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PREFACE
Maths in Focus 12 Mathematics Extension 2 is 
written for the new Mathematics Extension 2 
syllabus (2017). Although this is a new book, 
students and teachers will find that it contains 
the familiar features that have made Maths in 
Focus a leading senior mathematics series, such 
as clear and abundant worked examples in plain 
English, comprehensive sets of graded exercises, 
chapter Test yourself exercises and practice sets of 
mixed revision and exam-style questions.

The Mathematics Extension 2 course is designed 
for students who intend to study mathematics 
at university, possibly majoring in the subject. 

The theory presented in this book follows a 
logical order, although some topics may be 
learned in any order. We have endeavoured to 
produce a practical text that captures the spirit 
of the course, providing relevant and meaningful 
applications of mathematics.

The NelsonNet teacher website contains 
additional resources such as worksheets, 
ExamView quizzes and questionbank, topic tests 
and worked solutions (see page viii). We wish 
all teachers and students using this book every 
success in embracing the new Mathematics 
Extension 2 course.

AB UT THE AUTHORS
Jim Green is Head of Mathematics at  
Trinity Catholic College, Lismore, where he 
has spent most of his teaching career of over 
35 years. He has taught pre-service teachers 
at the Southern Cross University, written 
HSC examinations and syllabus writing 
drafts, composed questions for the Australian 
Mathematics Competition and recently  
co-authored Nelson Senior Maths 11-12 Specialist 
Mathematics for the Australian Curriculum.

Janet Hunter is Head of Mathematics at 
Ascham School, Edgecliff, and has worked in the 
finance sector and in tertiary/adult education as 
a lecturer. She has been a senior HSC examiner 
and judge, an HSC Advice Line adviser, served 
on the editorial team for the MANSW journal 

Reflections, and recently co-authored Nelson 
Senior Maths 11-12 Specialist Mathematics for the 
Australian Curriculum.

CONTRIBUTING 
AUTHORS
Jim Green and Janet Hunter also wrote the 
topic tests.

Roger Walter wrote the ExamView questions.

Shane Scott wrote the worked solutions to all 
exercise sets.
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ABOUT 
THIS B  K
AT THE BEGINNING OF EACH CHAPTER
• Each chapter begins on a  

double-page spread showing  
the Chapter contents and a  
list of chapter outcomes

• Terminology is a chapter  
glossary that previews the  
key words and phrases from  
within the chapter

 

PROOF

2.
MATHEMATICAL PROOF
Mathematical proof is used to determine whether assertions are true or false. Proofs form the 
basis of mathematics. In this chapter, you will examine the nature of proof and develop rigorous 
mathematical arguments of a type that is common in number, algebra and geometry.

CHAPTER OUTLINE

2.01 The language of proof
2.02 Proof by contradiction
2.03 Proof by counterexample
2.04 Proofs involving numbers
2.05 Proofs involving inequalities
Test yourself 2

IN THIS CHAPTER YOU WILL:

•	 learn the formal language and symbols of proof, including ∀, ∃, ⇒, ⇔, ¬P, iff and ∈
•	 use the proof concepts of implication, negation, equivalence and equality
•	 state the contrapositive and converse of a statement
•	 use proof by contradiction and counterexample
•	 prove results involving numbers and inequalities
•	 prove further results involving inequalities based on previous results
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IN EACH CHAPTER
• Important facts and formulas are highlighted  

in a shaded box.

• Important words and phrases are printed  
in red and listed in the Terminology  
chapter glossary.

• Graded exercises include exam-style problems  
and realistic applications.

• Worked solutions to all exercise questions  
are provided on the NelsonNet teacher  
website.

• Investigations explore the syllabus in more  
detail, providing ideas for modelling activities  
and assessment tasks.

• Did you know? contains interesting facts  
and applications of the mathematics learned  
in the chapter.

I 11MATHS INFOCUS1.  Matemati xteio 264

INVSTIGATION
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i i
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=
−
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204 Proofsinvling numbers
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AT THE END OF EACH CHAPTER
• Test yourself contains chapter revision exercises.

• Practice sets (after several chapters) provide a comprehensive variety of mixed exam-style 
questions from various chapters, including short-answer, free-response and multiple-choice 
questions.

AT THE END OF THE BOOK
Answers and Index (worked solutions on the teacher website).

I 11MATHS INFOCUS1.  Matemati xteio 27

2. TEST YOURSELF
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NELSONNET STUDENT WEBSITE
Margin icons link to worksheets and chapter quizzes found on the NelsonNet student website,  
www.nelsonnet.com.au. These include:

Qz

Chapter 
quizzes

Homewok

WS

Worksheets

• Worksheets that are write-in enabled PDFs

•  ExamView quizzes: interactive and self-marking

NELSONNET TEACHER WEBSITE
The NelsonNet teacher website, also at www.nelsonnet.com.au, contains:

• A teaching program, in Microsoft Word and PDF formats

• Topic tests, in Microsoft Word and PDF formats

• Worked solutions to each exercise set

• Chapter PDFs of the textbook

• ExamView exam-writing software and questionbanks

• Resource Finder: search engine for NelsonNet resources

Note: Complimentary access to these resources is only available to teachers who use this book as 
a core educational resource in their classroom. Contact your Cengage Education Consultant for 
information about access codes and conditions.
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NELSONNETBOOK
NelsonNetBook is the web-based interactive version of this book found on NelsonNet.

• To each page of NelsonNetBook you can add notes, voice and sound bites, highlighting, weblinks 
and bookmarks

• Zoom and Search functions

• Chapters can be customised for different groups of students
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MATHEMATICAL 
VERBS
A glossary of ‘doing words’ commonly found in 
mathematics problems
analyse: study in detail the parts of a situation

apply: use knowledge or a procedure in a given 
situation

classify, identify: state the type, name or feature 
of an item or situation

comment: express an observation or opinion 
about a result

compare: show how two or more things are 
similar or different

construct: draw an accurate diagram

describe: state the features of a situation

estimate: make an educated guess for a number, 
measurement or solution, to find roughly or 
approximately

evaluate, calculate: find the value of a numerical 
expression, for example, 3 × 82 or 4x + 1 when  
x = 5

expand: remove brackets in an algebraic 
expression for exampl, expanding 3(2 y + 1) 
gives 6y + 3

explain: describe why or how

factorise: opposite to expand, to insert brackets 
by taking out a common factor, for example, 
factorising 6y + 3 gives 3(2y + 1)

give reasons: show the rules or thinking used 
when solving a problem. See also justify

increase: make larger

interpret: find meaning in a mathematical result

justify: give reasons or evidence to support your 
argument or conclusion. See also give reasons

rationalise: make rational, remove surds

show that, prove: (in questions where the 
answer is given) use calculation, procedure or 
reasoning to prove that an answer or result is 
true

simplify: give a result in its most basic, shortest, 
neatest form, for example, simplifying a ratio or 
algebraic expression

sketch: draw a rough diagram that shows 
the general shape or ideas, less accurate than 
construct

solve: find the value(s) of an unknown 
pronumeral in an equation or inequality

substitute: replace a variable by a number and 
evaluate

verify: check that a solution or result is correct, 
usually by substituting back into the equation or 
referring back to the problem

write, state: give the answer, formula or result 
without showing any working or explanation 
(This usually means that the answer can be found 
mentally, or in one step)



COMPLEX NUMBERS

1.
COMPLEX NUMBERS
Imaginary numbers were first noticed by Hero of Alexandria in the 1st century CE. In 1545, the 
Italian mathematician Girolamo Cardano wrote about them, but believed negative numbers did not 
have a square root. Imaginary numbers were largely ignored until the 18th century when they were 
studied by Leonhard Euler and Carl Friedrich Gauss.

Imaginary numbers are useful for solving physics and engineering problems involving heat 
conduction, elasticity, hydrodynamics and the flow of electric current.

CHAPTER OUTLINE

1.01 Complex numbers
1.02 Square root of a complex number
1.03 The Argand diagram
1.04 Modulus and argument
1.05 Properties of moduli and arguments
1.06 Euler’s formula
1.07 Applying Euler’s formula
Test yourself 1



IN THIS CHAPTER YOU WILL:

•	 learn about complex numbers of the form z = a + b where a, b are real numbers and  = 1−
•	 determine the real and imaginary parts of a complex number
•	 perform arithmetic operations with complex numbers
•	 realise the denominator of a complex number
•	 find the square root of a complex number
•	 find the complex conjugate of a complex number
•	 represent complex numbers in the complex plane
•	 add and subtract complex numbers in the complex plane
•	 find the modulus and argument of a complex number
•	 convert a complex number in Cartesian form to polar form
•	 multiply and divide complex numbers in polar form
•	 prove properties of complex numbers involving modulus and argument
•	 prove properties of complex numbers using Euler’s formula
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TERMINOLOGY
Argand diagram: A diagram used to represent geometrically the complex number z = a + ib as the 

point P(a, b) or the vector z or OP
→

 on the complex plane.
y

y

O

P(a, b)

xx Re(z)

Im(z)

O

P(z)
z

argument: If a complex number, z, is represented 
by a vector in the complex plane, then the 
argument of z, denoted arg z or θ, is the angle 
that the vector makes with the positive x-axis. 

For z = a + ib, tan θ = b
a

.

 : The set of complex numbers.
Cartesian (rectangular) form:The notation  

z = a + ib for a complex number.
complex conjugate: The conjugate of  

z = a + ib is z  = a − ib.
complex number: A number that can be 

written in the form a + ib, where a and b are 
real numbers. It is a member of , the set of 
complex numbers.

complex plane: A number plane for graphing 
complex numbers. Also called Argand diagram.

exponential form: The notation z = reiθ for 
a complex number, which involves Euler’s 
formula.

Euler’s formula: For any real θ,  
eiθ = cos θ + i sin θ

imaginary number i: The number such that  
i = 1− , which implies i2 = −1.

imaginary part: The imaginary part of  
z = a + ib is Im(z) = b.

modulus: If a complex number, z, is represented 
by a vector in the complex plane, then 
the modulus of z, denoted mod z, z  or r, 
is the length of the vector. For  
z = a + ib, r = z  = a b2 2+ .

polar form: The notation z = r(cos θ + i sin θ) 
for a complex number. Also known as  
modulus−argument form.

real part: The real part of z = a + ib is Re(z) = a.
vector: A quantity with both magnitude and 

direction, represented graphically by an arrow 
with specific length and direction.

1.01 Complex numbers
Imaginary numbers
Imaginary numbers arose because mathematicians wanted to solve equations such as  
x2 + 1 = 0, which have no solutions in the set of real numbers. If we define 1−  = i then all 
quadratic equations will have solutions.

The imaginary number i
The imaginary number i is the number such that i = 1− .

An imaginary number is a number that can be written in the form bi, where b is a constant 
and real number.

For example, 3i, −i and i2  are imaginary numbers.

Homewok

WS

Complex 
numbers

Homewok

WS

Complex 
conjugates

Homewok

WS

Complex 
number 

operations

Homewok

WS

Complex 
conjugates 

and inverses
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EXAMPLE 1

a Express each imaginary number in terms of i.

i 9−  ii 75−  iii 
10
49

−
b Simplify:

i i2 ii i3 iii i 4 v  i10

c Solve the equation x2 + 1 = 0.

Solution

a i 9 1 9− = − ×

  = i × 3
 = 3i

ii

i

i

75 1 25 3

5 3

5 3

− = − × ×

= × ×

=

 iii

i

10
49

1 10
49

10
7

− =
− ×

=

b i i2 = ( 1− )2

	 = −1
ii i3 = i2 × i iii i4 = i2 × i2

 = (−1) × i  = (−1) × (−1)
 = −i  = 1

iv i10 = i4 × i4 × i2

 = 1 × 1 × (−1)
 = −1

or  i10 = (i2)5

 = (−1)5

 = −1

c x2 + 1 = 0
  x2 = −1
  x = 1± −
  x = ±i

Complex numbers
We have seen that a quadratic equation can have solutions with rational and irrational parts, 
for example, x2 − 6x + 7 = 0 has solutions x = 3 ± 2. Similarly, some quadratic equations have 
solutions with real and imaginary parts, for example, x = 5 ± 3i. In this case, we say that the 
solutions are complex.

A complex number is a number that can be written in the form a + ib, where a and b are real 
numbers.

A complex number is often denoted by the letter z, so z = a + ib.
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Real and imaginary parts of a complex number
The real part of z = a + ib is denoted by Re(z) where Re( z) = a

The imaginary part of z = a + ib is denoted by Im(z) where Im( z) = b

If Re(z) = 0 then we say that z is purely imaginary.  
For example, 2i, −5i and i10−  are purely imaginary.

If Im(z) = 0 then we say that z is purely real or just real.  
For example, 12, 7 and 2 − 3 are purely real.

The set of complex numbers is shown as , and includes , the set of real numbers.  
All real numbers are also complex numbers.

EXAMPLE 2

a Solve the equation x2 + 2x + 10 = 0 using the quadratic formula.

b Solve the equation x2 − 4x + 7 = 0 by completing the square.

c Factorise x2 − 2x + 5 as a difference of 2 squares, then solve the equation  
x2 − 2x + 5 = 0.

Solution

a x2 + 2x + 10 = 0

x
b b ac

a

i

4
2

2 2 4 1 10

2 1

2 36
2

2 6
2

2

2 ) )
)

( (
(

=
− ± −

=
− ± −

=
− ± −

=
− ±

= −1 ± 3i

b x2 − 4x + 7 = 0
x2 − 4x + 4 + 7 = 0 + 4

(x − 2)2 + 7 = 4
(x − 2)2 = −3

x − 2 = 3± −
x − 2 = i 3±

x = i2 3±
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c First complete the square, then note that +4 = −4i2.

x2 − 2x + 5 = x2 − 2x + 1 − 1 + 5
= (x − 1)2 + 4

= (x − 1)2 − 4i2

= (x − 1 − 2i)(x − 1 + 2i)

Hence solving:

x2 − 2x + 5 = 0 

(x − 1 − 2i)(x − 1 + 2i) = 0

∴ x = 1 + 2i or x = 1 − 2i

EXAMPLE 3

State the real and the imaginary parts of each complex number.

 i z
i3 5
2

=
−

ii z = x − iy + 5 + 3i    where x, y ∈

Solution

 i z
i3 5
2

=
−

 can be expressed as z
i3

2
5

2
= − .

Therefore Re(z) = 
3
2

 Im(z) = 
5
2

− .

ii z = x − iy + 5 + 3i can be expressed as z = (x + 5) + i(3 − y).

Therefore Re(z) = x + 5, Im(z) = 3 − y.

Complex conjugates
Earlier, we saw that the quadratic equation x2 − 6x + 7 = 0 has solutions x = 3 ± 2. Recall 
that 3 + 2 and 3 − 2 form a conjugate pair and the product (3 + 2)(3 − 2) = 7 is 
rational. Similarly, the solutions to the quadratic equation x2 − 4x + 7 = 0 are x = 2 ± i 3. 
Note that 2 + i 3 and 2 − i 3 form a complex conjugate pair and their product is real:

 (2 + i 3)(2 − i 3) = 22 − (i 3)2

	 = 4 − 3i2

	 = 4 − 3(−1)

	 = 4 + 3

	 = 7
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Complex conjugate
For a complex number z = a + ib (where a and b are real numbers), its 
complex conjugate is denoted by z  and z  = a − ib.

The product zz  is real.

EXAMPLE 4

a State the conjugate of each complex number.

 i =
− +

w
i1 3

2
 ii =

− − +
+

z
x i ix y

x y
2 5 3

2 2        where x, y ∈	

b If z = a + ib where a, b ∈ , prove that the product z z  is always real.

a, b ∈  means ‘a and b are real numbers’

Solution

a  i =
− +

w
i1 3

2
 so the conjugate w is =

− −
w

i1 3
2

.

ii Regrouping =
− − +

+
z

x i ix y
x y

2 5 3
2 2  we have 

( )
=

+ − +
+

z
x y i x

x y
2 3 5

2 2  so the  

conjugate is 
( )

=
+ + +

+
z

x y i x

x y
2 3 5

2 2 .

b Proof:

z z  = (a + ib)(a − ib)

= a2 − i2b2

= a2 − (−1)b2

= a2 + b2

Since both a, b ∈ , then a2 + b2 is also real, therefore z z  is always real.
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Operations with complex numbers
Just like real numbers, complex numbers can be added, subtracted, multiplied and divided. 
When operating with surds, we group or equate the rational and irrational parts. 
When operating with complex numbers, we group or equate the real and imaginary parts.

Equivalence of complex numbers
For complex numbers a + ib and c + id (where a, b, c and d are real numbers), a + ib = c + id 
if and only if a = c AND b = d.

EXAMPLE 5

a

b

If x and y are real, solve the equation 2x − 6i −	2yi + 10 = 0.

If =
+ − + − +

+
W

x yi ix y i
x y
3 2 5

2 2  where x, y are real, find a relationship between 

x and y if Re(W  ) = 0.

Solution

a 2x − 6i −2yi + 10 = 0 means 2x − 6i −2yi + 10 = 0 + 0i

(2x + 10) + i(−6 − 2y) = 0 + 0i

Equating real and imaginary parts:

2x + 10 = 0
2x = −10
 x = −5

−6 − 2y = 0
−2y = 6

y = −3

b ( ) ( )
=

+ − + − +
+

=
− − + + +

+
W

x yi ix y i
x y

x y i y x

x y
3 2 5 3 2 5

2 2 2 2

If Re(W) = 0 then

− −
+

=
x y
x y

3 2
02 2

∴ x − 2y − 3 = 0
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EXAMPLE 6

Simplify each expression.

a 3 − 7i + 4 + 9i

b 6i(1 + 2i) − 4(5 − 4i)

c (2 + 3i)(2 − 3i) − (4 − i)2

Solution

a 3 − 7i + 4 + 9i = 7 + 2i

b 6i(1 + 2i) − 4(5 − 4i) = 6i + 12i2 − 20 + 16i

= 22i + 12(−1) − 20

= 22i − 12 − 20

= −32 + 22i

c (2 + 3i)(2 − 3i) − (4 − i)2 = 4 − 9i2 − (16 − 8i + i2)

= 4 − 9(−1) − (16 − 8i − 1)

= 4 + 9 − (15 − 8i)

= 13 − 15 + 8i

= −2 + 8i

EXAMPLE 7

Find the quadratic equation with roots α = 2 − i 5 and β = 2 + i 5.  
Express your answer in the form az2 + bz + c = 0 where a, b, c are real.

Solution

A quadratic equation with roots α and β can take the form (x − α)(x − β) = 0.

Expanding, we have z2 − (α + β)z + αβ = 0.

Now substitute α = 2 − i 5 and β = 2 + i 5:

z2 − [(2 − i 5) + (2 + i 5)]z + (2 − i 5)(2 + i 5) = 0

z2 − 4z + (4 − 5i2) = 0

z2 − 4z + (4 + 5) = 0

z2 − 4z + 9 = 0

Note that we can replace  
2 by −1 when it arises.
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Realising the denominator
When simplifying surds with a rational denominator, we multiply the numerator and 
denominator by the conjugate surd to rationalise the denominator. Similarly, when 
simplifying numbers with a complex denominator, we multiply the numerator and 
denominator by the complex conjugate to realise the denominator.

Realising the denominator
To realise a denominator z of a complex number, we multiply the number by 

z
z

.

EXAMPLE 8

Simplify each complex number by realising the denominator.

a 
+ i
1

1
  b 

+
−
i

i
2 2 3

3
 c 

+
+

−i i
1

2 2
1

1

Solution

a

 

+
=

+
×

−
−

=
−
−

=
−
+

=
−

= −

i i
i
i

i
i
i

i

i

1
1

1
1

1
1

1
1
1
1 1
1

2
1
2

1
2

2

 

b

 

+
−

=
+

−
×

+
+

=
+ + +

−

=
+ −

+

=

=

i
i

i
i

i
i

i i i
i

i

i

i

2 2 3
3

2 2 3
3

3
3

2 3 2 6 2 3
3

2 3 8 2 3
3 1

8
4
2

2

2

c
+

+
−

=
+

×
−
−







+

−
×

+
+







=
−
+

+
+
+

=
−

+
+

=
− + +

=
+

+
− +

=
+

+
−






i i i
i
i i

i
i

i i

i i

i i

i i

i

1
2 2

1
1

1
2 2

2 2
2 2

1
1

1
1

2 2
2 2

1
1 1

2 2
4

1
2

2 2 2 2
4

2 2
4

2 2
4

2 2
4

2 2
4
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INVESTIGATION

POWERS OF i
We have seen the powers of i: i, i2, i3, i 4. Evaluate i5, i6, …, i16.

Can you see a pattern?

Evaluate i100 and i 0.

Can you see a way to evaluate i −1?

Exercise 1.01 Complex numbers

 1 Simplify each expression, writing the answer in terms of i.

a −4  b −7  c −
1
9

d −12   e −
6
25

  f − −( 2) 4(3)(3)2

g i7 h i13 i i99

j i + i2 + i3 + … + i149 + i150 k 
i
i

4

 l 
i
1
3

 2 Find the roots of each quadratic equation.

a x2 = −4 b x2 + 9 = 0

c z2 = −
1

36
 d 5z2 + 100 = 0

 3 Use the quadratic formula to solve each quadratic equation.

a x2 + 2x + 3 = 0  b x2 − x + 6 = 0

c z2 + 3z + 3 = 0  d 3z2 − 5z + 9 = 0

 4 Complete the square to solve each quadratic equation.

a x2 − 2x + 3 = 0  b x2 − 4x + 11 = 0

c z2 + 8z + 20 = 0 d z2 − 2z + 4 = 0

 5 For each quadratic equation, factorise the expression as a difference of two squares, then 
solve the equation.

a x2 − 2x + 2 = 0  b v2 − 6v + 12 = 0

c w2 + 4w + 10 = 0 d z2 + 2z + 7 = 0

e z2 + z + 1 = 0  f z2 − 3z + 4 = 0

 6 State the real and imaginary parts for each complex number, where a, b, x, y ∈.

a 3 + i  b 
− i5 2

2
 c 6i − 3

d x − iy + 3 + 2i e 
+
+

a ib
a b

2
42 2  f 

− − + − +
+

x i ix y yi
x y
4 6

2 2
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 7 Determine the conjugate for each complex number in Question 6.

 8 Evaluate each product.

a (2 + 3i)(2 − 3i) b (1 − i 2)(1 + i 2)

c (5i + 4)(5i − 4)  d −






+







i i1

2
3

2
1
2

3
2

e 
+





−





i i4
3

4
3

 f 
−





+





i i2 2 2

8
2 2 2

8

 9 For each complex number z, find z z . Assume a, b, x, y ∈.

a z = 5 + 6i b z = 3 − i c z = 4i − 3

d =
+

z
i1 3
2

 e = −z
i1

17
4
17

 f = +z i5 3

g z = 2a − 3ib h z = x + y + i(x − y)

10 If z = w − iv where w, v ∈ , prove that z z  is real.

11 If z = a + ib and w = c + id where a, b, c, d ∈ , prove that z w z w+ = + .

12 By equating real and imaginary parts, solve each equation for x and y.

a 2x + 8i − 4 + iy = 0 b 3x + 2iy = 9 − 8i

c x + y + 2xi − yi = 7 + 8i d 3x − 2y − 8 + xi + 3yi − 10i = 0

13 Given z = 3y − 6i + xi − 8 + yi and Im(z) = 0, find a relationship between x and y.

14 Simplify each expression.

a 4 − 3i + 7i − 8  b 2(3 + i) − i(7 − 2i)

c (2 − 9i)2 d (4 + i)(5 − 3i)

e ( 5 − 4i)( 5 + 4i) f 3(8i − 1)(2 + i)

g + − − +i i i i( 2 )( 2 3) ( 6 2 ) h (x − iy)2 − (x + iy)2

15 Show that:

a + +i i(1 3)( 3 ) is purely imaginary

b + − +i i( 2 2)( 2 2) is real

16 a Find a quadratic equation az2 + bz + c = 0 that has the complex conjugate roots:

i  2 ± i    ii  3 ± 5i    iii  ± i
1
2

3
2

    v   −4 ± i 5

In each case, verify that the coefficients a, b and c are real.

b Copy and complete the statement: A quadratic equation with complex conjugate 
roots will have ______ coefficients.

17 Realise the denominator of each complex number z  then state Im(z).

a =
−

z
i

1
2

 b =
+
−

z
i
i

1
1 2

 c =
−
+

z
i
i

5 7
3 4

 d =
−
+

z
i
i

3 2
3 2
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18 Show that:

a 
− +

+
i

i
2 2
1

 is purely imaginary b 
+
−

i
i

1 3
(1 3)2  is real

19 Simplify each expression.

a 
+ i
1

(1 2 )2  b 
+

−
−i i

1
( 3 3)

1
( 3 3)2 2

20 a Find a quadratic equation in the form az2 + bz + c = 0 with non-conjugate roots 3− i 
and 2 + 9i. Identify the values of a, b and c. Are they real?

b Copy and complete the statement: A quadratic equation with complex  
non-conjugate roots will have some coefficients that are not _________.

21 Find the values of x and y, where x and y are real, if:

a x + iy = 
−
+

i
i

2 3
3 4

  b (x + iy)(1 − 5i) = 2 + i

22 If z = 5 −2i and w = −3 + i, evaluate each expression.

a zw b z − w c 
z
w

 d z2 − w2

1.02 Square root of a complex number

Square root of a complex number
To find +a ib , let a + ib = (x + iy)2, x, y ∈ , then equate real and imaginary parts.

EXAMPLE 9

Find + i5 12 .

Solution

Let + i5 12  = x + iy where x and y are real.

Then, squaring both sides,

5 + 12i = (x + iy)2

 = x2 + 2xyi + i2y2

 = x2 − y2 + 2xyi
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Equating real and imaginary parts,

5 = x2 − y2

12 = 2xy

xy = 6

Method 1: Solving by inspection

By inspection, we can see that x = 3, y = 2 OR x = −3, y = −2.

Therefore + = + − −i i i5 12 3 2 or 3 2 .

It is conventional to take the solution with the positive real part (x > 0) for the  
square root of a complex number unless both roots are required.

So + = +i i5 12 3 2 .

Method 2: Solving algebraically

Solving simultaneously:

x2 − y2 = 5      [1]

xy = 6      [2]

From [2]:

y = 
x
6

      [3]

Substitute into [1]:

− 





=

− =

x
x

x
x

6
5

36
5

2
2

2
2

x4 − 36 = 5x2

x4 − 5x2 − 36 = 0

(x2 − 9)(x2 + 4) = 0

x2 − 9 = 0  ∈x

x = ±3

Substitute into [3] to find y:

When x = 3, y = 
6
3

 = 2

It is conventional to take the solution with the positive real part (x > 0) for the  
square root of a complex number unless both roots are required.

So + i5 12  = 3 + 2i
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Exercise 1.02 Square root of a complex number

 1 Evaluate each square root.

a + i3 4  b − i5 12  c + i8 6  d i4

 2 Find 2 square roots of each complex number. 

a 15 − 8i  b −3 − 4i  c 21 − 20i

d − + i24 10  e  − 9i f i

 3 Find the possible values of z such that: 

a z2 = 9 + 40i b z2 = −7 + 24i c z2 = 12 −16i

 4 a Find − + i3 4 .

b Hence, use the quadratic formula to solve the complex quadratic equation  
z2 − 3z + (3 − i) = 0.

 5 Solve each quadratic equation over the set of complex numbers.

a x2 − (2 + 3i)x + (−5 + i) = 0 b v2 − 2iv − 3v + 6i = 0

c iz2 − z + 2i = 0

1.03 The Argand diagram
It is possible to represent the complex number z = a + ib geometrically on a number plane, 
with a horizontal axis denoted by x or Re(z) and a vertical axis denoted by y or Im(z). 
This plane is called an Argand diagram or complex plane, after the French mathematician  
Jean-Robert Argand (1768−1822).

y

b

O

P(a, b)

xa Re(z)

Im(z)

O

P(z)
z

The complex number z = a + ib can be represented by the point P(a, b) or the vector 
→
OP.

A vector is a quantity with both magnitude and direction, and is represented graphically by 
an arrow with a specific length and direction.

Real numbers are plotted along the x-axis so the axis is labelled Re(z), Re or sometimes x.

Purely imaginary numbers are plotted along the y-axis so the axis is labelled Im(z), Im or 
sometimes iy.

By convention, the complex number z = 0 + 0i is just written as O on the Argand diagram. 
It is the origin.

Homewok

WS

Addition and 
subtraction in 

the plane

Homewok

WS

The complex 
plane
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All complex numbers z = a + ib correspond to a unique point (a, b) or vector z with head (a, b) 
and tail O on the complex plane.

Plotting complex numbers as points

EXAMPLE 10

Represent each complex number as a point on the complex plane.

a  u = 2 + 3i b  w = −1 − 4i

c  v = (1 + 2i)(1 − 2i) d  =z
i
3

Solution

a, b  u and w can be plotted as points U(2, 3) and W(−1, −4) respectively.

1

2

3

4

5

−1
−1 1 2 3 4 5−2−3−4−5

−2

−3

−5

U

O

W

Im(z)

Re(z)

−4

c, d   v and z need to be expressed in the form a + ib:

v = (1 + 2i)(1 − 2i)
= 1 + 4
= 5
= 5 + 0i

=

= ×

=
−

z
i

i
i
i

i

3

3

3
1

= −3i
= 0 − 3i
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 We can now plot v and z as V(5, 0) and Z(0, −3) respectively.

 

1

2

3

4

5

−1
−1 1 2 3 4 5−2−3−4−5

−2

−3

−5

V
O

Z

Im(z)

Re(z)

−4

Plotting complex numbers as vectors

EXAMPLE 11

Given u = 3 − 2i and w = −2 + 5i, plot u, u , w and w as vectors on the Argand diagram.

Solution

We can plot a complex number as a vector on the Argand diagram with tail on O and head 
on the corresponding point. This is the position vector.

u = 3 − 2i u  = 3 + 2i w = −2 + 5i w = −2 − 5i

1

2

3

4

5

−1
−1 1 2 3 4 5−2−3−4−5

−2

−3

−5

O

Im(z)

Re(z)

−4

u~

u~

w~

~w

Note that the vectors of complex conjugates u and u , and w and w, are reflections of each 
other in the real axis.
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Complex conjugates on the Argand diagram
On the Argand diagram, the vectors of a complex number z and its conjugate z  are 
reflections in the real axis.

Re(z)

Im(z)

O

 = a − ibz~

z = a + ib~

Adding and subtracting complex numbers on the complex plane

EXAMPLE 12

If z = 1 + 3i and w = 4 + i, find z + w and plot z, w, −z and +z w on the Argand diagram.

Solution

−z = −(1 + 3i)

 = −1 − 3i

z + w = (1 + 3i) + (4 + i)

 = 5 + 4i

1

2

3

4

5

−1
−1 1 2 3 4 5−2−3−4−5

−2

−3

−5

O

Im(z)

Re(z)

−4

z~

~~z + w

w~

~−z
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Note that the vector −z is the same length as z but in the opposite direction. Note also that 
the points corresponding with O, z, w and z + w form a parallelogram. The vector addition 

+z w is the vector from O along the diagonal of the parallelogram to z + w.

A similar result holds for subtraction.

The vector z−−
The vectors z and −z are the same length but in opposite directions.

O

Im(z)

Re(z)

z~

~−z

The parallelogram rule for adding and subtracting vectors
Given vectors z and w, the vector sum +z w and difference −z w correspond with the 
diagonals of a parallelogram.

O

Im(z)

Re(z)

z~

~~z + w

w~

O Re(z)

z~

~~z − w

~~z − w

w~

Im(z)

The vector +z w has tail at O and head 
at the point representing +z w. It is the 
diagonal of the parallelogram where z  
and w are adjacent sides, from the tails  
of z and w.

The vector −z w has tail at O and head 
at the point representing −z w. It is 
translated from the diagonal of the 
parallelogram from the head of w to the 
head of z.
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Multiplying complex numbers by a constant
We can also multiply a complex number by a constant real number (scalar), which will alter 
the length of its vector. For instance, the vector v2  is twice the length of v.

EXAMPLE 13

The complex numbers u, z and v are plotted as vectors on the Argand diagram.

Re(z)

z~

Im(z)

O

~v

u~

Plot the points A, B, C and D corresponding to the vectors − +u v u z
1
2

 and −u z 

respectively on the same diagram.

Solution

Re(z)

z~

Im(z)

O

C

A

D

B

~v

u~

~v2
1

~−u

~~u − z

~~u − z
~~u + z

Exercise 1.03 The Argand diagram

 1 Plot each complex number as a point on the complex plane.

a 2 − 4i  b 1 + 5i  c −4 d 3i
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 2 Express each point shown as a complex number.

  

1

2

3

4

5

−1
−1 1 2 3 4 5−2−3−4−5

−2

−3

−5

B

E
A

O

F

D

C

Im(z)

Re(z)

−4

 3 Plot each complex number as a vector on an Argand diagram.

a (4 − 3i) + (−2 + 2i) b (5 − i) − (3 − 5i) c (3 + i)(1 + 2i)

d + −i i(1 3)(1 3) e 4(2 − 5i) − 2i(−3 − i) f 
− i
1

2

g 
+
+

i
i

4 8
1

 4 Plot each complex number as a vector in the complex plane.

a 15 − 8i  b −3 − 4i  c 21 − 20i

d −24 + 10i e −9i  f 3

 5 The vectors v and u are shown on the complex plane.

  Use the parallelogram rule to plot the points W, P 
and Z representing complex numbers corresponding 
to the vectors w, p and z respectively, where:

a w = v + u

b p = −v

c z = u − v

 6 On an Argand diagram, plot the vectors corresponding to each complex number z with 
its conjugate z .

a = −z i1 3 b = − +z
i1

2 2
 c z = −4 − 3i

O

Im(z)

Re(z)

~v

u~



ISBN 97807043435 1. Complex numbers 23

 7 The vectors corresponding to 4 complex  
numbers are shown on the Argand diagram.

a State the complex number representing 
each vector z, v, k and w.

b State the complex conjugate of each 
vector in part a.

c Plot z , v , k  and w on an Argand 
diagram.

 8 Represent each number as a vector on an Argand diagram.

a z = (2 + i)(1 − i) b =
− +

w
i

1
2

 c = −v i( 3 )2

 9 For z = 2 + 3i:

a Evaluate the complex numbers w = iz, v = i2z and u = i3z.

b Plot the corresponding vectors z, w, v and u on an Argand diagram.

c What effect does multiplying a complex number by i have on the position of its vector?

1.04 Modulus and argument
The modulus of a complex number is the length or  
magnitude of the corresponding vector on the complex plane.

The modulus, r, of z = a + ib is written as mod z or z .

= = +r z a b2 2

The argument of a complex number is the angle the vector makes with the positive x-axis 
in a clockwise direction.

The argument, θ, of z = a + ib, where z ≠ 0 + 0i, is written as 
arg z.

tan θ = 
b
a

 where θ = arg z

Note that if z = 0 + 0i, then arg z is undefined.

As with solutions to trigonometric equations, the angle θ 
can take multiple values in an unrestricted domain. For this 
reason, by convention, mathematicians define the principal 
argument of z, Arg z, as the unique angle in the interval (−π, π].

1

2

3

4

5

−1
−1 1 2 3 4 5−2−3−4−5

−2

−3

−5

O x

y

−4

~v

z~

k~

~w

a

b

Z(a, b)

|z|

O

Im(z)

Re(z)

a

b

Z(a, b)

z

O

Im(z)

Re(z)
θ
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Modulus and argument
For z = a + ib,

• = = +r z a b2 2

• tan θ = 
b
a

 where θ = arg z

Arg z is the principal argument of z in the interval (−π, π].

EXAMPLE 14

If = −z i1 3, find r and Arg z.

Solution

For = −z i1 3, a = 1, b = − 3

( )
= +

= + −

=
=

r a b

1 3

4
2

2 2

2 2

tan θ = =
−

= −
b
a

3
1

3

If we graphed = −z i1 3 or (1, − 3) on the complex plane, it would be in the 4th 

quadrant, so θ = −
π
3

 (in the interval (−π, π]).

Therefore Arg z = −
π
3

.

O

Im(z)

Re(z)

2
3
π

3
π−
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Polar or modulus−argument form of a complex number
We saw that a complex number z = a + ib can be expressed  
in terms of its modulus r and its argument θ.

We know from trigonometry and the parametric equations  
of a circle that

 θ =
a
r

cos  and θ =
b
r

sin  

or a = r cos θ and b = r sin θ. So we can write:

 z = a + ib

	 = r cos θ + ir sin θ

	 = r(cos θ + i sin θ)

So z is now expressed in terms of r and θ.

This is called the polar form or modulus−argument form of a complex number because it 
is based on the distance and angle from the ‘pole’ or ‘centre’ that is the origin.

Polar form of a complex number
z = r(cos θ + i sin θ)

where r is the modulus and θ is the principal argument.

When z is expressed in terms of x and y, that is x + iy, this is called the Cartesian form or 
rectangular form because it is based on the number plane.

Note: Sometimes z = r(cos θ + i sin θ) is shortened to z = r cis θ, where cis θ stands for  
cos θ + i sin θ.

EXAMPLE 15

Express each complex number in polar form.

a  = − +z i2 2  b =
π

−
π





z i2 cos
6

sin
6

Solution

a = − =a b2 2

( ) ( )= − +

=
=

r 2 2

4
2

2 2

tan
2
2

1θ =
−

= −  and = − +z i2 2  lies in the 2nd quadrant, so θ =
π3
4

  

(in the interval (−π, π]).

a

b

Z(a, b)

r

O

Im(z)

Re(z)
θ
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In polar form, =
π

+
π





z i2 cos
3
4

sin
3
4

.

b =
π

−
π





z i2 cos
6

sin
6

 is not in polar form since it is not in the form  

z = r(cos θ + i sin θ) where the cos and sin terms are separated by  
a + sign. However, we can use the relations cos (−θ) = cos θ  
and sin (−θ) = −sin θ to express z in the correct form.

z i

i

2 cos
6

sin
6

2 cos
6

sin
6

=
π

−
π





= −
π





+ −
π















which is now in polar form.

The conjugate in polar form
The conjugate of z = r(cos θ + i sin θ) is z  = r(cos θ − i sin θ) which can be written in 
polar form as 

z  = r[cos (−θ) + i sin (−θ)].

EXAMPLE 16

Express =
π

+
π





z i3 cos
5
3

sin
5
3

 in Cartesian form.

Solution

To convert from polar form to Cartesian form, simply evaluate and expand.

=
π

+
π





= + −


















= −

z i

i

i

3 cos
5
3

sin
5
3

3
1
2

3
2

3
2

3 3
2

O

Im(z)

Re(z)

2

4
3π

−√2 + √2
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Exercise 1.04 Modulus and argument

 1 Find the modulus of each complex number.

a 1 + i  b 2 + 4i  c 7 − 2i d + i3 2

e − + i
1
7

6
7

 f − − i5 2 g i

 2 Find the argument of each complex number.

a 1 + i  b + i3   c − i2 2 d − +
i3

2 2
e −1 − i  f 4 g i

 3 Express each complex number in polar form.

a 1 − i  b − + i1 3 c 
− − i2 2

3
 d +

i1
2

3
2

e 
+ i2 2
7

 f − − i2 3 2  g − 6

 4 Convert each complex number to Cartesian form.

a =
π

+
π





z i2 cos
3

sin
3

 b =
π

+
π





z i
1
2

cos
6

sin
6

c =
π

+
π





z i3 cos
4

sin
4

 d = −
π





+ −
π





z icos
3

sin
3

e = −
π





+ −
π













z i2 cos

2
3

sin
2
3

 f = −
π





+ −
π













z i2 cos

5
6

sin
5
6

 5 Convert each complex number to rectangular form.

a =
π

−
π





z i
1
3

cos
4

sin
4

 b =
π

−
π





z i3 cos
5
6

sin
5
6

c = −
π

+
π





z i2 cos
2

sin
2

 d = − −
π





+ −
π













z icos

4
sin

4

e [ ]= −π + −πz i3 2 cos ( ) sin ( )  f = −
π





− −
π













z i icos

3
sin

3

g =
π





+
π













z i3 cos

6
sin

3
 h = −

π





−
π













z i2 cos

5
4

sin
4
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 6 Write each complex number graphed in modulus−argument form.

a

O

Im(z)

Re(z)

z

3
π

3

b

O

Im(z)

Re(z)

w

5
4
π

c

O

Im(z)

Re(z)

u

6
π

√3

d

O

Im(z)

Re(z)

v

5
2π

2

e

−3 O

Im(z)

Re(z)

z

f

−6

O

Im(z)

Re(z)

w

 7 Plot each number on an Argand diagram and express it in modulus−argument form.

a −2i b − 3

c 
i
3

 d 
π

−
π





i
1
2

cos
6

sin
6

e −
π

+
π





icos
3
4

sin
3
4

 f − − i2 2 3

g 2



ISBN 97807043435 1. Complex numbers 29

 8 Express each number in polar form. Where necessary, give an approximation to the 
argument in radians.

a 2 + i b −5 + 7i

c 
− i4
5

 d 
π

+
π





i4 cos
7
6

sin
7
6

e 
π

+
π





i2 cos
9
4

sin
9
4

  f − − i5 10

g −
π

−
π





icos
4
3

sin
4
3

 h 
π

+
π





i2 sin
3

cos
3

i − +
i
4

3
4

 j −
π

−
π





isin
4

cos
3
4

1.05 Properties of moduli and arguments
There are many advantages in using polar form on operations with complex numbers, 
especially when multiplying or dividing them. They rely on the properties outlined below.

Properties of moduli and arguments
Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2).

Property 1: Product of 2 complex numbers

z1z2 = r1r2 ( ) ( )θ + θ + θ + θ icos sin1 2 1 2

Property 2: Quotient of 2 complex numbers

( ) ( )= θ − θ + θ − θ  ≠
z
z

r
r

i zcos sin , 0
2 2

1 2 1 2 2

Property 3: Power of a complex number

Let z = r(cos θ + i sin θ).

zn = rn(cos nθ + i sin nθ) where n is an integer.

This is an extension of de Moivre’s theorem, which you will meet in Chapter 4.

Property 4: Reciprocal of a complex number

z−1 = r−1(cos θ − i sin θ), z ≠ 0

Property 5: Negative power of a complex number

z−n = r−n[cos (−nθ) − i sin (−nθ)], z ≠ 0 where n is an integer.

Let z1 = r1(cos θ1 + i sin θ1), z2 = r2(cos θ2 + i sin θ2), …, zn = rn(cos θn + i sin θn).

Property 6: Product of complex numbers

z1z2z3…zn = r1r2r3…rn[cos (θ1 + θ2 + θ3 +…+ θn) +	i sin (θ1 + θ2 + θ3 +…+ θn)] where n is 
an integer.

Homewok

WS

Polar 
complex 
number 

operations
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We will prove properties 1 and 4 below. The others can be done as an exercise.

Proof of Property 1: Product of 2 complex numbers

Using the identities cos (A + B) = cos A cos B − sin A sin B  
and sin (A + B) = sin A cos B + cos A sin B we have:

 z1z2 = r1(cos θ1 + i sin θ1) × r2(cos θ2 + i sin θ2)

	 = r1r2(cos θ1 cos θ2 + cos θ1 i sin θ2 + i sin θ1 cos θ2 + i sin θ1 i sin θ2)

	 = r1r2[cos θ1 cos θ2 − sin θ1 sin θ2+ i(cos θ1 sin θ2 + sin θ1 cos θ2)]

	 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

Proof of Property 4: Reciprocal of a complex number

Realising the denominator we have:

=

=
θ + θ

×
θ − θ
θ − θ

=
θ − θ

θ + θ

=
θ − θ

= θ − θ

−

−

z
z

r i
i
i

i
r

i
r

r i

1

1
(cos sin )

cos sin
cos sin

cos sin
(cos sin )

cos sin
(1)

(cos sin )

2 2

These properties can also be written separately in terms of their moduli and arguments.

Properties of moduli and arguments

Property 1: Product of 2 complex numbers

=z z z z1 2 1 2  and arg z1z2 = arg z1 + arg z2

Property 2: Quotient of 2 complex numbers

=
z
z

z
z2 2

 and 
z
z

arg
2

 = arg z1 − arg z2

Property 3: Power of a complex number

z zn n=  and arg zn = n × arg z for n ∈ 

Property 4: Reciprocal of a complex number

z
z
1

=−  and arg z−1 = −arg z, z ≠ 0
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Property 5: Negative power of a complex number

z
z

1n
n=−  and arg z−n = −n arg z, z ≠ 0 for n ∈ 

Property 6: Product of complex numbers

=z z z z z z z zn n1 2 3 1 2 3  and arg z1z2z3…zn = arg z1 + arg z2 +…+ arg zn  

where n ∈ 

EXAMPLE 17

For =
π

+
π





z i2 cos
5

sin
5

 and =
π

+
π





z i5 cos
7

sin
72 , evaluate:

a z1z2 b 
z
z2

 c 
z
1

 d (z2)
7

Solution

a Using z1z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

( )

=
π

+
π





×
π

+
π





= ×
π

+
π





+
π

+
π















=
π

+
π





z z i i

i

i

2 cos
5

sin
5

5 cos
7

sin
7

2 5 cos
5 7

sin
5 7

10 cos
12
35

sin
12
35

1 2

b Using [ ]= θ − θ + θ − θ
z
z

r
r

icos ( ) sin ( )
2 2

1 2 1 2

=

π + π





π + π





=
π

−
π





+
π

−
π















=
π

+
π





z
z

i

i

i

i

2 cos
5

sin
5

5 cos
7

sin
7

2
5

cos
5 7

sin
5 7

2
5

cos
2
35

sin
2
35

2



ISBN 97807043435MATHS IN FOCUS 12. Mathematcs Extenson 232

c Using z−1 = r−1(cos θ − i sin θ)

=
π + π





=
π

−
π





z i

i

1 1

2 cos
5

sin
5

1
2

cos
5

sin
5

d Using zn = rn(cos nθ + i sin nθ)

=
π

+
π





= π + π

= − +

= −

z i

i

i

( ) 5 cos
7
7

sin
7
7

5 (cos sin )

5 [ 1 (0)]

5

2
7 7

7

7

7

EXAMPLE 18

Find arg z if z
i i

i
(cos 2 sin 2 )(cos sin )

cos 3 sin 3
=

β + β α − α
θ + θ

.

Solution

We can use the properties above if the complex numbers are in polar form.

Note cos α − i sin α = cos (−α) + i sin (−α).

z
i i

i
i i

i

(cos 2 sin 2 )(cos sin )
cos 3 sin 3

(cos 2 sin 2 )[cos ( ) sin ( )]
cos 3 sin 3

=
β + β α − α

θ + θ

=
β + β −α + −α

θ + θ
= cos [2β + (−α) − 3θ] + i sin [2β + (−α) − 3θ]

= cos [2β − α − 3θ] + i sin [2β − α − 3θ]

So arg z = 2β − α − 3θ.

Properties of conjugates

Property 7: Reciprocal of a complex number with modulus 1

If z = cos θ + i sin θ, then =−z z .

Property 8: Product of complex conjugate pairs

For any complex number z,

=z z z 2 and =z zarg 0.

Property 9: Modulus and argument of a complex conjugate

z z=  and = −z zarg arg

Property 10: Sum of conjugates of 2 complex numbers

z z z z1 2 1 2+ = +
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Property 11: Product of conjugates of 2 complex numbers

z z z z1 2 1 2=

Property 12: Sum of conjugate pairs

+ =z z z2Re( )

Property 13: Difference of conjugate pairs

− =z z i z2 Im( )

The triangle inequality

For 2 complex numbers z and w,

+ ≤ +z w z w

Proof of the triangle inequality

Since z , w  and +z w  are all non-negative quantities, we can use the argument that if 
2 numbers a, b ≥ 0 and a2 ≥ b2 then a ≥ b. Recall also the property of complex conjugates that 
u v u v+ = +  from page 13, Question 11.

Consider:

( )

( )( )+ = + +

= + + +

= + + +

≤ + + +

= + + +

= + + + =

= + +

= +

z w z w z w

zz ww zw wz

z w zw wz

z w zw wz

z w z w w z

z w z w w z z z

z w z w

z w

from Property 8

using Property 1

since

2

2

2 2

2 2

2 2

2 2

2 2

2

Therefore z w z w2 2( )+ ≤ +  and we can deduce that z w+  ≤ z  + w .

O

Im(z)

Re(z)

w

z

z + w
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Exercise 1.05 Properties of moduli and arguments

 1 Verify that each equation is true for z = −1 + 2i.

a z z z2 =  b z z2 2=

 2 Let z1 = 3 − i and z2 = 2 + 5i. Verify that each property is true.

a =z z z z1 2 1 2  b 
z
z

z
z2 2

=  c z z z z1 2 1 2+ = +  d z z z z1 2 1 2=

 3 Let z1 = 1 − i and z2 = 3 + i. By first expressing in polar form, evaluate exactly:

a arg z1z2  b 
z
z

arg
2

 c arg (z2)
5 d arg (z1)

−2

 4 If =
π

+
π





z i3 cos
3

sin
3

 and =
π

+
π





z i2 cos
5

sin
52 , find:

a z1z2 b 
z
z2

 c 
z
1

2
 d (z1)

5

 5 Simplify each expression.

a (cos α + i sin α)(cos 2α + i sin 2α) b 
i
i

cos 3 sin 3
cos 2 sin 2

β − β
λ + λ

c 
( )( )+ −

−
i i

i
cos 5 sin 5 cos 3 sin 3

cos 2 sin 2

 6 Let z = a + ib where a, b ∈. Prove that:

a z z z2 =  b z2	=	z2

 7 Let z1 = a + ib and z2 = c + id where a, b, c, d ∈ . Prove that:

a =z z z z1 2 1 2  b =
z
z

z
z2 2

 c z z z z1 2 1 2+ = +  d z z z z1 2 2=

 8 Let z = r(cos θ + i sin θ). Show that:

a +z z  is real  b z z  is real

 9 Is it true that 
z z

1 1
2 2=  for all complex numbers z? Give reasons for your answer.

 10 Simplify for z = cos θ + i sin θ:

a +z
z
1

 b +z
z
12
2  c +z

z
13
3

d −z
z
12
2  e −z

z
13
3

 11 Simplify each expression.

a +i i(7 – 4 )(3 ) b i i1 3 2 2
2( ) ( )+ +  c 

−
+

i
i

3 2
5

d 
i
i

(2 )
(4 3 )

2

2
+
−

 e 
i

1
(1 )6−
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12 Use the properties of arguments to evaluate exactly:

a ( )( )+ −



i iarg 1 1 3  b ( )( )− − −



i iarg 3 2 2

c arg [i(3 + 3i)] d 
−

+






i
i

arg
2 2
3

e 
− +

+






i
i

arg
1

2 2

13 Let =
π

+
π





z i3 cos
6

sin
6

 and =
π

+
π





w i2 cos
4

sin
4

.

a Find z and w in exact Cartesian form.

b Hence find the exact values of 
w
z

 in both polar and Cartesian form.

c Hence, by equating real and imaginary parts, find the exact value of:

i 
π

cos
12

  ii 
π

sin
12

14 Using a similar proof to the one for the triangle inequality on page 33, prove that 
− ≥ −z w z w .

Leonhard Euler

Leonhard Euler (pronounced Oiler) 
was a prolific mathematician who 
was born in 1707 in Switzerland. 
He was famous by the time he was 
33 years old, having won the Grand 
Prize twice from the Paris Academy 
while working for the Russian and 
German governments on such things 
as cartography, sailing, sewerage 
and finance. Function notation, 
the natural number e, the imaginary 
number i and sigma notation are 
all attributed to Euler. He had 
13 children and claimed that much of his creativity came while a child was on his knee. 
Euler was blind by the time he was 59 but maintained his flair, producing half of his life’s 
work with no sight. He died in 1783 at the age of 76.

DID YOU KNOW?
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1.06 Euler’s formula
Leonhard Euler is considered to be one of the greatest mathematicians in history and his 
innovative thoughts were centuries before his time. One of his most famous results was a 
formula linking the real world with the imaginary world.

Euler’s formula
For any real θ,

eiθ = cos θ + i sin θ

This is called the exponential form of a complex number.

If θ = π, then we have the extraordinary result:
eiπ = −1

This links an imaginary number with a real number.
Writing a complex number in terms of e enables us to use the index laws to prove and 
simplify many results and expressions like the ones seen in the previous section, only much 
more efficiently. Euler’s formula can be derived using polynomial expansions of sin θ and 
cos θ. This appears in the next exercise.

EXAMPLE 19

Use Euler’s formula to write each expression in exponential form.

a  
π

+
π

icos
4

sin
4

 b 3(cos 2 − i sin 2)

Solution

a Using eiθ = cos θ + i sin θ:

For icos
4

sin
4

π
+

π
, 

4
θ =

π

i ecos
4

sin
4

4∴
π

+
π

=
π

b First express 3(cos 2 − i sin 2) in the form r(cos θ + i sin θ).

3(cos 2 − i sin 2) = 3[cos (−2) + i sin (−2)]

= 3e (−2)

= 3e−2i
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EXAMPLE 20

Convert each complex number to polar form.

a  
π

e
5
6   b 

− π

e4
2
9

Solution

a Using eiθ = cos θ + i sin θ

=
π

+
ππ

e icos
5
6

sin
5
6

5
6

b = −
π





+ −
π















− π

e i4 4 cos
2
9

sin
2
9

2
9

This can also be written as 
π

−
π





i4 cos
2
9

sin
2
9

.

EXAMPLE 21

If z = reiθ prove that z z z 2× = .

Solution

Since z = r(cos θ + i sin θ) then z  = r(cos θ − i sin θ) = r[cos (−θ) + i sin (−θ)] = re−iθ

∴ × = ×θ − θz z re rei i

= r2eiθ + (−iθ)

= r2e0

= r2

= z 2
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Exercise 1.06 Euler’s formula

 1 Convert each complex number to:

i polar form ii Cartesian form

a e2 π b 
− π

e2 3  c 5e3i d −
π

e 2

 2 Express each complex number in exponential form re θ.

a 
π

+
π





i3 cos
3
4

sin
3
4

b −
π





+ −
π













i2 cos

3
sin

3

c 
π

−
π





i
1
2

cos
5

sin
5

d 
π

+
π





i3 cos
7
6

sin
7
6

e 6(cos 1 + i sin 1)

f 4 − 4i

g − + i3

h 
− + i1 3

2

i i

j 1
2
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1.07 Applying Euler’s formula
In this section, we will see the elegance of the formula eiθ = cos θ + i sin θ in simplifying 
complex numbers and executing proofs. Since eiθ has an index, the usual index laws apply.

EXAMPLE 22

Simplify each expression.

a  e5i × e−3   b 
− π

π
e

e

5
6

Solution

a e5i × e−3i = e5  + (−3  )

= e2i

b =

=

=

− π

π

− π − π

− π

π

e
e

e

e

e

5
6 5

6

11
6

6

Note: e π = −1 so we could write

=
−

= −

− π

π

− π

− π

e
e

e

e

1

5
6

5
6

5
6

But this is not strictly in the form eiθ.
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EXAMPLE 23

Use Euler’s formula to simplify 
π

+
π





π
+

π





i icos
4

sin
4

cos
2
3

sin
2
3

.

Solution

π
+

π





π
+

π





= ×

=

=

=
π

+
π

π π

π + π

π

i i e e

e

e

i

cos
4

sin
4

cos
2
3

sin
2
3

cos
11
12

sin
11
12

i i

i i

4
2
3

4
2
3

11
12

EXAMPLE 24

If z = reiθ, prove that arg zn = n arg z.

Solution

 z = reiθ

 zn = (reiθ	)n = rneinθ

 arg zn = arg (rneinθ	)

 = nθ

 = n arg z  since θ = arg z

Euler’s formula

We can use Euler’s formula to evaluate (i)i.

Did you know it is real?

DID YOU KNOW?
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Exercise 1.07 Applying Euler’s formula

 1 Use Euler’s formula to simplify each expression.

a 
π

+
π





π
+

π





i icos
6

sin
6

cos
5
6

sin
5
6

b 
π

+
π





×
π

+
π





i i3 cos
4

sin
4

2 cos
3

sin
3

c 
− π





+ − π





π + π

i

i

cos
7
8

sin
7
8

cos
3
4

sin
3
4

d 
− π + π





π + π





i

i

5 cos
2

sin
2

5 cos
2
3

sin
2
3

 2 Simplify each expression, writing the answer in exponential form.

a (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) b 
i
i

cos sin
cos sin

1 1

2 2

θ + θ
θ + θ

c 
π

−
π













i

1
2

cos
3
4

sin
3
4

2

 d 
π

+
π















−

i2 cos
2
5

sin
2
5

e 
( )
( )

α − α
λ + λ

i

i

10 cos2 sin 2
2 cos5 sin5

 f − + −i i( 2 2 )(1 3 )

g −
− +





i

i3
2

 h 
+ i2 2 2 2
5

 3 If = θz e  and = θz e2 , prove that:

a arg z1z2 = arg z1 + arg z2

b = −
z
z

z zarg arg arg
2

1 2

 4 a Using the fact that eiθ = cos θ + i sin θ, write down a similar result for e−iθ.

b Hence prove that:

i  θ =
−θ − θe e

i
sin

2

i i

 ii θ =
+θ − θe e

cos
2

i i
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1. TEST YOURSELF

 1 Express each complex number in terms of i.

a −25   b −18   c −
8
9

 2 Simplify each expression.

a i5 b − −( 4) 4(2)(7)2  c 
i
1
6

d i91 e 
− ± −2 (2) 4(1)(5)

2

2

 3 Solve each equation.

a x2 + 49 = 0 b (x + 3)2 + 4 = 0

 4 Solve each equation using the quadratic formula.

a x2 − 4x + 9 = 0  b x2 + 6x + 15 = 0 c 2x2 + 3x + 9 = 0

 5 Solve each equation by completing the square.

a x2 − 2x + 2 = 0  b x2 + 8x + 20 = 0 c x2 − x + 3 = 0

 6 Factorise each expression in the equation as a difference of 2 squares, then solve the 
equation.

a x2 + 4x + 8 = 0  b x2 − 8x + 25 = 0 c x2 + 10x + 41 = 0

 7 State Re(z) and Im(z) for each complex number.

a =
−

z
i3 2

4
b z = (−3 − 7i) + (5 − 2i)

c =
− + +

+
∈z

x iy x yi
x y

x y
(4 3 ) ( )

, ,2 2

 8 State the complex conjugate of each complex number.

a z = −6 + 11i

b =
−

w
i3 2
2

c =
− + + −

+
∈u

a i ai b
a b

a b
2 7

, ,2 2

 9 If z = p − 3iq where p, q ∈ , prove that:

a z z  is always real

b +z z  is always real

c the expression z z(Re( )) (Im( ))2 2+  is always real.
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 10 If x and y are real, solve each equation for x and y.

a 4x − 6i − 3yi − 12 = 0

b 5x + 2xi + i − 3y + yi + 20 − 4i = 0

 11 If =
+ − + − +

+
V

x yi ix y i
x y

2 2 5 3 2 7
2 2  is always real, where x, y are real, find a relationship 

between x and y.

 12 Simplify each expression, giving your answer in the form u + iv where u, v ∈ .

a 8i + 5 − 4i + 10  b −3(2 − 7i) + 2i(6 − i)

c (1 − 3i)(4 + 9i)  d (2 − 5i)2 − (−3 + 4i)(−3 − 4i)

13 Find the quadratic equation with the given roots α and β.  
Use the formula (x − α)(x − β) = x2 − (α + β)x + αβ.

a α = − i1 2  and β = + i1 2

b α = −3 − 5i and β = −3 + 5i

c α = + i7 3  and β = − i7 3

d α =
−

+
i1

2
3

2
 and β =

−
−

i1
2

3
2

14 Simplify each expression by realising the denominator.

a 
− i
1

1 2
 b 

−
+

i
i

2 2
1

 c 
+

−
+i i

1
2 3

1
5

 d 
+
−

i
i

3 2
3 2

15 Find the 2 square roots of each complex number.

a 3 − 4i  b 8 + 6i  c 15 − 8i  d 12 + 5i

16 Represent each of the following complex numbers as a point on the complex plane.

a = − −u i1 3   b = +w i2 2

c v = (2 − 3i)(2 + 3i) d =
+
−

z
i
i

1
1

17 Given z = −2 + 5i and v = 3 − 4i, plot z z v, ,  and v  as vectors on an Argand diagram.

18 If u = 4 − i and z = −1 + 2i, find u + z and plot u, z, −u and +u z on an Argand diagram.

19 The complex numbers z, v and w are plotted on  
the complex plane. Copy the plane and plot the points 

corresponding with −z, 
1
2

 w, z + v and z − v on the plane.

O

Im(z)

Re(z)

w

v
z
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20 Find z  and Arg(z) in exact form for each complex number.

a = −z i2 2   b = +z i3

c = − +z i2 2 3  d =
− −

z
i1

2
21 Express each complex number in polar form.

a =
− +

z
i3

2

b =
π

−
π





z i2 cos
2
3

sin
2
3

c = −
π

+
π





z i
1
2

cos
7
6

sin
7
6

22 Express each complex number in Cartesian form.

a =
π

+
π





z i2 cos
4

sin
4

b =
π

+
π





z i
1
2

cos
3

sin
6

c =
π

+
π





z i2 cos
5
6

sin
5
6

23 If =
π

+
π





z i
1
3

cos
3
4

sin
3
4

 and =
π

+
π





z i3 cos
6

sin
62  find, in exact modulus−argument 

form:

a z1z2 b 
z
z2

 c 
z
1

2
 d (z1)

11

24 Find arg z for each complex number.

a =
θ + θ
β + β

z
i
i

cos sin
cos 2 sin 2

b = α − α λ + λz i i(cos 3 sin 3 )(cos 2 sin 2 )

c =

δ + δ





α − α





φ − φ
z

i i

i

cos
2

sin
2

cos
4

sin
4

cos 2 sin 2

d ( )= ε − ε −z icos 3 sin 3

25 Find mod z for each complex number.

a z = (1 + 7i)(2 − 3i) b =
+
−

z
i

i
2
3 4

 c =
−

z
i

1
(2 )2
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26 =
π

+
π





z i2 cos
4

sin
4

 and =
π

+
π





w i4 cos
3

sin
3

.

a Find z and w in exact Cartesian form.

b Hence find the value of zw in both polar and Cartesian form.

c Hence find the value of:

i  
π

cos
7
12

 ii 
π

sin
7
12

27 Use Euler’s formula to write each expression in exponential form.

a =
π

+
π

z icos
3
5

sin
3
5

 b ( )− i2 cos 3 sin3

28 Convert each complex number to polar form.

a 
π

e 4  b 
−e
2

2

29 If = θz r e1 1  and = θz r e2 2 , prove that 






= −
z
z

z zarg arg( ) arg( )
2

1 2 .

30 Simplify each expression.

a ×
π − π

e e
i i5
6

7
6  b 











− π

e
2
3

12

31 Use the fact that cos θ + i sin θ = eiθ to simplify 

π + π

− π





+ − π





i

i

cos
2
7

sin
2
7

cos
3
14

sin
3
14

.

32 If z = reiθ, prove that arg z−n = −n arg z.



PROOF

2.
MATHEMATICAL PROOF
Mathematical proof is used to determine whether assertions are true or false. Proofs form the 
basis of mathematics. In this chapter, you will examine the nature of proof and develop rigorous 
mathematical arguments of a type that is common in number, algebra and geometry.

CHAPTER OUTLINE

2.01 The language of proof
2.02 Proof by contradiction
2.03 Proof by counterexample
2.04 Proofs involving numbers
2.05 Proofs involving inequalities
Test yourself 2



IN THIS CHAPTER YOU WILL:

•	 learn the formal language and symbols of proof, including ∀, ∃, ⇒, ⇔, ¬P, iff and ∈
•	 use the proof concepts of implication, negation, equivalence and equality
•	 state the contrapositive and converse of a statement
•	 use proof by contradiction and counterexample
•	 prove results involving numbers and inequalities
•	 prove further results involving inequalities based on previous results
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TERMINOLOGY
contrapositive: The contrapositive statement to 

P ⇒ Q (if P then Q) is ¬Q ⇒ ¬P (if not Q then 
not P). If P ⇒ Q is true, then the contrapositive 
statement ¬Q ⇒ ¬P is also true.

converse: The converse to P ⇒ Q (if P then Q) is 
Q ⇒ P (if Q then P).

counterexample: An example that shows that a 
statement is not true.

equivalence: P ⇔ Q (P if and only if Q, also 
written P iff Q). If P ⇒ Q and Q ⇒ P then we 
can write P ⇔ Q.

implication statement: P ⇒ Q (if P then Q, or  
P implies Q)

negation: The negation of a statement P is not P, 
written ¬P, P′ or P .

proof by contradiction: A proof that assumes 
that the direct opposite of a statement is true 
and then a logical argument is used to show the 
assumption is false.

QED: quod erat demonstrandum, Latin for 
‘demonstrated as required’.

statement, proposition or premise: A sentence 
that is either true or false (but not both).

triangle inequality:  x   +  y   ≥   x + y  , ∀ x, y ∈ .

2.01 The language of proof
A proof in mathematics is most often an argument that shows a statement or premise is true 
for all cases. This is different from an example where the statement may be true only for a 
particular case. There are different types of proof, such as deductive, inductive and proof by 
contradiction or counterexample. They are based on reason, a way of thinking attributed 
most often to the Classical Greek mathematicians and philosophers such as Euclid, Socrates, 
Plato and Aristotle.

In mathematics, deductive proof and proof by contradiction are often used, whereas inductive 
proof is common in science. Proof by counterexample is used to show a statement is not true.

Statement, proposition or premise
A statement, proposition or premise is a sentence that is either true or false (but not 
both).

‘It is raining’ is a statement. ‘Is it raining?’ is not a statement but a question. We denote a 
statement by a capital letter; for example, P: It is raining.

A statement could be mathematical; for example, Q: For all real x, + = +
d
dx

x x x( 2 ) 2 22 .  
Q is a true statement.

Sometimes the truth of a statement depends on the context For instanc, the statement that  

<
a b
1 1

 when a > b is true only if a and b are both positive but it is not true for all numbers.

We will now define some terminology used in logical proof. 

Implication or ‘if-then’ statement
One of the most common arguments is the if-then statement, also known as the 
implication statement or conditional statement. This can be written using symbols.

Homewok

WS

Converse

Homewok

WS

Contrapositive

Homewok

WS

Quantifiers
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Implication
If P and Q stand for the 2 parts of an if-then statement, we can write the statement  
‘if P then Q’ as P ⇒ Q.

The notation P ⇒ Q can also be read as ‘P implies Q’.

EXAMPLE 1

Write the following statement in mathematical notation:

 If I don’t study, then I will fail.

Solution

Define P and Q as follows:

 P: I don’t study.

 Q: I will fail.

Then we can write:

 P implies Q, or P ⇒ Q.

Converse
To find the converse of a statement, we reverse the implication.

Converse
For the statement ‘If P then Q’, the converse is ‘If Q then P’, or the converse of  
‘P implies Q’ is ‘Q implies P’.

In symbols, the converse of P ⇒ Q is Q ⇒ P.

The converse of a true statement may or may not be true. Equally, the converse may be true 
but the original statement may or may not be true.

For example, both Pythagoras’ theorem and its converse are true.

Pythagoras’ theorem: In a right-angled triangle, the square of the hypotenuse is equal to the 
sum of the squares of the other 2 sides.

Converse: If the square of the longest side of a triangle is equal to the sum of the squares of 
the other 2 sides, then the triangle is right angled.

However, consider the statement ‘If you are a cow, then you eat grass’. This is a true 
statement.

The converse is ‘If you eat grass, then you are a cow’. The converse is not true because there 
are other animals that eat grass.
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EXAMPLE 2

Express each sentence as a mathematical statement and write the converse of each 
statement.

a If you drink alcohol, then your brain is damaged.

b If you do your homework, then you have more knowledge.

Solution

a Let P and Q be as follows.

 P: You drink alcohol.

 Q: Your brain is damaged.

 Then we can write:

 P implies Q, or P ⇒ Q.

 Reverse the implication so we have the converse.

 Q implies P, or Q ⇒ P.

 In words, the converse is: If your brain is damaged, then you drink alcohol.

b Let P and Q be as follows.

 P: You do your homework

 Q: You have more knowledge.

