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TOPIC 1
Learning to think like a physicist

1.1 Overview
1.1.1 Working scientifically
Working Scientifically is a major component of the physics course. The Working Scientifically skills are 
developed during practical investigations associated with both the inquiry questions in each of the modules 
and the depth studies.

There are seven Working Scientifically outcomes and each must be addressed by the end of the course.
This chapter deals with skills associated with experimental physics and addresses all or some of the 

points below, which are associated with Working Scientifically.

Planning investigations
A student:
 •  designs and evaluates investigations in order to obtain primary and secondary data and information 

PH11/12-2
Students:
 • assess risks, consider ethical issues and select appropriate materials and technologies when designing 

and planning an investigation (ACSPH031, ACSPH097)
 • justify and evaluate the use of variables and experimental controls to ensure that a valid procedure is 

developed that allows for the reliable collection of data (ACSPH002).

Conducting investigations
A student:
 •  conducts investigations to collect valid and reliable primary and secondary data and information 

PH11/12-3
Students:
 • use appropriate technologies to ensure and evaluate accuracy.

Processing data and information
A student:
 •  selects and processes appropriate qualitative and quantitative data and information using a range of 

appropriate media PH11/12-4
Students:
 • select qualitative and quantitative data and information and represent them using a range of formats, 

digital technologies and appropriate media (ACSPH004, ACSPH007, ACSPH064, ACSPH101)
 • evaluate and improve the quality of data.

Analysing data and information
A student:
 • analyses and evaluates primary and secondary data and information PH11/12-5

Students:
 • derive trends, patterns and relationships in data and information
 • assess error, uncertainty and limitations in data (ACSPH004, ACSPH005, ACSPH033, ACSPH099)
 • assess the relevance, accuracy, validity and reliability of primary and secondary data and suggest 

improvements to investigations (ACSPH005).
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Communicating
Students:
 • select and use suitable forms of digital, visual, written and/or oral forms of communication
 • select and apply appropriate scientific notations, nomenclature and scientific language to communicate in a 

variety of contexts (ACSPH008, ACSPH036, ACSPH067, ACSPH102).

1.2 Measurement
1.2.1 Theoretical physicists
While this first section deals mainly with measurement and aspects of experimental physics, it is  
important to note that not all physicists perform experiments. Theoretical physicists construct theories of 
nature that are then often tested by exeriment, except sting theory, which cannot be experimentally  
verified!

Sometimes theory comes before experimentation, but, on the other hand, theory often requires time to 
explain an observed practical phenomenon. A recent example of the latter is the Higgs boson. Peter Higgs 
(and others) predicted the existence of the Higgs field and the associated Higgs boson in the early 1960s, 
but its existence was not verified until its discovery in 2012. Of course, the discovery required the Large 
Hadron Collider.

Sometimes experimental discoveries come first, as in the case of superconductivity, discovered in 1911, 
but it was not until 1957 that an explanation of superconductivity in type-I superconductors was found (by 
Bardeen, Cooper and Schrieffer) and there is still no satisfactory theory for superconductivity in type-II 
superconductors.

It has been said that experimental physicists win Nobel prizes for making important discoveries but theoret-
ical physicists cannot actually prove anything and, so, do not win Nobel prizes. Peter Higgs, however, shared 

FIGURE 1.1 This student is investigating the relationship between the strength of 
attraction between two bar magnets and the distance separating them.
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the 2013 Nobel Prize in Physics with François Englert, who was a leader of another team that independently 
predicted the existence of the Higgs field and particle that now bear the name Higgs.

1.2.2 Skills of experimental physicists — making measurements
Selecting the appropriate instrument
If you were asked to measure the width of the room you are in, there are many devices available for you to 
use. You could use an expensive laser distance meter, which can measure up to 300 metres with an accuracy 
of ± 1 mm; however, a single metre ruler would give a rough but much cheaper alternative. Perhaps using 
a measuring tape might be the best way to go.

Your choice of instrument should be 
based on the resolution and precision 
of the instrument and the accuracy 
you require. 

Of course, we also require that the 
measurements are in the correct units, 
and in physics this means SI Units.

1.2.3 SI units
So that scientists all over the world 
can communicate with one another  
effectively, it is important that they all 
use the same units to measure physical 
quantities. In 1960, the international 
authority on units agreed on a stand-
ardised system called the International 
System of Units. They are called SI units from the French ‘Système International’.

Base units
SI units consist of seven defined base units and 
other derived units that are obtained by 
combining the base units.

Each base unit is defined by a standard that 
can be reproduced in laboratories throughout 
the world. The standards have changed over 
time to make them more accurate and 
reproducible. For example, in 1800, the standard 
metre was defined as one ten-millionth of the 
distance from the Earth’s equator to either pole. 
By 1900, it had changed to the distance between 
two notches on a bar of platinum–iridium alloy 
kept in Paris. In 1960, it was redefined as 
16 50  763.73 × the wavelength of the light 

emitted by the atoms of the gas krypton-86. In 1983, the definition was changed to what it is today — the 

distance travelled by light in a vacuum in 1
299 792 458

 of a second.

The second is defined as the time taken for 9192 631 770 vibrations of a caesium-133 atom.
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1.2.4 Derived units
Speed is an example of a quantity 
that is measured in derived SI 
units. The SI unit of speed is the 
metre per second, written as m/s 
or m s−1. Table 1.2 shows some 
other commonly used derived  
SI units.

Again, as these units are all 
named after people, the name of 
the unit has a lowercase letter, and 
the abbreviation of the unit is 
uppercase (except in the case of 
Ohm, where the unit is given the upper case Greek letter omega; the capital letter ‘O’ is not used as it could be 
mistaken for an extra zero being added to the number).

1.2.5 Units and negative indices
Derived units are often expressed with negative indices. For example, the unit of speed is usually expressed 
as m s−1 rather than m/s. This is because: 

1 m/s = 1 m × 1
s

        = 1 m × 1 s−1

         = 1 m s−1

Similarly, the unit of power, joule per second or J/s, is written as J s–1.
The unit of pressure, newtons per square metre, or N/m2, is written as N m−2 because 1

m2
= m−2

Quantity Unit Symbol*
Unit in terms 
of other units

Force newton N Kg m s–2

Energy and work joule J N m

Pressure pascal Pa N m–2

Power watt W J s–1

Electric charge coulomb C A s

Voltage volt V J C–1

Resistance ohm Ω V A–1

Radiation dose equivalent sievert Sv J kg–1

TABLE 1.2 Some SI derived units commonly used in physics.

AS A MATTER OF FACT
The kilogram is defined by a standard mass of a platinum–iridium cylinder that has been kept at the 
International Bureau of Weights and Measures in Paris since 1889.

It has been determined that the ‘standard’ kilogram lost 0.0001 g during the last century. It is very likely that 
the standard mass will be changed to a definition involving Planck’s constant.
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1.2.6 Metric prefixes
Some SI units are too large or small 
for measuring some quantities. For 
example, it is not practical to measure 
the thickness of a human hair in 
metres. It is also inappropriate to 
measure the distance from Sydney to 
Perth in metres. The prefixes used in 
front of SI units allow you to use more 
appropriate units such as millimetres or 
kilometres.

1.3 Scientific notation
1.3.1 Using scientific notation
Very large and very small quantities can be more conveniently expressed in scientifi notation. In scientific  
notation, a quantity is expressed as a number between 1 and 10 multiplied by a power of 10. For example, the 
average distance between the Earth and the moon is 380 000 000 m This is more conveniently expressed  
as 3.8 × 108 m.

Using the power of 10 in scientific notation involves counting the number of places the decimal point  
in a number between 1 and 10 needs to be shifted to the right to obtain a multi-digit number.  

Prefix Symbol
Factor by which 
unit is multiplied Example

tera- T 1012 TB

giga- G 109 GW

mega- M 106 MV

kilo- k 103 kJ

deci- d 10−1 dm

centi- c 10−2 cm

milli- m 10−3 mA

micro- μ 10−6 μm

nano- n 10−9 nm

TABLE 1.3 Commonly used metric prefixes.

1.2 SAMPLE PROBLEM 1

Express 25 g in SI base units.

SOLUTION

The SI base unit for mass is the kg. Since 1 kg = 1000 g, then 1 g = 10−3 kg

25 g = 25 ×
1

1000
  kg

       = 2.5 × 10−2  kg

1.2 Exercise 1
1 Express each of the following quantities in SI base units:

(a) 1500 mA
(b) 750 g
(c) 250 GW
(d) 0.52 km
(e) 600 nm

  f ) 150 μs
(g) 5 cm
(h) 50 MV

  i ) 12 dm
2 Acceleration is defined as the rate of change of velocity. Velocity has the same SI unit as speed. What is 

the SI unit of acceleration?
3 The size of the gravitational force F on an object of mass m is given by the formula:

F =  mg where g is the size of the gravitational field strength.
(a) What is the SI unit of g?
(b) Express the SI unit of g in terms of base SI units only.
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For example, the decimal point is shifted eight places to the right to get from 3.8 to 380 000 000. The latter 
number is therefore expressed as 3.8 × 108.

Scientific notation can also be used to express very small quantities conveniently and concisely. To give 
one example, the mass of a proton is:

0.000 000 000 000 000 000 000 000 001 67 kg

In case you don’t feel like counting them, there are 26 zeros after the decimal point! In scientific notation, 
the mass of the proton can be expressed as 1.67 × 10−27 kg. The power of 10 is obtained by counting the 
number of places the decimal point in the number between 1 and 10 is shifted to the left to obtain the small 
number. The expression

1.67 × 10−27 means 1.67

1027

In physics, scientific notation is generally used for numbers less than 0.01 and greater than 1000.
You can enter quantities in scientific notation into your calculator using the EXP button. For example, to 

enter 425 000 000 000, you would enter 4.25 × 1011 as:

4.25 EXP 11.

1.4 Significant figures
1.4.1 Using significant figures
There is a degree of uncertainty in any physical measurement. The uncertainty can be due to human error 
or to the limitations of the measuring instrument.

Before 1964, when the first electronic quartz timing system was used in international events, stopwatches 
(accurate to the nearest 0.1 s) were used to measure running times. There was no point in having more 
accurate handheld stopwatches because the timing was dependent on human judgement and reaction time, 
a minimum of about 0.1 s. Any measurement of running time by a handheld timing device has an uncer-
tainty of at least 0.2 s. The International Amateur Athletic Federation now requires that world record times 
in running events are measured to the nearest one-hundredth of a second.

In 1960, the women’s Olympic 100 m sprint was won by Wyomia Tyus (USA) in a time of 11.0 s. In 1984, 
the same event was won by Evelyn Ashford (USA) in a time of 10.97 s. The 1960 event was not timed elec-
tronically. The uncertainty of the measurement of time is indicated by the number of significant figures quoted.

The Wyomia Tyus time of 11.0 s has three significant figures. There would have been no point expressing 
the time as 11.00 s because the nature of the timing device and human judgement and reaction time provide 
no degree of certainty in the second decimal place. The expression of the time as 11.0 s is consistent with the 
small degree of uncertainty in the last significant figure. To express the time as 11 s would suggest that the 
time was measured only to the nearest second.

The Evelyn Ashford time of 10.97 s has four significant figures. This is a reflection of the accuracy of the 
electronic timing devices and suggests that there could be a small degree of uncertainty in the last figure. 
The computerised timing systems used today can measure times to the nearest 0.001 s. The last figure 
quoted in world records therefore has no degree of uncertainty of measurement.

In most physical measurements, the last significant figure shows a small degree of uncertainty. For 
example, the length of an Olympic competition swimming pool is correctly expressed as 50.00 m  

1.3 Exercise 1
Express the following quantities in scientific notation:
(a) the radius of the Earth, 637 000 m
(b) the speed of light in a vacuum, 300 000 000 m s−1

(c) the diameter of a typical atom, 0.000 000 000 3 m.
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The last zero has a small degree of uncertainty. A pool can still be used for Olympic competition if it is up 
to 3 cm too long.

1.4.2 Complicated by zeros
Two simple rules can be used to help you decide if zeros are significant:
 • Zeros before the decimal point are significant if they are between non-zero digits. For example, all of the 

zeros in the numbers 4506, 27 034 and 602 007 are significant. The numbers therefore have four, five and 
six significant figures respectively. The zero in the number 0.56 is not significant.

 • Zeros after the decimal point are significant if they follow a non-zero digit. For example, in the number 
28.00, the two zeros are significant. The number has four significant figures. However, in the number 
0.0028, the two zeros are not significant. They do not follow a non-zero digit and are present only to 
indicate the position of the decimal point. This number therefore has only two significant figures. The 
number 0.00280 has three significant figures.
Sometimes, the number of significant figures in a measured quantity is not clear. For example, a length 

of 1500 m may have been measured to the nearest metre, the nearest 10 m or even the nearest 100 m. The 
two zeros are not between non-zero digits. The first rule given above, therefore, suggests that the length of 
1500 m has only two significant figures. However, it could have two, three or four significant figures 
depending on how the length was measured. To avoid confusion, quantities such as this can be expressed in 
scientific notation. The length could then be expressed as 1.500 × 103 m,  1.50 × 103 m or 1.5 × 103 m, 
giving an indication of the uncertainty.

When scientific notation appears clumsy, as it would for numbers such as 100 or 10, it is generally 
assumed that the zeros are significant.

1.4.3 Calculating and significant figures
When quantities are multiplied or divided, the result should be expressed in the number of significant 
figures quoted in the least accurate quantity. For example, if you travelled 432 m in a car for 25 s, your 
average speed would be given by:

average speed = distance travelled
time taken

                       = 432 m
25 s

                       = 17.28 m s−1

AS A MATTER OF FACT
Because of this permitted error of 3 cm variation in the 
pool length (it is not possible to construct a pool to a finer 
tolerance than that), swimming events are now timed to 
the nearest one hundredth of a second. They were once 
timed to the nearest thousandth of a second but that extra 
significant figure in timing cannot be justified because of 
the possible variation in length. There was a triple dead 
heat for the silver medal in the 100 m butterfly at the Rio 
de Janeiro Olympics and many people wondered why the 
swimmers were not timed to one thousandth of a second, 
to split them.
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The result should be rounded off to two significant figures to reflect the uncertainty in the data used to 
determine the distance and time, and therefore should be expressed as 17 m s−1.

When quantities are added or subtracted, the result should be expressed to the minimum number of 
decimal places used in the data. For example, if you travelled three consecutive distances of 63.5 m,  12.2517 m 
and 32.78 m, the total distance travelled would be given by:

63.5 m + 12.2517 m + 32.78 m
= 108.5317 m

The result should be rounded off to one decimal place as the minimum number of decimal places used in 
the data is one: in the distance of 63.5 m.

1.5 Accuracy, resolution, precision, validity  
and reliability
1.5.1 What are accuracy, resolution, precision, validity and  
reliability?
Accuracy is how closely a measured or calculated value matches the true value for that quantity.

Resolution is the fineness to which an instrument can be read. However, resolution may not be significant. 
A good analogue stopwatch might be read to one tenth of a second. A digital stopwatch displays to one 
hundredth of a second so is of higher resolution.

Precision is how closely results of repeated measurements agree with one another. The measurements must 
be repeatable and reliable. In the case of the stopwatches, it is impossible for a person to repeat measure-
ments of time to one hundredth of a second, so the precision of the digital stopwatch is one tenth of a 
second, or worse, even though it has a higher resolution.

Generally, a greater number of significant figures means the measurement is more precise (provided the 
figures are reliable and can be repeated).

1.4 Exercise 1
1 How many significant figures are quoted in each of the following quantities?

(a) 566.2 kJ
(b) 0.000 32 m
(c) 602.5 kg
(d) 42.5300 s
(e) 5.6 × 103 W

  f ) 0.008 40 V
2 Calculate each of the following quantities and express them to the appropriate number of significant 

figures:
(a) the area of a rectangular netball court that is 30.5 m long and 15.24 m wide
(b) the perimeter of a soccer pitch that is measured to have a length of 96.3 m and a width of 72.42 m.

3 A Commonwealth Games athlete completes one lap of a circular track in a time of 46.52 s. The radius of 
the track is measured to be 64 m. What is the average speed of the athlete?

Watch tis eLesso:  Determining significant figures 
Searchlight ID: eles-2559

 RESOURCES
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Accuracy and precision are often 
represented diagrammatically as 
bullets hitting a target, as shown in 
figure 1.6.

Results or measurements that are 
precise are in very good agreement.

If a student calculated the 
acceleration due to gravity to be
9.008, 9.009, 9.006, 9.007, 9.008 and 
9.007 m s–2, the results are very 
precise. However, they are inaccurate, 
as the accepted value is close to 
9.80 m s–2.

The student should then examine 
their experiment and consider its 
reliability and validity.

An experiment is reliable if 
repeating the experiment gives con-
sistent results. (This corresponds to high precision in our target analogy.) An experiment is valid if it 
measures or enables calculation of the quantity it sets out to determine. The results given above show that 
the experiment is reliable but that it does not produce an accurate value for acceleration due to gravity, so 
it is not a valid experiment. Perhaps the experiment used a pendulum and there was a systematic error in 
the measurement of the length of the pendulum. This would render the experiment invalid.

