c) 5m, 20 m/s

(d) t = π
4 − 1

4 tan−1 3
4 , t = π

8 + 1
4 tan−1 4

3

20(a) 10:00 am (b) 7:33 am (c) 12:27pm

21 11:45 am to 8:15pm

23(b) 2

√
5 + 2

√
3

Mathematics Extension 2 Year 12 
Cambridge Maths Stage 6 

            ISBN 978-1-108-77105-4         © Sadler and Ward 2020 
Photocopying is restricted under law  

and this material must not be transferred to another party

                                Cambridge University Press



Answers to Chapter Six 307

Exercise 6C (Page 239)
1(a) v = −6 sin 2t, ẍ = −12 cos 2t, ẍ = −4x,

v2 = 4(9 − x2) (b) ±2
√

5m/s, −8 m/s2

2(a) v2 = 9(25− x2)

(b) v = ±12 m/s, ẍ = −27 m/s2 (c) 15 m/s

3(a) v2 = 16(36− x2) (b) 6 cm, π
2 seconds

(c) |v| = 16
√

2 cm/s, ẍ = −32 cm/s2

4(a) v2 = 4(36− x2), π seconds, 12 m/s

(b)(i) x = 6 cos 2t (ii) x = −6 cos 2t

(iii) x = 6 sin2t (iv) x = −6 sin 2t

5(a) 32 cm/s (b) 8 cm

6(a) a = 1 metre (b)
4π
3

m/s

7(a)
5π
2

cm/s, 5π2

8
cm/s2

(b) ±2π cm/s, ±3π2

8
cm/s2

8 5
√

2m/s, 3
√

2 m/s

9 4, 2
√

7 m/s

10 v2 = −5
3(x2 − 162), so the amplitude = 16.

11 15 cm/s

13(b)(i) When x = 0, |v| = an.

(ii) When x = 1
2a, |v| = 1

2

√
3 an and ẍ = −1

2an2.

14(a) ẍ = −9(x − 1), centre: x = 1, period: 2π
3

,

amplitude: 2 (b)(i) ẍ = −16(x− 2), centre: x = 2,

period: π
2
, amplitude: 3 (ii) ẍ = −9(x − 6),

centre: x = 6, period: 2π
3 , amplitude: 4

(iii) ẍ = −2(x + 2), centre: x = −2, period: π
√

2,

amplitude: 1 (iv) ẍ = −3(x+ 5
3), centre: x = −5

3 ,

period: 2π/
√

3, amplitude: 2 1
3

15(a)(i) ẍ = 50 cos 10t = −100(x− 1
2)

(ii) ẍ = −50(2 sin2 5t − 1) = −100(x − 1
2 )

(b) centre: x = 1
2
, range: 0 ≤ x ≤ 1,

period: π
5

minutes, t = π
5

16(a) centre: x = 7. Since the amplitude is 7, the

extremes of motion are x = 0 and x = 14, and the

particle is stationary there.

(b) v2 = 9
(
49 − (x − 7)2

)
, 21 cm/s

(c) Although the particle is stationary for an in-

stant, its acceleration at that time is positive (it

is actually 63m/s2), and so the velocity immedi-

ately changes and the particle moves away.

17(a) ẍ = −9x (b) period: 2π
3

, amplitude: 2
√

13,

maximum speed 6
√

13, |ẍ| = 9
√

13

18(a) x = 3, π
2 (b) x = 3 + 2 sin(4t + π

3 )

(c) t = π
6 , 5π

12 , 2π
3 , |v| = 8

19(a) ẍ = −4(x − 10), centre: x = 10, period: π,

amplitude: 10

(b)
3π
4 − 1

2 tan−1 3
4 ( = π − tan−1 2 =.

. 2·034)

20(b) ẋ = −16π sin 2πt, ẏ = 16π cos 2πt,

ẍ = −32π2 cos 2πt, ÿ = −32π2 sin 2πt

(c)(i)
π
6 or 7π

6 (ii)
π
3 or 4π

3 (iii)
3π
4 or 7π

4

21(b) a =

√
v2

2x1
2 − v1

2x2
2

v1
2 − v2

2

(c) 5 cm, π seconds, 10 cm/s

22 v = 1
2
V
√

3 or v = −1
2
V
√

3,

x = 1
2
a
√

3 or x = −1
2
a
√

3

23(b) When α = π, A = 3 and x = 3 sin t.

When α = 0, A = 1 and x = − sin t.

(c) twice (d) When α = π
3 , x =

√
3 cos t.