 P implies Q, or P ⇒ Q.

 Reverse the implication so we have the converse.

 Q implies P, or Q ⇒ P.

 In words, the converse is: If you have more knowledge, then you do your homework.

It is worth pointing out here that we are operating with statements logically without claiming 
that such statements are actually true. For example, we are examining the converse of ‘If you 
drink alcohol, then your brain is damaged’ without saying whether this statement is correct.
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Equivalence
If a statement is true and its converse is also true (such as Pythagoras’ theorem) then we call 
this an equivalence.

The term ‘if and only if’ is used to describe an equivalence. This can be abbreviated to ‘iff’.

Equivalence
If P ⇒ Q and Q ⇒ P then we can write P ⇔ Q.

In words, P ⇔ Q means ‘P if and only if Q’ or ‘P iff Q’.

EXAMPLE 3

This pair of statements A and B relate to a quadrilateral.

 A: It is a parallelogram.

 B: Its diagonals bisect each other.

Determine whether they form an equivalence and A ⇔ B.

Solution

Test A ⇒ B and B ⇒ A.

A ⇒ B: If it is a parallelogram, then the diagonals bisect each other. This is true.

B ⇒ A: If the diagonals bisect each other, then it is a parallelogram. This is true.

So A ⇒ B and B ⇒ A. We can say A ⇔ B. It is an equivalence.

In words the statement becomes: It is a parallelogram if and only if the diagonals bisect 
each other.

Negation
The negation of a statement P is to say not P.

Negation
The negation of P, or not P, is written ¬P, P ′, ~P or P .

If P is true, then ¬P is false. If P is false, then ¬P is true.

When statements are in words, we need to be careful with the negation. For example, some 
people might think that the negation of the statement ‘All of the students passed’ is ‘All of 
the students failed’, but this is incorrect. It is ‘Not all of the students passed’, or ‘Some of the 
students did not pass’.
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EXAMPLE 4

Write the negation of each statement.

a A: It is wet.

b B: The number is even.

c C: All birds are black.

d D: The parcel weighs less than 250 g.

e E: Trees have leaves.

f F: No boys can sing.

g G: Some plums are sour.

Solution

a A: It is wet.

 The negation is ¬A: it is not wet.

b B: The number is even.

 The negation is ¬B: The number is not even.

c C: All birds are black.

 The negation is ¬C: Not all birds are black, OR  
There is at least one bird that is not black.

d D: The parcel weighs less than 250 g.

 The negation is ¬D: The parcel doesn’t weigh less than 250 g; that is, The parcel 
weighs 250 g or more, OR The parcel weighs at least 250 g.

e E: Trees have leaves.

 This one is tricky. We will interpret the statement ‘Trees have leaves’ to mean All 
trees have leaves. The negation is ¬E: Not all trees have leaves, or There is at least 
one tree that does not have leaves.

f F: No boys can sing.

 The negation is ¬F: It is not true that no boys can sing. That is, there is at least one 
boy who can sing.

g G: Some plums are sour.

 The negation is ¬G: It is not true to say that some plums are sour. That is, no plums 
are sour.

The word ‘some’ means ‘not none’ or 
‘at least one’, so we could also say 
‘Some birds are not black’.
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Contrapositive

Contrapositive
For the statement P ⇒ Q, the contrapositive statement is ¬Q ⇒ ¬P.

In words, the contrapositive statement of ‘If P then Q’ is ‘If not Q then not P’.

EXAMPLE 5

Write the contrapositive of each statement.

a If you are tired when driving, then you have road accidents.

b X ⇒ Y

Solution

a P: You are tired when driving

 Q: You have road accidents.

 We can write P ⇒ Q.

 ¬P: You are not tired when driving

 ¬Q: You do not have road accidents

 So the contrapositive is ¬Q ⇒ ¬P

 or: If you do not have road accidents, then you are not tired when driving.

b The contrapositive of X ⇒ Y is ¬Y ⇒ ¬X.

The contrapositive can be a useful way to check whether or not a statement is true.

Contrapositive and equivalence
If the original statement P ⇒ Q is true, then the contrapositive statement ¬Q ⇒ ¬P is 
also true.

If the original statement P ⇒ Q is not true, then the contrapositive statement  
¬Q ⇒ ¬P is also not true.

P ⇒ Q and ¬Q ⇒ ¬P are an equivalence.

Again, we are examining the logic of 
these statements without claiming that 
such statements are actually true.
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EXAMPLE 6

Consider the statement: If a polygon is a triangle, then its interior angle sum is 180°.

Explain why the contrapositive of the statement is true. State the contrapositive.

Solution

P: A polygon is a triangle.

Q: Its interior angle sum is 180°.

Since P ⇒ Q is true, then the contrapositive ¬Q ⇒ ¬P is also true.

¬P: A polygon is not a triangle.

¬Q: Its interior angle sum is not 180°.

So the contrapositive is ¬Q ⇒ ¬P.

or: If a polygon’s interior angle sum is not 180°, then it is not a triangle.

Quantifiers
Mathematical notation is useful because it is brief and precise. Mathematical symbols called 
quantifiers are commonly used in mathematics proofs.

Quantifiers
∀ for all

∃ there exists

We use ∀ to specify a whole set of numbers or items we are talking about. We use ∃ to refer 
to a particular set of numbers or items that have a specific property.

Sets of numbers
We have already met the set  of real numbers and the set  of complex numbers, which 
includes all the real numbers. The natural numbers {1, 2, 3, …} form the set .  
The integers {…, -2, -1, 0, 1, 2, …} form the set , which includes all of .  
The rational numbers form the set , which includes all of .  
The real numbers form the set , which includes all of .

Some definitions of natural numbers include the number 0 in the set .
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Sets of numbers
 the set of natural numbers

 the set of integers

 the set of rational numbers

 the set of real numbers

 the set of complex numbers

Other symbols
∈ is an element of, belongs to

: such that

EXAMPLE 7

Use quantifiers to express each sentence as a mathematical statement.

a For all integers n, there exists an integer M such that M = 2n.

b For all rational numbers r, there exist 2 integers p and q such that =r
p
q

.

Solution

a Since n belongs to the set of integers, we can write n ∈ .

 Also, M is an integer so we can write M ∈ .

 Using the quantifiers we can write the sentence mathematically as:

 ∀ n ∈ , ∃ M ∈ : M = 2n

 (‘for all n belonging to the set of integers, there exists M belonging to the set of 
integers such that M = 2n’)

b ∀ r ∈ , ∃ p, q ∈  : =r
p
q

 (‘for all r belonging to the set of rational numbers, there exists p and q belonging to 

the set of integers such that r = pq’)

It is important to use mathematical notation correctly. For example, ‘=’ means ‘is equal to’ 
and should only be used in mathematical equations such as 2x + 1 = x2 - 2, not in word 
statements. For instance, if P and Q are statements and P iff Q, then we would write P ⇔ Q, 
not P = Q.
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Exercise 2.01 The language of proof

 1 Write each P ⇒ Q implication statement in mathematical notation, identifying P and Q.

a If there are crumbs, then ants will come.

b If a quadrilateral has equal diagonals, then it is a square.

c If people are unemployed, then they are bored.

 2 Write the converse of each statement.

a If you live in Cooma, then you go skiing.

b If you like maths, then you have friends.

c If you are a politician, then you can debate.

d If an animal can fly, then it is a bird.

 3 For each true statement, find the converse and decide whether it is true.

a If you are a carnivore, then you eat meat.

b If you are seasick, then you are on a boat.

c If a shape is a square, then it has equal sides.

d If an animal is a honeybee, then it can sting.

 4 For each true statement, find the converse and decide whether or not it is an 
equivalence. If it is, write it in the form ‘P iff Q’.

a If x - 5 = 4 then x = 9.

b If a quadrilateral is a rhombus, then it has diagonals that are perpendicular.

c If a > b > 0, then <
a b
1 1

.

d If you have a driver’s licence, then you passed a driving test.

 5 Write the negation of each statement.

a It is white. b I know everything.

c Fish swim in the ocean. d All babies are cute.

e There are more than 5. f There is none.

g No one passed the test. h Some teachers are mean.

i The potatoes weigh less than 3 kg. j Cassie is small.

 6 Write the contrapositive statement for each statement.

a If you live in a mansion, then you are rich.

b If you are in the army, then you have boots.

c If you are old, then you are wise.

d If x = 3 then x2 = 9.

e If an animal is a horse, then it has four legs.

f If you are a woman, then you are superior.
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 7 Given each contrapositive statement, state the original statement.

a If the water is not rising, then it is not global warming.

b If you do not speed, then you do not have accidents.

c If there is not a drought, then animals do not die.

d If a number is not rational, then it is not a fraction.

e If Sam does not pass his exams, then he is lazy.

f If a number is negative, then it does not have a square root.

 8 Write the contrapositive of each true statement, then verify that its contrapositive is  
also true.

a If n ≥ 1, then ≥
+n n

1 1
1
.

b If a line is horizontal, then its gradient is zero.

c In the outback, the bulldust is red.

d All blue whales are mammals.

 9 Write the contrapositive of each statement, then state whether the statement and its 
contrapositive are both true or both false.

a If you exercise, then your heart rate increases.

b If a plant does not get sufficient water, then it dies.

c If a triangle is isosceles, then it has 2 equal angles.

d If a number is an integer, then it is real.

e If x > 2, then x2 > 4.

10 Write the contrapositive of each statement, then determine whether the statement is 
true or false.

a If an animal is a bird, then it has a beak.

b A quadrilateral with 2 pairs of opposite angles equal is a rhombus.

c All fish have fins.

d If x ≤ 5, then x2 ≤ 25.

e If a number is odd, then it is prime.

11 Isobel was trying to work out whether the following statement was true by stating the 
contrapositive. She decided it was true. Can you explain where she went wrong?

  Statement: If a quadrilateral has 4 equal angles, then it is a square.
  Contrapositive: If a quadrilateral does not have 4 equal angles, then it is not a square.

12 If ¬A ⇒ ¬B is a true statement, which of the following statements is always true?

A A ⇒ B   B ¬B ⇒ ¬A C A ⇔ B  D B ⇒ A

Bulldust is the fine powdery dust that 
often covers the ground in the 
Australian bush.
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13 Use symbols and quantifiers to write each sentence in mathematical notation.

a For all natural numbers x, there exists a natural number y such that y is greater  
than x.

b If x is rational, then there exist 2 integers p and q, where q is not zero, such that 

=x
p
q

.

c For all non-zero integers a, there exists a rational number b such that =b
a
1

.

d For any 2 ordered pairs (x, y) and (w, v) where x, y, w and v are real, and x < w, y < v, 
there exists an ordered pair (c, d) such that c is between x and w and d is between y 
and v.

e For all real non-negative numbers x, there exists a real non-negative number y such 
that =y x .

14 Write each mathematical statement in words.

a ∀ m ∈ , ∃ n ∈ : n + m = 0

b ∀ a, b ∈ , b ≠ 0, ∃ p, q ∈  such that 
+

= +
a b

p q
1

2
2

15 The statement M iff N can be written as:

A M ⇒ N  B M ⇐ N C N ⇔ M D ¬M ⇒ ¬N

Charles Dodgson

Lewis Carroll (1832-1898), the author of Alice In Wonderland, was a mathematician. His 
real name was Charles Dodgson and he lectured in mathematics at Oxford University. 
Like his contemporaries, he worked on algebra and set theory, logic and proof. 
Mathematicians at that time began to assert that mathematics and logic were different. 
The argument continued into the 20th century.

DID YOU KNOW?
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2.02 Proof by contradiction
Sometimes it is easier to prove a statement is true by assuming the opposite is true, then 
showing that this leads to a contradiction.

Proof by contradiction
A proof by contradiction works by taking an assumption that the direct opposite of 
a statement, or negation, is true, and then showing by a logical argument that the 
assumption is false.

EXAMPLE 8

Use proof by contradiction to show that 3 is irrational.

Solution

Proof
Assume that 3 is rational.

That is, ∃ p, q ∈ , q ≠ 0 (p and q are integers) such that:

=
p
q

3   where p, q have no common factors

Squaring both sides: =
p
q

3
2

2

Rearranging: p2 = 3q2

So p2 is a multiple of 3, which implies that p is a multiple of 3.

Therefore we can write p = 3k for some k ∈ .

So  p2 = 9k2 but p2 = 3q2 also.

∴ 3q2 = 9k2

q2 = 3k2

So q2 is a multiple of 3, which implies that q is a multiple of 3.

∴ p and q are both multiples of 3.

Contradiction of the assumption that p and q have no common factors.

Therefore the original assumption was wrong.

Therefore 3 is irrational. QED.

The abbreviation QED stands for quod erat demonstrandum, which is Latin for ‘demonstrated 
as required.’ It is commonly put at the end of a proof to show that the proof is complete.
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EXAMPLE 9

Use proof by contradiction to show that log2 3 is irrational.

Solution

Proof
Assume that log2 3 is rational.

That is, ∃ p, q ∈ , q ≠ 0 such that:

log2 3 = 
p
q

 where p, q have no common factors.

Expressing as an index:          2 p
q  = 3

Raising both sides to the power of q: 2p = 3q

Now, since 2 is even then 2p is also even.

Also since 3 is odd then 3q is also odd.

Therefore 2p ≠ 3q.

Contradiction, since 2p = 3q but an even number cannot be equal to an odd number.

Therefore the original assumption was wrong.

Therefore log2 3 is irrational. QED.

Exercise 2.02 Proof by contradiction

 1 Prove by contradiction that each of the following numbers is irrational.

a 2 b 5 c 7 d 23  e 53

 2 Prove by contradiction that each of the following numbers is irrational.

a log2 5 b log2 7 c log3 8

 3 Complete this proof by contradiction that the angle in a  
semicircle is 90°.

  Proof
  Assume that A, B, C lie on a circle of centre O.  

Assume that ∠ACB ≠ 90°.

 4 Prove each statement by contradiction.

a The bisector of the angle between the equal sides of an isosceles triangle bisects the 
third side.

b The opposite angles of a parallelogram are equal.

c The diagonals of a kite intersect at right angles.

B
C

A
O
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 5 Prove each statement by contradiction.

a A triangle with sides 8, 15, 17 is a right-angled triangle.

b A triangle with sides 4, 5, 6 is not a right-angled triangle.

c The number I = 5 + 2 is irrational. [Hint: isolate the 2.]

d The number I = 2 + 3 is irrational. [Hint: square both sides.]

e A number in the form a + b 2 where a, b ∈  is irrational.

 6 Prove by contradiction that each statement is true.

a Given a number in the form 
+a b

1
2

 where a, b, ∈ , b ≠ 0, ∃ p, q ∈ : 

+
= +

a b
p q

1
2

2.

b ∀ a ∈ , ∃ b ∈ : a + b = 0

2.03 Proof by counterexample
It can be difficult to construct a rigorous proof to show a statement is true for all cases. It is 
much easier to show a statement is false. You only need to find one case where the statement 
is false to disprove the statement. This is called a counterexample.

Counterexample
A counterexample is an example that shows that a statement is not true for all cases.

EXAMPLE 10

Provide a counterexample to show that the following statement is not always true:

∀ n ∈ , n2 > n

Solution

The statement says that the square of an integer is always greater than the integer. 
It appears to be true for almost all cases. However, if we choose n = 0, it is not true.

02 >  0. In fact 02 = 0.  

Therefore the statement is false.

The statement is also not true for n = 1.

Homewok

WS

Counter- 
examples
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EXAMPLE 11

Determine whether this statement is true:

 All camels have one hump.

Solution

Most camels have one hump, but the Bactrian camel has two humps.

Therefore the statement is false.

EXAMPLE 12

Explain what is wrong with the following argument.

Teacher: Smoking is bad for you.

Student: I have a counterexample: social media is bad for you.

Solution

The student has found another habit that is bad for you rather than a counterexample to 
show that smoking is not bad for you.

Exercise 2.03 Proof by counterexample

 1 Find a counterexample to prove that each statement is not true.

a ∀ n ∈ , n2 ≥ n

b ∀ n ∈ , n2 + n ≥ 0

c All prime numbers are odd.

d ∀ x, y ∈  and n ∈ , xn + yn = (x + y)(xn – 1 - xn – 2y + xn – 3y2 - … x2yn – 2 + yn – 1)

e ∀ x ∈ , + ≥x
x
1

2

 2 Find a counterexample for each statement to demonstrate it is false.

a If n2 = 100, then n = 10.

b The statement x3 - 6x2 + 11x - 6 = 0 is true for x = 1, 2, 3, …
c All lines that never meet are parallel.

d If an animal lays eggs, then it is a bird.
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 3 Decide whether each statement is true or false. If it is false, provide a counterexample.

a If a quadrilateral has diagonals that are perpendicular, then it is a square.

b If p ≤ 3, then ≥
p
1 1

3
    

c (x + y)2 ≥ x2 + y2 for all x, y ∈ 

d If pq = rq then r = p     

e All rectangles are similar.

 4 In each case, determine whether the counterexample shows that the statement is false.

a Statement: x2 = 3x - 2 for x ∈ 

 Counterexample: For x = 3, LHS = 32 = 9

 RHS = 3(3) - 2 = 7 ∴ LHS ≠ RHS

 The statement is not true.

b Statement: All dogs are domesticated.

 Counterexample: Cats are domesticated.

 The statement is not true.

 5 Decide whether the statement below is true or false. If it is false, find a counterexample.

  If a > b then <
a b
1 1

.

 6 Is it always true that ) ) ) ) ) ) )( ( ( ( ( ( (− −
+

− −
=

−
− − −x x x x

x
x x x

1
1 2

1
2 3

2 4
1 2 3

 for x = 4, 5, 6, …?

 7 Is it always true that <
−n n

1 1
1

?

 8 Are all squares rhombuses? Are all rhombuses squares?

 9 A circle can always be drawn through the four vertices of a rectangle. Is this true for all 
quadrilaterals?

10 Is the angle sum of all polygons with n sides Sn = 180°(n - 2)?

11 Do the diagonals of a kite always intersect inside the kite?

12 Is it always true that  x - y  =  y - x  ?

13 Is it always true that if n > m then nk > mk?

Bertrand Russell

Bertrand Russell was a philosopher and mathematician who studied logic. He is famous 
for inventing a paradox in 1901 that is understandably called Russell’s Paradox. It was a 
proof by contradiction for an idea in set theory.

DID YOU KNOW?
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INVESTIGATION

1 = –1?
Mathematics is based on definitions and proof. It is very important to be accurate 
with the definitions when we set up a proof and to use rigour when applying the 
mathematical algorithms so that the conclusions are valid.

Study the proof that 1 = -1 below and see if you can find the error. There must be a flaw 
somewhere because 1 ≠ -1!

Proof that 1 = –1

Consider the complex number = −i 1.

Then we know that:
=

− = −

i i

1 1

  
−

=
−1

1
1

1

  
−

=
−1

1
1

1

Then cross-multiplying we have:

× = − × −1 1 1 1

∴     1 = -1 QED

2.04 Proofs involving numbers
In this section we will develop some techniques for proving common properties of numbers.

Properties of positive integers
An even number can be described by the formula 2n where n ∈ .

An odd number can be described by the formula 2n - 1 where n ∈ .

A square number can be described by the formula n2 where n ∈ .

A number, X (X ∈ ), is divisible by another number, p (p ∈ ), if ∃ Y (Y ∈ )  
such that X = pY.

Note that in general, properties such as even, odd, multiples, factors, refer to the positive 

integers only. For instance, we would not usually say -7 is an odd number or that 
4
9

 is a 
square number.
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EXAMPLE 13

Consider 2 odd numbers M and N. Prove that their sum is even.

Solution

Proof
Let M = 2m - 1 and N = 2n - 1 for some m, n ∈ .

Then M + N = (2m - 1) + (2n - 1)

 = 2m + 2n - 2

 = 2(m + n - 1)

 = 2k where k ∈ 

∴ M + N is divisible by 2.

∴ The sum is even. QED.

EXAMPLE 14

If Sn = 
+n n
2

2

, n ∈ , prove that Sn - Sn – 1 = n.

Solution

Proof

Let  Sn = 
+n n
2

2

, n ∈ .

Then          =
− + −

−S
n n( 1) ( 1)

2n

2

− =
+

−
− + −

=
+ − − + + −

=
+ − −

=
+ − +

=

=

−S S
n n n n

n n n n n

n n n n

n n n n

n

n

Then
2

( 1) ( 1)
2

[ 2 1 ( 1)]
2

[ ]
2

2
2
2

QED

n n

2 2

2 2

2 2

2 2
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Exercise 2.04 Proofs involving numbers

 1 Copy and complete this proof that the product of 2 odd numbers is an odd number.

  Proof

  Let the 2 odd numbers be M and N.

  Let M = 2m - 1 and N = ____________ for some m, n ∈ ______

  Then M × N = ( ________ ) × (2n - 1)

   = 4mn + ________ + 1

   = 2( ________ ) + __________

   = 2 	+ __________ where  ∈ 

  Since 2  is ______________ then 2  + __________ is __________.

  Therefore the ____________________________ is _____________. QED.

 2 Use a similar structure as the proof in Question 1 to prove that:

a the sum of 2 even numbers is even

b the product of 2 even numbers is even

c the difference between 2 even numbers is even

d the difference between 2 odd numbers is even

e the sum of an even and an odd number is odd

f the product of an even number and an odd number is even

g the difference between an even number and an odd number is odd

h the square of an odd number is odd

i the square of an even number is even

 3 Prove each property.

a ∀ a, b ∈ , ∃ p, q ∈ : 
+

= +
a b

p q
1

3
3

b ∀ a, b, c, d ∈ , ∃ p, q ∈ : 
+
+

= +
a b
c d

p q
2
2

2

 4 Prove each formula.

a If Sn = n2 + n, n ∈ , then Sn - Sn – 1 = 2n.

b If Sn = n2, n ∈ , then Sn - Sn – 1 = 2n - 1.

c If Sn = 3n - n2, n ∈ , then Sn - Sn – 1 = 4 - 2n.

d If Sn = 2n2 + n, n ∈ , then Sn - Sn – 1 = 4n - 1.

e If Sn = 
+ +n n( 1)( 3)

2
, n ∈ , then Sn - Sn – 1 = 

+n2 3
2

.
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 5 For each function, prove the given property.

a If f (x) = x2, then f (x) = f (-x)

b If f (x) = x3, then f (-x) = -f (x)

c If f (x) = 
−

x
x 1

3

2 , then f (-x) = -f (x)

d If f (x) = x sin x, then f (x) = f (-x)

e If f (x) = x2 cos x, then  f (x) = f (-x)

f If f (x) = −xe x , then f (-x) = -f (x)

 6 Prove each equation for all positive integers m, n, k.

a 
+ +

+ + =
+ + +n n n

n
n n n( 1)(2 1)

6
( 1)

( 1)( 2)(2 3)
6

2

b 
+ +

+ + + =
+ + +n n n

n n
n n n( 1)( 2)

3
( 1)( 2)

( 1)( 2)( 3)
3

c 2k + 1 - 1 + 2k + 1 = 2k + 2 - 1

d k × 2k + (k + 2)2k = (k + 1)2k + 1

e 
+

+
+ +

=
+
+

m
m m m

m
m1

1
( 1)( 2)

1
2

 7 Prove the following for all positive integers n.

a If 3n - 1 = 2X for some X ∈  (that is, 3n - 1 is divisible by 2), then 3n + 1 - 1 = 2Y  
for some Y ∈  (that is, 3n + 1 - 1 is also divisible by 2).

b If 4n - 1 = 3X for some X ∈ , then 4n + 1 - 1 = 3Y for some Y ∈ .

c If n3 + 2n = 3X for some X ∈ , then (n + 1)3 + 2(n + 1) = 3Y for some Y ∈ .

d If n2 + 2n is a multiple of 8 for n ∈  where n is even, then (n + 2)2 + 2(n + 2) is a 
multiple of 8.

 8 Prove each equation.

a (x + 5)3(2x - 1)2 + (x + 5)4(2x - 1) = (2x - 1)(x + 5)3(3x + 4)

b 
− + −

−
=

+
−

x x x x
x

x x
x

4 (2 3 ) 15 (2 3 )
(2 3 )

(8 3 )
(2 3 )

3 5 4 4

10

3

6

 9 Prove that ∀ x ∈ , x ≠ 0, 
x
x

 can take 2 values and find for what values of x they occur.
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2.05 Proofs involving inequalities
There are many famous results in mathematics that use inequalities. An inequality begins 
with a very simple yet powerful definition.

Inequality definition
For any two real numbers a and b, a > b if a - b > 0.

We can use this definition to prove an inequality, a > b, by considering the difference, a - b, 
and showing it is positive for all cases.

EXAMPLE 15

For n ∈ , prove >
+n n

1 1
1
.

Solution

Proof

Consider the difference, −
+n n

1 1
1

−
+

=
+ −

+

=
+

n n
n n
n n

n n

Then
1 1

1
( 1)

( 1)
1

( 1)

Now since n > 0 and n + 1 > 0 then the product n(n + 1) > 0.

Therefore 
+

>
n n

1
( 1)

0. 

Since the difference is positive then >
+n n

1 1
1
 ∀ n ∈ .

QED.
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EXAMPLE 16

a Prove that 
+p q
2

2 2

 ≥ pq ∀ p, q ∈ .

b Hence prove x2 + y2 + z2 ≥ xy + yz + zx ∀ x, y, z ∈ .

Solution

a Proof

 Consider the difference,

 

+
− =

+ −

=
− +

=
−

p q
pq

p q pq

p pq q

p q

2
2

2
2
2

( )
2

2 2 2 2

2 2

2

 Now since (p - q)2 ≥ 0 ∀ p, q ∈ , [equality when p = q] then 
−p q( )
2

2

 ≥ 0.

 Therefore 
+p q
2

2 2

 ≥ pq ∀ p, q ∈ .

b We have just proved the result 
+p q
2

2 2

 ≥ pq, where the p and q represent any real 

 variables. Rearranging, we can also write p2 + q2 ≥ 2pq.

 This means that, using the result from part a, we can write:

 x2 + y2 ≥ 2xy

 y2 + z2 ≥ 2yz

 z2 + x2 ≥ 2zx

 Then adding all 3 LHS and adding all 3 RHS we have:

 2x2 + 2y2 + 2z2 ≥ 2(xy + yz + zx)

 Now dividing both sides by 2 we have

 x2 + y2 + z2 ≥ xy + yz + zx ∀ x, y, z ∈ . QED.
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EXAMPLE 17

a Prove +
x
y

y
x

 ≥ 2 ∀ x, y ∈ , x, y > 0.

b Hence prove + ≥
+x y x y

1 1 4
 ∀ x, y ∈ , x, y > 0.

Solution

a Proof

 Consider the difference

 
+ − =

+ −

=
−

x
y

y
x

x y xy
xy

x y
xy

2
2

( )

2 2

2

 Now, since (x - y)2 ≥ 0 [equality when x = y] and xy > 0, ∀ x, y ∈ , x, y > 0, 

 then 
−x y
xy

( )2

 ≥ 0.

 Therefore +
x
y

y
x

 ≥ 2 ∀ x, y ∈ , x, y > 0.

b Proof

 Consider the product

 

+ +








 = + + +

= + +

x y
x y

x
y

y
x

x
y

y
x

( ) 1 1 1 1

2

  ≥ 2 + 2 since +
x
y

y
x

 ≥ 2 from a

  ≥ 4

 Now, since x + y > 0 ∀ x, y ∈ , x, y > 0, then dividing by )( +x y  we have 

+ ≥
+x y x y

1 1 4
.  QED
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Recall the definition of absolute value.

Definition of absolute value

=
≥

− <




x
x x

x x
, for 0

, for 0

We can deduce the following results by considering positive and negative cases of a and b:

Properties of absolute value
 a  ≥ a, ∀ a ∈ 

 a   b  =  ab  , ∀ a, b ∈ 

 a  2 = a2, ∀ a ∈ 

 ab  ≥ ab, ∀ a, b ∈ 

a2 ≥ b2 ⇔  a  ≥	  b  , ∀ a, b ∈ 

This leads us to the important triangle inequality.

The triangle inequality
 x  +  y  ≥   x + y  , ∀ x, y ∈ 

Proof

Consider the expression

  x  +   y  2 =  x  2 + 2  x    y  +  y  2

 ≥  x  2 + 2xy +  y  2

 ≥ x2 + 2xy + y2

 ≥ (x + y)2

 ≥   x + y  2

Then, since both sides are positive, it follows that

 x  +  y  ≥   x + y  , ∀ x, y ∈  QED

The triangle inequality can also be written in the form

 x  -  y  ≤   x - y  , ∀ x, y ∈ 

Chapter 1, Complex numbers, and Chapter 3, 3D vectors, show how the triangle inequality 
describes the 2 diagonals of the parallelogram rule, or that the sum of the lengths of 2 sides 
of a triangle is always greater than the length of the 3rd side.



ISBN 97807043435MATHS IN FOCUS 12. Mathematcs Extenson 272

Exercise 2.05 Proofs involving inequalities

 1 By considering the difference, prove that a2 + b2 ≥ 2ab, ∀ a, b ∈ .

 2 By choosing a suitable substitution for p and q in the result p2 + q2 ≥ 2pq, prove each 
statement below.

a x4 + y4 ≥ 2x2y2, ∀ x, y ∈ 

b x2y2 + w2v2 ≥ 2xywv, ∀ x, y, w, v ∈ 

c + ≥
x y xy
1 1 2
2 2 , ∀ x, y ∈ , x, y ≠ 0

d + ≥
x y x y
1 1 2
4 4 2 2 , ∀ x, y ∈ , x, y ≠ 0

 3 The AM-GM inequality, where AM = arithmetic mean, GM = geometric mean, states 

that 
+

≥
x y

xy
2

, ∀ x, y ∈ , such that x, y > 0. Prove this result.

 4 Prove each property.

a If a > b and b > c then a > c

b If a > b and c > 0 then ac > bc

c If a > b and c < 0 then ac < bc

d If a > b and b > 0 then ab > b2

e If a > b > 0 and c > d > 0 then ac > bd

f If a > b and b > c then ac + bd > ad + bc

g If a > b and b > 0 then <
a b
1 1

 5 By considering the difference, prove each statement is true ∀ n ∈ .

a If =T
n
1

n , then Tn > Tn + 1 b If =
+

T
n

n 1n , then Tn < Tn + 1

c If =
−
+

T
n
n

1
1n

2

2 , then Tn < Tn + 1

 6 Prove each result, assuming that a2 + b2 ≥ 2ab.

a (a + b)2 ≥ 4ab, ∀ a, b ∈ 

b ab + cd ≥ abcd2 , ∀ a, b, c, d ∈ 

c ( )+ +






 ≥a b

a b
1 1 4, ∀ a, b ∈ , a, b > 0

d 
+

≥
ab cd

abcd
2

4 , ∀ a, b, c, d ∈ , a, b, c, d > 0

 7 Prove that, ∀ a, b ∈ , a, b > 0:

a + ≥a
a
1

2 b + ≥
a
b

b
a

2 c + ≥
+a b a b

1 1 4
2 2 2 2

d 
+ + +

>
a b c d

abcd
4

4 , ∀ a, b, c, d ∈ , a, b, c, d > 0
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 8 Prove each inequality.

a + ≥ +x x x x1 , ∀ x ∈ , x ≥ 0

b i For 1 ≤ p ≤ q, where p, q ∈ , that p(q - p + 1) ≥ q

 ii Hence for 1 ≤ r ≤ s where r, s ∈ , that )(≤ − + ≤
+

s r s r
s

1
1

2
.

 9 Prove that (kn - mp)2 ≥ (k2 - m2)(n2 - p2), ∀ k, m, n, p ∈ .

  Hence prove that (k3 - m3)2 ≥ (k2 - m2)(k4 - m4).

10 Use similar techniques to those shown in Examples 16 and 17 to prove that:

a i x4 + y4 + w4+ z4 ≥ 4xywz for real x, y, z, w, and hence:

 ii if x4 + y4 + w4+ z4 < 4 and x, y, z, w > 0 then + + + >
x y w z
1 1 1 1

44 4 4 4

 iii (x + y + z + w)4 ≥ 256xywz

b Assume a, b, c ∈  such that a, b, c > 0. 

 Prove that:

(a + b)(b + c)(c + a) = c(a - b)2 + b(c - a)2 + a(b - c)2 + 8abc

 Hence prove that:

(a + b)(b + c)(c + a) > 8abc.

c Prove for a, b, c ∈  such that a, b, c > 0:

a b c
a b c
1 1 1 9( )+ + + +







 ≥

d Prove for a, b, c ∈  such that a, b, c > 0:

 i a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

 ii (a - b)2 + (c - a)2 + (b - c)2 = 2(a2 + b2 + c2 - ab - bc - ca)

 Hence prove that:

 iii a3 + b3 + c3 ≥ 3abc v  
+ +

≥
a b c

abc
3

3  v + + ≥
a
b

b
c

c
a

3

e Prove for a, b, c ∈  such that a, b, c > 0:

(a + b + c)3 ≥ 27abc.

f Prove for a, b, c, d ∈  such that a, b, c, d > 0:

+ + + ≥
a
b

b
c

c
d

d
a

4 .

 When does equality hold?

11 Use the fact that  x   +  y   ≥  x + y  , ∀ x, y ∈ , to prove that:

a  z + w   +   z - w   ≥		  2z  , ∀ z, w ∈ 

b  x + z   +   y - z   ≥	   x + y  , ∀ x, y, z ∈ 

c  x - z   ≥   x - y   -		  z - y  , ∀ x, y, z ∈ 
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2. TEST YOURSELF

 1 Write each if-then statement in the form P ⇒ Q and state P and Q.

a If I get a lot of sleep, then I am healthy.

b If a polygon has 5 sides, then it is a pentagon.

c If the teacher is nice, then I will learn.

 2 Write the converse of each statement,

a A ⇒ B b ¬P ⇒ Q c N ⇒ ¬M d ¬B ⇒ ¬F

e If I can save money, then I can buy a car.

f If my computer is broken, then I am bored.

g If a = b then a3 = b3.

 3 Define ‘iff’. Give an example.

 4 For each statement, find the converse and determine if the statement is an equivalence. 
If it is an equivalence, then write an iff statement.

a If a quadrilateral has equal diagonals, then it is a square.

b If x > 1, then <
x
1

1.

c If I pass my exams, then I study hard.

d If a = 3, then a2 = 9.

e If a triangle has 2 equal angles, then it is isosceles.

 5 Write the negation of each statement.

a It is raining. b The apple is not ripe.

c Koalas are cute. d Some people are sexist.

e They are all correct. f x ≤ 4

g p ∈ 

 6 Joe was asked what was the negation of the statement ‘There were more than 10’.  
He said, ‘There were less than 10.’ Is he correct?

 7 Write the contrapositive of each statement.

a A ⇒ B b ¬P ⇒ Q c N ⇒ ¬M d ¬B ⇒ ¬F

e If the boy has red hair, then he has blue eyes.

f If the country is rich, then the citizens have money.

g If a quadrilateral is a kite, then the adjacent sides are equal in length.

h If x = y, then x2 = y2

i If a ∈ , then a ∈ 
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 8 Explain why a statement and its contrapositive are equivalences. Give an example.

 9 Determine whether each statement is true by considering its contrapositive.

a If a2 ≠ b2 then a ≠ b.

b If the car’s battery is flat, then the car does not start.

c If a number is an integer, then it is rational.

d If a quadrilateral has diagonals that bisect each other at right angles, then it is a 
rhombus.

e If a > b, then ab > b2.

f If an animal lives in the water, then it is a fish.

10 Write each sentence in mathematical notation.

a For all positive real numbers x and y, if x is greater than y, then the square of x is 
greater than the square of y.

b There exists a rational number c between integers a and b where a < b, such that c is 
the average of a and b.

c Let n be a positive integer such that for all n, 1 + 2 + 3 + … + n = 
+n n( 1)

2
.

11 Write each mathematical statements in words.

a ∀ n, m ∈ , n, m > 0, if n < m, then >
n m
1 1

b ∀ a, b ∈ , a2 + b2 ≥ 2ab

c ∀ p, q ∈ , p < q, ∃ r ∈ : p < r < q

12 Prove by contradiction that:

a 11 is irrational

b log3 4 is irrational

c +2 5 is irrational

d The diagonals of a square are perpendicular.

e A triangle with sides (t2 - 1), 2t, (t2 + 1) where t > 0 forms a right-angled triangle.

13 Find a counterexample to prove that each statement is false.

a ∀ x, y ∈ , x, y ≠ 0, if x2 = y2 then x = y

b ∀ n ∈ , >n
n
1

.

c If an animal sheds its skin, then it is a snake.

d If a2 + b2 = c2 then a, b, c are the lengths of the sides of a right-angled triangle.

e ∀ k ∈ , k(k - 1) + 17 is prime.

f ∀ c ∈ , (c ≤ 1) ⇒ (c2 ≤ 1)
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14 It is asserted that if a ≥ b and c ≥ d, then ac ≥ bd, ∀ a, b, c, d ∈ . Either prove that it is 
true or find a counterexample to prove it false.

15 If x > y ∀ x, y ∈ , x, y ≠ 0, then <
x y
1 1
2 2 . Prove this result or find a counterexample to 

disprove it.

16 Prove each property.

a If m ∈ , then m(m + 1) is always even.

b If n ∈ , then n(n + 1)(n + 2) is always divisible by 6.

c If n ∈  and n is odd, then n(n + 2) + (n + 2)(n + 4) is always even.

17 Factorise k6 - m6 in two ways. Hence prove k4 + k2m2 + m4 = (k2 + km + m2)(k2 - km + m2).

  Note: a2 - b2 = (a + b)(a - b), a3 - b3 = (a - b)(a2 + ab + b2) 

18 Prove each statement.

a If =
−

S
4 1

3n

n

 and n ∈ , n ≥ 1, then Sn - Sn – 1 = 4n – 1

b If Sn = 2n + 1 - n - 2 and n ∈ , n ≥ 1, then Sn + 1 - Sn = 2n + 1 - 1

c ∀ k ∈ , 
+

+
+ +

=
+
+

k
k k k

k
k3 1

1
(3 1)(3 4)

1
3 4

d If f (x) = x2 sin x, then f (-x) = -f (x)

19 Prove each property. 

a If a > b and a, b ≠ 0 then ab2 > b3

b If a - b > b - c then <
+

b
a c

2
c  x   ≥ x for x ∈ 

20 Prove each inequality by considering the difference.

a If a, b ∈ , then 
+

≥
a b

ab
2

2 2

b If k ∈  and Tk = 
+

k
k2 1

, then Tk < Tk + 1

21 Prove each inequality for a, b, c, d ∈  such that a, b, c, d > 0.

a 
+

≥
+a b a b

2 2

2 2

b 
+ + +

≥
a b c d

abcd
4

2 2 2 2
4

c If a + b = 1 then:

i + ≥
a b
1 1

4

ii + ≥
a b
1 1

82 2  [Hint: consider the product ( )+ +








x y

x y
1 1 ]
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22 Prove 
a b c a b c

9 1 1 1
+ +

≤ + +






  for a, b, c ∈  such that a, b, c > 0.

23 Prove for a, b, c ∈  such that a, b, c > 0 and a + b + c = 1:

a 
a b c
1 1 1 9+ +







 ≥  b 

a b c
1 1 1 272 2 2+ +







 ≥

24 Prove each inequality.

a  x   -	  y   ≤   x - y  , ∀ x, y ∈ 

b  x   +	  y   +   z   ≥   x + y + z  , ∀ x, y, z ∈ 

c  x - y    -   z - y   ≤   x - z  , ∀ x, y, z ∈ 



SFEVECTORS

3.
3D VECTORS
Aircraft vectoring is a service provided to individual aircraft by air traffic control. The controller 
determines the best pattern for the aircraft to fly on take-off, during a flight and at landing.

The aircraft follows specific headings (directions) at particular times and for set durations.  
Aircraft are vectored to apply adequate separation, improve traffic flow, to comply with noise 
regulations, to avoid hazardous weather, and to assist in arrival and departure schedules.

CHAPTER OUTLINE

3.01 Review of 2D vectors
3.02 3D vectors
3.03 Angle between vectors
3.04 Geometry proofs using vectors
3.05 3D space
3.06 Vector equation of a curve
3.07 Vector equation of a straight line
3.08 Parallel and perpendicular lines
Test yourself 3



IN THIS CHAPTER YOU WILL:

•	 extend our knowledge and skills with vectors in 2 dimensions to vectors in 3 dimensions
•	 add and subtract 3D vectors, and multiply by a vector by a scalar
•	 calculate the magnitude of a 3D vector
•	 determine the scalar (dot) product of 2 vectors
•	 determine the angle between 2 vectors
•	 use vectors to prove geometrical relationships
•	 determine lines and curves in 3 dimensions, including spheres, using parametric equations
•	 determine parallel and perpendicular vectors
•	 determine whether a given point lies on a vector
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TERMINOLOGY
Cartesian equation: An equation for a line or 

plane in terms of x, y and z.
component form: Representation of a vector  

a
b







 in the form ai + b j  where i  is a unit vector 

in the x direction and j  is a unit vector in the 
y direction.

parallel vectors: Vectors that have the same or 
opposite direction.

parametric equations: A set of equations that 
express a set of quantities as explicit functions 
of a number of independent variables, known as 
parameters.

perpendicular vectors: Lines that have a right 
angle between their directions.

scalar: A quantity that has magnitude but no 
direction.

scalar (or dot) product: The product of 2 vectors 
as a scalar or value (not a vector).

unit vector: A vector with magnitude 1.  
The standard unit vectors are i in the x 
direction and j  in the y direction.

vector: A quantity with both magnitude and 
direction. A vector can be represented as a, a  

or AB
→

.

3.01 Review of 2D vectors
A vector is a quantity with both magnitude and direction.

All geometric situations can be transformed into algebraic language using vectors. Instead 
of combining points and lines using geometry, we perform algebraic operations on vectors. 
Vectors obey algebraic laws similar to those we use for numbers. For example, if a and b are 
vectors, then a + b = b + a.

When v is represented by interval AB, we write 
→

=v AB. Thus, AB
→

 denotes the vector 
determined by the directed line segment AB.

A 

B

We often choose a fixed origin O and then represent each vector u as OP
→

. This is a directed 
line segment from O to P, called a position vector.

There are many examples where vectors are used in mathematics, for example displacement, 
velocity, acceleration, force and momentum. For example, force has both magnitude and 
direction and so can be represented by a directed line segment.

The magnitude or length of a vector v is v . If v  = 1 then 
∧
v is called a unit vector.

The zero vector 0 is a directed line segment from a point to itself. That is, 
→
PP  = 0. 

This vector has magnitude 0 and can have any direction.

Numbers or quantities having magnitude but not direction are referred to as scalars.
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Vector addition

Given 2 vectors u = AB
→

 and v = BC
→

, then u + v is the resultant vector given by w = AC
→

.

u

A

~

w = u + v~ ~ ~

v~

B

C

We can write 
→ → →

+ =AB BC AC .

The parallelogram law gives the rule for the vector addition of u and v. The sum of the 
vectors u and v is the longer diagonal of the parallelogram.

~u

~u

~v

~u + v~

~v

The laws of vector addition
u + v = v + u Commutative law

(u + v) + w = u + (v + w) Associative law

u + 0 = u  Additive identity

u v u v+ ≤ +   Triangle inequality

Vector subtraction

Given 2 vectors u = AB
→

 and −v = BC
→

, then u + (−v) is given by w = AC
→

.

u

w = u − v

− v

A

C

B

We can write 
→ → →

+ =AB BC AC, so we get u − v = w.
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~v

~v

u
u

u − v

The parallelogram law gives the rule for the vector subtraction of u and v.

The difference between the vectors v and u is the shorter diagonal of the parallelogram, 
pointing from the second vector to the first.

Scalar multiplication of vectors
If a is real number, or scalar, and v is a vector, then av is a vector whose magnitude is a v , 
having the same or opposite direction to v according to whether a > 0 or a < 0.

Graphically we can show scalar multiplication of vectors as below:

~−v

~−2v

~−3v ~3v
~2v

~v

Components of vectors

A vector can be written as a column vector. For example, 
3
2







 is the vector 3 across and 2 up 

or 3i  + 2 j, where i  and j are the unit vectors in the x and y directions respectively. We say 
that 3i  and 2 j are the components of the vector. Vectors in column and component form 
can easily be added, subtracted and multiplied.

For example, (3i  + 2 j) + (5i  − 3 j) = 8i  − 1 j. Similarly, 
3
2







 + 
5
3−






 = 

8
1−







.

Magnitude of a position vector

Magnitude of the vector u = 










x
y  is:

u  =	 x y2 2+

y

y

y
xy

xx
x

O

A 





√x2 + y2
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Direction of a position vector

The direction of vector 










x
y  is θ,	the angle of

inclination of the vector with the positive x-axis,  
measured anticlockwise.

tan θ	=	
y
x

0°	≤	θ	<	360°

Scalar (dot) product of vectors
Two vectors can be combined as a scalar product. When we calculate the scalar product of  
2 vectors the result is a scalar rather than a vector. The scalar product applies the directional 
growth of one vector to another.

Scalar product
The scalar product of u and v is:

u v = x1x2 + y1  y2

or 

u ⋅ v = u v  cos θ

where θ is the angle between u and v.

As the symbol for the scalar product is the dot (⋅), we sometimes call it the dot product.

Proof of the cosine form

In component form,

u v x x y y1 2 1 2⋅ = +

Using the cosine rule,

u v u v u v2 cos2 2 2− = + − θ

Now substituting u x i y j1 1= +  and v x i y j2 2= + :

− + − = + + + − θx x y y x y x y u v( ) ( ) 2 cos1 2
2

1 2
2 2 2

2
2

2
2

x x y y u v2 2 2 cos1 2 1 2− − = − θ

x x y y u v cos1 2 1 2+ = θ

Hence, u v u v cos⋅ = θ.

x

y

y
x





y

θ
x

~u

~v
θ

~u

~v

θ
~~u − v
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Parallel and perpendicular vectors
Two vectors u and v are parallel vectors if and only if they are scalar multiples of one 
another; that is, u = kv, k is a constant not equal to zero. 

θ = 0° or 180° so u ⋅ v = u v   for vectors in like directions and u ⋅ v = − u v  for vectors in 
unlike directions.

~u
~v

In component form, x i y j k x i y j ( )2 2 1 1+ = + .

Two vectors u and v are perpendicular vectors if and only if their scalar  
product is equal to 0. 

θ = 90° or 270° so u ⋅ v =	 u v  cos θ = 0.

Exercise 3.01 Review of 2D vectors

 1 How many different vectors are there below?

 2 Copy and complete each statement.

a Geometrically, the sum of 2 vectors is the longer diagonal …

b Geometrically, the difference of 2 vectors is …

c Two vectors are parallel if and only if …

d Two vectors are perpendicular if and only if …

 3 Determine the magnitude and direction of each vector in exact form.

a j2  b 5i  c 10i  − 5 j

d −4i  + 4 j e 2i+2 j3

 4 Express the vector in terms of components if the magnitude and direction are, respectively:

a 6 units, 45° b 8 units, 30° c 2 units, 135°

d 10 units, −60°   e 6 units, −150°

 5 Write each vector in Question 4 in column vector form.

 6 Find the scalar (dot) product of each pair of vectors.

a 










3
0  and 











5
0  b 











2
0  and 











0
7  c i j i j2 and 2+ +

d i j i j2 and 2− +  e i j i j6 2 and 3 4+ −

~u

~v
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 7 Find the scalar product of each pair of vectors, and hence find the angle between the 
vectors to the nearest degree.

a 3
4







 and 4

3−






 b 2i  + 8 j and i  + 4 j

c −i  + j and 3i  − 3 j d 5
4

−
−







 and 4

0







e −2i  + 3 j and i  − 2 j

 8 Which pair of vectors are perpendicular?

a u = 5i  + 2 j, v = j, w = −2i  b u = 5
2







 , v = 2

1
−





 , w = 2

5
−






 9 Which pair of vectors are parallel?

a u = 5
3







 , v = 4

6
−





, w = 2

3−






 b u = 3i  + j, v = −2i  + 6 j, w = 6i  + 2 j

10 Consider the points P(0, 2), Q(2, 6) and R(4, 10). Express PQ
→

 and PR
→

 as component 
vectors. Hence, show that P, Q and R are collinear.

Vector images
A photograph taken with a digital camera is made up of many pixels, and each pixel may 
be a different colour. These images are called raster images. Enlarging raster images is a 
problem because they become pixellated when you zoom in. Raster images also require 
large files because data for each point must be saved.

A vector image is made up of points, lines and curves that are defined by mathematical 
equations. Vector images have the advantage of not pixellating with enlargement.  
They also require less storage space. Vector images have the same small file size no 
matter how much enlargement or reduction is used.

 

DID YOU KNOW?
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3.02 3D vectors
As in the 2D plane, vectors are used to represent displacement, velocity and acceleration in 3D 
space. In 3 dimensions, the unit vectors are i , j and k in the directions of the x-, y- and z-axes 
respectively. In a 3D coordinate system, the x-y Cartesian plane ‘sits on ground level’ while the 
z-axis points upwards. Hence, the position vector of a typical point P(x, y, z) from the origin is 

r OP xi yj zk
→

= = + + .

~
P(x, y, z)

r

O

zk

~xi

yj

Using Pythagoras’ theorem in 3D we can obtain:

r OP x y z2 2 2 2=
→

= + +

So, the unit vector is given by:

r
r
r x y z

xi yj zk1  ( )
2 2 2

= =
+ +

+ +

Magnitude and unit vectors
The vector r xi yj zk= + +  has magnitude:

r x y z2 2 2= + +

The unit vector is:

r
xi yj zk

x y z
 

2 2 2
=

+ +

+ +

EXAMPLE 1

Find the position vector of P(−1, 2, 3) in component form.

Solution

Components in the x, y and z directions are −1, 2 and 3 respectively.

Hence, OP i j k– 2 3
→

= + +

Reulan and 
unit vectors in 

3D space

Homewok

WS
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Addition, subtraction and scalar multiplication for vectors
Let u x i y j z k1 1= + +  and v x i y j z k2 2 2= + +

Adding, we get:

u v x i y j z k x i y j z k

x x i y y j z z k

  ( ) ( )

( ) ( ) ( )
1 1 1 2 2 2

1 2 1 2 1 2

+ = + + + + +

= + + + + +

Subtracting, we get:
u v x i y j z k x i y j z k

x x i y y j z z k

  ( ) ( )

( ) ( ) ( )
1 1 1 2 2 2

1 2 1 2 1 2

− = + + − + +

= − + − + −

If we multiply by a scalar quantity c we get:
cu c x i y j z k

cx i cy j cz k

( )

( ) ( ) ( )
1 1

1 1

= + +

= + +

EXAMPLE 2

If u i j k2 2= − + , find:

a u

b u

c a vector in the same direction as u that is 4 units in length

Solution

a u 2 ( 2) 1 32 2 2= + − + =

b u i j k
1
3

(2 2 )= − +

c u i j k4
4
3

(2 2 )= − +

The vector between 2 points
In expressing a vector in 3D from a point A(x1, y1, z1) to B(x2, y2, z2) we obtain the vector AB

→
.

AB OA OB

AB OB OA

AB x x i y y j z z k( ) ( ) ( )2 1 2 1 2 1

→ → →

→ → →

→

= − +

= −

= − + − + −
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EXAMPLE 3

Find a unit vector u in the direction of the vector joining A(0, 5, 2) to B(1, 3, 0).

Solution

u i j k

u

u i j k

(1 0) (3 5) (0 2)

(1 0) (3 5) (0 2)

3
1
3

( 2 2 )

2 2 2

= − + − + −

= − + − + −

=

= − −

Exercise 3.02 3D vectors

 1 Find the magnitude of each 3D vector.

a 4i  + 3 j − k b 8i  − 6 j+ 5k

c −4i  + 5 j − k2 2  d −2i  + j2 3  + 3k

 2 Find the unit vector for each vector in component form.

a i  + j + k b 2i  − j + 2k

c 3i  + 4 j − 12k d i  + 3 j + 2k

 3 Write the vector AB
→

 joining each pair of points and determine its magnitude.

a A(0, 4, 0) and B(3, 0, 0) b A(1, 1, 1) and B(−1, 1, 1)

c A(2, 2, 3) and B(1, 1, 2) d A(−2, −2, −3) and B(3, 4, 5)

 4 a The position vectors of points A and B are i  − j − 2k and 2i  + j − 2k respectively. 

Find the magnitude of AB
→

.

b The position vectors of points C and D are 2i  − j − k and 2i  − j − k respectively. 

Find the magnitude of CD
→

.

c The position vectors of points X and Y are i  − 2 j − 2k and i  + 2 j − k respectively. 

Find the magnitude of XY
→

.

 5 Find a vector that has, respectively, magnitude and the same direction as the vector:

a 2 units, i  b 21 units, i j k
3
7

2
7

6
7

− +

c 5 units, i j
3
5

4
5

−  d 12 units, i  − j + k



ISBN 97807043435 3. 3D vectors 89

 6 If u = i− 2 j + k and v = i  − j + 3k, find:

a 2u − v b u + 2v c u + v   d u − v

 7 Find the length of each vector from point A to point B.

a A(2, 1, 2), B(0, 4, 4) b A(−1, 1, 2), B(2, 5, 0)

c A(1, −2, 1), B(−1, 2, −1) d A(3, 1, 4), B(−2, −2, 2)

 8 Two vectors u and v are given by u = 2i  + 2 j + k and v = 3i  − 4k. Find:

a u  b v  c u

d v e u + v f u − v

 9 a Find a vector of 7 units in the direction of 3i  − 2 j + k.

b Find a vector of magnitude 3 in the direction of 4i  − 4 j + 4k.

c Find a vector of 6 units in the direction of 2i  − 2 j + k.

10 What is the angle between the vectors −i  + 2 j + 2k and i  − 2 j − 2k?  
What is the significance of this result?

3.03 Angle between vectors
The scalar product of u and v is:

u v u v cos⋅ = θ

where θ is the angle between u and v.

EXAMPLE 4

u has modulus 4 units, v has modulus 5 units, and the angle  
between them is 60°.

Find the scalar product of u and v.

Solution

u v u v cos⋅ = θ

= 4 × 5 × cos 60°

= 10

Scala 
products

Homewok

WS

~u

~v

θ

~u

~v

60°
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EXAMPLE 5

Find the scalar product of the vectors u and v.

Solution

u v u v

u v

cos

cos 90

⋅ = θ

= °

= 0

Note that the scalar product is 0 and the vectors are perpendicular.

Properties of the scalar product
The scalar product is commutative:

u v v u⋅ =

The scalar product is distributive over addition:

u v w u v u w( )⋅ + = ⋅ + ⋅

We now consider how to find the scalar product of 2 vectors given in Cartesian form.

Given u a i a j a k     1 2 3= + +  and v b i b j b k     1 2 3= + + , the scalar (dot) product is:

u v a i a j a k b i b j b k (     ) (     )1 2 3 1 2 3⋅ = + + ⋅ + +

= a1b1 + a2b2 + a3b3

EXAMPLE 6

Given 2 vectors u i j k 2  3  7= − +  and v i j k 4  5  3= − − , find their scalar product.

Solution

u v = (2 × 4) + [−3 × (−5)] + [7 × (−3)]

= 8 + 15 − 21

= 2

~v

~u

90°
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The angle, θ, between the 2 vectors u and v can be found using the scalar product 
u v u v cos⋅ = θ.

On rearranging we get:

u v
u v

cos θ =

Angle between 2 vectors
The angle, θ, between the 2 vectors u and v can be found using:

u v
u v

cos θ =

EXAMPLE 7

Find the angle between the vectors u i j k  5  3 10= − + −  and v i k  8  3= + , correct to the 
nearest degree.

Solution

u v

u

v

5 8 3 0 10 3 70

5 3 10 134

8 3 73

2 2 2

2 2

( ) ( )
( ) ( )

⋅ = − × + × + − × = −

= − + + − =

= + =

u v
u v

cos θ =

= 
−

×
70

134 73
= −0.707 757 …

θ ≈ 135°

EXAMPLE 8

Find the angle between the vectors = + +u i j k3  2  and v i j k2= + − , correct to the  
nearest minute.

Solution

u v = 3 × 1 + 2 × 2 + 1 × (−1) = 6

u 3 2 1 142 2 2= + + =

v 1 2 –1 62 2 2( )= + + =

cos 6
14 6

θ =

≈ 0.654 65…

θ ≈ 49°6′
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Exercise 3.03 Angle between vectors

 1 Calculate the scalar product of each pair of vectors.

a 
2
5
1−
















 and 

4
1
1
















  b 2i  and 6 j c 4k and 2i  + k

d 
2
0
4
















 and 

3
1
3

−














 e 2i  + 3k and 6i+ 2 j − 4k

 2 Which 2 pairs of vectors are perpendicular?

A 5i  + 2 j + 3k  B j − k

C −2i  + 2 j + 2k D −i  + 2k

 3 Find the angle between each pair of vectors, correct to the nearest degree.

a 
1
2
3
















 and 

4
1

0
−
















  b 2i  + j − 2k and i  + 5 j − k

c 
0
5
1

















 and 
1
5
1−
















  d 2i  + j − 2k and 4 j

 4 Find the cosine of the angle between the vectors 2i  + j − 2k and 3 j + 4k.

 5 Given u = 2i  + 2 j + 2k, v = 3i  + 2 j − k and w = −i  + 4 j + k:

a Show that u v u w⋅ = .

b Rearrange u v u w⋅ =  so that the expression equals zero.  
Which 2 vectors are perpendicular?

 6 Explain how you know that 2i  − 3 j + 4k and 6i  + 8 j + 3k are perpendicular vectors.

 7 Find a vector that is perpendicular to both 2i  + j − k and i  − 2 j + k.

 8 ABCD is a rectangle, with vector AB
→

 = 3i  and AD
→

 = 2 j.

a Express the diagonals of the rectangle as vectors in component form.

b Determine, correct to the nearest minute, the obtuse angle between the diagonals.

 9 A parallelogram has all sides equal in length. Show, using vectors, that its diagonals are 
perpendicular.
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3.04 Geometry proofs using vectors
Many geometric theorems can be formulated as relations between points directly, without 
needing coordinates. In many cases the vector approach is simpler and more direct.

In using vectors to solve geometrical problems, we call on the actual properties of the 2D and 
3D shapes to allow us to prove results as required. In particular, we use vector results that 
relate to parallel lines, perpendicular lines and equal intervals.

Vector properties used in geometry proofs
Scalar (dot) product: u v u v cos⋅ = θ, when the angle between 2 vectors is required

Parallel vectors:  A vector parallel to xi  + y j + zk is cxi  + cy j + czk where c is a scalar:  
write and solve u v u v⋅ = .

Perpendicular vectors:  A vector perpendicular to x1i  + y1 j + z1k is −y1i  + x1 j + z1k:  
write and solve u v = 0.

Midpoint of vectors:
u
2

, for a single vector

u v
2
+

, for the sum of 2 vectors

u v
2
−

, for the vector from u to the midpoint between u and v.

EXAMPLE 9

Show that the vectors u = 2i  + 3 j − 2k and v = 4i  + 6 j − 4k are parallel.

Solution

Method 1

v = 4i  + 6 j − 4k

= 2(2i  + 3 j − 2k)

= 2u

Hence, the first vector is a multiple of the 
second vector and so they are parallel.

Method 2

Using the scalar product,

u v u v cos⋅ = θ

8 + 18 + 8 = 17  68  cos θ

34 = 34 cos θ

cos  34
34

θ =  = 1

θ = 0°

Hence, the vectors are parallel.

Geomeic 
proofs using 

vectors

Homewok

WS
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EXAMPLE 10

Show that the opposite sides of a parallelogram are equal.

Solution

For the parallelogram shown:

the side AB is represented by the vector b − a

the side DC is represented by the vector c  − d

the side DA is represented by the vector a − d

the side CB is represented by the vector b − c

Opposite angles are equal and opposite sides are equal, so scalar products are equal:

(b − a) ⋅ (b − c) = (d − a) ⋅ (d − c)

b ⋅	b − b ⋅ c  − a ⋅ b + a c = d ⋅	d − d ⋅ c  − a ⋅ d + a c        

a ⋅ d + d ⋅ c  − b ⋅ c  − a ⋅ b = d ⋅	d − b ⋅	b               subtract a c from each side

a ⋅ −d b( ) + c  ⋅ −d b( ) = −d b( ) ⋅ (d + b)                        take out common factor (d − b)

a + c  = d + b

c  − b = d − a

That is, one pair of opposite sides is equal.

Similarly, the other pair of opposite sides is equal.

EXAMPLE 11

Prove that the midpoint of the 2 position vectors OA
→

 = a and OB
→

 = b is 
1
2

 (a + b).

Solution

Let M be the midpoint of A and B.
→

OM  = OA
→

 + 
→
AB

1
2

= a + 
1
2

 (b − a)

= 
1
2

 a + 
1
2

 b

= 
1
2

 (a + b)

A B

CD

A

a

b

B

O

M

~
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EXAMPLE 12

Prove the cosine rule using vectors.

Solution

Since a = b + c  then c  = −b + a

Hence

c  ⋅ c  = (−b + a) ⋅ (−b + a)

c 2 = b ⋅ b − a ⋅ b − b ⋅ a + a ⋅ a

c 2 = b 2 + a 2 − 2a ⋅ b

Using the scalar product,

c 2 = a 2 + b 2 − 2 a b  cos θ

Hence

c2 = a2 + b2 − 2ab cos θ

EXAMPLE 13

One pair of opposite sides of a quadrilateral is parallel and equal in length.  
Show that the quadrilateral is a parallelogram.

Solution

AD
→

 is the vector from A to D and is expressed as d − a.

Let the sides AD and BC be parallel and equal, so vectors  
d − a and c  − b are in the same direction and equal in  
length.

We need to show that the other 2 sides b − a and c  − d are parallel also for ABCD to  
be a parallelogram.

Since d − a = c  − b, adding b to both sides gives

  d − a + b = c    and subtracting d from both sides gives

 −a + b = c  − d

That is, b − a = c  − d.

So vectors AB
→

 and DC
→

 are equal in size and direction.

Therefore they are parallel and ABCD is a parallelogram.

B

A

C
θ

b

a~

c

A B

CD
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Exercise 3.04 Geometry proofs using vectors

 1 The vector u is drawn. Sketch the vectors represented by  
2u, 0.5u and −3u.

 2 ABC is a triangle in which M is the midpoint of BC. Prove that AM AB AC
1
2

→ → →
= +






.

 3 Use vectors and the scalar product to prove that if the diagonals of a rectangle are 
perpendicular then the rectangle is a square.

 4 ABC is a triangle in which BC a
→

= , CA b
→

=  and AB c
→

= . Prove that a b c 0+ + = .

 5 Draw the triangle OPQ , where O is the origin, OP
→

 = 4i  and OQ
→

 = 6 j.  

Point M, with position vector OM
→

 = xi  + y j, is at equal distances from O, P and Q.  
Find the values of x and y.

 6 Show that the lines connecting any point on  
the semicircle of radius 1 to (1, 0) and  
(−1, 0) are perpendicular. 

 7 The segment that joins the midpoints of 2 sides of a  
triangle is parallel to the third side and has a length  
equal to half the length of the third side.  
Show that DE is parallel to AB and its length is  
one-half the length of AB.

 8 Prove using vector methods that the midpoints of the sides of any quadrilateral form a 
parallelogram.

u

1−1

C

A B

D E
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 9 Points A and B have position vectors a, b  respectively 
with respect to an origin O. Draw the line AB, and take a  
point P on that line which divides it in the ratio 

m : n = AP : PB.
  What is the position vector of P with respect to O?

3.05 3D space
In 3D space, every point P(x, y, z), can be determined by the position vector OP

→
, which can be 

represented by the vector r  = xi  + y j + zk.

EXAMPLE 14

Find the unit vector parallel to 2i  + 3 j − k.

Solution

Magnitude = + + − =2 3 ( 1) 142 2 2

Therefore, the unit vector is + −
i j k2

14
3
14

 
14

  or 
1
14

 (2i  + 3 j − k).

The distance between two points A and B in 3D space is the length of the vector AB
→

,  

where AB
→

 = OB
→

 − OA
→

.

EXAMPLE 15

Find the distance between the points A(2, 3, −1) and B(3, −2, 1).

Solution

Distance = length of OB
→

 − OA
→

(3 2) ( 2 3) (1 ( 1))2 2 2= − + − − + − −

30=

A

B

P

O

a~

b~
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EXAMPLE 16

Find the angle between the vectors u and v if u = 
2
3
1−
















 and v = 

3
2

1
−

















, correct to  
one decimal place.

Solution

u ⋅ v = x1x2 + y y2 + z1z2 = u v  cos θ

( )= + + − = = + − + =u v2 3 ( 1) 14 , 3 2 1 142 2 2 2 2 2

2(3) + 3(−2) + (−1)1 = 14 14  cos θ

−1 = 14 cos θ

cos θ = 
1

14
−

θ ≈ 94.1°

Hence, the angle between the vectors is 94.1°.

Exercise 3.05 3D space

 1 Find the magnitude of each vector.

a 2i  − 2 j + k    b 3i  − 4 j + 12k c 2i  + 5 j + 14k

d 4i  + 7 j − 32k e −3i  − 2 j + 6k

 2 Find the unit vector for each vector in Question 1.

 3 Find the angle between each pair of vectors correct to 1 decimal place.

a 2i  + j + k and i  + j + 2k 

b i  + 2 j + 3k and −i  + j + 2k

c 2i  + 2 j + k and i  − 2 j − 2k

d 2i  + j + k and i  + j − 2k

e −3i  − 2 j + 6k and i  + j + 2k
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 4 Find the value of the pronumeral in each vector.

a 2i  − y j + 14k has a magnitude of 15 units

b 2i  + 9 j + zk has a magnitude of 43 units

c xi  −11 j − 110k has a magnitude of 111 units

 5 Find the value of m if the vector 2i  − 3 j + mk has a unit vector given by 
i j mk2  – 3  

29

 +
.

 6 Find a vector that is perpendicular to the vector 
2
–3
4
















.

 7 Find the value of m if the vectors m
1

1−
















 and 

1
1

1
−
















 make an angle of 60°.

The bee jive
Honeybees returning to their hive use vectors to communicate information about the 
location and value of a food source and the amount of energy needed to reach it. This 
communication takes the form of a ‘waggle dance’. On returning to the hive they perform 
vigorous movements of the abdomen to the left and right while repeatedly moving forward 
in a straight line. The bees are communicating the locations of important food sources via 
the direction (direction of line dance) and the distance (the length of the waggle run).

Through the bees’ movements, they are indicating ‘there is a food smelling of A, 
requiring an effort B to reach it, in direction C, of economic value D.’

DID YOU KNOW?
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3.06 Vector equation of a curve
A convenient way to describe a line in 3D space is to provide a vector that ‘points to’ every 

point on the line as the parameter (t) varies, for example t
t
t

t

1
2
3

3
2

1

1 3
2 2
3

















+ −
















=
+
−
+

















.

The individual functions of t make up the coordinates of this vector that traces out a 

straight line. Any vector with a parameter, for example 

















f t

g t

t

( )

( )

( )h

, will describe some curve in 

3 dimensions as t varies through all possible values. We call 















h

f t

g t

t

( )

( )

( )

 a vector function.

The equations x = f (t), y = g(t) and z = h(t) are called the 
parametric equations for the curve. We first learned 
about parametric equations in Year 11 Mathematics 
Extension 1, Chapter 7, Further functions. We often 
think of the parameter t as time and thus the parametric 
equations indicate the position of an object in 3D space at 
any time.

When graphing lines and curves in 3D space, draw the axes 
as shown.

z

y

x

a

b

c

P(a, b, c)
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EXAMPLE 17

Graph the line produced by 
t
t
t














 for 0 ≤ t ≤ 10.

Solution

The parametric equations are  
x(t) = t, y(t) = t and z(t) = t.

The points (0, 0, 0) through to  
(10, 10, 10) are included in this plot.

We can use parametric equations to obtain some familiar common curves.

EXAMPLE 18

Graph the curve produced by 
t
t

cos
sin

0














 for all real t.

Solution

The parametric equations are  
x(t) = cos t, y(t) = sin t and z(t) = 0.