1.5.2 Uncertainty in measurement
Whenever we make a reading, there is a degree of uncertainty associated with that reading. (There are other 
sources of error — systematic errors, random errors or actual mistakes made by the observer — but, 
regardless of these and how they are minimised, there will still be errors or uncertainties associated with 
making a reading.)

There is no such thing as a truly exact measurement. If you measure a length to be 2.3 millimetres, 
2.3 × 10–3 m, that says nothing about the next decimal place. Is that 2.30 × 10–3 m? Could it be measured 
to the nearest micron (10–6 m)?  If you were able to express the value in microns, what about in nano-
metres? It is vitally important in physics to be able to express information about how well the value has 
been measured.

1.5.3 Making a reading on a linear scale
Some physics books look for hard and fast rules to express the uncertainty in a measurement in terms of the 
divisions on the scale. However, it is usually better to consider the actual scale, how clearly the lines on the 
scale have been marked and how fine those lines are, then write the uncertainty with a realistic range of 
uncertainty for that instrument.

If the instrument has a very sharply marked scale of high quality, you could try to estimate a reading to 
a tenth of a division. The uncertainty could realistically be ± 0.1 of the division. If the scale is  

Low accuracy
High precision

Low accuracy
Low precision

High accuracy
Low precision

High accuracy
High precision
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not of such high quality, the uncertainty 
might be   ± 0.3   or maybe even   ± 0.5   
of the division. 

 The best estimate for the position 
of the end of the red line in fi gure   1.7   
is   2.35 cm  . The position is closer to 
  2.35 cm   than it is to either   2.30 cm   or 
  2.40 cm  . The scale is marked by lines 
that are about one quarter of a 
millimetre thick, so the scale is not of high quality. We might be tempted to say that it is possible to 
judge the position to the nearest quarter of a division, but to say that this is   0.25 mm   is claiming that it is 
possible to distinguish between   0.24 mm   and   0.25 mm  , which is clearly impossible. It would be very 
unusual to give the uncertainty in a measurement to more than one signifi cant fi gure. 

 The measurement could be stated as   2.35 ± 0.03 cm  . This says the actual position is somewhere between 
  2.32 cm   and   2.38 cm  . 

 The   0.03 cm   represents the tolerance or uncertainty in the measurement. 
 Measuring the length of the red line would require a similar determination of the position of the other 

end — the start of the red line. This reading would be subtracted from the   2.35 ± 0.03 cm  , using the 
process on page 11. 

  1.5.4  Reading a digital instrument 
 With digital devices, the uncertainty would be  ± 0.5   of the step between one value and the next on the digital 
scale. However, there is also a factor due to the inherent accuracy of the device itself. There might be a 
statement such as ‘  0.09%   on the   2 mV   scale’ on the instrument. We can assume that the instrument rounds off 
the number displayed and that the uncertainty is   ±  0.5   of the next (unseen) digit.   

   The reading on the digital scale in fi gure   1.8   is   0.71   grams. 
This means the mass is neither   0.70 g   nor   0.72 g  . The actual mass 
is somewhere between   0.705 g   and   0.715 g  . 

 One way to write this mass would be:   mass = 0.71 ± 0.005 g  . 
 While theoretically this might be correct, it would be unusual to 

have more decimal places in the uncertainty than in the value. 
When on the limit of its measurement, the digital balance will 
often not keep a perfectly steady value. If the reading fl uctuates 
between   0.71   and   0.72  , the best way to write the mass 
would be:   mass = 0.71 ± 0.01 g  .   

  FIGURE 1.7  What is the position of the right-hand end of this red 
line being measured by the plastic ruler?  

  FIGURE 1.8  A digital scale.  

 1.5 SAMPLE PROBLEM 1 

 Record the reading on the scales below, including the tolerance.   

   SOLUTION 

 The scale shows   0.250 g  , so the actual weight may be between 
  0.249 g   and   0.251 g  . The mass is written as   0.250 ± 0.001 g  . 

  FIGURE 1.9    
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1.6 Calculations involving numbers with  
uncertainties (errors)
1.6.1 Adding or subtracting numbers with errors
When adding or subtracting numbers with errors, add the errors.

Example
 (i) Adding

20.0 ± 0.2 + 15.3 ± 0.4
= (20.0 + 15.3) ± (0.2 + 0.4)
= 35.3 ± 0.6

 (ii) Subtracting
20.0 ± 0.2 − 15.3 ± 0.4
= (20.0 − 15.3) ± (0.2 + 0.4)
= 4.7 ± 0.6

1.6.2 Multiplying or dividing numbers with errors
When multiplying or dividing numbers with errors, follow these steps:
1. Convert the errors to percentage errors
2. Add the percentage errors
3. Convert the percentage error back to an actual error
4. Round off the value and error in result to an appropriate number of significant figures.

1.5 Exercise 1
(a) Determine the length of each line in the diagram below, showing the tolerance in each case.

(b) Record the reading on the scales at right, including the tolerance.

1

(i)

(ii)

(iii)

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 1.10

FIGURE 1.11
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Example
(i) Multiplying

20.0 ± 0.2 × 3.1 ± 0.1
Percentage errors are:
0.2

20.0
× 100 = 1.0 and 

0.1
3.1

× 100 = 0.235

So, the answer is 20.0 × 3.1 = 62.0 ± 1.235%
Converting back from the percentage error

1.235
100

 × 62.0 = 0.767.

Which gives the actual error as 62.0 ± 0.767.

 If we follow the basic rule with significant figures, as there are only two significant figures in 3.1, the 
answer should be quoted to only two significant figures; it is pointless quoting the error in the answer 
to three decimal places.
The answer could be better expressed as 62 ± 1.

(ii) Dividing
20.0 ± 0.2 ÷ 3.1 ± 0.1
Percentage errors are again:
0.2

20.0
× 100 = 1.0 and 0.1

3.1
× 100 = 0.235

So, the answer is 20.0 ÷ 3.1 = 6.45 ± 1.235%
Converting back from the percentage error gives 6.45 ± 0.7966.
Again, reducing to two significant figures gives the answer 6.5 ± 0.8.

1.7 Graphs
1.7.1 The importance of graphs
A graph presents information visually in a way that we can see trends or pick up other information easily. 
We can see the range over which the measurements were made, perhaps see the uncertainty in each 
measurement, identify trends in the data collected, identify measurements that do not follow the general 
trend, and identify outliers where perhaps an incorrect measurement was made.

1.7.2 Plotting graphs
Anybody who has used the graphing function of a spreadsheet application will be aware of the many 
different types of graphs. These applications probably use the term ‘charts’ rather than ‘graphs’ and have a 
variety of versions of each type, including bar graphs, column graphs, pie graphs, line graphs, scatter 
graphs, as well as two-dimensional and three-dimensional versions of many. We will consider what might 
be called a scatter graph with lines (the lines may be straight or curved) that are plotted on a conventional 
Cartesian coordinate system (an x-y graph).

Independent and dependent variables
The quantity that we control or change is the independent variable, and the quantity that we measure, 
which varies as a result of our change, is the dependent variable.

Watch tis eLesso:  Calculating error 
Searchlight ID: eles-2560

 RESOURCES
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While it is usual to plot the independent variable on the x-axis and the dependent variable on the  
y-axis, there are times in physics when it makes more sense not to do this. You could set up an experiment 
to measure displacement and time in such a way that the displacement was the independent variable and 
time the dependent variable. A displacement–time graph is a standard graph and it would not be sensible to 
plot a time–displacement graph.

Title, labels on axes, and units
Every graph must have a title, and each axis must be labelled with the quantity plotted on the axis along 
with its units. Forgetting to label either the quantity or its unit renders the graph meaningless.

Scales
The scales should be chosen to provide easy-to-read values as well as the maximum possible accuracy in 
the plotted points. Graph paper may have major lines 1 cm apart and minor lines with a spacing of 2 mm, 
so, depending on the range of the values to be plotted, you might choose a scale of say 1.0 metre per cm on 
the scale, or, maybe if the range is smaller, 0.5 metres per cm. It would not be sensible to choose 0.3 metres 
per cm on the scale as it will be far too difficult to plot a point of 0.4 metres.

The scale should be chosen so that the graph occupies the maximum possible area of the graph sheet. A 
good rule is that if you could double the scale and still fit the graph on the paper, the chosen scale is too 
small.

How to mark points
There are different ways points can be marked, but you should remember that a point has zero area and 
should be marked with a sharp pencil. Some people prefer a small cross, others prefer a small dot with a 
circle surrounding it (in case the line of best fit passes through the dot point and the point  
disappears into the line) and there might be other variations of these. Points in some graphs are plotted 
with error bars, which are small vertical and horizontal lines indicating the error associated with the data 
(see figure 1.12).

Lines, lines of best fit or join the dots?
While it might be appropriate in some disciplines to plot points and then join the dots, in physics we usually 
plot quantities that vary continuously, so it would be inappropriate to join dots.

We usually draw a ‘line of best fit’, 
which fits our points in the smoothest 
way possible. A line of best fit could 
be a straight line or a curved line.

It takes practice to develop the skill 
to draw a good-looking curved line of 
best fit, but, if you use your judgement 
to decide the line should be straight, 
draw it with a ruler and not freehan.  
A straight line of best fit is probably  
best drawn with a transparent ruler, 
which you shift until the points are 
scattered equally on either side of 
your line. Remember that each plotted 
point comes from a measurement that 
has an uncertainty associated with it; 
drawing the line of best fit smooths 
out the influence of these errors  
(see figure 1.13).

0

2 4 6 8 10

5

10

y

x

FIGURE 1.12 An example of error bars.
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Outliers
Outliers are points that do not follow the overall trend in the data. Outliers may exist for a variety of 
reasons, such as the occurrence of an intermittent error by the measuring instrument, the incorrect 
recording of data or the incorrect plotting of a point. The plotting can be checked, but it is good practice 
to be able to return to your equipment to check your measurement; so, as a general rule, you should not 
dismantle equipment until you know there are no issues with your measurements.

Determining the gradient
If your line of best fit is a straight line, 
you will need to determine the gra-
dient of that line. This should be done 
by taking two well-spaced points on 
the line of best fit and using these to 
find the ‘rise over run’. Remember that 
your line of best fit has smoothed out 
any errors, so do not use data points 
to calculate the gradient.

If your line of best fit is a curve and 
you wish to find the gradient at a point, 
draw a tangent to the curve at that 
point and find the gradient of the  
tangent.

Advanced graphing techniques
If, for example, you performed an experiment to find the relationship between the time 
taken for a ball to roll down a slope and the distance it rolled, your plot would be a 
curved line when you plot distance rolled against time, as in figure 1.14.

If want to find the relationship between these quantities, you would then need to look 
for other graphs, because you require a straight-line graph. Plotting distance rolled 
against time squared will yield a straight-line graph, as in figure 1.15.

In this case, you should already know that for an object moving with uniform 

acceleration from rest, the equation s = 1
2

 at2 applies.

Your straight-line graph shows that s is proportional to t2, so, comparing your graph 

with the standard form of y = mx + b with the intercept b = 0, the gradient must  

represent 1
2

 a.

1.8 Other Working Scientifically skills
1.8.1 Working Scientifically outcomes
The Working Scientifically outcomes are:

QUESTIONING AND PREDICTING
Developing, proposing and evaluating inquiry questions and hypotheses challenges students to identify an issue or 
phenomenon that can be investigated scientifically by gathering primary and/or secondary-sourced data. Students 
develop inquiry question(s) that require observations, experimentation and/or research to aid in constructing a 
reasonable and informed hypothesis. The consideration of variables is to be included in the questioning process.
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PLANNING INVESTIGATIONS
Students justify the selection of equipment, resources chosen and design of an investigation. They ensure that all 
risks are assessed, appropriate materials and technologies are sourced, and all ethical concerns are considered. 
Variables are to be identified as independent, dependent and controlled to ensure a valid procedure is developed that 
will allow for the reliable collection of data. Investigations should include strategies that ensure controlled variables 
are kept constant and an experimental control is used as appropriate.

CONDUCTING INVESTIGATIONS
Students are to select appropriate equipment, employ safe work practices and ensure that risk assessments are conducted 
and followed. Appropriate technologies are to be used and procedures followed when disposing of waste. The selection 
and criteria for collecting valid and reliable data is to be methodical and, where appropriate, secondary-sourced information 
referenced correctly.

PROCESSING DATA AND INFORMATION
Students use the most appropriate and meaningful methods and media to organise and analyse data and information 
sources, including digital technologies and the use of a variety of visual representations as  
appropriate. They process data from primary and secondary sources, including both qualitative and quantitative data 
and information.

ANALYSING DATA AND INFORMATION
Students identify trends, patterns and relationships; recognise error, uncertainty and limitations in data; and interpret 
scientific and media texts. They evaluate the relevance, accuracy, validity and reliability of the primary or 
secondary-sourced data in relation to investigations. They evaluate processes, claims and conclusions by considering 
the quality of available evidence, and use reasoning to construct scientific arguments. Where appropriate, mathematical 
models are to be applied, to demonstrate the trends and relationships that occur in data.

PROBLEM SOLVING
Students use critical thinking skills and creativity to demonstrate an understanding of scientific principles underlying 
the solutions to inquiry questions and problems posed in investigations. Appropriate and varied strategies are 
employed, including the use of models, to quantitatively and qualitatively explain and predict cause-and-effect 
relationships. In Working Scientifically, students synthesise and use evidence to construct and justify conclusions. To 
solve problems, students: interpret scientific and media texts; evaluate processes, claims and conclusions; and 
consider the quality of available evidence.

COMMUNICATING
Communicating all components of the Working Scientifically processes with clarity and accuracy is essential.  
Students use qualitative and quantitative information gained from investigations using primary and secondary 
sources, including digital, visual, written and/or verbal forms of communication as appropriate. They apply 
appropriate scientific notations and nomenclature. They also appropriately apply and use scientific language that is 
suitable for specific audiences and contexts.

1.9 Depth studies
1.9.1 What are depth studies?
A depth study is a type of investigation or an activity that can be completed individually or collaboratively. 
At least one depth study must be undertaken in both Year 11 and Year 12. Each depth study will allow the 
further development of one or more physics concepts. The depth study might be one investigation or activity 
or a series of them.

Depth studies will allow you to pursue your interests in physics while gaining a depth of understanding. 
You will need to take responsibility for your own learning. Depth studies allow for the demonstration of a 
range of Working Scientifically skills.

A depth study may be:
 • a practical investigation or series of practical investigations
 • a secondary-sourced investigation or series of secondary-sourced investigations



16 Jacaranda Physics 11

 • a presentation
 • a working model, an invention or a portfolio you have created
 • a research assignment
 • a fieldwork report
 • data analysis
 • the extension of concepts found within the course, either qualitatively and/or quantitatively.

1.10 Summary
 • Resolution — the fineness of the scale of an instrument is the instrument’s resolution.
 • Precision — results are precise if repeated measurements are in close agreement.
 • Accuracy — accurate results are in good agreement with the true values.
 • Validity — an experiment is valid if it enables measurement of and/or calculation of the quantity it was 

designed to determine.
 • Reliability — an experiment is reliable if it yields consistent results.
 • Uncertainty in measurement — all measurements have some degree of uncertainty and, when appropriate, 

this should be taken into account in calculations:
 – when adding or subtracting numbers with errors, add the errors
 – when multiplying or dividing numbers with errors, add the percentage (or relative) errors.

 • Graphing — choose a suitable scale, making optimum use of the graph paper, and:
 – include a title, and label axes with quantities and their units
 – draw a line of best fit (either a straight line with a ruler or a curved line, freehand)
 – if calculating a gradient, ensure it is the gradient of the line of best fit (do not use data points)
 – by comparing the standard equation y = mx + b with the equation of the quantities graphed, it will be 

possible to relate the gradient to a physical constant.
 • Depth study — this is a type of investigation or an activity that can be completed individually or 

collaboratively.

Expore morewith his wlik:   NESA — Working Scientifically

 RESOURCES
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TOPIC 2
Motion in a straight line

2.1 Overview
2.1.1 Module 1: Kinematics
Motion in a straight line
Inquiry question: How is the motion of an object moving in a straight line described and predicted?
Students:
 • describe uniform straight-line (rectilinear) motion and uniformly accelerated motion through:

 – qualitative descriptions
 – the use of scalar and vector quantities (ACSPH060).

 • conduct a practical investigation to gather data to facilitate the analysis of instantaneous and average 
velocity through:
 – quantitative, first-hand measurements
 – the graphical representation and interpretation of data (ACSPH061).

 • calculate the relative velocity of two objects moving along the same line, using vector analysis
 • conduct practical investigations, selecting from a range of technologies, to record and analyse the 

motion of objects in a variety of situations in one dimension in order to measure or calculate:
 – time
 – distance
 – displacement

 – speed
 – velocity
 – acceleration.