When α = 5π
3 , x = −

√
3 cos t.

Exercise 6D (Page 245)
1(b) 360 metres

2(c) 80%

4(a) The force of the spring is directed towards

the origin.The resistive force is in the opposite

direction to the velocity. (b) ÿ + 3ẏ + 2y = 0

(e) A = −1, B = 1

6(b) v2 = Q2

(1+Q2)e2t−Q2 (c) lim
t→∞

v = 0. Since

v 6= 0, it can never change sign. (d) tan−1 Q

(e) Yes. Since Q and v have the same sign,

tan−1 Q − tan−1 v = tan−1 Q−v
1+Qv . In contrast,

evaluate each side when Q =
√

3 and v = −
√

3.

7(a) A = B = 1
5 (b)(i) 1 (ii) t = m

5×104 log
(

6+2v
6−3v

)

8(c) 878 metres (d) 1190 metres

9(a) F = mP − mkv

(b) v = P
k

(d)
1
k

log 2

v

t

V
0

V
0

V
i

>

V
0

V
i

<

10(a) At x = 1 the acceleration is positive.

(c) The velocity approaches 1 from above.

11(a)(ii) 0 ≤ x ≤ 2
√

V0

k , and v = 0 when x = 2
√

V0

k .

(b)(i) x = 2
√

V0

k

(
1 − 2

2+kt
√

V0

)

(ii) lim
t→∞

x = 2
√

V0

k
, and lim

t→∞
v = 0.
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Exercise 6E (Page 254)
1(b) 1·9 seconds (c) 25 metres

4(b)(i) v
dv

dy
=

400 − v2

40
(ii) 10

√
2 m/s

5(d) 40 metres

9(a)(i) 0 (iii) f ′(x) > 0 for x > g. That is, f is

increasing for x > g. (b)(ii) T = 1
k

ln

(
g + kV0

g

)

10(b)(i) ẍ = 10 − 1
10v2

(ii) 10 m/s (iv) t =.
. 1·446

11(b) y = 45(2 +
√

2)(1− e−t/3)− 30t (d) R =.
. 44

22×5

15×5

no resistance

y

x20 40 60 80

x = 45Ö2

Here is the trajectory for 0 ≤ t ≤ 4. The dotted

line is the trajectory for no air resistance.

13(a)(ii) x(t + δt) =.
. x(t) + δt u(t)

y(t + δt) =.
. y(t) + δt v(t)

v(t + δt) =.
. v(t)

(
1 − k δt

(
u(t)2 + v(t)2

) 1
2

)
− gδt

(b)(i) u(0·1) =.
. 20·51

(ii) v(0·1) =.
. 19·51, x(0·1) =.

. 2·12, y(0·1) =.
. 2·12

(c) u(0·2) =.
. 19·86, v(0·2) =.

. 17·89, x(0·2) =.
. 4·17,

y(0·2) =.
. 4·07 (d) R =.

. 54

x

y

20 40 60 80

17×2
22×5 no resistance

Exercise 6F (Page 259)
1(a) x = 20t, y = −5t2 + 20

√
3t (b) 4

√
3 seconds,

80
√

3 metres (c) 2
√

3 seconds, 60 metres

(d) It is false. The horizontal range would not have

changed, although the flight time would have been

4 seconds and the maximum height would have

been 20 metres.

2(a) ẋ = 15, ẏ = −10t+36, x = 15t, y = −5t2+36t

(b) 52m (c) 21.9m/s (d) after

3(a) x = 10
√

3t, y = −5t2 + 10t

(b) 5 s, 50
√

3 metres (c) 80 metres

(d) 44m/s, 67◦ (e) y = − 1
60x2 + 1√

3
x

4(a) 101m/s (b) x = 101t, y = −5t2 (d) 149m/s,

tan−1 20
√

30
101 =.

. 47◦19′ below the horizontal

(e) 1·106 km

6(c) V = 36, θ =.
. 41◦49′ (d) 129 metres

7(c)(i) α = 15◦ or 75◦

(ii) It will if α = 75◦, but not if α = 15◦.

8(b) range: 38·4 metres, height: 12·8 metres

(c)(ii) 33·3 metres

9(d) 60◦15′ or 72◦54′

10(b) 0·36 s (c) 12◦ (d) No, it lands 4·72 metres

in front of him.

11(b)(ii) 16 metres (iii) 112◦

12(d) 27 m

13(d) 15 metres (e) 10 m/s, 63◦26′

14(c) T = 4, θ = 30◦

15(b)(ii) Yes. The vertical components of their ini-

tial velocities are equal, and they are both subject

to the same force (gravity) acting in the vertical

direction.