As t varies and z(t) = 0,  
the coordinates trace out  
the points on the unit  
circle on the x–y plane  
starting at (1 0) when t = 0  
and proceeding in a  
anticlockwise  
direction around  
the circle as  
t increases. 

x

y

z
10

(10 10 10)

8
6
4
2

4 8 12 16
12

18

–2
–4–8–12 –6

–4
–6

6

z

y
x

–2

–3

–4

–5

–1

–1–2
–3

–4
–5

–1
–2

–3
–4

–5

1

1

2

3

5

4

1
2

3
4

5

2
3

4
5
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As the relationships between x(t), y(t) and z(t) become more complicated, so too the graph 
becomes more complex. A simple way to have an idea of the graph of the vector equation is 
to create a table of values for plotting and identifying the nature of the curve.

EXAMPLE 19

Draw the curve produced by 
t
t

t

cos
sin














 for 0 ≤ t ≤ 2π.

Solution

As in Example 18, the x and y coordinates still describe a unit circle, but the z coordinate 
increases at a constant rate (z = t) so the height of the curve increases gradually. 

Construct a table of values.

t x =	cos t y = sin t z = t

0 1 0 0

4
π 1

2
1
2 4

π

2
π

0 1
2
π

3
4
π 1

2
−

1
2

3
4
π

π 1 0 π

5
4
π 1

2
−

1
2

−
5
4
π

3
2
π

0 −1
3
2
π

7
4
π 1

2
1
2

−
7
4
π

2π 1 0 2π

The curve is in the shape of a helix (spiral) beginning at (1, 0, 0) and ending at (1, 0, 2π) 
directly above its starting point, after one revolution of the circle.

Equation of a sphere
In 2 dimensions, the Cartesian equation of a circle with centre (0, 0) and radius r is  
x2 + y2 = r2. In 3 dimensions, the Cartesian equation x2 + y2 + z2 = r2 represents a sphere with 
centre (0, 0, 0) and radius r  More generall, the equation ( x − a)2 + (y − b)2 + (z − c)2 = r2 
represents a sphere with centre (a, b, c) and radius r.

z

x
y

4

4

6

8

10

2

4
8 12

16
8

12
16

–2

–4 –4
–8–8–12

–4

–6
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EXAMPLE 20

Describe the sphere represented by:

a (x − 1)2 + (y + 2)2 + (z − 3)2 = 25

b x2 + 4x + y2 + 6y + z2 − 2z = 2

Solution

a This is a sphere with centre at (1, −2, 3) and with a radius of 25 =	5.

b Completing the square for x, y and z:

x2 + 4x + 4 + y2 + 6y + 9 + z2 − 2z + 1 = 2 + (4 + 9 + 1)

(x + 2)2 + (y + 3)2 + (z − 1)2 = 16

This is a sphere with centre at (−2, −3, 1) and with a radius of 16  =	4.

Exercise 3.06 Vector equation of a curve

 1 Graph the curve represented by each vector function.

a t
1

1
















 for 0 ≤ t ≤ 10 b t

t

1














 for 0 ≤ t ≤ 5

c 
t
t
1

2
















 for 0 ≤ t ≤ 3 d t

t

0

2
















 for 0 ≤ t ≤ 3

e 
t

t
t

cos

sin

















 for 0 ≤ t ≤ 2π

 2 Graph the curve represented by each vector function.

a x = t, y = 1 − t, z = 1 + t

b x = 2t, y = t2, z = t

c x =	cos t, y = sin t, z = 2

d x = sec t, y = tan t, z = 3

e x = 2 sin t, y = 3 cos t, z = 1
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 3 Describe the graph of each vector function for t ≥ 0.

a 
t

1
1
















 b 

t
t

t

cos
sin
−

















c x = 1, y = 2 cos t, z = sin t d x = t cos t, y = t sin t, z = t

 4 Find a vector function for the curve where x2 + y2 = 9 and z + y = 2 intersect.

 5 Plot the curve 
t

t
t

1
5

2

2

−
+

















 in 2 dimensions, projected onto the x−y, x−z and y−z planes,

  for 0 ≤ t ≤ 3.

 6 Find a vector function for the curve where z = x2 + y2 and y = x intersect.

 7 Find a vector function that represents the curve of intersection of the cone z x y2 2= +  
and the plane z = 1 + y and then sketch this curve.

 8 Find the radius and centre of the sphere with equation:

a (x − 1)2 + (y + 1)2 + (z − 1)2 = 1

b (x + 2)2 + (y − 3)2 + (z − 1)2 = 4

c (x − 3)2 + (y + 1)2 + (z + 1)2 = 9

d x2 + 2x + y2 + 2y + z2 − 2z = 6

e x2 − 4x + y2 − 6y + z2 + 2z = 11

 9 The spheres with equations (x + 2)2 + (y + 3)2 + (z − 4)2 = 16 and  
(x + 2)2 + (y + 3)2 + (z + 2)2 = 25 intersect at a circle.  
What is the centre and radius of this circle of contact?
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TECHNOLOGY

Graphing in 3D space

Using graphing technology, graph some 3D  
curves and determine the shape of the curve  
and its projections on each of the x−y, y−z  
and x−z planes.

For example, investigate the shape of the  
curve given and the projections made by the  

vector function 
t

t
t

2

3
















.

  

5

10

15

20

25

30
z

x5 10−5−10

−5

−10

−15

−20

−25

−30

4

8
z

y4 8−4−8

−4

−8

y−z plane

z y y=

y

z

x

1

1

2

3

4

1
2

3
4

2 3 4

–1

–1

–2
–2

–1
–3

–4

–3–4

t
t
t

2

3
















 in 3D

5

10
y

x5 10−5−10

−5

x−y plane
y = x2

Note: y ≥ 0.

x−z plane
z = x3
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3.07 Vector equation of a straight line
The equation of a line in 2 dimensions is ax + by + c = 0, so you might expect a line in  
3 dimensions to be ax + by + cz + d = 0, but actually this is the equation of a plane.

To specify a straight line, we need to know 2 things: a point through which the line passes, 
and the line’s direction.

Suppose a line contains the point A(a1, a2, a3) and is parallel to the vector b

b

b

b
2

3

=

















.  

By placing these vectors with a from the origin  
and b at its head then any point on the line can  
be obtained by adding a and λb, where λ is  
some real number.

Vector equation of a straight  line
The vector equation of a straight line through points A and B is r a b= + λ , where R is  

a point on AB, a = OA
→

 is the vector from the origin to a known point, b AB
→

=  is the 
direction of the required line and λ is a parameter.

Note: If λ < 0 then the point will lie to the left of A, if 0 ≤ λ ≤ 1 the point will lie between  
A and B, and if λ > 1 then the point will lie to the right of B.

EXAMPLE 21

What is the vector equation of the line through the point (2, −1, 0) parallel to the vector 
−2i  + j + k?

Solution

The line has vector equation r a b= + λ , that is, r  = (2i  − j) + λ(−2i  + j + k).

Direction of a vector
Sometimes we do not know the direction of the required vector but are given 2 points 
through which the vector will pass. In this case, we need to determine the direction of the 
required vector first.

The direction of the vector joining A(a1, b1, c1) and B(a2, b2, c2) is given by 

a a

b b

c c

2 1

2 1

2 1

−
−
−
















.

Equaion  
of lines in 

space

Homewok

WS

A

O

Bb

r = a + λb~~ ~~(a1, a2, a3)

λ(b1, b2, b3)

a
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EXAMPLE 22

What is the vector equation of the line through the points (1, −1, 2) and (2, −3, −1)?

Solution

The required line has direction given by 
2 1

3 ( 1)
1 2

1
2
3

−
− − −

− −

















= −
−
















 and passes through  

(1, −1, 2). It has the equation 

r  = (i  − j + 2k) + λ1(i  − 2 j − 3k) 

or, using the other point, 

r  = (2i  − 3 j − k) + λ2(i  − 2 j − 3k). 

Note that both equations are correct; however, λ1 ≠ λ2.

EXAMPLE 23

A line passes through the points A(−2, 1, 5) and B(6, 3, −4).

a Write a vector equation of the line.

b Write parametric equations for the line.

c Determine if the point C(−10, −1, 14) lies on the line.

Solution

a r  = OB
→

 − OA
→

= 
6
3
4

2
1
5−

















−
−















= 
8
2
9−

















A vector equation for the line is 
x
y

z

t
2

1
5

8
2
9

















=
−















+
−

















b The corresponding parametric equations are:

x = −2 + 8t

y = 1 + 2t

z = 5 − 9t
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c If the point lies on the line, then:

−10 = −2 +8t, so t = −1

−1 = 1+ 2t, so t = −1

14 = 5 − 9t, so t = −1

t = −1 for (−10, −1, 14).

Therefore, C does lie on the line joining A to B.

Parametric and Cartesian equations for a line
Because λ runs through all possible real values, the vector r a b= + λ  points to every point on 
the line when its tail is placed at the origin.

The parametric equations resulting from this expression are:

x = a1 + λb1, y = a2 + λb2, z = a3 + λb3

If a straight line passes through 2 given points A(x1, y1, z1) and B(x2, y2, z2), then it is parallel 
to the vector (x2 − x1)i  + (y2 − y1) j + (z2 − z1)k.

The parametric equations are:

x = x1 + λ(x2 − x1), y = y1 + λ(y2 − y1), z = z1 + λ(z2 − z1)

The standard Cartesian form of the straight line is found by equating the different expressions for λ:
x x
x x

y y
y y

z z
z z

     – 
 – 

   
 – 
 – 

     –  
 –  

 
2 1 2 1 2 1

λ = = =

EXAMPLE 24

Determine whether the lines 
















+ λ
−

















1
1
1

1
2
1

 and 
















+ λ
−
−

















3
2
1

1
5

3
2  are parallel, 

intersect or neither.

Solution

In 3 dimensions, lines that do not intersect might not be parallel (they most likely are skew).

In the 2 equations we can see the direction vectors 
1
2
1−
















 and 

1
5

3

−
−
















 are different and 

so they are not parallel.

If they intersect there must be 2 values a and b such that:

a
1
1
1

1
2
1

















+
−
















 = b

3
2
1

1
5

3

















+
−
−
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Therefore:

1 + a = 3 − b

1 + 2a = 2 − 5b

1 − a = 1 + 3b

Solving any 2 equations above simultaneously, we get a = 3 and b = −1.

These values satisfy all 3 equations and so tell us that the 2 lines intersect at (4, 7, −2).

Exercise 3.07 Vector equation of a straight line

 1 Write the parametric equations for each vector equation.

a 
x
y

z
















 = 

















+ λ −
















1
1
0

2
3

0
    b 

x
y

z
















 = 

















+ λ
















11
2
0

3
0
0

c 
x
y

z
















 = 

−

















+ λ −
















3
0
1

6
9

1
  d 

x
y

z
















 = −

















+ λ −
















5
2

1

7
4
2

 2 a What is the line through the point (2, −1, 3) parallel to the vector i  + 2 j − k?

b What is the line through the point (−2, 1, −3) parallel to the vector −i  + 2 j + 3k?

c What is the line through the point (1, −1, 1) parallel to the vector 2i  − 2 j + k?

 3 Write a vector equation of the line through each pair of points.

a (3, −5) and (−2, −8)      b (6, 2, 5) and (9, 2, 8)

c (1, 1, −3) and (1, −1, −5) d (1, 0, 3) and (1, 2, 4)

 4 Determine whether the lines in each pair are parallel, intersect or neither.

a 
−

















+ λ
















1
3
1

1
1
0

 and 
















+ λ
















0
0
0

1
4
5

2

b 
















+ λ
−
−

















1
0
2

1
1

2
 and 

















+ λ
−

















4
4
2

2
2
4

2
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c 
−

















+ λ
















1
2
1

1
2
3

 and 
















+ λ





















1
0
1

2
3
2
4
3

2

d 
















+ λ
−

















1
1
2

1
2
3

 and 
−

















+ λ
−

















2
3
1

2
4
6

2

 5 Find the equation of the line through (3, 2, 6) and (−1, 0, 4) in vector, parametric and 
Cartesian forms.

 6 Find a1 and a3 so that (a1, 1, a3) lies on the line through (0, 2, 1) and (2, 7, 4).

 7 Show that 
















+ λ
















2
1
3

1
1
2

 and 

















+ λ
















3
2
5

2
2
4

2  are the same line.

 8 The equations 
x y z–    2

7
   

3  – 1
5

   
2    1

3
+

= =
+

 determine a straight line.  

Write the equation of the line in vector form.

 9 The x coordinate of a point on the line joining (2, 2, 1) and (5, 1, −2) is 4.  
Find its z coordinate.

3.08 Parallel and perpendicular lines
A normal vector to a line is a vector that is perpendicular to the line.

In 2 dimensions, a line has an infinite number of normal  
vectors, all parallel to each other. However, in 3 dimensions,  
the normal vectors are not necessarily parallel.

~n

x y

z

n

n2
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In 2 dimensions, we saw that the scalar product can be used to determine the angle between 
2 vectors. We are particularly interested in whether the angle between the vectors is 0° 
(parallel) or 90° (perpendicular).

A line in 2 dimensions can be defined using its gradient and y-intercept. The gradient 
indicates the direction of the line and the y-intercept provides its exact position. In  
3 dimensions, the gradient of a line is not defined, so a line in 3 dimensions must be defined 
in a different way.

In 2D, lines can be defined in general form ax + by + c = 0, which is a scalar equation. As well, 
a line can be written in gradient–intercept form y = mx + c. Vectors can also be written to 
define a line in 2 dimensions. We identify the direction vector parallel to the given line and a 
position vector to establish a unique line.

EXAMPLE 25

Show that 2i  + 3 j − 2k and i  − 2 j − 2k are perpendicular vectors.

Solution

x1x2 + y y2 + z1z2 = u v  cos θ

2 × 1 + 3 (−2) + (−2) (−2) = 17 9  cos θ

0 = 153 cos θ

cos θ = 0

θ = 90°

Hence, the vectors are perpendicular.

EXAMPLE 26

Find the vector equation of the line passing through the point (3, −1, 1) and perpendicular 

to the 2 lines 
x y z3

2
1

3
1

2
−

=
+

=
−

−
 and 

x y z3
2

1
2

1
5

−
=

+
=

−
.

Solution

Since the equation that is perpendicular to both has equation λ( ) ( )− + a b c3 1  1     ,

then + − =a b c2 3 2 0 and + + =a b c2 2 5 0.

2a + 3b − 2c = 0 [1]

2a + 2b + 5c = 0 [2]
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[1] − [2]:

b − 7c = 0 [3]

2 × [1] − 3 × [2]:

4a + 6b − 4c = 0

6a + 6b + 15c = 0  

−2a − 19c = 0 [4]

Putting =c 2, then = −a 19 and =b 14.

Note: there are many lines perpendicular to both lines but only this one passes through 
their point of intersection ( )−3 1  1 .

In this case the perpendicular vector is λ( ) ( ) ( )= − + −x y z    3   1 1 19  14  2  

or in Cartesian form 
−

−
=

+
=

−x y z3
19

1
14

1
2

.

Exercise 3.08 Parallel and perpendicular lines

 1 Show that each pair of vectors are parallel.

a λ−
















+ −
















1
1

1

2
1

1
 and λ

−

















+
−

−

















2
1
1

4
2
2

b λ( ) ( )+ + + −i j k i j k2  –      2  and λ) )( (+ + + − − +i j k i j k  3 3 6

c λ
−

















+
−

−

















3
1
1

2
1
2

 and λ
−
−

















+ −

















1
1

2

1
0 5
1

d λ( ) ( )+ + + −i j k i j k3  –  2 2 2 3  and λ( ) ( )+ − + + −i j k i j k3 2 4 4 6

 2 Show that each pair of vectors are perpendicular.

a λ−
















+
















1
1

1

1
0
1

 and λ
−

















+
















3
2
1

0
2
0

b λ( ) ( )+ + − +i j k i j k–     2 2  and λ( ) ( )+ − + − −i j k i j k3  2   2 2 3

c λ−

















+
−

−

















7
2

5

1
0
2

 and λ
















+
−















3
4
2

2
0
1

d λ( ) ( )+ + − + +i j k i j k– 3    2 2 5  and λ( ) ( )− + + − − +i j k i j k4 2 3
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 3 Write the equation of a vector that is parallel to each line.

a −
















2
1

3
 b λ

−















+
−

















1
2
3

3
1
2

c + −i j k4 3  d λ( ) ( )+ + + −i j k i j k3  –   2 2

 4 Write the equation of a vector that is perpendicular to each line.

a −
















2
1

3
 b λ−

















+
−

















1
2

3

3
1
2

c + −i j k4 3   d λ( ) ( )+ + + −i j k i j k3 –   2 2

 5 Find which pairs of lines intersect and find their point of intersection.

a λ−
















+
−

















7
2

5

4
0
2

 b 
− = + = −x y z1
6

2
2

3
5

c 2i j k4 5+ −  d i j k i j k4 – 11  5 2 2λ( ) ( )+ + + +

 6 A cube has sides of length L. By giving the vertices coordinates, determine the angle 
between the diagonal of the cube and one of the edges adjacent to the diagonal correct 
to one decimal place.

 7 a  Prove that the lines joining A(2, –3, 3) and C(–2, 3, –1) intersect the line joining 
B(–3, 2, 1) and D(3, –2, 1). 

b Find correct to one decimal place the angle between these 2 lines.

 8 Write the parametric equations of the line that goes through the point (6, −2, 1)  

and is perpendicular to both 
−

















+ λ −
















1
4
2

3
1

1
 and 

9
5
3

1
3

7
2

−

















+ λ −















.

 9 Given the Cartesian equation 
x y z4

8
   

12
5

   
15

2
−

=
−

=
−

, write the corresponding vector 
equation.

 10 Write the equations of 2 lines that intersect at the point (2, −1, 3) and are perpendicular 
to each other.
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 1 Find the scalar product of the vectors 2
1







 and 1

2






, then find the angle between 

  these vectors to the nearest minute.

 2 Are the vectors 2
3−







 and 







4 5
3

 parallel or perpendicular?

 3 Express the 2D vector represented by 8 units of length in a direction of 60° in 
component form and then write the unit vector in component form.

 4 Find the exact magnitude and direction to the nearest minute of the vector −2i  + 5 j.

 5 Write the component vector AB that joins the points A(−1, 2, −3) and B(0, 3, 1).

 6 Calculate the scalar product for the vectors 2i  − j + 4k and i  − 2 j − k.  
What can you say about these 2 vectors?

 7 Write a unit vector that is perpendicular to both 2i  − j + k and i  − 2 j − k.

 8 Given that OX
→

 = 2a + b and OY
→

 = 3a +	4b, express the vector XY
→

 in terms of a and b.

 9 OAB is a triangle. OA
→

 = a and OB
→

 = b.

A

O B

P
~a

~b

a Find the vector AB
→

 in terms of a and b.

b If P is a point on AB such that AP : PB = 3 : 2, show that OP a b
1
5

(2 3 )
→

= + .

10 Find the magnitude of each vector u
2
2

1
= −
















 and v

3
1

2 2
=

−














.  

Hence, find the angle between them to 2 decimal places.

11 Find a vector that is perpendicular to the vector i− 2 j − k.

12 Graph the curve represented by the vector 
t

t
0

















 for 0 ≤ t ≤ 5.

3. TEST YOURSELF
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13 Graph the curve represented by the vector 
t
t

t

4 cos
4 sin
















 for 0 ≤ t ≤ 2π.

14 A sphere has equation x2 + (y − 4)2 + (z + 1)2 = 5. What is its radius and centre?

15 For the Cartesian equation 
x y z3

2
2

1
1

3
+

=
−

=
+

, find the equivalent vector and 
parametric equations.

16 The y coordinate of a point that lies on the line joining (1, 5, −2) and (−2, 2, 3) is −3. 
Find the x and z coordinates for this point.

17 Show that 
1
0
2−
















 and 

−















2
0
4

 are parallel vectors.

18 Show that 
7
1
2−

















 and 
3
3

9
−
















 are perpendicular vectors.

19 Find the angle between the vectors 
2

1
0

−















 and 
0
1
2−

















 to 1 decimal place.

20 Find the vector equation of the line that passes through (1, −3, 2) and is perpendicular to 

both 
−

















+ λ −
















2
3
1

1
2

3
 and −

















+ λ
−

















1
1

1

0
1
5

2 .



 

4.
APPLYING COMPLEX 
NUMBERS
The mathematics of complex numbers is used in every electronic device you can imagine, including 
computers, mobile phones, tablets and the tools used in social media.

CHAPTER OUTLINE

4.01 De Moivre’s theorem
4.02 Quadratic equations with complex 

coefficients
4.03 Polynomial equations
4.04 Operations on the complex plane
4.05 Roots of unity
4.06 Roots of complex numbers
4.07 Curves and regions on the complex plane
Test yourself 4

COMPLEX NUMBERS



IN THIS CHAPTER YOU WILL:

•	 use De Moivre’s theorem with complex numbers in both polar and exponential form
•	 use De Moivre’s theorem to derive trigonometric identities
•	 find solutions to quadratic equations with real coefficients
•	 find solutions to polynomial equations with real coefficients
•	 solve problems using conjugate roots of polynomial equations 
•	 solve quadratic equations with complex coefficients
•	 revise adding and subtracting complex numbers on the complex plane
•	 multiply and divide complex numbers on the complex plane using rotation and dilation
•	 relate a complex number z to the points and vectors z , z and cz
•	 find the nth roots of unity and other complex numbers, and their location on the complex plane
•	 solve problems using the nth roots of unity and other complex numbers
•	 sketch curves and regions on the complex plane, the locus of points determined by relations such 

as z i–  ≥ 2, 
4

−
π

 ≤ Arg z ≤ 
2
π

, Re(z) < Im(z) and z z i1 2+ = −
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TERMINOLOGY
De Moivre’s theorem:  

(cos θ + i sin θ)n = cos nθ + i sin nθ = einθ,  
∀ n ∈ .

locus: A set of points that obey a certain condition. 
Its graph can be a line, curve or region.

roots of unity: Solutions to the equation zn = 1,  
n ∈ .

4.01 De Moivre’s theorem
We saw in Chapter 1, Complex numbers, that if z = r(cos θ + i sin θ) = reiθ, then 

zn = rn(cos nθ + i sin nθ) = rneinθ, where n is an integer.

If r = 1, then this property simplifies to 

(cos θ + i sin θ)n = cos nθ + i sin nθ = einθ. 

This theorem is called De Moivre’s theorem, and can be extended to rational numbers, .

De Moivre’s theorem
For any non-zero complex number z = cos θ + i sin θ = eiθ:

• (cos θ + i sin θ)n = cos nθ + i sin nθ = einθ, ∀ n ∈  (polar form)

• (eiθ)n = einθ, ∀ n ∈    (exponential form)

The statement can be proved to be true for all rea  values  
of n, not only rational numbers, but this is not part of this course.

We can prove De Moivre’s theorem by induction for n ∈ , that is, for positive integers only.

Proof

Let P(n) be the proposition that (cos θ + i sin θ)n = cos nθ + i sin nθ, ∀ n ∈ .

Prove P(1) is true:

LHS = (cos θ + i sin θ)1

= cos θ + i sin θ

RHS = cos (1θ) + i sin (1θ)

= cos θ + i sin θ

∴ P(1) is true.

Assume P(k) is true; that is, (cos θ + i sin θ)k = cos kθ + i sin kθ for some k ∈ .

Prove P(k + 1) is true; that is, (cos θ + i sin θ)k + 1 = cos (k + 1)θ + i sin (k + 1)θ

Using De 
Moivre’s 
theorem

Homewok

WS

Trigonomric 
identities using 

De Moivre’s 
theorem

Homewok

WS
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Proof: Consider the LHS of P(k + 1):

LHS = (cos θ + i sin θ)k + 1

= (cos θ + i sin θ)(cos θ + i sin θ)k

= (cos θ + i sin θ)(cos kθ + i sin kθ) using P(k)

= cos θ cos kθ + i cos θ sin kθ + i sin θ cos kθ – sin θ sin kθ

= cos θ cos kθ – sin θ sin kθ + i(cos θ sin kθ + sin θ cos kθ)

= cos (θ + kθ) + i sin (θ + kθ)

= cos (k + 1)θ + i sin (k + 1)θ

= RHS of P(k + 1)

∴ truth of P(k) ⇒ truth of P(k + 1)

But P(1) is also true.

∴ P(n) is true for all n ≥ 1, by mathematical induction.

The exponential form of De Moivre’s theorem, (eiθ)n = einθ, is obvious from the index laws.  
It could also be proved by induction. This will be left for you to do as an exercise.

Equating the modulus and argument on both sides of zn = rn(cos nθ + i sin nθ) = rneinθ, ∀ n ∈    
we can see the properties we saw in Chapter 1 follow directly from De Moivre’s theorem.

Power of a complex number
=z zn n, ∀ n ∈ 

arg zn = n arg z, ∀ n ∈ 

Both of these statements can be proved by induction and will be left as an exercise.

RHS of P(k)
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Note that to use De Moivre’s theorem, the complex number must be in correct polar  
form: z = r(cos θ + i sin θ) = reiθ. If z = cos θ – i sin θ then we need to use the rule  
cos θ – i sin θ = cos (–θ) + i sin (–θ) = e–iθ before applying De Moivre’s theorem.

EXAMPLE 1

Use De Moivre’s theorem to simplify:

a   (2(cos θ + i sin θ))8 b icos
3
5

sin
3
5

4π
−

π





 c i8 cos sin 3( )π + π 

Solution

a (2(cos θ + i sin θ))8 = 28(cos 8θ + i sin 8θ)

= 256(cos 8θ + i sin 8θ)

b First express 
π

−
π

icos
3
5

sin
3
5

 in the form cos θ + i sin θ.

i icos
3
5

sin
3
5

cos
3
5

sin
3
5

π
−

π
= −

π





+ −
π





 
i icos

3
5

sin
3
5

cos
3
5

sin
3
5

4 4

∴
π

−
π





= −
π





+ −
π















i

i

i

cos
12

5
sin

12
5

cos
2
5

sin
2
5

cos
2
5

sin
2
5

= −
π





+ −
π





= −
π





+ −
π





=
π





−
π





 Recall that polar form uses the principal argument so we converted 
12

5
−

π
 to an 

angle in the interval (–π, π]: 
12

5
2
5

−
π

= −
π

c
 

i i

i

8 cos sin 8 cos
3

sin
3

2 cos
3

sin
3

3 3( )π + π  =
π

+
π





=
π

+
π
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Proving trigonometric identities
De Moivre’s theorem is useful for proving some trigonometric identities.

EXAMPLE 2

Use De Moivres theorem and the binomial expansion of ( A + B)3 to prove each identity.

a sin 3θ = 3 sin θ – 4 sin3 θ b cos 3θ = 4 cos3 θ – 3 cos θ

Solution

a Using De Moivre’s theorem we have (cos θ + i sin θ)3 = cos 3θ + i sin 3θ.

 Using the binomial expansion (A + B)3 = A3 + 3A2B + 3AB2 + B3 we have: 
(cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ – 3 cos θ sin2 θ – i sin3 θ

 Equating both expansions:

 cos 3θ + i sin 3θ = cos3 θ + 3i cos2 θ sin θ – 3 cos θ sin2 θ – i sin3 θ

 Equating imaginary parts we have:

 sin 3θ = 3 cos2 θ sin θ – sin3 θ

 = 3(1 – sin2 θ)sin θ – sin3 θ so in terms of sin only

 = 3sin θ – 3 sin3 θ – sin3 θ

 = 3sin θ – 4 sin3 θ as required.

b Equating real parts from part a we have:

 cos 3θ = cos3 θ – 3 cos θ sin2 θ

 Substituting sin2 θ = 1 – cos2 θ:

 cos 3θ = cos3 θ – 3 cos θ(1 – cos2 θ) so in terms of cos only

= cos3 θ – 3 cos θ + 3 cos3 θ

= 4 cos3 θ – 3 cos θ  as required
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De Moivre’s theorem and binomial expansions can also be used to simplify powers of 
trigonometric ratios.

The identities z n + 
z
1
n  and z n – 

z
1
n

If z = cos θ + i sin θ, then ∀ n ∈ :

• zn + 
z
1
n  = 2 cos nθ

• zn – 
z
1
n  = 2i sin nθ

These results are useful to express powers of trigonometric ratios as ratios with multiples of θ.

EXAMPLE 3

Use the fact that z + 
z
1

 = 2 cos θ and the binomial expansion of (a + b)4 to prove that  

cos4 θ = 
1
8

 (cos 4θ + 4 cos 2θ + 3).

Solution

Consider the expansion (2 cos θ)4 = +





z
z
1 4

 where z = cos θ + i sin θ.

16 cos4 θ = z4 + 4z3

z
1

 + 6z2

z
1
2  + 4z

z
1
3  + 

z
1
4

= z4 + 4z2 + 6 + 4
z
1
2  + 

z
1
4

= z4 + 
z
1
4  + +





z
z

4
12
2 + 6

= 2 cos 4θ + 4(2 cos 2θ) + 6 using zn + 
z
1
n  = 2 cos nθ twice

= 2 (cos 4θ + 4cos 2θ + 3)

cos4 θ = 
1
8

(cos 4θ + 4 cos 2θ + 3)
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Exercise 4.01 De Moivre’s theorem

 1 Use De Moivre’s theorem to simplify each complex number.

a (cos θ + i sin θ)5 b (cos θ + i sin θ)–3 c (cos θ – i sin θ)7

d 
θ

+
θ





−

icos
2

sin
2

5

 e θ + θi(cos 4 sin 4 )
3
4

 2 For each value of z, evaluate z5 in:

 i polar form ii Cartesian form

a z i2 cos
6

sin
6

=
π

+
π





  b z i3 cos
4

sin
4

=
π

+
π





c z i
1
2

cos
3

sin
3

=
π

+
π





 d z i3 cos
7
10

sin
7
10

= −
π

+
π





 3 Evaluate icos
3
5

sin
3
5

6
− π





+
− π















−

, in modulus–argument form.

 4 Evaluate each expression by first converting to polar form, giving your answer in 
Cartesian form.

a (1 – i)3  b ( )+ i1 3
4
 c ( )− + i2 2

5

d 
+





−i1
2

3

 e +






i1

2
3

2

2

 5 Evaluate each expression and give exact answers in modulus–argument form.

a 
+ i
1

(3 3 )4   b 
( )− i

1

3
9

 6 Show that i i
1
3

1
3

3
2

3 3
2

12 6

+






+






 = –64.

 7 Simplify each complex number.

a (cos θ + i sin θ)3 × (cos θ + i sin θ)–7

b (cos α + i sin α)4 × (cos β – i sin β)6

c 
i

i

cos 3 sin3

cos 2 sin 2

8

3
( )
( )

δ + δ

δ + δ

d 
i i

i

cos sin cos 2 sin 2

cos sin

3 2

5
( ) ( )

( )
β + β × β − β

β + β

−

e 
i i

i

cos
2

sin
2

cos
2

sin
2

cos
2

sin
2

4
2
3

12

π + π





× π + π





π + π





−
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 8 By expanding (cos α + i sin α)2 in 2 ways, derive expressions for cos 2α and sin 2α. 
Hence find an expression for tan 2α in terms of tan α.

  [Hint: show that tan 2α = 
α α

α − α
2 sin cos
cos sin2 2 , then divide both sides by cos2 α.]

 9 In Example 2, p.121, we proved that cos 3θ = 4 cos3 θ – 3 cos θ.

a Use this fact to find ∫ θ θ
π

d4 cos3
0
2 .

b Use a similar result to evaluate dsin3
0
3∫ θ θ
π

.

 10 Expand (cos θ + i sin θ)4 in 2 ways to prove that:

a cos 4θ = 8 cos4 θ – 8 cos2 θ + 1

b sin 4θ = 4 sin θ cos θ (cos2 θ – sin2 θ)

 11 a Complete the statement: tan3
____3
cos____

θ =
θ

.

b Using the results we derived from (cos θ + i sin θ)3 = cos 3θ + i sin 3θ in Example 2, 

p.121, show that θ = θ − θ
θ − θ

tan3
3sin 4 sin
4 cos 3cos

3

3 .

c Hence prove that θ = θ − θ
− θ

tan3
3 tan tan

1 3 tan

3

2 .

 12 Using the fact that a + ar + ar2 + ar3 + … + arn – 1 = 
−

−
a r

r
( 1)

1

n

, prove for n ≥ 1:  

(cos θ + i sin θ) + (cos 2θ + i sin 2θ) + (cos 3θ + i sin 3θ) + … + (cos nθ + i sin nθ)  

= ) )( (θ + θ θ + θ −
θ + θ −

i n i n
i

cos sin cos sin 1
cos sin 1

.

 13 Using a suitable expansion, find the value of x dxcos4

3

2
3∫π

π

.

 14 Prove by mathematical induction:

a (cos θ + i sin θ)n = cos nθ + i sin nθ, n ∈ 

b z zn n= ,∀ n ∈ 

c arg zn = n arg z,∀ n ∈ 

d e e n n( ) , 1i n n= ≥ ∈θ θ


15 If z = cos θ + i sin θ, simplify:

a z – 
z
1

 b z2 – 
z
1
2  c zn – 

z
1
n
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16 Simplify each expression.

a 
π

+
π

+ π + πi
i

cos
12

sin
12

1

cos
12

sin
12

b i

i

cos
6

sin
6

1

cos
6

sin
6

4

4
π

+
π





−
π + π





c i icos
5
7

sin
5
7

cos
5
7

sin
5
7

7 7π
+

π





+
π

+
π





−

17 If z = cos θ + i sin θ, prove that:

a +z
z
12
2  is always real b −z

z
13
3  is purely imaginary

c +z
z
1n
n  is always real

18 Let z = cos θ + i sin θ. Use the fact that −z
z
1n
n  = 2i sin nθ and the binomial expansion of 

−





z
z
1 3

 to prove that sin
3sin sin 3

4
3 θ =

θ − θ
.

De Moivre’s final problem

Abraham de Moivre was a French mathematician 
born in 1667. Although he is chiefly known for 
De Moivre’s theorem, he also worked on a number 
of other important areas of mathematics, including 
probability. He published his findings in The 
Doctrine of Chance in 1756. De Moivre allegedly 
predicted the time of his own death. He noticed 
that he was sleeping 15 minutes more each day 
and proposed that by the time he was sleeping  
24 hours per day he would be dead. Using an 
arithmetic sequence he calculated that he would 
die on 27 November 1754. Apparently he was 
correct!

DID YOU KNOW?
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4.02  Quadratic equations with complex 
coefficients

Any quadratic equation of the form ax2 + bx + c = 0 can be solved using the quadratic  

formula = − ± −
x

b b ac
a

4
2

2

. We saw in Chapter 1 that if the coefficients a, b and c are real, 

then the complex roots always come in conjugate pairs. However, if the coefficients are 
complex, then the roots will not be conjugates.

EXAMPLE 4

Solve each quadratic equation with complex coefficients.

a z2 + iz + 2 = 0

b w2 – (5 – 2i)w + 5 – 5i = 0

c x2 + 4i = 0
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Solution

a z2 + iz + 2 = 0

 Using the quadratic formula where a = 1, b = i and c = 2:

 

= − ± −

=
− ± −

= − ± −

= − ±

= −

z
b b ac

a

i i

i

i i

i i

4
2

4(1)(2)
2(1)

9
2
3

2
2
2

or
4
2

2

2

= i     or  –2i

b w2 – (5 – 2i)w + 5 – 5i = 0

 Using the quadratic formula where a = 1, b = –(5 – 2i) and c = 5 – 5i:

 

=
− ± − − −

= − ± − − − +

= − ±

= − ±

= − −

w
i i i

i i i

i

i

i i

(5 2 ) (5 2 ) 4(1)(5 5 )
2(1)

(5 2 ) 25 20 4 20 20
2

(5 2 ) 1
2

5 2 1
2

6 2
2

or
4 2

2

2

= 3 – i      or   2 – i
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c x2 + 4i = 0

 Method 1

Using the quadratic formula where a = 1,  
b = 0 and c = 4i

( )( )
( )=

− ± −

= ± −

= ± − ×

= ±

= ±

x
i

i

i

i i

i i

0 0 4 1 4
2 1

16
2
16
2

4
2

2

2

or x2 + 4i = 0

x2 = –4i

= ± −

= ± × − ×

= ±

x i

i

i i

4

4 ( 1)

2

 Now this solution still contains a square root. Recall we can simplify i  using the 
following technique.

 Let i  = a + ib for some real a and b.

 Then i = (a + ib)2 = a2 – b2 + 2abi

 Equating real and imaginary parts:

 a2 – b2 = 0 ⇒ a2 = b2 and 1 = 2ab ⇒ ab = 
1
2

.

 By inspection or solving simultaneously we see that a = b = 
1
2

 or a = b = − 1
2

. By 
convention we take the solution such that a > 0.

 Then i  = a + ib = + i1
2 2

.

 So the solution to the original equation becomes

 

( )

= ±

= ± +





= ± −

= − + −

x i i

i
i

i

i i

2

2
1
2 2

2 2

2 2 or 2 2

 Although the equation x2 + 4i = 0 looks harmless, it requires some sophisticated 
algebra to solve using this approach.
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 Method 2

 An alternative method uses exponential form and Euler’s formula:

 x2 + 4i = 0 ⇒ x2 = –4i

 Let x = reiθ.

 Then x2 = (reiθ)2.

 So equating we have (reiθ)2 = –4i.

 Then r2e2iθ = –4i

 So r2e2iθ = 22(–i).

 We can see that r = 2 since r >	0 but we need 2 solutions to e2iθ = –i for the argument θ  
because x2 = –4i is a quadratic equation.

 Now recall that the domain for the principal argument is θ ∈ (–π, π],  
so 2θ ∈ (–2π, 2π]. We can express Arg (–i) as 2 different angles in this domain.

 So   e2iθ = –i

 
2

2
or

3
2

in the domain

4
or

3
4

∴ θ = −
π π

∴ θ = −
π π

 So the solutions to x2 + 4i = 0 are:

 x e2 4=
− π

 or x e2
3
4=
π

 Converting these to Cartesian form we have:

x i

i

i

2 cos
4

sin
4

2
1
2 2

2 2

= −
π





+ −
π











= −





= −

or x i

i

i

2 cos
3
4

sin
3
4

2
1
2 2

2 2

=
π





+
π











= − +





= − +

 as in Method 1.

Note that in the example we solved the simultaneous equations by inspection rather than by 
using an algebraic method. The emphasis in this course is to provide elegant and efficient 
solutions using mathematical insight rather than tedious algebraic manipulations if they can 
be avoided. Sometimes algebraic techniques are necessary.

Graphical approach to finding the square root of a complex number
De Moivre’s theorem is useful for finding a square root.
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EXAMPLE 5

Solve the equation = − +z i1 32 .

Solution

Express in polar or exponential form:

i1 3 1 3

2

2 2( )( )− + = − +

=

iarg 1 3
2
3)(− + =
π

So z i e2 cos
2
3

sin
2
3

22
2
3=

π
+

π





=
π

.

Since it is a quadratic equation there should be 2 roots. 

Using De Moivre’s theorem, we can raise both sides to the power of 
1
2

 to easily calculate 
one of the roots, z1:

z i e

i e

2 cos
2
3

sin
2
3

2

2 cos
3

sin
3

2

2
2
3

2

3

=
π

+
π













 =











=
π

+
π





=

π

π

Graphing z2 and z1 on an Argand diagram:
Im(z)

Re(z)

3
π

2

z2

z1

z2

√2

√2

3
2π

O
π

z i2 cos
2
3

sin
2
3

2 =
π

+
π




 and z i2 cos

3
sin

3
=

π
+

π




 , so we see that z1 has half the 

argument of z2 and the modulus of z1 is the square root of mod z2. The other root z2 is 
also graphed, and it is equally spaced around the origin at an angle of π from z1 with the 

same modulus: z i e2 cos
2
3

sin
2
3

22

2
3= −

π





+ −
π













 =

− π

. This will be explained fully 

later in this chapter when we examine the roots of complex numbers in more detail.
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Using this graphical approach for Example 4c on pages 128–129, we could have seen more 

easily that i i i1 cos
2

sin
2

1 cos
4

sin
4

2
− = −

π





+ −
π


























= −

π





+ −
π













 without all the 

algebra.  

This is a useful technique to keep in mind.

Exercise 4.02 Quadratic equations with complex coefficients

 1 Solve each quadratic equation.

a x2 – 2ix + 3 = 0 b x2 + 6ix = 5

c x2 – (3 + 2i)x + (1 + 3i) = 0 d 3x2 – 5ix + 2 = 0

 2 Use a graphical approach with De Moivre’s theorem to solve each equation in exact 
form.

a z2 = i b z2 = –9i c z2 = icos
3

sin
3

π
+

π

d z2 – 1 + i = 0 e z2 = e3 π f z2 = e16
2
3

− π

g z2 = cos 4 + i sin 4

 3 Show that 5 – 2i is a root of x2 – 6x + ix + 7 + 3i = 0. Hence or otherwise,  
find the other root. 

 4 Find the quadratic equation that has the roots:

a 3 – i, 1 + 7i b –4i, 3 + 5i c 
+ i2
3

, 1 – i

 5 The quadratic equation ax2 + px + q = 0 has the roots + i1
2 2

 and − i3
2 2

.  
Find the values of a, p and q.

 6 a Find + i8 6 .

b Use the quadratic formula to solve the complex quadratic equation  
z2 + 2z + 4iz = 11 + 2i, expressing the solutions in the form a + ib.  
[Hint: you will need part a].

 7 Solve each quadratic equation.

a x2 – (1 + i)x + i = 0

b x2 – 2x + 1 – 2i = 0

c x2 – 3x + 3ix – 5i = 0

d x2 – (4 + 3i)x = 2 – 8i

e ix2 – 3ix – x + 2i + 2 = 0
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The cubic formula

Just as the quadratic formula is used to find the roots of a quadratic equation, there exists 
a formula to find the roots of a cubic equation. This formula was published in 1545 by an 
Italian mathematician named Girolamo Cardano (1501–1576). When he was deriving the 
formula, he was troubled because some of the solutions to a cubic equation required 
finding the square root of a negative number, such as −15 . Mathematicians did not yet 
know how to handle this. 

Cardano then made an astute observation about conjugates. If 2 of the roots were say 
5 – −15 and 5 + −15, he noticed that the product of the 2 roots was real, ( )( )− − + −5 15 5 15  
= 25 – (–15) = 40, so the offending −15  disappeared. This was the beginning of complex 
numbers.

Cardano was not the first to create this formula, only the first to publish it. 
Mathematicians were very competitive back then. Whoever published first got the fame! 

4.03 Polynomial equations
We have seen that if a quadratic equation with real coefficients has complex roots then the 
roots will be complex conjugate roots.

Complex conjugate root theorem
If a polynomial equation P(z) = 0 has real coefficients and if α = a + ib, a, b ∈ , is a root 
of P(z) = 0, then α = a – ib is also a root of P(z) = 0.

We use the properties of complex numbers developed in Chapter 1 to prove this theorem.

Proof

Let P(x) = anx
n + an – 1x

n – 1 + an – 2x
n – 2 + … +a2x

2 + a1x + a0 = 0 be a polynomial equation 
where an, an – 1, an – 2, …, a2, a1, a0 ∈ .

If α is a root then

P(α) = anαn + an – 1αn – 1 + an – 2αn – 2 + … +a2α2 + a1α + a0 = 0

Using the property that if α = 0 then α = 0, then we can deduce

P a a a a a a( ) 0n
n

n
n

n
n

2
2

2
2

1 0α = α + α + α + + α + α + =−
−

−
−

DID YOU KNOW?

Polynomial 
with real 

coefficients

Homewok

WS

Real and 
imaginary 

factors

Homewok

WS

Complex 
polynomials
Homewok

WS
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Then, using 1 2 1 2α + α = α + α  it follows that

a a a a a a 0n
n

n
n

n
n

2
2

2
2

1 0α + α + α + + α + α + =−
−

−
−

Then, using a a1 1 1 1α = α  we can deduce

a a a a a a 0n
n

n
n

n
n

2
2

2
2

1 0α + α + α + + α + α + =−
−

−
−

Then using n n
1 1)()(α = α  for n ∈ , we can say

a a a a a a 0n n
n

n n
n

n n
n n n

1 1 2 2 2 2 1 1 0) ) ) ) )( ( ( ( (α + α + α + + α + α + =− − − −

But if an, …, a0 ∈  then an  = an, −an  = an – 1, …, a  = a1, a0 = a0, so

a a a a a a 0n n
n

n n
n

n n
n n n

1 1 2 2 2 2 1 1 0) ) ) ) )( ( ( ( (α + α + α + + α + α + =− − − −

Therefore we can deduce that P(α) = 0

that is, α is also a root of P(x) = anx
n + an – 1x

n – 1 + an – 2x
n – 2 + … +a2x

2 + a1x + a0 = 0.

QED

It follows then that if x – α is a factor of P(z) = 0 then x – α is also a factor of P(z) = 0.

This theorem has implications depending on the degree n of the polynomial P(z):

Real and complex roots
Given a polynomial equation P(z) = 0 with real coefficients and of degree n:

• if n is odd, then P(z) = 0 has at least one real root and the complex roots will come in 
conjugate pairs

• if n is even, then P(z) = 0 has an even number of real roots or no real roots, and the 
complex roots will come in conjugate pairs

•  if P(z) = 0 has complex roots α = a + ib and α = a – ib then P(z) = 0 will have a 
quadratic factor of the form (x – α)(x – α) = [x2 – (α + α)x + αα].
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As with polynomial equations with real roots, we can use the remainder and factor theorems 
to solve polynomial equations with complex roots.

EXAMPLE 6

Consider the polynomial P(x) = x3 – 4x2 + 6x – 4.

a Show that x = 2 is a root of x3 – 4x2 + 6x – 4 = 0.

b Hence solve the equation x3 – 4x2 + 6x – 4 = 0.

Solution

a Using the factor theorem, show that P(2) = 0.

 P(2) = 23 – 4(2)2 + 6(2) – 4

         = 0

 Therefore x = 2 is a root.

b To solve the equation we can use the fact that P(x) is monic so  
x3 – 4x2 + 6x – 4 = (x – 2)(x2 + bx + c) where b, c ∈ . We then solve for b and c.

 Expand the RHS and equate coefficients:

 –2c = –4 Equating the constant terms

 c = 2

 –4 = –2 + b Equating the coefficients of x2

 b = –2

 ∴ x3 – 4x2 + 6x – 4 = (x – 2)(x2 – 2x + 2)

 Now factorise fully or solve the quadratic factor to find all of the roots.

 (x – 2)(x2 – 2x + 2) = (x – 2)[(x2 – 2x + 1) + 1]

                                 = (x – 2)[(x – 1)2 – i2]

                                 = (x – 2)(x – 1 – i)(x – 1 + i)

                                 = (x – 2)[x – (1 + i)][(x – (1 – i)]

 So the roots are x = 2, 1 + i, 1 – i. Note: the complex roots are a conjugate pair.
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Creating polynomial equations
Sometimes we are given the roots and need to find the polynomial.

EXAMPLE 7

Given that α = 
i3
2

 and β = 2 + i are 2 roots of the polynomial P(x) = ax4 + bx3 + cx2 + dx + e  

where a, b, c, d, e ∈ , find P(x).

Solution

Using the fact that the coefficients are real, the complex roots must be in conjugate pairs. 

Thus 
i3
2

α = −  and β = 2 – i are also roots.

The structure of P(x) is then

a x
i

x
i3

2
3
2

−





+





 [x – (2 + i)][x – (2 – i)]

= a x
i9
4

2
2

−






[x2 – (2 + i + 2 – i)x + (2 + i)(2 – i)]

= a x
9
4

2 +




(x2 – 4x + 5)

Now since all coefficients are integers, let a = 4 to eliminate the fraction.

ax4 + bx3 + cx2 + dx + e ≡ 4 +





x
9
4

2 (x2 – 4x + 5)

 = (4x2 + 9)(x2 – 4x + 5)
 = 4x4 – 16x3 + 20x2 + 9x2 – 36x + 45
 = 4x4 – 16x3 + 29x2 – 36x + 45

Therefore P(x) = 4x4 – 16x3 + 29x2 – 36x + 45.

Note: This is not the only solution for P(x). 
Any constant multiple of this solution is 
also a solution.
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Exercise 4.03 Polynomial equations

 1 Factorise each P(z), showing:

i all real factors ii all complex factors

a z3 + z b z3 – 6z2 + 10z

c z3 + 1 d z3 – 8 

e z4 + 3z2 – 4 f z4 + 10z2 + 9

g z3 + z2 + z + 1 h z3 – z2 + 2z – 2

 2 Find all the roots of P(z) = 0, given:

a z = –2 is a root of z3 – 2z2 – 3z + 10 = 0

b z = i is a root of z4 – 2z3 – 2z2 – 2z – 3 = 0

c z e 4=
π

 is a root of − − + + − =z z z z z2 2 1 03 2 2

d z2 – 4z – 5 is a factor of z4 – 6z3 + 6z2 – 2z – 15

e − +z i2 5  is a factor of z3 – 2z2 + z + 18

 3 Consider the polynomial z4 – 6z3 + pz2 + qz + 70 = 0 where p, q ∈ . Given that 1 + 3i is 
a root, find p and q and the other roots of the equation.

 4 Find all the roots of each polynomial equation.

a z3 – 3z2 + z – 3 = 0

b z4 – z3 – 3z2 + 4z – 4 = 0

 5 Find the polynomial equation of minimum degree with integer coefficients that has 
roots:

a z = 1 + i, z = 5 b z = 1 – i 3, z = –2

c z = 3 + i 5, z = –1 – 4i d z = + i1
3

3
3

, z = 4

e z = e 3
− π

, z = –3

 6 Find the minimum degree of a polynomial that has real coefficients with roots:

a x = 4, x = –2, x = –3i

b x = + i2 2, x = –2 – 5i, x = –1
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4.04 Operations on the complex plane
We saw in Chapter 1, Complex numbers, that complex numbers can be expressed as points 
or vectors on the complex plane. They can also be expressed in Cartesian (a + ib), in polar 
(modulus–argument) or in exponential (reiθ) form.

We now look at multiplication and division of complex numbers on the complex plane.

Multiplying complex numbers

Multiplying complex numbers
If z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then their product is 

z1z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 +	θ2)]

Geometrically, this means that the product of vectors z and w will have length z w  and 
argument arg z + arg w. Alternatively, if a vector z is multiplied by a vector w then its modulus 
is increased by the factor w  and its argument is rotated anticlockwise by arg w.

Geometric representation of multiplication

y

xO

~

~

arg w

w

~z

~arg z

      

x

y

O

~

~

~arg z + arg w

arg w

w

~w

z

~z

arg z

If z = z[cos (arg z) + i sin (arg z)] and w = w [cos (arg w) + i sin (arg w)],

then their product is

zw = z w  [cos (arg z + arg w) + i sin (arg z + arg w)].
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EXAMPLE 8

If z = i3 cos
3

sin
3

π
+

π




 and w = i2 cos

6
sin

6
π

+
π





, plot z and zw on an Argand diagram.

Solution

Multiply the moduli:

z w = 3 × 2

           = 6

Add the arguments:

zwArg
3 6

2

=
π

+
π

=
π

So plotting zw we have dilated (‘stretched’) the length of z by a factor of 2 and rotated z 

by an angle of 
6
π

.

zw

z

6

Im(z)

length 6

length 3

Re(z)

6
π

3
π

zw i

i

6 cos
2

sin
2

6

=
π

+
π





=
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Dividing complex numbers

Dividing complex numbers

If z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then their quotient is

=z
z

r
r2 2

[cos (θ1 – θ2) + i sin (θ1 – θ2)]

Geometrically, this means that the quotient of vectors z and w will have length 
z
w

  

and argument arg z – arg w. Alternatively, if a vector z is divided by a vector w, then its 
modulus is decreased by the factor w  and its argument is rotated clockwise by arg w.

Geometric representation of division

x

y

O

arg w

~arg z
|w|

|z|

	 	

x

y

O

arg w

|w |
|z|

|w |

~|z| arg  z

~ ~arg z − arg w

If z = z [cos (arg z) + i sin (arg z)] and w = w [cos (arg w) + i sin (arg w)],  

then their quotient is

 
z
w

z
w

= [cos (arg z – arg w) + i sin (arg z – arg w)].
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EXAMPLE 9

If z i6 cos
5
6

sin
5
6

=
π

+
π




 and w i2 cos

2
3

sin
2
3

=
π

+
π




, plot z and 

z
w

 on the complex 

plane.

Solution

Divide the moduli:

z
w

6
2

3

=

=
Subtract the arguments:

z
w

Arg
5
6

2
3

6

=
π

−
π

=
π

So plotting 
z
w

 we have dilated (compressed) the length of z by a factor of 
1
2

 and rotated z 

by an angle of 
2
3
π

 clockwise.

z
w

i3 cos
6

sin
6

=
π

+
π





Im(z)

Re(z)O
6
π

6
π

3
2π

z

w
z
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Multiplying and dividing by i

Since i i1 cos
2

sin
2

=
π

+
π




, it is easy to see that if we multiply a complex number z by i then 

this is equivalent to rotating z by 
2
π

 anticlockwise. Similarly, if we divide by i then this is 

equivalent to rotating z by 
2
π

 clockwise.

Multiplying and dividing by i
Multiplication by i is equivalent to a rotation of 

2
π

 on the complex plane.

x

z

z

y

O

2
π

Division by i or multiplication by –i are transformations equivalent to a rotation of 
2

−
π

 
on the complex plane.

O x

z

y

– z

2
π–

	 	

O x

z

y

2
π

i
z

–

Notice that division by i and multiplication by –i give the same result. We can prove this: 

= × =
−

= −z
i

z
i

i
i

iz
iz

1
.
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EXAMPLE 10

If z i3 cos
5

sin
5

=
π

+
π




, plot iz and 

z
i

 on an Argand diagram.

Solution

To find iz, rotate the vector z anticlockwise by 
2
π

 radians. To find 
z
i

 rotate the vector z 

clockwise by 
2
π

 radians.

Im(z)

Re(z)

iz
√3

10
3π

5
π

10
3π

i
z

O

z

In polar form, iz i3 cos
7
10

sin
7
10

=
π

+
π




 and 

z
i

i3 cos
3
10

sin
3
10

= −
π





+ −
π













.

Recall 2 properties we have met:

• zn = rn(cos nθ + i sin nθ) De Moivre’s theorem

• z–1 = =
z r
1 1

[cos (–θ) + i sin (–θ)]

We can use these properties to plot powers and reciprocals of z on the complex plane.

EXAMPLE 11

Given z = 1(cos θ + i sin θ) in the diagram, plot  
each complex number below on the complex plane.

a iz

b 
z
i

c z2

d 
z
1

Im(z)

1

Re(z)

z

θ
O
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Solution

a iz = cos 
2

θ +
π




 + i sin 

2
θ +

π





b 
z
i

icos
2

sin
2

= θ −
π





+ θ −
π





c z2 = cos 2θ + i sin 2θ

d 
z
1

 = cos (–θ) + i sin (–θ)

EXAMPLE 12

z and w with corresponding vectors are shown on the complex plane.

Prove that z2 + w2 = 0.

x

z

w

y

O

Solution

To find w we rotate z an angle of 90° around O. This is equivalent to multiplying by i.

∴ w = iz.

Squaring both sides:

            w2 = (iz)2

            w2 = –z2

∴ z2 + w2 = 0

Im(z)

Re(z)

iz

i
z

z

z

z2

1
O

θ
θ

θ
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Exercise 4.04 Operations on the complex plane

 1 For each pair of complex numbers, find z z1 2  and arg z1z2. Hence sketch z1z2 on the 
complex plane.

a z i2 cos
6

sin
6

=
π

+
π




 and z i3 cos

2
sin

22 =
π

+
π





b z i2 cos
3

sin
3

=
π

+
π




 and z icos

2
3

sin
2
32 =

π
+

π





c z i5 cos
6

sin
6

= −
π





+ −
π










 and z i2 cos

3
sin

32 =
π

+
π





d z i
1
3

cos
3
4

sin
3
4

= −
π





+ −
π










 and z i3 cos

2
sin

22 = −
π





+ −
π











 2 For each z1 and z2, find 
z
z2

 and 
z
z

arg
2
. Hence sketch 

z
z2

 on the complex plane.

a z icos
2
3

sin
2
3

=
π

+
π




 and z icos

6
sin

62 =
π

+
π





b z i4 cos
3
4

sin
3
4

=
π

+
π




 and z i2 cos

2
sin

22 =
π

+
π





c z i2 cos
3

sin
3

= −
π





+ −
π











 and z i2 cos
6

sin
62 =

π
+

π





d z i3 cos
7
12

sin
7
12

= −
π





+ −
π










 and z i6 cos

4
sin

42 = −
π





+ −
π











 3 Find z1z2 if z i2 cos
2
3

sin
2
3

=
π

−
π





 and z i2 cos
6

sin
62 =

π
−

π




. Sketch z1z2.

 4 Find 
z
z2

 if z i6 cos
2

sin
2

=
π

−
π




 and z i2 cos

3
4

sin
3
42 =

π
−

π




. Sketch 

z
z2

.

 5 By first expressing in polar form, sketch 
z z
z
1 2

3
 on the complex plane if 

z i3 cos
6

sin
6

= −
π





+ −
π










, z i6 cos

2
3

sin
2
32 =

π
−

π




 and z i3 cos

3
sin

33 = −
π

+
π




.

 6 Given the vector z representing z on the complex 
plane, copy the diagram and sketch each expression. 
In each case, state which transformations of z are 
equivalent.

a iz b i2z c i3z

d –iz e –z
x

z
r

y

θ
O
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 7 Given z representing z on the complex plane, copy  
the diagram and sketch each expression. In each case,  
state which transformations of z are equivalent.

a z
i

 b 
z
i2  

c 
z
i3  d –iz

e –z

 8 Given z representing z = cos θ + i sin θ on the 
complex plane, copy the diagram and sketch  
each expression.

  Explain why =z
z
1

.  

Is this true for all z on the complex plane?

a z2 b z3

c 
z
1

 d 
z
1
2

e z–3 f z

 9 Given =u v , express the complex number v in terms of u.

a

  

b

  

c 

 10 Given each z, sketch 
z
1

.

a z 3cis
4

=
π

 b z
1
2

cis
2
3

=
π

 c z 4 cis
5
6

= −
π





 11 By first expressing in modulus–argument form, simplify each expression and sketch on 
an Argand diagram.

a (1 + i)3  b +





−i1
2 2

2

 c ( )−
−

i1 3
4

d − +







−

i
3
2

3
2

3

  e e2 4

8









π

 f e
1
2

6

3









− π −

x

z

y

θ
O

r

x

z
1

y

θ

O

x

v

u

y

θ
θ

Ox

y

O

v

u

x

y

π

O

v

u
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 12 Describe each transformation from z to w.

a

 

Im(z)

Re(z)

5
10

zw

3
π

3
π

O

 

b

 

Im(z)

Re(z)

6

z

w

43
π

12
5π

O

 

c

 

Im(z)

Re(z)

z

w

θ

4θ
16

2
O

 13 Consider the complex numbers z1, z2, z3, O, which 
correspond to the vertices of a square ABCO, where A 
and C are shown in the diagram.

a Express z3 in terms of z1.

b Explain why B is represented by z1 – iz1.

c The diagonals intersect at M. Find the complex 
number corresponding to M.

 14 Consider the complex numbers α, β, γ, δ, which 
correspond to the vertices of a rectangle ABCD where 
AD = 3AB. 

a Show that 
i 3

δ − γ
=

β − γ
.

b Find the complex number corresponding to M, 
the point of intersection of the diagonals, in terms 
of δ and β.

Im(z)

A

C

Re(z)O

y
Aα

Bβ

Cγ

Dδ
xO



ISBN 97807043435 4. Applying complex numbers 147

 15 Consider the points P, Q, R representing  
w1, w2, w3 on the complex plane as shown.  

Prove that 
w w
w w

i2 1

3 1

−
−

= .

 16 Points A and B representing complex numbers z1, z2 respectively form a triangle 
together with O on the complex plane. It is given that =z z1 2 .

a Plot the information and draw the point C representing z1 + z2.

b Describe the quadrilateral OACB.

c Given that = −z z z1 1 2 , what can you deduce about ∆ABC?

 17 Prove that the vectors representing the complex numbers u, v and 
−
−

u iv
i1

 form a  
right-angled triangle.

INVESTIGATION

FRACTALS AND COMPLEX NUMBERS
Fractals are part of chaos theory. This is a relatively new area in the history of 
mathematics, the development of which was only possible after the invention of the 
high-powered IBM computer in the 1970s. Before that, it was difficult to process 
numerous repetitive calculations quickly. Benoit Mandelbrot coined the term ‘fractal’, 
and with his computer he generated what is now known as the Mandelbrot set.

The Mandelbrot set is the set of points that can be generated by multiple iterations 
using the equation zn + 1 = zn

2 + C where z ∈  . We can choose the initial points for  
z1 and C then iterate a number of times, selecting an arbitrary value of n. This can be 
done using a spreadsheet. After n iterations, we calculate zn . If zn  < 2 then z1 is a 
member of the Mandelbrot set.

For instance, choose z1 = 0.5 – 0.5i and C = 0.25 + 0.25i. Set up a spreadsheet similar to 
the one below and then determine whether or not zn  < 2 for some arbitrary value of n 
(say 50).

y
R

P

Q

xO
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If it is the case then z1 = 0.5 – 0.5i belongs to the Mandelbrot set. We can colour all such 
points, say, black. The resulting set looks like the image below.

1 Set up your own spreadsheet and experiment with differing values of z1 and C.

2 What is the meaning of ‘self-similar’?

3 The Mandelbrot set is contained within a circle. What is its radius?
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4 What can you say about the area and perimeter of the Mandelbrot set?

5 There are other types of fractals. Find some of them and if they can be generated 
using an equation. Try to generate them if you can.

6 Where are fractals used now?

7 Find a fractal generator on the Internet and build your own fractal.

4.05 Roots of unity
The solutions for z to an equation in the form zn = 1 are called roots of unity, where unity 
means 1. The equation can be solved by factorising if n is not too large.

EXAMPLE 13

a Show that a3 – b3 = (a – b)(a2 + ab + b2).

b Use the above identity to find the roots of z3 = 1 and then show them on an Argand 
diagram.

Solution

a RHS = (a – b)(a2 + ab + b2)

          = a3 + a2b + ab2 – a2b – ab2 – b3

          = a3 – b3

b                               z3 = 1

                         z3 – 1 = 0

 (z – 1)(z2 + 1z + 12) = 0 a = z, b = 1

 (z – 1)(z2 + z + 1) = 0

 ∴ z = 1    or    z2 + z + 1 = 0

 ∴ z = 1    or    z = 
− ± −1 1 4(1)(1)

2

2

 ∴ z = 1    or    z = 
− ± −1 3

2

 ∴ z = 1    or    z = 
− ± i1 3

2
 In polar form these solutions are  

 z = 1, z i z icos
2
3

sin
2
3

, cos
2
3

sin
2
3

=
π

+
π

= −
π





+ −
π




.
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Note that we have one real and 2 complex conjugate solutions that are equally spaced 
on the complex plane around the origin from z = 1. Since z = 1 satisfies the equation  
z3 = 1 then z = 1 is a solution.

Plotting these on an Argand diagram we have:

O

Im(z)

Re(z)

ω

1 = ω3

ω
1ω2 = ω =–

3
2π

3
2π

3
2π

It is conventional to name the complex cube roots of unity using the small Greek letter 
omega, ω.

If ω = i icos
2
3

sin
2
3

or cos
2
3

sin
2
3

π
+

π
−

π





+ −
π













, then it can be shown that the 

other 2 roots are ω2 and ω3.

Cube roots of unity
The cube roots of unity are the solutions to the equation z3 = 1.

A complex cube root of unity is denoted by ω = icos
2
3

sin
2
3

π
+

π
  

or icos
2
3

sin
2
3

−
π





+ −
π





The following properties hold:

•	 ω2 = 
1

ω =
ω

•	 ω2 +	ω + 1 = 0

•	 ω3 = 1



ISBN 97807043435 4. Applying complex numbers 151

EXAMPLE 14

Find the 4 roots of z4 = 1 and show them on the complex plane.

Solution

                                    z4 = 1
                              z4 – 1 = 0
                (z2 – 1)(z2 + 1) = 0
(z – 1)(z + 1)(z – i)(z + i) = 0

∴ z = 1, –1, i or –i

O

Im(z)

Re(z)

–1

–1

1

α2

α

α4 = 1

α3 = α

Note that we have 2 real and 2 complex conjugate solutions that are equally spaced on 
the complex plane around the origin from z = 1. Since z = 1 satisfies the equation z4 = 1 
then z = 1 is a solution.

There is no convention for naming higher complex roots of unity so in this example we 
have named the first one α, so the 4 roots are α, α2, α3 and α4 where 

α3 = 
1

α =
α

, 

α3 + α2 + α + 1 = 0, 

α2 = –1

and α4 = 1.
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The equation zn = 1 cannot be solved by factorising if n is too large. However, notice that 
when graphed on the complex plane, the roots are equally spaced around the origin with one 
of the roots at z = 1. Since z = 1 satisfies the equation zn = 1 then z = 1 is one of the solutions.

This observation can be used to solve zn = 1 for any n ∈ .

Roots of unity
If z is a complex number then the equation zn = 1  
has n solutions on the complex plane.

The solutions are called the nth roots of unity.

When plotted on the complex plane, the nth roots of unity z1, z2, z3, z4, …, zn are equally 

spaced 
n
2π

 radians apart around the origin, including z = 1.

Since z = 1 satisfies the equation zn = 1 then z = 1 is a solution.

The roots z1, z2, z3, z4, …, zn form the vertices of a regular polygon and the vector sum 
is zero. That is, z1 + z2 + z3 + z4 + … + zn = 0.

Therefore the sum of the roots is zero and the complex roots come in conjugate pairs.

Note also that if z1 = α, z2 = α2, z3 = α3, …, zn = αn = 1 then z1 + z2 + z3 + z4 + … + zn = 0  
can be written as 1 + α + α2 + α3 + … + αn – 1 = 0. We can note the conjugate pairs: 

, ,n n n1 2 2 3 3α = α α = α α = α− − −

We can now solve zn = 1 algebraically by first expressing 1 in polar form: 1 = cos 0 + i sin 0.

Im(z)

Re(z)1

zr = αr

zn – 1 = αn – 1

z1 = α

z2 = α2

O θ
θ

θ
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EXAMPLE 15

Find the complex roots of z7 = 1 and show them on the complex plane.

Solution

Solving z7 = 1 algebraically in polar form, 

Let z = r(cos θ + i sin θ) for –π < θ ≤ π

LHS = z7 = r7(cos 7θ + i sin 7θ) using De Moivre’s theorem

RHS = 1 = 1(cos 0 + i sin 0)

Then equating we have:

r7(cos 7θ + i sin 7θ) = 1(cos 0 + i sin 0).

∴ r = 1 and cos 7θ = cos 0 for –7π < 7θ ≤ 7π

cos 7θ = 1

Solving:

        7θ = 0, ±2π, ±4π, ±6π

∴      θ = 0, 
2
7

4
7

6
7

±
π

±
π

±
π

For convenience, we will use the shorthand notation cis θ = cos θ + i sin θ.  
Therefore the 7 solutions are:

z

z

cis 0, cis
2
7

, cis
4
7

, cis
6
7

, cis
6
7

, cis
4
7

, cis
2
7

1 cis
2
7

, cis
4
7

, cis
6
7

, cis
6
7

, cis
4
7

, cis
2
7

=
π π π − π − π − π

=
π π π − π − π − π

Plotting these we see that the roots are equally spaced around the origin on the complex 
plane, starting at z =	1.

Geometrically we could bypass the algebra and 
use the pattern developed above to plot 7 equally 

spaced roots 
2
7
π

 apart around z = 1. Joining the 

roots forms a regular septagon (polygon with  
7 equal sides).

Im(z)

Re(z)
7

2π

–1

–1 1

cis
7

6π–

cis
7

4π–

cis
7

2π–











 






cis
7

6π

cis
7

4π

cis
7

2π
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EXAMPLE 16

Find the 5 roots of z5 = 1 and plot them on the complex plane.

a If ρ is a complex root of z5 = 1, explain why ρ4 + ρ3 + ρ2 + ρ + 1 = 0.

b Factorise z5 – 1 into one linear and 2 quadratic factors with real coefficients.

c Find the exact value of cos
2
5
π

.

d Show that cos
2
5

cos
5

1
2

π
−

π
= − .