 • use mathematical modelling and graphs, selected from a range of technologies, to analyse and derive 
relationships between time, distance, displacement, speed, velocity and acceleration in rectilinear 
motion, including:

 – s
͢
 = u

 t + 1
2

 a
͢   t2

 – v
͢
 = u

͢
 + a

͢   t
 – v

͢    2 = u
͢    2 + 2 a

͢
   s  (ACSPH061)

FIGURE 2.1 Whether you are riding a bike, driving a car or even skydiving, you will need to be able to 
describe your movement in terms of your position, speed, direction and acceleration.
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2.2 Distance and displacement
2.2.1 Use of scalar and vector quantities

Most people today rely on some form of transport to get to school or work and to get around on week-
ends or during holidays. Whether you ride, drive, fly or sail, you need to know how far you are going, 
in which direction and when you intend to arrive. Whether or not you arrive on time depends on how 
fast you move and the direction you take. Describing motion is important in planning a journey, even if 
it is by foot. The study of motion is called kinematics. 

While the terms distance and displacement tend to be used interchangeably in the English lan-
guage, they actually have very different meanings in physics.

Distance describes the total length of the pathway taken between the starting point and the finishing 
point of a journey and is a scalar quantity. Scalar quantities are those that have a magnitude but do not 
have a direction associated with them.

Displacement, on the other hand, indicates the location of the destination relative to the journey’s 
starting location, irrespective of the path actually taken between the two points. Displacement is a 
vector quantity, which means that it has both magnitude and direction associated with it.  Displacement 
is usually represented by the 
symbol  s in equations of motion, 
but other symbols such as x or r 
may also be encountered.

The path taken by the fly in 
figure 2.2 as it escapes the lethal 
swatter illustrates the difference 
between distance and displace-
ment. The displacement of the fly 
is 60 cm to the right, while the 
 distance travelled is well over 1 m.

In a 100 m sprint, the magnitude 
of the displacement is the same as 
the distance. However, it is the dis-
placement that fully describes the 
change in position of the runner 
because it specifies the direction.

WORKING SCIENTIFICALLY 2.1
Use a mapping tool such as Google Maps to find the directions from one place to another, such as from 
your home to your school. Varying the route on the map will vary the distance. Use the ruler tool to measure 
the displacement.

AS A MATTER OF FACT
Vector quantities can be described in writing or by labelled arrows. If a symbol is used to represent a vector 
quantity, it may have a half-arrow above it or a ‘squiggly’ line below it. In this text, vector quantities are 
 represented by symbols in bold italic type.
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2.2.2 Representing vector quantities
A vector quantity is represented graphically in the form of an arrowed line segment; its length corre-
sponds to the magnitude of the quantity it represents, and it points in the direction in which the quantity 
is acting.

For example, the displacement of a car travelling 10 km in an easterly direction could be represented 
as shown:

When the motion of an object involves changes in direction, the object’s final displacement is the 
vector sum of the individual vectors representing each leg of the object’s journey.

When vector quantities such as displacement are added, the labelled arrows that represent the vectors 
are placed ‘head to tail’. The sum of the vectors is represented by the arrow drawn from the tail of the 
first vector and the head of the second vector. The order in which the vectors are added does not matter.

10 km, east

2.2 Exercise 1
1 A hare and a tortoise decide to have a race along a straight 100 m stretch of highway. They both 

head due north. However, at the 80 m mark, the hare notices his girlfriend back at the 20 m mark. 
He heads back, gives her a quick kiss on the cheek, and resumes the race, arriving at the finishing 
line at the same time as the tortoise. (It was a very fast tortoise!)
(a) What was the displacement of the hare during the entire race?
(b) What was the distance travelled by the hare during the race?
(c) What was the distance travelled by the tortoise during the race?
(d) What was the displacement of the hare during his return to his girlfriend?

2 A jogger heads due north from his home and runs 400 m along a straight footpath before realising 
that he has forgotten his sunscreen and runs straight back to get it.
(a) What distance has the jogger travelled by the time he gets back home?
(b) What was the displacement of the jogger when he started to run back home?
(c) What was his displacement when he arrived back home to pick up the sunscreen?

3 If you were to walk 400 m to the east, in what direction and how far would you need to walk to have 
an overall displacement of zero?

2.2 SAMPLE PROBLEM 1 

Add the following pairs of vectors to find the total displacement:
(a) displacement of 40 m east, displacement of 30 m east
(b) displacement of 40 m east, displacement of 30 m west.

SOLUTION:

N

W E

S

Total 
displacement = 10 m, east

Total displacement = 70 m, east

40 m

40 m

30 m

30 m

(a)

(b)

FIGURE 2.3
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  2.3  Speed and velocity 
  2.3.1  Measuring movement rate 
 Just as distance and displacement can be cnfusing, so too can the terms   speed   and   velocity  . 

 The average speed of an object over a journey is determined by dividing the total distance the object 
travelled by the time taken to complete the journey: 

   Average speed = distance
time

   

 Like distance, average speed is a scalar quantity. 
 Average velocity ( v av  ), on the other hand, is a vector quantity and calculated by dividing an object’s 

total displacement by its journey time: 

   vav = s
t
   

 The average velocity vector acts in the same direction as the displacement vector.         

 PHYSICS FACT 
  A  snail would lose a race with a giant tortoise! A giant
tortose can reach a top speed of .37 km h –1 . However,
its ‘cruising’ speed is about 0.27 km h –1 . The world’s fastest
snails cover ground at the breathtaking speed of about 
005 km h –1 . However, the common garden snail is more 
key to move at a speed of about 002 km h –1 . Both of
these creatures are slow compared with light, which travels 
through the ir at 1080 ion km h –1 , and sound, which 
traves through the ir (at sealevl) at about 1200 km h –1 .

How long would it take the snail, giant tortoise, light and 
sound respectively to travel once around the equator, a 
distance of 40 074 km?  
  

  FIGURE 2.4  A garden snail moves at 
about 002 km h –1  but this is diffi cult to 
imagine. Converting this to 20 metres 
per hour gives you an idea of how fast 
they can travel.   

 2.3 SAMPLE PROBLEM 1    

 If a champion swimmer completes 30 laps of a 50 m swimming pool, a distance of 1500 m, in a 
time of 15 minutes, what is: 
(a)    their average speed in m s –1  
(b)    their average velocity in m s –1 ?   

 SOLUTION: 

(a)      Average speed = distance travelled
time taken

         (b)       vav = s
t
     

= 1500
15 × 60

 = 0
15 × 60

= 1.7 m  s–1 = 0 m  s–1 
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2.3.2 Converting units of speed and velocity
While the SI units for both speed and velocity are m s–1, it is common to encounter values for them 
given in km h–1.

To convert 60 km h–1 to m s–1, the following procedure can be followed.

60 km h−1 = 60 km
1 h

60 km h−1 = 60 000 m
3600 s

60 km h−1 = 16.7 m  s–1

In effect, the speed in km h–1 has been multiplied by 1000
3600

, or divided by 3.6.

To convert 30 m s–1 to km h–1, a similar procedure can be followed.

30 m  s−1 = 30 m
1 s

= 0.030 km

1
3600

 h

= 3600 × 0.030 km
1 h

= 108 km  h–1

In effect, the speed in m s–1 has been multiplied by 3600
1000

, that is, by 3.6.

km h−1

× 3.6

÷ 3.6

m s−1

2.3 SAMPLE PROBLEM 2

A plane carrying passengers from Melbourne to Perth flies at an average speed of 250 m s–1. The 
flight takes 3.0 hours. Use this information to determine the approximate distance by air between 
Melbourne and Perth.

SOLUTION:

Average speed = distance travelled
time taken

⇒ distance travelled = average speed × time interval (rearranging)

= 250 m s−1 × 3.0 h

= 900 km h−1 × 3.0 h (× 3.6 to convert m s−1 to km h−1)
= 2700 km

Alternatively, the distance could be calculated in metres and then converted to kilometres, a 
more appropriate unit in this case.

distance travelled = average speed × time interval (rearranging)

= 250 m s−1 × 3.0 h

= 250 m s−1 × 10  800 s (× 3600 to convert h to s)
= 2  700  000 m
= 2700 km (converting m to km)
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2.3.3 Instantaneous speed and velocity
Neither the average speed nor the average velocity provides information about movement at any 
 particular instant in time. For example, when Jamaican athlete Usain Bolt broke the 100 m world 
record in 2009 with a time of 9.58 s, his average speed was 10.4 m s−1. However, he was not travelling 
at that speed throughout his run. He would have taken a short time to reach his maximum speed and 
would not have been able to maintain it throughout the run. His maximum speed would have been 
much more than 10.4 m s−1 .

The speed at any particular instant in time is called the instantaneous speed. The velocity at any 
particular instant in time is, not surprisingly, called the instantaneous velocity. If an object moves with 
a constant velocity during a time interval, its instantaneous velocity throughout the interval is the same 
as its average velocity.

2.3.4 Relative velocity
The velocity of an object measured by a moving observer is referred to as the relative velocity. 
The  relative velocity is the difference between the velocity of the object relative to the ground and the 
velocity of the observer relative to the ground. Imagine that you are in a car travelling at a constant 
velocity of 90 km h−1 due west on a straight road The car ahead of you is travelling at a constant  
speed of 100 km h−1 in the same direction. Although the velocity of the other car relative to the road is 

2.3 Exercise 1
1 A car takes 8.0 hours to travel from Canberra to Ballarat at an average speed of 25 m s−1. What is 

the road distance from Canberra to Ballarat?
2 A jogger takes 30 minutes to cover a distance of 5.0 km. What is the jogger’s average speed in:

(i) km h−1

(ii) m s−1?
3 How long does it take for a car travelling at 60 km h−1 to cover a distance of 200 m?
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100 km h−1 due west, its velocity relative to you is 10 km h−1 due west. That is, the velocity of the car 
relative to you is equal to 100 km h−1 due west (velocity of car relative to the ground) minus 90 km h−1 
due west (your velocity relative to the ground): 10 km h–1 due west. This is illustrated in figure 2.5a.

If another vehicle were approaching you at a speed of 100 km h−1 relative to the road, that is, with a 
velocity of 100 km h−1 due east relative to the road, its velocity relative to you would be the difference 
between 100 km h−1 due east and 90 km h−1 due west. A velocity of 90 km h−1 due west is the same 
as −90 km h−1 due east. The relative velocity is therefore 100 km h−1 due east (velocity of car relative 
to the ground) minus −90 km h−1 due east (your velocity relative to the ground): 190 km h−1 due east. 
This is illustrated in figure 2.5b.

2.4 Graphing straight-line motion
2.4.1 Position versus time
Bolter Beryl and Steady Sam decide to race each other on foot over 100 m. They run due west. 
 Timekeepers are instructed to record the position of each runner after each 3.0-second interval.

2.3 SAMPLE PROBLEM 3

A cyclist is riding along a straight road at a constant velocity of 36 km h–1 (10 m s–1) in an 
 easterly direction. A car approaches the cyclist from behind and is initially 360 m behind the 
cyclist. If the car is travelling at a speed of 100 km h–1 (28 m s–1), how long will it take to catch 
up to the cyclist?

SOLUTION:

The velocity of the car relative to the cyclist is the difference between the velocity of the car 
relative to the ground and the velocity of the cyclist relative to the ground. That is, 28 m s–1 due 
east minus 10 m s–1 due east equals 18 m s–1 due east. The time taken can be calculated using the 
formula:

vav = s
t

18 m s−1 due east = 360 m due east
t

t = 360
18

= 20 s.

PHYSICS FACT
Do you always feel like you’re on the move? No wonder! When you are standing still, you are actually 
 moving through space at a speed of about 30 km s–1. That’s about 110 000 km h–1! This is the speed at 
which the Earth is hurtling through space in orbit around the Sun. An observer on the Sun could measure 
that speed. If you were standing still in Sydney, a person high above the South Pole would say that you 
were rotating with the ground around the Earth’s axis at a speed of over 1300 km h–1.

The speed you measure depends on your poiio, how fast you are mving and yourdirction of  
movement.
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The points indicating Bolter Beryl’s 
position after each 3.0 s interval are joined 
with a smooth curve. It is reasonable to 
assume that her velocity changes gradually 
throughout the race.

A number of observations can be made 
from the graph of position versus time.
 • Both runners reach the finish at the 

same time. The result is a dead heat. 
Bolter Beryl and Steady Sam each have 
the same average speed and the same 
average velocity.

 • Steady Sam, who has an exceptional talent for steady movement, maintains a constant velocity 
throughout the race. In fact, his instantaneous velocity at every instant throughout the race is the 
same as his average velocity. Steady Sam’s average velocity and instantaneous velocity are both 
equal to the gradient of the position-versus-time graph since:

vav = s
t

vav = 100 m west
15 s

vav = rise
run

vav = gradient.

Steady Sam’s velocity throughout the race is 6.7 m s–1 west.
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 • Bolter Beryl, in her usual style, makes a flying start; however, after her initial ‘burst’, her instanta-
neous velocity decreases throughout the race as she tires. Her average velocity is also 6.7 m s–1 west.

A more detailed description of Bolter Beryl’s motion can be given by calculating her average 
velocity during each 3 s interval of the race (see table 2.2).

TABLE 2.2 Bolter Beryl’s changing velocity.

Time interval (s) Displacement Δ s (m west) Average velocity during interval      (m s−1 west)

0.0−3.0 43 – 0 = 43 14.0

3.0−6.0 64 – 43 = 21  7.0

6.0−9.0 78 – 64 = 14  4.7

9.0−12.0 90 – 78 = 12  4.0

12.0−15.0 100 – 90 = 10  3.3

vav =
Δs

Δt

The average velocity during each interval is the same as the gradient of the straight line joining the 
data points representing the beginning and end of the interval. An even more detailed description of 
Bolter Beryl’s run could be obtained if the race was divided into, say, 100 time intervals. The average 
velocity during each time interval (and the gradient of the line joining the data points defining it) would 
be a very good estimate of the instantaneous velocity in the middle of the interval. In fact, if the race is 
progressively divided into smaller and smaller time intervals, the average velocity during each interval 
would become closer and closer to the instantaneous velocity in the middle of the interval.

The graph below shows how this process of using smaller time intervals can be used to find Bolter 
Beryl’s instantaneous velocity at exactly 4.0 seconds from the start of the race. Her instantaneous 
velocity is not the same as the average velocity during the 3.0 to 6.0 s time interval shown in table 2.2. 
However, it can be estimated by drawing the line AD and finding its gradient. The gradient of the line 

FIGURE 2.7 The first 9.0 seconds of Bolter Beryl’s run.
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BC would provide an even better estimate of the instantaneous velocity. If you continue this process 
of decreasing the time interval used to estimate the instantaneous velocity, you will eventually obtain a 
line that is a tangent to the curve. The gradient of the tangent to the curve is equal to the instantaneous 
velocity at the instant represented by the point at which it meets the curve.

The gradient of the tangent to the curve at 4.0 seconds in figure 2.7 can be determined by using the 
points P and Q.

gradient = rise
run

= (84 − 36) m

(8.0 − 2.0) s

= 48 m
6.0 s

= 8.0 m s−1

Bolter Beryl’s instantaneous velocity at 4.0 seconds from the start of the race is therefore  
8.0 m s–1 west.

Just as the gradient of a position-versus-time graph can be used to determine the velocity of an object, 
a graph of distance versus time can be used to determine its speed. Because Bolter Beryl and Steady 
Sam were running in a straight line and in one direction only, their distance from the starting point is 
the magnitude of their change in position. Their speed is equal to the magnitude of their velocity.

2.4.2 Graphing motion: velocity versus time
The race between Bolter Beryl and Steady Sam described by the position-versus-time graph on page 24 
can also be described by a graph of velocity versus time. Steady Sam’s velocity is 6.7 m s–1 due west 
throughout the race. The curve describing Bolter Beryl’s motion can be plotted by determining the 
instantaneous velocity at various times during the race. This can be done by drawing tangents at a 
number of points on the position-versus-time graph on page 24. Table 2.3 shows the data obtained 
using this method. The velocity-versus-time graph below describes the motion of Bolter Beryl and 
Steady Sam.
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2.4.3 Displacement from a velocity-versus-time graph
In the absence of a position-versus-time graph, a velocity-versus-time graph provides useful informa-
tion about the change in position, or displacement, of an object. Steady Sam’s constant velocity, the 
same as his average velocity, makes it very easy to determine his displacement during the race.

s = vav t(since vav = s
t)

s = 6.7 m  s–1 west × 15 s
s = 100 m west
This displacement is equal to the area of the rectangle under the graph depicting Steady Sam’s 

motion.
area = length × width

= 15 s × 6.7 m s–1 west
= 100 m west

Because the race was a dead heat, Bolter Beryl’s average velocity was also 6.7 m s–1. Her displace-
ment during the race can be calculated in the same way as Steady Sam’s.

s = vav t
= 6.7 m s–1 × 15 s
= 100 m west

However, Bolter Beryl’s displacement can also be found by calculating the area under the 
 velocity-versus-time graph depicting her motion. This can be done by ‘counting squares’ or by dividing 
the area under the graph into rectangles and triangles as shown in the ‘As a matter of fact’ panel below. 
The area under Beryl’s velocity-versus-time graph is, not surprisingly, 100 m.

In fact, the area under any part of the velocity-versus-time graph is equal to the displacement during 
the interval represented by that part.

AS A MATTER OF FACT
When an object travels with a constant velocity, it is obvious that the displacement of the object is equal to 
the area under a velocity-versus-time graph of its motion. However, it is not so obvious when the motion 
is not constant. The graphs below describe the motion of an object that has an increasing velocity. The 
 motion of the object can be approximated by dividing it into time intervals of Δt and assuming that the 
velocity during each time interval is constant. The approximate displacement during each time interval is 
equal to:

s = vav t
which is the same as the area under each rectangle. The approximate total displacement is therefore 

equal to the total area of the rectangles.