18(c) For 0◦ < α < 45◦, 0 < tan α < 1. Hence if

α1 and α2 are both less than 45◦, then the two

roots of the quadratic both lie between 0 and 1.

But the product of these roots is greater than 1,

so α1 and α2 cannot both be less than 45◦.

19(a) (d cosβ, d sin β)

20(b)(iv) 52◦

Exercise 6G (Page 269)
1(b) 6·05 m

2(a) 1 3
5 s, 12 4

5 m (c) 24 1
3 m/s

3(a) B−Mg = −Md, B− (M −m)g = (M −m)a

4(a) v2 = V0
2 +

2gR2

r
− 2gR

(b) V0 =
√

gR =.
. 1680m/s

5(a) T = mg cos θ,
d2θ

dt2
= −g sin θ

L
6 5:09 am to 9:36 am

7(b)
gx2

2V 2
tan2 β − x tanβ +

(
y +

gx2

2V 2

)
= 0

(c)(iii) tan β =
V 2

gh cotα

8(c) x2 = −2V 2

g
(y − V 2

2g
) with focal length V 2

2g
and

vertex (0, V 2

2g )

9 centre = (0,−1
2gt2), radius = V t

10(b)(iii) 2`

11(a) The acceleration is downwards.

(b) h = RV0
2

20R−V0
2 (c) 12 524m

12(b) C = 112 (c) B = 4(16 + 14e−7kt/4)
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(d) 78◦C (e) 64◦C

13(b) 2100 (c) 3000 (d) 10%

14(b) 15(2 +
√

2 ) s, which is about 51·2s.

15(a)
3
2
mg (c) ẏ2 = 3g, and since y is decreasing

to that point on the curve, ẏ = −
√

3g . ẋ = 0.

(d)

√
3

2
√

g

(
π
2 + 1

)

(e) The integral is improper.

16(a)

(
V 2 sin 2α

2g , V 2 sin2 α
2g

)
(b)

V 2 cos2 α
2g

(c) S =
(

V 2 sin 2α
2g ,−V 2 cos 2α

2g

)
(d) y = V 2

2g

Notice that the directrix is independent of α.

Exercise 6H (Page 280)

1(b)(i) u =
10u0

10 + u0t
(ii) x = 10 log

(
10 + u0t

10

)

(c)(ii) y =
10
(
100 − (10 + u0t)

2
)

(2u0)2

+

(
v0 +

100

2u0

)
10

u0
log

(
10 + u0t

10

)
.

Note that v simplifies to

v =
10v0 − 100t − 5u0t

2

10 + u0t

but this is harder to integrate.

(d) t = 1
u0

(√
2u0v0 + 100 − 10

)
=.
. 0·23 s

x = 5 log
(

2u0v0+100
100

)
=.
. 2·03 m

y = 10
(2u0)2

(
(2u0v0+100) log

(
2u0v0+100

100

)
−2u0v0

)

=.
. 0·29 m

2(a) u̇ = −ku2 and v̇ = −g−kuv . (b) u = u0e
−kx

(c) x = 1
k

log(1 + ku0t), u =
u0

1 + ku0t

(e) y =
g
(
1 − (1 + ku0t)

2
)

(2ku0)2

+

(
v0 +

g

2ku0

)
1

ku0
log(1 + ku0t) .

(f) y =
g(1 − e2kx)

(2ku0)2
+

(
v0 +

g

2ku0

)
x

u0

(g)
dy

dx
=

−ge2kx

2ku0
2

+

(
v0 +

g

2ku0

)
1

u0

3(b)(ii) At the top of the trajectory, v = 0 when

t = θ. (vii) x = u0 cos θ log

(
sec θ + tan θ

sec φ + tanφ

)

(c)(i)
du

dτ
=

uv

10
and

dv

dτ
= −100− v2

10
with u = u0 cos θ and v = 0 at τ = 0.