Solution

The 5th roots of 1 are equally spaced 
2
5
π

 apart from  

z = 1, and the roots form a regular pentagon.

a Since the sum of the roots is zero then  
ρ4 + ρ3 + ρ2 + ρ + 1 = 0.

b We can factorise using the roots.

 z5 – 1 = (z – 1)(z – ρ)(z – ρ2)(z – ρ3)(z – ρ4)

 Now using the conjugates we can pair them to  
create quadratics with real coefficients.

 z z z z z z

z z z z z

1 1

1

5 2 2

2 2 2 2 2 2

( )
( )

( )
( )
( )( )

( )

( )

( )

− = − − ρ − ρ − ρ − ρ

= − − ρ + ρ + ρρ − ρ + ρ + ρ ρ





 Now:

 
i icos

2
5

sin
2
5

cos
2
5

sin
2
5

2cos
2
5

ρ + ρ =
π

+
π





+
π

−
π





=
π

 
i icos

2
5

sin
2
5

cos
2
5

sin
2
5

1

ρρ =
π

+
π





π
−

π





=

Im(z)

Re(z)
5

2π

z3 = ρ3 = z2
z4 = ρ4 = z1

1 = z5 = ρ5

z1 = ρ
z1 = ρ2

O
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 Similarly:

 
i icos

4
5

sin
4
5

cos
4
5

sin
4
5

2cos
4
5

2 2ρ + ρ =
π

+
π





+
π

−
π





=
π

 
i icos

4
5

sin
4
5

cos
4
5

sin
4
5

1

2 2ρ ρ =
π

+
π





π
−

π





=

 ∴ z z z z z z1 1 2cos
2
5

1 2cos
4
5

15 2 2( )− = − −
π





+






−
π





+






c We know that ρ4 + ρ3 + ρ2 + ρ + 1 = 0, or, as conjugates

 
1 0

2cos
2
5

2cos
4
5

1 0

2 2( )( )ρ + ρ + ρ + ρ + =

∴
π

+
π

+ =

 Using cos 2x = 2 cos2 x – 1 with x
2
5

=
π

, then we have 

 
2cos

2
5

2 2cos
2
5

1 1 0

4 cos
2
5

2cos
2
5

1 0

2

2

π
+

π
−





+ =

π
+

π
− =

 Solving for cos
2
5
π

:

 

cos
2
5

2 2 4 4 1

2 4

2 20
8

2 2 5
8

1 5
4

2 ( )( )
( )

π
=

− ± − −

=
− ±

=
− ±

=
− ±

 Since 0
2
5 2

<
π

<
π

 then cos
2
5
π

 > 0

 So the exact value of cos
2
5

1 5
4

π
=

− +
.
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d We know that ρ4 + ρ3 + ρ2 + ρ + 1 = 0.

i i i icos
4
5

sin
4
5

cos
4
5

sin
4
5

cos
2
5

sin
2
5

cos
2
5

sin
2
5

1

2cos
4
5

2cos
2
5

1

cos
4
5

cos
2
5

1
2

π
+

π





+
π

−
π





+
π

+
π





+
π

−
π





= −

π
+

π
= −

π
+

π
= −

 Now since cos
4
5

cos
4
5

cos
5

π
= − π −

π





= −
π

 using cos (π – θ) = –cos θ

 then cos
2
5

cos
5

1
2

π
−

π
= − .

Solving problems using the roots of unity
There are many identities that can be derived and used in solving problems with complex 
numbers. You saw earlier that we can use De Moivre’s theorem to derive results in 

trigonometry. The relationships between the cube roots of unity such as 
12ω =
ω

 were also 

demonstrated. Further examples are shown below.

EXAMPLE 17

ω is a complex cube root of unity. 

a Show that ω2 + ω + 1 = 0.

b Simplify (1 + 2ω + 3ω2)(1 + 2ω2 + 3ω).

Solution

a Using z3 = 1 then

                    z3 – 1 = 0

 (z – 1)(z2 + z + 1) = 0

 Then either z – 1 = 0 or z2 + z + 1 = 0.

 Since ω is complex then ω satisfies z2 + z + 1 = 0; therefore ω2 + ω + 1 = 0.
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b Now we can rearrange ω2 + ω + 1 = 0 and substitute.

 (1 + 2ω + 3ω2)(1 + 2ω2 + 3ω) = [1 + 2ω + 3(–ω – 1)][1 + 2(–ω – 1) + 3ω]

                                                 = (–2 – ω)(–1 + ω)

                                           = 2 – 2ω + ω – ω2

                                           = 2 – ω – ω2

                                           = 2 + 1  since –ω – ω2 = 1

                                           = 3

 Alternatively we could expand (1 + 2ω + 3ω2)(1 + 2ω2 + 3ω) and use the results  
ω3 = 1, ω4 = ω, ω5 = ω2 and so on.

Exercise 4.05 Roots of unity

 1 Solve each equation on the complex plane and plot the roots on an Argand diagram.

a z3 = 1 b z5 – 1 = 0 c z8 = 1 d z9 – 1 = 0

 2 Verify that each statement is true.

a icos
3

sin
3

α =
π

+
π

 is a root of z6 = 1.

b icos
4
7

sin
4
7

α = −
π





+ −
π




 is a root of z7 = 1.

c icos
6

sin
6

α =
π

+
π

 is a root of z12 = 1 and 7 5α = α

d icos
2
3

sin
2
3

α = −
π





+ −
π





 is a root of z9 = 1 and 4 4α = α− .

 3 List the conjugate root pairs of each equation if α is a complex root.

a z7 – 1 = 0 b z11 = 1

 4 If icos
2
5

sin
2
5

β =
π

+
π

 is a root of z5 – 1 = 0, explain why β + β2 + β3 + β4 + 1 = 0.  

Hence show that β2 + β + 1 + 
1 1

2β
+

β
 = 0.

 5 If ω is a complex root of z3 = 1, simplify each expression.

a ω + ω2 + ω3 b (ω + ω2)(ω2 + ω3)(ω3 + ω)

c (6ω + 1)(6ω2 + 1) d (1 – ω – ω2)(ω – ω2 – 1)(ω2 – 1 – ω)

e ω7 + ω8 + ω9 + ω10 + ω11 + ω12 + ω13 + ω14

 6 If α is a complex 9th root of unity, show that:

a 1 + α + α2 + α3 + α4 + α5 + α6 + α7 + α8 = 0

b 1 + α3 + α6 = 0

c cos
2
9

cos
4
9

cos
6
9

cos
8
9

1
2

π
+

π
+

π
+

π
= −
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4.06 Roots of complex numbers
You saw in Example 13 on page 149 that the square roots of a complex number are equally 
spaced around the origin. This is true for all types of roots and the solution can be shown 
geometrically on the complex plane.

EXAMPLE 18

Find the square roots of 15 + 8i.

Solution

Solving 15 + 8i = (a + ib)2, a, b ∈  algebraically,  
we see that the square roots of 15 + 8i are 4 + i  
and –4 – i.

If we plot these on the complex plane we can  
make the following observations.

1 The first root 4 + i has half the argument of  

15 + 8i, that is, arg (4 + i) = 
1
2

 arg (15 + 8i).

2 The modulus is the square root of i15 8+ , that is, mod (4 + i) = + imod (15 8 ) .

3 The 2 square roots of 15 + 8i are equally spaced around O on the complex plane  
(halve 2π to get π apart in this case).

We can use this thinking to solve any complex equation in the form zn = a + ib.

We know that the n solutions to zn = a + ib are equally spaced around the origin at a spacing 

of 
n
2π

 apart. We need to find the first solution, which we will call z1.

First write in polar form:

zn = a + ib

∴ rn(cos nθ + i sin nθ) = R(cos α + i sin α)

Equating we have

rn = R nθ = α

=r Rn

n
θ =

α

So we can plot z1 = r(cos θ + i sin θ).

Roo o 
complex 
numbers

Homewok

WS

Im(z)

Re(z)

√mod (15 + 8i)

15 + 8i

4 + i1
5 + 8i

− 4 − i

arg (15 + 8i)
2
1

O
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The other solutions to zn = a + ib are equally spaced around the origin starting at  
z1 = r(cos θ + i sin θ).

Roots of a complex number
The solutions to zn = a + ib are equally spaced 

n
2π

 radians apart around the origin, starting at 

z1 = r(cos θ + i sin θ), where 
a ib
n

arg ( )
θ =

+
 and 

r a ibn= + .

The example of z5 = a + ib is sketched.  
The roots z1, z2, z3, z4, z5 form the vertices of a 
regular pentagon.

Using vector addition of the regular polygon, notice that the sum of the roots is zero; 
that is, z1 + z2 + z3 + z4 + … + zn = 0.

However, since a + ib is complex, the roots do not come in conjugate pairs.

Note that a + ib is not necessarily a root of the equation zn = a + ib.

Im(z)

Re(z)

z5z4

z3
z1

z2 r5

z5 = a + ib = r5 cis 5θ

5
2π

5θ r

O
θ
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EXAMPLE 19

Solve the equation z4 = –1.

Solution

Using the technique above, we know the 4 roots z1, z2, z3, z4 will be equally spaced 
around the origin starting at z1, forming the vertices of a square. 

Now we need to find the location of z1.

Let z1 = r(cos θ + i sin θ) and note –1 = 1(cos π + i sin π).

Then z1
4 = r4(cos 4θ + i sin 4θ) = 1(cos π + i sin π)

So r = 1 and 4θ = π so 
4

θ =
π

.

Therefore z i1 cos
4

sin
4

=
π

+
π




. The other 3 roots will be equally spaced from 

z i1 cos
4

sin
4

=
π

+
π




. Dividing 2π by 4 we have a spacing of 

2
π

. So the other 3 roots are:

z i i1 cos
4 2

sin
4 2

cos
3
4

sin
3
42 =

π
+

π





+
π

+
π













 =

π
+

π

z i i i1 cos
4

sin
4

cos
5
4

sin
5
4

cos
3
4

sin
3
43 =

π
+ π





+
π

+ π













 =

π
+

π
= −

π





+ −
π





 using the 

principal argument

z i i1 cos
4 2

sin
4 2

cos
4

sin
44 =

π
−

π





+
π

−
π













 = −

π





+ −
π




.

4
π

z1z2

z3 = z2 z4 = z1

Im(z)

Re(z)

π

–1 O

Note that z = –1 is not a root of the equation z4 = –1.

Also note that z1 + z2 + z3 + z4 = 0 and that since –1 is real, the roots do come in 
conjugate pairs.
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EXAMPLE 20

Solve the equation z5 = − + i3 .

Solution

The 5 roots, z1, z2, z3, z4, z5, will be equally spaced around the origin, starting at z1.  
Now we need to find the location of z .

Let z1 = r(cos θ + i sin θ).

Converting to polar form we have i i3 2 cos
5
6

sin
5
6

− + =
π

+
π





.

Then, z1
5 = r5(cos 5θ + i sin 5θ) = i2 cos

5
6

sin
5
6

π
+

π





So =r 25  and 5
5
6

θ =
π

 so 
6

θ =
π

.

Therefore z i2 cos
6

sin
6

5=
π

+
π





.

The other 4 roots will be equally spaced from z i2 cos
6

sin
6

5=
π

+
π





. 

Dividing 2π by 5 we have a spacing of 
2
5
π

. So the other 4 roots are:

z i i2 cos
6

2
5

sin
6

2
5

cos
17
30

sin
17
302

5=
π

+
π





+
π

+
π













 =

π
+

π

z i i2 cos
6

4
5

sin
6

4
5

2 cos
29
30

sin
29
303

5 5=
π

+
π





+
π

+
π













 =

π
+

π





z i i

i

2 cos
6

6
5

sin
6

6
5

2 cos
41
30

sin
41
30

2 cos
19
30

sin
19
30

using the principal argument

4
5 5

5

=
π

+
π





+
π

+
π













 =

π
+

π





= −
π





+ −
π















z i i2 cos
6

2
5

sin
6

2
5

cos
7
30

sin
7
305

5=
π

−
π





+
π

−
π













 = −

π





+ −
π




 using the principal 

argument.
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O

Im(z)

2

Re(z)

z5z4

z3

z2

z1

z5 =   √3 + i−

√25

6
5π

6
π

Note that the roots are equally spaced around z i2 cos
6

sin
6

5=
π

+
π





.

Also note that z1 + z2 + z3 + z4 + z5 = 0 and that since − 3 + i is not real, the roots do not 
come in conjugate pairs.

Exercise 4.06 Roots of complex numbers

 1 Find the roots of each equation on the complex plane. Sketch your solutions on an 
Argand diagram.

a z2 = 1 + i 3  b z2 = i c z2 = –1 – i 3 d z2 = –i

 2 Solve each equation, giving your answer in exact modulus–argument form.

a z3 = –1  b z3 = i c z3 = –i

 3 Determine the roots of each equation, answering in modulus–argument form.

a z4 = 16i b z4 = –1 – i 3 c z4 = –i

 4 a Show that icos
3
5

sin
3
5

−
π





+ −
π




 is a root of z5 + 1 = 0.

b Find the other roots of z5 + 1 = 0 and plot them on the complex plane.

c State which roots are conjugates.

d Prove that cos
5

cos
3
5

1
2

π
+

π
= .

 5 Find the 7th roots of –1. Hence:

a explain why the sum of the roots is zero

b prove that cos
7

cos
3
7

cos
5
7

1
2

π
+

π
+

π
=

 6 Solve over the complex plane:

a z6 = –1  b z8 = –1  c z5 = i

 7 a Show that i2 cos
3
4

sin
3
4

π
+

π




 is a root of z3 – 2 – 2i = 0.

b Find the other roots of z3 – 2 – 2i = 0 and plot them on an Argand diagram.
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4.07 Curves and regions on the complex plane
Curves and regions on the complex plane are sets of points representing complex numbers 
described by a certain rule or condition placed on the variable complex number z. The set of 
points is often called the locus of z.

We can take a geometric approach or an algebraic approach to solving locus problems.  
We can graph a locus in the complex plane algebraically, by first deriving the Cartesian 
equation, or geometrically by using the definitions of modulus and argument.

Using the algebraic approach we can let z = x + iy and let Re(z) = x and Im(z) = y. Recall that 

|z| = r = +x y2 2  and Arg z is the principal argument.

Using a geometric approach we can use the definition of z – z1 to mean a vector where z is a 
variable point and z1 is a fixed point. This means that −z z  is the distance from z to z1 and 
arg (z – z1) is the angle between the vector z – z1 and the positive x-axis.

Modulus and argument of z – z1

Given a variable point z and a fixed point z1 in the complex plane, then:

• −z z  is the distance from z to z1

• arg (z – z1) is the angle between the vector z – z1 and the positive x-axis.

Im(z)

Re(z)O
θ

z1

z  − z 1

z  − z 1

arg (z  − z 1)

z

Complex  
plane graphs
Homewok

WS
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We can now develop some basic ideas regarding moduli and arguments.

Modulus and argument on the complex plane
Consider 4 complex numbers z1, z2, z3, z4 represented by points A, B, C, D respectively 
on the complex plane.

1 z z1 2−  = z z3 4−  means AB = CD.

 

A

C

D

BIm(z)

Re(z)O

2 arg (z1 – z2) = arg (z3 – z4) means AB || CD.

 

Im(z)
A

B

C

D

Re(z)O
θ θ

3 z1 – z2 = z3 – z4 means both differences are equal, so their moduli and arguments are 
equal. Either ABDC forms a parallelogram or A, B, C, D are collinear and AB = CD.

 

Im(z)

A

B

C

D

Re(z)O
 or 

Im(z)A

B

C

D

Re(z)O
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Modulus on the complex plane

EXAMPLE 21

Sketch each curve using:

 i an algebraic approach  ii a geometric approach

a z  = 3 b + −z i1 2  = 1

Solution

a z  = 3

 i Let z = x + iy, x, y, ∈ .

  +x iy  = 3

  +x y2 2  = 3

  Then x2 + y2 = 9

 ii z   = 3 means − +z i(0 0 )  = 3; that is, the  
distance of z from O is 3 units.

   In both cases we see that the locus of z is a  
circle, centre O and radius 3.

b + −z i1 2  = 1

 i  Let z = x + iy, x, y, ∈ .  
We can write − − +z i( 1 2 )  = 1 so

  + − − +x iy i( 1 2 )  = 1

  + + −x y( 1) ( 2)2 2  = 1

  Then (x + 1)2 + (y – 2)2 = 1

 ii  + −z i1 2  = 1 means the distance of z from  
(–1 + 2i) is 1 unit.

  In both cases we see that the locus of z is a circle, centre (–1 + 2i) and radius 1.

Im(z)

Re(z)O–3

–3

3

3
z

Im(z)

Re(z)O–1

1
2

z
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EXAMPLE 22

Sketch −z 2  = −z i2  using:

a an algebraic approach  b a geometric approach

Solution

a Let z = x + iy, x, y, ∈ . Then −z 2  = −z i2  becomes

        x iy x y i( 2) ( 2)− + = + −

   ( )( )− + = + −x y x y2 22 2 2 2

  (x – 2)2 + y2 = x2 + (y – 2)2

 x2 – 4x + 4 + y2 = x2 + y2 – 4y + 4

 ∴ y = x

b Geometrically −z 2  = −z i2  means that z is equidistant from both 2 and 2i; that is, 
it is the perpendicular bisector, y = x.

Im(z)

Re(z)2

z

2

O
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Arguments on the complex plane

EXAMPLE 23

Sketch the graph of each equation.

a arg z = 
3
π

 b arg (z + i) = 
3
4
π

 c arg [z – (1 + i)] = 
6

−
π

Solution

a arg z = 
3
π

 The complex number z is the vector  

from O at an angle of 
3
π

.

 arg 0 is undefined so we draw an open circle  

there to indicate that it is not part of the graph.

b arg (z + i) = 
3
4
π

 The complex number z is the vector  

from –i at an angle of 
3
4
π

.

 arg 0 is undefined so draw an open circle at –i.

c arg [z – (1 + i)] = 
6

−
π

 The complex number z is the vector from  

1 + i at an angle of 
6

−
π

.

Im(z)

Re(z)O

π

z

3

Im(z)

Re(z)O

3π

z

4

−1

Im(z)

Re(z)

z

O

π
6

1

1 −
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EXAMPLE 24

Sketch the graph of each equation.

a arg [z – (3 + i)] = arg [z – (1 + 3i)]

b arg [z – (3 + i)] – arg [z – (1 + 3i)] = ±π

c arg (z – 3) – arg (z + 3) = 
2
π

Solution

a The arguments are equal so the vectors  
z – (3 + i) and z – (1 + 3i) must be running in 
the same direction. They have a common 
point z, so the locus of

 arg [z – (3 + i)] = arg [z – (1 + 3i)]

 must be points on the line through 3 + i and 
1 + 3i. The solution has 2 sections, excluding 
the points between 3 + i and 1 + 3i.

 Note: the in-between points must be 
excluded. If z was a point between 3 + i and 1 + 3i then the vectors  
z – (3 + i) and z – (1 + 3i) would be running  
in opposite directions.

b The arguments differ by 180° so the 
vectors must be running in opposite 
directions. They have a common point z,  
so the locus of

 arg [z – (3 + i)] – arg [z – (1 + 3i)] = ±π

 must be points on the line joining 3 + i and 
1 + 3i and must be the points between 3 + i 
and 1 + 3i.

c arg (z – 3) – arg (z + 3) = 
2
π

 The arguments differ by 90° but 
they have a common point z. It uses 
the theorem that in a triangle the 
exterior angle equals the sum of 
the two interior opposite angles. 
The solution is a semicircle with 
diameter between 3 and –3 because 
the angle in a semicircle is 90°.

Im(z)

Re(z)

z

z

O

1 + 3i

3 + i

O

Im(z)

Re(z)

z

1 + 3i

3 + i

O

Im(z)

Re(z)

z

−3

z + 3

arg (z + 3)

arg (z − 3)

arg (z − 3) − arg (z + 3)

z − 3

3
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Regions on the complex plane
We will examine more examples of graphing sets of points where the locus is a shaded region 
rather than a line or curve.

EXAMPLE 25

Sketch the graph of each inequality.

a z
4

arg
3

−
π

≤ <
π

 b z
1
2

2 1< − ≤     c Re(z) > Im(z) + 1

Solution

a z
4

arg
3

−
π

≤ <
π

 is the region between the two  

vectors from O with arguments 
4

−
π

 and 
3
π

.  

Note the dotted vector since arg z = 
3
π

 is not  
included.

b < − ≤z
1
2

2 1 represents the region between the  

2 circles centred on 2 with radii 
1
2

 and 1.

c Re(z) > Im(z) + 1. Using a Cartesian approach  
we can say x > y + 1 or, rearranging, y < x – 1.

O

Im(z)

Re(z)
3
π

z

4
π–

O

Im(z)

1 z

3
2

1

1
2

Re(z)

O

Im(z)

z

1

−1

Re(z)
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Exercise 4.07 Curves and regions on the complex plane

 1 For each equation, draw a sketch and describe it.

a arg z = arg w b z  = w  c arg z = –arg w

d arg (z – w) = arg (u – v) e − = −z w u v  f z – w = u – v

g + = −z w z w  h z + w = u + v i z – u = i(z + u)

 2 Sketch the circle defined by each equation.

a z  = 1  b z  = 2  c z  = 4  d z  = 
1
4

e −z 1  = 3 f +z 3  = 1 g −z i3  = 3 h + =z i 1
2

 3 Sketch each equation on the complex plane.

a arg z = 
6
π

 b arg w = 
3
4
π

 c arg z = 
3

−
π

 d arg u = π

 4 Sketch the vector z if:

a arg (z – 1) = 
3
π

 b arg (z – i) = 
6
π

c arg [z – (1 – i)] = 
2
3
π

 d arg (z – 3 – 2i) = 
5
6

−
π

 5 Sketch the graph of each equation.

a − +w i(1 )  = 1 b − −z i(1 3 )  = 2

c − −z i2  = 
1
2

 d + −w i3 4  = 5

 6 Sketch the graph of each inequality.

a 
6

−
π

 ≤ arg w ≤ 
6
π

 b 
4
π

 < arg w ≤ 
3
4
π

 c –π < arg w < 
2
π

 7 Sketch the region defined by each inequality.

a z  ≤ 9  b u  > 3 c 
1
2

 < z  ≤ 1 d 1 ≤ −z 3  < 2

 8 Sketch the graph of each equation.

a arg z = arg (1 + i) b arg z = arg (1 + i 3)

c arg (z – 2) = ( )− iarg 2 2  d arg (z + 3i) = arg (− 3 + i)

 9 For a complex number z, let arg z = θ. Find a relationship between arg z  arg (–z)  
and –arg z in terms of θ. Draw a sketch.
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 10 Sketch the graph of z if:

a arg z – arg (–1 – i) = 0  b arg z – arg (–1 – i 3) = 0

c arg z + −






i

arg
3

2 2
 = 0 d arg z + ( )− − iarg 2 2  = 0

e arg (z – 1) = arg (–1 + i) f arg (z – 2i) = arg (1 + i 3)

 11 Sketch the graph of z for:

a Re(z) = 3 b Im(z) = 2

c Re(z) = –4 d Im(z) = –1

 12 Find the Cartesian equation of each locus and then sketch it.

a Re(z) + Im(z) = 0 b Im(z) = 2 Re(z)

c Re(z) = 2 Im(z) – 1 d Im(z) + 3 Re(z) = 6

 13 Sketch the locus of w if:

a arg w = arg (w – 2) b arg w = arg (w – i)

c arg (w + 2) – arg w = 0 d arg (w + i) – arg (w – 1) = 0

 14 Sketch the parabola defined by Im(z) = −z i2 .

 15 Sketch z defined by each inequality.

a Re(z) > 1 b Im(z) < 2 c –2 < Re(z) ≤ 3

d Im(z) < –1 and Re(z) ≥ –2 e zRe( )  ≤ 3 f zIm( )  < 1

g zRe( )  ≥ 
1
2

 h zRe( )  > 5 and zIm( )  ≤ 4

 16 Sketch:

a arg (z – 2) – arg z = ±π b arg (z – 3) – arg (z + 3) = 
2
π

c arg (z – 2i) – arg (z + 1) = 
2
π

 d arg (z + 2i) – arg (z – 2) = ±π

 17 Using the theorem 
z
w

arg  = arg z – arg w, sketch:

a −






=
z

z
arg

1
0 b 

−
+







=
πu

u
arg

1
1 2

c 
−
−







= ±π
z
z i

arg
2
2  d 

−
+







=
πz i

z i
arg

2

 18 Describe each locus and hence sketch the graph.

a z  = −z i4  b − = +z z2 2

c − + = + −z i z i1 1  d − − = + +z i z i5 3 3
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 19 Describe the subset of the complex plane defined by each equation and sketch the graph.

a 
−
+







=
w
w i

arg
2
2

0  b 
−
+







=
πu i

u
arg

2
2 2

 20 Sketch each region.

a z  ≤ 3 and 0 < arg z < 
2
π

 b −z 2  ≤ 1 and 0 < arg z ≤ 
3
π

c −z i  ≥ 1 and z
6

arg
5
6

π
≤ <

π
 d 

1
2

 ≤ z  < 3 and z
4

arg
4

−
π

< ≤
π

 21 The triangles OXZ and OYW in the diagram are 
similar. Z and W represent the complex numbers 
z and w respectively. Let arg z = θ.

  Show that =w x iz y1 2 .

 22 PQR is a right-angled isosceles triangle. 

  If P, Q, R represent the complex numbers p, q, r  
respectively, prove that:

a − = −p q r q  

b 
−
−







=
πp q

r q
arg

2
 

c p – q = i(r – q)

d (p – q)2 + (r – q)2 = 0

e − + − = −p q r q r p2 2 2

 23 Consider the parallelogram KLMN representing the  
complex numbers z1, z2, z3 and z4 respectively.  
Plot the point:

a P corresponding to z3 – z4

b Q corresponding to z1 – z3

c R corresponding to –i(z2 – z1)

|x2|

|x1|

|y1|

Im(z)

Re(z)

Z

W Y

XO

z

| y2|
w

θ

y

x

P

R

Q

O

Im(z)

Re(z)

K

N

M
L

O



ISBN 97807043435 4. Applying complex numbers 173

 24 Consider the triangle UVW whose vertices represent  
u, v, w respectively. UV is parallel to the x-axis.  
Show that:

a arg (w – u) = θ
b arg (w – v) = π – α

c 
w v
w u

arg
−
−

= β

 25 Consider the complex numbers a, b, c, d represented  
by the points A, B, C, D respectively in the complex plane.  
Express b, c, d in terms of a.

 26 Consider the complex numbers p, q and r such that =p q  = 1, arg p = θ and arg q = α. 
Draw a sketch and find an expression for r in terms of p and q if:

a arg r = θ – α b arg r = θ + α

 27 Consider the 5 numbers sketched on the complex plane.

a Find the value of α.

b Write down the complex numbers z1, z2, z3, z4, z5.

c Show that z1
2 = z2.

d Show that z2
2 = z4.

e Show that z3
2 = z1.

f Find z1
2 + z2

2 +z3
2 + z4

2 + 1.

 28 Sketch:

a 
+
−

=z
z

4
2

1 b 
−
+

≤z i
z i

2
2

1 c 
− =z
z
3

2
1

29 a Show that the equation + = −z z3 2 1  describes a circle.

b Find its centre and radius.

30 Find the maximum value of arg (z + 1) if −z 1  = 1.

y

x

W

U V

β

θ α

Im(z)

Re(z)

D

10
B

A

C

5

6
π
6
π4

π
π

y

x

z1

z4

z3

z2

z5O

1

α
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4. TEST YOURSELF

 1 Use De Moivre’s theorem to simplify:

a [ 3(cos δ + i sin δ)]4 b 
π

−
π





icos
5
6

sin
5
6

7

c i[9 cos 72 sin 72 ]2( )° + °

 2 Using De Moivre’s theorem and the binomial expansion of (a + b)5:

a i show that sin 5θ = 5 cos4 θ sin θ – 10 cos2 θ sin3 θ + sin5 θ
 ii express sin 5θ in terms of sin θ
b i show that cos 5θ = cos5 θ – 10 cos3 θ sin2 θ + 5 cos θ sin4 θ
 ii express cos 5θ in terms of cos θ

 3 a Given tan 5θ = 
sin 5
cos 5

θ
θ

, use your results in Question 2 and divide every  

term by cos5 θ to find an expression for tan 5θ in terms of tan θ.

b Hence find exact distinct solutions to the equation x4 – 10x2 + 5 = 0.

 4 a Use z – 
z
1

 = 2i sin θ and the binomial expansion of (a + b)7to prove that: 

–128i sin7 θ = 2i(sin 7θ – 7 sin 5θ + 21 sin 3θ – 35 sin θ)

b Hence find d35sin 64 sin7∫ θ − θ θ.

 5 Solve each quadratic equation.

a z2 + 2iz + 3 = 0 b w2 – (2 – 3i)w – 1 – 3i = 0

c ix2 – 9 = 0

 6 Solve each equation.

a z2 = 1 – i 3 b z2 = − − i2 2

 7 Consider the polynomial P(x) = x4 – 4x3 + 11x2 – 14x + 12.

a Show that x = 1 – i 2  is a root of P(x) = 0.

b Hence solve the equation P(x) = 0.

c Express P(x) = x4 – 4x3 + 11x2 – 14x + 12 as a product of 2 real quadratic factors. 

 8 Given that α = –2 + 3i is a root of the polynomial P(x) = 2x3 + Bx2 + Cx + 13 where  
B, C ∈ , find P(x) and the other roots.
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 9 For each value of z and w, plot on an Argand diagram:

i z and zw ii z and 
z
w

a z i2 cos
2

sin
2

=
π

+
π




 and w i2 cos

4
sin

4
=

π
+

π





b z i2 cos
3

sin
3

=
π

+
π




 and w i3 cos

6
sin

6
=

π
−

π





c z = (1 + i)3 and = +





w

i3
2

9

 [Hint: express in polar form first.]

 10 If z i5 cos
3

sin
3

=
π

−
π




, plot iz and 

z
i

 on the complex plane.

 11 The complex number u = 3(cos 2β + i sin 2β) is  
shown in the diagram. Copy the diagram and plot  
each number below on it.

a iu b 
u
i

c u2 d 
u
1

 12 Consider the complex numbers u, v and w with  
corresponding points U, V and W as shown.  
OUWV forms a square.

a Find w in terms of u and v.

b Show that w = u + iu.

c Explain why u – w = i(v – w)

d Prove that u2 + v2 = 0.

e Find the vector m corresponding with the  
point M, the intersection of the diagonals of  
the square, in terms of u.

Im(z)

Re(z)

2β
3

u

O

x

y

V
U

W

O
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 13 For each equation, find the roots of unity, show them on the complex plane and state the 
conjugate pairs. 

a z2 = 1  b z3 = 1  c z6 = 1  d z8 = 1

14 a Find the 7 roots of z7 = 1 and plot them on the complex plane.

b If α is a complex root, explain in 2 different ways why 

	 α6 + α5 + α4 + α3 + α2 + α + 1 = 0.

c Factorise z7 – 1 into one linear and 3 quadratic factors with real coefficients.

d Hence show that z6 + z5 + z4 + z3 + z2 + z + 1 = 

z z z z z z2 cos
7

1 2 cos
3
7

1 2 cos
5
7

12 2 2+
π





+








 +

π





+








 +

π





+










e Show that cos
2
7

cos
4
7

cos
6
7

1
2

π
+

π
+

π
= − .

 15 a Expand (cos θ + i sin θ)3 in 2 ways to show that cos 3θ = 4 cos3 θ – 3 cos θ. 

b Hence solve 8x3 – 6x – 1 = 0.

c Hence show that cos
2
9

cos
4
9

cos
9

0
π

+
π

−
π

=

 16 If ω is a complex cube root of unity, simplify:

a (ω2 + 1)3 b 1
1 1

2+
ω

+
ω

c (1 – ω – ω2)(1 – ω + ω2)(1 + ω – ω2)

 17 If ω is a complex cube root of unity, prove that: 

a 
1

1
1

1
12+ ω

+
+ ω

=  b 
k l m
l m k

2

2
+ ω + ω
+ ω + ω

= ω

 18 Find the square roots of each complex number.

a 15 – 8i  b e 4
π

 c i4 cos
6

sin
6

π
+

π





 19 Solve each equation and plot the roots on the complex plane.

a z4 = –16 b z3 = –1 – i c z5 = e32 2
− π

.
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 20 Solve the equation = +
z

i1 3
2

5 , expressing the roots in polar form. Plot them on the 
complex plane.

 21 a Solve z9 + 1 = 0.

b Factorise z9 + 1.

c Hence solve z6 – z3 + 1 = 0.

d State the real quadratic factors of z6 – z3 + 1.

 22 Sketch each equation using:

i an algebraic approach  ii a geometric approach

a z  = 6  b − −z i2  = 1 c −z i2  = Im(z)

d z  = − −z i2 2   e 
+
−

=z
z i

6
4

1

 23 Sketch the graph of each equation.

a arg z = 
3

−
π

 b arg (z + 1) = 
4
π

 c arg (z + 1 – i 3) = 
2
3
π

 24 Sketch the graph of:

a arg (z – 2) = arg (z – 4 – 2i) b arg (z + 1 – i) – arg (z – 1 + i) = π

c arg (z – 1) – arg (z + 1) = 
2
π

 25 Sketch each region.

a 
3

−
π

 < arg (z – 1) ≤ 
5
6
π

 b 1 ≤ z i2−  ≤ 2

c Re(z) + Im(z) ≥ 3
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 26 The fixed points Z1 and Z2 represent the vectors  
z1 and z2. Sketch the graph of:

a z z z z1 2− = −

b 
−
−







=z z
z z

arg 0
2

c z z z z2 1 2− = −  and 
z z
z z

arg
4

2

1 2

−
−







=
π

27 The fixed points W1, W2 and W3 represent the  

vectors w1, w2 and w3 respectively. It is given  

that 
−
−

= −
−

w w
w w

w w
w w

2 1

3 1

3 2

1 2
. Prove that W1W2W3  

forms an equilateral triangle.

Im(z)

Re(z)

Z1

Z2

O

Im(z)

Re(z)

W3

W1

W2

O
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Practice set 1  

In Questions 1 to 10, select the correct answer A, B, C or D.

 1 Jake listed these complex number rules in a summary.  
How many are correct?

z z z z1 2 1 2=  arg z1z2 = arg z1 × arg z2 =
z
z

z
z

1

2

1

2

  z z z2 = ⋅   z1z2 = z1z2 

A all B one C some D none

 2 (sin θ − i cos θ)n =
A sin nθ − i cos nθ B sin (−nθ) + i cos (−nθ)

C (−i)n(cos nθ + i sin nθ) D in(cos nθ + i sin nθ)

 3 If ω is a complex root of z3 = 1, which statement is false?

A ω2 + ω + 1 = 0  B ω2 = ω

C ω4 = ω  D ω−2 = 
1
ω

 4 Consider the statement: ‘If there is a stationary point at x = 3 then f ′(3) = 0.’  
Which of the following is false?

A The converse    B The contrapositive

C The negation     D The proposition

 5 Which inequality always holds for a > b?

A 
a b
1 1

<  B 
a b
1 1
2 2<  C a2 > b2   D a3 > b3

 6 Consider the vectors u 3
1



=
−







, v 6

2


=






, w 9

3


= −





 and z 1

3


= −





. 

  Which vectors are parallel?

A u


 and v


 B u


 and w


C v


 and w


 D w


 and z


 7 What do the set of equations x = cos t, y = sin t, z = t, where 0 ≤ t ≤ 2π describe?

A A circle B A sphere C A cylinder D A helix
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 8 What is the equation of this circle with centre at (1, 0)?

A z 1+  = 10 B z 1−  = 10

C z 1+  = 9 D z 1−  = 9

 9 If v = (1 − 2 cos α) − 2i sin α, the real part of v−1 is:

A 
1 2cos
5 4 cos

− α
− α

 B 
1 2cos
5 4 cos

+ α
− α

C 
5 4 cos
1 2cos

− α
− α

 D 
5 4 cos
1 2cos

+ α
+ α

10 What does the equation z 3−  = z i3+  describe?

A A circle B A parabola

C A hyperbola D A  perpendicular bisector

11 Express each expression in terms of i.

a 16−    b 
7

4
−

 c 
6 12

2
± −

12 Simplify:

a i8 b i22 + i23 + i24 + … + i99

13 Solve each equation in the complex plane.

a x2 + 64 = 0 b x2 + 2x + 7 = 0  c (x − 3)2 + 9 = 0

14 State the real and imaginary parts of each complex number z.

a 
i5 2

3
−

 b 
x i yi

x y
2 7
2 2

+ − +
+

 where x, y ∈ 

15 For each complex number z, state the complex conjugate z .

a z = 5x − 3iy, where x, y ∈ 

b z
ai b a ib6 2

4
=

+ − −
, where a, b ∈ 

16 If w
m in
m n

=
+
+

 where m, n ∈ , prove that w w is always real.

17 Solve each equation, given that  x, y ∈ .

a 3x + 2iy − 18 + 6i = 0   b x + y − i(x − y) = 6 − 2i

18 Simplify each expression, giving your answer in the form a + ib.

a 3 − 4i(5 + 2i) + i b i i(2 3 )(2 3 )− +  c (1 + 5i)2 − (1 − 5i)2

O

Im(z)

101 Re(z)
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19 Express each quadratic equation in the form ax2 + bx + c = 0, where a, b, c ∈ .

a (x − 1 − 2i)(x − 1 + 2i) = 0 b x
i

x
i1 2

6
1 2

6
0−

− −





−

− +





=

20 Simplify each expression by realising the denominator:

a 
i
2

1 3−
 b 

i
i

i
i

5 2
5 2

5 2
5 2

+
−

+
−
+

 c 
i

1
(1 )2−

21 Find i24 10− .

22 Find 2 square roots of −48 + 14i.

23 Solve the equation x2 − (1 + 2i)x + 1 + 7i = 0.

24 Represent each complex number on an Argand diagram as:

i a point  ii  a vector

a z = 1 − 4i b w = 3i   c u = −2 − 3i

25 The vector representing the complex number u is sketched below.  
Copy the diagram and sketch vectors representing u , −u and 2u.

Im(z)

Re(z)

u

O

26 The complex numbers z and w are shown.  
Copy the diagram and plot the points P and Q 
that represent the numbers z + w and w − z 
respectively.

Im(z)

Re(z)

z

O

w
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27 For each complex number, find:

i the modulus r    ii  the principal argument Arg z

a −1 + i 3 b 2 − 2i c 
i6 2

2
− −

28 Express each complex number in modulus−argument form.

a i3 cos
3

sin
3

π − π





  b i2 sin 3

4
cos 3

4
π + π








c 5i d −2 + i2 3 e 
i1

3
+

29 Express each complex number u and v graphed below in:

a polar form b Cartesian form

Im(z)

3
2

v

Re(z)

u

πO
4
π

√8

30 Simplify:

a r1(cos α1 + i sin α1) × r2(cos α2 + i sin α2)

b 
r i
r i

cos sin
cos sin

1 1

2 2 2

( )
( )

α + α
α + α

31 Simplify:

a arg (cos θ + i sin θ)n b arg (cos θ − i sin θ)n

c arg (cos θ + i sin θ)−n d arg (cos θ − i sin θ)−n

32 If z1 = r1(cos α1 + i sin α1) and z2 = r2(cos α2 + i sin α2), prove =z
z

z
z

1

2

1

2
.

33 If z i3 cos 5
6

sin 5
61 = π + π






  and z i2 cos

3
sin

32 = π − π





 , find:

a z1z2 b 
z
z

1

2
 c (z2)

3 d (z1)
−4
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34 Express each expression in modulus−argument form and hence find its exact value.

a (1 − i)8  b 
i

i
(1 3 )

2 2

2+
−

 c 
i

1
( 3 )4+

35 Simplify (1 + i)( 3 + i) in 2 different ways. Hence find the exact value of sin 
5
12
π

.

36 Express each complex number in the form reiθ.

a cos 3 + i sin 3 b i4 cos
5

sin
5

π − π





  c i3− −

37 Express each complex number in polar form:

a 2e3iα b e
i
7

− π

 c e
1
2

i
3−
π

38 Evaluate, expressing your answer in the form reiθ.

a e e2 3
i

i2 2×  b 
e

e

1i

i
5

× −π

π

39 If z = eiθ and w = eiα, prove that arg zw = arg z + arg w.

40 Write the following statement as an implication:

  If it rains, then the dam is full.

41 Write the converse of the statement:

  If there is not enough food, then the people are starving.

42 For each statement write the converse and determine if it is an equivalence.

a If a number is even, then it is divisible by 2.

b If a number is positive, then its reciprocal is positive.

c If a quadrilateral has 4 equal angles, then it is a rectangle.

d If an animal is a kangaroo, then it eats grass.

43 Write the negation of each statement.

a The dam is full. b The teacher is good.

c All cats are fluffy. d There is at least one smart politician.

e No wine is sweet. f Some sheep are black.
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44 Write the contrapositive of each statement and hence determine if the original 
statement is true.

a If you get a speeding ticket, then you speed.

b If you get the old-age pension, then you are over 65.

c If a triangle is equilateral, then it has 3 equal sides.

d If you go swimming, then you get wet.

45 Write in words: ∀ x ∈ , ∃ y ∈ : y = 2x.

46 Write the following statement in mathematical notation:

  For all natural numbers x such that x is a multiple of 4, there exists a natural 
number y such that x y2= .

47 If P ⇒ Q is true, which of the following is always true?

A Q ⇒ P  B ¬P ⇒ ¬Q C ¬Q ⇒ ¬P D P ⇔ Q

48 Give a proof by contradiction to prove that 10  is irrational.

49 Find a counter-example to show that the following statement is false.

  Given y = f (x) and f ″( p) = 0 then there is a point of inflection at x = p.

50 If M, N ∈ , M > N and:

a M and N are even, prove that M2 − N2 is even.

b M and N are odd, prove that M2 − N2 is even.

c M is even and N is odd, prove that M2 − N2 is odd.

51 a Prove ∀ x, y ∈ : x, y > 0 that 
x y

2

2 2+
 ≥ xy.

b Prove ∀ x ∈ : x > 0 that x
x
1

+  ≥ 2.

c Prove ∀ a, b, c, d ∈ : a, b, c, d > 0 that 
a b c d

abcd
4

4+ + +
≥ .

52 Find the dot product of the vectors u i j3 2
 



= −  and v i j4 6
 



= + . 

  What can you say about the angle between the vectors?

53 Consider the points A(1, −2, 4) and B(3, 1, 2). Find:

a the vector AB
→

b the magnitude of AB
→

c the unit vector û


 in the direction of AB
→
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54 The vectors 
 

p i j k2 5= + +  and q i j nk7








= − + +  are perpendicular. Find the value of n.

55 Consider the points A(−2, 3, 4), B(2, 5, 8), C(3, −2, 4) and D(1, −3, 2).

a Show that AB
→

 is parallel to CD
→

.

b Find the length of each vector AB
→

 and CD
→

.

c What type of quadrilateral is ABCD?

56 Find the angle between the vectors 
5
–1
3
















 and 

2
4
3

−

−

















. Answer to the nearest minute.

57 Find a vector equation of the line through F(1, 3, −2) and G(4, −2, 7).

58 Find a Cartesian equation of the line joining P(3, −1, 3) and Q(4, 5, 1).

59 Determine whether the point K(−5, 18, 1) lies on the line 
x
y

z

1
4
–2

–3
7
1

















=
















+ λ















.

60 Express the Cartesian equation 
x y z2

6
1

2
4

3
−

=
−

=
−

 as a vector equation.

61 Plot the vector function x = 2, y = 3 cos t, z = 3 sin t for 0 ≤ t ≤ 2π.

62 Prove by mathematical induction: (cos θ + i sin θ)n = cos nθ + i sin nθ, ∀ n ∈ .

63 Use De Moivre’s theorem to simplify:

a [ 2(cos 3β + i sin 3β)5 b i[512(cos144 sin144 )]
1
9� � �

c i1
2

cos 2
3

sin 2
3

8
� � � � ��

�
�

�
�
�

�

�
�

�

�
�

64 a  Use De Moivres theorem and the binomial expansion of ( A + B)6 to show that 
cos 6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1.

b Find the roots of cos 6θ = 0.

c Hence prove that cos 6θ = 32 cos cos
12

cos
1
2

cos cos
5
12

2 2 2 2 2� �
��

��
�
��

� ��
��

�
��

� �
��

��
�
��

65 Let z = cos θ + i sin θ.

a Prove that z − 
z
1

 = 2i sin θ.

b Use the expansion of z
z
1 5

−





 to express sin5 θ in the form  

sin5 θ = A sin 5θ + B sin 3θ + C sin θ, and state the values of A, B and C.

c Hence evaluate x dxsin5
0
2∫
π

.
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66 Solve the quadratic equation z2 − 4iz − 12 = 0.

67 Solve the equation z2 = −1 + i 3.

68 Consider the polynomial P(x) = x5 + 2x3 − x2 − 2.

a Explain why P(x) has at least one real root.

b Show that x = i 2  is a root of P(x) = x5 + 2x3 − x2 − 2.

c Hence solve the equation x5 + 2x3 − x2 − 2 = 0.

d Express P(x) = x5 + 2x3 − x2 − 2  as a product of real factors.

69 The complex number z is shown on an Argand  
diagram. Copy the diagram and sketch each 

expression if w = i2 cos
3

sin
3

π + π





 .

a zw b 
z
w

70 The complex numbers z, w, u and v are shown on the Argand diagram.  
Express w, u and v in terms of z.

Im(z)

Re(z)

u
O

w

z

v

71 Consider the complex numbers a, b and c with  
corresponding points A , B and C as shown.  
ABCD forms a parallelogram.

a Find d in terms of a, b and c.

b If 
a b
c b

arg
4

−
−







=
π

, find 
d a
b a

arg
−
−






.

c Find the vector m corresponding with the 
point M, the intersection of the diagonals of 
the parallelogram, in terms of a, b  and c.

Im(z)

Re(z)O

z
1

4
π

Im(z)

Re(z)O

A

B

C
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72 a Find the 5th roots of unity for z5 = 1 and show them on an Argand diagram. 
State the conjugate pairs.

b If α is a complex solution to z5 = 1, show that α4 + α3 + α2 + α + 1 = 0.

c Factorise z5 − 1 into one linear and two quadratic factors with real coefficients.

d Show that cos
2
5

cos
4
5

1
2

π
+

π
= − .

73 If ω is a complex cube root of unity, simplify:

a ω2 + ω + 1

b ω9 + ω8 + ω7 + ω6 + ω5 + ω4

c (1 − ω−1)(1 − ω−2)

74 Find both square roots of each complex number.

a e
i
2
π

 b i9 cos
3

sin
3

π + π







75 Solve each equation and plot its solutions on the complex plane.

a z3 = −8  b z4 = −1 + i 3

76 Sketch each equation on an Argand diagram.

a z  = 2 b z i1 2− −  = 1

c z z i1+ = +  d Re(z) = 2 Im(z)

77 Sketch each equation.

a arg (z −1) = 
3
4
π

 b arg (z + 1 + i) = arg (z −1 − i)

c arg (z + 4i) − arg (z − 4) = π

78 Sketch each region.

a 
6
π

 < arg z ≤ 
3
π

 b z 3−  ≤ 3 c zIm( )  < 1

79 The points Z1, Z2, Z3 and Z4 form a quadrilateral and represent the 
complex numbers z1, z2, z3 and z4. It is given that z1 − z2 + z3 − z4 = 0.  
What type of quadrilateral is Z1Z2Z3Z4?



PROOF

5.
FURTHER MATHEMATICAL 
INDUCTION
Mathematical induction is used to prove results in series, divisibility, inequality, algebra, calculus, 
probability, combinatorics and geometry. In Mathematics Extension 1, you learned about the logic 
and technique of this type of proof. You will now be introduced to its use in a variety of contexts, 
including a new notation − sigma notation. A further application, recursive formula proofs, will also 
be discussed.

CHAPTER OUTLINE

5.01 Review of mathematical induction
5.02 Further mathematical induction
5.03 Series and sigma notation
5.04 Applications of mathematical induction
5.05 Recursive formula proofs
5.06 Proofs involving inequalities and graphs
Test yourself 5



IN THIS CHAPTER YOU WILL:

• review proofs of sums and divisibility by mathematical induction
• prove results for cases other than for n being a positive integer
• understand and use sigma notation for sums
• use induction to prove results in inequalities, algebra, calculus, probability, combinatorics 

and geometry
• use induction to prove recursive formulas
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TERMINOLOGY
divisibility: Whether or not a number is divisible 

by another number.
induction: A method of proof where, based on the 

truth of earlier statements forming a pattern, 
pattern is proved true for all statements.

recursive formula: A formula for calculating 
the next terms of a sequence based on the 
previous terms.

series: A sum of terms T1 + T2 + T3 + … + Tn
sigma notation: A shorthand way of writing 

a series using the Greek letter sigma Σ:

Tr
r

n

�  = T1 + T2 + T3 + … + Tn.

5.01 Review of mathematical induction
In Mathematics Extension 1, we learn that a proof by mathematical induction takes a 
statement or proposition, proves it is true for an initial value such as n = 1, assumes it is true 
for some value k, then shows it can be proved for the next value k + 1 and beyond, using the 
assumption, thus proving the proposition true for all the defined values.

Proof by mathematical induction
Let P(n) be the proposition ∀ n ∈ �b, where �b is the set of natural numbers {1, 2, 3, …}.

Step 1: Show that P(n) is true for n = 1.

Step 2: Assume the statement is true for some positive integer value n = k.

Step 3: Using the assumption, prove that the statement is also true for the next integer 
n = k + 1.

Conclusion: State why the statement is true for all (positive) integers n ≥ 1.

We will now revise proof by mathematical induction used to prove series and divisibility.

Proof of sums

EXAMPLE 1

Use mathematical induction to prove the following proposition is true for all positive 
integers:

P(n): 2 + 4 + 6 + … + 2n = n(n + 1).

Solution

Step 1: Prove P(1) is true.

LHS = 2 RHS = 1 × (1 + 1) = 2

∴ P(1) is true.

Proof by 
mathematical 

induction
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Step 2: Assume P(k) is true, that is:

2 + 4 + 6 + … + 2k = k(k + 1) for some k ∈ �b

Step 3: Prove P(k + 1) is true, that is:

2 + 4 + 6 + … + 2k + 2(k + 1) = (k + 1)[(k + 1) + 1] = (k + 1)(k + 2)

Consider P(k): 2 + 4 + 6 + … + 2k = k(k + 1)

Adding the (k + 1)th term to both sides of P(k):

2 + 4 + 6 + … + 2k + 2(k + 1) = k(k + 1) + 2(k + 1)

 ∴ LHS of P(k + 1) = (k + 1)(k + 2) on factorising

 = RHS of P(k + 1).

∴Truth of P(k) implies truth of P(k + 1)

Conclusion: But P(1) is also true.

∴ P(n) is true for all positive integers n by mathematical induction.

EXAMPLE 2

Use mathematical induction to prove that P(n) is true for all positive integers:

P(n): 1 + 2 + 22 + 23 + … 2n − 1 = 2n − 1.

Solution

Prove P(1) is true:

LHS = 1 RHS = 21 − 1 = 1 ∴ P(1) is true.

Assume P(k) is true: 1 + 2 + 22 + 23 + … 2k − 1 = 2k − 1 for some k ∈ �b

Prove P(k + 1) is true: 1 + 2 + 22 + 23 + … 2k − 1 + 2k = 2k + 1 − 1

Consider P(k):

1 + 2 + 22 + 23 + … 2k − 1 = 2k − 1

Adding the (k + 1)th term to both sides of P(k):

1 + 2 + 22 + 23 + … 2k − 1 + 2k = 2k − 1 + 2k

 ∴ LHS of P(k + 1) = 2 × 2k − 1

 = 2k + 1 − 1 on adding the indices

 = RHS of P(k + 1)

∴ Truth of P(k) implies truth of P(k + 1)

But P(1) is also true.

∴ P(n) is true ∀ n ∈ �b, by mathematical induction.

2(k + 1) is the (k + 1)th term of the series.
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Proof of divisibility
Note that saying X is divisible by Y is equivalent to saying X is a multiple of Y. You saw 
in Chapter 2 that we can write X = pY for some p ∈ �b. We can use induction to prove 
divisibility.

EXAMPLE 3

Use mathematical induction to prove the following proposition is true for all positive integers:

P(n): 5n − 1 is divisible by 4.

Solution

Prove P(1) is true:

51 − 1 = 5 − 1 = 4, which is divisible by 4. ∴ P(1) is true.

Assume P(k) is true:

5k − 1 = 4Y, for some k ∈ �b and some positive integer Y.

∴ 5k = 4Y + 1  [*]

Prove P(k + 1) is true, that is: 5k + 1 − 1 = 4Z for some positive integer Z.

LHS of P(k + 1) = 5k + 1 − 1

 = 5 × 5k − 1

 = 5 × (4Y + 1) − 1 using [*]

 = 5 × 4Y + 5 − 1

 = 20Y + 4

 = 4(5Y + 1)

 = 4Z for some positive integer Z

which is divisible by 4. Therefore P(k + 1) is true.

∴ truth of P(k) implies truth of P(k + 1)

But P(1) is also true.

∴ P(n) is true for all positive integers n by mathematical induction.

It will be convenient to make 5k the subject.



ISBN 97807043435 5. Further mathematical induction 193

Exercise 5.01 Review of mathematical induction

 1 Prove each proposition P(n), ∀ n ∈ �b, by mathematical induction.

a P(n): 1 + 2 + 3 + 4 + … + n = 
n
2

 (n + 1)

b P(n): 1 + 3 + 5 + … + (2n − 1) = n2

c P(n): 12 + 22 + 32 + … + n2 = 
n
6

 (n + 1)(2n + 1)

 2 Use mathematical induction to prove each proposition.

a P(n): 1 + 3 + 32 + 33 + … + 3n − 1 = 
3 1

2

n −
, ∀ n ∈ �b

b P(n): 1 + 4 + 42 + 43 + … + 4n − 1 = 
(4 1)

3

n −
, ∀ n ∈ �b

c P(n): 1 1
2

1
2

1
2

1
2

2 1
2n n2 3 1 1� � � � � � � �

� �
, ∀ n ∈ �b

 3 Prove each divisibility statement is true for all positive integers n by mathematical 
induction.

a P(n): 4n − 1 is divisible by 3

b P(n): 7n − 1 is divisible by 6

c P(n): 32n − 1 is divisible by 8

 4 Use proof by mathematical induction to prove each proposition P(n), ∀ n ∈ �b.

a P(n): 13 + 23 + 33 + 43 + … + n3 = 
n
4

2

 (n + 1)2

b P(n): 3 + 32 + 33 + … + 3n = 
3(3 1)

2

n −

c P(n): 
n n

n
n

1
1 2

1
2 3

1
3 4

1
1 1� ��

�
�

�
�

� � �
� �

�
�

 5 Write a proof for each proposition for all natural numbers n using mathematical induction.

a P(n): 9n + 2 − 4n is divisible by 5

b P(n): n(n + 1) is divisible by 2

c P(n): 32n + 4 − 22n is divisible by 5

d P(n): n(n + 1)(n + 2) is divisible by 6

e P(n): n3 + 2n is a multiple of 3

 6 Prove by mathematical induction that each series formula is true for all positive integers, n.

a P(n): a + (a + d ) + (a + 2d ) + (a + 3d ) + … (a + (n − 1)d ) = 
n
2

 (2a + (n − 1)d )

b P(n): a + ar + ar2 + … + arn − 1 = 
a r

r
( 1)

1

n −
−

, r ≠ 1
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Pascal’s induction

The principle of mathematical induction is often used in computer science but the 
technique was first formulated in a systematic way by Blaise Pascal, long before 
computers were thought of. He was trying to prove the properties of the triangle that 
came to be known as Pascal’s triangle.

DID YOU KNOW?

5.02 Further mathematical induction
There are some propositions that are only true for integers n such that n ≥ 2 (or another 
value) or only for odd n or even n.

EXAMPLE 4

Use proof by mathematical induction to show that n2 + 2n is a multiple of 8 ∀ n ∈ �b,  
where n is even.

Solution

Let P(n) be the proposition that n2 + 2n = 8M ∀ n ∈ �b, where n is even and  
M ∈ �b.

Prove P(2) is true:

LHS = 22 + 2(2)

= 8

which is a multiple of 8, ∴ P(2) is true.

Assume P(k) is true for some even k ∈ �b.

k2 + 2k = 8Y for some Y ∈ �b.

Required to prove (RTP): P(k + 2) is true, 

(k + 2)2 + 2(k + 2) = 8Z for some Z ∈ �b.

LHS of P(k + 2) = (k + 2)2 + 2(k + 2)

 = k2 + 4k + 4 + 2k + 4

 = (k2 + 2k) + 4k + 8

 = 8Y + 4k + 8 using P(k)

If k is even, the next even number  
after k is (k + 2).
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Now since k is even, let k = 2A for some A ∈ �b. Then:

LHS of P(k + 2) = 8Y + 4(2A) + 8

 = 8Y + 8A + 8

 = 8(Y + A + 1)

 = 8Z

which is a multiple of 8.

∴ P(k + 2) is true.

∴ Truth of P(k) ⇒ truth of P(k + 2)

But P(2) is also true

∴ P(n) is true by mathematical induction.

EXAMPLE 5

Use proof by mathematical induction to show that 3n + 2n is divisible by 5, ∀ n ∈ �b, 
where n is odd.

Solution

Let P(n) be the proposition that 3n + 2n = 5B ∀ n ∈ �b, where n is odd and  
B ∈ �b.

Prove P(1) is true:

LHS = 31 + 21

= 5

which is a multiple of 5, ∴ P(1) is true.

Assume P(k) is true for some odd k ∈ �b.

3k + 2k = 5p for some p ∈ �b.

RTP: P(k + 2) is true:

3k + 2 + 2k + 2 = 5q for some q ∈ �b.

LHS of P(k + 2) = 3k + 2 + 2k + 2

 = 32 × 3k + 22 × 2k

 = 9(3k) + 4(2k)

If k is odd, the next odd number after k is (k + 2).
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Now rearranging P(k) to make 3k the subject:

3k + 2k = 5p

3k = 5p − 2k

Substitute into P(k + 2):

LHS of P(k + 2) = 9(5p − 2k) + 4(2k)

 = 45p − 9(2k) + 4(2k)

 = 45p − 5(2k)

 = 5(9p − 2k)

 = 5q

which is a multiple of 5.

∴ P(k + 2) is true.

∴ Truth of P(k) ⇒ truth of P(k + 2)

But P(1) is also true.

∴ P(n) is true by mathematical induction.

Exercise 5.02 Further mathematical induction

 1 Prove each proposition by mathematical induction.

a P(n): 5n − 1 is divisible by 8 for all even n ≥ 2

b P(n): 3n − 2n is divisible by 5 for all even n ≥ 2

c P(n): xn − 1 is divisible by x2 −1 for all even n ≥ 2

 2 Prove each divisibility statement is true by mathematical induction.

a P(n): 5n + 2n is divisible by 7 for all odd n ≥ 1

b P(n): 6n + 3n is divisible by 9 for all odd n ≥ 1

c P(n): 4n − 2 + 7n − 2 is divisible by 11 for all odd n ≥ 3

 3 Prove each proposition is true by mathematical induction.

a P(n): 9n − 8(n − 1) − 9 is divisible by 64 for all integers n ≥ 2

b P(n): 13n + 1 − 12n −13 is divisible by 144 for all natural numbers n
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5.03 Series and sigma notation
You have seen that the capital Greek letter sigma, written Σ, is used in statistics to represent 
a sum.

Sigma notation can also be used to describe a series, a sum of terms.

The sum of n terms can be written like this:

T1 + T2 + T3 + T4 + … + Tn − 1 + Tn = Tr
r

n

� .

Tr
r

n

�  means the sum of the terms, Tr, starting at r = 1 and ending at r = n.

For an infinite series, we write T1 + T2 + T3 + T4 + … + Tn − 1 + Tn + Tn + 1 + … = Tr
r
�
�

.

Sigma notation

Tr
r

n

�  means T1 + T2 + T3 + T4 + … Tn − 1 + Tn

Note that we can begin and end at any number r we choose.

EXAMPLE 6

a Write out the series represented by r
r

3
7

� .

b Evaluate 
1

3k
k

2
3

6

� � .

Solution

a r
r

3
7

�  = 13 + 23 + 33 + 43 + 53 + 63 + 73

b 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

40
81

k
k

2
3

6

3 2 4 2 5 2 6 2

1 2 3 4

� � � � �

� � � �

�

� � � � �
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EXAMPLE 7

Express each sum using sigma notation.

a 12 − 22 + 32 − 42 + … + (−1)100 − 1 × 1002

b 
n n

1
1 2

1
2 3

1
3 4

1
4 5

1
1� ��

�
�

�
�

�
�

� � �
�

� �

Solution

a 12 − 22 + 32 − 42 + … + (−1)100 − 1 × 1002 = r( 1)r

r

r
1 2

100

� � ��

Note that the value of (−1)r − 1 alternates between 1 and −1.

b
n n k k

1
1 2

1
2 3

1
3 4

1
4 5

1
( 1)

1
( 1)k

��
�

�
�

�
�

�
� � �

�
� � �

�

�

Often sigma notation is used to abbreviate a sum in an induction proof. We will now look at 
one such example.

EXAMPLE 8

Prove by mathematical induction:

k k
N

N
1

(2 1)(2 1) 2 1k

N

� � �
�

�
 where k ∈ �b.

Solution

First write out the series to see the pattern and where the series stops.

k k
N

N
1

(2 1)(2 1) 2 1k

N

� � �
�

�
 means

N N
N

N
1

[2(1) 1][2(1) 1]
1

[2(2) 1][2(2) 1]
1

[2(3) 2][2(3) 2]
1

[2 1][2 1] 2 1� �
�

� �
�

� �
� � �

� �
�

�

Then simplifying we have:

×
+

×
+

×
+ … +

+ −
=

+N N
N

N
1

3 1
1

5 3
1

7 5
1

(2 1)(2 1) 2 1

Now we can begin the proof.
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Proof

Let P(N    ) be the proposition that 
N N

N
N

1
3 1

1
5 3

1
7 5

1
(2 1)(2 1) 2 1×

+
×

+
×

+ … +
+ −

=
+

,  

∀ N ∈ .

Prove true for P(1): 

LHS
1

3 1
1
3

=
×

=
 

RHS
1

2 1 1

1
3

)(=
+

=

Since LHS = RHS then P(1) is true.

Assume P(k) is true for some k ∈.

k k
k

k
1

3 1
1

5 3
1

7 5
1

(2 1)(2 1) 2 1×
+

×
+

×
+ … +

+ −
=

+

RTP: P(k + 1) is true, that is:

k k k k
k

k
1

3 1
1

5 3
1

7 5
1

(2 1)(2 1)
1

(2( 1) 1)(2( 1) 1)
1

2( 1) 1×
+

×
+

×
+ … +

+ −
+

+ + + −
=

+
+ +

which simplifies to:

k k k k
k
k

1
3 1

1
5 3

1
7 5

1
(2 1)(2 1)

1
(2 3)(2 1)

1
2 3×

+
×

+
×

+ … +
+ −

+
+ +

=
+
+

Consider the LHS of P(k + 1):

k k k k
LHS =

1
3 1

1
5 3

1
7 5

1
(2 1)(2 1)

1
(2 3)(2 1)×

+
×

+
×

+ … +
+ −

+
+ +

 
k

k k k2 1
1

(2 3)(2 1)
=

+
+

+ +
 using P(k)

 

k k
k k

k k
k k
k k
k k

k
k

(2 3) 1
(2 3)(2 1)

2 3 1
(2 3)(2 1)
( 1)(2 1)

(2 3)(2 1)
1

2 3

2

=
+ +

+ +

=
+ +

+ +

=
+ +
+ +

=
+
+

 = RHS of P(k + 1)

∴ Truth of P(k) ⇒ truth of P(k + 1)

But P(1) is also true.

∴ P(n) is true by mathematical induction.
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Exercise 5.03 Series and sigma notation

 1 Write out the series represented by each expression.

a r
r

2
10

�  b k(2 3)
k

n

∑ +  c 
n
1

n

M

∑
+

d r( 1)r

r 2

9

� � �  e 
1

2r
r
∑ −

∞

 2 Evaluate each expression.

a k( 2)
k

4

∑ +  b 3r

r

5

� �  c j j( 1)
j

3

∑ +  d 
k

( 1)k

k
2

3

8

� � �

 3 Express each sum in sigma notation.

a −12 + 22 − 32 + 42 + … − 772 b 
n

1
2

1
3

1
4

1
5

1
+ + + + … +

c 3 + 32 + 33 + 34 + … + 399 d 1
1
2

1
4

1
8

1
16

− + − + − …

 4 Prove each proposition by induction.

a P(n): � � � �r n n(3 2)
2

(3 1)
r

n

  b P(n): 6
6 1

5
r

r

n n

∑ =
−−

c P(n): r n(2 1)
r

n
2� � �    d P(n): 

1
2

2
1

2n
n

N

N∑ = −− −

e P(n): k
n n n

(2 1)
(2 1)(2 1)

3k

n
2∑ − =

− +

 5 n! = n(n − 1)(n − 2)(n − 3) × … × 3 × 2 × 1. For convenience, we define 0! = 1 and 1! = 1.

  Prove by induction P(n): 
r

r n( 1)
1

1
( 1)r

n

∑ +
= −

+

 6 Prove by mathematical induction 
r

r
log

1

r

n

∑ +





 = log (n + 1).
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INVESTIGATION

VON KOCH’S SNOWFLAKE
The Von Koch curve is found by taking the limit of a sequence of shapes T1, T2, T3, …, Tn  
based on an equilateral triangle as shown below. It resembles a snowflake and it is 
sometimes referred to as Von Koch’s snowflake.

                

1 Draw the next shape Term 4 in the pattern.

2 If the length of a side in Term 1 is x, find an expression for the perimeter in terms 
of x when n = 2, 3, 4

3 Find an expression for the perimeter if n = N.

4 As n → ∞, does the Von Koch curve have finite or infinite perimeter?

5 Is the area finite or infinite?

Term 1 Term 2 Term 3
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5.04 Applications of mathematical induction
In this section we will see applications of proof by mathematical induction in different areas 
of mathematics.

Proof of inequalities
Recall some important results used in inequality proofs from Chapter 2, Mathematical proof.

1 For any two real numbers a and b, a > b if a − b > 0.

2 If a > b and b > c then a > c.

3 If a > b and c > d then a + c > b + d.

4 If a, b, c > 0 and a > b then ac > bc.

5 If a > b > 0 then 
a b
1 1

< .

We can use these simple results to prove further inequalities by induction.

EXAMPLE 9

Prove by mathematical induction: 2n > n2 where n ∈, n ≥ 5.

Solution

Let P(n) be the proposition that 2n > n2 where n ∈, n ≥ 5.

Prove true for P(5).

LHS = 25 RHS = 52

 = 32 = 25

Since LHS > RHS, then P(5) is true.

Assume P(k) is true for some k ∈, k ≥ 5.

2k > k2

RTP: P(k + 1) is true: 2k + 1 > (k + 1)2
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Proof

Consider the LHS of P(k + 1).

LHS = 2k + 1

 = 2 × 2k

 > 2 × k2 using P(k)

 = k2 + k2

Now k2 > 2k + 1 since k ≥ 5

∴ k2 + k2 > k2 + (2k + 1)

 > (k + 1)2

∴ Truth of P(k) ⇒ truth of P(k + 1)

But P(5) is also true.

∴ P(n) is true by mathematical induction.

Proof of calculus identities

EXAMPLE 10

Prove by mathematical induction:

d
dx

x( )n  = nxn − 1, n ∈ 

Solution

Let P(n) be the proposition that 
d
dx

x( )n  = nxn − 1, n ∈ .

Prove true for P(1).

LHS = 
d
dx

x( )

 = 1

since the gradient of y = x is 1.

RHS = 1 × x1 − 1

 = 1x0

 = 1

Since LHS = RHS then P(1) is true.
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Assume P(k) is true for some k ∈ .

d
dx

x( )k  = kxk − 1

RTP: P(k + 1) is true: 
d
dx

x( )k +  = (k + 1)xk

Proof

Consider the LHS of P(k + 1).

d
dx

x

d
dx

x x

x
d
dx

x x
d
dx

x

LHS = ( )

( )

( ) ( ) by the product rule

k

k

k k

= ×

= +

+

 = xk × 1 + x × kxk − 1 using P(k)

 = xk + kxk

 = (k + 1)xk

 = RHS of P(k + 1)

∴ Truth of P(k) ⇒ truth of P(k + 1)

But P(1) is also true.