The velocity-versus-time graph confirms what you already knew by looking at the position-versus- 
time graph, namely that:
 • Steady Sam’s velocity is constant, and equal to his average velocity
 • the magnitude of Bolter Beryl’s velocity is decreasing throughout the race.

The velocity-versus-time graph allows you to estimate the velocity of each runner at any time. It 
provides a much clearer picture of the way that Bolter Beryl’s velocity changes during the race, namely 
that:
 • the magnitude of her velocity decreases rapidly at first, but less rapidly towards the end of the race
 • for most of the race, she is running more slowly than Sam. In fact, Bolter Beryl’s speed (the magni-

tude of her velocity) drops below that of Steady Sam’s after only 4.7 seconds.



28 Jacaranda Physics 11

You can use Excel to analyse and graph data; to find out how to create a chart, search online for 
Microsoft Support, then find the Charts and shapes section.

2.4 SAMPLE PROBLEM 1

In the race between Bolter Beryl and Steady Sam, how far ahead of Steady Sam was Bolter Beryl 
when her speed dropped below Sam’s speed?

SOLUTION:

Although it is possible to answer this question using the position-versus-time graph on page 24 
(you might like to explain how you would do this!), it is easier to use the velocity-versus-time 
graph (see the graph on page 26). It shows that Beryl’s speed (and the magnitude of her velocity) 
drops below Steady Sam’s 4.7 s after the race starts.

Steady Sam’s displacement, after 4.7 s, is equal to the area under the line representing the 
first 4.3 s of his motion, that is, 4.7 s × 6.7 m s–1 west. Steady Sam is therefore 31 m west of the 
starting line after 4.7 s.

Bolter Beryl’s displacement after 4.7 s equals the area under the curve representing the first 
4.7 s of her motion. This area can be estimated by determining the shaded area of the triangle P 
and rectangle Q in figure 2.10.

area = area P + area Q

= 1
2

 × 4.7 s × 11 m s−1 west + 4.7 s × 6.5 m s−1 west

= 25.85 m west + 30.55 m west
= 56.40 m west

Bolter Beryl is therefore 56 m west of the starting line after 4.7 seconds. She is 25 m ahead of 
Steady Sam when her speed drops below his.

To better approximate the displacement, the graph can be divided into smaller time intervals. The total 
area of the rectangles is approximately equal to the displacement. By dividing the graph into even smaller 
time intervals, even better estimates of the displacement can be made. In fact, by continuing the process 
of dividing the graph into smaller and smaller time intervals, it can be seen that the displacement is, in fact, 
equal to the area under the graph.

Time (s) Time (s) Time (s) Time (s)
0000

etc.
Δt
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2.5 Acceleration
2.5.1 Subtracting vectors
The rate at which an object changes its velocity is called its acceleration. Because velocity is a vector 
quantity, it follows that acceleration is also a vector quantity. The direction of the acceleration of an 
object is the same as the direction of its change in velocity.

The average acceleration of an object, aav, can be expressed as:

aav = Δv
Δt

where
Δv = the change in velocity during the time interval Δt.

2.4 Exercise 1
1 Use the graph in figure 2.10 to estimate Bolter Beryl’s displacement after 2.0 s.
2 Use the graph in figure 2.8 to determine how far ahead Bolter Beryl was 10 seconds into the race.
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2.5 SAMPLE PROBLEM 1

A car starts from rest and reaches a velocity of 20 m s–1 due east in 5.0 s. What is its average 
acceleration?

SOLUTION:

aav = v − u
t

v − u = 20 m s−1 due east − 0
= 20 m s−1

 due east

aav = 20 m s−1 due east
5.0 s

= 4.0 m s−2 due east

The change in velocity is found by subtracting the initial velocity, u, from the final velocity, v.
Thus:

aav = v − u
t

where
t is the time during which the change in velocity occurs.
In order to determine a change in velocity it is necessary to 

subtract the vector u from the vector v. One vector can be sub-
tracted from another by simply adding its negative. This works 
because subtracting a vector is the same as adding the negative 
vector (just as subtracting a positive number is the same as 
adding the negative of that number). The method of adding 
vectors is shown on page 48. One example of vector subtrac-
tion is shown in figure 2.11.

To subtract

add

which gives

from

to

a b

–a b

b

–ab – a

FIGURE 2.11 Subtracting vectors.

2.5 SAMPLE PROBLEM 2

What is the average acceleration of a cyclist riding north who slows down from a speed of 8.0 m s–1 
to a speed of 5.0 m s–1 in 2.0 s?

SOLUTION:

aav = v − u
t

v − u = 5.0 m s−1 north − 8.0 m s−1 north
= −3.0 m s−1

 north

aav = −3.0 m s−1 north
2.0 s

= −1.5 m s−2 north
A negative acceleration is called a deceleration. This acceleration could also be expressed as 

1.5 m s–2 south.
The unit of m s–2 used for acceleration is derived from the unit for the velocity (m s–1), which is 

divided by the time taken (s–1), which gives the unit m s–1 s–1. This is simplified as m s–2.
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2.5.2 Constant acceleration formulae
When acceleration is constant (including when it is zero), the motion of an object can be described by 
some simple formulae. The definition of average acceleration leads to the first of these formulae. When 
the acceleration is constant, its value is the same as the average acceleration:

a = aav = Δv
Δt

where
Δv =  the change in velocity during the time interval Δt.
When t = 0 the velocity is u.

Thus:

a = v − u
t

  [1]

Where
v is the velocity at time t.
v − u = at
       v = u + at
Note that this equation is a vector equation. The direction of the change in velocity (v – u) is the 

same as the direction of the acceleration. As long as the motion is along a straight line, the vectors can 
be expressed as positive or negative quantities. Vector notation is not necessary.

Thus: 
v = u + at.  [2]
The second of the constant acceleration equations can be found by restating the definition of average 

velocity

vav =  
s
t

where
s = displacement from the starting position at time t.
When the acceleration is constant, the average velocity can be expressed as

vav = (u + v)
2

  

Thus:
(u + v)

2
=  

s
t

s =  
1
2

 (u + v) t  [3]

Once again, vector notation is not necessary as long as the motion is along a straight line.
A third formula can be obtained by combining formulae [2] and [3]. Substituting v from formula [2] 

into formula [3] gives

s =  
1
2

 (u + u + at)t

s =  
1
2

 (2u + at)t 

s = ut +  
1
2

 at2  [4]

A final formula can be found by eliminating t from formula [3].

s = 1
2

(u + v)t (formula [3])

But t = v − u
a

 (rearranging formula [2])
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          s = 1
2

(u + v)( 
v − u

a )

⇒ = 1
2

 v
2 − u2

a
 

⇒ 2as = v2 − u2

⇒   v2 = u2 + 2as

(expanding the difference of two squares)

When attacking a problem involving straight-line motion, it sometimes helps to keep these steps 
in mind:

1. Identify all known variables. You will need to know at least three variables to find a solution using 
the equations we have seen so far.

2. Identify the variable you need to find.
3. Find the equation that only has the unknown variable and your known variables in it.
4. Substitute the values into the equation and solve for the unknown.

One of the biggest pitfalls is mixing up vav and v in these equations. Be very careful that you only 
use the equation for average speed for objects that are not obviously changing their motion — that is, 
accelerating Another thing to be careful of is to get the v and u the correct way arund.

2.5 SAMPLE PROBLEM 3

A physics student drops a coin into a wishing well and takes 3.0 s to make a wish (for a perfect 
score in the next physics test!). The coin splashes into the water just as she finishes making her 
wish. The coin accelerates towards the water at a constant 9.8 m s–2.
(a) What is the coin’s velocity as it strikes the water?
(b) How far does the coin fall before hitting the water?

SOLUTION:

(a) u = 0
 a = 9.8 m s–2

 t = 3.0 s
The appropriate formula here is v = u + at.
v = 0 + 9.8 × 3.0

= 29.4 m s−1

The coin is travelling at a velocity of 29 m s–1 down as it strikes the water.

(b) The appropriate formula here is s = ut + 1
2

at2 because it includes the three known quantities 

along with the unknown quantity s.

s = 0 + 1
2

× 9.8 × (3.0)2

= 44.1 m
The coin falls a distance of 44 m.

2.5 SAMPLE PROBLEM 4

The driver of a car travelling along a suburban street was forced to brake suddenly to prevent 
serious injury to the neighbour’s cat. The car skidded in a straight line for 2.0 s, stopping just a 
millimetre or two away from the cat. The deceleration was constant and the length of the skid 
mark was 12 m.
(a) At what speed was the car travelling as it began to skid?
(b) What was the acceleration of the car?
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2.5.3 Acceleration from a velocity-versus-time graph
The graph that follows describes the motion of an elevator as it moves from the ground floor to the 
top floor and back down again. The elevator stops briefly at the top floor to pick up a passenger. For 
convenience, any upward displacement from the ground floor is defined as positive. The graph has been 
divided into seven sections labelled A–G.

The acceleration at any instant during the motion can be determined by calculating the gradient of 
the graph. This is a consequence of the definition of acceleration. The gradient of a velocity-versus-time 
graph is a measure of the rate of change of velocity just as the gradient of a position-versus-time graph 
is a measure of the rate of change of position.

Throughout interval A (see the graph), the acceleration, a, of the elevator is:

a = rise
run

  = +8.0  m s−1

5.0 s
  = +1.6  m s−2 or 1.6  m s−2 up.

SOLUTION:

(a) s = 12 m, t = 2.0 s, v = 0 (assigning forward as positive)
The appropriate formula is:

  s = 1
2

(u + v)t

12 = 1
2

(u + 0)2.0

  u = 12  m s−1

The car was travelling at a speed of 12 m s–1. That’s about 43 km h–1.
(b) The appropriate formula is:

  v = u + at
0 = 12 + a × 2.0

a = −12
2.0

  = −6.0 m s−2

The acceleration of the car was –6.0 m s–2. 

2.5 Exercise 1
1 A parked car with the handbrake off rolls down a hill in a straight line with a constant acceleration of 

2.0 m s–2. It stops after colliding with a brick wall at a speed of 12 m s–1.
(a) For how long was the car rolling?
(b) How far did the car roll before colliding with the wall?

2 A car travelling at 24 m s–1 brakes to come to a stop in 1.5 s. If its acceleration (deceleration in this 
case) was constant, what was the car’s:
(a) stopping distance
(b) acceleration?

3 A cyclist, originally travelling at 20 m s–1, decelerates over a distance of 240 m until he is travelling at 
3 m s–1. Calculate the cyclist’s average acceleration.

4 A sprinter leaving the blocks in a 100 m race accelerates from rest to 4 m s–1 in the first metre that 
she travels.
(a) What is her acceleration over this distance?
(b) How long does this acceleration take?
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During intervals B, D and F, the velocity is constant and the gradient of the graph is zero. The accel-
eration during each of these intervals is, therefore, zero.

Throughout interval C, the acceleration is:

a = −8.0 m s−1

2.5 s
= −3.2 m s−2 or 3.2 m s−2 down.

Throughout interval E, the acceleration is:

a = −12 m s−1

2.5 s
= −4.8 m s−2 or 4.8 m s−2 down.

Throughout interval G, the acceleration is:

a = +12 m s−1

5.0 s
= +2.4 m s−2 or 2.4 m s−2 up.

Notice that during interval G the acceleration is positive (up) while the velocity of the elevator is 
negative (down). The direction of the acceleration is the same as the direction of the change in velocity.

The area under the graph is equal to the displacement of the elevator. Dividing the area into triangles 
and rectangles and working from left to right yields an area of:

(
1
2

× 5.0 s × 8.0 m s−1

) + (12.5 s × 8.0 m s−1

) + (
1
2

× 2.5 s × 8.0 m s−1

) +

(
1
2

× 2.5 s × −12 m s−1

) + (7.5 s × − 12 m s−1

) + (
1
2

× 5.0 s × −12 m s−1

)

= −5.0 m

This represents a downward displacement of 5.0 m, which is consistent with the elevator finally 
 stopping two floors below the ground floor.

= 20 m + 100 m + 10 m −  15m − 90 m − 30 m
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2.5.4 Area under an acceleration-versus-time graph
Just as the area under a velocity-versus-time graph is equal to the change in position of an object, 
the area under an acceleration-versus-time graph is equal to the change in velocity of an object. The 
 acceleration-versus-time graph of the motion of the elevator described previously is shown in the graph 
in figure 2.13. The area under the part of the graph representing the entire upward part of the journey 
is given by:

area A + area C = 5.0  s × 1.6  m s−2 + 2.5  s × −3.2  m s−2

= +8.0  m s−1 + −8.0  m s−1

= 0
This indicates that change in velocity during the upward journey is zero. This is consistent with the 

fact that the elevator starts from rest and is at rest when it reaches the top floor. Similarly, the area 
under the whole graph is zero.

The change in velocity during intervals C, D and E is given by the sum of areas C, D and E. Thus:

area C + area D + area E = 2.5 s × −3.2 m s−2 + 0 + 2.5 s × −4.8 m s−2

= −8.0 m s−1 + −12 m s−1

= −20 m s−1

The change in velocity is –20 m s–1, or 20 m s–1 down.
At the beginning of time interval C, the velocity was 8.0 m s–1 upwards. A change of velocity of 

–20 m s–1 would result in a final velocity of 12 m s–1 downwards. This is consistent with the descrip-
tion of the motion in the velocity-versus-time graph in figure 2.10. The symbol u is used to denote the 
initial velocity, while the symbol v is used to denote the final velocity:

In symbols, therefore:
v = u + Δu (since Δv = v − u)

= +8.0 m s−1 + −20 m s−1

= −12 m s−1.
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    2.6  Review 
  2.6.1  Summary 
 •    Displacement is a measure of the change in position of an object. Displacement is a vector quantity. 
 •    In order to fully describe any vector quantity, a direction must be specifi ed as well as a magnitude. 

 eMoeling:  Numerical model for acceleration
doc-0050

 Watc this eLesson:  Motion with constant acceleration
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 Watc this eLesson:  Ball toss
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 Expore morewith these wlins:
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  FIGURE 2.14     

 The following velocity –time graph describes the motion of a car for a 40 s  period of time.

Using the graph, determine (a) the car’s acceleration during its fi rst 5 s of motion, (b) the times when the car was 
stationary and (c) the car’s displacement at the end of the 40 s.
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 • Speed is a measure of the rate at which an object moves over distance and is a scalar quantity. 
Velocity is the time rate of displacement and is a vector quantity.

 • The velocity of an object measured by a moving observer is referred to as the relative velocity. The 
relative velocity is the difference between the velocity of the object relative to the ground and the 
velocity of the observer relative to the ground.

 • Average speed = distance travelled
time interval

 • The average velocity of an object, vav during a time interval, t, can be expressed as vav = s/t.

 • Instantaneous speed is the speed at a particular instant of time. Instantaneous velocity is the velocity 
at a particular instant of time.

 • Acceleration is the rate at which an object changes its velocity. Acceleration is a vector quantity. 

The average acceleration of an object, aav can be expressed as aav = Δv
Δt

, where Δv = the change in 

velocity during the time interval Δt.

 • When the acceleration of an object is constant, the following formulae can be used to describe its 
motion:

v = u + at

s = 1
2

(u + v)t

s = ut + 1
2

at2

 • The instantaneous velocity of an object can be found from a graph of its displacement versus time by 
calculating the gradient of the graph. Similarly, the instantaneous speed can be found from a graph 
of its distance versus time by calculating the gradient of the graph.

 • The displacement of an object during a time interval can be found by determining the area under 
its velocity-versus-time graph. Similarly, the distance travelled by an object can be found by deter-
mining the area under its speed-versus-time graph.

 • The instantaneous acceleration of an object can be found from a graph of its velocity versus time by 
calculating the gradient of the graph.

2.6.2 Questions
1. State which of the following are vector quantities.

(a) distance (b) displacement (c) speed (d) velocity
2. In 2004, cyclist Sarah Ulmer, of New Zealand, set a world record of 3 min 24.537 s for the 

3000 m pursuit.
(a) Calculate her average speed.
(b) Calculate the time taken by Sarah to cycle from Sydney to Newcastle, a distance of 155 km, if 

she could maintain her average speed for the 3000 m pursuit for the whole distance.
(c) Calculate the time for a car to travel from Sydney to Newcastle if its average speed is  

80 km h–1.
(d) A car travels from Sydney to Newcastle and back to Sydney in 4.0 h.

(i) Calculate its average speed.
(ii) Calculate its average velocity.

3. Explain why you cannot ever measure the instantaneous velocity of an object with a stopwatch.
4. A holidaying physics teacher drives her old Volkswagen from Sydney to Batemans Bay, a 

 distance of 300 km. Her average speed is 80 km h–1. She trades in her Volkswagen and purchases 
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a brand new Toyota Corolla. She proudly drives her new car back home to Sydney at an average 
speed of 100 km h–1.
(a) Make a quick prediction of her average speed for the whole trip.
(b) Calculate the average speed for the whole journey and explain any difference between the 

predicted and calculated average speed.
5. Which is larger in magnitude — the speed of a fly or the velocity of a fly? Explain your answer.
6. The police are pursuing a speeding motorist on a straight road. The speeding car is travelling at 

90 km h–1 (25 m s–1). The police car, initially 200 metres behind the speeding car, travels at a 
speed of 105 km h–1 (29 m s–1) with lights flashing and siren screaming. Calculate how long it 
takes the police car to catch up with the speeding car.