(iv) τ = log(sec θ + tan θ),

t = θ + log(sec θ + tan θ)

= tan−1

(√
2(
√

3 + 1)

4

)

+ log

(
1

4

(
2

√
6 +

√
3 +

√
2(
√

3 + 1)

))
=.
. 1·625 s

(vii) x = u0 cos θ
(

log(sec θ + tan θ)

+π
2 − 2 tan−1

(
e−τ

) )

(viii) xmax = u0 cos θ
(

log(sec θ + tan θ)

+π
2 − 2 tan−1

(
1

sec θ+tan θ

))
=.
. 3·025 m

4(a) u =
5
√

2

1 + t
, x = 5

√
2 log(1 + t)

(b) v =

√
50

√
2 tan(θ− 4

√
2t) with θ = tan−1

√√
2

2

and y = 5
√

2 log

(
cos(θ − 4

√
2t)

cos θ

)
for 0 ≤ t ≤ θ

4
√

2

(c) ymax = 5
√

2 log(sec θ) = 5
√

2 log

√
1 + 1

2

√
2

=.
. 1·89 m at x = 5

√
2 log

(
1 +

θ
4
√

2

)
=.
. 3·27 m

(d) v = −5

√
2
√

2 × eτ 4
√

2 − e−τ 4
√

2

eτ 4
√

2 + e−τ 4
√

2

y = 5
√

2 log




2
√

1 + 1
2

√
2

eτ
4
√

2 + e−τ
4
√

2





(e) t =

log

(√
2 +

√
2 + 4

√
2√

2

)
+ tan−1

√√
2

2

4
√

2
(f) 5·67 m

Review Exercise 6I (Page 283)
1(a) t = 1

2 ln |2x− 1|, x = 1
2(e2t + 1)

(b) t = 1
6 (x−1 − 1), x = (1 + 6t)−1

2(a) ẍ = 2(2x− 1) (b) ẍ = 72x3

3(a) v2 = 12x

(b) v2 = 1
3 (1 − cos 6x)

4 t = 1
4 ln v

2

5 x = v3 − 1

6(a) 8 (b) 2
√

5 (c) 12 (d) ln 3

7 41·8 m/s2, 035·3◦T
8(a) ẍ = −5

2 m/s, v2 = 10 000− 5x

(b)(i) v = 50
√

2 m/s (ii) x = 1500 metres

(c) The plane is still moving forwards while it is

braking. (d) x = 100t− 5
4
t2, 40 seconds

9(a) v = 500− 5x, x = 100
(
1 − e−5t

)

(b) The torpedo moves to a limiting position of

x = 100 as the velocity decreases to zero.
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10(a) v2 = e−x
(b) v is initially positive, and is

never zero. x = 2 ln 1
2 (t + 2) (c) As t → ∞,

x → ∞ (slowly) and v → 0.

12(b)
√

2 (c) x =
√

2 cos
(
4t + π

4

)

13(b) 2 sin
(
3t − π

6

)
(c) the amplitude is 2, the

centre is x = 5 (d) t = π
18

14
2
3 m, 2π

3 s

15(a) 18·8 m/s (b) 3553N

16(c) 0·34 s

18(b) 12 ·1 m/s

19(a) ẍ = 10 − 20v (d) 0·035 s

20(b)
V
g

ln 2

22(a) ẋ = 48, ẏ = −10t + 36, x = 48t, y = −5t2 +

36t (b) 64·8 m (c) 345·6m (d) 48i
˜
+ 20j

˜
23(b) R = 21·6 metres, H = 4·05 metres

(c) tan−1 3
4 (d) 15m/s

(e) t = 0·8, when x = 9·6, and t = 1, when x = 12

24(a) Initially, ẋ =
√

5 and ẏ = 2
√

5 . (b) ẋ =√
5 , x = t

√
5 , ẏ = −10t + 2

√
5 , y = −5t2 + 2t

√
5

(c) 1 metre (d) 2 metres (e) ẋ =
√

5 , ẏ = −2
√

5 ,

v = 5 m/s, θ = − tan−1 2 (f) y = 2x − x2

25(a) ẋ = 200, ẏ = 0 (b) ẋ = 200, x = 200t,

ẏ = −10t, y = −5t2, y = − 1
8000

x2
(c) 600 metres

(d) 8◦32′

26(b) y = x − 1
90x2

27(b) 62◦22′ or 37◦5′

28(c) 7·5 m (d) 0·8 ≤ m ≤ 1·2 or 2·8 ≤ m ≤ 3·2
29(c)

1
k ln

(
1 + ku

g sin α
)