∴ P(n) is true by mathematical induction.

Proof of binomial theorem
Recall the binomial expansion:

x a C x a( )n n
r

r

n
n r r

0
∑+ = −

where C
n
r

n
r n r! !

n
r ( )=







=
−

.

It is possible to prove the binomial theorem by mathematical induction but it will be left for 
you to do as an exercise below.

Proof of geometry results
The sum Sn of the interior angles of an n-sided polygon is given by the formula

Sn = (n − 2) × 180°, n ∈ , n ≥ 3.

You will find a guided proof of the theorem in Question 5 of the exercise on the next page.
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Exercise 5.04 Applications of mathematical induction

 1 Prove each inequality by mathematical induction.

a 3n > 1 + 2n where n ∈ 

b 2n > 1 + n where n ∈ 

c 3n > n3 where n ∈ , n ≥ 4

d (1 + y)n ≥ 1 + ny where n ∈  and y > −1, y ∈ 

e n! > 2n where n ∈ , n ≥ 4

 2 Prove each proposition by mathematical induction.

a Let y = xM. =
−

−
P n

d y
dx

M x
M n

( )
( )

n

n

M n

 for n ∈ , where M ≥ n, M ∈ .

b Let y
x

x
1

, 0= ≠ . P n
d y
dx

n
x

( )
( 1) !n

n

n

n=
−

+  for n ∈ .

 3 Prove each equation by induction.

a (x + a)n = C x an
r

r

n
n r r

0
∑ −  where n ∈ .

 You will need the identity nCr + nCr + 1 = n + 1Cr + 1 where =
−

C
n

r n r( )
n

r

b n(x + a)n − 1 = r C x an
r

r

n
r n r

0
∑ × − −  where n ∈ .

 4 Prove each formula by induction.

a sin (nπ + θ) = (−1)n sin θ, n ∈ 

b cos (nπ − θ) = (−1)n cos θ, n ∈ 

 5 Complete in your notebook the blank spaces in the induction proof below.

  The sum Sn of the interior angles of an n-sided convex polygon is given by the  
formula Sn = (n − 2) × 180°, n ∈ , n ≥ 3.

  Let P(n) be the proposition that Sn = (n − 2) × 180°, n ∈ , n ≥ 3.

  Prove true for P(3).

  LHS = S3 RHS = (3 − 2)180°

 = 180° = 180°

  since the angle sum of a triangle is 180°.

  Since LHS = RHS then P(3) is true.

  Assume P(k) is true for some k ∈ , k ≥ 3.
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  Sk = (k − 2) × 180°

  

V1

Vk

Vk − 1

V2

V3

  We see from the diagram that there are k vertices labelled V1, V2, V3, …, Vk − 1, Vk. 
Joining the diagonals from V1 to the other vertices we create k − 2 triangles, with a total 
interior angle sum of Sk = (k − 2) × 180°.

  RTP: P(k + 1) is true; that is Sk + 1 = ______________

  Proof

  Consider the diagram with (k + 1) vertices.

  

V1

Vk

Vk − 1

Vk + 1

V2

V3

  By adding an extra vertex, this has created another triangle.

  ∴ LHS = ___________________

  = ___________________

  = ___________________ using P(k)

  = ___________________

  = RHS of P(k + 1)

  ∴ Truth of P(k) ⇒ truth of P(k + 1)

  But P(3) is also true.

  ∴ P(n) is true by mathematical induction.

  QED.
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 6 Consider the number of ways you could cut through a pizza to gain the maximum 
number of slices, as seen in the diagram below.

  

1

2

   

1

2

3

4

   

1

6

5

7

2

3

4

  By making a table of values we can find a formula relating the number of cuts n with the 
number of slices, Sn.

n 1 2 3 …

Sn 2 4 7 …

  Find a formula for Sn in terms of n and prove it by mathematical induction.

 7 Recall the triangle inequality as shown below for vectors, z , z2, z3, …

  

|z1 + z2| |z2|

|z1|

~

~

~ ~

   

|z1 + z2|

|z1 + z2 + z3|

|z2|

|z3|

|z1|

~ ~ ~

~

~

~
~

~

  We can see that z z1 2+  ≤ z  + z2  and that z z z1 2 3+ +  ≤ z  + z2  + z3 .

  Prove by mathematical induction that: 

  z z z zn1 2 3+ + + +  ≤ z  + z2  + z3  + … + zn  ∀ n ∈ , n ≥ 2.
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5.05 Recursive formula proofs
The sequence T1 = 3, T2 = 5, T3 = 7, T4 = 9, T5 = 11, … can be described by the  
recursive formula Tn = Tn − 1 + 2. We can use recursive formulas to prove by  
mathematical induction the general formula Tn = 2n + 1 for the nth term of  
the sequence.

EXAMPLE 11

Prove by mathematical induction:

Given T1 = 3 and Tn = Tn − 1 + 2, prove by mathematical induction that Tn = 2n + 1 is true 
∀ n ∈ .

Solution

Let P(n) be the proposition that if T1 = 3 and Tn = Tn − 1 + 2, then Tn = 2n + 1 is true 
∀ n ∈ .

Prove true for P(1).

Given T1 = 3. Using the formula Tn = 2n + 1, T1 = 2(1) + 1 = 3 which is consistent.

P(1) is true.

Assume P(k) is true for some k ∈ . That is, given Tk = Tk − 1 + 2, then Tk = 2k + 1.

RTP: P(k + 1) is true; that is, given Tk + 1 = Tk + 2, then Tk + 1 = 2(k + 1) + 1 = 2k + 3.

Proof

Consider the given P(k + 1) formula:

Tk + 1 = Tk + 2

 = (2k + 1) + 2 using P(k)

 = 2k + 3 as required

∴ Truth of P(k) ⇒ truth of P(k + 1)

But P(1) is also true.

∴ P(n) is true by mathematical induction.
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EXAMPLE 12

Given T1 = 1, T2 = 5 and Tn = 5Tn − 1 − 6Tn − 2, prove by mathematical induction  
that Tn = 3n − 2n is true ∀ n ∈ , n ≥ 3.

Solution

Let P(n) be the proposition that if T1 = 1, T2 = 5 and Tn = 5Tn − 1 − 6Tn − 2,  
then Tn = 3n − 2n is true ∀ n ∈ , n ≥ 3.

Prove true for P(3).

Given T1 = 1, T2 = 5, T3 = 5 × 5 − 6 × 1 = 19.

Now using the formula Tn = 3n − 2n:

T3 = 33 − 23 = 19, which is consistent.

P(3) is true.

Assume P(k) is true for some k ∈ , k ≥ 3.

That is, given Tk = 5Tk − 1 − 6Tk − 2, then Tk = 3k − 2k. This also true for P(k − 1); that is, 
Tk − 1 = 3k − 1 − 2k − 1.

RTP: P(k + 1) is true; that is, given Tk + 1 = 5Tk − 6Tk − 1, then Tk + 1 = 3k + 1 − 2k + 1.

Proof

Consider the given P(k + 1) formula.

Tk + 1 = 5Tk − 6Tk − 1

Now we can use both Tk = 3k − 2k and Tk − 1 = 3k − 1 − 2k − 1 to substitute.

Tk + 1 = 5(3k − 2k) − 6(3k − 1 − 2k − 1)

 = 5(3k) − 5(2k) − 6(3k − 1) + 6(2k − 1)

 = 5(3k) − 5(2k) − 2 × 3 × 3k − 1 + 3 × 2 × 2k − 1

 = 5(3k) − 5(2k) − 2(3k) + 3(2k)

 = 3(3k) − 2(2k)

 = 3k + 1 − 2k + 1

which is the required expression.

∴ Truth of P(k) ⇒ truth of P(k + 1)

But P(3) is also true.

∴ P(n) is true by mathematical induction.
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Exercise 5.05 Recursive formula proofs

 1 Prove by mathematical induction:

a Given T1 = 2 and Tn = Tn − 1 + 2, prove that Tn = 2n is true ∀ n ∈ 

b Given T1 = 2 and Tn = 2 × Tn − 1, prove that Tn = 2n is true ∀ n ∈ 

c Given T1 = 1 and Tn = Tn − 1 + 5, prove that Tn = 5n − 4 is true ∀ n ∈ 

d Given T1 = 7 and Tn = 3 × Tn − 1, prove that Tn = 7 × 3n − 1 is true ∀ n ∈ 

 2 Prove each result by mathematical induction.

a Given T1 = 5, T2 = 7 and Tn = 3Tn − 1 − 2Tn − 2, for n ≥ 3, prove that Tn = 2n + 3 
is true ∀ n ∈ 

b Given T1 = 2, T2 = 16 and Tn = 8Tn − 1 − 15Tn − 2, for n ≥ 3, prove that Tn = 5n − 3n 
is true ∀ n ∈ 

c Given T1 = 1 and Tn = Tn − 1 + 2n − 1, for n ≥ 2, prove that Tn = n2 is true ∀ n ∈ 

d Given T1 = 1 and Tn = Tn − 1 + (n − 1)(n − 1)!, for n ≥ 2, prove that Tn = n! is true ∀ n ∈ 

 3 Probably the most famous recursive formula is that describing the Fibonacci sequence: 
1, 1, 2, 3, 5, 8, 13, …

  Let T1 = 1, T2 = 1 and Tk = Tk − 1 + Tk − 2, for n ≥ 3. Rather than expressing the next term 
as a sum of the 2 previous terms, it has actually been shown that Tn can be calculated 
using the following formula:

  T

1 5
2

1 5
2

5n

n n

=

+





− −





, ∀ n ∈ . Prove this by mathematical induction.

The Peano axioms

Although the idea of mathematical induction was used informally by a number of 
mathematicians, the name given to the technique was not stated in a formal manner 
until an Italian mathematician, Giuseppe Peano (1858−1932), produced a work called 
Formulaire de mathématiques. In this publication he attempted to write 5 postulates, 
known as the Peano axioms, that form the basis of arithmetic. 

1 Zero is a number.

2 If x is a number, the successor of x is a number.

3 Zero is not the successor of a number.

4 Two numbers of which the successors are equal are themselves equal.

5 If a set S of numbers contains zero and also the successor of every number in S, 
then every number is in S.

Can you spot the inductive step in the list?

DID YOU KNOW?
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5.06 Proofs involving inequalities and graphs
Most proofs we have seen in this chapter are algebraic. Sometimes results can be proved or 
problems can be solved using a geometric or graphical approach by comparing concavity, 
heights or areas.

Graphical solution of inequalities
Often equations and inequalities can be difficult to solve algebraically but are straightforward 
if we draw a graph.

EXAMPLE 13

Solve x2 − 1 > x2 2+ .

Solution

Graph y = x2 − 1 and y = x2 2+  on the same axes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

−1
−1 1 2 3 4 5−2−3−4−5 xO

y = 2x + 2

y = x2 − 1y = −(2x + 2)

y

The solutions to the equation x2 − 1 = x2 2+  are the points of intersection of the  
2 graphs. These can be found by solving simultaneously y = x2 − 1 with the 2 arms of  
y = x2 2+ , that is, y = 2x + 2 and y = −2x − 2.
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Solving:

Right arm:

x2 − 1 = 2x + 2

x2 − 2x − 3 = 0

(x − 3)(x + 1) = 0

x = 3 or x = −1

Left arm:

x2 − 1 = −2x − 2

x2 + 2x + 1 = 0

(x + 1)2 = 0

x = −1

From the graph we can see the solution to the right arm is x = 3 and to the left arm is  
x = −1.

Now to solve the inequality x2 − 1 > x2 2+  we look for the values of x where the 
parabola is above the absolute value graph.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

−1
−1 1 2 3 4

(3 8)

5−2−3−4−5 xO

−1 3 x

y = 2x + 2

y = x2 − 1y = −(2x + 2)

y

This is equivalent to the solution on the number line where x < −1 or x > 3.

Therefore the solution to the inequality x2 − 1 > x2 2+  is x < −1 or x > 3.
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Proofs involving areas
Let us examine some general concepts comparing the area under a curve with 
approximations using rectangles.

x

Curve concave down 

y

  

x

y

Curve concave up

Area under curve > sum of the rectangles Area under curve < sum of the rectangles

We can use these observations to prove various results.

EXAMPLE 14

Consider the areas of the n rectangles each of width 
n
1

 under the curve y x1 2= −  for 
0 ≤ x ≤ 1 as shown.

xO

1

1

y = √1 − x2

n
1

n
2

n
3

n
n − 1

y

a Show that the sum An of the areas of the rectangles is given by

 A
n

n n n n n
1

1 2 3 ( 1)n 2
2 2 2 2 2 2 2 )(= − + − + − + + − − .

b Hence show that

 
n

n n nlim
1

1 2 3
4n 2

2 2 2 2 2 )( − + − + − + =
π

→ ∞
.
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Solution

a Let the area of the first rectangle be denoted A(1), the second be A(2), and so on 
so the last is A(n). Then the height of each rectangle is the y value, calculated using 

y x1 2= − .

A(1) = height × width

n n

n
n

1
1 1

1
1

2

2
2

= − 





×

= −

A(2) = height × width

n n

n
n

1
2 1

1
2

2

2
2 2

= − 





×

= −

A(n − 1) = height × width

n
n n

n
n n

1
1 1

1
( 1)

2

2
2 2

= −
−





×

= − −

and A(n) = 0.

So the sum An of the rectangles is given by:

An = A(1) + A(2) + A(3) + … + A(n − 1) + A(n)

n
n

n
n

n
n

n
n n

n
n n n n n

1
1

1
2

1
3

1
( 1) 0

1
1 2 3 ( 1) 0

2
2

2
2 2

2
2 2

2
2 2

2
2 2 2 2 2 2 2 )(

= − + − + − + … + − − +

= − + − + − + … + − − +

b From the graph we can see that y x1 2= −  is concave down so the sum of the 
rectangles is less than the area under the curve; that is, An < area under curve.

But as the number of rectangles increases the sum will approach the area under the 
curve; that is,

A x dxlim 1
n

n
2

0∫= −
→ ∞

 so

n
n n n n nlim

1
1 4 3 ( 1) 0

1
4

(1)
n 2

2 2 2 2 2 2 2)( − + − + − + … + − − + = × π ×
→ ∞

n
n n nlim

1
1 2 3

4n 2
2 2 2 2 2 )(∴ − + − + − + … =

π
→ ∞

Exercise 5.06 Proofs involving inequalities and graphs

 1 Solve each inequality graphically.

a x 2−  > x  b x2  ≤ x + 3 c x2 < x

d x2 − 6 ≥ x  e x  > 
x
1

 2 Explain with the use of a graph why each inequality is true.

a x2  > x  − 1 for all real values of x

b x 1+  < x 1−  has no solution
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 3 Solve 3x2 − 2x − 2 > x3 .

 4 a Sketch the graph of y = xe−x and find any stationary points.

b Hence prove that x ≤ ex − 1 for all real x.

 5 Consider the secant drawn on y = ln x between x = 1  

and x = 1 + 
n
1

 as shown.

a Find an expression for the gradient of the secant.

b Using part a and the fact that 
d
dx

x
x

(ln )
1

= ,  

show that 
n

elim 1
1

n

n

+





=
→ ∞

.

c Also using the method in part a, show that 
n n

1
1

1
1

1n n

+
+







> +





+

.  

Explain with the aid of a sketch.

d What implication does this have for compound interest?

 6 a If f (x) is a continuous function, show with the aid of a diagram the meaning of:

 
n

f
n

f
n

f
n

f
n
n

f x dxlim
1 1 2 3

( )
n 0∫







+ 





+ 





+ … + 











=
→ ∞

b Hence evaluate 
n n n n

n
n

lim
1

sin sin
2

sin
3

sin
n

π
+

π
+

π
+ … +

π



→∞

.

 7 a Prove by induction for a > 0, 0 < r < 1 and n ∈  that:

a + ar + ar2 + ar3 + … + arn − 1 = 
a r

r
( 1)

1

n −
−

b Consider the rays OP and OQ such that ∠POQ = 30°  
as shown. 

 Let OA0 be a units.

     i Show that the lengths A0  A1, A1 A2, A2 A3, A3 A4, …  
form a sequence in the form a, ar, ar2, ar3, … and  
find the value of r in exact form.

   ii Write down an expression for the length An − 1An  
in exact form.

iii Show that A0  A1 + A1 A2 + A2 A3 + A3 A4 + … = a(2 3 )+ .

1

y

xO

y = ln x

1
n1 + 

Q

P

a unts

A5

A4

A2

A3

A0

A1O
30°
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 8 Consider the curve y = 
x
1

, x > 0, as shown in the diagram.

a Explain why 
x

dx p
1

1
p

∫ < −  where p > 1.

b Hence show that 0 < ln p < p2 2− .

c Hence deduce that 
x

x
lim

ln
0

x
→

→∞
.

 9 a Find 
d
dx

x x( ln ).

b Hence evaluate exactly the integral x dxln
n

∫ .

c Consider the curve y = ln x.

 i Rectangles each of width 1 unit are drawn below the curve to approximate the 
area under the curve for 1 ≤ x ≤ n as shown below.

 

y = ln x

1 2 3 4 5O n − 1 n

y

x

 Show that the sum of the areas of the rectangles is Sb = ln [(n −1)!]

ii Rectangles each of width 1 unit are now drawn above the curve to approximate 
the area under the curve for 1 ≤ x ≤ n as shown below.

 

y = n x

n − 1 nO x

y

1 2 3 4

 Find the sum of the areas of the rectangles, Sa.

iii Hence explain why ln [(n − 1)!] < n ln n − n + 1 < ln (n!).

v  Prove that (n − 1)! < nne1 − n < n!

1

1O

y

x

y = 1
x

p√
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5. TEST YOURSELF

 1 Prove each series by mathematical induction ∀ n ∈ .

a 5 + 11 + 17 + … + (6n − 1) = 3n2 + 2n

b 
n n

n
n

1
1 4

1
4 7

1
7 10

1
(3 2)(3 1) 3 1×

+
×

+
×

+ … +
− +

=
+

c � � � � � �
�

�� �
a a

p
a
p

a
p

a p
p p

(1 )
(1 )n

n

n2 1 , p ≠ 0, 1

 2 Prove by induction:

a 9n − 1 is divisible by 8 ∀ n ∈ 

b 2n + 2 + 32n + 1 is divisible by 7 ∀ n ∈ 

 3 Prove each series by mathematical induction ∀ n ∈ .

a r n n
1
4

( 1)
r

n
3 2 2∑ = +  b k k n( !) ( 1)! 1

k

n

� � � �

c 
j j

n
n

1
( 1) 1j

n

∑ +
=

+

 4 Prove by induction:

a 7n + 13n + 19n is divisible by 13 if n is odd.

b n4 + 4n2 + 11 is divisible by 16 if n is odd.

 5 Prove each statement by mathematical induction ∀ n ∈ .

a 
n n

1
1
2

1
3

1
4

1
2

1
2 2 2 2+ + + + … + ≤ −

b 
x x x x x x x

1
1

1 1 1 1 1
( 1)n n2 3−

− − − − … − =
−

, x ≠ 0, 1

 6 Prove by induction (ab)n = anbn, ∀ n ∈ .

 7 Prove by induction 
d
dx

x( )n−  = −nx−n − 1, ∀ n ∈ .

 8 Prove by induction 
d
d

p p p
n

(sin ) sin
2

n

n
n

θ
θ = θ +

π





 , ∀ n ∈ , p ∈ .

 9 Prove by induction P(n): x2n − y2n is divisible by xn + yn for all n ≥ 1.
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 10 Prove by induction that the expression (x + 1)n − nx − 1 is divisible by x2 where n is a 
positive integer.

 11 Prove each property by mathematical induction.

a If m ∈  and m ≥ 1 then m(m + 3) is always even.

b If n ∈  and n ≥ 2 then n(n + 1)(n − 1) is always divisible by 6.

c If n ∈  and if n is odd, then n(n + 2) + (n + 2)(n + 4) is always even.

 12 Given K > 0 and L > 0 where K L≠  and n ∈ :

a find 
K K L L KL

K L

n n n n1 1− + −
−

+ +
.

b deduce that K  n + 1 + Ln + 1 ≥ K  nL + KLn

c hence prove by mathematical induction that 
K L K L

2 2

n n n+





≤
+

 ∀ n ∈ .

 13 a Write the expansion for cos (A + B). Hence prove cos 2P = 1 − 2 sin2 P.

b Prove that 
Q Q P

P
cos cos ( 2 )

2sin
− +

 = sin (Q + P).

c Hence prove by mathematical induction that:

 sin P + sin 3P + sin 5P + … + sin (2n − 1)P = 
nP

P
1 cos 2

2sin
−

, ∀ n ∈ .

 14 Use the recursive technique for each proof.

a Given T1 = 5 and Tn = 2Tn − 1 + 1, for n ≥ 2, prove that Tn = 6(2n − 1) − 1 is true  
∀ n ∈  by mathematical induction.

b i Given T1 = 1 and Tn = 
T2 1

3
n −−  for n ≥ 2, find the values for T2, T3 and T4.

ii Prove that Tn = 3
2
3

1
n





−  is true ∀ n ∈ , by mathematical induction.

c Given T1 = 5, T2 = 11 and Tn = 4Tn − 1 − 3Tn − 2 for n ≥ 3, prove that Tn = 3n + 2 is 
true ∀ n ∈ , by mathematical induction.

 15 Use mathematical induction to prove that the sum of the exterior angles of an n-sided 
convex polygon is 360°.

16 Solve each inequality graphically.

a x  ≥ x2 − 2 b 
x

4
1−

 ≤ x + 2
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 17 Consider the diagram showing an isosceles triangle inscribed in a semicircle inscribed in 
a rectangle.

  

y

xr

r

−r O

a By considering areas, show that 2 < π < 4.

b Explain how you could find a better approximation for π.

 18 Consider the curve y = ln x and the chord joining A(a, ln a) and B(b, ln b) as shown in 
the diagram. Perpendiculars are drawn from A and B to the x-axis to form a trapezium. 
Note a ≠ b.

  

x

y

B

A

a b

y = ln x

a Explain why the area under the curve between A and B is greater than the area of 
the trapezium.

b Prove that  e
b
a

b a
b a

2
<

−
+





 .



CALCULUS

6.
FURTHER INTEGRATION
One of the first uses of integration was in finding the volumes of wine casks. Because the casks have 
a curved surface, integration is required to determine area and volume.

Other uses of integration include determining centres of mass, fluid flow and modelling the behaviour 
of objects under stress. In the real world the equations that model these types of applications are 
generally not simple nor standard.

In this chapter, we develop a broader range of techniques and strategies to solve more complex 
problems involving differential equations and integration.

CHAPTER OUTLINE

6.01 Integration by substitution
6.02 Rational functions with quadratic denominators
6.03 Partial fractions
6.04 Integration by parts
6.05 Recurrence relations
Test yourself 6



IN THIS CHAPTER YOU WILL:

•	 use the method of integration by substitution
•	 integrate rational functions with quadratic denominators that are reducible or irreducible
•	 decompose rational functions into partial fractions
•	 use integration by parts
•	 integrate functions that form a recurrence relation (recursive formula)
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TERMINOLOGY
integration by parts: A method of integrating a 

function by splitting it into one function to be 
differentiated and one function to be integrated.

partial fractions: A rational function can be 
expressed as the sum of smaller fractions called 
partial fractions that are easier to integrate.

rational function: A function that can be 

expressed as a fraction 
f x
g x

( )
( )

, such that both 

 the numerator and the denominator are 
polynomials.

recurrence relation or recursive formula: A 
formula or integral that is expressed in terms of 
itself with a smaller parameter value, for example

 d
n

n
dsin  

1
  sin  n n

0
2 2

0
2∫ ∫θ θ =

−
θ θ

π
−

π

.

6.01 Integration by substitution
In Mathematics Extension 1, Chapter 8, Further integration, we learned to use integration by 
substitution for integrals of composite functions involving a function and its derivative.

EXAMPLE 1

Evaluate ∫6x2(2x3 − 1)4 dx.

Solution

Let u = 2x3 − 1, 
du
dx

x6 2=

du = 6x2 dx

∴ ∫6x2(2x3 − 1)4 dx = ∫ u4 du

	 	 	 	 							 	 					 = 
1
5

 u5 + C

	 	 	 	 							 	 					 =	
1
5

 (2x3 − 1)5 + C

In cases like these you will notice that the derivative of ‘the function within the function’ can 
be identified as the multiplier.

In many cases, you will be required to find and evaluate indefinite and definite integrals using 
the method of integration by substitution where the substitution is not given. It is therefore 
necessary to be able to identify convenient substitutions.

EXAMPLE 2

Evaluate 
x

x
dx

4

2 12∫
+

.

Solution

Let u = 2x2 + 1, 
du
dx

 = 4x

du = 4x dx

Homewok

WS

Integration by 
substitution

Inegaion by 
substitution
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∴ 
x

x
dx

u
du 

4

2 1

1
2∫ ∫

+
=

u du

u C

u C

 

1

2

2

2

2

∫=

= +

= +

−

  
= + +x C2 2 12

EXAMPLE 3

Evaluate 
x

x
dx

sin∫ .

Solution

Let u = x , 
du
dx x

1
2

= , 

so dx = 2 x  du

x
x

dx
sin∫  = 

u
x

x du
sin

2∫
u du

u C

2 sin

2 cos
∫=

= − +

= −2 cos x  + C

Many integrations with trigonometric integrands, such as ∫(sinn x cos x) dx or  
∫(cosn x sin x) dx, could use a simple substitution to form a standard integral.

EXAMPLE 4

Evaluate ∫(sin9 x cos x) dx.

Solution

Let u = sin x, noting that 
du
dx

 = cos x 

du = cos x dx.

∫ sin9 x cos x dx = ∫u9 du

	 	 	 	 														= 
1

10
 u10 + C

	 	 	 	 														= 
1

10
 sin10 x + C
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sin2 x and cos2 x

sin2 x = 
1
2

 (1 − cos 2x)

cos2 x = 
1
2

 (1 + cos 2x)

These identities from Mathematics Extension 1, Chapter 8, Further integration, allow other 
similar integrations to be quickly determined.

sin2 2x = 
1
2

 (1 − cos 4x) or sin2 3x = 
1
2

 (1 − cos 6x)

cos2 2x = 
1
2

 (1 + cos 4x)  cos2 3x = 
1
2

 (1 + cos 6x)

EXAMPLE 5

Evaluate x dxcos 22
0
4∫
π

.

Solution

x dx x dx

x x

cos 2
1
2

1 cos 4

1
2

1
4

sin 4

1
2 4

0 0 0

8

2
0
4

0
4

0

4

∫ ∫ [ ]

( )

= +

= +





=
π

+





− +










=
π

π π

π

EXAMPLE 6

Evaluate 
x x

dx
1

(1 )2

4

∫ +
.

Solution

Substitute u = 1 + x .

Therefore 
du
dx x

1
2

= ; that is, dx = 2 x  du
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When x = 1, u = 2, and when x = 4, u = 3, so we get:

x x
dx

u x
x du

u du

u

1
(1 )

 
1

2  

2

2
1

2
1
3

1
2

2
1
6

1
3

2

4

22

3

2
2

3

2

3

∫ ∫

∫
+

=

=

= − 








= − − −















= 





=

−

For integrations of the form 
dx

a x b xcos sin∫ +
, 

dx
a x bcos∫ +

 or 
dx

a b xsin∫ +
 we can use the 

t-formulas where t = tan 
x
2

:

sin x = 
t
t

2
1 2+

, cos x = 
t
t

1
1

2

2
−
+

 and tan x = 
t
t

2
1 2−

, along with dx = 
dt
t

2
1 2+

 as proven below.

It is easy enough to show that when t = tan 
x
2






 then

dt
dx

x1
2

sec
2

2=

            

x1
2

1 tan
2

2= + 















            
1
2

=  (1 + t2)

and therefore: dx = 
dt
t

2
1 2+

.

EXAMPLE 7

Use the substitution t = tan 
2
θ

 to show that 
d

sin
1
2

2

2
3∫ θ

θ
=π

π

 loge 3.

Solution

When θ = 
2
3
π

, t = tan
3
π

= 3, and when θ = 
2
π

, t = tan
4
π

= 1
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θ =
+

θ =
+

t
t

d
dt
t

sin
2

1
2

12 2

∫ ∫θ
θ

=
+

+π

π
d t

t
dt
tsin

1
2

2
1

2

2
3

23

2

         =	
t

dt
13

∫  

         =  tloge 1

3

         = loge 3 − loge 1 

         = −log 3 0e
1
2

         = 
1
2

 loge 3 as required.

When changing the variable x2 in an integrand it usually involves x2 , which is the same  
as x . In this case, we take the positive case for convenience. There are other situations where 
a similar problem arises, especially in the case of trigonometric functions; again we take the 
convenient solutions that lie in the domain of the standard inverse trigonometric functions.

When the integrand has a sum or difference of 2 squares:
dx

a x2 2∫
+

 use the substitution x = a tan θ

a x dx 2 2∫ −  use the substitution x = a sin θ or x = a cos θ
dx

x a2 2∫
−

 use the substitution x = a sec θ

These results help to determine what should be the best substitution.

Some standard integrals

∫f ′(x)[  f (x)]n dx = 
f x

n
( )

1

n

+

+
 + C

∫f ′(x)ef x) dx = e f x) + C

f x
f x

dx
( )
( )∫
′

 = ln f x( )  + C

∫f ′(x) sin f (x) dx = −cos f (x) + C

∫f ′(x) cos f (x) dx = sin f (x) + C

∫f ′(x) sec2 f (x) dx = tan f (x) + C

f x

a f x
dx

f x
a

C
( )

( )
sin

( )
2 2∫

′

−  
= 





+−

f x

a f x
dx

f x
a

C
( )

( )
cos

( )
2 2∫
− ′

−  
= 





+−

f x

a f x
dx

a
f x

a
C

( )

( )

1
tan

( )
2 2∫

′

+  
= 





+−
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Exercise 6.01 Integration by substitution

 1 Find each integral using the given substitution.

a 
e

e
dx

1

x

x∫ +
, u = ex + 1  b 

e
e

dx u e
1

 

x

x

x2
2∫ +

=

c ∫x(1 + x2)4 dx, u = 1 + x2 d 
x

x
dx

1
 ∫ −

, u = 1 − x

e 
e dx

e 1
 

x

x∫
−

, x > 0, u = ex − 1 f 
dx

a x2 2∫ +
, x = a tan θ

g x x dx3 ∫ − , u = x − 3 h 
x

x
dx

1∫ +
, x = u2 − 1

i 
x

x
dx

1∫ −
, x = u2 + 1

 2 Find each integral using an appropriate substitution.

a 
e

x
dx

x

∫  b 
x

e
dx

x∫  c 
x

x
dx

12∫
+

d 
x

x
dx

(1 ln ) 2

∫ +
 e 

x

x
dx

(sin 1)

1

1 2

2∫ +

−

−
 f 

x
x

dx
tan ( 1)
( 1) 12∫ +

+ +

−

g 
dx

x x(ln )2∫  h 
dx

x x ln∫
 3 Find each integral using an appropriate substitution.

a 
x

x
dx

cos
1 sin0

2∫ +

π

  b 
x
x

dx
cos

(1 sin )20
2∫ +

π

 c 
x
x

dx
cos

(1 sin )30
2∫ +

π

d 
x
x

dx
cos

1 sin

3

0
2∫ +

π

 e ∫ sin2 x cos3 x dx f ∫ sin3 x cos2 x dx

g ∫ sin4 x cos5 x dx h ∫ sin5 x cos4 x dx i d
sin

cos
 2∫ θ

θ
θ

j d
sin

cos
 3∫ θ

θ
θ  k d

sin
cos

 4∫ θ
θ

θ  l d
cos
sin

 2∫ θ
θ

θ

m d
cos
sin3∫ θ

θ
θ  n d

cos
sin4∫ θ

θ
θ  o d

sin
cos

 
3

4∫ θ
θ

θ

p d
sin
cos

 
3

2∫ θ
θ

θ

 4 Evaluate each definite integral.

a x x dxtan sec4 2
0
4∫
π

 b 
e

d
cos

an

20
4∫ θ

θ
θπ

 c 
x

x
dx

4
 

22

5

∫
−

d e e dxsinx x

n
6

n
4∫ π

π

 e x dxcos2
0
4∫
π

     f x dxcos 42
0
4∫
π

g x dxsin 22
0
4∫
π
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 5 Evaluate each integral using an appropriate substitution.

a 
x

x x
dx

( 1) 1
 

3

8

∫ + +
 b x dx9  2

0

3

∫ −  c 
x

dx
6

9 20

3

∫ +

d 
e
e

dx
(1 )

x

x 20∫ +
 e 

x
x

dx
1

 
0∫ +

 6 Verify the answer to Question 5b by considering the area the integral represents.

 7 Using the substitution t = tan 
x
2

:

a evaluate 
x

dx
1

1 sin0∫ +
π

 b evaluate
dx

x
 

sin
2

2
3∫π

π

c find 
x

dx
1

1 cos∫ −
 d show that d

1
1 sin

  1 3
0
3∫ + θ

θ = − +
π

e show that 
d

sin 2
 
3 30

2∫ θ
θ +

=
ππ

 f evaluate 
d

1 cos20
3∫ θ

+ θ

π

 8 Find each integral using the given substitution.

a 
dx

x 42∫ +
, x = 2 tan θ b 

dx

x9
 

2∫
−

, x = 3 sin θ c 
dx

x4 92∫ +
, x = 

3
2

 tan θ

 9 Evaluate each integral using an appropriate substitution.

a 
dx

x4 20∫ −
 b 

dx

x

2

16 20

2

∫
−

 c 
dx

x
3

1 9 20
3∫ +

  d 
xdx

x

2

25 23

4

∫
−

 10 a Using the substitution u2 = 9 − x2, evaluate x x dx93 2
0

3

∫ − .

b Using the substitution t = tan 
x
2

, find 
dx
x x1 cos sin∫ + +

.

c Using the substitution u = sec x, or otherwise, find ∫ sec3 x tan x dx.

d Use the substitution x = 2 sin θ to evaluate 
dx

x(4 )2 30

2

∫
−

.

e Find the integral 
e e
e

dx
1

 
x x

x

2

2∫ +
+

.

f Show that x x dx(4 )  
0

2

∫ −  = π.

g Show that x dx4 9  
3

2
0

2
3∫ − =

π
.
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Length of an arc
Integration can be used to find the length of an arc.  
By considering a small portion of a curve and using  
Pythagoras’ theorem, we get:

δL2 ≈ δx2 + δy2 = δx2 
y
x

1
2

+
δ
δ



















As δx → 0, the length of the curve y = f (x) between the  
points where x = a and x = b is:

L
dy
dx

dx1
a

b
2

∫= + 





For example, the length of the arc on the circle, in the first quadrant, given by

x = a cos t and y = a sin t can be found using this expression:

L
dy
dx

dx1
a

2

0∫= + 





dy
dx

x
y

= −

And the length of the arc L
a

a x
dx a

1
2

a

2 20∫=
−

= π , as expected.

6.02  Rational functions with quadratic 
denominators

Integration of rational functions with quadratic denominators can be classified into those 
with denominators that can be factorised and those with denominators that do not reduce.  
Of the 3 integrals below, the first one has a denominator that can be factorised but the others 
all have irreducible quadratics so they cannot be factorised.

x x
dx

1
2 12∫ + +

, 
x

dx
1

12∫ +
, 

x x
dx

1
2 52∫ + +

Some integrals involve quadratics under a radical (square root) in the denominator.

x
dx

1

4 2∫
−

, 
x x

dx
1

3 2 2∫
− −

DID YOU KNOW?

δy

δx

δL
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Other integrands with quadratic denominators also have a linear or quadratic function in the 
numerator.

x
x x

dx
2 1

12∫ +
+ +

, 
x

x x
dx

2 1
2 32∫ +

+ +
, 

x
x

dx
1

2

2∫ +
To integrate these functions, we need to know how to complete the square and recognise 
standard forms for integration.

Some standard integrals

ax b dx
ax b
a n

C( )
( )

( 1)
n n

∫ + =
+

+
+

+
 ∫ ′

= +f x
f x

dx f x C
( )
( )

ln ( )

a x
dx

a
x
a

C
1 1

tan2 2∫ +
= 





+−  
a x

dx
x
a

C
1

sin
2 2∫

−
= 





+−

EXAMPLE 8

Find:

a
x x

dx
1
2 12∫ + +

b
x

dx
1

12∫ +
c

x x
dx

1
2 52∫ + +

Solution

a
x x

dx
x

dx

x dx

x
C

x
C

1
2 1

1
( 1)

( 1)

( 1)
1

1
1

2 2

2

∫ ∫

∫
+ +

=
+

= +

=
+
−

+

= −
+

+

−

−

b
x

dx
1

12∫ +
 = tan−1 x + C

c Complete the square.

x x
dx

x x
dx

x
dx

x
C

1
2 5

1
2 1 4
1

( 1) 4

1
2

tan
1

2

2 2

2

∫ ∫

∫
+ +

=
+ + +

=
+ +

=
+





+−
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EXAMPLE 9

Find:

a
x

dx
1

4 2∫
−

b
x x

dx
1

3 2 2∫
− −

Solution

a
x

dx
x

C
1

4
sin

22∫
−

= +−

b Complete the square.

x x
dx

x x
dx

x
dx

x
C

1

3 2

1

2 1 4
1

4 ( 1)

sin
1

2

2 2

2

∫ ∫

∫
− −

=
− − − +

=
− +

=
+





+−

EXAMPLE 10

Find:

a x
x x

dx
2 1

12∫ +
+ +

 b x
x x

dx
2 1

2 32∫ +
+ +

Solution

a Recognise that the numerator is the derivative of the denominator.

x
x x

dx
2 1

12∫ +
+ +

 = ln x x 12 + +  + C

b Recognise that the numerator is almost the derivative of the denominator.

x
x x

dx
x

x x x x
dx

x x
x

dx

x x
x

C

2 1
2 3

2 2
2 3

1
2 3

ln 2 3
1

( 1) 2

ln 2 3
1
2

tan
1

2

2 2 2

2
2

2 1

∫ ∫

∫

+
+ +

=
+

+ +
−

+ +

= + + −
+ +

= + + −
+





+−

This is a combination of recognising the log result, splitting the numerator, 
completing the square and recognising the y = tan−1 x result.
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Exercise 6.02 Rational functions with quadratic denominators

 1 Find the integral of each function.

a 
x

1
( 3)2+

 b 
x

1
( 4)2−

 c 
x x

2
4 42
−

+ +

d 
x

1
12 +

  e 
x

1
92 +

  f 
x

1
32 +

g 
x

1
52 +

  h 
x x

1
4 42 − +

 2 Find:

a 
x

dx
1

1 2∫
−

    b 
x

dx
1

9 2∫
−

    c 
x

dx
1

4 2∫
−

d 
x

dx
1

9 4 2∫
−

  e 
x x

dx
1

4 2∫
−

  f 
x x

dx
1

9 122∫
− +

 3 a Find 
x x

dx
1
2 22∫ + +

 by first showing that x2 + 2x + 2 = (x + 1)2 + 1.

b Find 
x x

dx
1

2 2∫
−

 by first showing that 2x − x2 = 1 − (x − 1)2.

c Show that 
x
x x

2
1

1
1

1

2

2 2
+
+

= +
+

. Hence, find 
x
x

dx
2
1

2

2∫ +
+

.

d Show that x2 − 2x +	5 = 4 + (x − 1)2. Hence, find 
x x

dx
1
2 52∫ − +

.

 4 Find:

a 
x

x
dx

1

2

2∫ +
 b 

x
x

dx
1
1

2

2∫ −
+

 c 
x
x

dx
4
2

2

2∫ +
+

d 
x

x
dx

9

2

2∫ +
 e 

x
x

dx
( 1)

1

2

2∫ +
+

 f 
x
x

dx
( 1)

2

2

2∫ −
+

 5 Find:

a 
x

x x
dx

2 1
4 52∫ +

+ +
 b 

x
x

dx
4 3

12∫ +
+

       c 
x

x
dx

12∫ +

d 
x
x

dx
1
12∫ −

+
       e 

x
x x

dx
2 22∫ − +

 f 
x
x

dx
1
12∫ +

−
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 6 Find each indefinite integral.

a 
dx

x1 2∫ −

−
 b 

dx

x1 4 2∫
−

       c 
dx

x1 4 2∫ +

d 
dx

x x4 82∫ + +
 e 

dx
x x4 4 102∫ + +

 f 
x x

dx
2
6 132∫ − +

 7 a The graphs of y = 
x
x

1
1

2

2
−
+

 and y = 1 are  

shown in the diagram. Evaluate the 
area shaded. Leave your answer in 
terms of π.

b The area shaded above is rotated 
about the y-axis. Find the volume 
of the figure generated. Leave your 
answer as an exact value.

c Calculate the volume of the solid of 
revolution formed when 

f x
x x

( )
1

4 82
=

+ +
 is rotated about the x-axis between  

x = −1 and x = 2. Leave your answer in terms of π.

6.03 Partial fractions
A function 

f x
g x

( )
( )

, where f (x) and g(x) are polynomials, is called a rational function. 

If the degree of f (x) is greater than the degree of g(x), the function is called an improper 
function. If the degree f (x) is less than the degree of g(x), the function is called a proper 
function.

An improper function can be expressed as the sum of a polynomial and a proper rational 

function. For example, 
x

x
x

x
x1 1

3

2 2+
= −

+
A proper function can be expressed as a sum of simpler fractions called partial fractions. 
This process is also known as decomposing the function into partial fractions.

Homewok

WS

Partial 
fractions

Inegal 
calculus

1.5

1

05

−05

−1

−05 05 1 15 2 x

y

−1−15−2
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EXAMPLE 11

If 
x x x

A
x

B
x

C
x

6
( 1)( 1)( 2) 1 1 2− + +

=
−

+
+

+
+

, find the values of A, B and C and hence write 

x x x
6

( 1)( 1)( 2)− + +
 as the sum of partial fractions.

Solution

Multiply both sides by (x − 1)(x + 1)(x + 2):

6 = A(x + 1)(x + 2) + B(x − 1)(x + 2) + C(x − 1)(x + 1)

Expand and equate coefficients of x:

6 = A(x2 + 3x + 2) + B(x2 + x − 2) + C(x2 − 1)

   = Ax2 + 3Ax + 2A + Bx2 + Bx − 2B + Cx2 − C

   = (A + B + C)x2 + (3A + B)x + (2A − 2B − C)

Hence:

            A + B + C = 0 [1]

                  3A + B = 0 [2]

        2A − 2B − C = 6 [3]

From [2]:         B = −3A [4]

     [1] + [3]: 3A − B = 6 [5]

Substitute [4] into [5]:

         3A − (−3A) = 6

                        6A = 6

                          A = 1

Substitute into [4]:

                           B = −3(1)

                                 = −3

Substitute into [1]:

            1 − 3 + C = 0

                −2 + C = 0

                          C = 2

∴ A = 1, B = −3 and C = 2

∴ 
x x x x x x

6
( 1)( 1)( 2)

1
1

3
1

2
2− + +

=
−

−
+

+
+
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EXAMPLE 12

If 
x x

A
x

B
x

C
x

4
( 1)( 1) 1 1 ( 1)2 2− +

=
−

+
+

+
+

, find the values of A, B and C and hence write as 

the sum of partial fractions.

Solution

Multiply both sides by (x − 1)(x + 1)2:

4 = A(x + 1)2 + B(x − 1)(x + 1) + C(x − 1) [*]

Expand and equate coefficients of x:

4 = A(x + 1)2 + B(x − 1)(x + 1) + C(x − 1)

   = A(x2 + 2x + 1) + B(x2 − 1) + Cx − C

   = Ax2 + 2Ax + A + Bx2 − B + Cx − C

   = (A + B)x2 + (2A + C)x + (A − B − C)
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Hence:
A + B = 0 [1]

2A + C = 0 [2]

A − B − C = 4 [3]

From [1]:   B = −A [4]

From [2]:   C     = −2A [5]

Substitute into [3]:

A − (−A) − (−2A) = 4

                       4A = 4

                         A = 1

Substitute into [4] and [5]:

                         B = −1

                         C = −2(1)

                            = −2

∴ A = 1, B = −1 and C = −2

∴ 
x x x x x

4
( 1)( 1)

1
1

1
1

2
( 1)2 2− +

=
−

−
+

−
+

Alternatively, using [*] above, substituting x = 1, we obtain A = 1 rather quickly, and by 
substituting x = −1, we can get C = −2, again fairly easily. Last, we can choose x to be any 
other number, say x = 0, to find that A − B − C = 4 and therefore B = −1.

Repeated linear factors in denominator

To each linear factor ax + b occurring n times in the denominator of a proper function, there 

corresponds a sum of n partial fractions of the form 
A

ax b
A

ax b
A

ax b  ( )   ( )  
n

n
1 2

2+
+

+
+ …+

+
.

For example: 
x x x x x

4
( 1)( 1)

1
1

1
1

2
( 1)2 2− +

=
−

−
+

−
+
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EXAMPLE 13

Find A, B and C such that 
x

x x x
A

x
Bx C

x x
5 2

( 1)( 2 4) 1 2 42 2
+

− + +
=

−
+

+
+ +

.

Solution

Note that when a partial fraction has a quadratic denominator, then it has a linear 
numerator Bx + C.

Multiply both sides by (x − 1)(x2 + 2x + 4):

5x + 2 = A(x2 + 2x + 4) + (Bx + C)(x − 1)

           = Ax2 + 2Ax + 4A + Bx2 − Bx + Cx − C

           = (A + B)x2 + (2A − B + C)x + (4A − C)

Hence:

                        A + B = 0 [1]

                 2A − B + C = 5 [2]

                     4A − C = 2 [3]

From [1]:                B = −A [4]

From [3]:               C = 4A − 2 [5]

Substitute into [2]:

2A − (−A) + 4A − 2    = 5

                    7A − 2      = 5

                          7A = 7

                            A = 1

Substitute into [4] and [5]:

                              B = −1

                            C = 4(1) − 2

                                = 2

∴ A = 1, B = −1 and C = 2

Quadratic factors in denominator
To each irreducible quadratic factor ax2 + bx + c occurring once in the denominator of a 

proper function, there corresponds a single partial fraction of the form 
Ax B

ax bx c  2
+

+ +
.

For example: 
x

x x x x
x

x x
5 2

( 1)( 2 4)
1

1
2

2 42 2
+

− + +
=

−
+

− +
+ +
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EXAMPLE 14

Find A, B, C, D and E such that 
x x

A
x

Bx C
x

Dx E
x

1
( 1) 1 ( 1)2 2 2 2 2+

= +
+
+

+
+
+

.

Solution

Multiply both sides by x(x2 + 1)2:

1 = A(x2 + 1)2 + (Bx + C)(x2 + 1)x + (Dx + E)x

   = A(x4 + 2x2 + 1) + (Bx + C)(x3 + x) + (Dx2 + Ex)

   = Ax4 + 2Ax2 + A + Bx4 + Bx2 + Cx3 + Cx + Dx2 + Ex

   = (A + B)x4 + Cx3 + (2A + B + D)x2 + (C + E)x + A

Hence: A + B = 0 [1]

                                                 C = 0 [2]

                                   2A + B + D = 0 [3]

                                               C + E = 0 [4]

                                                     A = 1 [5]

Substitute A = 1 into [1]: 1 + B = 0

B = −1

Substitute C = 0 into [4]: 0 + E = 0

E = 0

Substitute A = 1, B = −1 into [3]:        2(1) − 1 + D = 0

1 + D = 0

D = −1

∴ A = 1, B = −1, C = 0, D = −1, E = 0.

Repeated quadratic factors in denominator
To each irreducible quadratic factor ax2 + bx + c occurring n times in the denominator of 
a proper function, there is a sum of n partial fractions of the form

A x B
ax bx c

A x B
ax bx c

A x B
ax bx c  ( )   ( )  

n n
n

1 1
2

2 2
2 2 2

+
+ +

+
+

+ +
+ +

+
+ +

.

For example: 
x x

A
x

Bx C
x

Dx E
x

1
( 1) 1 ( 1)2 2 2 2 2+

= +
+
+

+
+
+

 = 
x x x

x
x

x
x

1
( 1)

1
1 ( 1)2 2 2 2 2+

= −
+

−
+
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Once the rational functions are distributed as partial fractions they become far easier to 
integrate using common integration strategies.

EXAMPLE 15

Find 
x

x x
dx

9 2
(2 1)( 3)∫ −

− −
.

Solution

Using partial fractions:

x
x x

A
x

B
x

9 2
(2 1)( 3) 2 1 3

−
− −

=
−

+
−

9x − 2 = A(x − 3) + B(2x − 1)

Substituting x = 3, we get B = 5.

And so by putting x = 0, or any other number, A = −1.

Hence:

x
x x

dx
x x

dx
9 2

(2 1)( 3)
1

2 1
5

3∫ ∫−
− −

=
−

−
+

−

Integrating,

x
x x

dx
9 2

(2 1)( 3)∫ −
− −

 = −	
1
2

 ln 2x − 1 + 5 ln x − 3 + C

EXAMPLE 16

Find 
x x

x x
dx

3 2 1
( 1)( 2)

2

2 2∫ − +
+ +

.

Solution

Using partial fractions:

− +
+ +

=
+
+

+
+
+

x x
x x

Ax B
x

Cx D
x

3 2 1
( 1)( 2) 1 2

2

2 2 2 2

3x2 − 2x + 1 = (Ax + B)(x2 + 2) + (Cx + D)(x2 + 1)

	 	 	 	 	 = Ax3 + 2Ax + Bx2 + 2B + Cx3 + Cx + Dx2 + D

	 	 	 	 	 = (A + C)x3 + (B + D)x2 + (2A + C)x + 2B + D
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Equating coefficients:

A + C = 0 [1]

B + D = 3 [2]

2A + C = −2 [3]

2B + D = 1 [4]

[3] − [1]: A = −2

Substitute into [1]:

−2 + C = 0

C = 2

[4] − [2]: B = −2

Substitute into [2]:

−2 + D = 3

D = 5

Hence: 

∫ ∫

∫

( )( )

( ) ( )

− +
+ +

=
− −

+
+

+
+

=
−

+
−

+
+

+
+

+

= − + − + + +






+− −

x x

x x
dx

x
x

x
x

dx

x
x x

x
x x

dx

x x x
x

C

3 2 1

1 2

2 2
1

2 5
2

2
1

2
1

2
2

5
2

ln 1 2tan ln 2
5
2

tan
2

2

2 2 2 2

2 2 2 2

2 1 2 1

EXAMPLE 17

The expression 
x x

x x
2 5 3

( 1) ( 4)

2

2 2
+ +

− +
 can be written as 

A
x

B
x

Cx D
x1 ( 1) 42 2−

+
−

+
+
+

 where A, B, C 

and D are real numbers.

a Find A, B, C and D.

b Hence find 
x x

x x
dx

2 5 3
( 1) ( 4)

 
2

2 2∫ + +
− +

.
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Solution

a Using partial fractions:

x x
x x

A
x

B
x

Cx D
x

2 5 3
( 1) ( 4) 1 ( 1) 4

2

2 2 2 2
+ +

− +
=

−
+

−
+

+
+

On multiplying both sides by (x − 1)2(x2 + 4):

2x2 + 5x + 3 = A(x − 1)(x2 + 4) + B(x2 + 4) + (Cx + D)(x − 1)2

Substituting x = 1 we get 10 = 5B, so B = 2.

Substituting x = −1, we get 0	=	−10A +	10 −	4C + 4D

−5 = −5A − 2C + 2D       [1]

Substituting x = 0, we get 3 = −4A + 8 + D

−5 = −4A +	D               [2]

Substituting x = 2, we get 21 = 8A + 16 + 2C + D

5 = 8A + 2C + D        [3]

Solving simultaneously, A = 1, B = 2, C = −1 and D = −1.

b Hence:

x x
x x

dx
x x

x
x

dx
2 5 3

( 1) ( 4)
 

1
1

2
( 1)

1
4

 
2

2 2 2 2∫ ∫+ +
− +

=
−

+
−

−
+
+

 

Integrating:

∫ + +
− +

= − −
−

− + − 





+−x x
x x

dx x
x

x
x

C
2 5 3

( 1) ( 4)
  ln 1

2
1

1
2

ln ( 4)
1
2

tan
2

2

2 2
2 1

Exercise 6.03 Partial fractions

 1 Find each integral using partial fractions.

a 
x

x x
dx

3 1
( 3)( 2)∫ +

− +
 b 

x
x x

dx
5 8

( 3)(2 1)∫ +
+ −

c 
x

x x
dx

3 1
( 3)( 2)∫ +

+ +
 d 

x
x x

dx
3 7

( 3)( 5)∫ +
− +

e 
x

x x
dx

3
(1 2 )(1 3 )∫ +

+ −
 f 

a b x
x a x b

dx a b
( )

( )( )∫ −
− −

>
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 2 Find each integral.

a 
x

x x
dx

2
( 2)( 2)∫ − +

 b 
x x

dx
11

6 5 42∫ + −

c 
x

x x
dx

7
2 3 22∫ −

− −
 d 

x x
x x x

dx
3 12 11

( 1)( 2)( 3)

2

∫ − +
− − −

e 
x x

x x
dx

5 9 6
( 1)(2 3)

2

2∫ + +
− +

 f 
x

x x
dx

1
7 62∫ −

− +

 3 By writing each integrand in the form 
A

x a
B

x a
C

x b( )2+
+

+
+

+
, determine each integral.

a 
x

x x
dx

4 7
( 1) (2 3 )2∫ +

+ +
 b 

x x
dx

1
( 1)( 1)2∫ + −

 c 
x x
x x

dx
6 25

( 1) ( 2)

3 2

2 2∫ − +
+ −

 4 By decomposing into partial fractions, determine each integral.

a 
x

x x
dx

2
( 1)( 1)2∫ −

+ +
 b 

x
x x

dx
( 1)( 1)2∫ + −

c 
x

x x x
dx

3
3 33 2∫ +

+ + +
 5 Using the expansions for the sum and difference of 2 cubes, a3 + b3 = (a + b)(a2 − ab + b2) 

and a3 − b3 = (a − b)(a2 + ab + b2), find:

a 
x

dx
12

83∫ +
 b 

x
x

dx
9 6

83∫ +
−

 6 a Find the real numbers A, B and C such that 
x x

A
x

Bx C
x

2
(1 )(1 ) 1 12 2+ +

=
+

+
+

+
.

b Hence, find 
x x

dx
2

(1 )(1 )
 2∫ + +

.

 7 a Find real values for A and B such that 
x x

A
x

B
x

1
( 3)( 1) 3 1+ +

=
+

+
+

.

b Hence evaluate 
x x

dx
1

( 3)( 1)
 

0∫ + +
.

 8 Write 
x x

x x
2 5 3

( 1) ( 1)

2

2 2
+ +

− +
 in the form 

A
x

B
x

Cx D
x1 ( 1) 12 2−

+
−

+
+
+

 and then find the 

  integral 
x x

x x
dx

2 5 3
( 1) ( 1)

 
2

2 2∫ + +
− +

.

 9 Write 
x x

x x x
2 7

( 2) ( 1)

2

2 2
− −

+ + +
 as a partial fractions 

A
x

B
x

Cx D
x x2 ( 2) 12 2+

+
+

+
+

+ +
 and then 

  evaluate 
x x

x x x
dx

2 7
( 2) ( 1)

 
2

2 20∫
− −

+ + +
.

10 a Find the values of the constants A, B, C and D if 
x

x
Ax B

C
x

D
x

( 1)3

2 2
+

= + + + .

b Hence find 
x

x
dx

( 1)
 

3

2

3

∫ +
.
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11 a Show that 
x

x x
x

x x x x2 3
1
2

2 2
2 3

1
2 32 2 2+ +

=
+

+ +






−
+ +

.

b Hence find 
x

x x
dx

2 3
 2∫ + +

.

12 a Show that 
x a x b a b x b x a

1
( )( )

 
1 1

 
1

2 2 2 2 2 2 2 2 2 2+ +
=

− +
−

+





.

b Hence evaluate 
x a x b

dx
1

( )( )2 2 2 20∫ + +

∞
.

INVESTIGATION

THE SHAPE OF A GOBLET
Mathematics can be used to model many real-life situations. In this task you are 
modelling the shape of a goblet using mathematics and technology to ascertain the 
volume of liquid the goblet can hold.

6 cm

12 cm

5 cm

Task 1

Determine an equation, of the form y = a cosec 
1
2

 (x − α) − b  to model the shape of a 

goblet. Find suitable values for a, b and α, given that (0, 0) and (3, 7) are on the curve 
that models the goblet. Show that the function is symmetrical.

Task 2

Find the cross-sectional area of the goblet.

Support your answer with reasoning and calculations.

Task 3

Find the volume of liquid that can fill the goblet to the very top.

Support your answer with reasoning and calculations.

Discuss the accuracy, reasonableness and limitations of your results for this investigation.
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6.04 Integration by parts
There are 2 main methods for simplifying integration of a function. The substitution method 
is based on the chain rule, while integration by parts is based on the product rule.

Integration by parts allows us to integrate functions such as ln x, tan−1 x and xex;  
that is, find ∫ ln x dx, ∫ tan−1 x dx and ∫ xex dx.

The product rule for differentiation is:
d
dx

uv v
du
dx

u
dv
dx

= +  where u and v are functions of x.

Integrating both sides:

uv v
du
dx

dx u
dv
dx

dx∫ ∫= +

u
dv
dx

dx uv v
du
dx

dx∫ ∫∴ = −

Integration by parts
If u and v are both functions of x, then:

u
dv
dx

dx uv v
du
dx

dx∫ ∫= −

or ∫ uv′ dx = uv − ∫ vu′ dx

This expression often allows us to convert a difficult integral into more manageable integral 

parts. The key to using integration by parts lies in choosing the u and 
dv
dx

 to split the function 

into. One part, u, needs to be differentiated, while the other part, 
dv
dx

, needs to be integrated.

EXAMPLE 18

Find ∫ xex dx.

Solution

Let u = x and v′ = ex

So u′ = 1 and  v = ex

Using integration by parts:

∫ uv′ dx = uv − ∫ vu′ dx

∫ xex dx = xex − ∫ ex × 1 dx

            = xex − ∫ ex dx

            = xex − ex + C
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EXAMPLE 19

Find ∫ x sin x dx.

Solution

Let u = x and v′ = sin x

So u′ = 1 and  v = −cos x

Using integration by parts:

∫ uv′ dx = uv − ∫ vu′ dx

∫ x sin x dx  = −x cos x − ∫ −cos x × 1 dx

                     = −x cos x + ∫ cos x dx

                     = −x cos x + sin x + C

For integrands such as ln x and sin−1 x that cannot be integrated easily but which can be  
differentiated, let u be the integrand and v′ = 1.

EXAMPLE 20

Find ∫ ln x dx.

Solution

Let u = ln x and v′ = 1

So u′ = 
x
1

and v = x

Using integration by parts:

∫ uv′ dx = uv − ∫ vu′ dx

∫ 1 × ln x dx = (ln x) × x − ∫ 
x
1

 × x dx

      ∫ ln x dx  = x ln x − ∫ 1 dx

                     = x ln x − x + C
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The LIATE rule
For integrating by parts, LIATE is a handy guide to choosing which function should be u to 
differentiate.

L logarithmic function: ln x  loga x

I inverse trigonometric functions: tan−1 x, sin−1 x

A algebraic functions: x2, 2x10

T trigonometric functions: sin x, tan x

E exponential functions: ex, 5x

EXAMPLE 21

Evaluate x x dxln
2

∫ .

Solution

According to the LIATE rule, L for logarithms comes first, so let u = ln x.

Let u = ln x and v′ = x

So u′ = 
x
1

and  v = 
1
2

 x2

Using integration by parts:

∫ uv′ dx = uv − ∫ vu′ dx

x x dx x x
x

x dx

x x dx x x x dx

x

(ln ) (ln )
1
2

1 1
2

ln
1
2

ln
1
2

1
2

2 ln 2
1
2

1 ln1
1
2

1
2

(2ln 2 0)
1
2

1
2

2
1
2

1

2ln 2
1
2

3
2

2ln 2
3
4

2 2
2 2 2

2 2
2 2

2 2 2
2

2 2

∫ ∫

∫ ∫

= 





− ×

= 





−

= × − ×





− 





= − − × − ×





= − 





= −
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INVESTIGATION

DIFFERENTIATE, HENCE INTEGRATE
Because integration by parts is the reversal of the product rule for differentiation, many 
problems requiring integration by parts can also be approached using differentiation.

For example, 
d
dx

x x x x xsin sin cos= +  and so we can deduce that  

∫ x cos x dx = x sin x + cos x.

Differentiate the given functions to find following integrals.

1 Use the derivative of x ln x to find ∫ ln x dx.

2 Use the derivative of xex to find ∫ xex dx.

3 Use the derivative of x cos x to find ∫ x sin x dx.

4 Use the derivative of xnex to find ∫ xnex dx.

EXAMPLE 22

Find ∫ xn ln x dx.

Solution

Let u = ln x and v′ = xn

So u′ = 
x
1 and  v = 

n
1

1+
 xn + 1

Using integration by parts:

∫ uv′ dx = uv − ∫ vu′ dx

x x dx x
n

x
n

x
x

dx

x x dx
x
n

x
n

x dx

x
n

x
n n

x C

x
n

x
n

C

(ln ) (ln )
1

1
1

1
1

ln
1

(ln )
1

1

1
(ln )

1
1

1
1

1
ln

1
1

n n n

n
n

n

n
n

n

1 1∫ ∫

∫ ∫

=
+

−
+

=
+

−
+

=
+

−
+ +







+

=
+

−
+







+

+ +

+

+
+

+
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The table method
Integration by parts can be done using the table method. It works best when applied to 
certain functions in the form f (x) = g(x)h(x) where one of g(x) or h(x) can be differentiated 
multiple times easily, while the other function can be integrated multiple times easily.

There are 2 types of tabular integrations. The first type is when one of the factors of f (x) 
goes to 0 when differentiated multiple times. The second type is when neither of the factors 
of f (x) goes to 0 when differentiated multiple times.

Type 1

Find ∫ x3 cos x dx. Let u = x3 and v′ = cos x.

Sign Derivatives of u Integrals of v

+ x3 cos x

− 3x2 sin x

+ 6x1 −cos x

− 6 −sin x

+ 0 cos x

The integral is then found by multiplying the derivative in line 1 by the integral in line 2, and 
so on (see arrows in table).

∫ x3 cos x dx = x3 sin x − 3x2(−cos x) + 6x(−sin x) − 6(cos x) + C

                      = x3 sin x + 3x2 cos x − 6x sin x − 6 cos x + C

Type 2

Find ∫ ex sin x dx. Let u = ex and v′ = sin x.

Sign Derivatives of u Integrals of v

+ ex sin x

− ex −cos x

+ ex −sin x

− ex cos x

You will notice that neither of the functions goes to 0. In the second type we can stop at any 
multiplication as in Type 1 and finish with the integral of the product of the last 2 functions.

∫ ex sin x dx = ex(−cos x) − ex(−sin x) + ∫ ex(−sin x) dx + C

It is preferable to stop when the product being integrated is the same as the original question, 
so we can bring it to the LHS.

2 ∫ ex sin x dx = −ex cos x + ex sin x + C

Hence:

∫ ex sin x dx = 
1
2

 ex(sin x − cos x) + C
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Exercise 6.04 Integration by parts

 1 Find each integral using integration by parts.

a ∫ ln (x+ 1) dx b ∫ ln x2 dx

c ∫ x cos x dx d ∫ xe−x dx

e ∫ x sin 2x dx f ∫ xe2x dx 

g ∫ x ln x dx

 2 Find each integral using integration by parts. Some will need to be integrated twice.

a ∫ ex sin x dx b ∫ ex cos x dx

c x e dx  x∫  d ∫ x2 ln x dx

e ∫ x2 sin x dx f ∫ x tan−1 x dx

g ∫ x2e4x dx

 3 Evaluate each each definite integral using integration by parts.

a x dxln
2

∫  b e dxx
0∫ , put u = x

c x dxln
e 2∫  d x dxcos 2

0

0.5

∫ −

e x x dx cos
0∫
π

 f x dxln ( 1)2
0

2

∫ +

g x x dx sin∫−π

π

6.05 Recurrence relations
Sometimes when integrating a function with a high power, such as (cos x)6, we find the 
integral of the same function with a smaller power in the answer, such as (cos x)5. 

A recurrence relation is a recursive formula that expresses an integral in terms of a similar 
integral with a smaller power.

Two examples of a recurrence relation for integrating a difficult function are:

∫ xnex dx = xnex − n ∫ xn − 1ex dx

x dx
x

n
x dxtan    

(tan )
1

(tan )  n
n n 2

∫ ∫=
−

−
− −

With repeated application of the formula, we can eventually reduce the power of the integral 
to 1 or 0, when it can be easily found.
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EXAMPLE 23

If In = ∫ cosn x dx, prove that In = 
n
1

[sin x (cos x)n − 1 + (n − 1)In − 2] for n > 0.

Solution

Let u = (cos x)n − 1 and v′ = cos x

So u′    = (n − 1)(cos x)n − 2(− sin x) and v = sin x

             = −(n − 1) sin x (cos x)n − 2

Using integration by parts:

∫ uv′ dx = uv − ∫ vu′ dx

In = ∫ cosn x dx 

= (cos x)n − 1 sin x − ∫ −(n − 1) sin x (cos x)n − 2 sin x dx

= sin x (cos x)n − 1 + (n − 1) ∫ sin2 x (cos x)n − 2 dx

= sin x (cos x)n − 1 + (n − 1) ∫ (1 − cos2 x)(cos x)n − 2 dx

= sin x (cos x)n − 1 + (n − 1) ∫ (cos x)n − 2 − cosn x dx

= sin x (cos x)n − 1 + (n − 1) [∫ (cos x)n − 2 dx − ∫ cosn x dx]

= sin x (cos x)n − 1 + (n − 1) [In − 2 − In]

= sin x (cos x)n − 1 + (n − 1)In − 2 − (n − 1)In

Move −(n − 1)In to the LHS:

In + (n − 1)In = sin x (cos x)n − 1 + (n − 1)In − 2

(1 + n − 1)In = sin x (cos x)n − 1 + (n − 1)In − 2

               nIn = sin x (cos x)n − 1 + (n − 1)In − 2

                 In = 
n
1

[sin x (cos x)n − 1 + (n − 1)In − 2] as required.

Ths last termis the same 
ntegral as n the queston
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EXAMPLE 24

In = ∫ xnex dx for n ≥ 0.

a Show that In = xnex − nIn − 1

b Hence evaluate I3.

Solution

a Let u = xn and v′ = ex

So u′ = nxn − 1 and v = ex

Using integration by parts:

∫ uv′ dx = uv − ∫ vu′ dx

In = ∫ xnex dx 

= xnex − ∫ exnxn − 1 dx

= xnex − n ∫ xn − 1ex dx

= xnex − nIn − 1 as required.

b From a, I3 = x3ex − 3I2,

but  I2 = x2ex − 2I1

and  I1 = x1ex − 1I0

I0 = ∫ x0ex dx = ex + C

Hence:

I3 = x3ex − 3I2

= x3ex − 3(x2ex − 2I1)

= x3ex − 3[x2ex − 2(x1ex − 1I0)]

= x3ex − 3[x2ex − 2(xex − ex)] + C

= x3ex − 3(x2ex − 2xex + 2ex) + C

= ex(x3 − 3x2 + 6x − 6) + C
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Exercise 6.05 Recurrence relations

 1 Prove each recurrence relation.

a ∫ xn cos x dx = xn sin x − n ∫ xn − 1 sin x dx

b ∫ (ln x)n dx = x(ln x)n − n ∫ (ln x)n − 1 dx

c ∫ ∫= − −x e dx x e n x e dx  1
2 2

n x n x n x2 2 1 2

d x dx
x

n
x dxtan    

(tan )
1

(tan )  n
n n 2

∫ ∫=
−

−
− −

 2 Let I x dx(1 )n

n
2 2

0∫= − , where n ≥ 0 and is an integer.

a Show that =
+ −I n

n
I

1
 n n 2, for n ≥ 2.

b Evaluate I5.