7. Calculate the time for:
(a) a car to accelerate on a straight road at a constant 6.0 m s–2 from an initial speed of 60 km h–1 

(17 m s–1) to a final speed of 100 km h–1 (28 m s–1)
(b) a cyclist to accelerate from rest at a constant 2.0 m s–2 to a speed of 10 m s–1.

8. Calculate (i) the change in speed and (ii) the change in velocity in each of the following 
situations.
(a) The driver of a car heading north along a freeway at 100 km h–1 slows down to 60 km h–1 as 

the traffic gets heavier.
(b) A fielder catches a cricket ball travelling towards him at 20 m s–1.
(c) A tennis ball travelling at 25 m s–1 is returned directly back to the server at a speed of 30 m s–1.

9. Calculate the average acceleration of a car, starting from rest, that reaches a velocity of 20 m s–1 
due north in 5.0 s.

10. In Acapulco, on the coast of Mexico, professional high divers plunge from a height of 36 m 
above the water. (The highest diving boards in Olympic diving events are 10 m above the water.) 
Estimate:
(a) the length of the time interval during which the divers fall through the air
(b) the speed with which the divers enter the water.

  Assume that throughout their dive, the divers are falling vertically from rest with an acceleration 
of 9.8 m s–2.

11. A skateboard rider travelling down a hill notices the busy road ahead and comes to a stop in 2.0 s 
over a distance of 12 m. Assume a constant negative acceleration.
(a) Calculate the initial speed of the skateboard.
(b) Calculate the acceleration of the skateboard as it came to a stop.

12. A car is travelling at a speed of 100 km h–1 (27.8 m s–1) when the driver sees a large fallen tree 
branch in front of her. At the instant that she sees the branch it is 50.0 m from the front of her car. 
After she applies the brakes, the car travels a distance of 48.0 m before coming to a stop.
(a) Calculate the time taken for the car to stop once the brakes were applied.
(b) Calculate the average acceleration of the car while it is braking.
(c) What other information do you need in order to determine whether the car stops before it hits 

the tree branch? Make an estimate of the missing item of information to predict whether or not 
the car is able to stop in time.

13. Amy rides a toboggan down a steep snow-covered slope. Starting from rest, Amy reaches a speed 
of 12 m s–1 as she passes her brother, who is standing 19 m further down the slope from her 
starting position. Assume that Amy’s acceleration is constant.
(a) Calculate the time taken for Amy to reach her brother.
(b) Calculate Amy’s acceleration.
(c) At what instant was Amy’s instantaneous velocity equal to her average velocity?
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14. The position-versus-time graph in figure 2.15 describes the 
motion of six different objects labelled A–E.
(a) Which two objects start from the same position, but at 

different times?
(b) Which two objects start at the same position at the 

same time?
(c) Which two objects are travelling at the same speed as 

each other, but with different velocities?
(d) Which two objects are moving towards each other?
(e) Which object has a lower speed than all of the other 

objects?
15. The velocity-versus-time graph in figure 2.16 describes the 

motion of a car as it travels due south through an intersec-
tion. The car was stationary for 6 s while the traffic lights 
were red.
(a) Calculate the displacement of the car during the time 

interval in which it was slowing down.
(b) Calculate the average acceleration of the 

car during the time interval in which it was 
slowing down.

(c) Calculate the average acceleration of the car 
during the first 4.0 s after the lights turned 
green.

(d) Calculate the average velocity of the car during 
the time interval described by the graph.

16. The graph in figure 2.17 is a record of the straight-
line motion of a skateboard rider during an 80 s 
time interval. The interval has been divided into 
sections A–E. The skateboarder initially moves 
north from the starting point.
(a) During which section of the interval was the 

skateboard rider stationary?
(b) During which sections was the skateboarder 

travelling north?
(c) At what instant did the skateboard 

rider first move back towards the 
starting line?

(d) What was the total displacement 
of the skateboarder after the 80 s 
interval?

(e) What distance did the skateboarder 
travel during the 80 s interval?

(f) During which section was the skate-
board rider speeding up?

(g) During which section was the skate-
board rider slowing down?

(h) What was the skateboarder’s 
average speed during the entire 
interval?

Time (s)
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FIGURE 2.15
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(i) What was the velocity of the skateboarder throughout section C?
(j) Estimate the velocity of the skateboarder 65 s into the interval.

17. Sketch a velocity-versus-time graph to illustrate the motion described in each of the following 
situations.
(a) A bicycle is pedalled steadily along a road. The cyclist stops pedalling and allows the bicycle 

to come to a stop.
(b) A ball is thrown straight up into the air and is caught at the same height from which it was 

thrown. The acceleration of the ball is constant and downwards.
18. The graph in figure 2.18 is a record 

of the motion of a remote-controlled 
car during an 80 s time interval. The 
interval has been divided into sections 
A–G.
(a) During which sections is the 

acceleration of the car zero?
(b) What is the total displacement of 

the car during the 80 s interval?
(c) What is the average velocity of 

the car during the entire interval?
(d) At what instant did the car first 

reverse direction?
(e) At what instant did the car first 

return to its starting point?
(f) During which sections did the car 

have a negative acceleration?
(g) During which sections was the 

car’s speed decreasing?
(h) Explain why your answers to (f) and (g) are different from each other.
(i) What is the acceleration of the car throughout section E?
(j) What is the average acceleration during the first 20 s?
(k) Describe the motion of the remote-controlled car in words.

19. Describe in words the motion shown for 
each of the scenarios A, B and C in figure 
2.19. Copy and complete the incomplete 
graphs.

20. Figure 2.20 compares the straight-line 
motion of a jet ski and a car as they each 
accelerate from an initial speed of 5.0 m s–1.
(a) Which is the first to reach a constant 

speed — the jet ski or the car — and 
when does this occur?

(b) Calculate the final speed of:
(i) the jet ski
(ii) the car.

(c) Draw a graph of speed versus time 
describing the motion of either the jet 
ski or the car.
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21. Once upon a time, a giant tortoise had a bet with 
a hare that she could beat him in a foot race over 
a distance of 1 km. The giant tortoise can reach a 
speed of about 7.5 cm s–1. The hare can run as fast 
as 20 m s–1. Both animals ran at their maximum 
speeds during the race. However, the hare was a 
rather arrogant creature and decided to have a little 
nap along the way. How long did the hare sleep if 
the result was a tie?

22. A brand new Rolls-Royce rolls off the back of 
a truck as it is being delivered to its owner. It 
lands on its wheels. The truck is travelling along 
a straight road at a constant speed of 72 km h–1 
(20 m s–1). The Rolls-Royce slows down at a 
constant rate, coming to a stop over a distance of 
240 m. It is a full minute before the truck driver 
realises that the precious load is missing. The 
driver brakes immediately, leaving a 25 m long 
skid mark on the road. The driver’s reaction time 
(time interval between noticing the problem and 
depressing the brake) is 0.5 s. How far back is the 
Rolls-Royce when the truck stops?

23. During the filming of a new movie, a stuntman has to 
chase a moving bus and jump into it. The stuntman 
is required to stand still until the bus passes him and 
then start chasing. The  velocity-versus-time graph 
in figure 2.21 opposite describes the motion of the 
stuntman and the bus from the instant that the bus 
door passes the stationary stuntman.
(a) At what instant did the stuntman reach the same 

speed as the bus?
(b) Calculate the magnitude of the acceleration of the 

stuntman during the first 4.0 s.
(c) At what instant did the stuntman catch up with 

the bus door?
(d) How far did the stuntman run before he reached 

the door of the bus?
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PRACTICAL INVESTIGATIONS

Investigation 2.1: Going home
Aim
To distinguish between scalar quantities and vector quantities

Apparatus
street directory or map 
watch

Theory
Distance and speed are scalar quantities that can be fully described as a magnitude. Displacement and 
velocity are vector quantities that specify magnitude and direction.
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Method
Draw a map to show your journey 
from school to home. It should occupy 
about half of an A4 page and be 
drawn to scale. An example of a map 
is shown in figure 2.22. Record the 
time taken to travel home on a typical 
school day.

Results
Draw and label your displacement on 
the map.

Analysis and questions
Determine and specify fully:
(a) your displacement
(b) your resultant average velocity 

during the journey home
(c) the total distance travelled
(d) your resultant average speed 

 during the journey home.

Investigation 2.2: On your bike
Aim
To record the motion of a cyclist

Apparatus
10 stop watches  bicycle and helmet
100 m measuring tape  speedometer or phone with an app such as an exercise app to log data

Theory
The instantaneous velocity of an object can be found from a graph of its displacement versus time by 
calculating the gradient of the graph. For straight-line motion in one direction only the speed is the same as 
the magnitude of the velocity.

The instantaneous acceleration of an object can be found from a graph of its velocity versus time by 
calculating the gradient of the graph.

The displacement of an object during a time interval can be found by determining the area under its 
velocity-versus-time graph.

Method
Record the motion of a bicycle or a person walking in a straight line over a distance of 100 m. Place 
 timekeepers at 10 m intervals along the track. The role of each timekeeper is to record the time interval 
between the start and the instant that the cyclist passes.

Results
Construct a table similar to the table below in which to record your results.

Time(s) Displacement (m)

 0

10

20

Analysis and questions
1. What was the average speed (in m s–1) of the cyclist?

Use the table to construct a graph of displacement versus time. Use the graph to answer the following 
questions.

2. What information does the gradient of the displacement-versus-time graph provide?
3. At what instant did the maximum speed occur?
4. What was the maximum speed (in m s–1)?
5. Express the maximum speed in km h–1.

30°

KEY
Freeway
Highway
Road
Reserve
Displacement
Route from
school to
home

s = 3 km  south 30° east

0 0.05 1 km

N

Time to travel home: 10 min
Displacement: 3 km south 30° east
Average veocty           = 5 m s –1 south 30° east
Total distance travelled: 4.2 km
Average speed          = 7 m s –1

3000 m—––—–—600 s

4200 m—––—–—600 s
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Use your displacement-versus-time graph to construct a  velocity-versus-time graph of the motion. Use 
the velocity- versus-time graph to answer the following questions.

6. How can the acceleration be determined from your velocity- versus-time graph?
7. During which time interval was the acceleration greatest?
8. Was the accleraion zero at anytime dring theride If o, at wha instat, or dring hichtim inter -

val, was the acceleration zero?
9. During which time interval (if any) was the acceleration negative?

Calculate the area under the velocity-versus-time graph and answer the following question.
10. Did you get the result that you expected? What does your result indicate about your graph?

Investigation 2.3: Analysing motion with a constant acceleration
Aim
To record the motion of an object down an inclined plane and use 
a graphical method to describe and analyse the motion

Apparatus
trolley or linear air-track glider
brick or other object (or objects) to raise one end of the plane
timing and recording device (e.g. ticker-timer, spark generator, 

 photogates or motion detector and  computer interface)
metre rule

Theory
If you are using a ticker-timer, a spark generator or photogates 
to record the motion, you will need to make use of the following 
observation. For an object moving with a constant acceleration, 
the instantaneous velocity midway through a time interval is equal 
to the average velocity during that time interval. This is shown in 
figure 2.23.

Method
Make an inclined plane by raising one end of a laboratory bench 
or a linear air track. Use an angle of approximately 10° to the 
 horizontal. Prepare the recording device and record the motion of a 
low-friction trolley or air-track glider as it accelerates down the inclined plane.

Results
If your data is recorded on ticker tape, find at least eleven consecutive clear dots.

Analysis
Use your data to determine the instantaneous velocity at enough instants of time to allow you to plot a 
graph of velocity versus time. Use a table to record time and instantaneous velocity. Include a third column 
in the table in which to record the acceleration.

Use your velocity-versus-time graph to determine the acceleration at a number of instants. Record the 
acceleration in your table and plot a graph of acceleration versus time.

Questions
1. What was the average acceleration of the trolley or glider?
2. Describe how the acceleration changes (if it does) while the trolley or glider moves along the inclined 

plane.
3. If the acceleration is not constant, explain why and suggest how the experiment could be improved so 

that it is constant.
4. What is the greatest source of error in measuring the instantaneous velocity of the trolley or glider?
5. How could the experiment be changed so that the error in measuring the instantaneous velocity of the 

trolley or glider is reduced?
6. Use your graph of velocity versus time to estimate the distance travelled by the trolley or glider. How 

does this distance compare with the distance measured with a metre rule?

Time

u

va  = u + v
–––––

2

t–
2

v

vav

t

Average
velocity
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WORKING SCIENTIFICALLY 2.2
1. Design and build a small cart that is fitted with a sail (you may adapt existing carts or toy cars for the 

purpose). The cart will then move when placed in front of a table fan or small handheld electric fan.
2. Use the fan-powered cart to investigate one of the following:

• How does the area of the sail affect the maximum speed of the cart?
• What is the relationship between the fan speed and the final displacement of the cart?
• What has the greatest effect on the maximum speed of the cart — wheel radius or cart mass?

3. Write a scientific report describing your investigation and your findings. Search online to find how 
to structure a scientific report such as the one found at the UniLearning website of the University of 
Wollongong.

WORKING SCIENTIFICALLY 2.3
A dynamics cart or linear air-track glider may be accelerated by releasing it to move freely down an incline. 
Design and conduct an investigation to determine the relationship between the slope’s incline angle and the 
cart’s or slider’s maximum acceleration.

WORKING SCIENTIFICALLY 2.4
Wheeled toys requiring a push to make them move (such as Matchbox cars) will often follow a curved 
path as they move rather than travelling in a straight line. Investigate what factors cause this curving and 
describe the conditions under which you could eliminate this effect.

WORKING SCIENTIFICALLY 2.5
Find a wind-up toy that moves linearly when released. Determine the relationship between the number of 
complete turns the winding key is given and the distance travelled by the toy. Take care not to overwind 
the toy!
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TOPIC 3
Motion in a plane

3.1 Overview
3.1.1 Module 1: Kinematics
Motion on a Plane
Inquiry question: How is the motion of an object that changes its direction of movement on a plane 
described?
Students:
 • analyse vectors in one and two dimensions to:

 – resolve a vector into two perpendicular components
 – add two perpendicular vector components to obtain a single vector (ACSPH061).

 • represent the distance and displacement of objects moving on a horizontal plane using:
 – vector addition
 – resolution of components of vectors (ACSPH060).

 • describe and analyse algebraically, graphically and with vector diagrams, the ways in which the motion 
of objects changes, including:
 – velocity
 – displacement (ACSPH060, ACSPH061).

 • describe and analyse, using vector analysis, the relative positions and motions of one object relative to 
another object on a plane (ACSPH061)

 • analyse the relative motion of objects in two dimensions in a variety of situations, for example:
 – the motion of a boat on a flowing river
 – the motion of two moving cars
 – the motion of an aeroplane in a crosswind (ACSPH060, ACSPH132).

FIGURE 3.1 The motion of objects such as cars and aircraft is described in two 
and three dimensions rather than rectilinearly.



   3.2  Graphical treatment of vectors 
  3.2.1  Drawing vector diagrams to scale 
 Up until now, we have only examined motion in a rectilinear framework — that is, where motion occurs 
along a single line. While such analysis is useful when we consider motion along straight roads or railway 
tracks, motion in the real world is more realistically represented by vectors acting in two and three 
dimensions. 

 Changes in position and other vector quantities such as velocity and acceleration can be depicted by 
scale diagrams, and the resultant determined simply by using a ruler and protractor. 

 When drawing vectors, selecting an appropriate scale for their length is vitally important. After all, if you 
want to draw a vector that represents an object moving   200 m   south, it would be unwise to choose a scale of 
  1   centimetre for every metre, as you 
would need to draw an arrow   2  m   in 
length. On the other hand, it would be 
equally unwise to use   1 mm   for every 
  100   metres, as the vector diagram would 
be too tiny to read. 

 To draw a vector diagram, the following 
steps should be followed: 
1.    Select a sharp pencil, a ruler with a 

good edge and a protractor. 
2.    Choose a suitable scale for your 

diagram. 
3.    Mark a faint horizontal line on your 

page. This will be your baseline. 
4.    Mark a small point on your baseline. 

This is where your vector will start. 
5.    Place the crosshairs of your protractor 

on the point and mark, on your page, 
the position of the angle at which you 
need to draw your vector. 

6.    Place your ruler so that it connects 
the starting point and the angle mark. 

7.    Using your selected scale, draw a line 
from the starting point, along the ruler, 
for the required length. 

8.    Draw an arrowhead where you have 
ended your line. 

9.    Write the magnitude of the vector 
next to it (don’t forget the units) and 
mark in the angles where appropriate.     
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  FIGURE 3.2  Drawing vector diagrams.  
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  Using this system, the displace-
ment vector of a cyclist as he rides 
north-east for   5 km   would be drawn 
like this:        

5 km

45°

  FIGURE 3.3  Displacement vector representing   5 km , north-east.   