(d)
u
k cosα
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acceleration, 221
AM/GM inequality, 75, 86
Argand diagram, 18

circle geometry, 42
circles, 39
curves, 20
curves, 37
parabolas, 39
rays, 39
regions, 41
straight lines, 38

arithmetic mean, 75
chain rule, 129
column vector, 174
complex number plane, 18
complex numbers, 4

argument, 22
arithmetic, 1
conjugates, 4
conjugates, 7
division, 5
Euler’s identity, 115
imaginary numbers, 4
i, 3
imaginary part, 6
mod-arg form, 22
modulus, 22
polar form, 22
polynomials, 45
powers of i, 3
powers, 98
real part, 6
realising the denominator, 5
vectors, 30

complex square roots, 12
general case, 14
Pythagoras, 13

contrapositive, 63
converse, 62
coordinate axes, 167
coordinate planes, 169
coordinates of a point, 169
counterexample, 57

de Moivre’s theorem, 99
powers of complex numbers, 98
roots of complex numbers, 107
roots of unity, 105
trigonometric identities, 101

de Moivre and Euler, 115
direction cosine, 185
direction vector, 195

and general form, 195
and gradient, 195

divisibility, 67
dot product, 179

component form, 181
equation

of a circle, 204
of a line, 193
of a plane, 209
of a sphere, 206

equivalent, 62
Euler’s formula — exponential form, 113
Euler’s identity, 115
Euler and de Moivre, 115
exponential form, 113

roots of complex numbers, 120
exponential identities, 119
for all, 60
force, 219

resolution, 220
fundamental theorem of algebra, 49
fundamental theorem of arithmetic, 72, 95
geometric mean, 75
geometry and complex numbers, 19

addition, 32
conjugates, 19
multiplication by i, 20
multiplication, 26
opposites, 19
subtraction, 32

geometry in three dimensions, 215
gravity, 265
imaginary axis, 19
implication, 59
inconsistent equations, 201
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induction, 80
inequalities, 81
recursive formulae, 82
review, 80

inequality, 74
AM/GM, 75, 86
calculus, 87
geometry, 86

integration, 125
algebraic manipulation, 127
chain rule, 129
denominators with quadratics, 141
partial fractions, 134
powers of cos and sin, 150
powers of sec and tan, 151
products to sums, 153
rationalising the numerator, 143
reduction formulae, 156
standard integrals, 125
substitution, 129
t-substitution, 153

integration by parts, 145
irreducible, 50
line, 196

segment, 198
through a given point, 196
through two given points, 197

lines, 193
parallel and perpendicular, 199
skew, 201

logical value, 57
midpoint formula, 170
mod-arg form, 23

product, 25
necessary, 61
negation, 58
Newton — laws of motion, 219
parallel and perpendicular lines, 199
parametric equations, 194, 206, 208
partial fractions, 134

cover-up rule, 136
finding constants, 135
linear factors, 135
quadratic factors, 138
repeated factors, 138

perpendicular distance, 188
perpendicular vector, 200
polar form, 23
polynomials, 45

complex numbers, 45
integer coefficients, 45
remainders, 47

projectile motion, 257, 267, 273
projection, 186
proof by contradiction, 71

proof by contraposition, 70
Pythagoras, 169
quadratic equations, 10

complex coefficients, 14
complex roots, 11
real coefficients, 10

quadratic method, 12
quantifiers, 60
ratio division, 176
rationalising the numerator, 143
real axis, 19
reduction formulae, 156
regions, 41
resisted motion, 242

downward journey, 250
horizontal, 242
projectile, 273
upward journey, 249
vertical, 248

resolution of forces, 220
right-handed, 167
roots of complex numbers, 107, 120
roots of unity, 105
scalar product, 179
set, 58

complement, 58
equal, 63
intersection, 60
subset, 60

shifting — in the complex plane, 27
simple harmonic motion, 226

acceleration, 229
differential equation, 231, 236
displacement, 235
pendulum, 267
speed, 229
time, 226
transformation, 228

standard integrals, 125
statement, 56

proven, 57
substitution, 129
sufficient, 61
sum of two squares, 4
t-substitution, 153
terminal velocity, 252
there exists, 60
trajectory

high-angle, 276
low-angle, 276
mid-angle, 278

triangle inequality, 32, 76
vector form, 180

trigonometric identities, 101, 119
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trigonometric integrals, 150
powers of cos and sin, 150
powers of sec and tan, 151
products to sums, 153

variable gravity, 265
vectors, 173

column vector, 174
component form, 173
direction cosine, 185
dot product, 179
equation of a circle, 204
equation of a line, 193
equation of a plane, 209
equation of a sphere, 206
magnitude, 175
parametric equations, 194, 206, 208
perpendicular, 200
projection, 186
proof, 191
review, 173
scalar product, 179

vectors and complex numbers, 30
addition, 31
equal vectors, 31
subtraction, 31

velocity — function of displacement, 237
z-plane, 18
zeroes, 47

degree and number, 49
multiple, 48
real coefficients, 47
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