 3 For every integer n ≥ 0, I x x dx( 1)n
n 2 5

0∫= − . 

  Prove that for n ≥ 2, = −
+ −I n

n
I1

11
 n n 2.

 4 a Differentiate sinn −	1 θ cos θ, and express your result in terms of sin θ.

b Hence, deduce that 

d
n

n
dsin  

1
  sinn n

0
2 2

0
2∫ ∫θ θ = − θ θ

π
−

π

, for n ≥ 1.

c Evaluate dsin4
0
2∫ θ θ
π

.

 5 For integers n ≥ 0, I x dx(log )n e
ne

∫= . 

  Show that for n ≥ 1, In = e22n − nIn − 1.

 6 Let I
x

x
dx

1n

n2

20∫=
+

, where n is an integer n ≥ 0.

a Show that I
40 =
π

.

b Show that + =
−−I I

n
1

2 1n n .

c Hence, find 
x

x
dx

1

4

20∫ +
.

 7 Let I x dxsecn
n

0
4∫=
π

, where n is an integer.

a Show that =
−

+ −





−
−I

n
n I1

1
( 2 ) ( 2)n

n
n

2
2  for n > 1.

b Hence evaluate I4.

Hint: tann x = (tan x)n −	2 tan2 x
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6  6. TEST YOURSELF

 1 Find x e dxx3 6 4
∫ + .

 2 Evaluate 
dx

x x 122

2

∫
−

, using the substitution x = sec θ.

 3 Using an appropriate substitution, find ∫ sin θ sec3 θ dθ.

 4 Show that 
d

2 cos
3

90
2∫ θ

+ θ
=

ππ

.

 5 Evaluate 
dx

x(3 1)20

3

∫ +
.

 6 Find 
dx

x9 (3 )2∫
− −

.

 7 Evaluate 
x

dx
2

42
2

0

∫ +− π .

 8 Find 
dx

x x4 72∫ − +
.

 9 Evaluate 
x

x
dx

1

2

20

0.5

∫ −
.

10 Find real numbers A and B such that 
x x

A
x

B
x

1
( 1) 1−

= +
−

. Hence, find 
x x

dx
1

( 1)
 ∫ −

.

11 Find real numbers A and B such that 
x x

A
x

B
x

C
x

1
( 1)( 1) 1 1 ( 1)2 2+ −

=
+

+
−

+
−

. 

  Hence, find 
x x

dx
1

( 1)( 1)
 2∫ + −

.

12 Using partial fractions, find 
x

x x
dx

2 3
3 22∫ −

+ +
.

13 Find 
x x

x x x
dx

2 3 1
1

 
2

3 2∫ + −
− + −

.

14 Find 
x

x x
dx

3
( 1)( 2)

 
2

2 20
2∫ +

+ +
 to 2 decimal places.

15 Use integration by parts to evaluate 
x

x
dx

lne

2∫ .

16 Use integration by parts to show that ∫ (ln x)2 dx = x [ln x ]2 − 2x ln x  + 2x + C.

17 Use integration by parts to evaluate 
x
x

dx
ln

 
e

∫ .

18 Evaluate xe dxx
0

n 2

∫ .

19 If In = x dx( 1)n2
0∫ −  for n ≥ 0, show that In = 

n
n

I
2

2 1
  n−

+ −  for n ≥ 1.



7.
MECHANICS

MECHANICS
Mechanics, sometimes referred to as classical mechanics or Newtonian mechanics, is the study 
of the effects of forces on objects. In the early days of mechanics, mathematics was applied to 
understand the motion of objects. For example, the Greek astronomers and philosophers tried to 
understand the motion of the planets and other celestial bodies. 

Mechanics can be classified into 3 main domains: statics, kinematics and dynamics.

Statics deals with the study of objects at rest, kinematics deals with motion without taking into 
account the causes of the motion (forces), and dynamics deals with motion but takes into account the 
forces responsible for the motion.

CHAPTER OUTLINE

7.01 Velocity and acceleration in terms of x
7.02 Simple harmonic motion
7.03 Projectile motion
7.04 Forces and equations of motion
7.05 Resisted horizontal motion
7.06 Resisted vertical motion
7.07 Resisted projectile motion
Test yourself 7



IN THIS CHAPTER YOU WILL:

• derive equations of motion given the acceleration or velocity as a function of displacement  
[a = f (x), v = g(x)]

• define simple harmonic motion and derive and describe its equations of motion
• draw graphs of, and solve problems involving, simple harmonic motion
• resolve horizontal and vertical components for displacement, velocity and acceleration for 

projectile motion
• find the range, maximum height and the equation of the path of a projectile
• use Newton’s laws of motion to create force diagrams and derive equations of motion involving 

constant and variable forces and accelerations
• solve problems involving normal force, friction, tension and applied force
• derive equations of motion and solve problems where a particle moves horizontally in a resistive 

medium
• derive equations of motion and solve problems where a projectile moves vertically (under gravity) 

in a resistive medium
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TERMINOLOGY
acceleration: The rate of change of velocity with 

respect to time.
applied force: A force that is applied to an object 

by a person or another object; it can be a push 
or a pull action.

at rest: Stationary, at zero velocity.
displacement: A change in position relative to 

original position.
frictional force: The force exerted on an object by 

the surface it sits or moves on.
initially: At the start, when time is zero.
normal force: For an object on a surface, the 

reactive force of the surface on the object that 
is equal in size and acting perpendicular to the 
surface.

phase shift: A horizontal translation of a 
trigonometric function.

projectile: An object that is thrown or projected 
upwards.

resisted motion: Motion that encounters 
resisting forces, for example friction and air 
resistance.

simple harmonic motion: Motion in which 
an object’s acceleration is proportional to its 
displacement.

spring force: A restoring force, always acting to 
restore the spring toward equilibrium.

tension force: The pulling force transmitted by 
means of a string, cable, chain, or similar.

terminal velocity: The constant velocity that a 
free-falling object will eventually reach when 
the resistance of the medium through which it 
is falling prevents further acceleration.

velocity: The rate of change of displacement with 
respect to time.

weight: The amount of gravitational force acting 
on matter.

7.01 Velocity and acceleration in terms of x

Velocity (x  or v) and acceleration (x  or a) are by definition functions of time, that is,  

v = 
dx
dt

 and a = 
dv
dt

. However, if acceleration is determined by displacement, x, then we need 

to rewrite these expressions as derivatives with respect to x.

Acceleration

a = 
d
dx

v
1
2

2





Proof

a
d
dx

v

d
dv

v
dv
dx

v
dv
dx

dx
dt

dv
dx

dv
dt

1
2

1
2

by thechain rule

 

    by thechain ruleagain

2

2

= 





= 





=

= ⋅

=

Homewok

WS

Motion 
with 

variable 
forces
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Hence, if acceleration depends on time (t), write acceleration as 
dv
dt

, but if the acceleration 

depends on position (x), we write acceleration as 
d
dx

v
1
2

2





.

EXAMPLE 1

A particle moves in a straight line such that its velocity v cm s−1 when it is x cm from the 
origin is given by v = 1 − 2e−x.

Find the acceleration of the particle at the origin.

Solution

a d
dx

v

d
dx

e

d
dx

e e

e e

1
2

1
2

(1 – 2 )

1
2

(1– 4 4 )

1
2

(4 8 )

x

x x

x x

2

2

2

2

=








=








= +

= −

−

− −

− −

   = 2e−x − 4e−2x

When x = 0,

a = 2 − 4

= −2 cm s−2
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EXAMPLE 2

The acceleration of a particle is given by 
d x
dt

2

2  = 12x2 − 2x + 3 where x is the displacement. 

Find the velocity when the particle is 5 m from the origin if initially the particle is at the 
origin and has velocity −2 m s−1.

Solution

        
d x
dt

2

2  = 12x2 − 2x + 3

d
dx

v
1
2

2





 = 12x2 − 2x + 3

          v
1
2

2 = 4x3 − x2 + 3x + C

When t = 0, x = 0, v = −2

∴ C = 2

So v2 = 8x3 − 2x2 + 6x + 4

When x = 5:

v2 = 984

v 984= ±

= ±31.4 m s−1

Exercise 7.01 Velocity and acceleration in terms of x

 1 Find an expression for the acceleration of a particle whose velocity is given by v x 22= + .

 2 A particle moves on a line so that when it is x m from the origin its acceleration is  
−3x m s−2. It is released from rest at x = 5 m.

a In which direction will it first move?

b If its velocity is v m s−1, express v2 as a function of x.

c Where will the particle next come to rest?

d What is the direction of the acceleration at this point?

e Describe the motion, including the greatest speed.

 3 A rocket is fired vertically from the ground with an initial velocity of 60 m s−1.  
It is subject to a force that gives it a constant acceleration of −10 m s−2.  
After t seconds it is x m above the ground with velocity v m s−1.

a Express v2 in terms of x.

b Express v in terms of t.

c What is the greatest height reached by the rocket?

d When does it reach this height?

e Where is the rocket 3 seconds after being fired?

f When is the rocket 105 m above the ground?
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 4 A particle moves on a straight line so that, when x m from the origin, its velocity is  
v m s−1, where v2 = 4(7 + 6x − x2).

a Prove that its acceleration is −4(x − 3) m s−2.

b Find the positions at which it is at rest and its acceleration at these positions.

c Since v2 > 0, then 4(7 + 6x − x2) > 0. Determine the interval of the line on which the 
particle is constrained to move.

d What is the particle’s greatest speed?

 5 When a particle is x m from the origin, its acceleration is 
x
1

4 9+
 m s−2.  

It is released from rest at the origin.

a In which direction will it first move?

b If its velocity at a position x is v m s−1, express v2 as a function of x.

c Prove that the particle does not change direction.

d Find its velocity at x = 4.

 6 A particle is initially at the origin where it is given an initial velocity of 5 m s−1.  
When x m from the origin, its acceleration is −50e−4x m s−2.

a Determine its velocity as a function of x.

b Determine x as a function of time.

 7 The velocity of a particle is given by v = 
dx
dt

 = 3x cm s−1. The particle is initially at rest  
1 cm to the right of the origin.

a Find the particle’s displacement after 3 seconds.

b Calculate the velocity after 3 seconds.

c Show that the particle is never at the origin.

d Show that the acceleration is 9x cm s−2.

 8 The acceleration of a particle is given by 
x

1
16 2+

 m s−2. The particle is initially at rest at 
x = 0 m.

a Find an expression for v2 in terms of x.

b What is the maximum speed of the particle and where does it occur?

 9 The velocity of a particle is given by v x4 6= + . If the particle is initially at the origin, 
find an expression for the displacement x at time t.

10 The acceleration of a particle is given by −8e−x cm s−2. If initially the particle is at the 
origin, moving with a velocity of 4 cm s−1, find an expression for the displacement  
x at time t.

11 A particle moves with a constant acceleration of 8 m s−2. It starts from the origin with 
velocity of 4 m s−1.

a Find the velocity in terms of displacement.

b Find v when x = 3 m.

c Find the displacement in terms of time.



ISBN 97807043435MATHS IN FOCUS 12. Mathematcs Extenson 2260

12 A rocket launched vertically from Earth’s surface has a downwards force producing a 

motion given by a
x

–
160000

2=  km s−2, where x is the distance in kilometres from the 

centre of Earth. Given the radius of Earth is 6400 km and the initial velocity is  
4 km s−1, find at what distance above Earth’s surface the rocket will have v = 0.  
Answer to the nearest km.

13 A mass has acceleration a m s−2 given by a = v2 − 8 m s−2, where v m s−1 is the velocity 
of the mass when it has a displacement of x metres from the origin. Find v in terms of x, 
given that v = −3 m s−1 where x = 1.

14 A particle moves in a straight line so that at time t seconds, it has acceleration a m s−2, 
velocity v m s−1 and position x m from the origin. The velocity and position of the particle 
at any time t seconds are related by v = −2x2 m s−1. Initially x = 4 m. Find the initial 
acceleration of the particle and express x in terms of t.

7.02 Simple harmonic motion
In mechanics, simple harmonic motion is a type of periodic or oscillating motion in which 
the restoring force is directly proportional to the displacement and acts in the direction 
opposite to that of the displacement.

That is, the more you pull it one way, the more it wants to return to the centre of the motion. 
The classic example is a mass on a spring because the more the mass stretches it, the more it 
wants to return towards the centre of the motion. Under simple harmonic motion, an object 
moves back and forth about a central position in a cyclic way.

Newtons second law of motion states that force equals mass times acceleration ( F = ma):  
the force acting on an object is proportional to, and in the same direction as, the acceleration 
of the object. If you imagine pulling a mass on a spring and then letting it go, it will bounce 
back and forth around an equilibrium position. With simple harmonic motion, the velocity 
is greatest in the centre of the motion, whereas the restoring force (hence acceleration) is 
greatest at the extremes of the motion or where displacement is a maximum. Other examples 
of simple harmonic motion are: a pendulum, though only if it swings at small angles as in a 
pendulum clock, the rise and fall of the tide in a river, and other wave motions.
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Simple harmonic motion (about x = 0)
Simple harmonic motion is defined by

x  = −n2x.

We can show that one solution to this differential equation is the displacement function:

x = A cos (nt + α).

If a particle is undergoing simple harmonic motion about the origin, then

x = A cos (nt + α), where A, n and α are constants and A > 0 and n > 0. 

Using our knowledge of trigonometric functions:

• the amplitude (A) is the maximum value of x

• the phase shift 
n
α

 is dependent on the initial conditions

• the period of the motion (T ) is the time for the particle to complete one full oscillation  

(cycle), and T
n
2

=
π

• the frequency (f  ) is the number of complete oscillations per second, f
T

n1
2

= =
π

.

Proof
Given x = A cos (nt + α), then on differentiating we get:

x  = −An sin (nt + α)

x  = −An2 cos (nt + α)

= −n2A cos (nt + α)

Hence, x  = −n2x

Note that the sine function x = A sin (nt + α) can also be used to represent simple harmonic 
motion. It is better to use this result when the particle starts its motion at the centre.

Similarly for x = A sin (nt + α) we can show that x  = −n2x.

EXAMPLE 3

A particle is moving in simple harmonic motion with a period of 
2
π

 seconds and amplitude 

of 5 cm. Find its displacement as a function of time given that it starts at x = −5.

Solution

Since T
n
2

2
=

π
=

π

4π = nπ

n = 4.
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Given A = 5 and x = A cos (nt + α), we get

x = 5 cos (4t + α).

When t = 0, x = −5,

−5 = 5 cos α

α = π.

Displacement is x t5 cos 4( )= + π  = −5 cos 4t, as cos(π + θ) = −cos θ.

Velocity in simple harmonic motion
x2 = n2(A2 − x2)

Proof

In simple harmonic motion the position of the object is proportional to the force acting on it. 
This force acts in the opposite direction to the displacement.

F = −kx

mx  = −kx

x
k
m

x= −

We generally write this as

x  = −n2x, where n
k
m

=

x
d
dx

x
1
2

2= 





 = −n2x.

Integrate both sides with respect to x,

x
n x

C
1
2 2

2
2 2

= − + .

We know that x  = 0 when x = ± A, which gives C
n A

2

2 2

= .

Hence, x
n x n A1

2 2 2
2

2 2 2 2

= − +

x2 = −n2x2 + n2A2

x2 = n2(A2 − x2)

where k > 0

F = ma = mẍ
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Simple harmonic motion about x = c
If a particle is undergoing simple harmonic motion about x = c, then the equations of 
motion are:

x  = −n2(x − c)

x2 = n2[A2 − (x − c)2]

x − c = A cos (nt + α) or x − c = A sin (nt + α)

These last 2 equations are generally written x = A cos (nt + α) + c and x = A sin (nt + α) + c.

EXAMPLE 4

A ship requires 9 metres of water to enter the harbour safely. At low tide, the harbour is  
8 metres deep and at high tide the harbour is 11 metres deep. Low tide is at 11 a.m. and 
high tide is at 5 p.m. The tidal motion is simple harmonic.

a State the amplitude and period of the tidal motion.

b Between what times of day is it possible for the ship to enter the harbour and how 
long is this period?

Solution

a 2A = 11 − 8 = 3, so A = 
1
2

 × 3 = 1.5 metres

 Time between low and high tides = 5 p.m. − 11 a.m. = 6 h

 T = 6 h × 2 = 12 hours

b Since T = 
n
2π

 = 12 then n = 
6
π

, and the centre of motion is 
8 11

2
+

 = 9.5 metres

 Let x be the depth of the water in metres at t hours after 11 a.m.  

Equation describing tidal motion is x = t1 5 cos
6

9 5
π

+ α





+

 Using the fact that x = 8 when t = 0, we get:

 8 = 1 5 cos
6

0 95
π

× + α





+

 15 =1 5 cos− α
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 cos α = −1

 α = π

 ∴ x = t1 5 cos
6

9 5
π

+ π





+

 But 
t t

cos
6

cos
6

π
+ π





= −
π

 

 x = 
t

1 5 cos
6

9 5−
π





+

 The earliest time the ship can enter the harbour is when x = 9.

 9 = 
t

1 5 cos
6

9 5−
π





+

 

t

t

0 5 15 cos
6

cos
6

1
3

− = −
π





π





=

 
t

6
cos

1
3

π
= 





−  or 2π − cos−1 1
3





  1st, 4th quadrants

= 1.2309 ... or  5.0522 ...

 t = 6
π

 (1.2309 ...) or 
6
π

 (5.0522 ...)

= 2.3508 ...  or  9.6490 ...

 t = 2.35 hours (after 11 a.m.) = 1.21 p.m., and

 t = 9.65 hours (after 11 a.m.) = 8.39 p.m.

  So the harbour is navigable for this ship between 1:21 p.m. and 8:39 p.m., a period 
of 7 hours and 18 minutes.

Make sure your 
calculator is in radian 
mode.

as cos(π + θ) = −cos θ
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Hooke’s law

When an elastic object, such as a spring, is stretched, the increased 
length is called its extension. The extension of an elastic object is 
directly proportional to the force applied to it.

This is Hooke’s law, an example of simple harmonic motion. Its 
formula is F = kx, where k is called the spring constant and has units  
in N m−1. The greater the value of k, the stiffer the spring.

x is the displacement or extension of the spring.

Objects cannot be stretched indefinitely. If the elastic object is stretched 
beyond its limit, known as the elastic limit, it may not retain its 
elasticity.The equation works as long as the elastic limit is not exceeded.

Provided the elastic limit is not exceeded, the graph of force versus 
displacement (x) produces a straight line that passes through the origin. 
The gradient of this line is the spring constant (k).

Properties of simple harmonic motion
For simple harmonic motion oscillating about the origin

x  = −n2x    x2 = n2(A2 − x2)    x = A cos (nt + α)

At x = 0, x  = ± nA. The velocity of the particle is a maximum at the centre of motion with 
the sign indicating the direction of motion.

At x = ± A, x  = 0. the velocity of the particle is zero at the extremities of the motion.

At x = 0, x  = 0. The acceleration of the particle is zero at the centre of the motion.

At x = ± A, x n A2∓= . The acceleration is a maximum at the extremities of the motion 
and is always directed towards the centre of the motion.

Exercise 7.02 Simple harmonic motion

 1 A particle is moving in simple 
harmonic motion. The graph of its 
displacement as a function of time is 
drawn below.

a If x = A cos (nt + α) is the 
displacement of the particle at 
any time t, find A, n and α.

b Draw a graph of the velocity 
versus time for 0 ≤ t ≤ 2π.

c Draw a graph of acceleration versus time for 0 ≤ t ≤ 2π.

DID YOU KNOW?

30

20

x10

x

t

−3

0

3

2
π

2
3π 2ππ
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 2 A particle is x metres from the origin after t seconds where x = 2 + 3 sin t.

a Prove that its acceleration is −(x − 2) m s−2.

b Draw a graph of x = 2 + 3 sin t for 0 ≤ t ≤ 2π and state the amplitude and period of 
the motion.

 3 A particle is oscillating about a central point so that its displacement in metres at any 
time t seconds is given by x = 3 cos 2t.

a Draw the graph of this function for displacement.

b What are the first 3 times when the particle has maximum displacement and what is 
this maximum displacement?

c Write an expression in terms of t for the velocity of the particle and draw a graph 
for velocity.

d What is the velocity when the particle is at its maximum displacement?

e Write an expression for the acceleration and draw its graph.

f What is the acceleration when the particle is at the origin?

 4 The displacement for a particle is given by x = 5 cos 3t − 12 sin 3t, where x is in metres 
and t is in seconds.

a By deriving the equation for its acceleration, prove that the particle is moving in 
simple harmonic motion.

b Find the period of the motion.

c Find the maximum speed.

 5 A particle is moving in simple harmonic motion with acceleration given by x  = −16x, 
where x metres is the displacement of the particle from the centre of motion (origin). 
Initially the particle is at the origin, moving to the right at 6 m s−1.  
Find the displacement as a function of time.

 6 A mass is oscillating at the end of a spring with squared velocity 
given by x2 = 225 − 625x2 where x cm is the displacement from 
the centre of motion.

a Find the acceleration of the mass as a function of x.

b Find the amplitude, period of the motion and maximum 
speed of the mass.

 7 The squared velocity of a particle moving in simple harmonic 
motion in a straight line is given by x2 = 6x − x2 m s−1,  
where x is the displacement in metres.

a Find the 2 points between which the particle is oscillating.

b Find the centre of the motion.

c Find the maximum speed of the particle.

d Find the acceleration of the particle in terms of x.

e Find the period.
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 8 The squared velocity of a particle moving in simple harmonic motion is given by 

  x2 = 60 − 8x − 4x2 m s−1, where x is the displacement from the centre of motion in metres.

a Find the acceleration of the particle in terms of x.

b Write down the centre of the motion.

c Find the amplitude, period and frequency of the motion.

d If initially the particle is at x = −1 and x  > 0, find an expression for the displacement 
in the form x = A cos (nt + α) + c.

 9 A particle oscillating in simple harmonic motion is x metres from an origin after 
t seconds where x = 3 cos (2t + α).

a State the amplitude, period and greatest speed of the particle.

b If its velocity is x  m s−1, prove that x2 = 4(9 − x2).

c Prove that its acceleration is −4x m s−2.

d If initially the particle was at x = 1.5 m with velocity 3 3 m s−1, find a suitable value 
for α.

10 At x metres from the origin, the squared velocity of a particle in m s−1 is x2 = 28 − 24x − 4x2.

a Prove that its acceleration is −4(x + 3) m s−2.

b Explain how this shows the motion is simple harmonic and find the period of 
oscillation.

c Find the positions at which the particle is at rest and hence state the amplitude.

d What is the greatest speed?

e Show that x2 can be written in the form x2 = n2[A2 − (x + 3)2].

11 The displacement of a particle from an origin is x metres after t seconds, where 

x = sin 5t − 3 cos 5t

a Rewrite this in the form x = A sin (5t − α), with A > 0 and 0 < α < 
2
π

, and hence 
describe the motion.

b Find the first time at which its velocity is 5 m s−1.

12 A particle P is moving on the x-axis according to x = 3 sin 4t, where x cm is the 
displacement of P from O at time t seconds.

a Prove that P moves in simple harmonic motion and state the period of the motion.

b Find the first time when the particle is 1.5 cm right of the origin and its velocity at 
this point.

c Find the greatest speed of P and the interval in which it moves.

Frequency =f
T
1
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13 A particle is moving in simple harmonic motion with acceleration given by x  = −4x. 
Initially the particle is at the centre of the motion and has a velocity of 12 m s−1.

a Find the velocity as a function of x.

b Use the fact that 
dt
dx dx

dt

1
=  to show that x = 6 sin 2t.

c Find the period and frequency of the motion.

d Sketch a graph of acceleration against time for one complete period.

14 A particle is moving according to the formula x2 = π2(4 − x2), where x metres is the 
displacement of the particle from the origin at time t seconds.

a Find the period and amplitude of the motion.

b If the particle is initially at x = 2, write down an expression for the displacement as a 
function of time.

c For what percentage of the period is the particle within 2 m of the origin?

15 The table below shows the depth of water (in metres) at the end of a wharf as it varies 
with the tides at different times during the morning.

Time (t) midnight 2 a.m. 4 a.m. 6 a.m. 8 a.m. 10 a.m. midday

Depth (d ) 8.50 12.74 14.50 12.74 8.50 4.26 2.50

a Assuming that the tidal motion is simple harmonic, find the amplitude and period 
of the tidal motion.

b Calculate the depth of water at the wharf at 3:00 p.m.

c A ship requires a depth of 10 m to dock safely at the wharf. For how long can the 
ship dock safely at the wharf on this morning?

7.03 Projectile motion
A projectile is a body in free fall that is subject only to the force of gravity.

We have studied projectile motion in Mathematics Extension 1, Chapter 10,  
Further vectors. The acceleration due to gravity is represented by g and near Earth’s surface  
g is approximately 9.8 m s−2, often rounded to 10 m s−2.

An object must be dropped from a height, thrown vertically upwards or thrown at an angle  
to be considered a projectile. The path followed by a projectile is known as a trajectory.  
The existence of gravity forces the projectile to travel along a trajectory that has the shape of 
a parabola, and gravity pulls the object downwards.

For simplicity, we assume:

• the influence of air resistance is zero

• there is a single force of gravity acting downwards

Homewok

WS

Projectile 
motion

Assume g = 10 m s−2 
unless otherwise 
specified.
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The factors that affect the trajectory are:

• the angle of projection, θ

• the initial speed, V

• the height of projection.

From the Mathematics Extension 1 course, Chapter 10,  
Further vectors, we know that the initial velocity has 
2 components, x V cos= θ and y V sin= θ, which are 
velocity components in the x and y directions  
(or horizontal and vertical directions) respectively.

The horizontal component remains constant because 
there are no forces acting on the particle in this direction 
and so is independent of t, while the vertical component changes with t due to gravity.

Projection from the origin

Horizontal Vertical
x  = 0 ÿ = −g

Integrating with respect to t:

x  = C, where C is constant

Integrating with respect to t:

ẏ = −gt + E, where E is constant

When t = 0, C = V cos θ

∴ x  = V cos θ

When t = 0, E = V sin θ

∴ ẏ = −gt + V sin θ
Integrating with respect to t:

x = Vt cos θ + D, where D is constant

Integrating with respect to t:

y = 
1
2

− gt2 + Vt sin θ + F, where F is constant

When t = 0, x = 0, so D = 0

x = Vt cos θ

When t = 0, y = 0, so F = 0

y = 
1
2

− gt2 + Vt sin θ

Maximum height
At maximum height, ẏ = 0 Substitute into y, vertical displacement:

Hence 0 = −gt + V sin θ                      = − θ







 + θ







 θy g V

g
V V

g
1
2

sin sin sin
2

t = V
g

sin θ

                                                          
V

g
V

g
sin
2

sin2 2 2 2

= −
θ

+
θ

   y
V

g
 

sin
2max

2 2

∴ =
θ

The formulas on these pages 
do not need to be 
memorised, but they must be 
proved for each problem.

Time to reach 
maximum height

θ

Vy = V sn  θ.

x = V cos θ.

V

θ
horizontal distance

moved (range)

maximum
height
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Time of flight

Projectile returns to ground when y = 0.

gt Vt

gt Vt

gt Vt
gt V t

t
V

g

0
1
2

sin

0 2 sin

2 sin
2 sin 0

2 sin

2

2

2

θ

θ

θ
θ

θ

= − +

= − +

=
= ≠

=

Note that the time of flight is double the time to reach the maximum height t
V

g
sinθ

= .

Range
Substitute into x, horizontal displacement,  
for the range of flight:

x V
V

g
2 sin

cos∴ =
θ





θ

   V
g

2 sin cos2
= θ θ

x
V

g
 

sin 22

∴ =
θ

Maximum range
For maximum range, sin 2θ = 1.

∴ 2θ = 90°

θ = 45°

So x
V

g
sin(90 )

max

2

=
°

   x
V
g

  max

2

∴ =

Equation of the trajectory (path of the projectile)

Since x = Vt cos θ and y = 
1
2

− gt2 + Vt sin θ

From the first equation t = 
x

V cosθ
; substitute into the second equation:

= −
θ









 +

θ









 θy g x

V
V x

V
1
2 cos cos

sin
2

y
gx

V
x 

2 cos
tan

2

2 2∴ = −
θ

+ θ

This is the equation of a parabola of the form y = ax2 + bx, concave down (a < 0).



ISBN 97807043435 7. Mechanics 271

TECHNOLOGY

Modelling projectile motion

Many sporting events use projectiles, 
for example games such as cricket, 
golf, football and basketball that 
use balls. Other pursuits that can be 
analysed using projectiles include 
shooting, archery, snowboarding, 
javelin, discus and shot put.

Many athletes and sporting coaches 
study projectiles. Analysing results 
and execution, through the use of 
technology, can assist in improving 
performance.

The parabolic graph shows the trajectory of a snowboarder excelling in the sport.

Using technology, we can determine the velocity at various points along the trajectory, 
the length of the trajectory and the maximum height of the event.

1 Using the Internet, obtain some images of an activity that involves a projectile.  
Using technology, determine the equation of the trajectory, the range and maximum 
height of the projectile.

2 After checking to ensure that it is safe, drop an object from a multilevel building. 
Take a video of the falling object from another location so that the whole drop can 
be observed. From the video, determine the height at a number of times during the 
flight. Using the data collected, determine the total time of flight, the maximum 
velocity and the gravitational constant.

3 Throw a basketball from the free throw line and use technology to determine the 
maximum height of the throw and the initial velocity if the basketball is to go into the 
hoop. Investigate the use of different angles for the free throw.

4 If a ball is dropped vertically from rest at the same time and height that a second ball 
is launched horizontally, which ball will strike the ground first? Use technology to 
investigate this problem.

5 Use technology to determine the range of a projectile on an inclined plane.  
What is the relationship between the range, the angle of projection and the angle 
of the inclined plane?

2

4

6

8

10

12

14

−2 2 4 6 8 10 12 14−4−6−8−10

y = −0.06x2 + 8.5
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Trebuchets

A trebuchet is a type of catapult, and was a common type of siege weapon that used a 
swinging arm to throw a projectile. These weapons appeared in ancient China in the  
4th century BCE as a traction trebuchet, using human power to swing the arm.

By the 12th century CE trebuchets appeared in the Mediterranean region, employing a 
counterweight to swing the arm.

The trebuchet was phased out as a weapon of war as the availability of gunpowder increased.

EXAMPLE 5

An object is projected vertically upward with initial velocity of 50 m s−1. 

a What is the time for the object to reach its maximum height?

b Find the maximum height reached.

c How long does the object take to return to its starting point?

Solution
a Since the object is projected vertically, θ = 90°, V = 50 m s−1. g ≈ 10 m s−2.

 Using y = 
1
2

− gt2 + Vt sin θ gives y = −5t2 + 50t

 Maximum height is attained when y = 0:

     y = −10t + 50 = 0

  −10t = −50

    t = 5 s

b Therefore, maximum height is:

 ymax = −5t2 + 50t

        = −5(5)2 + 50(5)

        = 125 m

c For the object to return to y = 0:

 0 = −5t2 + 50t

    = −5t(t − 10)

 ∴ t = 0 or t = 10

 The object takes 10 seconds to return to its starting point.

DID YOU KNOW?

The formulasin these 
examples must be derived 
(proved) using the given 
values, not just quoted or 
memorised. They are quoted 
here just to save time.
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EXAMPLE 6

A rock is thrown with an initial vertical velocity of 30 m s−1 and an initial horizontal 
velocity of 15 m s−1. Take gravity as 9.8 m s−2.

a What will these 2 velocity components be when the rock reaches its highest point?

b How long will the rock be in the air?

c Find the range for the rock.

Solution

a V cos θ = 15 and V sin θ = 30.

 Components of velocity at the highest point:

 x  = 15 m s−1 (this is constant for entire motion because it  
is independent of t)

 and

 y = 0 m s−1 (always 0 at the highest point)

b Time of flight is t
V

g
2 sin

2 30
9 8

612 s

=
θ

=
×

≈

c Range = Vt cos θ 

= 15 × 6.12

≈ 92 m

Projection from a height not at the origin
In the case of a projectile launched from a height h, such as shooting an arrow or cannonball 
from a fortress at the top of a hill, the horizontal components remain the same but the 
vertical displacement is different.

y = −g

y = −gt + V sin θ

From here the equation for vertical displacement changes:

y = 
1
2

− gt2 + Vt sin θ + D, where D is constant

When t = 0, y = h so D = h

y = 
1
2

− gt2 + Vt sin θ + h

θ

V

15 m s–1

30 m s–1

This is just the standard vertical displacement 
function translated h units upwards.
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EXAMPLE 7

A horizontal drain releases waste water 5 metres above a collection pond. The water  
comes out horizontally and enters the pond 3 metres out from the end of the pipe.  
Find the velocity at which the water escapes the drain. 

Solution

Horizontally, x = Vt cos 0°

= Vt

Vertically, y = −5t2 + Vt sin 0° + 5

= −5t2 + 5

When x = 3,  y = 0

3 = Vt

t = 
V
3

Substitute into y:

0 = −5
V
3 2





 + 5

V
1

9
2=

V2 = 9

V = 3    (V > 0)

V = 3 m s−1.
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EXAMPLE 8

A cannon is fired from a cliff of height 25 metres. 
The cannonball has initial velocity of 60 m s−1 at an 
angle of 48° to the horizontal. 

a How long will the cannonball take to land?

b Find the range of the cannon.

c What is the maximum height obtained by the 
cannonball?

d How much would the range change if the 
angle of projection is 38°?

48°

60 m s–1

25 m

Solution

a Time of flight is t when y = 0

 y = 
1
2

 gt2 + Vt sin θ + h

 0 = −5t2 + 60t sin 48° + 25

 t = 
60 sin 48 (60 sin 48 ) 500

10

2− ° ± ° +
−

 Since t > 0, t ≈ 9.45 s

b Range: x = Vt cos θ

                   = 60 × 9.45 × cos 48°

                  ≈ 379 m

c Maximum height is y when y = 0

 That is, t = 
V

g
sin 60 sin 48

10
θ

=
× °

 ≈ 4.46 s

 y = −5t2 + 60t sin 48° + 25

 Hence, maximum height is given by

 ymax = −5(4.46)2 + 60(4.46) sin 48° + 25

        ≈ 124.4 m

d Range for angle of projection of 38°

 

t

t t
x

Time of flight (as in part )

60sin38 60sin38 500

10
Since 0, 801 s
Range 60 801 cos38

379 m

2

a

)(
=

− ° ± ° +
−

> ≈
= × × °
≈

 Comparing with part b, there is no 
change in the range.
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Exercise 7.03 Projectile motion

 1 An object is projected vertically upward with initial velocity of 35 m s−1.  
Find the maximum height reached. Use g = 10 m s−2 and answer to 2 decimal places.

 2 A small mass is dropped from a helicopter at 980 metres. Neglecting air resistance, 
calculate the time that it takes to fall to Earth. Use g = 9.8 m s−2 and give your answer in 
exact form.

 3 An object is projected up into the air with a vertical velocity of 45 m s−1. Neglect air 
resistance and use g = 9.8 m s−2. Find correct to one decimal place:

a the time of rise to the top of the motion

b the maximum height

c the time that the object is in the air

d the velocity of the object after 8 seconds

 4 A mass is projected at an angle of 45° to the horizontal with velocity 20 m s−1.  
Use g = 10 m s−2.

a Derive the horizontal and vertical equations of the motion.

b What is the time taken to hit the ground? Give your answer in exact form.

c Derive the Cartesian equation of the motion.

 5 An object is projected at an angle of 30° to the horizontal. The target is 60 m from the 
point of projection. At what initial speed must it be projected to hit the target?

 6 An object is projected at an angle of α to the horizontal from a 50 m cliff. The target is 
500 m from the base of the cliff. If the projectile has initial speed of 100 m s−1, at what 
angle must it be projected to hit the target?

 7 A golf ball is hit at 50 m s−1. At what angle should it leave the club in order to travel  
250 m horizontally? 

 8 Show by example that 2 projectiles can be launched with the same speed but at different 
angles and still have the same range.

 9 A ski jumper comes off the end of the jump horizontally and falls 90 m vertically before 
contacting the slope a record 180 m horizontally from the end of the jump. What was the 
initial speed of this jumper as she left the jump? Answer in exact form.

 10 A projectile is fired horizontally with speed V m s−1 from a point h metres above 
horizontal ground.

a Prove that the projectile will reach the ground after hg2 − seconds.

b If the projectile hits the ground at an angle of 60° to the horizontal with a speed of 
2V m s−1, show that 3V 2 = 2gh.
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 11 A ball is thrown upwards from the top of a building at an angle of 22° above the 
horizontal with an initial velocity of 16 m s−1. If the ball is in the air for 3 s, how tall is 
the building, to 2 decimal places? Use g = 9.81 m s−2.

 12 A stunt man jumps a canyon that is 10 metres wide. He rides his motorcycle up 
an incline of 12°. What minimum speed is required for him to cross the canyon 
successfully? Use g = 9.81 m s−2 and answer to 2 decimal places.

 13 Amy is a 2-metre tall basketball player who is aiming at a basket that is 3 m above the 
court 10 m away. If she shoots at an angle of 45°, at what initial speed must she throw 
the basketball so that it goes into the basket without hitting the backboard?  
Answer in exact form.

14 A football kicked at 15 m s−1 just passes over the 4 m cross-bar from a distance of 15 m away. 
Show that if α is the angle of projection then 5 tan2 α − 15 tan α + 9 = 0. 

15 A ball is kicked from ground level over 2 walls of height 6 m and distant 6 m and  
12 m from the point of projection as shown in the diagra. 

6 m

12 m

6 m6 m

a Prove that if α is the angle of projection, then tan α = 
3
2

.

b Prove that if the walls are h metres high and distant x1 and x2 metres from the point 

of projection, then tan α = 
h x x

x x
( )1 2

1 2

+
.

16 A golf ball is struck with initial speed V m s−1 at an angle of elevation of α.

  
α

V

a Prove that, when it is y metres above the point of projection, the vertical velocity of 
the ball is given by y2 = V 2 sin2 α − 2gy.

b If speed at this point is S m s−1, prove that S2 = V2 − 2gy.
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7.04 Forces and equations of motion
Over 300 years ago, Englishman Sir Isaac Newton worked in many areas of mathematics 
and physics. He developed the theories of gravitation in 1666 when he was only 23 years old. 
Twenty years later, he presented his 3 laws of motion in the Principia Mathematica Philosophiae 
Naturalis.

Written in Latin, the Principia is a collection of 3 books written by Newton, covering his 
laws of motion, his law of universal gravitation and a derivation of Kepler’s laws of planetary 
motion.

The Principia is considered by many to be the most important work in the history of science.

Newton’s laws of motion
Newton’s laws of motion consist of 3 fundamental laws of classical physics.

1 An object remains in a state of rest or uniform motion in a straight line unless it is acted 
upon by an external force.

2 For a constant mass, force equals mass × acceleration.

3 For every action, there is an equal and opposite reaction.

Newton’s first law defines inertia, and states that if there is no net force acting on an object 
then the object will remain at constant velocity (including zero velocity if it was not already 
moving and the object remains at rest).

Newton’s third law of motion states that for every force there is an equal and opposite force. 
This law is useful in explaining how a wing on a plane generates lift and an engine produces 
thrust.

The force exerted by one object on another object is equal to the (reaction) force of the 
second object on the first, acting in the opposite direction. For a person standing, the force of 
the person’s feet on the ground is balanced by the force of the ground on the person’s feet.

Force is measured in newtons (N). One newton is the force required to produce an 
acceleration of 1 m s−2 in a mass of 1 kg.

Two areas of mechanics, kinematics and statics, involve the motion of a particle, which is a 
dimensionless object and generally represented by a point. The first of these, kinematics, 
applies when the object is moving and the second, as you might expect, when the object is 
at rest.

In each case, there will be forces acting on the object that result in motion or no motion. 
The study of each is based on Newton’s laws of motion.

Force diagrams
A force diagram shows all the forces acting on an object, the force’s direction and its 
magnitude. All the forces included exist for that object in the given situation. Therefore, to 
construct force diagrams, it is extremely important to know the various types of forces.

Homewok

WS

Resolution 
of forces
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The contact forces acting on a body may include:

Normal force (Fnorm = N )

Frictional force (Ffric = F )

Tension force (Ftens = T  )

Applied force (Fapp)

Air resistance force (Fair = R)

Spring force (Fsprng )

Gravity (Fgrav = mg)

Normal force
The normal force is the support force exerted upon an object that is in contact with another 
stable object. For example, when 2 surfaces are in contact (such as a book on a desk), they 
exert a normal force on each other, perpendicular to the contacting surfaces.

Friction
Friction is the resistance to motion of one object moving relative to another. If 2 surfaces can 
move over each other without any resistance, they have smooth contact, whereas if resistance 
is experienced, then they have rough contact.

The force of friction is that resistance encountered at the point of contact of 2 bodies sliding 
over each other. Friction opposes the direction of motion and the frictional force is equal in 
size to the force causing the motion.

Tension
Tension force on an object is transmitted through a string, rope or wire when it is pulled 
tight from opposite ends. The tension is directed along the length of the wire and pulls 
equally on the objects on the opposite ends of the wire.

Applied force
An applied force is exerted on an object by a person or another object. For example, when a 
person pushes or pulls an object, they are applying a force to the object.

Friction

Weight

Normal

Weight

Friction Push Forces 
on person

Friction

Weight

Forces 
on ball

Forces 
on box

Normal
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EXAMPLE 9

Draw a force diagram for each situation.

a A book resting on a desk

b A skydiver falling through the air

c A box being dragged to the right

d A pendant hanging around a neck

e A stone dropped from a cliff (neglect air resistance)

f A spring scale used to weigh a suitcase

Solution

a N

mg

b R

mg

c N

F Fapp

mg

d T T

mg

e 

mg

f Fspring

mg

When all forces are equal and opposite, the object remains at rest.

If, however, the forces are not in balance then the object will move in the direction 
determined by the greater force.

Resolution of vector quantities
If a force (F ) makes an angle of θ with the x-axis, then F can 
be written in terms of components in the x and y directions.

F cos θ and F sin θ are called the components of the force F .

F cos θ is called the horizontal component and F sin θ is 
called the vertical component. The process of writing a 
force in terms of its horizontal and vertical components is 
called resolving a force.

y

F

F cos θ

F sin θ
θ

x
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EXAMPLE 10

Resolve horizontally and vertically the force F that  
makes an angle of 60° to the x-axis.

Solution

The horizontal component is F cos 60° = F
1
2

The vertical component is F sin 60°= F
3

2

Equilibrium
If several forces act on an object and the body remains at rest, then the forces are in equilibrium.

The condition for equilibrium is ΣF  = 0.

For example, if there are 3 forces in equilibrium, the forces represent the sides of a triangle.
F1

F1F2
F2

F3

F

Since a closed triangle is formed then ΣF  = 0, that is, F F F1 2 3+ +  = 0.

In this force diagram, the normal force N  has 2 components: 
a horizontal component N sin θ and a vertical component 
N cos θ.

In the next force diagram F
˜
  is the frictional force. If the 

system is in equilibrium, then we can resolve horizontally and 
vertically.

Horizontally: Vertically:

F cos θ = N sin θ F sin θ + N cos θ = mg

From the first equation, F = N tan θ. Substitute into the 
second equation: N tan θ sin θ + N cos θ = mg

N mg
sin
cos

cos
cos

2 2θ
θ

+
θ
θ







=

Rearranging, N = mg cos θ and F = mg sin θ

y

F

F cos 60°

F sin 60°

60°

x

N

N cos θ

N sin θ

θ

θ

mg

N

N cos θ

F cos θF

N sin θ

F sin θ

θ

θθ

mg
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Coefficient of friction
There will be a point where, if the angle is increased sufficiently, the frictional force will 
no longer be able to maintain a system in equilibrium. If the object is just on the point of 
moving, the particle is in limiting equilibrium and the force of friction is called the limiting 
friction.

The magnitude of the limiting friction stays in constant ratio to the normal reaction on the 
object, and this constant ratio is called the coefficient of friction, µ (mu).

µ = 
F
N

 or F = µN.

The coefficient of friction depends on the material of the objects in contact. There are  
2 coefficients of friction. The static coefficient of friction is applied when both objects are 
not moving. The dynamic coefficient of friction is applied when one or both objects are 
moving.

Remember, friction always opposes any motion or intended motion.

EXAMPLE 11

An object of weight 25 N, in rough contact with a plane  
inclined at θ to the horizontal, is just about to slide.  
If the static coefficient of friction between the plane and  
the object is 3, find the angle θ.

Solution

Resolving forces on the object horizontally and vertically for equilibrium:

Along the plane:

µN = 25 sin θ     [1]

Perpendicular to the plane:

N = 25 cos θ     [2]

Solving for θ: [1] ÷ [2] 

                 µ = tan θ

hence, tan θ = 3

           ∴  θ = 60°

N

25 N

25 cos θ

25 sin θ

µN

θ

Weight is the force due to gravity.
Weight = mass × gravity
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In this force diagram, the tensions T1 and T2 on 
particle P can be resolved into the horizontal and 
vertical components.

Horizontally: 

T1 sin β = T2 sin α

Vertically:

T1 cos β + T2 cos α = mg

The angles α and β, or the lengths AB, BC and BP, allow you to determine the tensions  
T1 and T2.

EXAMPLE 12

Calculate the tension in a wire supporting a 60 kg tightrope walker where the weight of 
the tightrope walker at the centre of the wire causes it to sag by 8°. Let g = 9.8 m s−2.

Solution

Horizontally;

T1 cos 8° = T2 cos 8°

Hence T1 = T2

Vertically:

T1 sin 8° + T2 sin 8° = mg

Solving simultaneously:

2T sin 8° = mg           where T = T1 = T2

             T = 
mg

2 sin8°

                 = 
60 9 8
2 sin8

×
°

                 ≈ 2112 N

mg

T1T2

8° 8°

A B

α

α

β

β

C

P

mg

T2
T1

T1

T2
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The applied force in this force diagram can be resolved 
into the horizontal and vertical components.

Horizontally:

Fapp cos θ will provide the force to move the object in 
the horizontal direction.

Vertically:

N + Fapp cos θ = mg

EXAMPLE 13

A 40 N force is applied to a 5 kg box at an angle  
of 30° to the horizontal. If the dynamic coefficient  
of friction is 0.4, find the acceleration of the box.

Solution

A complete force diagram:

mg = 5 × 10 = 50 N

40 cos 30° = 20√3 N

40 sin 30° = 20 N

30°

40 N

N

F

20 N

50 N

20√3 N

N

F

Resolving forces vertically: 

Normal force (N) = 50 N − 20 N = 30 N

Resolving forces horizontally:

F = µN = 0.4 × 30, where µ is the dynamic coefficient of friction

F = 12 newtons

∴ Net force horizontally

Fnet = 20 3 − 12 = 22.641... newtons

For the acceleration of the box, Fnet = mx

22.641... = 5x

x  = 22.6 ÷ 5

≈ 4.5 m s−2

Fapp = 40 N

5 kg
30°

newtons

N

θ

mg

Fapp sin θ

Fapp cos θ

Fapp

N is the normal force due to the 
object sitting on a surface.

Normal force
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Exercise 7.04 Forces and equations of motion

 1 Calculate the magnitude of the horizontal and vertical components of a force of:

a 16 N inclined at 60° to the horizontal

b 20 N inclined at 30° to the horizontal

c 24 N inclined at 20° to the vertical

d 18 N inclined at 40° to the vertical

 2 Express each force in the diagrams below as components along the plane and 
perpendicular to the plane.

a N

25°mg

 b F

30°mg

c NF

50°

20 N

 3 An object weighing 5 N is just about to slide up a plane where the inclination is 40° to 
the horizontal, under the action of a force inclined at an angle θ to the plane.

a If the static coefficient of friction is 
1
3

, find the magnitude of the applied force in 
terms of θ.

b What is the applied force if θ = 45°?

 4 An object of mass 0.5 kg is pulled along horizontally at constant velocity. If it takes 2 N 
of force to maintain this constant velocity, calculate the dynamic coefficient of friction to 
one decimal place using g = 9.8 m s−2.

 5 A 4.5 kg block is pulled up a 20° ramp  
at a constant velocity by an 8 kg 
counterbalance. Calculate the dynamic 
coefficient of friction using  
g = 9.8 m s−2.

20°

8 kg

4.5 kg
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 6 The dynamic coefficient of friction between a 170 kg box and a carpet floor is 0.85.

a How much force would it take to push the box at a constant velocity across the 
carpet floor? Use g = 9.8 m s−2.

b How much force would be required to push the box and to accelerate it by  
0.5 m s−2?

 7 A string of length 20 cm is attached to 2 points A and B at the same level and a distance 
of 10 cm apart. A ring of mass 5 g can slide on the string and a horizontal force F is 
applied so that the ring is in equilibrium vertically below B. Use g = 9.8 m s−2.

a Find the tension in the string.

b Find F, the force applied to maintain equilibrium.

 8 A particle of mass 15 kg is suspended by 2 strings 6 m and 8 m long, their other ends 
being fastened to a rod 10 m apart. If the rod is held at an angle such that the particle 
hangs directly below the middle of the rod, find the tensions of the strings.  
Use g = 9.8 m s−2.

 9 A box of mass 10 kg is being pulled along a smooth surface by a rope inclined at 45° to 
the horizontal. The tension in the rope is 12 N.

a Draw a force diagram for this situation.

b Find the acceleration for the box.

c Find the normal reaction between the box and the floor.

10 Two particles of masses M and m are 
connected by a light string. The first mass, 
M, is placed on a rough horizontal table 
with the string passing over a smooth pulley. 
The second mass, m, is hanging freely. The 
dynamic coefficient of friction between the 
mass M and the table is µ.

a Find the acceleration of the system.

b Find the tension in the string.

c Show that the system does not move if  

µ ≥ 
m
M

.

11 A particle of mass M is just about to slide up a plane, of inclination α to the horizontal, 
under the action of an applied force F (pull) that is inclined at an angle θ to the plane. If 
the static coefficient of friction is µ, show that:

F = sin cos
cos sin

α + µ α
θ + µ θ









  Mg

Mg

mg

µN
T

T

N
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INVESTIGATION

THE PERIOD OF A PENDULUM
Italian astronomer and physicist  
Galileo Galilei (1564−1642) became 
interested in pendulums when he watched 
a chandelier swinging in a cathedral. He 
began to experiment with pendulums and 
discovered that the period of the pendulum 
is not affected by the amplitude.

Devise an investigation to find an 
approximation for the acceleration due to 
gravity using a pendulum.

1 What effect does changing the mass on the end of the string make?

2 What effect does changing the length of the string have on a pendulum?

3 What difference does changing the angle of swing make?

 Note: The periodic time for a swinging pendulum is constant only when amplitudes 
are small.

4 Plot a graph of periodic time, T, against length, l, getting a curve (a parabola).  
Try a few quick calculations to see whether the graph to produce a straight line is T, 

T
1

, T  or T 2 against l.

7.05 Resisted horizontal motion
When an object moves through a medium such as air, water or oil, the resistance (force), R,  
of the medium slows down the object’s motion and varies as a function of the velocity.  
The higher the velocity of the object, the greater the resistance. The resistance causes the 
object to experience a retardation, which is a negative acceleration (or deceleration).

For horizontal motion, there are no other forces apart from the resistance due to the velocity 
or velocity squared, that is R = −kv or R = −kv2.

If R = −kv, or linear resistance, the object is moving at low speeds. In this case the drag is 
due to viscosity (thickness or ‘stickiness’) of the medium in which it is travelling.

R = −kv

Direction of motion

ma = −kv

   a = 
k
m

−  v

mg sn θ mg cos θ

mg

θ

θ

T
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If R = −kv2, or quadratic resistance, the object is more likely at high speeds. In this case the drag is 
related to the momentum transfer between the moving object and the fluid in which it is travelling.

R = −kv2

Direction of motion

ma = −kv2

   a = 
k
m

−  v2

EXAMPLE 14

A particle of mass m initially with speed v0 moves horizontally against a resistance 
proportional to the square of the speed. Express its velocity in terms of the distance 
travelled and its displacement in terms of velocity.

Solution

ma = −kv2

   a = 
k
m

− v2

v
dv
dx

 = 
k
m

− v2

On integrating,

v
dv

k
m

dx
1∫ ∫= −

    ln v = 
k
m

− x + C

When x = 0, v = v0 so C = ln v0

ln v = 
k
m

− x + ln v0

ln v – ln v0 = 
k
m

x−











v
v

ln
0

 = 
k
m

x−        [*]

             
v
v

e
k
m

x

0
=

−
 

              v v e
k
m

x

0
=

−

From [*]:

            = −








x m

k
v
v

ln
0

It is conventional to take the 
direction of motion to be positive.

v > 0 because it is speed
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EXAMPLE 15

A particle of mass 3 kg is propelled from the origin along the x-axis with initial velocity 
of u m s−1. The only forces acting on the particle in the x direction are friction, which is a 
constant 18 N, and drag due to air resistance which equals v2 N, where v is the velocity of 
the particle t seconds after leaving the origin.

a Show that 
dv
dt

v6
1
3

2= − − .

b Show that t
u v

uv
1
2

tan
3 2( )

18
=

−
+









− .

c By using 
dv
dt

v
dv
dx

= , find an expression for v in terms of x.

Solution

a 3a = −18 − v2

   a = −6 − 
1
3

v2

 Hence 
dv
dt

v6
1
3

2= − −

b Rearranging the expression from part a, 
dv

v
dt

18
1
32+

= −

 On integrating:

                                            
dv

v
dt

18
1
32∫ ∫+

= −

 
v u

t
1

3 2
tan

3 2
tan

3 2
1
3

1 1





− 













 = −− −

 ∴ t
u v

2 tan
3 2

tan
3 2

1 1= 





− 















− −

 Taking tan of both sides:

 t u vtan 2 tan tan
3 2

tan
3 2

1 1( ) =








 −



















− −

Simplify using A B
A B

A B
tan( )

tan tan
1 tan tan

− =
−

+

where A=
u

B
v

tan
3 2

and = tan
3 2

1 1











− −

18 + v2

direction of 
motion
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ttan 2( )  =
−

+ ×

u v

u v
3 2

   
3 2

1
3 2 3 2

)(
)

)

(

(

= −

+

=
−

+

=
−

+

u v
uv

u v

uv

u v
uv

3 2
3 2

multiplying by 3 2
3 2

3 2

3 2
multiplying by 3 2

3 2
again

3 2
18

as required

2

c         = = − −dv
dt

v dv
dx

v6 1
3

2

)
)

)

(
(

(

− −
=

+
= −

+ = − +

+ = − +

+ = =
= =

+ =

∴ + = +

− + −

−

v

v
dv dx

v
v

dv dx

v x C

v x D

v e Ae
x v u

u A

v u e

6 1
3

18
1
3

1
2

ln 18 1
3

ln 18 2
3

18
When 0

18

18 18

x D x

x

2

2

2

2

2
2
3

2
3

2

2 2
2
3

 v u e(18 ) 18
x2 2

2
3= + −

−

Formulas for acceleration, a

• Use a = 
dv
dt

 when x(t) or v(t) is required

• Use a = v 
dv
dx

 when v(x) is required
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Exercise 7.05 Resisted horizontal motion

 1 A particle of mass m initially with speed u moves horizontally against a resistance 
proportional to its speed (v). Express its velocity in terms of the distance travelled and its 
displacement in terms of velocity. 

 2 A particle of mass m initially with speed u moves horizontally against a resistance 
proportional to the square of its speed (v2). Express its velocity in terms of the distance 
travelled and its displacement in terms of velocity. 

 3 A particle of unit mass moves in a straight line against a resistance 
equal to v + v3, where v is the velocity of this particle. Initially, the 
particle is at the origin and is travelling with speed V > 0. Show that v is related to the 
displacement x by the expression

x
V v

Vv
tan

1
–1=

−
+







 4 A high speed train of mass M starts from rest and moves along a straight track. At time  
t hours, the distance travelled by the train from its starting point is x km, and its velocity 
is v km h−1.

  The train is driven by a constant force F and has a resistive force of kv2 in the opposite 
direction, where k is a positive constant. The resultant force is zero when the train is 
travelling at 430 km h−1.

a Show that the equation of motion for the train is Ma = F
v

  1
430

2

− 
















.

b Find, in terms of F and M, the time taken for the train to reach a velocity of  
400 km h−1.

 5 A particle of mass 1 kg moving in a straight line from the origin is subject to a resisting 
force of kv3, where v is the speed at time t and k is a constant. 

  Initial speed is v0 and x is the displacement of the particle.

a Show that v
v

kv x 1
0

0
=

+
.

b Deduce that t kx
x
v

 
1
2

2

0
= + .

c A bullet is fired horizontally at a target 2400 m away. The bullet is observed to 
travel the first 800 m in 0.8 s and the next 800 m in 1 s. Assuming that air resistance 
is proportional to v3 and gravity can be neglected, calculate the time taken to travel 
the last 800 m.

Unit mass 
means 1 kg.
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 6 The acceleration of a particle moving in a straight line is given by a = k(1 − v2), k > 0 
where v is its velocity at any time t. Initially the particle is at the origin and at rest.

a Find an expression for the velocity in terms of t and hence the velocity as t → ∞.

b Find an expression for the position of the particle in terms of velocity.

 7 A particle of mass m moves in a horizontal straight line. The particle is resisted by a 
constant force mk and a variable force mv2, where k is a constant (k > 0) and v is the 
speed. Initially its speed is u at the origin.

a Show that the distance travelled is 
k u
k v

1
2

ln
2

2
+
+







.

b Show that the time taken for the particle to come to rest is t
k

u
k

1
tan= − .

 8 The only force acting on a particle moving horizontally in a straight line is a resistance 
of mk(c + v) acting in that line, where m is the mass of the particle, v is the velocity and 
k and c are positive constants. Initially the particle moves with speed U > 0, and it comes 

to rest at time T. At time 
1
2

T its velocity is 
1
8

U.

a Show that the acceleration is given by a = −k(c + v).

b Show that c U
1
48

= .

c Show that at time t, 
v

U
48

 = 49e−kt − 1.

7.06 Resisted vertical motion
When a particle is moving vertically (either upwards or downwards) the acceleration due 
to gravity is always towards Earth. There may also be a resistance, R, to the particle whose 
direction is always opposing the direction of travel. Again, R = −kv or R = −kv2.

mg + R
                         

R

mg

Sometimes the motion of the particle is composed of an upwards journey followed by 
its downwards journey. In these cases, we are required to treat each part of the journey 
separately.
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Terminal velocity
As an object falls, air resistance may become so great that its magnitude is equal to that 
of the force due to gravity. This means there is zero net force acting and the object is no 
longer accelerating. It cannot fall any faster, and its velocity has reached what is called 
terminal velocity, vT.

vT occurs when a = 0 as t → ∞.

EXAMPLE 16

An object falls from rest and the retardation due to the air resistance is 0.2 v2 m s−2.

a Use g = 9.8 m s−2 to show that v = 
−
+











e
e

7 1
1

t

t

2.8

2.8 .

b Show that x = 5 ln e t1 7 5 ln 2t2.8( )+ − −

c Find the terminal velocity of the object.

Solution

a Take the positive direction to be downwards.

 ma = mg − 0.2mv2

 a g v v0 2 98 0 22 2= − = −

 = − = −dv
dt

v v98 2
10

49
5

2 2

 Integrating, 

 
dv

v
dt

49
1
52∫ ∫−

=

Retardation is negative acceleration.

mg

0.2 mv2
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v v v
A

v
B

v

A v B v

A Av B Bv
A B v B A

A B
B A

B A
A A

A

A B

v v v

dv
v v v

dv

v v

v
v

dv
v

dt

v
v

t C

Let 1
49

1
7 7 7 7

1 7 7

1 7 7
1 7 7

7 7 1
0

7 7 1
14 1

1
14

1
14

1
49

1
14

1
7

1
7

49
1

14
1

7
1

7
1

14
ln 7 ln 7

1
14

ln 7
7

So
49

1
5

1
14

ln 7
7

1
5

2

2

2

2

∫∫

∫∫

( )( )
( ) ( )

( )

−
=

+ −
=

+
+

−

= − + +
= − + +
= + + −

∴ + =
− =

=
∴ + =

=

= =

−
=

+
+

−








−
=

+
+

−








= + − − 

= +
−

−
=

+
−

= +

 When t = 0, v = 0

 

)(+
−

= +

=

=
+
−

=

= +
−

C

C

C

v
v

t

t v
v

1
14

ln 7 0
7 0

1
5

0

1
14

ln1

0

1
14

ln 7
7

1
5

5
14

ln 7
7
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 Hence, e
v
v

7
7

t
14
5 =

+
−

 (7 − v)e
t

14
5  = 7 + v

 ) )( (− = +e v e7 1 1t t2.8 2.8

             v = 
−
+











e
e

7 1
1

t

t

2.8

2.8

b Taking the result from part a,

 

dx
dt

e
e

e
e

e e
e

e
e

x t e C

t e C

t e C

t x
C

C

x t e

x e t

7 1
1

7 1
1

7 1 2
1

7 1 2
1

Integrating

7 2
2 8

ln 1

7 14
2 8

ln 1

7 5ln 1

When 0, 0
0 0 5ln 2

5ln 2

7 5ln 1 5ln 2

5ln 1 7 5ln 2

t

t

t

t

t t

t

t

t

t

t

t

t

t

2.8

2.8

2.8

2.8

2.8 2.8

2.8

2.8

2.8

2.8

2.8

2.8

2.8

2.8

( )
( )

( )

( )
( )

= −
+











= − −
+











= − + −
+











= − −
+











= − − +






+

= − + + +

= − + + +

= =
= + +
= −

= − + + −

= + − −
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c The terminal velocity occurs as t → ∞.

 Since v = 
−
+











e
e

7 1
1

t

t

2.8

2.8  (from part a), we can divide numerator and denominator by 

e t2.8  to get = −
+











−

−v e
e

7 1
1

t

t

2.8

2.8 . Hence as t → ∞, v → 7
1 0
1 0

−
+







 = 7 m s−1.

 Alternatively, we could simply make acceleration equal to 0.

 Thus 
− v49
5

2
 = 0

                   v2 = 49

                     v = 7 m s−1

Many problems involving an object projected vertically through a resistive medium require 
the motion to be analysed during its upward motion and then separately during its downward 
motion. In the upward and downward motions the positive direction is taken to be in the 
direction of the motion. These problems are usually about velocity, displacement or time to 
reach significant points.

EXAMPLE 17

An object of mass m is projected vertically upwards with initial velocity v0 in a medium 
where the resistance is R = mkv.

a Prove that the maximum height is:

= +
+









x

v
k

g
k

g
g kv

ln0
2

0

b Prove that the time it takes to reach the maximum height is:

t
k

g kv
g

1
ln 0=

+





c Given that =v v
2
T

0  (where vT is the terminal velocity), show that the velocity v, of the 
object on returning to its original launch point satisfies the equation:

kv
g

g
g kv

ln
1
2

ln
2
3

0+
−







+ + =
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Solution

a For the upward motion (positive direction upwards):

 ma = −mg − mkv

 a = −g – kv

 For maximum height, we want x when v = 0.

 v 
dv
dx

 = − g – kv

 
)(

=
− −

=
− +dv

dx
g kv

v
g kv

v

 

= −
+

= −
+ −

+











= − −
+











dx
dv

v
g kv

k
g kv g

g kv

k
g

g kv

1

1 1

 Integrating wrt v,

 x
k

v
g
k

g kv C g k v
1

ln , 0, 0( )= − − + 






+ > ≥

 When x = 0, v = v0:

 

k
v

g
k

g kv C

C
k

v
g
k

g kv

0
1

ln

1
ln

0 0

0 0

= − − + 






+

= − + 






 Hence

 

x
k

v
g
k

g kv
g
k

v
k

g kv

k
v

g
k

g kv v
g
k

g kv

k
v v

g
k

g kv
g kv

1
ln

1
ln

1
ln ln

1
ln

0 0

0 0

0
0

= − − + 






+ − + 






= − +  − − + 
















= − +
+
+



















mg + mkv
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 Maximum height when v = 0:

 

)(
= − +

+
+























= +
+























= +
+











x
k

v
g
k

g k
g kv

k
v

g
k

g
g kv

v
k

g
k

g
g kv

1 0 ln
0

1 ln

ln

0
0

0
0

0
2

0

b For time to reach maximum height, we want t when v = 0.

 dv
dt

 = −g − kv

 
= −

+
dt
dv g kv

1

 Integrating,

 t = − 
k
1

 ln(g + kv) + D

 When t = 0, v = v0:

 0 = − 
k
1

 ln(g + kv0) + D

 D = 
k
1

 ln(g + kv0)

 Hence t = − 
k
1

ln(g + kv) + 
k
1

ln(g + kv0)

                = 
k
1

 ln 
+
+











g kv
g kv

0

 Maximum height when v = 0:

              t = 
k
1

 ln )(
+
+











g kv
g k 0

0

                  = 
k
1

 ln 
+









g kv
g

0

c For the downward motion (positive direction downwards):

 ma = mg − mkv

       a = g – kv mg

mkv
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 Terminal velocity vT when a = 0

 0 = g – kvT

 kvT = g  

 vT = 
g
k

 
∴ = =v

v g
k2 20

T

 Find velocity in terms of displacement:

 a = v 
dv
dx

 = g – kv

 
=

−dv
dx

g kv
v

 

=
−

= −
− −

−











= − −
−











dx
dv

v
g kv

k
g kv g

g kv

k
g

g kv

1

1 1

 Integrating wrt v,

 
( )= − − − 







+ − = >x
k

v
g
k

g kv E g kv a
1

ln 0

 When x = 0, v = 0:

 

( )= − − +





+

= −





= −

k
g
k

g k E

E
k

g
k

g
g
k

g

0
1

0 ln 0

1
ln ln2

 Hence

  

= − − − 






−

= − − −  +





= − +
−



















x
k

v
g
k

g kv
g
k

g

k
v

g
k

g kv
g
k

g

k
v

g
k

g
g kv

1
ln ln

1
ln ln

1
ln

2



ISBN 97807043435MATHS IN FOCUS 12. Mathematcs Extenson 2300

 Now, distance up equals distance down.

 

= +
+







= − +
−



















=

+
+ 























= − +
−



















+
























= − −
−







+ = − −
−







+ = − −
−







+ = − −
−







+
−







+ + =

x
v
k

g
k

g
g kv k

v
g
k

g
g kv

v
g
k

g
k
k

g
k

g

g k
g
k

k
v

g
k

g
g kv

g
k

g
k

g
g

v
k

g
k

g
g kv

g
k

g
k

v
k

g
k

g
g kv

g
g kv g

g
g kv

kv
g

g
g kv

kv
g

g
g kv

ln
1

ln

Substitute
2

2 ln

2

1
ln

2
ln

3
2

ln

2
ln

2
3

ln

2
ln

2
3

ln

1
2

ln
2
3

ln

ln
1
2

ln
2
3

0

0
2

0

0

2

2 2 2

2 2 2

Exercise 7.06 Resisted vertical motion

 1 An object of mass 1 kg is dropped from a height of h m above the ground. It experiences 
air resistance proportional to the square of its velocity.

a Show that the motion of the object is given by a = g − kv2.

b Find v2 in terms of x.

c Find the velocity of the object as it hits the ground in terms of g, k and h.

 2 A particle of unit mass is projected vertically upwards from the ground with initial speed 
U m s−1. It experiences an air resistance that is proportional to the square of its speed.

a Find the time to reach the maximum height.

b Find the maximum height.

 3 A body with mass 1 kg is projected vertically from a point on level ground with velocity 

of 40 m s−1. The forces acting on the body are gravity and air resistance of 
v
4

 newtons, 

where v is the velocity of the body.

Unit mass means 1 kg.
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a Show that the equation of motion of the body is a = 
v 40

4
−

+
.

b Find the maximum height reached by the body.

c Find the time taken for the body to reach its maximum height.

 4 An object of mass m kg is dropped from rest in a medium where the resistance has a 
magnitude of 0.1 mv2 newtons, where the velocity of the object is v m s−1. After t seconds, the 
object has fallen a distance of x metres, and has velocity v m s−1 and acceleration of a m s−2. 
The object hits the ground in ln (1 + 2) seconds after it is dropped.

a Draw a diagram showing the forces acting on the object. 

b Show that a = 0.1(100 − v2) m s−2.

c Express v as a function of t.

d Hence, show that the speed at which the object hits the ground is 5 2  m s−1.

e Show that the distance the object falls is 5 ln 2 metres.