3.2  SAMPLE PROBLEM 1 

 Draw a vector diagram representing a displacement of   100   m   to the east. 

 SOLUTION:  

1. First draw your baseline and mark your starting point. 
2.    Mark your angle using your protractor. Remember that east is represented by   0°   on the right-hand 

side of the protractor. 
3.    Here, a scale of   1 cm   to every   10 m   has been selected. This means that we will draw a   10 cm   line 

for our vector. 
4.    Placing the ruler to connect the starting point and the angle mark, we draw our   10 cm   line. 
5.    Finally, we draw an arrowhead on the end of the vector, and mark the value that it represents above it.   

0°

Step 2

Step 1

Step 4

100 m, east

Step 5

0 1 2 3 4 5 6 7 8 9   cm 10

  FIGURE 3.4   



3.2.2 Vector Addition
Vector diagrams are particularly helpful when evaluating the final displacement of an object travelling for 
different distances in different directions over the course of its journey.

In these cases, each ‘leg’ of the journey is represented by a different vector, and these vectors are ‘added’ 
sequentially by positioning the ‘tail’ of each vector at the ‘head’ of the previous vector.

3.2 SAMPLE PROBLEM 2

Draw a vector representing the motion of a cyclist travelling 20 km south-east.

SOLUTION:

1. Once again, we draw our baseline and our starting point.
2. Place your protractor on the starting point and rotate it so that you are measuring 45° underneath 

the baseline. Mark the angle’s position.
3. Place your ruler between the starting point and the angle mark.
4. This time we’ve selected a scale of 1 cm for every 5 km, so we draw our line segment from the 

starting point until it is 4 cm long. This represents 20 km.
5. Add the arrowhead, the magnitude and the angle.

45°

Step 1

Step 2

45°

Step 5

20 km south-east

FIGURE 3.5

3.2 SAMPLE PROBLEM 3

A plane flies due north for 50  km, turns north-east and continues for 150  km and then flies due east for 
80 km.
(a) Draw a vector diagram showing the plane’s journey.
(b) Use the vector diagram to determine the final displacement of the plane from its starting 

position.
(c) What distance has the plane travelled?
(d) If the total journey took 30 minutes, determine the plane’s (i) average speed and (ii) average 

velocity.
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SOLUTION:

(a) Choosing a scale of 1 cm = 10 km, 
the three legs of the journey can be 
represented like this:

(b) To determine the plane’s displace-
ment, a vector is drawn from the 
plane’s starting point to the plane’s 
final position as shown:

Using a ruler, the length of this dis-
placement vector is found to be 24.3 cm 
long; as the scale of the diagram is 
1 cm = 10 km, this means that the dis-
placement vector has a magnitude of 
24.3 cm × 10 km/cm = 243 km.

To find the direction of the 
displacement vector, a horizontal line 
is drawn through the starting point, 
and a protractor is used to determine 
the angle between the horizontal and 
the displacement vector:

As a result, the displacement of the 
plane is 243 km east 40° north (or, 
equally, north 50° east).

150 km 
north-east

80 km, east

50 km, north

45°

FIGURE 3.6

150 km north-east

80 km, east

50 km north

45°

FIGURE 3.7

150 km north-east

80 km, east

50 km north

243 km45°

40°

FIGURE 3.8



(c) The distance covered by the plane is simply equal to the sum of the distances covered in each 
individual leg of the journey: 50 km + 150 km + 80 km = 280 km.
As distance is a scalar quantity, there is no direction associated with this value.

(d)  (i)  The average speed of the plane is determined by dividing the distance travelled by the time 
of flight:

average speed = distance
time

= 280 km
0.5 h

= 560 km  h−1

(ii) The average velocity is determined from the displacement as follows:

vav = s
t

= 243 km
0.5 h   at east 40° north

= 486  km h−1 at east 40° north

B

R

A + B + C = R B + A + C = R C + A + B = R

R

C C

R

C

B

A

A

A

B

FIGURE 3.9 The resultant vector does not depend upon the order in which the contributing 
vectors are added.

WORKING SCIENTIFICALLY 3.1
Design and carry out an investigation to determine the average velocity of an ant. Note that the ant is not to be 
harmed in any way and is to be returned to the place from where it was collected.
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When vectors are added together, their sum is referred to as the resultant vector (or, simply, the 
resultant).

It should be noted that, when adding vectors together, the order in which the individual vectors are 
placed does not affect the magnitude or direction of the resultant vector. If we define three vectors A, 
B and C as shown below, it is quite clear that

A + B + C = B + A + C = C + A + B

 Expore morewith his wlik: Visually adding vectors

 RESOURCES
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3.3 Algebraic resolution of vector 
addition
3.3.1 Adding two perpendicular vectors
While drawing scale diagrams helps in solving a problem involving the addi-
tion of vectors, its major shortcoming is its lack of precision. A wobbly ruler, 
a blunt pencil or a poor-quality protractor might combine to produce a 
resultant with a large degree of error. Consequently, algebraic determinations 
of resultant vectors are preferred.

The simplest case of vector addition occurs when two vectors are at right 
angles to each other. The magnitude of the resultant can be found by using 
Pythagoras’s theorem and trigonometric methods employed to determine the 
resultant vector’s direction.

3.2 Exercise 1
 1 Draw vectors to represent the following:

(a) 70 m due east
(b) 2 km due south
(c) 600 m at 70° north of east

 2 Use a vector diagram to determine the resultant velocity of the following. In each case, give velocity to 2 
significant figures, and angles to the nearest whole number degree.
(a) 20 m s−1 due North, 10 m s−1 due West, 8 m s−1 NW.
(b) 100 km h−1 at 30° west of south, 80 km h−1 at 45° east of south, 60 km h−1 due south 

c
a

b

FIGURE 3.10
Pythagoras’s theorem: 
for any right-angled 
triangle with sides 
a, b and c as shown:
c2 = a2 + b 2

3.3 SAMPLE PROBLEM 1

Jess cycles 4  km due east and then 7  km due north. Calculate (a) her distance covered and (b) her 
displacement.

SOLUTION:

(a) The distance covered will simply be 4  km + 7  km = 11  km.
(b) By using Pythagoras’s theorem, we can calculate R:

R2 = (4  km)2 + (7  km)2

= 16 + 49
= 65  km2

So, R = √65  km2

= 8.06  km
 

and θ = tan−1 
7 km
4 km

= 60.3°

Therefore, her displacement is equal to 8.06 km at 60.3° north of east.

R

4 km east

7 km north

θ

FIGURE 3.11



3.3.2 Adding two non-perpendicular vectors
In the case where two vectors to be added are not perpendicular to each other, 
the cosine rule and the sine rule can be used to determine the magnitude and 
angle of the resultant vector.

cosine rule: in any triangle ABC, c2 = a2 + b2 − 2ab cos  C.

sine rule: in any triangle ABC, a
sin  A

= b
sin  B

= c
sin  C

3.3 SAMPLE PROBLEM 2

A car travels 4.0 km north and then 6.0 km west in 10  min. Calculate (a) its average speed and (b) its 
average velocity.

SOLUTION:

(a) distance = 4.0 km + 6.0 km = 10 km

time = 10  min = 10
60

  h

average speed = distance
time

= 10 km

(10
60) h

= 60 km h−1

(b) To find vav, we must first find the value of the displacement s.
Using Pythagoras’s theorem, we find the magnitude of the displacement vector:

s2 = (4)2 + (6)2 = 52
s = 7.2  km

θ = tan−1 (
6
4)

= 56.3° west of north

s = 7.2 km at 56.3° west of north

vav = s
t

= 7.2  km

(10
60) h

  at north 56.3°  west

= 43.2  km h−1  at north 56.3°  west

FIGURE 3.12

s

6.0 km west

4.0 km north

θ

c

b

a

A

B

C

FIGURE 3.13 The 
labelling convention for 
a triangle when using 
the sine rule and the 
cosine rule.
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3.3.3 Adding multiple vectors
All vectors in two dimensions can be considered to be made up of two 
components — a horizontal (or x-axis) component and a vertical (or y-axis) 

component. By using trigonometry, we can calculate the size of these com-
ponent vectors.

If you use polar angles, then
Rx = R  cos θ , and Ry = R  sin θ

where R is the magnitude of the vector and θ  is the vector’s polar angle, 
as shown in figure 3.15.

When a series of vectors is added, we add all the individual horizontal 
components to find a single resultant horizontal component and all the 
individual vertical components to find a single resultant vertical component. 
These two vectors are the independent horizontal and vertical components 
of the resultant vector.

3.3 SAMPLE PROBLEM 3

A cyclist travels due east for 4 km before turning 60° towards the south and then continuing to ride 
for a further 8 km. What is the cyclist’s displacement?

SOLUTION:

Clearly, the interior angle between the 4 km and the 8 km  
vectors is equal to 120° (the complementary angle of 60°).

Using the cosine rule, the magnitude of the displacement s  
can be found:

s2 = (4)2 + (8)2 − 2(4)(8) cos  120°
= 80 − 64(−0.5)
= 112

 s = 10.58 km
The sine rule is then used to find θ :

10.58
sin 120°

= 8
sin θ

12.22 = 8
sin θ

 

θ = sin−1 (
8

12.22) = 40.9°

Hence, s = 10.58 km at 40.9° south of west.

8 kms

4 km

60°120°θ

FIGURE 3.14

WORKING SCIENTIFICALLY 3.2
Pin each end of a 15 cm length of string to a piece of foamboard using thumbtacks. Pull the string into an angle 
using a third thumbtack. Investigate how the size of the maximum angle subtended at the third thumbtack 
varies according to the separation of the thumbtacks anchoring the string. Derive an equation that describes the 
relationship.

R Ry = R sin θ

Rx = R cos θ

θ

FIGURE 3.15 All vectors 
may be described as the 
sum of their horizontal and 
vertical component 
vectors.



When adding vectors by perpendicular components:
1. add all horizontal components to find Rx (the horizontal component of the resultant)
2. add all vertical components to find Ry (the vertical component of the resultant)
3. use Pythagoras’s theorem to find the magnitude of R
4. use trigonometry to find the value of θ  (the resultant angle).

3.3 SAMPLE PROBLEM 4

A yacht navigates a passage through a reef, first sailing 5  km at 30° north of east, then 8 km south-
east, 4  km south and, finally, 10 km at 20° west of south. What is the yacht’s final displacement from 
the point at which it started to negotiate the reef?

SOLUTION:

First, each position vector is resolved into its horizontal and vertical components:

4 km

270°

sx = 4 cos  270° = 4(0) = 0
sy = 4 sin  270° = 4(−1) = −4 km

FIGURE 3.18

FIGURE 3.16

5 km

30°

sx = 5 cos  30° = 5(0.8660) = 4.33 km
sy = 5 sin  30° = 5(0.50) = 2.5 km

8 km

315°

sx = 8 cos  315° = 8(0.7071) = 5.7 km
sy = 8 sin  315° = 8(−0.7071) = −5.7 km

FIGURE 3.17
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250°

10 km

sx = 10 cos  250° = 10(−0.342) = −3.4 km
sy = 10 sin  250° = 10(−0.940) = −9.4 km

FIGURE 3.19

Therefore, the yacht’s displacement is 17.9 km at 68.2° south of east.

3.3 Exercise 1
 1 (a)  What is the displacement of a Volkswagen that travels west along a road for 10 km and then south for 

8 km?
(b) What is the distance covered by the Volkswagen?

 2 A skateboarder travels east for 500 m and then turns sharply until he is travelling 10° west of south. He 
travels in this direction for 300 m. If his entire journey took 45 seconds, determine his average velocity for 
this time period.

 3 A small boat sets out from the west bank of a river, crossing to its east bank and travelling at 4  m s−1. The 
river current flows from north to south at 5  m s−1. What will be the resultant velocity of the boat?

 4 Find the horizontal and vertical components of the following vectors:
(a) 300 km at 75°
(b) 10  m s−1 at 35° west of south
(c) 6  m at 310°
(d) 4  m s−2 at −60°

 5 Over the course of two hours, a runner travels north for 5 km, then 4 km north-west and finally 10 km at 10° 
east of south. What was the runner’s average velocity?

Now adding the horizontal components:

Rx = 4.33 km + 5.7 km + 0 + −3.4 km = 6.63 km

Now adding the vertical components:

Ry = 2.5 km + − 5.7 km + − 4 km + −9.4 km = −16.6 km

R

θ
6.63 km

16.6 km

R = √6.632 + 16.62 = 17.9 km

θ = tan−1 (
16.6
6.63) = 68.2°

FIGURE 3.20

 Expore morewith his wlik: Vector addition

 RESOURCES



3.4 Vector subtraction
3.4.1 Acceleration in two dimensions
As you will recall from the previous chapter, the average acceleration of an object is equal to the rate of 
change of the object’s velocity per unit time:

a = Δv
Δt

This can be expressed in the equation

a = v − u
t

It can be seen that, to evaluate the average acceleration vector, the vector subtraction of the initial velocity 
u from the final velocity v over the time period must be resolved. This is achieved by adding the inverse 
vector of u (called −u) to v. The vector −u is equal in magnitude to u but is directed in the opposite 
direction.

v

–u

u v + –u

–u

v
= v – u

FIGURE 3.21

3.4 SAMPLE PROBLEM 1

What is the average acceleration of a cyclist riding north who slows down from a speed of 8 m s−1 to 
5 m s−1 over 2.0 s when turning a corner to travel east?

SOLUTION:

Using Pythagoras’s theorem and the triangle above:

(v − u)2 = (5)2 + (8)2 = 89
(v − u) = 9.4 m s−1

θ = tan−1 (
8
5) = 58°

So (v − u) = 9.4 m s−1 at 58° south of east (or south 32° east)

a = (v − u)
t

= 9.4 m s−1

2.0 s
 at south 32° east

= 4.7 m s−2 at south 32° east

–u = 8 m s–1,
south

u = 8 m s–1,
north

v = 5 m s–1, east

v – u

5 m s–1, east

8 m s–1,
south

θ

FIGURE 3.22
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3.4.2 Relative velocity in two dimensions

As you will recall from the previous chapter, relative velocity is the velocity of an object as measured by 
a moving observer. The velocity of an object vB relative to an observer travelling at a velocity vA can be 

described by the equation
vBrelA = vB − vA

PHYSICS FACT
A non-zero acceleration does not 
always result from a change in 
speed. Consider a car travelling 
at 60 km h−1 in a northerly 
direction turing right and 
continuing in an easterly  
direction at the same speed. 
Assume that the complete turn 
takes 10 s The average acceler-
ation during the time interval of 
10 s is given by:

aav = Δv
Δt

.

The change in velocity must be 
determined first. Thus,

Δv = v − u
= v + −u.

The vectors v and −u are 
added together to give the 
resulting change in velocity.

The magnitude of the change 
in velocity is calculated using 
Pythagoras’s Theorem or trigonometric ratios to be 85 km h−1. Alternatively, the vectors can be added using a 
scale drawing and then measuring the magnitude and direction of the sum. The direction of the change in 
velocity can be seen in figure 3.23 to be south-east.

aav = Δv
Δt

= 85
10

= 8.5 km h−1
 s−1

 south-east

3.4 SAMPLE PROBLEM 2

Two skateboard riders, Finn and Jess, are travelling north along the same bike path. Finn is travelling 
at 12 m s−1 when Jess, 20 metres behind him, is travelling at 16 m s−1.
(a) What is Finn’s velocity relative to that of Jess?
(b) What is Jess’s velocity relative to that of Finn?
(c) How long will it take Jess to catch up to Finn?

u

v

N

S

EW

60 km h–1 east

60 km h–1 north

–u

v

Δv = v + –u)

Δv

60 km h–1 east

60 km h–1 south

45°

45°

FIGURE 3.23 A change in velocity can occur even if there is no 
change in speed.
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3.4 SAMPLE PROBLEM 3

A light plane is flying north at a speed of 200 km h−1 when it encounters winds. Relative to the plane, 
the winds are travelling at 20 km h−1 on a bearing of north 40° east. What would be the velocity of the 
winds as seen by a stationary observer on the ground?

SOLUTION

vw rel p = vw − vp

Rearranging the equation, we get
vw = vw rel p + vp

The horizontal and vertical components of vw are found by adding the perpendicular components 

of vw rel p and vp:

horizontal component of vw = 200 cos  90° + 20 cos  40° = 0 + 15.3 = 15.3 km h−1

vertical component of vw = 200 sin  90° + 20 sin  40° = 200 + 12.9 = 212.9 km h−1

SOLUTION

(a)

 

vF rel J = vF − vJ
= (12 m s−1,  north)−(16 m s−1,  north)
= −4 m s−1,  north
= 4 m s−1,  south

To Jess, it appears that Finn is moving back towards her at 4 m s−1.

(b)
 
vJ rel F = vJ − vF

= (16 m s−1,  north)−(12 m s−1,  north)
= 4 m s−1,  north

To Finn, it appears as if Jess is coming up from behind him at 4 m s−1.
(c) Finn is located 20 m north of Jess.