 5 Zoe drops a stone of unit mass into an empty well to determine its depth. When the 
stone is dropped it experiences air resistance proportional to its velocity, v m s−1.

a Explain why the acceleration of the stone is given by a = g − kv, where k is a 
constant and g is the acceleration due to gravity.

b Show that the velocity of the stone is given by v
g
k

e(1 )kt= − −  m s−1. 

c Hence, find the terminal velocity of the stone.

d Derive an expression for x, the distance travelled, as a function of the velocity, v, at 
any time.

e Given that k = 0.2, g = 10 and Zoe counted 3 seconds before the stone hit the 
bottom of the well, how deep was the empty well?

 6 A particle of mass m is projected vertically upwards and experiences a resistance of 
magnitude mkv2 newtons. During its downward motion, the terminal velocity of the 
particle is V m s−1. Find the position of the particle below its maximum height when it 
reaches 50% of its terminal velocity.

 7 A stone of mass 2 kg is launched vertically upward into the air from the ground with 

initial speed of 15 m s−1. The stone experiences a resistive force of v
1
3

2 newtons in 

the opposite direction to its velocity. The acceleration of this stone until it reaches its 

maximum height is a = 
v60

6

2

−
+

.

a Find the time taken by the stone to reach its maximum height.

b Show that = −
−

v e285 60
x

2 3 .

c Find H, the maximum height reached by the stone.
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 8 Maximus fires an arrow, of mass m, vertically upwards with initial speed of V m s−1.  
The arrow experiences a resistance equal to mkv2, k > 0. If the initial speed is equal to its 
terminal speed, show that the final speed when the arrow returns to its initial position is 
V 2

2
 m s−1.

 9 An object of unit mass is dropped from an altitude of 1200 m in a medium whose 
resistance is proportional to v2.

a Show that v
g
k

e(1 ) kx2 2= − − , where x metres is the distance fallen.

b If k = 0.003, find the speed at which the object hits the ground.

10 A particle is projected vertically upward under gravity with initial velocity of v0. 
Air resistance is proportional to the square of the velocity.

a Show that the greatest height reached is 
k

g kv
g

1
2

ln 0
2+





.

b The particle then falls from its greatest height. Find the terminal velocity.

c The particle then returns to its point of projection with speed V.  
Show that (g + kv0

2)(g − kV 2) = g2.

7.07 Resisted projectile motion
Consider an object launched with a velocity V at an angle of θ to the horizontal (ground). 
Without air resistance, the trajectory followed by this projectile is known to be a parabola.

The extent to which air resistance affects various projectiles is determined by the speed, 
shape, size and surface texture of the projectile. Air density can also be a factor.

Linear drag model
In the case of a resistive force that grows linearly with velocity (R = −kv), we can still separate 
the motion into horizontal and vertical components

y

x

The components for acceleration in the horizontal and vertical directions  
can be found using Newton’s laws of motion.

mg + ky

kx.

.
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mx  = −kx  and mÿ = −mg − kẏ

so we get = −x k
m

x and = − −y g k
m

y

Horizontal Vertical
dv
dt

k
m

vx
x= −  where vx = x

dv
v

k
m

dtx

x
= −

dv

dt
g

k
m

vy
y= − −  where vy = ẏ

+
= −

dv

g k
m

v
dty

y

Integrating:

ln vx = 
k
m

t−  + C

Integrating:
m
k

g
k
m

v t Eln y+





= − +

When t = 0, vx = V cos θ

so C = ln (V cos θ)

When t = 0, vy = V sin θ

so E
m
k

g
k
m

Vln sin= + θ





On substituting and rearranging:

ln vx = 
k
m

− t + ln (V cos θ)

∴ 
v

V
k
m

tln
cos

x

θ






= −

so x  = vx = (V cos θ) e
k
m

t−

Integrating again:

x = V cos θ e dt
k
m

t

∫
−

      
m
k

V e Dcos  
k
m

t
= − θ +

−

When t = 0, x = 0

so D = 
m
k

V cos θ

On substituting and rearranging,

x
m
k

V e
m
k

V  cos cos
k
m

t)(= − θ + θ
−

   =
θ

−










−mV
k

e
cos

1
k
m

t

On substituting and rearranging:

+





= − + + θ





= + θ





− +





m
k

g
k
m

v t
m
k

g
k
m

V

t
m
k

g
k
m

V
m
k

g
k
m

v

ln ln sin

ln sin ln

y

y

t
m
k

g
k
m

V

g
k
m

v
ln

sin

y

=
+ θ

+

















e
mg kV

mg kv
sink

m
t

y
=

+ θ
+

Making vy the subject:

( )

+ =
+ θ

= + θ −
−

mg kv
mg kV

e

kv mg kV e mg

sin

sin

y k
m

t

y

k
m

t

= = + θ





−
−

y v
m
k

g V e
m
k

gsiny

k
m

t
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Vertical (continued)

Integrating again:

y
m
k

g V e
m
k

g dtsin
k
m

t

∫= + θ





−












−

= − + θ





− +
−m

k
mg
k

V e
m
k

gt Fsin
k
m

t

When t = 0, y = 0

so F m
k

mg
k

V sin= + θ








On substituting and rearranging,

= − + θ





− + + θ





= + θ





− + θ





−

= + θ





−












−

−

−

−

y
m
k

mg
k

V e t
m
k

gt
m
k

mg
k

V

m
k

mg
k

V
m
k

mg
k

V e
mgt

k

m
k

mg
k

V e
mgt

k

sin sin

sin sin

sin 1

k
m

k
m

t

k
m

t

Trajectory of a projectile in a resistive medium
To find the equation of the path of the projectile, eliminate t from the 2 displacement 
equations above.

              =
θ

−










−
x

mV
k

e
cos

1
k
m

t
    [1]

kx
mV

e
cos

1
k
m

t

θ
= −

−
    [*]

∴            = − −
θ







t
m
k

kx
mV

ln 1
cos

Also

y
m
k

mg
k

V e
mgt

k
sin 1

k
m

t
= + θ





−








 −

−
    [2]
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Substituting in [2] and rearranging to eliminate t:

   y 
m
k

g
m
k

V
kx

mV
mg
k

m
k

kx
m V

sin
cos

ln 1
  cos

= + θ



 θ







− − −
θ















 from [*]

   

= + θ



 θ







− − −
θ

















= + θ



 θ







+ −
θ







=
θ

+ θ





+ −
θ







y
m
k

mg
k

V
kx

mV
mg
k

m
k

kx
mV

mg
k

V
x

V
m g
k

kx
mV

mg
kV

x
m g
k

kx
mV

sin
cos

ln 1
cos

sin
cos

ln 1
cos

cos
tan ln 1

cos

2

2

2

2

The path is not a parabola because the function is more complicated and of the form  
y = ax + b ln (1 − cx).

Time for maximum height
At maximum height ẏ = 0

m
k

g V e
m
k

gs in 0
k
m

t
+ θ





− =
−

on rearranging,

t
m
k

kV
mg

ln 1 sin= + θ






Speed at any point
The speed at any point on the trajectory depends on both the vertical and horizontal 
velocities.

S = x y2 2+

Terminal velocity
Terminal velocity occurs when the projectile is descending and y 0= .

g
k
m

y– 0+ = .

= =v y
m
k

gT
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EXAMPLE 18

A ball is kicked at an angle of 30° to the horizontal at 12 m s−1 and experiences air 
resistance proportional to the velocity in both the x and y directions. Find the equations 
of motion, the equation of the path of the ball and an expression for the maximum height 
reached.

Solution

Resolving forces, mx  = −mkx  and mÿ = −mg − mkẏ

12 m s−

30°

kx.

mg + ky.

So we get

dv
dt

x  = −kvx and 
dv

dt
y  = −10 − kvy

Horizontal

In the x direction we get a differential equation like those we have seen in exponential 
growth and decay problems.

So, vx = Ae−kt 

When t = 0, vx = 12 cos 30°, so A = 6 3, and we get

x  = vx = e6 3 kt− .

Integrating, we get

x = 
k

e
6 3 kt− −  + C

When t = 0, x = 0 and so C = 
k

6 3

∴ x = 
k

e
k

6 3 6 3kt− +−

        = 
k

6 3
(1 − e−kt  )     [1]

Note that 1 − e−kt = 
kx

6 3
, which we will use on page 308. [2]
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Vertical

In the y direction the equation is now more complicated.

dv

dt
y  = −10 − kvy

dt
dv kv

1
(10 )y y

=
− +

 dt
dv

kv10
y

y
− =

+

Integrating, −t = 
k
1

 ln (10 + kvy) + D

When t = 0, vy = 12 sin 30° = 6; hence, D = − 
k
1

 ln (10 + 6k)

So, −kt = ln (10 + kvy) − ln (10 + 6k)

      e−kt = 
kv

k

10

10 6
y+

+
which gives

y∙ = vy = 
k
1

[(10 + 6k)e−kt − 10]

Integrating, we get

y
k

k
k

e t E
1 10 6

  10kt=
+
−

−





+−

When t = 0, y = 0 and so E
k

k
10 6

2=
+

∴ y = 
k

k
k

e t
k

k
1 10 6

  10
10 6kt

2
+
−

−





+
+−

       
k

k
e

k
t

10 6
(1   )

10kt
2=

+
− −−     [3]

Path of projectile

The equation of motion is found by first making t the subject of [1]:
kx

e

e
kx

kt
kx

6 3
1

1
6 3

ln 1
6 3

kt

kt

= −

= −

− = −






−

−
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t
k

kx1
ln 1

6 3
= − −







Substitute t and [2] into [3]: y
k

k
kx

k k
kx10 6

6 3
10 1

ln 1
6 32=

+
− −

















k
k

kx
k

kx10 6
6 3

10
ln 1

6 32 2=
+

+ −






k
k

x
k

kx5 3
3 3

10
ln 1

6 32=
+

+ −






Maximum height

At the maximum height, y 0=

k
k e0

1
10 6 10kt)(= + − 

−

( )

( )

( )

+ =

=
+

=
+

= +

= +

= +

−

−

k e

e
k

e
k

k

kt k

t
k

k

10 6 10

10
10 6

[4]

5 3
5

1 06

ln 1 06

1
ln 1 06

kt

kt

kt

Substituting into the equation for vertical displacement [3]:

y
k

k
e

k
t

k
k k k k

k

k
k

k
k k

k

k
k k

k

k k
k

10 6
1

10

10 6
1

10
10 6

10 1
ln 1 06 from[4]

10 6 10 6 10
10 6

10
ln 1 06

6 10
ln 1 06

6 10
ln 1 06

kt
2

2

2 2

2 2

2

)(
)

)

)

)

(

(

(

(

=
+

− −

=
+

−
+







− +





=
+ + −

+






− +

= − +

= − +

−

Note: If you know the value of k, which is the coefficient of drag, then the height can be 
calculated.
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Using geometry software

If we use a slider and let k = 1 in this example, it is possible to identify the time to reach 
maximum height as t = ln 1.6 ≈ 0.47s. The maximum height is y = 1.32 m at x ≈ 3.89 m.

As well, it is possible to show that the range ≈ 6.67 m.

10
0 α = 30°

h = (39 13)

Range = (667 0)

k = 1

1

2

y

x
2 3 4 5 6 87

Quadratic drag model
In the case of a resistive force that grows with the square of the  
velocity (kv2), we still separate the motion into horizontal and vertical 
components.

The components for acceleration in the horizontal and vertical can be 
found using Newton’s laws of motion:

mx  = −kx2 and mÿ = −mg − kẏ2

so we get x
k
m

x2= −  and y g
k
m

y2= − −

Horizontal

so v
mV

m kV t
 

cos
cosx )(=

θ
+ θ

       x v
V
k
m

V t

cos

1 cos
x

( )
= =

θ

+ θ

Integrating:

x
m
k

k
m

V t Dln 1   cos( )= + θ





+

When t = 0, x = 0

∴ D = 0

Hence

x
m
k

k
m

V tln 1   cos( )= + θ





dv
dt

k
m

vx
x
2= −

dv
v

k
m

dtx

x
2 = −

Integrating:

v
k
m

t C
1

   
x

− = − +

When t = 0, vx = V cos θ

C
V

1
cos

∴ = −
θ

Hence:

 k
m

t
v V
1 1

cosx
= −

θ

kvx
2

mg + ky2.
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Vertical
dv

dt
g

k
m

vy
y
2= − −

dv

g
k
m

v
dty

y
2+

= −

Integrating:

m
gk

k
mg

v t Etan y









 = − +−

When t = 0, vy = V sin θ

E
m
gk

k
mg

V  tan sin∴ = θ










−

Hence:

t
m
gk

k
mg

V
k

mg
v  tan sin tan y

1 1= θ








 −






















− −

Let A = θ










− k
mg

Vtan sin  Let B = 
k

mg
vtan y











− .

tan(A – B) = 
A B

A B
tan tan

1 tan tan
−

+

=

θ






















−






















+ θ












































− −

− −

k
mg

V
k

mg
v

k
mg

V
k

mg
v

tan tan sin tan tan

1 tan tan sin tan tan

y

y

1 1

1 1

=
θ −

+ θ

k
mg

V
k

mg
v

k
mg

V
k

mg
v

sin

1 sin

y

y

( )
=

θ −

+ θ

k
mg

V v

k
mg

Vv

sin

1 sin

y

y

so A – B = 

k
mg

V v

k
mg

Vv
tan

sin

1 sin

y

y

( )θ −

+ θ





















−  and

t
m
gk

k
mg

V v

k
mg

Vv
  tan

sin

1 sin

y

y

)(
=

θ −

+ θ





















−

Rearranging (after considerable algebra):

y v

mgk V mg
gk
m

t

Vk
gk
m

t mgk

  sin  tan  

 sin  tan  
y= =

θ −







θ






+

This last step is left to the student as an exercise.

It is not possible to integrate this function to find y,  
the vertical displacement.
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Terminal velocity

In the case of a falling object, when the magnitude of the resistive force equals the 
object’s weight, the object reaches its terminal velocity. The magnitude of the resistive 
force depends on the size and shape of the object and on the properties of the medium 
through which the object is moving. 

A skydiver weighing 75 kg has a terminal velocity of 216 km h−1, a golf ball 158 km h−1 
and a raindrop 32 km h−1.

DID YOU KNOW?

EXAMPLE 19

A 5 kg cannonball is launched from the origin (0, 0) with velocity of 400 m s−1 at an angle 
of 30° to the horizontal. A drag force of magnitude kv2 is experienced with a proportion 
constant of k = 0.0001.

a Write an expression for the range of the cannonball and find how long it takes it to 
reach 1000 m.

b Find how long it takes the cannonball to reach its maximum height and its speed at 
that point. Use g = 9.8 m s−2.

Solution

a

 

mx kv

x v

x v
dv
dt

v

5 0 0001

0000 02

0000 02

x

x

x

x
x

2

2

2

2

= −

= −

= −

= −

dt
dv v v

t
v

C

1
0000 02

50000

Integrating
50000

x x x

x

2 2= − = −

= +

 When t = 0, vx = V cos θ = 400 cos 30° = 400
3

2
200 3







=

 0 = 
50000
200 3

 + C

   = 
250

3
 + C
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C = − 
250

3

 Hence t = 
v

50000 250
3x

−

t
v

v
t

v
t

250
3

50000

50000
250

3

50000 3
3 250

x

x

x

+ =

=
+

=
+

Integrating:

x t D

x t D

50000 3 3 ln 3 250

50000ln 3 250

( )
( )

= +



 +

= + +

 When t = 0, x = 0

 0 = 50 000 ln(0 + 250) + D

 D = −50 000 ln 250

 Hence,

( )= + −

=
+






x t

x
t

50000ln 3 250 50000ln 250

50000ln
3 250
250

 For x = 1000

( )

=
+






=
+






=
+

= +

= −

=
−

≈

t

t

e
t

e t

t e

t
e

1000 50000ln
3 250
250

002 ln
3 250
250

3 250
250

250 3 250

3 250 250

250 1

3
2 9 s

0.02

0.02

0.02

0.02
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b Maximum height is when vy = 0

 That is, when θ −






=mgk V mg

gk
m

t  sin  tan   0

 

gk
m

t mgk V

gk
m

t
mgk
mg

V

t

t

t

t
t

tan ( sin

tan ( sin

tan
9 8 0 001

5
5 98 00001

5 98
(400 sin30 )

tan 0 014
5 98 00001

5 98
200

tan 0 014 02857

0 014 02782
198785

( ) ( )
( )







= θ)







= θ)

×





=

× ×
×

°

=
× ×

×
=

=
=

 t ≈ 19.9 s

 Now, for speed we know S v vx y
2 2= + , but vy = 0.

 ∴ S = vx at t = 19.9 s

 and we know  from the quadratic drag model that: 

 
( )

=
θ

+ θ

=
× °

+ × × ° ×

v
V
k
m

V t

cos

1 cos

400 cos30

1
00001

5
400 cos30 19 9

x

  = 304.4370...
  ≈ 304

 Hence the cannonball has speed 304 m s−1 at the maximum height of the trajectory.
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Dimples on golf balls

Why do golf balls have dimples? Because their aerodynamic 
design causes them to travel higher and further than balls 
with smooth surfaces. The dimples make the air flow more 
smoothly around the ball, resulting in less drag. The dimples 
also help the air to move faster above the ball, which decreases 
the pressure there and, similar to the airflow over the wings 
of a plane, causes the ball to lift. Together, less drag and more 
lift cause dimpled golf balls to travel further.

DID YOU KNOW?

Exercise 7.07 Resisted projectile motion

 1 A projectile of mass 5 kg is fired from the origin with velocity of 100 m s−1 at an angle of 
elevation of 15°. In addition to gravity, assume that air resistance provides a force that is 
proportional to the velocity and that opposes the motion.

a Show that the vertical component of acceleration of the projectile is 
k

v10
5

− − .

b Given the constant of proportionality is 2.5, find the terminal velocity.

c What is the maximum height reached by the projectile?

 2 A bullet of mass 7.5 g is fired at 380 m s−1 at an angle of 5° to the horizontal.  
The resistance due to drag is mkv, where v is the velocity, k = 0.3 is the coefficient 
of drag and the acceleration due to gravity is 9.8 m s−2.

a Find the horizontal displacement of the bullet at 2 seconds.

b How long does it take to double the distance travelled in part a? 

c How long does it take to halve the distance travelled in part a?

 3 A baseball of mass 145 g is thrown at an angle of 10° to the horizontal at a speed of  
30 m s−1 and reaches the batter 18 m away in exactly 1 s. If the resistive force is 
proportional to the velocity of the baseball, show that the coefficient of drag is 0.158.

 4 A cricket ball with mass 160 g is hit at 50 m s−1 at an angle of 5° to the horizontal.  
The drag force is proportional to the speed and the coefficient of drag is 0.09.

a How long does it take the ball to reach its maximum height? Use g = 9.8 m s−2

b What is the horizontal distance travelled when it is at its maximum point?

c What is the speed of the ball after 1 second?
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 5 A golfer drives a 46 g golf ball a distance of 155 m. The drag force is proportional to the 
square of the velocity (v2) and the terminal velocity is 44 m s−1.

a Calculate the drag coefficient (k) for the golf ball. Use g = 9.8 m s−2.

b If the initial speed is 60 m s−1 and the time of flight is 4.53 seconds, calculate the 
angle of projection.
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7. TEST YOURSELF

 1 A particle moves in a straight line such that its velocity v cm s−1 when it is x cm from the 
origin is given by v = 2 − e−2x. Find the acceleration of the particle at the origin.

 2 A particle is initially at the origin where it is given an initial velocity of 10 m s−1. When 
x metres from the origin, its acceleration is a = −40e−8x m s–2. Determine its velocity v(x).

 3 A particle is moving in simple harmonic motion with acceleration given by x  = −36x, 
where x metres is the displacement of the particle from the centre of motion. Initially, 
the particle is at the origin, moving to the left at 5 m s−1. Find the displacement as a 
function of time.

 4 When x metres from an origin, the velocity of a particle is v m s−1, where 

v2 = 40 − 8x − 4x2

a Prove that its acceleration is a = −4(x + 1).

b Find the positions where the particle is at rest.

c What will be the greatest speed?

d Write v2 in the form v2 = n2[A2 − (x − c)2]

 5 An object is projected vertically upwards with initial velocity of 25 m s−1. Find the 
maximum height reached by the object and the total time taken to reach the ground again, 
assuming no air resistance. Assume g = 9.8 m s−2 and answer correct to one decimal place.

 6 A cricket ball is hit for a six, and just clears the 1 m high fence on the boundary at  
104.2 m away. If the ball leaves the bat at 75.4 m s−1, at what angles to the horizontal 
must it leave the bat?  Use g = 9.8 m s−2 and answer correct to 1 decimal place.

 7 An object of weight 20 N, in rough contact with a plane inclined at θ to the horizontal, 

is just about to slide. If the coefficient of friction between the plane and the object is 
1
3

, 
find the angle θ.

 8 A 50 N force is applied to a 10 kg box at an angle of 30° to the horizontal.  
If the coefficient of friction is 0.3, find the acceleration of the box in terms of g.

 9 Two particles of masses 10 kg and 5 kg are connected by a light  
inelastic string. The first mass is placed on a rough horizontal table 
with the string passing over a smooth pulley on the edge of the table 
and the second mass is hanging freely. The coefficient of dynamic 
friction between the first mass and the table is 0.6. Assuming  
g = 9.8 m s−2, find, correct to one decimal place:

a the acceleration of the system 

b the tension in the string
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10 A car of mass m initially at the origin with speed v0 moves horizontally against a 
resistance proportional to v3. Express its displacement in terms of velocity and its 
velocity in terms of displacement.

11 A particle of unit mass is moving in a straight line with an initial velocity of 30 m s−1 in a 

medium which causes resistance equivalent to 
v
40

 m s−1 when the velocity is v. Find the 

velocity and distance travelled in 40 s.

12 A skydiver falling through the air at velocity v m s−1 experiences a resistance of v
1
6

 newtons.

a Find her terminal velocity in terms of v.

b If the effect of a parachute is to increase the resistance to 2v, find an expression for 
the approximate speed at which she hits the ground.

13 A 1 kg stone is thrown vertically upwards from the ground with a speed of 13 m s−1. 

Assuming that the air resistance at velocity v is 
v

10
  , find both the time taken to reach 

maximum height and the maximum height reached by the stone. Use g = 9.8 m s−2.

14 A ball is thrown at an angle of 30° to the horizontal at 8 m s−1 and experiences air 
resistance proportional to the velocity in both the x and y directions. The terminal velocity 

is 2g m s−1. Show that the equation of motion is =
+





+ −






y
g

x g
x2

2 3
4  ln 1

8 3
 15 A particle is projected with speed V at an angle α to the horizontal, up a plane that is 

inclined at an angle of θ to the horizontal. 

a Show that the range R of the particle along the plane is given by 

R
V

g
2 cos  sin ( )

cos

2

2=
α α − θ

θ
 and that the maximum range is =

+ θ
R V

g(1 sin )

2
.

b Hence, show that the particle can never reach points outside the parabola given  

by x
V
g

y
V
g

2
02

2 4

2+ − = .
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Practice set 2  

In Questions 1 to 12, select the correct answer A, B, C or D.

 1 In the proof by mathematical induction that 1 + 2 + 3 + … + n = n n( 1)
2
+ , for all 

positive integers n, the inductive hypothesis would assume that:

A n = 1 B 1 = 1(1 1)
2
+

C 1 + 2 + 3 + … + k = k k( 1)
2
+  D 1 + 2 + 3 + … + n = n n( 1)

2
+

 2 For all positive integers n, k
k

n

1

3�
�

 = :

A n n( 1)
4

2 2+  B n n( 1)
2

2 2+  C n n( 1)
2

3 3+  D n n( 1)
2
+

 3 Let P(n) be the statement that 12 + 22 + 32 + … + n2 = n n n( 1)(2 1)
6

+ + , n > 0.  
What is the statement P(1)?

A 12 + 22 + … + n2 = n n n( 1)(2 1)
6

+ +  B n = 1

C 02 =  
0(0 1)(0 1)

6
+ +  D 12 = 1(1 1)(2 1)

6
+ +

 4 If 10n + 3(4n + 2) + k is divisible by 9 for all n > 0, then the least positive integer value 
of k will be:

A 1 B 3 C 5 D 7

 5 What would be a suitable substitution to determine 
x x

dx
2

42∫
−

?

A x = cos θ B x = 2 sin θ
C u2 = x2 − 4 D x = 2 sec θ

 6 Find 
x x

dx
2
4 132∫ + +

.

A x
C

1
3

tan
2

3
–1 +





+  B x
C

2
3

tan
2

3
–1 +





+

C x
C

1
9

tan
2

9
–1 +





+  D x
C

2
9

tan
2

9
–1 +





+
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 7 Find ∫ x loge x dx.

A x
x

x
C

2
 log

4e

2 2

− +  B x
x

x
C

2
 log

2e

2

− +

C x x
x

C log
4e

2

− +  D x x
x

C log
2e − +

 8 Find x
x x

dx
( 1)( 4)∫ − +

.

A x x C1
4

log 1 5
4

log 4e e+ + + +  B x x C1
5

log 1 4
5

log 4e e+ + + +

C x x C1
4

log 1 5
4

log 4e e− + + +  D x x C1
5

log 1 4
5

log 4e e− + + +

 9 A particle of mass m is moving in a straight line under the action of an applied force 

F = 
m
x3  (8 + 10x). What is the equation for its velocity at any position, if the particle 

starts from rest at x = 1?

A v = 
x

x x
1

7 5 22± − −   B v = x x x7 5 22± − −

C v = 
x

x x
2

7 5 22± − −   D v = x x x2 7 5 22± − −

10 A particle moves in simple harmonic motion after starting at the origin with 

amplitude 4 m and period 
2
π  s. Which function could describe its motion?

A x = 4 sin t B x = 4 sin 4t C x = 4 cos t D x = 4 cos 4t

11 A particle of mass m falls from rest and the resistance is proportional to v2, where  
v is its speed and k is a positive constant. 
Which is the correct formula for v2 where x is the distance fallen?

A v2 = 
g
k

(1 − e−2kx) B v2 = 
g
k

(1 + e−2x)

C v2 = 
g
k

(1 − e2x) D v2 = 
g
k

 (1 + e2x)

12 A stone is thrown vertically upwards with a speed of 21 m s−1 from the edge of a cliff 
20 m above the water. How long does the stone remain in the air before it hits the 
water?

A 4.2 s B 5 s C 8.4 s D 10 s

13 Use mathematical induction to prove that 2 is a factor of (n + 1)(n + 2), for all 
positive integers n.

14 Prove that −2 − 4 − 6 − … − 2n = −n(n + 1) for any positive integer n.
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15 Show by using mathematical induction that f (n)(x) = an sin ax
n
2

+
π




 for all integers 

n > 0 if f (x) = sin ax.

16 Prove that x
x
x

1
1

r

n
r

n

1

1∑ =
−
−=

− , for all integers n ≥ 1.

17 Prove that 23n −3n is divisible by 5, for all integers n ≥ 1.

18 Prove that 4n > 3n + 7 for all integers n > 1.

19 Prove by mathematical induction that d
dx

x( )n  = nxn − 1 for all integers n ≥ 1.

20 A sequence is given by the recurrence relation a1 = 3, an = an − 1 + 5 for n > 1.  
Prove, using mathematical induction, that the general formula for the sequence is  
an = 5n − 2, n > 1.

21 Given u1 = 8, u2 = 20 and un = 4un − 1 − 4un − 2 for n ≥ 3, show by mathematical 
induction that un = (n + 3)2n for n ≥ 1.

22 Simplify cos (x − y) − cos (x + y). Hence, prove by induction that for all n > 0 that 

sin θ + sin 3θ + … + sin (2n − 1)θ = nsin
sin

2 θ
θ

23 Find dx

x x4 4 2∫
+ −

.

24 Evaluate 
x

dx
1

cos   10
2∫ +

π

, using an appropriate substitution.

25 Find 
dx

x x2 102∫ − +
.

26 Find 
x x

dx
1

( 2)∫ −
.

27 Using partial fractions, find x
x x

dx
2 1

3 2
 2∫ −

+ +
.

28 Find x
x x

dx
( 2)( 3)

 ∫ + +
.

29 Use integration by parts to evaluate x
x

dx
ln

 
e

∫ .

30 Evaluate x e dxx2
0

ln3

∫ .

31 Find ∫ ex sin x dx.

32 Find ∫ sin−1 x dx.

33 A particle is moving in a straight line from a stationary position at the origin. 
Its velocity is v when its displacement from the origin is x. If the acceleration of 

the particle is given by a = 
x

1
( 3)2+

, find v in terms of x.
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34 The depth of water in a harbour is assumed to rise and fall with time in simple 
harmonic motion. On a certain day the low tide had a height of 12 m at 12:30 p.m. 
and the following high tide had a height of 18 m at 6:30 p.m.  
If a ship requires a depth of 16 m of water before it can leave the harbour, find the 
earliest time after 12 p.m. that the ship can leave the harbour.

 35 A long jumper leaves the ground at an angle of 15° to the horizontal and at a speed of  
12 m s−1. How far does she jump on this occasion? Assume g = 9.8 m s−2.

36 A projectile is fired at a target (T) so that the projectile leaves the gun at the same 
time the target is dropped from rest. Show that if the gun is initially aimed at the 
stationary target, the projectile hits the target.

37 A ball is thrown vertically upward and is caught 2 s later by the thrower.  
Find the initial velocity of the ball and the maximum height the ball reaches.

38 A mass is oscillating at the end of a spring with a velocity given by v2 = 256 − 64x2 
where x cm is the displacement from the centre of motion. Find:

a the acceleration of the mass as a function of x

b the maximum speed of the mass.

39 An object of mass m kilograms is dropped from the top of a cliff 40 m above a body 
of water. As the object drops in the air, the resistance to its motion has magnitude 
1

10
 mv when the object has speed v m s−1. After the object enters the water, the 

resistance has magnitude 1
10

 mv2. Use g = 10 m s−2.

a Write an expression for a before the object enters the water, where x is the 
distance travelled from its initial position.

b Show that dv
dx

v
v

100
10

=
−  , and show that the speed of the object as it enters the 

water satisfies v v
100

ln 1
100

004 0+ −





+ = .

c Write an expression for a after the object enters the water.

d Given that the object slows on entry, find its terminal velocity in the water.

40 An object of weight 40 N, in rough contact with a plane inclined at θ to the 
horizontal, is just about to slide. If the coefficient of friction between the plane and 

the object is 1
3

, find the angle θ.

41 A force of 820 N is applied to a 2 tonne vehicle at an angle of 10° to the horizontal. 
If the coefficient of friction is 0.04 and g = 10 m s−2, find the acceleration of the vehicle.

42 A ball is kicked at 30° to the horizontal at 15 m s−1 and experiences air resistance 
proportional to its velocity in both the x and y directions. Given that its terminal 
velocity is 11 m s−1, find the time for it to reach its maximum height. Use g = 10 m s−2.
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ANSWERS
Answers are based on full calculator values and only rounded at the end, even when different parts of a question 
require rounding. This gives more accurate answers. Answers based on reading graphs may not be accurate.

Chapter 1
Exercise 1.01
 1 a 2i b i 7  c i

3
 d i2 3

  e i 6
5

 f i4 2 g −i h i

  i −i j i − 1 k −i l i
 2 a x = ±2i  b x = ±3i 

  c z = ± i
6

 d z = ± i2 5

 3 a x = −1 ± i 2 b = ±x i1
2

23
2

  c = − ±z i3 3
2

 d = ±z i5 83
6

 4 a x = 1 ± i 2 b x = 2 ± i 7
  c z = −4 ± 2i d z = 1 ± i 3
 5 a x = 1 ± i b v = 3 ± i 3

  c w = −2 ± i 6 d z = −1 ± i 6

  e = − ±z i1
2

3
2

 f = ±z i3
2

7
2

 6 a Re(z) = 3  Im(z) = 1 

  b Re(z) = 5
2

 Im(z) = − 2
2

  c Re(z) = −3 Im( z) = 6

  d Re(z) = x + 3 Im( z) = −y + 2

  e Re(z) = 
+
a

a b42 2
 Im(z) = 

+
b

a b

2

42 2

  f Re(z) = 
− −

+
x y

x y

4 6
2 2

 Im(z) = 
− + +

+
x y

x y

1
2 2

 7 a 3  − i  b + i5 2
2

 

  c −6i − 3 d x + 3 + iy − 2i

  e −
+

a ib

a b

2

42 2
 f  

− − + − −
+

x y i ix yi

x y

4 6
2 2

 8 a 13 b 3 c −41

  d 1 e 17
9

 f 5
32

 9 a 61 b 4 c 25

  d 1 e 1
17

 f 8

  g 4a2 + 9b2 h 2x2 + 2y2

 10 Proof: See Worked solutions
 11 Proof: See Worked solutions
 12 a x = 2, y = −8 b x = 3. y = −4
  c x = 5, y = 2 d x = 4, y = 2
 13 x + y = 6
 14 a −4 + 4i  b 4 − 5i c −77 − 36i
  d 23 − 7i e 21 f −30 + 45i
  g + + −i(4 3) ( 2 2 6 ) h −4xyi
 15 Proof: See Worked solutions
 16 a  Constant multiples of each answer below is 

also a solution.
   i z2 − 4z + 5 = 0 ii z2 − z2 3  + 28 = 0
 iii z2 − z + 1 = 0 v  z2 + 8z + 21 = 0
  b A quadratic equation with complex conjugate 

roots will have real coefficients.

 17 a + i2
5

 Im(z) = 1
5

 b − + i1 3
5

 Im(z) = 3
5

  c − − i13 41
25

 Im(z) = − 41
25

  d − i1 2 6
5

 Im(z) = − 2 6
5

 18 Proof: See Worked solutions

 19 a − − i3 4
25

 b −i
3

 20 a z2 − (5 + 8i)z + (15 + 25i) = 0, a = 1,  
b = −5 − 8i, c = 15 + 25i

  b A quadratic equation with complex non-
conjugate roots will have some coefficients 
that are not real.
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 21 a x = – 6
25

, y = – 17
25

 b x = – 3
26

, y = 11
26

 22 a −13 + 11i b 8 −3i

  c − + i17
10

 d 13 −14i

Exercise 1.02
 1 Taking a > 0:
  a 2 + i b 3 − 2i
  c 3 + i d + i2 2
 2 a 4 − i, −4 + i b 1 − 2i, −1 + 2i  
  c 5 − 2i, −5 + 2i d 1 + 5i, −1 − 5i  

  e − − +i i3 3
2

3 3
2

   f − − +i i1
2

1
2

 3 a 5 + 4i, −5 − 4i   b 3 + 4i, −3 − 4i  
  c 4 − 2i, −4 + 2i
 4 a 1 + 2i b 1 − i, 2 + i
 5 a 3 + 2i, −1 + i b 2i, 3
  c −2i, i

Exercise 1.03
 1 a 

Re(z)

(2, −4)

Im(z)

O

  b 

Re(z)

(1, 5)
Im(z)

O

  c 

Re(z)−4

Im(z)

O

  d 

Re(z)

3

Im(z)

O

 2  A = −3 + i, B = 4 + 2i, C = 5 − 3i, D = −4 − 5i,  
E = 2, F = −3i

 3 a 

Re(z)
2 − i

Im(z)

O

  b 

Re(z)

2 + 4i
Im(z)

O

  c 

Re(z)

1 + 7iIm(z)

O

  d 

Re(z)4

Im(z)

O
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  e 

Re(z)

Im(z)

O

6 − 14i

  f 

Re(z)

Im(z)

O

2 + i
5

  g 

Re(z)

Im(z)

O

6 + 2i

 4 a 

Re(z)

Im(z)

O

15 − 8i

  b 

Re(z)

Im(z)

O

−3 − 4i

  c 

Re(z)

Im(z)

O

21 − 20i

  d 

Re(z)

Im(z)

O

−24 + 10i

  e 

Re(z)

Im(z)

O

−9i

  f 

Re(z)

Im(z)

O 3

 5 a 

O

Im(z)

Re(z)
W

u~

v~

v + u
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  b 

O

Im(z)

Re(z)

P u~

v~

−v

  c 

O

Im(z)

Re(z)

Z

u~

v~

~u − v~

~u − v~

 6 a 

O

Im(z)

Re(z)1

√3

−√3 z~

z~

  b 

O

Im(z)

Re(z)

z~

z~
1

√2
−

1
√2

−

1
√2

  c 

O

Im(z)

Re(z)

z~

z~

−4

−3

3

 7 a z = 4 + i, v = −2 + 2i, k = −5 −2i, w = 2 − 3i
  b z  = 4 − i, v  = −2 −2i, k  = −5 + 2i, w = 2 + 3i
  c 

1

2

3

4

5

−1
−1 1 2 3 4 5−2−3−4−5

−2

−3

−5

y

x

−4

w~

~w

k~

k~

z~

z~

v~

v~

O

 8 a 

O

Im(z)

Re(z)

z = 3− i~

  b 
Im(z)

Re(z)

−2 − i
5~w =

O

  c 
Im(z)

Re(z)O

 = 2 − 2√3iv~
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 9 a w = −3 + 2i, v = −2 − 3i, u = 3 − 2i
  b 

~u = i3z~v = i2z~ ~

z (2 + 3i)~w = iz~ ~

Im(z)

Re(z)O

  c Multiplying a complex number by i rotates 
the vector by 90° anticlockwise.

Exercise 1.04

 1 a 2 b 2 5 c 53 d 5

  e 37
7

 f 3 3 g 1

 2 a 
4
π

 b 
6
π

 c 
4

−
π

 d 
5
6
π

  e 
3
4

−
π

 f 0 g 
2
π

 3 a 2 cis
4

−
π




 b 2cis

2
3
π

  c − π







2 2
3

c s 3
4

 d cis
3
π

  e 
2
7

c s
4
π

 f 4 c s
5
6

−
π





  g 6 cis π

 4 a = +z i1 3 b = +z i3
4 4

  c = +z i3 3
2

 d = −z i1
2

3
2

  e = − −z i2 6
2

 f = − −z i3

 5 a = −z i1
6 6

 b = − −z i3 3
2

  c z = −2i d = − +z i1
2 2

  e = −z 3 2  f = − +z i3
2 2

  g = +z i3 3
2

 h = − −z i2 2

 6 a z 3cis
3

=
π

 b w 5 cis
4

= −
π





  c u 3 cis
5
6

=
π

 d v 2cis –
3
5

=
π





  e 3 cis π   f w 6 cis –
2

=
π





 7 a 2cis
2

−
π





   
Im(z)

Re(z)O

−2

  b 3 cis π
   

Im(z)

Re(z)O−√3

  c 
1
3

c s
2
π

   

Im(z)

Re(z)O

1
3
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  d 
1
2

c s
6

−
π





   

Im(z)

Re(z)O

1
2

6
π

  e cis
4

−
π





   

Im(z)

Re(z)O

1
4
π

  f 4 c s
2
3

−
π





   

Im(z)

Re(z)O

4

−2
3
π

 −2√3

  g 2 cis 0

   

Im(z)

Re(z)O 2

 8 a 5 cis 0464  b 74 c s 219

  c −17
5

c s ( 0245 ) d 4 c s
5
6

−
π





  e 2cis
4
π

 f −15 c s ( 219 )

  g cis
3

−
π




 h 2 cis

6
π

  i 
1
2

c s
6

−
π




 j cis

3
4

−
π





Exercise 1.05
 1, 2 Proof: See Worked solutions

 3 z 2 cis
4

= −
π




, z 2cis

62 =
π

  a 
12

−
π

 b 
5
12

−
π

  c 
5
6
π

 d 
2
π

 4 a 2 3 c s
8
15
π

 b 
3

2
c s

2
15
π

  c 
1
2

c s
5

−
π




 d 9 3 cis

3
−

π





 5 a cis 3α b cis (−3β − 2λ)   c cis 4
 6−8 Proof: See Worked solutions
 9 Yes, except undefined for z = 0.
 10 a 2 cos θ  b 2 cos 2θ c 2 cos 3θ
  d 2i sin 2θ e 2i sin 3θ

 11 a 5 26  b 8 c 1
2

  d 1
5

 e 1
8

 12 a 
12

−
π

 b 
11
12

−
π

 c 
3
4
π

  d 
5
12

−
π

 e 
2
π

 13 a = +z i3 3 3
2

, = +w i2 2

  b 
w
z

2
3

c s
12

=
π

, = + − +w
z

i i6 2 2 6
6

  c i cos
12

6 2
4

π
=

+
 ii sin

12
6 2

4
π

=
−

 14 Proof: See Worked solutions
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Exercise 1.06
 1 a i cis 0 ii 1 

  b i 2 cis
3

−
π




 ii − i2 6

2
  c i 5 cis 3 ii −4.95 + 0.706i

  d i cis
2

−
π




 ii −i

 2 a e3
3
4
π

  b e2 3
− π

 c e
1
2

5
− π

  d e3
5
6

− π

 e 6ei f e4 2 4
− π

  g e2
5
6
π

 h e
2
3
π

 i e 2
π

  j e
1
2

2 π  or e1
2

0

Exercise 1.07
 1 a eiπ or −1 b e3 2

7
12

π

 c e
3
8
π

  d e5
5
6
π

 2 a e 1 2( )θ +θ   b e 1 2( )θ −θ   c e
1
4

2
π

  d e
1
2

2
5

− π

 e e5 2 5( )− α+ λ  f e4 2
5
12

π

  g e 3
π

 h e
4
5

4
π

 3 Proof: See Worked solutions
 4 a e−iθ = cos (−θ) + i sin (−θ) = cos θ − i sin θ
  b Proof: See Worked solutions

Test yourself 1
 1 a 5i b i3 2  c i2 2

3
 2 a i b i2 10   c −1
  d −i e −1 ± 2i
 3 a x = ±7i b x = −3 ± 2i

 4 a = ±x i2 5 b = − ±x i3 6

  c = − ±x i3 3 7
4

 5 a x = 1 ± i b x = −4 ± 2i

  c = ±x i1 11
2

 6 a x = −2 ± 2i b x = 4 ± 3i
  c x = −5 ± 4i

 7 a = = −z zRe( ) 3
4

I m( ) 1
2

  b Re(z) = 2 Im( z) = −9

  c =
+

=
−

+
z x

x y
z

y

x y
Re( ) 5 I m( )

2
2 2 2 2

 8 a = − −z i6 11  b = +w i3 2
2

  c = − − − −
+

u a b i ai

a b

7 2
2 2

 9 Proof: See Worked solutions
 10 a x = 3, y = −2 b x = −1, y = 5
 11 Im(V) = 0, ∴ 3x + 2y + 7 = 0
 12 a 15 + 4i  b −4 + 33i
  c 31 − 3i  d −46 −20i
 13 a x2 − 2x + 3 = 0  b x2 + 6x + 34 = 0
  c − + =x x2 7 16 02  d x2 + x + 1 = 0

 14 a + i1 2
5

 b −i 2

  c − − i4 3 5
26

 d − + i1 4 3
7

 15 a ±(2 − i)  b ±(3 + i)

  c ±(4 − i)  d ± +









i5
2

 16 a Im(z)

Re(z)O

−√3

−1

u

  b 
Im(z)

Re(z)O

w

√2

√2
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  c 
Im(z)

Re(z)O 13

v

  d 
Im(z)

Re(z)O

z1

 17 

z~

z~

v~

v~

Im(z)

Re(z)

1

2

3

4

5

−1
−1 1 2 3−2

−2

−3

−5

−4

O

 18 Im(z)

Re(z)

2

−1
−1 3 4−2−3−4 O

−u~

u~

z~
~~u + z

 19 
Im(z)

Re(z)

2
1

z − v~ ~

z − v

z + v~ ~

v~

−z~
w

~w

z~

O

 20 a = = − πz z2 Arg
4

  b = = πz z2 Arg
6

  c = = πz z4 Arg 2
3

  d = = − πz z1
2

A rg 3
4

 21 a cis
5
6
π

  b 2 cis
2
3

−
π





 c 
1
2

c s
6
π

 22 a = +z i2 2  b + i1
4 4

  c = −z i2 6
2

 23 a 3 cis
11
12

π
 b 

1
3 3

c s
7
12
π

  c 
1
3

c s
6

−
π





 d 
1

243 3
c s

4
π

 24 a arg z = θ − 2β   b arg z = 2λ − 3α

  c zarg
2 4

2=
δ

−
α

+ φ d arg z = 3ε

 25 a =z 5 26  b =z 5
19

 c =z 1
5

 26 a = +z i2 2 , = +w i2 2 3

  b zw 8 cis
7
12

=
π

, = − + +zw i2 2 2 6 (2 2 2 6 )

  c i cos
7
12

2 6
4

π
=

−
 ii sin

7
12

2 6
4

π
=

+

 27 a e
3
5
π

 b −e2 3

 28 a cis
4
π

 b −1
2

c s ( 2)
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 29 Proof: See Worked solutions

 30 a e 3
− π

 b 1
 31 i
 32 Proof: See Worked solutions

Chapter 2
Exercise 2.01
 1 a P: there are crumbs, Q: ants will come. If P 

then Q or P ⇒ Q. There are crumbs ⇒ ants 
will come.

  b P: a quadrilateral has equal diagonals, Q: it is 
a square. If P then Q or P ⇒ Q. A 
quadrilateral has equal diagonals ⇒ it is a 
square.

  c P: people are unemployed, Q: they are bored. 
If P then Q or P ⇒ Q. People are unemployed 
⇒ they are bored.

 2 a If you go skiing then you live in Cooma.
  b If you have friends then you like maths.
  c If you can debate then you are a politician.
  d If an animal is a bird then it can fly.
 3 a If you eat meat then you are a carnivore. 

FALSE. May be an omnivore.
  b If you are on a boat then you are seasick. 

FALSE. May not get sea sick.
  c If a shape has equal sides then it is a square. 

FALSE. May be many other shapes, such as a 
rhombus or pentagon.

  d If an animal can sting then it is a honeybee. 
FALSE. May be many other types of animal, 
such as a wasp or jellyfish.

 4 a If x = 9 then x − 5 = 4. TRUE. ∴ x − 5 = 4 iff 
x = 9 OR ∴ x − 5 = 4 ⇔ x = 9.

  b If a quadrilateral has diagonals that are 
perpendicular then it is a rhombus . FALSE. 
Could be a kite.

  c If <
a b
1 1 then a > b > 0. FALSE. a could be 

negative and b could be positive.
  d If you passed a driving test then you have a 

driver’s licence. TRUE. You passed a driving 
test ⇔ you have a driver’s licence.

 5 a It is not white.
  b I do not know everything.

  c Not all fish swim in the ocean, or At least one 
fish does not swim in the ocean.

  d Not all babies are cute.
  e There are not more than 5, or There are 5 or 

less.
  f There is not none, or There are some, or 

There is at least one.
  g Not no one passed the test, or Someone 

passed the test.
  h Not some teachers are mean, or Teachers are 

not mean, or No teachers are mean.
  i The potatoes weigh 3 kg or more.
  j Cassie is not small.
 6 a If you are not rich then you do not live in a 

mansion.
  b If you do not have boots then you are not in 

the army. 
  c If you are not wise then you are not old.
  d If x2 ≠ 9 then x ≠ 3.
  e If an animal does not have four legs then it is 

not a horse.
  f If you are not superior then you are not a 

woman.
 7 a If it is global warming then the water is 

rising.
  b If you have accidents then you speed.
  c If animals die then there is a drought.
  d If a number is a fraction then it is rational.
  e If he is not lazy then Sam will pass his exams.
  f If a number has a square root then it is not 

negative.

 8 a If <
+n n

1 1
1

 then n < 1.

  b If a line has gradient not equal to zero then it 
is not horizontal.

  c If the bulldust is not red then it is not the 
outback.

  d If they are not mammals then they are not 
blue whales.

 9 a If your heart rate does not increase then you 
do not exercise. TRUE.

  b If a plant does not die then it gets sufficient 
water. TRUE

  c If a triangle does not have 2 equal angles, 
then it is not isosceles. TRUE
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  d If a number is not real then it is not an 
integer. TRUE

  e If x2 ≤ 4 then x ≤ 2. TRUE
 10 a If an animal does not have a beak then it is 

not a bird. TRUE
  b If a quadrilateral is not a rhombus then it 

does not have 2 pairs of opposite angles 
equal. TRUE

  c If it does not have fins then it is not a fish. 
TRUE

  d If x2 > 25 then x > 5. FALSE (try x = −6)
  e If a number is not prime then it is not odd. 

FALSE (try x = 9).
 11 If a quadrilateral is not a square, then it does not 

have 4 equal angles. FALSE (rectangle)
 12 D
 13 a ∀ x ∈ , ∃ y ∈ : y > x
  b If x ∈  then ∃ p, q ∈ , q ≠ 0: x = 

p
q

  c ∀ a ∈ , a ≠ 0, ∃ b ∈ : b = 
a
1

  d ∀ (x, y) and (w, v), x, y, w, v ∈ , ∃ (c, d):  
x < c < w, y < d < v

  e ∀ x ∈ , x ≥ 0, ∃ y ∈ , y ≥ 0: y = x
 14 a For all natural numbers m, there exists an 

integer n such that n + m = 0.
  b For all integers a and b where b is non-zero, 

there exist rational numbers p and q such that 

+
= +

a b
p q1

2
2.

 15 C

Exercise 2.02
Proof: See Worked solutions

Exercise 2.03

 1 a =n 1
2

 b = −n 1
2

 c n = 2

  d n = 2 e x = −1
 2 a n = −10 b x = 4 c skew lines
  d Many lizards lay eggs.
 3 a False. rhombus or kite.
  b False. p = −1
  c False. x = 2, y = −1
  d False. If q = 0 then r and p do not have to be 

equal.
  e False. A rectangle 3 cm × 1 cm is not similar 

to a rectangle 4 cm × 1 cm.

 4 a Yes
  b No. The counterexample needs to find a dog 

that is not domesticated.
 5 False. a = 1, b = −2
 6 Yes, true
 7 False. Undefined if n = 1.
 8 All squares are rhombuses. Not all rhombuses are 

squares.
 9 No. 3 points determine a unique circle. Choose a 

4th point not on the circle.
 10 Yes for n ≥ 3.
 11 No. Try arrowhead shape.
 12 True
 13 No. If k < 0 then nk < mk.

Exercise 2.04
 1 Let M = 2m − 1 and N = 2n − 1 for some m,  

n ∈ .
	 	 Then M × N = (2m − 1) × (2n − 1)
                                       = 4mn + −2m − 2n + 1
                                       = 2(mn − m − n) + 1
                                       = 2P + 1 where P ∈ 
  Since 2P is even then 2P + 1 is odd.
  Therefore the product of two odd numbers is 

odd. QED.
 2−8 Proof: See Worked solutions

 9 =
>

− <




x

x
x
x

1 for 0
1 for 0

Exercise 2.05
 1−11 Proof: See Worked solutions
 10 f Equality holds when a = b = c = d.

Test yourself 2
 1 a I get a lot of sleep ⇒ I am healthy. P = I get a 

lot of sleep, Q = I am healthy
  b A polygon has 5 sides ⇒ it is a pentagon.  

P = A polygon has 5 sides, Q = it is a pentagon
  c The teacher is nice ⇒ I will learn.  

P = The teacher is nice, Q = I will learn.
 2 a B ⇒ A b Q ⇒ ¬P
  c ¬M ⇒ N d ¬F ⇒ ¬B
  b If I can buy a car then I can save money.
  c If I am bored then my computer is broken.
  d If a3 = b3 then a = b.
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 3 P ⇒ Q AND Q ⇒ P together, that is, P ⇔ Q, an 
equivalence. For example, if a quadrilateral is a 
rhombus then the diagonals bisect each other at 
right angles.

 4 a If a quadrilateral is a square then it has equal 
diagonals. Not an equivalence. Original 
statement false.

  b If 
x
1  < 1 then x > 1. Not an equivalence.  

If x < 0 then 
x
1  < 1 but x >  1.

  c If I study hard then I pass my exams. Not 
necessarily true.

  d If a2 = 9 then a = 3. Not necessarily true:  
a = −3.

  e If a triangle is isosceles then it has 2 equal 
angles. Equivalence. A triangle is isosceles  
⇔ it has two equal angles.

 5 a It is not raining.
  b The apple is ripe.
  c Not all koalas are cute. At least one koala is 

not cute. Some koalas are not cute.
  d No people are sexist.
  e They are not all correct.
  f x > 4 g p ∈
 6 No. Negation is there were less than or equal to 

10.
 7 a ¬B ⇒ ¬A b Q ⇒ ¬P
  c M ⇒ ¬N d F ⇒ B
  e If the boy does not have blue eyes then he 

does not have red hair.
  f If the citizens don’t have money then the 

country is not rich.
  g If a quadrilateral does not have adjacent sides 

equal in length, then it is not a kite.
  h If x2 ≠ y2 then x ≠ y
  i If a ∉  then a ∉
 8 If A ⇒ B and B ⇒ A then we can write A ⇔ B or 

A iff B. This is an equivalence. Now if P ⇒ Q is 
true and ¬Q ⇒ ¬P is also true then P ⇒ Q 
implies ¬Q ⇒ ¬P; that is, (P ⇒ Q) ⇒ (¬Q ⇒ ¬P). 
Also ¬Q ⇒ ¬P implies P ⇒ Q; that is, (¬Q ⇒ ¬P) 
⇒ (P ⇒ Q). Then we can write (P ⇒ Q) ⇔ (¬Q 
⇒ ¬P) so they are equivalences. This is also true 
if P ⇒ Q is false.

 9 a If a = b then a2 = b2. True.
  b If the car starts then the battery is not flat. 

True.
  c If a number is not rational then it is not an 

integer. True
  d If a quadrilateral is not a rhombus, then it 

does not have diagonals that bisect each other 
at right angles. True.

  e If ab ≤ b2 then a ≤ b. False. Try b = −2.
  f If an animal is not a fish then it does not live 

in the water. False.
 10 a ∀ x, y ∈ , x, y > 0, (x > y) ⇒ (x2 > y2)

  b If a, b ∈ , a < b, ∃ c ∈ , a < c < b: c = +a b
2

.

  c Let n ∈ , n > 0: ∀ n,  

1 + 2 + 3 + … n = +n n( 1)
2

.

 11 a For all positive integers n and m, if  

n < m then >
n m
1 1 .

  b For all real numbers a and b, a2 + b2 ≥ 2ab.
  c For all rational numbers p and q where p < q, 

there exists a real number r such that  
p < r < q.

 12 Proof: See Worked solutions
 13 a x = 3, y = −3 b n = 1
  c A cicada sheds its skin.
  d a = −3, b = 4, c = 5
  e If k = 17 then 17(17 − 1) + 17 = 17 × 17 is not 

prime.
  f (c = −3) ⇒ (c2 = 9)
 14 False; a = 3, b = −1, c = −2, d = −3
 15 False; x = −5, y = −6
 16 Proof: See Worked solutions
 17 k6 − m6 = (k2 − m2)(k4 + k2m2 + m4)  

= (k − m)(k + m)(k4 + k2m2 + m4) and  
       k6 − m6  
= (k3 − m3) (k3 + m3)  
= (k − m)(k2 + km + m2)(k + m)(k2 − km + m2). 
Hence equate.

 18−24 Proof: See Worked solutions
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Chapter 3
Exercise 3.01
 1 5
 2 a … in the parallelogram of vectors
  b … the shorter diagonal in the parallelogram 

of vectors
  c … one vector is a scalar times the other
  d … the dot product of the vectors is 0
 3 a 2, 90° b 5, 0°

	  c 5 5 , tan−1 (−0.5) d 4 2, 135°

  e 4, 60°

 4 a i j3 2 3 2+   b i j4 3 4+

  c i j2 2− +  d i j5 5 3−

  e i j3 3 3− −

 5 a 










3 2

3 2
 b 







4 3
4

 c 
−









2

2

  d 
−







5

5 3
 e 

−
−







3 3
3

 6 a 15 b 0 c 4

  d −3 e 10
 7 a 0, 90° b 34, 0° c −6, 180°
	  d  −20, 141°	 e −8, 173°
 8 a v and w b u and w
 9 a v and w b u and w

 10 
→
PQ: +i j2 4 , 

→
PR: +i j4 8 ; hence 

→
PR = 2

→
PQ so P,  

Q and R are collinear.

Exercise 3.02
 1 a 26  b 5 5  c 7 d 5

 2 a 
+ +i j k

3
 b 

− +i j k2 2

3

  c 
i j k3 4 12

13

+ −
 d 

i j k3 2

14

+ +

 3 a 3i − 4 j , 5 b −2i, 2

  c −i − j  − k, 3  d 5i + 6 j  + 8k, 5 5

 4 a 5  b 0 c 17

 5 a 2i b 9i − 6 j  + 18k
  c 3i − 4 j  d 2i − 2 j  + 2k
 6 a i − 3 j  − k b 3i − 4 j  + 7k 
  c 2i − 3 j  + 4k d − j  − 2k

 7 a 17 b 29   c 2 6  d 38

 8 a 3 b 5

  c i j k
2
3

2
3

1
3

+ +  d −i k3
5

4
5

  e 5i + 2 j  − 3k  f −i + 2 j  + 5k

 9 a − +i j k3 2
2

2 2
2

 b i j k3 3 3− +

  c 4i − 4 j  + 2k
 10 180°; the vectors point in opposite directions. 

Exercise 3.03
 1 a 12 b 0 c 4 d 6
  e 0
 2 A and C, B and C
 3 a 83° b 55° c 25° d 71°

 4 − 1
3

 5 a Proof: See Worked solutions
  b u and v − w are perpendicular
 6 scalar product = 0
 7 c(i + 3 j  + 5k), c constant

 8 a 
→
AC  = 3i + 2 j , 

→
BD = −3i + 2 j

  b 112°36′
 9 Proof: See Worked solutions

Exercise 3.04
 1 

2u~
0.5u~

  

–3u~
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 2−4 Proof: See Worked solutions
 5 x = 2, y = 3

 6−8 Proof: See Worked solutions

 9 
→

=
+ +

OP m
m n

b n
m n

a–

Exercise 3.05
 1 a 3 b 13 c 15 d 33
  e 7

 2 a 
− +i j k2 2

3
 b 

− +i j k3 4 12

13
  

  c 
+ +i j k2 5 14

15
 d 

+ −i j k4 7 32

33
 

  e 
− − +i j k3 2 6

7

 3 a θ = 33.6° b θ = 40.2° c θ = 116.4°
  d θ = 80.4° e θ = 65.9°
 4 a y = ±5   b z = ±42 c x = ±10
 5 m = ±4
 6 Any vector that satisfies 2a − 3b + 4c = 0, where a, 

b and c are real, for example 

 
−

















8
4
1

  or 

















1
2
1

.

 7 m = ± 6

Exercise 3.06
 1 a z

x

y4

4

6

8

10

2

4 8
12

16
8

12
16

–2
–4

–4 –8
–8

–12

–4

–6

  b 
z

x
y

4

4

6

8

10

2

4
8

12
16

8
12

16

–2
–4 –4

–8–8
–12

–4

–6

  c 

–4

–4

–6

–2
–2–4–6–8–10–12 –8

4

2

4

6

8

10

8
12

16

2 4 6 8 10 12 14 16 y
x

z

  d z

x

y4

4

6

8

10

2

4
8 12

16
8

12
16

–2

–4 –4
–8–8

–12

–4

–6

  e z

x

y4

4

6

8

10

2

4 8
12

16
8

12
16

–2
–4

–4 –8
–8

–12

–4

–6

   A helix (spiral) of radius 1 unit revolving 
around the y-axis, with endpoints (−1, 0, 0) 
and (−1, π, 0).
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 2 a z

x

y4

4

6

8

0

2

4 8 12 16
8

12
16

–2
–4 –4

–8–8
–12

–4

–6

  b z

x

y4

4

6

8

10

2

4
8 12 16

8
12

16

–2
–4

–4 –8
–8–12

–4

–6

  c z

x

y–2
–2–4–6–8–10–12–14

–4

–4
–8

4

2

2 4 6 8 10 12

4

6

8
12

16

  d 

y

z

x

2

2

4

6

8

4 6 8 10

–2–4–6–8–10

–2

–4

–4

4
8

12
16

  e 

y

z

x

2

2

4

6

8

4 6 8 10

–2–4–6–8–10

–2

–4

–4

4
8

12
16

 3 a vertical line going through (1, 1, 0)
  b helix (spiral) starting at (1, 0, 0) in both 

downward and anti-clockwise directions 
around the negative z-axis

  c ellipse (oval) 1 unit in front of the y-z plane, 
centred on (1, 0, 0), 4 units long on the y-axis, 
2 units high on the z-axis

  d helix in z direction starting at (0, 0, 0) and 
increasing in radius and height

 4 x = 3 cos t, y = 3 sin t and z = 2 − 3 sin t
 5 x−y

  

2–2–2

2
y

x
4 6 8

  x−z

  

2

4

6

8

10

12

14

16

18

20

−2
2 4 6 8 10 12 14

z

x
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2

(–1 5)

4

6

8

10

12

14

16

18

20
z

y
−2

2 4 6–1 8 10 12 14

 6 

















t
t

t2 2
 or x = t, y = t, z = 2t2

 7 x = t, y = 1
2

(t2 − 1), z = 1
2

(t2 + 1)

  y

z

x
5 5

10
15

1015
–2

2

4
6

8

10

12

14

–5–5 –10

 8 a centre (1, −1, 1); radius 1
  b centre (−2, 3, 1); radius 2
  c centre (3, −1, −1); radius 3
  d centre (−1, −1, 1); radius 3
  e centre (2, 3, −1); radius 5

 9 centre 2 3  
7
4

− −




, radius 5 7

4

Exercise 3.07
 1 a x = 1 + 2λ, y = 1 − 3λ, z = 0
  b x = 11 + 3λ, y = 2, z = 0
  c x = 3 + 6λ, y = −9λ, z = −1 + λ
	  d x = 5 + 7λ, y = −2 − 4λ, z = 1 + 2λ

 2 a 
2
1

3

1
2
1

−
















+ λ
−
















 

  b 
2

1
3

1
2
3

−

−

















+ λ
−















 

  c 
1
1

1

2
2

1
−

















+ λ −
















 3 a 3
5

5
3−







± λ







 or 2

8
5
3

−
−







± λ








  b 
6
2
5

3
0
3

















± λ















 or 

9
2
8

3
0
3

















± λ
















  c 
1
1
3

0
2
2−

















± λ















 or 

1
1
5

0
2
2

−
−

















± λ
















  d 
1
0
3

0
2
1

















± λ















 or 

1
2
4

0
2
1

















± λ
















 4 a neither skew  b parallel 
  c intersect at (3, 6, 5) d same line

 5 Vector equation: 
x
y

z

3
2
6

2
1
1

















=
















+ λ















  

or other variations for λ
  Parametric equations: x = 3+ 2λ, y = 2 + λ,  

z = 6 + λ
  Cartesian form: x − 2y = −1 and z − y = 4  

or −x 3
2

 = y − 2 = z − 6

 6 a1 =	− 2
5

 and a3 = 2
5

 7 Proof: See Worked solutions



I 337

 8 

x
y

z

2
1
3
1
2

7
5
3
3
2

















=

−

























+ λ

−
























 9 −1

Exercise 3.08
 1 See worked solutions: in each case λ λ= c2 1.
 2 See worked solutions: where the vectors are of 

the form λ( ) ( )+a a a b b b  , ,  ,1 2 3 1 2 3  and 

λ( ) ( )+c c c d d d  , ,  ,1 2 3 1 2 3 , then 

+ + =b d b d b d 01 1 2 2 3 3 .
 3 a  Any vector of the form 

λ λ( ) ( )+ −x y z  , 2  1 3 ,   a constant1 1

b Any vector of the form 
λ λ( ) ( )+ −x y z  , 3 1 2 ,   a constant1 1

c Any vector of the form 
λ λ( ) ( )+ −x y z  , 4  3 1 ,   a constant1 1

d Any vector of the form 
λ λ( ) ( )+ −x y z  , 2  2 1 ,   a constant1 1

 4  Vectors in the form λ( ) ( )+x y z x y z  , ,  ,1 1 1 2 2 2  
where:
a − + =x y z2 3 02 2 2

b + − =x y z3 2 02 2 2

c + − =x y z4 3 02 2 2

d + − =x y z2 2 02 2 2

 5 a and d, b and d, c and d
 6 θ = 54.7°
 7 a See worked solutions: 

AC: λ( ) ( ) ( )= − + − −x y z, ,  2, 3 3 4   6   4

BD: λ( ) ( ) ( )= − + −x y z, ,  3  2  1 6   4   02

Solving λ λ= = 1
21 2

b 36.2°

 8 
x
y

z

2
1

3

1
5
2

















= −
















+ λ
















 9 
x
y

z

4
12
15

8
5
2

















=
















+ λ
















 10  Any 2 lines of the form −
















+ λ

















a

b

c

2
2

1
 and 

−
















+ λ

















a

b

c

2
2

1

2

2

2

 where a1a2 + b1b2 + c1c2 = 0, for 

example 
2
1

3

1
2
1

−
















+ λ
−

















 and 
2
1

3

1
1
1

−
















+ λ
−














.

Test yourself 3
 1 4, 36° 52′
 2 Perpendicular (u v⋅   = 0)

 3 4i + j4 3 , 1
8

(4i + j4 3 )

 4 29 , 111° 48′

 5 + +i j k4

 6 0; vectors are perpendicular

 7 1
3

1
1
1−

















 8 a  + 3b

 9 a AB
→

 = b − a
  b Proof: See Worked solutions
 10 u  = 3, =v 3 2 , θ = 113.97°
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 11 Any vector ai + b j  + ck where c = a − 2b,  

for example 2i − j  +	4k

 12 

y
x

z

1
2

34 –1

–1–1–2–3–4 –2 –3 –4
1

1 2 3 4

2

3

4

 13 

y
x

z

2 2
4

6
4

6
8

–4
–6

–8

–2

–1

1

2

3

4
5

6
7

8
9

–2
–4

–6
–8

 14 Radius 5 , centre (0, 4, −1)

 15 Vector 
x
y

z

3
2
1

2
1
3

















=
−

−

















+ λ
















;  

parametric x = 2λ − 3, y = λ + 2, z = 3λ − 1

 16 x = −7, z 111
3

=

 17, 18 Proof: See Worked solutions

 19 θ = 78.5°

 20 
1
3

2

7
5
1

−
















+ λ
















Chapter 4
Exercise 4.01
 1 a cos 5θ + i sin 5θ b cos 3θ − i sin 3θ

	  c cos 7θ − i sin 7θ	 d θ − θicos 5
2

sin 5
2

  e cos 3θ + i sin 3θ

 2 a i 
π + π






i32 cos 5

6
sin 5

6
  ii 16 3−  + 16i

  b i − π





 + − π
















i9 3 cos 3

4
sin 3

4

   ii 
i9 6(1 )

2
−

+

  c i i1
4 2

cos
3

sin
3

− π





+ − π


















   ii i1
8 2

3
8 2

−

  d i i243 cos
2

sin
2

π
+

π




 ii 243i

 3 − π





 + − π






icos 2

5
sin 2

5

 4 a −2 − 2i  b −8 − i8 3

  c i16 2 16 2−  d i1
2 2

− −

  e i3
2 2

+

 5 a ( )π + πi1
324

cos sin

  b − π





 + − π
















i

1
512

cos
2

sin
2

 6 Proof: See Worked solutions
 7 a cos 4θ − i sin 4θ
	  b cos (4α − 6β) + i sin (4α − 6β)
  c cos 18δ + i sin 18δ
	  d cos 2β + i sin 2β
	  e i
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 8 cos 2α = cos2 α − sin2 α, sin 2α = 2 sin α cos α, 

tan 2α = 
2tan

1 tan2
α

− α

 9 a 2 2
3

 b 5
24

 10 Proof: See Worked solutions

 11 a tan3
sin3
cos3

θ =
θ
θ

  b, c Proof: See Worked solutions 

 12 Proof: See Worked solutions

 13 
−

+
π7 3

32 8
.

 14 Proof: See Worked solutions
 15 a 2i sin θ  b 2i sin 2θ c 2i sin nθ

 16 a 
π

2cos
12

 b i 3  c −2

 17,18 Proof: See Worked solutions

Exercise 4.02
 1 a x = 3i, −i b x = −i, −5i

  c x = 2 + i, 1 + i d x = 2i, i
3
−

 2 a z = i1
2 2

± +








  b z = i3

2
3
2

± −










  c z = i3
2 2

± +








  d z = ± −

π





2 cis
8

4

  e z = ±i f z = ±
− π

e4 3

  g z = ±(cos 2 + i sin 2)
 3 1 + i
 4 a x2 − (4 + 6i)x + 10 + 20i = 0
  b x2 − (3 + i)x + 20 − 12i = 0
  c 3x2 − (5 − 2i)x + 3 − i = 0
 5 a = 2, p = −4, q = 2 + i
 6 a 3 + i (a > 0) b 2 − i, −4 − 3i
 7 a 1, i b 2 + i, −i
  c 2 − i, 1 − 2i d 4 + i, 2i
  e 1 − i, 2

Exercise 4.03
 1 a i z(z2 + 1) ii z(z + i)(z − i)
  b i z(z2 − 6z + 10)  
   ii z(z − 3 − i)(z − 3 + i)
  c i (z + 1)(z2 − z + 1) 

   ii z z i z i( 1)
1
2

3
2

1
2

3
2

+ − −






− +








  d i (z − 2)(z2 + 2z + 4)
   ii z z i z i2 1 3 1 3( ) ( )( )− + − + +
  e i (z − 1)(z + 1)(z2 + 4)
   ii (z − 1)(z + 1)(z + 2i)(z − 2i)
  f i (z2 + 9)(z2 + 1)
   ii (z − i)(z + i)(z − 3i)(z + 3i)
  g i (z + 1)(z2 + 1)  
   ii (z + 1)(z − i)(z + i)
  h i (z − 1)(z2 + 2)  
   ii (z − 1) z i z i2 2( ) ( )− +

 2 a z = −2, 2 + i, 2 − i b z = i, −i, 3, −1

  c z = 1, 
π − π

e e
i i
4 4  d z = −1, 5, 1 ± i 2

  e z = −2, 2 ± i 5

 3 p = 25, q = −54, z = 1 ± 3i, 2 ± i 3
 4 a z = ±i, 3 b z = −2, 2, i1

2
3

2
±

 5 a z3 − 7z2 + 12z − 10 = 0 
  b z3 + 8 = 0
  c z4 − 4z3 + 19z2 − 74z + 238 = 0
  d 9z3 − 42z2 + 28z − 16 = 0
  e z3 + 2z2 − 2z + 3 = 0
 6 a 4 b 5

Exercise 4.04
 1 a z z1 2  = 6, arg z1z2 = 

π2
3

   

Im(z)

Re(z)O

z1z2

6

3
2π
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  b z z1 2  = 2, arg z1z2 = π

	 	 	

Im(z)

Re(z)O

π

−√2

  c z z1 2  = 2 5, arg z1z2 = 
π
6

   

Im(z)

Re(z)O

2√5
6
π

  d z z1 2  = 1, arg z1z2 = 
π3
4

   

Im(z)

1

Re(z)O

4
3π

 2 a = =
πz

z
z
z

1 arg
22 2

   

Im(z)

1

Re(z)O

  b 
z

z
z
z

2 arg
42 2

= =
π

   

Im(z)

Re(z)O
4

2 π

  c = = −
πz

z
z
z

2 arg
22 2

   

Im(z)

Re(z)O

−√2

  d = = −
πz

z
z
z

1
2

a rg
32 2

   

Im(z)

Re(z)O
3
π

2
1

 3 = −
π





z z 2 2 c s
5
61 2

  

Im(z)

Re(z)
6
π

2√2

O
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 4 
z
z

i3 cos
4

sin
42

=
π

+
π





  

3

4
π

Im(z)

Re(z)O

 5 = −
π





+ −
π











z z
z

i2 cos
6

sin
6

1 2

3
 

  

6
π

Im(z)

Re(z)O
√2

 6 y

x

r
z

O

θ

c = d

b = e

a

 7 
y

x

r
z

a = d

b = e

c

O

θ

 8 y

x

z

e
d

a
b

c = f
O

θ
θ θ

θ
θ

θ

  z  = cos θ − i sin θ
         = cos (−θ) + i sin (−θ)
         = (cos θ + i sin θ)−1

         = z−1

         = 
z
1

  Only true if z  = 1.

 9 a v = u
i

 = −iu b v = −u = i2u

  c v = iu

 10 a = −
π



z

1 1
3

c s
4

   

4
π

Im(z)

Re(z)O

3
1

  b = −
π



z

1
2 cis

2
3

   

Im(z)

Re(z)O

√2 3
2π
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  c =
π

z
1 1

4
c s

5
6

   

Im(z)

Re(z)O
6
π 4

1

 11 a 
π

2 2 c s
3
4

   

Im(z)

Re(z)O
4
π
2√2

  b −
π





2cis
2

   

Im(z)

Re(z)O

−2

  c −
π





1
16

c s
2
3

   

Im(z)

Re(z)O
3
π

16
1

  d −
π





1
3 3

c s
2

 

   

Im(z)

Re(z)O

−3√3

  e 16 cis 0

   

Im(z)

Re(z)O 16

  f π
8 c s

2

   

Im(z)

Re(z)O

8

 12 a w z 2cis
3

= ×
π

  b = πw
z

2cis
3

  c w = z4

 13 a z3 = 
z
i

 = −iz1

  b z2 = z1 + z3 = z1 − iz1

   OB z iz1 1

→
= −  so B is the point represented by 

the complex number z1 − iz1.

  c z iz1
2 1 1( )−
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 14 a Proof: See Worked solutions

  b ( )δ + β
1
2

 15 Proof: See Worked solutions
 16 a y

xO

z

z2 − z1

z1 + z2

z2

  b It is a rhombus.
  c It is equilateral.
 17 Proof: See Worked solutions

Exercise 4.05

 1 a z zc s
2
3

, cis
2
31 2=

π
= −

π





z3 = 1

   

y

x

z1

z2

z3

1

3
2π

  
b

 
z z

z z

c s
2
5

, cis
4
5

c s
4
5

, cis
2
5

1 2

3 4

=
π

=
π

= −
π





= −
π





   z5 = 1

   

y

x

z1

1 = z5

5
2π

z2

z3

z4

  

c

 

z z i z

z z z i

z

c s
4

, cis
2

, cis
3
4

1 c s
3
4

, cis
2

c s
4

1 2 3

4 5 6

7

=
π

=
π

= =
π

= − = −
π





= −
π





= −

= −
π





   z8 = 1

   

y

xz4 = −1  1 = z8

 1 = z2

z6 = −1

z5 z7

z3 z1

4
π

  

d

 

z z z

z z z

z z

c s
2
9

, cis
4
9

, cis
2
3

c s
8
9

, cis
8
9

, cis
2
3

c s
4
9

, cis
2
9

1 2 3

4 5 6

7 8

=
π

=
π

=
π

=
π

= −
π





= −
π





= −
π





= −
π





   z9 = 1

   

y

x 1 = z9

z6 z7

z8

z5

z3

z4
z1

z2

9
2π

 2 Proof: See Worked solutions

 3 a , ,6 2 5 3 4α = α α = α α = α

  b , , , ,10 2 9 3 8 4 7 5 6α = α α = α α = α α = α α = α
 4 If z5 − 1 = 0 and β is a complex root then
        z5 − 1 = (z − 1)(z + z2 + z3 + z4 + 1)
                     = (β − 1)(β + β2 + β3 + β4 + 1)
                     = 0
  then β ≠ 1 so β + β2 + β3 + β4 + 1 = 0.
  Rest is Proof: See Worked solutions
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 5 a 0 b −1 c 31
  d 8 e −1
 6 Proof: See Worked solutions

Exercise 4.06

 1 a z z2 cis
6

, 2 c s
5
61 2=

π
= −

π





   

y

x

z1

z2

6
π

6
π

√2

√2

  b z zc s
4

, cis
3
41 2=

π
= −

π





   

y

x

z1

z2

1

1

4
π

4
π

  c z z2 cis
3

, 2 c s
2
31 2= −

π





=
π

   

y

x

z1

z2

3
π

3
π

√2

  d z zc s
4

, cis
3
41 2= −

π





=
π

   

y

x

z1

z2

4
π

4
π

1

 2 a z z zc s
3

, cis , cis
31 2 3=

π
= π = −

π





  b z z zc s
6

, cis
5
6

, cis
21 2 3=

π
=

π
= −

π





  c z z zc s
6

, cis
2

, cis
5
61 2 3= −

π





=
π

= −
π





 
3 a

 
z z z

z

2cis
8

, 2c s
5
8

, 2c s
7
8

2cis
3
8

1 2 3

4

=
π

=
π

= −
π





= −
π





  
b

 
z z

z z

2 cis
3

, 2 c s
5
6

2 cis
2
3

, 2 c s
6

4
2

4

3
4

4
4

=
π

=
π

= −
π





= −
π





  
c
 

z z z

z

c s
8

, cis
3
8

, cis
7
8

c s
5
8

1 2 3

4

= −
π





=
π

=
π

= −
π





 4 a, d Proof: See Worked solutions

  b cis
5

c is
3
5

, 1c is
3
5

c is
5

π π
− −

π





−
π





   

y

x

5
π−

−1 0

cis 
5

3π

cis 
cis 

5
3π

 



 



5
πcis 

−

5
2π

  c cis
5

c s
5

c is
3
5

c s
3
5

π
= −

π





π
= −

π
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5

 
z z z z

z z z

c s
7

, cis
3
7

, cis
5
7

, 1

c s
5
7

, cis
3
7

, cis
7

1 2 3 4

5 6 7

=
π

=
π

=
π

= −

= −
π





= −
π





= −
π





  a z7 + 1 = 0. Sum of roots = b
a

−  = 0

  b Proof: See Worked solutions

 

6 a

 

z z i z

z z i

z

c s
6

, cis
2

, cis
5
6

c s
5
6

, cis
2

c s
6

1 2 3

4 5

6

=
π

=
π

= =
π

= −
π





= −
π





= −

= −
π





  
b

 

z z z z

z z z

z

c s
8

, cis
3
8

, cis
5
8

, cis
7
8

c s
7
8

, cis
5
8

, cis
3
8

c s
8

1 2 3 4

5 6 7

8

=
π

=
π

=
π

=
π

= −
π





= −
π





= −
π





= −
π





  
c
 

z z i z

z z

c s
10

, cis
2

, cis
9
10

c s
7
10

, cis
3
10

1 2 3

4 5

=
π

=
π

= =
π

= −
π





= −
π





 7 a Proof: See Worked solutions

  b z z2 cis
7
12

, 2 c s
122 3= −

π





=
π

   

y

x

12
5π

12
π

4
π

√2

Exercise 4.07
 1 a z and w lie on the same line through O (or 

vector or ray from O) on the same side of O.

   

y

x

arg (z − 0) = arg (w − 0)

z
w

θ

  b z and w lie on the same circle centre O.

   

y

xO

w
z

  c The line (or vector or ray) OW is a reflection 
of OZ over the x-axis.

   

y

x

w

z

θ
θ

θ

−θ

  d Vector z − w || vector u − v

   

y

x
w

z

v

u

  e Lengths of vectors z − w and u − v are equal.

   

y

x
w

z

v

u

  f Vectors z − w and u − v are parallel and equal 
in length (or collinear with the same 
argument).

   
y or

collinear

x

z zu

v

v

u
w

w
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  g Lengths of z − w and z + w are equal ∴ O, w, 
z + w and z form a rectangle (diagonals equal 
in length).

   

y

z

x

w

O

z + w

z − w

  h Either ZUWV form a parallelogram or the 
vectors are collinear.

   

z

v w

u

  i The diagonals of the quadrilateral formed by 
O, z, z + u and u are equal and perpendicular; 
that is, O, z, z + u and u form a square.

   

y

z

u

x

z + u

z − u

O

 2 a 
y

x

|z| = 11

1

  b y

x

|z| = 22

2

  c y

x

|z| = 4

4

4

  d 
y

x

|z| = 
4
1

4
1

4
1

  e 

0 1

3

−2 3

−3

|z − 1| = 3

Im(z)

Re(z)

  f 

0

|z + 3| = 1

−3−4 −2

1

−1

Im(z)

Re(z)

  g 

3

0

|z − 3i| = 3

Im(z)

Re(z)
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  h 

0

−1

−1

−1 1

|z + i| = 

Im(z)

Re(z)

2
1

− 2
1

2
1

 3 a 
Im(z)

Re(z)

z

6
π

  b 
Im(z)

Re(z)

w

4
π

  c 
Im(z)

Re(z)

z

3
π

  d 
Im(z)

arg u = π

Re(z)
u

 4 a Im(z)

Re(z)1

z

3
π

  b 
Im(z)

Re(z)

i

z

6
π

6
π

  c 
Im(z)

Re(z)1
−i

z

3
2π

  d 
Im(z)

Re(z)3

2

0
z

6
5π6

π

 5 a 
y

x

w
|w − (1 + i)| = 11

10
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  b y

x
z1

2
−√3

1 + i√3 | = 2



|z − 

  c 
y

x

z
1

2

2
1

|z − 2 − i| = 2
1

  d 

|w + 3 − 4i| = 5

Im(z)

Re(z)2

9

4

10

0

5

−1−3

w

 6 a 
Im(z)

Re(z)O

w

6
π
6
π

  b Im(z)

Re(z)O

w

4
π

4
π

  c Im(z)

Re(z)O

w

 7 a  
9

9−9

−9

Im z)

Re z)O

|z| ≤ 9

  b 

3

3

Im(z)

Re(z)O

|u| > 3

  c  

1−1

−1

1

Im(z)

Re(z)O
2
1

2
1

 < |z| ≤ 1



I 349

  d 

3 4 51 2

−2

2

Im(z)

Re(z)O

1 ≤ |z − 3| < 2

 8 a 

1

1

Im(z)

Re(z)O

z

  b 

1

Im(z)

Re(z)O

z

√3

  c Im(z)

Re(z)2O

z−√2

√2 − i√2

4
π

  d 

z
6
π

6
π

Im(z)

1

−3

Re(z)O−√3

 9 Im(z)

Re(z)
θ
θθ

π

z−z

z

  arg (−z) = arg (−1 × z) = arg (−1) + arg z = π + θ
 10 a 

Im(z)

Re(z)−1
−1

O

z

4
3π

  b Im(z)

Re(z)1O

z
−√3

3
π

  c 
Im(z)

Re(z)O

−1

z

6
π
6
π

√3

  d Im(z)

Re(z)

z

4
π

−√2 − i√2 4
3π
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  e 
Im(z)

1

1−1 O Re(z)
4
π 4

3π

  f 
Im(z)

z

2

1O Re(z)

3
π

√3

 11 a 

O

y

x3

  b 

O

2

y

x

  c y

xO−4

  d 

O

y

x
−1

 12 a x + y = 0

   

y

y = −x
xO

  b y = 2x

   

y

y = 2x

xO

  c y x 1
2

= +

   

y

x−1 O
2
1 y = x + 1

2

  d 3x + y = 6

   

1

2

3

4

5

6

1 2

y

xO
3x + y = 6
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 13 a 

2

ww

y

xO

  b y

w

w

x

1

O

  c 

−2

w

y

x
w

O

  d 

1

y

x

−1

 14 y

xO

(2, 2)

 15 a y

xO 1

  b y

xO

2

  c y

xO 3−2

  d y

xO
−1

−2

  e y

xO 3−3

  f y

xO

1

−1
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  g y

xO
2
1

2
1−

  h 
4

5−5

−4

y

xO

 16 a 

2O

Im(z)

Re(z)

z

  b 

3−3

Im(z)

Re(z)O

arg (z + 3)
arg (z − 3)

z

  c 

−1

Im(z)

Re(z)O

z 2

  d 

2

−2

Im(z)

Re(z)O
z

 17 a 

1

Im(z)

Re(z)O
z

  b 

1−1

Im(z)

Re(z)O

u
1

  c 

2

Im(z)

Re(z)

z

2

  d Im(z)

Re(z)O

z

−1

1

 18 perpendicular bisectors of line joining points
  a 

2

4

y

xO

zy = 2

  b 

2−2

y

xO

x = 0



I 353

  c y

xO

(−1 + i)

(1 − i)

y = x 

  d 

1

5−3

−3

y

xO

y = −2x + 1

 19 a y =	x	+ 2 for x > 2 or x < 0

   

2

−2

y

xO

  b semicircle centre (−1, 1) radius 2

   

2

−2

y

xO

 20 a 

3

3−3 Re(z)

Im(z)

  b 

2O Re(z)

Im(z)

3
π

  c 

1

Re(z)

Im(z)

6
π

6
π

  d 

4
π

2
1

3

Im(z)

Re(z)3−3

−3

O

4
π−

 21, 22 Proof: See Worked solutions
 23 

Im(z)

Re(z)Q

L

N

K M

b

c a

R Pz3 − z4

z3 − z4

z1 − z3

z4

z3

z2

z

z
2  − z

1

O

 24 Proof: See Worked solutions

 25 b a c a d a, cis
4

, 2 c s
4

= =
π

= −
π
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 26 a r k
p
q

=

   

y

x

r

θ − α

  b r = pq

   

y

x

r
θ + α

θ

α

 27 a 
2
5

α =
π

  
b

 
z z z

z z

c s
2
5

, cis
4
5

, cis
4
5

c s
2
5

, 1

1 2 3

4 5

=
π

=
π

= −
π





= −
π





=

    c−e Proof: See Worked solutions
  f 0
 28 a 

2−4

y

xO

x = −1

−1

  b 

y ≥ 0

y

xO

2

−2

  c 

−1−3

y

x

−2

2

1

 29 Proof: See Worked solutions

  b Centre 7
3

0






 , radius 8

3
 30 

6
π

Test yourself 4
 1 a 9(cos 4δ + i sin 4δ) b cis

6
π

  c 3 cis 36°
 2 a   i Proof: See Worked solutions
   ii sin 5θ = 16 sin5 θ − 20 sin3 θ + 5 sin θ
  b   i Proof: See Worked solutions
   ii cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ

 3 a tan5
tan 10 tan 5tan

5tan 10 tan 1

5 3

4 2θ =
θ − θ + θ

θ − θ +

  b x tan
5

, tan
2
5

= ±
π

±
π

 4 a Proof: See Worked solutions

  b − θ+ θ − θ+C1
7

cos 7 7
5

cos 5 7cos 3

 5 a z = −3i, i b w = 1 − i, 1 − 2i 

  c x
i3(1 )

2
= ±

−

 6 a z 2 cis
6

, 2 c s
5
6

= −
π





π
 

  b z 2 cis
3
8

, 2 c s
5
8

= −
π





π

 7 a Proof: See Worked solutions  
  b x = 1 ± i 2, 1 ± i 3

  c P(x) = (x2 − 2x + 3)(x2 − 2x + 4)

 8 P(x) = 2x3 + 9x2 + 30x + 13 = (2x + 1)(x2 + 4x + 13), 

x = 1
2

− , −2 ± 3i
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 9 a i zw = 2 2 c s
3
4
π

   

y

x
4
π

zw
2√2

√2 = z

   ii 
z
w

1
2

c s
4

=
π

   

y

x
4
πw

z

√2 = z

  b i zw = 6cis
6
π

   

y

z

x

3
π

6
π

zw

2 6

   ii 
z
w

2
3

c s
2

=
π

   

y

z

x
3
π

2
w
z

3
2

  c i zw = 2 2 c s
4
π

   

y
z zw

x
4
π

4
π

2√2 2√2

   ii 
z
w

2 2 c s
3
4

= −
π





   

y
z

x
4
π
4
π

2√2

2√2

w
z

 10 

5

5

y

iz

x
6
π

6
π

i
z

 11 

i
u

O

Im(z)

3
2β

Re(z)

u

a
u

b
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O

Im(z)

32β

2β

2β
9

Re(z)

u

u2 c

d
3
1u

1

 12 a w = u + v
  b, d Proof: See Worked solutions
  c u − w is v − w rotated 90° anticlockwise

  e m = 1
2

(u + iu)

 13 a z = ±1

   

1−1 O

Im(z)

Re(z)

  b z = 1, cis 
2
3
π

, cis 
2
3

−
π




; conjugates  

cis 
2
3
π

 = cis
2
3

−
π





   

Im(z)
cis 

Re(z)1

3
2π

− 3
2π





cis 

  c z = cis 
3
π

, cis 
2
3
π

, −1, cis 
2
3

−
π




, cis 

3
−

π





, 1; 

   conjugates cis 
3
π

 = cis
3

−
π





, 

cis 
2
3
π

 = cis
2
3

−
π





   

Im(z)

Re(z)1−1

α2 α1

α3

α4
α5

3
2π

3
2π

  d z = cis 
4
π

, i, cis 
3
4
π

, −1, cis 
3
4

−
π





, −i, 

   cis 
4

−
π





, 1; conjugates cis 
4
π

 = cis
4

−
π





, 

   i = i− , cis 
3
4
π

 = cis
3
4

−
π





   

Im(z)

1

Re(z)1−1

−1

α3
α

α5 α7

4
π
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 14 a α = cis 
π2
7

, α2 = cis 
π4

7
, α3 = cis 

π6
7

, 

   α4 = cis −
π





= α
6
7

3, α5 = cis −
π





= α
4
7

2, 

   α6 = cis −
π





= α
2
7

, α7 = 1

   

Im(z)

Re(z)1 = α7

α3

α4

α2

α

α5

α6

7
2π

  b Sum of roots = b
a

−  = 0, or factorise  

(α − 1)(α6 + α5 + α4 + α3 + α2 + α + 1) = 0  
and α is not real.

  c z7 − 1 = (z − 1)(z − α)(z − α)(z − α2)(z − α2) 

(z − α3)(z − 3α ) = (z − 1)(z2 − 2z cos 
π2
7

 + 1)

(z2 − 2z cos 
π4

7
 + 1)(z2 − 2z cos 

π6
7

 + 1)

  d−e Proofs: See Worked solutions
 15 a Proof: See Worked solutions

  b x = cos 
π
9

, cos 
π7
9

, cos −
π





5
9

  c Proof: See Worked solutions
 16 a −1 b 0 c 8
 17 Proof: See Worked solutions
 18 a ±(4 − i) or only 4 − i if a > 0

  b ±
π

e 8

  c i2 cos
12

sin
12

±
π

+
π





 19 a z1 = 2 cis 
π
4

, z2 = 2 cis 
π3
4

, z3 = 2 cis −
π





3
4

, 

   z4 = 2 cis −
π



4

 

   

2

2 2

2

Im(z)

Re(z)

z1z2

z3 z4

4
π

4
π

  b z1 = −
π





2 cis
4

6 , z2 = 
π

2 cis
5
12

6 , 

   z3 = −
π





2 cis
11
12

6

   

Im(z)

Re(z)

z2

z1

z3
4
π

12
π

12
5π

√2
6

  c z1 = 2 cis −
π



10
, z2 = −2i, z3 = 2 cis −

π





9
10

, 

   z4 = 2 cis 
π7

10
, z5 = 2 cis 

π3
10

   

Im(z)

Re(z)

z5z4

z1
z3

z2

10
π

10
4π

10
3π

10
3π

10
π

2

2 2

2

−2
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 20 z1 = cis 
π
15

, z2 = cis 
π7

15
, z3 = cis 

π13
15

, 

  z4 = cis −
π





11
15

, z5 = cis −
π



3

  

Im(z)

Re(z)

z5
z4

z1

z2

z3
15
7π

15
2π

15
4π

15
π

3
π

 21 a z1 = cis 
π
9

, z2 = cis 
π
3

, z3 = cis 
π5
9

, z4 = cis 
π7
9

, 

   z5 = −1, z6 = cis −
π





7
9

, z7 = cis −
π





5
9

, 

   z8 = cis −
π



3

, z9 = cis −
π



9

  b (z + 1)(z2 − z + 1)(z6 − z3 + 1)

  c z1 = cis 
π
9

, z3 = cis 
π5
9

, z4 = cis 
π7
9

, z6 = cis 

   −
π





7
9

, z7 = cis −
π





5
9

, z9 = cis −
π



9

  d −
π

+



z z2 cos

9
12  +	 −

π
+



z z2 cos

5
9

12  

   −
π

+



z z2 cos

7
9

12

 22 a   i x2 + y2 = 36
   ii set of points 6 units from O

   

6

6 x

y

  b   i (x − 2)2 + (y − 1)2 = 1
   ii set of points 1 unit from (2, 1)

   

x

y

  c   i y = 1
4

 x2 + 1

   ii  set of points equidistant from (0, 2) and 
the x-axis

   

1

x

y

  d   i y = 2 − x
   ii  perpendicular bisector of line joining  

(2, 2) and (0, 0)

   

y = 2 − x

(2 2)

(0 0) x

y
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  e   i 3x + 2y + 5 = 0
   ii  perpendicular bisector of line joining  

(−6, 0) and (0, 4)

   

2

(0, 4)

(−6, 0)

4

−3−6 O x

3x + 2y + 5 = 0
y

−4

 23 a 

z

3
π

Im(z)

Re(z)

  b 

–1

4
π

Im(z)

Re(z)

  c 

–1

3
2π

√3

Im(z)

Re(z)

 24 a 

2

2 4 x

z

y

  b 

−1
−1

1

1

x

y

  c 

−1 1 x

z

y

 25 a 

x

y

6
π

3
π

  b 

x

y

2

  c 

3

3 x

y
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 26 a perpendicular bisector

   

z1

y

x

z2

  b 

z1

y

x

z2

  c z is intersection of ray and circle

   

Im(z)

Re(z)

z

z

z2

r
4
π

 27 Proof: See Worked solutions

Practice set 1
 1 C 2 C 3 D 4 C 5 D
 6 B 7 D 8 D 9 A 10 D

 11 a 4i                  b i 7
2

     c i3 3±

 12 a 1 b −1 − i
 13 a x = ±8i  b x = −1 ± i 6
  c x = 3 ± 3i

 14 a Re(z) = 5
3

 Im(z) = 2
3

−

  b Re(z) = x

x y

7
2 2

+
+

 Im(z) = 
y

x y

2
2 2

−
+

 15 a z  = 5x + 3iy

  b z b a i b a6 2 ( )
4

= − + −

 16 Proof: See Worked solutions
 17 a x = 6, y = −3 b x = 4, y = 2
 18 a 11 − 19i b 7 c 20i
 19 a x2 − 2x + 5 = 0  b 12x2 + 4x + 1 = 0

 20 a i1 3
2

+  b 2
9

 c i
2

 21 5 − i (assume real part >0)
 22 1 + 7i, −1 − 7i
 23 −1 + 3i, 2 − i

 24 i Im(z)

Re(z)1−2 O

U(−2, −3)
Z(1, −4)

W(0, 3)

−4

  ii Im(z)

Re(z)1−2 O

z

u

w

−4

 25 

−u

u

2u

θ
θ θ

O

Im(z)

Re(z)

u
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 26 
w + z

w − z

P

w

z

O

Q

Im(z)

Re(z)

 27 a r = 2, Arg z = 
π2
3

  b r = 2 2, Arg z = −
−π
4

  c r = 2, Arg z = −
π5
6

 28 a −
π





+ −
π













i3 cos

3
sin

3

  b −
π





+ −
π













i2 cos

4
sin

4

  c 
π

+
π





i5 cos
2

sin
2

 

  d 
π

+
π





i4 cos
2
3

sin
2
3

  e 
π

+
π





i
2

3
cos

4
sin

4

 29 a u = 
π

+
π





i2 2 cos
3
4

sin
3
4

,

   v = −
π





+ −
π













i2 cos

3
sin

3

  b u = −2 + 2i, v = 1 − i 3
 30 a r1r2(cos (α1 + α2) + i sin (α1 + α2))

  b 
r
r2

 (cos (α1 − α2) + i sin (α1 − α2))

 31 a nθ b −nθ c −nθ d nθ
 32 Proof: See Worked solutions

 33 a z1z2 = 6i b = −
π





z
z

3
2

c s
5
62

  c (z2)
3 = −8 d (z1)

−4 = π1
81

c s 2
3

 34 a 16 b 
π

2 cis
11
12

  c − π







1
16

c s 2
3

 35 (1 + i)( 3  + i ) = ( 3  − 1) + i(1 + 3) = 2 cis 
π5

12
; 

  sin 
π5

12
 = 1 3

2
+

 36 a e3i b 
− π

e4 5  c 
− π

e2
5
6

 37 a 2 cis 3α b − π





cis

7

  c − π







1
2

c s 2
3

 38 a e6
5
2  b 

− π

e 5

 39 Proof: See Worked solutions
 40 It rains ⇒ the dam is full.
 41 If the people are starving then there is not 

enough food.
 42 a If a number is divisible by 2 then it is even. 

Yes, P ⇔ Q. A number is divisible by 2 iff it is 
even.

  b If its reciprocal is positive then a number is 
positive. Yes, P ⇔ Q.

  c If a quadrilateral it is a rectangle then it has 
four equal angles. Yes, P ⇔ Q.

  d If it eats grass then an animal is a kangaroo. 
False. P ⇔  Q.

 43 a The dam is not full.
  b The teacher is not good.
  c There is at least one cat that is not fluffy.
  d There are no smart politicians.
  e At least one wine is sweet.
  f No sheep are black.
 44 a If you do not speed then you do not get a 

speeding ticket. True.
  b If you are not over 65 then you do not get the 

old-age pension. True.
  c If a triangle does not have 3 equal sides then 

it is not equilateral. True.
  d If you do not get wet then you do not go 

swimming. True.
 45 For all natural numbers x there exists a natural 

number y such that y = 2x.
 46 ∀ x ∈ : x = 4M for some M ∈ ,  

∃ y ∈ : x y2=
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 47 C
 48 Proof: See Worked solutions
 49 Counter-example f (x) = (x − 3)4 at x = 3
 50, 51 Proofs: See Worked solutions
 52 u v⋅  = 0; angle = 90°

 53 a AB
2
3
2

→
=

−

















 b 
→

=AB 17

  c u
1
17

2
3
2

=
−

















 54 n = 9
 55 a Proof: See Worked solutions

  b 
→
AB  = 6, 

→
CD  = 3

  c Trapezium

 56 136° 13′

 57 =
















+ λ −
















r
1
3
–2

3
5

9

 58 x − 3 = 
y z1
6

3
2

+
= − +

 59 No

 60 =
















+ λ
















r
2
1
4

6
2
3

 

 61 

2

3

O x

z
y

 62 Proof: See Worked solutions

 63 a 4 2(cos 15β + i sin 15β)

  b 2(cos 16° + i sin 16°)

  c 
π

+
π





i
1

256
cos

2
3

sin
2
3

 64 a Proof: See Worked solutions

  b θ = 2kπ ± 
π
2

, k ∈ .

  c Proof: See Worked solutions
 65 a Proof: See Worked solutions

  b z
z
1 5

−






  = (2i sin θ)5 and 

   z
z

z
z

z
z

z
z

1 1 5 1 10 15
5

5
3

3
−







 = −









− −









+ −







  

   using the binomial theorem; 

   sin5 θ = 1
16

 sin 5θ − 5
16

 sin 3θ + 5
8

 sin θ;

   A = 1
16

, B = 5
16

− , C = 5
8

  c 8
15

 66 z = 2i ± 2 2

 67 =
π

−
π





z 2 cis
3

, 2 c s
2
3

 68 a Degree is odd and coefficients are real so 
must have 1 real root because complex roots 
come in conjugate pairs.

  b Proof: See Worked solutions

  c x = 1, i
i

2
1
2

3
2

± − ±

  d P(x) = (x − 1)(x2 + 2)(x2 + x + 1)
 69 

Re(z)

z

zw

Im(z)

12
5π

12
π

4
π

2
1

1

2

z
w

O

  zw = 2 cis −
π





11
12

	, 
z
w

 = 1
2
 cis π





5
12
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 70 w = −z = i2z, v = z
i
, u = iz

 71 a d = c + a − 2b

  b 
−
−







=
πd a

b a
arg

3
4

  c m = 1
2

(c + a − 2b)

 72 a z1 = α = cis 
π2
5

, z2 = α2 = cis 
π4

5
, 

   z3 = α3 = α  = cis −
π





4
5

, 

   z4 = α4 = α = cis −
π





2
5

, z5 = α5 = 1

   

Re(z)

z1
z2

z3
z4

1 = z5

Im(z)

5
2π

O

  b Proof: See Worked solutions
  c z5 − 1 = 

   − −
π

+





−
π

+





z z z z z( 1) 2 cos
2
5

1 2 cos
4
5

12 2

  d Proof: See Worked solutions
 73 a 0 b 0 c 3

 74 a 
π

e 4 , 
− π

e
3
4

  b 
π

+
π





i3 cos
6

sin
6

, −
π





+ −
π













i3 cos

5
6

sin
5
6

 75 a z = −2, 2 cis 
π
3

, 2 cis −
π



3

   

Re(z)

Im(z)

3
π−2 cis

3
π2 cis

−2 O

  b =
π π

−
π





−
π





z 2 cis
6

, 2 c s
2
3

, 2 c s
5
6

, 2 c s
3

4 4 4 4

   

Re(z)

Im(z)

O

3
π−√2 cis

4

6
5π−√2 cis

4

3
2π√2 cis

4
6
π√2 cis

4

 76 a 

|z| = 2

Re(z)

Im(z)

O 2−2

−2

2

  b 

|z − 1 − 2i| = 1

1

Re(z)

Im(z)

O

2

1

  c 

|z + 1| = |z + i|

Re(z)

Im(z)

1

−1

−1 1O
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  d 

Re(z) = 2 Im(z)

Re(z)

Im(z)

O

(2, 1)

 77 a 

1 Re(z)

z

O

Im(z)

4
3π

  b 

1

1

−1
−1 Re(z)

z

Im(z)

  c 

O 4

−4

Re(z)

z

Im(z)

 78 a 

O
6
π3

π

Re(z)

zIm(z)

  b 

O

y

x

z

3 6

3

–3

  c 

O

Im(z)

Re(z)

1

z

−1

 79 Parallelogram

Chapter 5
Exercise 5.01
All proofs: See Worked solutions

Exercise 5.02
All proofs: See Worked solutions

Exercise 5.03
 1 a 12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102

  b 5 + 7 + 9 + … + (2(n − 1) + 3) + (2n + 3)

  c + + + +
+M

1
1

1
2

1
3

1
1

  d −2 + 3 − 4 + … + 9

  e + + + +1

2

1

2

1

2

1

20 1 2 3
 … 

 2 a 18 b 121
  c 20 d 0.0656…

 3 a r( 1)r

r

77
2� �  b 

r
1

1
r

n

∑ +

−

 or 
r
1

r

n

2
�

  c 3r

r

99

�  d ( 1)

2

r

r
r
∑ − −

−

∞

 4−6 Proofs: See Worked solutions
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Exercise 5.04
 1−5 Proof: See Worked solutions

 6 S n n 2
2n

2
= + + , proof: see Worked solutions

 7 Proof: See Worked solutions

Exercise 5.05
All proofs: See Worked solutions

Exercise 5.06 
 1 a x < 1 b −1 ≤ x ≤ 3
  c −1 < x < 1, x ≠ 0 d x ≤ −3 or x ≥ 3
  e x < 0 or x > 1
 2 a y = x2  lies above y = x  − 1 for all real values 

of x, so solution is x ∈ .

   

1

2

3

4

−1
−1 1 2 3−2−3

y

x

y = 2x

y = x− 1

O

  b y = x 1+  never lies below y x 1= −  so there 
is no solution.

   

1

2

3

4

5

6

−1
−1 1 2 3 4 5−2−3

y

x

y = x + 1

O

y = √x − 1

 3 x < −1 or x > 2

 4 a Maximum stationary point 
e

1 1







   

−1

−2

−3

−4

−1 1

1

2 3 4−2−3

y

x

y = xe−x

O

1
e(1,    )

  b Proof: See Worked solutions

 5 a msecant = n n
n

ln 1+







  b, c Proof: See Worked solutions
  d The smaller the compounding interval the 

higher the rate of return on investment.
 6 a The area under the curve is approximated by 

the sum of the rectangles as n → ∞.

   

y = f(x)

O 1
n

n–2
n

n–1
n

2
n

3
n

4
n

5
n

6
n

y

x1

  b 
π
2

 7 a Proof: See Worked solutions

  b i a a a1
2

3
4

3
8

, r 3
2

=

   ii a1
2

3
2

n

×










−

   iii  Proof using part a; and let n → ∞.  
See Worked solutions.

 8 a The area under the curve denoted by 

x
dx1p∫  is less than the area of the 

rectangle, which is p( 1) 1− × .

  b, c Proof: See Worked solutions
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 9 a d
dx

(x ln x) = ln x + 1

  b x dxln
n∫ . = n ln n − n + 1

  c     i Proof: See Worked solutions  
      ii ln (n!)
   iii  The exact area under the curve is 

sandwiched between the sum of the 
rectangles under the curve and the sum 
of the rectangles above the curve.

   v  Proof: See Worked solutions

Test yourself 5
 1−11 Proofs: See Worked solutions
 12 a Kn − Ln 
  b, c Proof: See Worked solutions
 13 a cos (A + B) = cos A cos B − sin A sin B
  b, c Proof: See Worked solutions
 14 a Proof: See Worked solutions

  b    i T2 = 1
3
, T3 = 1

9
− , T4 = 11

27
−

   ii Proof: See Worked solutions
 15 Proof: See Worked solutions
 16 a −2 ≤ x ≤ 2 b −3 ≤ x < 1 or x ≥ 2
 17 a Proof: See Worked solutions
  b Approximate the area of the circle using 

rectangles under the curve and above the 
curve.

 18 a Since curve is concave down then area under 
curve > area of trapezium.

  b Proof: See Worked solutions

Chapter 6
Exercise 6.01
 1 a ln (ex + 1) + C

  b 2 tan−1 ( )e
x
2  + C c 1

10
(1 + x2)5 + C

  d − − + +x x C
2
3

1 ( 2)  

  e e C2 1x − +

  f 
a

x
a

C1  tan +−

  g x x x x C2
5

( 3) 3 2( 3) 32− − + − − +

  h − + +x x C2
3

( 2) 1

  i x x C2
3

1 ( 2)− + +

 2 a e C2 x +  b 
e

C1

2 x
− +

  c x C12 + +  d 1
3
 (1 + ln x)3 + C

  e 1
3
 (1 + sin−1 x)3 + C f 1

2
 [tan−1 (x + 1)]2 + C

  g 
x

C1
ln

− +  h ln 	ln x 	 + C

 3 a ln 2 b 1
2

  c 3
8

 d 1
2

  e −	1
5

 sin5 x + 1
3
 sin3 x + C

  f 1
5

 cos5 x − 1
3
 cos3 x + C

  g 1
9

 sin9 x − 2
7

 sin7 x + 1
5

 sin5 x + C

  h −	1
9

 cos9 x + 2
7

 cos7 x − 1
5

 cos5 x + C   

  i 
θ

1
cos

 + C j 
θ

1

2cos2  + C

  k 
θ

1

3cos3  + C l −
θ

1
sin

 + C

  m −
θ

1

2sin2  + C   n −
θ

1

3sin3  + C

  o −
θ

+
θ

1
cos

1

3cos3  + C  p cos θ + 
θ

1
cos

 + C

 4 a 1
5

 b e − 1 c 1

  d 1
2

( 3 2 )−  e 
π

+





1
4 2

1  f 
π
8

  g 
π
8

 5 a 5
3

 b 
π9
4

 c 
π
2

  d 
e

1
2

1
1

−
+

 e 2 − 
π
2

 6 
π9
4
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 7 a 2   b 1
2

 loge 3

  c −	cot x
2

 + C

  d, e Proof: See Worked solutions

  f 3
2

 8 a 1
2

 tan−1 
x
2







 + C b sin−1 

x
3







  + C

  c 1
6

 tan−1 
x2
3







  + C

 9 a 
π
6

 b 
π
3

 c 
π
4

 d 2

 10 a 32 2
5

  b log 
x

1 tan
2

+  + C

  c 1
3
 sec3 x + C  d 1

4

  e 1
2

 loge (e
2x + 1) + tan−1 ex + C

  f, g Proof: See Worked solutions

Exercise 6.02

 1 a 
x

C1
3

−
+

+  b 
x

C1
4

−
−

+

  c 
x

C2
2+

+  d tan−1 x + C

  e x C1
3

tan
3

+−  f x C1
3

tan
3

+−

  g x C1
5

tan
5

+−  h 
x

C1
2

−
−

+

 2 a sin−1 x + C b x Csin
3

+−

  c x Csin
2

+−  d 1
2

 x Csin 2
3

+−

  e 
x

Csin
2

2
−

−





+−  or 
x

Csin
2

2
−





+−

  f − −





 +− x C1

3
sin 2 3

2
 or 

−





 +− x C1

3
sin 3 2

2

 3 a tan−1 (x + 1) + C b sin−1 (x − 1) + C

  c x + tan−1 x + C d 
x

C
1
2

tan
1

2
−





+−

 4 a x − tan−1 x + C  b x − 2 tan−1 x + C

  c x x C2
2

tan
2

+ +−  d x − 3 tan−1 x
3

 + C

  e x + ln (x2 + 1) + C

  f x − ln (x2 + 2) − x1
2

tan
2

− + C

 5 a ln (x2 + 4x + 5) − 3 tan−1 (x + 2) + C
  b 2 ln (x2 + 1) + 3 tan−1 x + C

  c 1
2

 ln (x2 + 1) + C

  d 1
2

 ln (x2 + 1) − tan−1 x + C

  e 1
2

 ln (x2 − 2x + 2) + tan−1 (x − 1) + C  

  f ln x 1−   + C

 6 a cos−1 x + C b 1
2

 sin−1 2x + C

  c 1
2

 tan−1 2x + C d 
x

C
1
2

tan
2

2
+





+−

  e 
x C1

6
tan 2 1

3
+






 +−  f 

x
Ctan

3
2
−





+−

 7 a π b 2π ln 2  c 
π −
2

tan
3
4

Exercise 6.03
 1 a 2 ln −x 3  + ln +x 2  + C

  b ln +x 3  + 3
2

 ln −x2 1  + C

  c 8 ln +x 3  − 5 ln +x 2  + C

  d 2 ln −x 3  + ln +x 5  + C

  e 1
2

 ln + x1 2  − 2
3

 ln − x1 3  + C

  f a ln −x a  − b ln −x b  + C

 2 a ln −x 2  + ln +x 2  + C = ln −x 42  + C

  b ln −x2 1  − ln +x3 4  + C

  c 3
2

 ln +x2 1  − ln −x 2  + C

  d ln −x 1  + ln −x 2  + ln −x 3  + C

  e 2 ln −x 1  − ln +x 1  + 3
2

 ln +x2 3  + C

  f ln −x 6  + C
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 3 a 2 ln +x 1  − 
x

3
1+

 − 2 ln +x3 2  + C

  b − + +
+

+ − +x
x

x C1
4

ln 1 1
2( 1)

1
4

ln 1

  c 
x x

2
1

1
2

  −
+

−
−

 − 2 ln −x 2  + 3 ln +x 1  + C

 4 a + − − + +−x x x C3
4

ln 1 1
2

tan 3
2

ln 12 1

  b − + + + − +−x x x C1
4

ln 1 1
2

tan 1
2

ln 12 1

  c tan−1 x + C

 5 a + − − + + −







 +−x x x x Cln 2 1

2
ln 2 4 3 tan 1

3
2 1

  b − − + + + +







 +−x x x x C2ln 2 ln 2 4 3 tan 1

3
2 1

 6 a A = 1, B = −1, C = 1

  b ln +x 1  − 1
2

 ln (x2 + 1) + tan−1 x + C

 7 a A B1
2

1
2

= − =  b 1
2

ln 3
2

 8 x x

x x

2 5 3

( 1) ( 1)

2

2 2
+ +

− +
 = 

x x

x

x1
5

( 1) 1
2

2
2

5
2

2

−
−

+
−

+
−

+
; 

  + −
−

− − − +−x
x

x x C1
4

ln ( 1) 5
1

1
2

ln 1 5
2

tan2 1  

 9 x x

x x x

2 7

( 2) ( 1)

2

2 2
− −

+ + +
 = 

x x

x

x x

2
2

1

( 2)

2 1

12 2
−
+

+
+

+
−

+ +
; 

  −
π

+
1
6

2
3 3

ln
4
3

 10 a A = 1, B = 3, C = 3, D = 1

  b 32
3

3ln3+

 11 a Proof: See Worked solutions

  b + + − +







 +−x x x C1

2
ln 2 3 1

2
tan 1

2
2 1

 12 a Proof: See Worked solutions  

  b 
π

+ab a b2 ( )

Exercise 6.04
 1 a (x + 1) ln +x 1  − x + C
  b x ln x2 − 2x + C = 2x(ln x  − 1) + C
  c x sin x + cos x + C
  d −e−x(x + 1) + C

  e x x x C
2

cos 2 1
4

sin 2− + +

  f e x C
1
2

1
2

x2 −





+

  g − +x x x C1
2

ln 1
4

2 2

 2 a 1
2

ex(sin x − cos x) + C

  b 1
2

ex(sin x + cos x) + C

  c e C1
2

x +

  d −






 +x x C1

3
ln  1

3
3

  e −x2 cos x + 2x sin x + 2 cos x + C

  f x x x x C1
2

tan 1
2

1
2

tan2 1 − + +− −

  g 1
32

e4x(8x2 − 4x + 1) + C

 3 a 2 ln 2 − 1 b 2 c 2

  d 1
2

 e −2

  f 2(−2 + ln 5 + tan−1 2) g 2π

Exercise 6.05
 1 Proofs: See Worked solutions
 2 a Proof: See Worked solutions

  b =
π

I
5
325

 3 Proof: See Worked solutions
 4 a (n − 1) sinn − 2 θ − (n − 2) sinn θ
  b Proof: See Worked solutions

  c =
π

I
3
164

 5 Proof: See Worked solutions
 6 a, b Proofs: See Worked solutions

  c =
π

−I
4

2
32

 7 a Proof: See Worked solutions

  b I 4
34 =

Test yourself 6

 1 e C
1

24
x6 14

++

 2 
π
12
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 3 1
2

 sec2 θ + C

 4 Proof: See Worked solutions

 5 3
10

 6 
x

C
x

Csin
3

3
or sin

3
3

−





+
−





+−

 7 π





−tan

4

 8 
x

C
1
3

tan
2

3
−





+−

 9 1
2

1
2

ln 1
3

+

 10 A = −1, B = 1; − +x
x

Cln 1

 11 A = 1
4

, B =	−	1
4

, C = 1
2

; +
−

−
−

+x
x x

C1
4

ln 1
1

1
2( 1)

 12 7 ln +x 2  − 5 ln +x 1  + C

 13 3 tan−1 x + 2 ln −x 1  + C
 14 0.69

 15 
e

1 2−

 16 Proof: See Worked solutions

 17 e4 2−

 18 2 ln 2 − 1
 19 Proof: See Worked solutions

Chapter 7
Exercise 7.01
 1 a = x
 2 a Negative
  b v2 = 75 − 3x2

  c When x = −5
  d Positive (towards the origin)
  e Oscillating;  greatest speed 5 3  m s−1

 3 a v2 = 3600 − 20x b v = 60 − 10t
  c x = 180 m d t = 6 s
  e x = 179.8 m f t = 2 s, 10 s
 4 a Proof: See Worked solutions
  b x = −1 m, a = 16 m s−2; x = 7 m, a = −16 m s−2

  c [−1, 7]   d x  = 8 m s−1

 5 a Positive
  b v x4 9 32 = + −
  c Proof: See Worked solutions  
  d x = 2 m s−1

 6 a x = 5e−2x m s−1   b x t1
2

ln (10 1)= +

 7 a x = e9 cm b v = 3e9 cm s−1

  c, d  Proof: See Worked solutions

 8 a v2 = 1
2

 tan−1 x
4

 

  b = πv
2max  m s−1 at x = −4 m

 9 x = t2 + t6

 10 x = 2 ln (2t + 1)

 11 a v x4 1= +  m s−1 b v(3) = 8 m s−1  
  c x = (2t + 1)2 − 1 m
 12 9400 km

 13 v e8 x2( 1= − + −  m s−1

 14 a = 512 m s−2, x
t
4

8 1
=

+

Exercise 7.02
 1 a A = 3, n = 2, α = π
  b 

2

4

6

−2

−4

−6

x

t
2
π

2
3π 2ππ

.
.x = −6 sin (2t + π)

  c 

4

8

12

−4

−8

−12

x

t
2
π

2
3π 2ππ

.. ..x = −12 cos (2t + π)
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 2 a Proof See Worked solutions
  b 

1

2

3

4

x

t
2
π

2
3π 2ππ

x = 2 + √3sin t

   A = 3 , T = 2π

 3 a 

1

2

3

−1

−2

−3

x
x = 3 cos 2t

t
2
π

2
3π 2ππ

  b xmax = 3 when t = 0, π, 2π	seconds
  c x = −6 sin 2t

   

2

4

6

−2

−4

−6

x

t
2
π

2
3π 2ππ

.
.x = −6 sin 2t

  d x = 0
  e x = −12 cos 2t

   

5

10

15

−5

−10

−15

x

t
2
π

2
3π 2ππ

..
..x = −12 cos 2t

  f At x = 0, x = 0

 4 a Proof: See Worked solutions

  b T = 
π2
3

 s c xmax = 39 m s−1

 5 x = −
π





t
3
2

cos 4
2

 or x = 3
2

 sin 4t

 6 a x = −625x

  b A = 3
5

, T = 
π2

25
, xmax = 15 m s−1

 7 a x = 0 m and x = 6 m b x = 3 m

  c xmax  = 3 m s−1 d x = −(x − 3) m s−2

  e T = 2π s
 8 a x = −4(x + 1) b x = −1

  c A = 4. T = π, f = 
π
1

  d x = 4 cos − π





t2

2
 −	1 or 4 sin 2t − 1

 9 a A = 3, T = π, xmax  = 6 m s−1

   b, c Proofs: See Worked solutions

  d α = −
π
3

 10 a Proof: See Worked solutions
  b Acceleration is of the form x = −n2(x − c), 

where acceleration is proportional to 
displacement and acts in the opposite 
direction; T = π

  c x = −7 m, x = 1 m; A = 4
  d xmax  = 8 m s−1

  e Proof: See Worked solutions

 11 a x = 2 sin −
π





t5
6

; motion is simple  

harmonic motion

  b t = 
π

10
 s

 12 a T = 
π
2

; Proof: See Worked solutions

  b t = 
π
24

 s, x 6 3=  cm s−1

  c xmax  = 12 cm s−1 when t = 0, 
π
4

, 
π
2

, …  

over −3 cm < x < 3 cm
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 13 a x x2 36 2= ± −
  b Proof: See Worked solutions

  c T = π, f = 
π
1

  d 

10

20

30

−10

−20

−30

x

t2ππ

..

..x = −24 sin 2t

2
3π

2
π

 14 a T = 2, A = 2 b x = 2 cos πt
  c 50%
 15 a A = 6 m, T = 16 h b x = 6.20 m
  c 6 h 43 min

Exercise 7.03
 1 61.3 m
 2 10 2  s
 3 a 4.6 s b 103.3 m c 9.2 s
  d −33.4 m s−1

 4 a Vertically, y = −10, y = −10t + 10 2 , 

   y = −5t2 + 10 2t
   Horizontally, x = 0, x = 10 2 , x = 10 2t

  b 2 2 s c y x x1
40

2= − +

 5 26.3 m s−1

 6 9°	or	75°
 7 45°
 8 Proof: See Worked solutions
 9 30 2 m s−1

 10 a, b Proof: See Worked solutions
 11 26.11 m
 12 15.53 m s−1

 13 10 10
3

 m s−1

 14 Proof: See Worked solutions

 15 a, b Proof: See Worked solutions
 16 a, b Proof: See Worked solutions

Exercise 7.04
 1 a Along plane: 8 N, perp. to plane: 8 3 N
  b Along plane: 10 3 N, perp. to plane: 10 N
  c Along plane: 24 cos 20° N,  

perp. to plane: 24 sin 20° N
  d Along plane: 18 cos 40° N,  

perp. to plane: 18 sin 40° N
 2 a N: 0 newtons along plane, N newtons 

perpendicular to plane; mg: mg sin 25° 
newtons along plane, mg cos 25° newtons 
perpendicular to plane

  b F: −F along plane, 0 perpendicular to plane; 
mg: mg sin 30° along plane, mg cos 30° 
perpendicular to plane

  c N: 0 along plane, N perpendicular to plane;  
F: −F along plane, 0 perpendicular to plane; 
20 N force: 20 sin 50° along plane,  
−20 cos 50° perpendicular to plane

 3 a =
° + °

θ + θ
F

5(cos 40 3 sin 40 )
sin 3 cos

 N

  b 4.9 N

 4 µ = 0.4
 5 µ = 1.5
 6 a 1420 N b 1500 N
 7 a T = 0031 N  b F = 0.025 N
 8 6 m string: 9g; 8 m string: 12g
 9 a 12 N

N

45°

10g

  b 3 2
5

 m s−2 c 10g − 6 2  N

 10 a 

( )
=

− µ
+

x
m M g

M m
 b =

+ µ
+

T
mM g

M m
(1 )

  c Proof: See Worked solutions
 11 Proof: See Worked solutions
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Exercise 7.05

 1 v k
m

x u x m
k

u v,   ( )= − + = −

 2 v ue x m
k

u
v

,   ln
k
m

x
= =









−

 3 Proof: See Worked solutions

 4 a Proof: See Worked solutions

  b t M
F

215 ln 83
3

=








 5 a, b Proof: See Worked solutions
  c t = 3 s

 6 a v(t) = −
+

e

e

1

1

kt

kt

2

2
, v  → ∞ = 1

  b x = 
k
1
2

− ln (1 − v2)

 7, 8 Proofs: See Worked solutions

Exercise 7.06
 1 a Proof: See Worked solutions

  b v2 = 
g
k

 (1 − e−2kx)

  c v = 
g
k

e  (1 )kh2− −

 2 a t
kg

U1
 tan

g
k

= −

  b hmax = 
k

k
g

U1
2

 ln 1 2+










 3 a Proof: See Worked solutions
  b hmax = 160(1 − ln 2) m  
  c t = 4 ln 2 s
 4 a 

R = 0.1mv2

mg

  b Proof: See Worked solutions

  c v e

e
10 1

1

t

t

2

2
= −

+











  d, e  Proofs: See Worked solutions

 5 a Explain
  b Proof: See Worked solutions

  c v
g
kT =

  d x
g

k

g
g kv

v
k

ln
2

=
−









−

  e 37.2 m

 6 x
k
1
2

ln 4
3

=








 7 a t = 
3
15

tan 15
2











−
 s

  b Proof: See Worked solutions

  c H = 3 ln 
19
4









 8 Proof: See Worked solutions
 9 a Proof: See Worked solutions
  b 57.7 m s−1

 10 a Proof: See Worked solutions

  b v
g
kT =

  c Proof: See Worked solutions

Exercise 7.07
 1 a Proof: See Worked solutions
  b 20 m s−1 c 18.55 m
 2 a 570 m b 7.8 s
  c 0.85 s
 3 k = 1.087
 4 a 0.4 s b 17.7 m
  c 38 m s−1

 5 a  0.000 233 b 30o

Test yourself 7
 1 2 cm s−2

 2 v e10 90x8= +−  m s−1.

 3 = +
π





x t t( )
5
6

cos 6
2

 4 a Proof: See Worked solutions

  b x 1 11= − ±  m

  c = −v 2 11 m smax

  d v2 = 4[11 − (x + 1)2]
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 5 31.9 m, 5.1 s
 6 5.7° or 84.8°
 7 30°

 8 
− +g250 3 30 75
100

 m s−1

 9 a x ≈ −0.7 m s−2 b T = 52.3 N

 10 x m
k

v v
vv
0

0
=

−







 , v

m
k

v
v x m

k

0

0
=

+











 11 x
e

1200 1 1
40 = −







 , v

e
30

40 =

 12 a vT = 6mg b  v
mg
2T =

 13 t = 1.2 s, h = 7.9 m
 14, 15 a, b Proofs: See Worked solutions

Practice set 2
 1 C  2 A 3 D 4 C
 5 D  6 B 7 A 8 D
 9 C  10 B 11 A 12 B
 13−22 Proofs: See Worked solutions

 23 
x

Csin
2
2 2

−
−





+−

 24 1

 25 
x

C
1
3

tan
1

3
–1 −





+

 26 
x

x
C1

2
ln 2− +

 27 x

x
Cln ( 2)

( 1)

5

3
+
+

+

 28 x

x
Cln ( 3)

( 2)

3

2
+
+

+

 29 1
2

 30 3(ln 3)2 − 6 ln 3 + 4

 31 e
2

x
(sin x − cos x) + C

 32 x sin−1 x + x1 2−  + C

 33 v = x
x
2

3( 3)+
, v > 0

 34 4:09 p.m.
 35 7.4 m
 36 Proof: See Worked solutions
 37 v = 9.8 m s−1, h = 4.9 m
 38 a x = −64x b vmax = 16 m s−1

 39 a a = v100
10

−

  b Proof: See Worked solutions

  c a =  
v100

10

2−

  d vT = 10 m s−1

 40 θ = 30°
 41 0.0066 m s−2

 42 0.57 s
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INDEX
2D vectors review  80–4
3D space 98–9

graphing in 105
3D vectors 86–8

absolute value
definition 71
properties 71

acceleration
formulas for 289
in terms of x 256–8

adding complex numbers on the complex 
plane 19–20

addition of vectors 81, 87
angle between 2 vectors 89–92
applied force 283
area under a curve proofs involving  213–14
Arg z 24
Argand diagram 16–21

see also complex plane
argument

of a complex number 24–5
properties 29–32

on the complex plane 23–7, 164, 167–8
of z – z1 163

bee jive 100
binomial theorem proof  204

calculus identities proof of  203–4
Cardano, Girolamo 132
Cartesian equation

of a circle 102
for a line 108
of a sphere 102–3

Cartesian form of a complex number 25
coefficient of friction 281
column vector 82
complex conjugate pairs 7
complex conjugate root theorem 132

proof 132–3
complex conjugates 7–8

on the Argand diagram 19
modulus and argument property  32

complex numbers 5

adding and subtracting on the complex 
plane 19–20

applying 116–73
Argand diagram 16–21
argument 24–5, 29–32
Cartesian or rectangular form 25
dividing 139–40

by i 141–3
equivalence 9
exponential form 36
and fractals 147–9
modulus 23, 24–5, 29–32
multiplying 137–8

by a constant 21
by i 141–3

operations with 9–10
plotting as points 17–18
plotting as vectors 18
polar or modulus–argument form 25–7
real and imaginary parts 6–7
realising the denominator 11
roots of 158–62
square roots 14–15, 151, 158

graphical approach 129–31
complex plane 16–17

adding and subtracting complex  
numbers 19–20

complex conjugates 19
curves 163–8
dividing complex numbers 139–40
modulus and argument 23–7, 164–8
multiplying complex numbers 137–8

by a constant 21
multiplying and dividing by i 141–3
operations on the 137–43
plotting complex numbers as points 17–18
plotting complex numbers as vectors 18
regions 169
roots of unity 149–56

components of the vector 82
conditional statement 48–9
conjugate pairs 7
conjugates

in polar form 26
properties 32–3
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considering the difference 68–70
contact forces 278
contradiction proof by  59–60
contrapositive 53–4
converse of a statement 49–50
cos2 x (in integrations by substitution) 224
counterexample 61

proof by 61–2
cube roots of unity 150
cubic formula 132
curves

and regions on the complex plane 163–9
vector equations of 100–3

De Moivre, Abraham 125
De Moivre’s theorem 118, 120

exponential form 118
polar form 118, 120
proof 118–19
to find square root of a complex  

number 129–31
to prove trigonometric identities 121–2

decomposing the function into partial 
fractions 233

difference of conjugate pairs property  22
differentiation, and integration by parts 247
direction of a position vector 83
direction of a vector (passing through 2 points) 7
dividing complex numbers 139–40

by i 141–3
geometric representation 139

divisibility 64
proof of 192

Dodgson, Charles 58
dot product 83, 91, 94

elastic limit 264
equation of a sphere 103–4
equilibrium, and forces 279
equivalence 51, 53
Euler, Leonhard 35, 36
Euler’s formula 36–7

applying 39–40
even number 64
exponential form of a complex number 36
extension (elastic object) 264

force diagrams 278–9
forces

applied force 283
contact forces 278
and equations of motion 277–83
and equilibrium 279
friction 280–1

normal force 280
resolution of vector quantities 279
tension 282

fractals, and complex numbers 147–9
friction 280

coefficient of 281

geometric representation
of division 139–40
of multiplication 137–8

geometry proofs using vectors 93–5
vector properties used 93

geometry results proof of  204, 205–6
goblet shape 241
golf ball dimples 308
graphical solutions of inequalities 211–12
graphing

in 3D space 105
vector equations 100–3
see also sketching

Hookes law  264
horizontal component of force 279
horizontal displacement (projectiles) 268
horizontal motion, resisted 286–9

if–then statement 48–9
imaginary numbers 4–5
imaginary part of a complex number 6–7
implication statement 48–9
improper functions 233
induction 190

see also mathematical induction
inequalities

definition 68
graphical solutions 211–12
proof of 68–71, 202–3

infinite series 197
integers 54
integration

of rational functions with quadratic 
denominators 229–31

recurrence relations 249–51
to find the length of an arc 228
using partial fractions 239–41

integration by parts 244–5
and differentiation 247
LIATE rule 246–7
table method 248

integration by substitution 222–6

law of vector addition 81
length of an arc finding  229
LIATE rule (integration by parts) 246–7
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limiting friction 281
linear drag model (resisted projectile motion) 299
locus problems solving  163–9
locus of z 163

magnitude of a position vector 82, 86
magnitude of a vector 80
Mandelbrot set 147–9
mathematical induction

applications 202–4, 205–6, 208–9
proof by 190–2, 194–6, 198–9

mathematical verbs xiii
maximum height (projectiles) 269

time for (resisted projectile motion) 302
maximum range (projectiles) 269
mechanics 254–309
midpoint of vectors 93
modulus

of a complex number 23, 24–5
properties 29–32

on the complex plane 23–7, 164–6
of z – z1 163

modulus–argument form of a complex 
number 25–7

motion
equations of and forces 277–83
Newton’s laws 277
projectiles 267–73
resisted horizontal 286–9
resisted projectile 299–308
resisted vertical 291–7

multiplying complex numbers 137–8
by a constant 21
by i 141–3
geometric representation 137

natural numbers 54
negation 51–2, 59
negative power of a complex number, 

property 29, 31
Newton’s laws of motion 277
normal force 280
normal vector to a line 110

odd number 64

parallel lines 110–12
parallel vectors 84, 94, 110–12
parallelogram rule for adding and subtracting 

vectors 20
parameters 100
parametric equations

for the curve 100–1
for a straight line 108

partial fractions 233–6
in integration 239–41
quadratic factors in denominator 237
repeated linear factors in denominator 236–7
repeated quadratic factors in 

denominator 238
Pascal’s induction 194
Peano axioms 210
period of a pendulum 286
perpendicular lines 110–12
perpendicular vectors 84, 93, 110–12
points, plotting complex numbers as 17–18
polar form of a complex number 25–6

converting to Cartesian form 27
properties of moduli and arguments 29–32

polynomial equations 132–4
complex conjugate root theorem 132–3
creating 135
real and complex roots 133

position vector 80
direction 83
magnitude 82, 86

positive integers, properties 64–5
power of a complex number 119

property 29, 30
practice sets 179–87, 312–15
premise 48
principal argument of z (Arg z) 24
product of 2 complex numbers

proof of property 30
property 29, 30

product of complex conjugate pairs,  
property 32

product of complex numbers property  29, 31
product of conjugates of 2 complex numbers, 

property 33
projectile motion 267–73

maximum height 269
maximum range 269
modelling 270
projection from a height 273–4
range 269
resisted 299–308
resolving horizontal and vertical components 

(projection from the origin) 268
time of flight 268
trajectory of projectile 267–8, 269

in resistive medium 301–5
velocity components 268

proof(s)
of binomial theorem 204
by contradiction 59–60
by counterexample 61–2
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by mathematical induction 190–2, 194–6, 
198–9, 202–4, 205–6, 208–9

of calculus identities 203–4
of divisibility 192
of geometry results 204, 205–6
involving areas under a curve 213–14
involving inequalities 68–71, 202–3, 211–12
involving numbers 64–5
language of 48–55
recursive formula proofs 208–9
of sums (series) 190–1
see also geometry proofs

proper functions 233
properties

of absolute value 71
of conjugates 32–3
of moduli and arguments 29–32
of positive integers 64–5
of scalar product 91
of simple harmonic motion 261–2, 264
of vectors used in geometry proofs 93

proposition 48

QED (quod erat demonstrandum) 59
quadratic drag model (resisted projectile motion) 

306–8
quadratic equations

with complex coefficients 126–9
complex conjugate pairs 7
with complex solutions 5–7

quadratic factors in denominator (partial 
fractions) 237

quadratic formula 6, 126–8
quantifiers 54
quotient of 2 complex numbers,  

property 29, 30

range (projectiles) 269
in a resistive medium 302

rational functions 233
with quadratic denominators, 

integration 229–31
rational numbers 54
real numbers 54
real part of a complex number 6–7
realising the denominator of complex 

numbers 11
reciprocal of a complex number

proof of property 30
property 29, 30

reciprocal of a complex number with modulus 1, 
property 32

rectangular form of a complex number 25
recurrence relations 249–51

recursive formula 249
proofs 208–9

regions on the complex plane 169
repeated linear factors in denominator (partial 

fractions) 236–7
repeated quadratic factors in denominator 

(partial fractions) 238
resisted horizontal motion 286–9
resisted projectile motion 299–308

lower drag model 299–301
quadratic drag model 306–8
range of projectile 302
terminal velocity 302
time for maximum height 302
trajectory of a projectile in a resistive 

medium 301–5
velocity at any point 302

resisted vertical motion 291–7
terminal velocity 291–4

roots of complex numbers 158–62
square roots 14–15, 129–31, 151

roots of unity 149–50
cube roots 150
nth roots 152–6
solving problems using 156–7

Russell, Bertrand 63

scalar (dot) product of vectors 83, 93
proof of the cosine form 83
properties 91

scalar multiplication of vectors 82, 87
scalars 80
series

proof of sums 190–1
and sigma notation 197–9

sets of numbers 54–5
sigma notation, and series 197–9
simple harmonic motion 260

about x = c 262–3
Hookes law  264
properties 261–2, 264

sin2 x (in integrations by substitution) 224
sketching curves and regions on the complex 

plane 163–9
sphere, equation of the 102–3
spring constant 264
square number 64
square root of complex numbers 14–15, 151, 158

graphical approach 129–31
standard integrals 226, 230
statement, proposition or premise 48
straight line

direction of a vector 106–7
normal vector to 110
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parallel and perpendicular lines 110–12
parametric and Cartesian equations 108–9
vector equations 106–9

subtracting complex numbers on the complex 
plane 19–20

subtraction of vectors 81–2, 87
sum of conjugate pairs property  33
sum of conjugates of 2 complex numbers, 

property 32
sums proof of  190–1

table method (integration by parts) 248
tension force 282
terminal velocity 306

resisted projectile motion 302
resisted vertical motion 291–4

time of flight (projectiles) 268
time for maximum height (resisted projectile 

motion) 302
trajectory (projectiles) 267–8, 269

in a resistive medium 301–8
trebuchets 271
triangle inequality 33, 71

proof 33, 71
trigonometric identities, proved using de 

Moivre’s theorem 121–2

unit vector 80, 86

vector equations
of curves 101–4
of a straight line 107–10

vector functions 101
vector images 85
vectors 16, 80

2D, review 80–4
3D 86–8
3D space 95–7
addition 81, 87
angle between 89–91
between 2 points (3D vectors) 87–8
components of 82
direction 106–7
geometry proofs using 93–5
midpoint 93
parallel and perpendicular 84, 93, 110–12
parallelogram rule for adding and subtracting 

vectors 20
plotting complex numbers as 18
position vectors 82–3, 86
resolution of horizontal and vertical 

components 279
scalar (dot) product 83, 93
scalar multiplication 82, 87
subtraction 81–2, 87
−z 20

velocity, in terms of x 256–8
velocity at any point (resisted projectile motion) 

302
vertical component of force 279
vertical displacement (projectiles) 268
vertical motion, resisted 291–7
Von Koch’s snowflake 201
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