As vav = s
t
, then

t = s
vav

= 20 m,  north

4 m s−1,  north
= 5 s

200 km h–1, north
vw

20 km h–1, north 40° east

FIGURE 3.24
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vw = √(15.3)2 + (212.9)2

= 213.4 km h−1

 θ = tan−1 (
212.9
15.3 ) = 85.9°

Therefore, to a stationary observer, the wind is travelling at 213.4 km h−1 at 85.9° north of east  
(or north 4.1° east)

3.4 Exercise 1
 1 A car travelling at 20 m s−1 south slows to 15 m s−1  What s the cars decleraion? ( Note: deceleration is the 

term used for a negative value of acceleration.)
 2 What is the acceleration experienced by a tennis player’s racquet travelling at 10 m s−1 if it is swung in a 90° 

arc in 0.4 s to travel at 20 m s−1?
 3 A model car travelling 4 m s−1 east veers around a rock and, 4.0 seconds later, is moving at 6 m s−1 at 50° 

east of north. What was the model car’s acceleration?
 4 The yacht Saucy Gibbon is sailing due south at 6 knots when a cruise ship is spotted in the distance. The 

cruise ship is moving due east at 20 knots.
(a) What is the velocity of the cruise ship relative to the yacht?
(b) What is the velocity of the yacht relative to the cruise ship?

 5 Thuy is on the west bank of a river that flows from north to south at a speed of 5 m s−1. She is easily able to 
swim at a constant speed of 1 m s−1. The river is 30 m wide.
(a) On what bearing should Thuy swim to end up on the east bank at a point directly opposite her starting 

position?
(b) How long will it take Thuy to reach the other side of the river?

WORKING SCIENTIFICALLY 3.3
Using two battery-powered cars, investigate how the velocity of one car relative to the other changes according 
to the angle between their directions of motion. Note that this will require you to first determine the speeds of 
the individual vehicles and to devise a method of ensuring that they are travelling at constant speed when 
placed in their starting positions.

212.9 km h–1

15.3 km h–1

vw

θ

FIGURE 3.25
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3.5 Review
3.5.1 Summary
 • A vector is represented by an arrowed line with a length that represents the magnitude of the vector 

quantity and that points in the direction that the quantity acts.
 • Displacement, velocity and acceleration are all vector quantities and are given in terms of a magnitude 

and a direction.
 • A vector can be resolved into two independent, perpendicular components:

Vx = V cos θ , and Vy = V sin θ
 • Two vectors are added by placing the tail of the second vector at the head of the first vector. The sum of 

the vectors is represented by a resultant vector, which is drawn from the tail of the first vector to the head 
of the last vector.

 • Vectors can be added using graphical or algebraic methods.
 • The horizontal and vertical components of the resultant vector are found by adding the horizontal and 

vertical components of the individual vectors being added.
 • In vector subtraction, the resultant of A − B = A + (−B) where (−B) has the same magnitude as B but 

is directed in the opposite direction.
 • Relative velocity is the velocity of an object as measured by a moving observer. The velocity of A relative 

to B (VA rel B) is found from the velocities of A and B relative to a stationary frame of reference:

(VA rel B) = VA − VB

3.5.2 Questions
1. Can two vectors with different magnitudes be combined to give a zero resultant? Can three vectors with 

different magnitudes be combined to give a zero resultant?
2. What is the largest possible resultant vector that you could make using two vectors of magnitudes 10 N 

and 9 N? What is the smallest you could make?
3. At what angle(s) are the horizontal and vertical components of a vector equal?
4. In which of the following diagrams does A + B = C?

C

C

C

–C

B

B

B

B

A

A

A

A

(a) (b)

(c) (d)

FIGURE 3.26
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5. Is it possible to determine the direction of motion of an object moving in two dimensions from a 
velocity–time graph? Explain.

6. Does a car travelling at 60 km h−1 north have the same velocity as a car travelling east at 60 km h−1? 
Explain your answer.

7. Two position vectors have lengths corresponding to 20 m and 30 m.
(a) What is the largest magnitude their vector sum can have?
(b) What is the smallest magnitude that their vector sum can have?

8. Determine the resultant displacement in each of the following cases:
(a) 10 m north + 15 m north
(b) 12 km north + 10 km south
(c) 1 km north + 150 m east
(d) 100 km north + 100 km north-east.

9. (a) Determine the resultant displacement in each case by drawing a scale diagram:

(i) 7 m at 90°, 6 m at 180°
(ii) 100 km at 110°, 140 km at 270°
(iii) 50 km at 30°, 60 km at 90°, 50 km at 180°
(iv) 1200 m at 300°, 800 m at 120°, 2000 m at 230°.

(b) Use algebraic methods to determine the resultant displacement in each of (i) – (iv) above. How 
closely do your calculated answers match your answers in (a)?

10. A car travelling east at a speed of 100 m s−1 turns right to head south at the same speed. Has the car 
undergone an acceleration? Explain your answer with the aid of a diagram.

11. Calculate the average acceleration of:
(a) a car, starting from rest, which reaches a velocity of 20 m s−1 due north in 5.0 s
(b)  a cyclist travelling due west at a speed of 15 m s−1, who turns to cycle due north at a speed of 

20 m s−1 (the change occurs in a time interval of 2.5 s)
(c) a bus travelling due north at 8.0 m s−1, which turns right to travel due east without changing speed, 

in a time interval of 4.0 s.
12. A motorbike travelling north at 12 m s−1 turns a corner and heads west without changing speed. If it 

took 1.5 s to make the turn, what was the motorbike’s average acceleration?
13. A pilot flies 400 km in a direction 60° south of east and then 250 km in a direction 45° south of east. 

What was the plane’s displacement from its starting position?
14. A hiker walks 20.0 km in an easterly direction and then walks for 42.0 km in a direction 50° north of 

west.
(a) Draw a vector diagram of the hiker’s journey.
(b) What distance has the hiker travelled?
(c) What is the hiker’s displacement from his starting point?
(d) If the journey takes ten hours of walking, determine the hiker’s (i) average speed and  

(ii) average velocity.
15. A boat able to travel at 10 km h−1 is attempting to cross a river that flows at 6 km h−1 westward. If the 

river is 600 m wide, find (a) the time the boat takes to cross the river, and (b) the distance downstream 
from its starting position that the boat will land on the opposite bank of the river.

16. A cyclist is riding north at 12 km h−1 when it starts to rain. The rain appears to be falling towards her 
at an angle of 10° relative to the vertical. Deciding to return home, the cyclist turns south, riding at the 
same speed. Now the rain appears to be coming towards her at an angle of 6° to the vertical. What is 
the velocity of the rain?

17. Looking at a map, a tourist finds that the museum she wants to go to is 840 metres away on a bearing of 
30° south of west. However, the region of city that she is in only has streets orientated north-south and 
east-west. What is the minimum distance she would need to walk to reach the museum?



62 Jacaranda Physics 11

18. A plane flies 480 km east from town A to town B in 45 minutes, 920 km south-east from town B to 
town C in 90 minutes and then 320 km south-west from town C to town D in 30 minutes. What is the 
plane’s average velocity in flying from town A to town D?

19. Traditionally, the lead horse on a carousel is the largest and most ornately decorated one. On a 
particular carousel, the lead horse moves at a constant speed of 10 m s−1 and takes five seconds to 
move through a complete circle. What is the magnitude of the average acceleration of the lead horse? 
(HINT: consider the velocity vectors for one quarter of a rotation.)

20. A car travels for 40 km with an average velocity of 60 km h−1 south-west. With what velocity would 
the car need to travel over the next 40 km if it is to have an overall average velocity of 80 km h−1 at 
10° north of west?

21. A stationary radar operator notes a ship that is 20 km out at sea on a bearing of 250° relative to his 
position. Two hours later, the same ship is observed to be 10 km out at sea on a bearing of 290°. If the 
ship maintained a constant speed and did not change course between the two observations, what is the 
ship’s velocity?

22. A mine shaft extends 50 m straight down into the earth. At the bottom of the mineshaft, a horizontal 
tunnel proceeds north for 70 m and then turns west for 30 m. What is the displacement at the end of 
the western tunnel from the mine entrance on the surface?
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TOPIC 4
Forces

4.1 Overview
4.1.1 Module 2: Dynamics
Forces
Inquiry Questions:
1. How are forces produced between objects and what effects do forces produce?
2. How can the motion of objects be explained and analysed?

Students:

 • using Newton’s Laws of Motion, describe static and dynamic interactions between two or more objects 
and the changes that occur resulting from:
 – a contact force
 – a force mediated by fields.

 • explore the concept of net force and equilibrium in one-dimensional and simple two-dimensional con-
texts using: (ACSPH050)
 – algebraic addition
 – vector addition
 – vector addition by resolution into components.

FIGURE 4.1 The motion of all vehicles depends on the sum of all the forces acting on them. The same 
statement applies to the occupants.
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 •   solve problems or make quantitative predictions about resultant and component forces by applying the 
following relationships: 

   
FAB = –FBA
  Fx = Fcos θ , Fy = F sin θ     

 •   conduct an investigation to explain and predict the motion of objects on inclined planes (ACSPH098)  
 •   apply Newton’s fi rst two laws of motion to a variety of everyday situations, including both static and 

dynamic examples, and include the role played by friction (ACSPH063)  
 •   investigate, describe and analyse the acceleration of a single object subjected to a constant net force and 

relate the motion of the object to Newton’s Second Law of Motion through the use of: (ACSPH062, 
ACSPH063)  
 –   qualitative descriptions  
 –   graphs and vectors  
 –   deriving relationships including   Fnet = ma   and relationships of uniformly accelerated motion.      

     4.2  Analysing forces 
  4.2.1  Describing forces 
 A  force  is exerted by one object on another, and is an interaction that allows a change to the states of motion 
of the objects. In simpler terms, we can say that a force is a ‘push’ or a ‘pull’. As force is a vector quantity, 
it has both magnitude and direction associated with it. When turning on a tap, pulling a chair across the 
fl oor, pushing a pencil across a page or scrunching up a piece of paper, a force is being applied to an object. 

 The SI unit of force is the  newton    (N)  , named after Sir Isaac Newton, the English scientist whose work 
contributed so much to our understanding of forces in the physical world. A newton is not a particularly big 
measurement: a little less than   1 N   of force is exerted when lifting a   100 g   apple, nearly   10 N   when picking 
up a   1 kg   bag of potatoes and about   490 N   when lifting a   50 kg   person. 

  4.2.2  Contact and
non-contact forces 
 Forces can be categorised as either 
 contact forces  or  non-contact forces . 
A contact force is exerted by an object 
that is in physical contact with another 
object, while a non-contact force can 
be exerted by an object that is not 
touching the thing that it is infl uencing. 
The force applied in pulling out a chair, the friction that stops 
your shoe slipping on the ground and the buoyant force that 
pushes us towards the surface when we are in the water are all 
examples of contact forces. 

 The effects of gravity, magnetism and electrostatics are 
examples of non-contact forces. An apple falls downwards 
from a tree because of the gravitational force that the Earth 
itself exerts on it at a distance. Similarly, a steel pin will be 
pulled towards a magnet across a tabletop.         

Non-contact force

(a) (b)

Non-contact force

(c)
Non-contact force

Contact force

  FIGURE 4.2  Contact and non-contact forces at work.  

  Examples of 
contact forces  

  Examples of
non-contact forces  

  applied 
 friction 
 air resistance 
 fl uid drag 
 tension 
 normal 
 buoyant  

  gravitational 
 electromagnetic 

 electrostatic 
 strong nuclear 
 weak nuclear  

 TABLE 4.1 Contact forces and non-contact 
forces. 
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4.3 Forces in action
4.3.1 Gravity — an attraction to Earth
The apple in figure 4.3 is attracted to the Earth by the force of gravity. Even before it falls, the force of 
gravity is pulling it down. However, before it falls, the tree branch is also pulling it up with a force of equal 
magnitude.

The force of gravity is a force of attraction that exists between any pair of objects that have mass. 
Gravity is such a small force that, unless at least one of the objects is as massive as a planet or a natural 
satellite like the Moon, it is too small to measure.

The force on an object due to the pull of gravity is called weight and is usually given the symbol W. The 
magnitude of the weight of an object is directly proportional to its mass (m). Thus, W ∝  m.

The weight of an object also depends on where it is. For 
example, the weight of your body on the Moon is considerably 
less than it is on Earth. Your mass remains the same wherever 
you are because it is a measure of the amount of matter in an 
object or substance. The gravitational field strength, which is 
usually given the symbol g, is defined as the force of gravity 
on a unit of mass. Gravitational field strength is a vector quan-
tity. In symbols,

g = W
m

Thus:

W = mg

The gravitational field strength, g, can be expressed in units 
of N kg−1. However, g can also be expressed in units of m s−2 
because it is also equal to the acceleration due to gravity.

The magnitude of the gravitational field strength, g, at 
the Earth’s surface is, on average, 9.81 m s−2. Its magnitude 
decreases as altitude (height above sea level) increases. The 
magnitude of g also decreases as one moves from the poles towards the equator. Table 4.2 shows the 
magnitude of g at several different locations on Earth. The magnitude of the gravitational field strength at 
the surface of the Moon is approximately one-sixth of that at the surface of the Earth. 

The magnitude of g at the Earth’s surface will be taken as 9.8 m s−2 throughout this text. At the surface 
of the Moon, the magnitude of g is 1.6 m s−2.

Air resistance (R)
upwards

R

W
Weight (W )
downwards

FIGU E 4.3  Force is a vector quantity. 
Symbols representing vector quantities 
are in bold italic type in this text.

Location Altitude (m) Latitude Magnitude of g (ms–2)

Equator 0 0° 9.780

Sydney 18 34°S 9.797

Melbourne 12 37°S 9.800

Denver 1609 40°N 9.796

New York 38 41°N 9.803

North Pole 0 90°N 9.832

TABLE 4.2 Variation in gravitational field strength.
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  4.3.2  Normal reaction force 
  It is almost certain that at this very moment you are sitting on a chair with 
your feet on the fl oor. If your weight were the only force acting on you, 
what would happen? What stops you from falling through the fl oor? 

 Clearly, there must be at least one other force acting on you to stop 
you from falling through the fl oor. As fi gure 4.4 shows, the chair is 
pushing upwards on your body and the fl oor is pushing up on your feet. 
(You can actually control the size of each of these two upward forces 
by pushing down with your feet. However, that’s another story.) The 
sum of these upward forces must be just enough to balance the pull of 
gravity downwards. Each one of these upward forces, or support forces, 
is called a  normal reaction  force. It is described as a  normal  force 
because it acts at right angles to the surface. It is described as a  reaction  
force because it is only acting in response to the force that your body is 
applying to the fl oor.     

 The normal reaction force is represented by the symbol   R   and it is 
equal in magnitude to the sum of the forces exerted perpendicularly to 
a surface.     

Normal
reaction
forces

Weight

  FIGURE 4.4  There is more 
than one force acting on you 
when you sit on a chair.  

 PHYSICS FACT 
 Bathroom scales are designed for use only on Earth. Fortunately (at this time), 
that’s where most of us live. 

    If a   60 kg   student stood on bathroom scales on the Moon, the reading would 
be only about   10 kg  . Yet the mass of the student remains at   60 kg  . Bathroom 

scales measure force, not mass. 
  However, scales are designed so that you 

can read your mass in kilograms on Earth. 
Otherwise, you would have to divide the 
measured force by   9.8   to determine your mass. 
The manufacturer of the bathroom scales saves 
you the trouble of having to do this. 

     The   60 kg   student has a weight of about   600 N   on the Earth. However, 
on the Moon the student’s weight is only about   100 N  . The reading on the 
Earth-manufactured scales will be   100 N   divided by   9.8 m s−2  , giving the 
result of   10 kg  . 

 4.3 SAMPLE PROBLEM 1 

 CALCULATING WEIGHT 

 Calculate the weight of a   50 kg   student:  
(a)   on the Earth  
(b)   on the Moon.   

 SOLUTION  :

(a)   on the Earth 

   
W = mg

= 50 × 9.8
= 490 N downwards

    

(b)   on the Moon 

   
W = mg

= 50 × 1.6
= 80 N downwards

   

 Note that the direction must be stated to describe the weight fully as weight is a vector.   
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 WORKING SCIENTIFICALLY 4.1 
 Not all chairs are comfortable to sit in; some feel as if they are tipping you forwards, while others tend to fall 
backwards when you get up out of them. 

 Design a method that would allow you to determine how weight is distributed through the bases and legs of at 
least four different chair designs when you are sitting on and getting up from them. Perform your investigation and 
use your results to determine the weight distribution characteristics of a comfortable and stable chair design. 

 4.3 SAMPLE PROBLEM 2 

 An apple with a mass of   100   grams is placed on a tabletop. What is the normal reaction force exerted 
by the table surface on the apple? 

 SOLUTION:     

 The only downward force exerted is that of the apple’s
weight. 

   
W = m g

= 0.100 kg × 9.8 m s−2

= 0.98 N,  downwards
   

 Therefore,   R = 0.98 N  , upwards 

R

W

  FIGURE 4.5   

 4.3 SAMPLE PROBLEM 3 

 What normal force will result when a   4 kg   brick is placed on a 
level surface and  
(a)   the brick is pressed down with a force of   30 N  ?  
(b)   a force of   30 N   is applied to the brick at an angle of   30°   to the 

surface?   

 SOLUTION:  

(a)   There are now two forces acting downwards on the brick: 
gravitational force   W   and an applied force   FA  . 

   
W = m g

= 4 kg × 9.8 m s−2

= 39.2 N,  downwards
   

   The total downwards force = W + FA

= 39.2 N + 30 N
 = 69.2 N   
 As a result,   R = 69.2 N  , upwards.     

(b)   Only the downward component of the applied 
force will affect the normal force, so
the total downward force  = W + FA sin 30°   

   
= 39.2 + 30 sin 30°
= 54.2 N

   

 Hence,   R = 54.2 N   upwards on the brick        

W = 392 N

R = 692 N
FA = 30 N

  FIGURE 4.6  Pressing 
the brick on the tabletop 
downwards increases the 
normal reaction force,   R  , 
acting on the brick.  

FA = 30 N
30 sn 30° = 15 N

R = 54.2 N

W = 39.2 N

30°

30°

  FIGURE 4.7  Applying a force at a 
downward angle changes the normal 
reaction force.  
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  4.3.3  Friction 
 Friction is a force that resists the motion of one surface across 
another. While the normal reaction force acts perpendicularly to the 
surface interface, the frictional force,   Ff  , acts parallel to the interface. 

 There are two main causes of friction between surfaces. First, 
all surfaces have irregularities. On some objects such as bricks, 
sandpaper or Monte Carlo biscuits, the irregularities are easy 
to spot. However, even the surface of highly polished glass or 
metal, which seems perfectly smooth to the touch, has irregular-
ities. It is only when you look at these ‘smooth’ materials under 
a microscope that the minute bumps and ripples peppering their 
surfaces become visible.  

    As two surfaces come into contact, their lumps and bumps 
make contact and, when one surface moves across the other, the 
little bumps catch on each other. This makes it harder to move 
the surfaces relative to each other and it also causes the surfaces 
to heat up. You can experience this easily by rubbing your hands 
together. The little friction ridges that cover your hands catch on 
each other and you soon notice the heating effect. 

 Sometimes, as the bumps and ridges of one surface catch on 
those of another surface, some of the larger bumps are broken 
off. This is how sandpaper acts to smooth wood. The bumps on 
the sandpaper are very hard, while those in the wood are more 
brittle. As bump meets bump, the larger bumps of the rough wood 
are broken off, leaving behind smaller peaks on its surface. As a 
result, the wood becomes smoother.  

    The second cause of friction is on a smaller scale than the 
interaction between the bumps. As the bumps and ridges of the 
two surfaces push against each other, bonds form between the particles of the two materials. These bonds 
are quite strong and are only broken when a large enough force is applied to pull them apart. As surfaces 
move across each other, bonds are made and broken between the particles, causing a resistance to the 
motion. 

 Static friction 
 Static friction is the frictional force that must be overcome as you fi rst start to push one surface across 
another. When two surfaces are placed into contact, considerable interlocking occurs between the peaks of 
the two surfaces, and bonds form between the particles of the materials. Remember, these bonds are very 
strong. As you start to push one surface across the other by applying a force, the combination of particle 
bonds and the locking of peaks acts to exert a resisting force in the opposite direction and so the surfaces do 
not move. As you exert greater force, the peaks start to fracture and the bonds begin to break. Eventually, 
with increasing force, enough of the bonds and peaks will be damaged so that the two surfaces start to move 
past each other. The size of the static force at any time equals that of the force applied to the surfaces, up 

  FIGURE 4.8  Cracks and rough surfaces 
can be seen on this worn-out metal 
sample in this image taken with a 
scanning electron microscope. The metal 
sample looks smooth and shiny when 
viewed with the naked eye.  

(a)

(b)

Movement Sandpaper

Wood

  FIGURE 4.9  As large bumps are broken 
off, the wood becomes smoother.  

 WORKING SCIENTIFICALLY 4.2 
 Does jumping on an object exert more force on it than simply standing on it? Design and perform an experiment 
to test this. 
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to a maximum value called the limiting friction. When the applied force is large enough to overcome this 
maximum value, the surfaces will start to move. The value of the limiting friction depends on the nature of 
the two surfaces in contact and the normal reaction force. As long as the force that you apply to the surfaces 
is less than the limiting friction, the static friction opposing the motion will be equal in size to that applied 
force.

Sliding friction
Sliding friction takes effect once the static friction has been overcome by the applied force and the mate-
rials are actually moving past each other. Sliding friction is weaker than static friction in magnitude but has 
a similar relationship with the nature of the surfaces and the normal reaction force.

Rolling friction
Rolling friction resists the motion of one surface rolling across another, such as in the case of a wheel 
rolling over a road surface. Rolling friction is much smaller than either static or sliding friction.

The coefficient of friction
The frictional force, Ff , is directly proportional to 
the normal reaction force and the coefficient of 
friction (μ).

Ff = μR

The coefficient of friction is a measure of how 
easily two surfaces move across each other and 
varies widely depending upon the combination of 
surfaces being considered. The coefficient of fric-
tion for aluminium sliding across wood will differ 
from that for aluminium sliding across ice.

The coefficient of friction has no units as it is the 
ratio of the frictional force to the normal reaction 
force experienced by an object, and usually has a 
value less than 1.

4.3 SAMPLE PROBLEM 4

A 4 kg box is placed on a level piece of carpet.
(a) What is the minimum force required to move the box if µs = 0.5?
(b) What would happen if a force of 10 N were applied sideways?

SOLUTION:

(a) Given: m = 4 kg, µs = 0.5
              W = mg

= 4 × 9.8
= 39.2 N

      Therefore, R = 39.2 N
  Limiting friction = μ sR

= 0.5 × 39.2
= 19.6 N

Therefore, at least 19.6 N will need to be applied to start the box 
moving.

(b) As 10 N is less than the limiting friction, the box will remain stationary.

FA Ff

R

w

FIGURE 4.10

Surface pair Static friction, 
μs

Sliding friction, 
μk

Rubber on dry 
concrete

0.9 0.7

Rubber on wet 
concrete

0.6 0.4

Rubber on wet 
ice

0.14 0.1

Wood on wood 0.25–0.6 0.3

Steel on smooth 
steel

0.15 0.09

Steel on oiled 
steel

0.03 0.03

Steel on glass 0.13 0.12

Steel on ice 0.1 0.02

TABLE 4.3 Values of static and sliding friction for 
surface pairs.
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4.4 Newton’s First Law of Motion

WORKING SCIENTIFICALLY 4.3
A variety of different materials are used for the soles of shoes with some sole materials providing more ‘grip’ 
than others. Explore the critical grip characteristics of shoes that are worn for different functions such as the 
shoes worn by roof tilers, dancers, tennis players and so on. In each case, consider the expected movement of 
the wearer and the type of surface that the shoes would typically be used on.

PHYSICS FACT
Sir Isaac Newton (1643–1727) was one of many famous scientists who 
were not outstanding students at school or university. He left school at 14 
years of age to help his widowed mother on the family’s farm. He found 
himself unsuited to farming, spending much of his time reading. At the 
age of 18, Isaac was sent to Cambridge University, where he showed no 
outstanding ability.

When Cambridge University was closed down in 1665 due to an 
outbreak of the plague, Newton went home and spent the next two years 
studying and writing. During this time, he developed the law of gravity, 
which explains the motion of the planets, and his three famous laws of 
motion. Newton also explained that white light consisted of many colours, 
and he invented calculus.

Newton’s laws of gravity and motion were not published until about 
twenty years later. They were published in Latin in a book entitled 
Philosophia Naturalis Principia. The cost of publishing was paid by 
Sir Edmond Halley, the person who discovered Halley’s comet.

Newton later became a member of the British parliament, Warden of the 
Mint and president of the Royal Society. After his death in 1727, Newton 
was buried in Westminster Abbey, London, alongside many English kings, queens, political leaders and poets.

FIGURE 4.11 Sir Isaac Newton

4.3 Exercise 1
1 On the surface of Mars, gravitational acceleration is approximately 3.7 m s−2. What would be the weight of 

an astronaut in full EVA suit on Mars if the total mass of the astronaut and gear was 130 kg?
2 A student stands on a set of bathroom scales in Sydney and sees that they measure his mass at 52 kg. If the 

student stands on these same scales in New York, would he notice a difference in the mass reading? (Assume 
that the scales are precise to the nearest 0.1 kg.)

3 In table 4.2, the North Pole and the Equator values for g are different although they are both recorded at the 
same altitude. What is the most likely cause of the difference between the values?

4 What will be the normal reaction force exerted on a 4.00 kg block by the table on which it rests?
5 Calculate the normal reaction force acting on a 1.20 kg book that is lying on a bench if you (a) press on it 

with a force of 20.0 N or (b) pull upwards on it with a force of 4.0 N.
6 An 8.0 kg wooden sled is pulled over the snow by means of a rope that makes an angle of 40° with the 

horizontal. If the rope has a tension of 70.0 N, what is the normal reaction force acting on the sled?
7 What would be the frictional force acting on a 3.0 kg box dragged over a surface with which it has a 

coefficient of friction of 0.4?
8 Calculate the coefficient of friction between a surface and a 2.0 kg object sliding across it if there is a 

frictional force of 3.5 N acting on the object.
9 A 12.0 kg pram is pulled over a footpath with a force of 130 N by means of a handle that makes an angle 

of 25° with the horizontal. What is the coefficient of friction if there is a frictional force of 8.0 N between the 
wheels of the pram and the footpath?
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4.4.1 The net force
Most objects are acted upon by more than one force at a time. For example, an apple on a tabletop has 
a downward gravitational force and an upward normal reaction force acting upon it. A swimmer moving 
through a pool experiences the forces of gravity, buoyancy and drag as well as the force that he applies to 
move himself forward.

The vector sum of all the forces acting on an object is referred to as the net force, Fnet.
The net force acting on an object may be equal to zero, or may be a non-zero vector that causes a change 

in the object’s state of motion — a concept that is at the heart of Newton’s First Law of Motion.

4.4.2 Forces in and out of balance
When the net force acting on an object is equal to zero, we say that the object is in equilibrium. An object 
in equilibrium keeps the same state of motion. If the object was stationary before the forces acting on it 
were applied, then it remains stationary afterwards. Similarly, an object travelling at constant speed in a 

4.4 SAMPLE PROBLEM 1

In a three-way ‘tug-of-war’, the three teams (A, B and C) pull horizontally away from the knot joining 
the ropes with forces of 3000 N north, 2500 N south-west and 2800 N south-east respectively. Deter-
mine the net horizontal force exerted on the knot.

SOLUTION:

The forces acting on the central knot can be represented in the form of a vector diagram as shown:

Note that the vector diagram includes both the force magnitudes and their polar directions.

Rx = 3000 cos 90° + 2500 cos 225° + 2800 cos 315°
= 0 + (−1767.8) + (1979.9)
= 212.1 N

Ry = 3000 sin 90° + 2500 sin 225° + 2800 sin 315°
= (3000) + (−1767.8) + (−1979.9)
= −747.7 N

Fnet = √(212.1)2 + (−747.7)2

= 777.2 N
≅ 800 N (to 1 significant digit)

θ = tan−1 (−747.7/212.1)
= −74°
= 16° east of south (converted into a bearing)

Therefore, the net force acting on the knot is 800 N in a direction 16° east of south.

135º
90º

135º

Team A

Team B

(a)

Team C

3000 N, 90º

2800 N 315º
2500 N 225º

(b)

FIGURE 4.12

Ry = –747.7 NFne

RX = 212.1 N
�

FIGURE 4.13
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fixed direction will not change its speed or direction of travel if the forces applied to it sum to give a net 
force equal to zero.

The effect of forces on the motion of objects is clearly described by Newton’s First Law of Motion; that is:

Every object continues in its state of rest or uniform motion unless made to change by a non-zero net force.

Newton’s First Law of Motion can also be expressed in terms of acceleration. When a non-zero net force 
acts on an object, it accelerates in the direction of the net force. The acceleration can take the form of a 
change in speed, change in direction or a change in both speed and direction.

Newton’s First Law of Motion can be illustrated by flicking a coin across a tabletop. A coin flicked 
across a table changes its motion because the net force on it is not zero. In fact, it slows down because 
the direction of the net force is opposite to the direction of motion. The vertical forces, weight and 
the support force of the table balance each other. The only ‘unbalanced’ force is that of friction. The 
surface of the table applies a frictional force to the surface of the coin whenever there is an external force 
pushing the coin.

A coin pushed steadily across a table moves in a straight line at constant speed as long as the net force is 
zero (that is, as long as the magnitude of the pushing force is equal to the magnitude of the friction). The coin 
will speed up if you push horizontally with a force greater than the friction. It will slow down if the force of 
friction is greater than the horizontal pushing force. That is what happens when you stop pushing.

4.4.3 Inertia
Newton’s First Law of Motion (described in the last section) is often referred to as the Law of Inertia. The 
inertia of an object is its tendency to resist changes to its motion. Inertia is not a force; it is a property of 
all objects. The inertia of an object depends only on its mass. For example, a large adult on a playground 
swing is more difficult to get moving than a small child on the same swing. It is also more difficult to stop 
or change the direction of motion of a large adult than a small child.

Your inertia can be a serious problem when you are in or on a fast-moving object. As a passenger in a 
fast-moving car that suddenly stops (e.g. in an emergency or a collision), you would continue to move at high 
speed until a non-zero net force stopped you. Your inertia would resist the change in motion. The car would 
have inertia as well. However, it would have stopped as a result of braking or colliding with another object. 
If you were wearing a seat belt, it would apply a force that would stop you, along with the rest of the car. 
Without it, you would collide with part of the car — usually the dashboard or the windscreen. If you were to 
crash into a solid object while riding a bicycle, you would continue to move forward after the bicycle stopped.

Your inertia is also evident when you are in a vehicle that starts rapidly or is pushed forward in a colli-
sion. Your seat pushes your body forward along with the car. However, without a properly fitted headrest, 
your head remains at rest until it is pulled forward by your spine. The resulting injuries are called whiplash 
injuries. The purpose of a headrest is to ensure that when a large net force pushes the car forward, your 
head is pushed forward at the same rate as the rest of your body.

Cruising along
The forces acting on a car being driven along a straight horizontal road are shown in figure 4.14 and 
described below.

Air resistance

Driving forceRoad friction

Normal reaction force
Normal reaction force

Weight

FIGU E 4.14  The motion of a car on a horizontal road depends on 
the net force acting on it.
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 • Weight. A medium-sized sedan containing a driver and passenger has a weight of about 1.5 × 104 N. The 
weight acts through the centre of mass, or balancing point, of the car. This is normally closer to the front 
of the car than the back. This is because the engine at the front is the heaviest part of the car.

 • Normal reaction force. A normal reaction force pushes up on all four wheels. Its magnitude is usually greater 
at the front wheels than the rear wheels. On a horizontal road, the sum of these normal reaction forces must 
have the same magnitude as the weight. What do you think would happen if this was not the case?

 • Driving force. This is provided by the road and is applied to the driving wheels. The driving wheels are 
turned by the motor. In most cars, either the front wheels or the rear wheels are the driving wheels. The 
motor of a four-wheel-drive vehicle turns all four wheels. As the tyre pushes back on the road, the road 
pushes forward on the tyre, propelling the car forward. The forward push of the road on the tyre is a type 
of friction commonly referred to as traction, or grip. If the tyres do not have enough tread, or the road is 
icy, there is not enough friction to push the car forward and the tyre slides on the road. The wheel spins 
and the car skids. The car cannot be propelled forward as effectively. Skidding also occurs if the motor 
turns the driving wheels too fast.

 • Road friction. The non-driving wheels of front-wheel-drive cars roll as they are pulled along the road 
by the moving car. In older cars, the non-driving wheels are usually at the front. They are pushed along 
the road by the moving car. Rolling friction acts on the non-driving wheels in a direction opposite to the 
direction of movement of the car. When the driving wheels are not being turned by the motor, rolling 
friction opposes the forward movement of all four wheels. When the brakes are applied, the wheels to 
which the brakes are attached are made to turn too slowly for the speed at which the car is moving. They 
are no longer rolling freely. This increases the road friction greatly and the car eventually stops. If the 
brakes are applied hard enough the wheels stop completely, or lock, and the car goes into a skid. The 
sliding friction that exists when the car is skidding is less than the friction that exists when the wheels 
are rolling just a little.

 • Air resistance. The drag, or air resistance, acting on the car increases as the car moves faster. Air resist-
ance is a form of friction that can be reduced by streamlining the vehicle. This involves shaping the 
vehicle so that it disturbs the air less.
The net force acting on the car in figure 414 is zero It is therefore moving along the road at constant  

speed. We know that it is moving to the right because both the air resistance and road friction act in a direction 
opposite to the direction of motion. If the car were stationary, neither of these forces would be acting at all.
 • When the driver pushes down on the accelerator, the driving force increases. The car speeds up until the 

sum of the air resistance and road friction grow large enough to balance it. Then, once again, the car 
would be moving at a constant, although higher, speed.

 • When the driver stops pushing down on the accelerator, the motor stops turning the driving wheels and 
the driving force becomes zero. The net force would be to the left. As the car slows down, the air resist-
ance and road friction would gradually decrease until the car comes to a stop. The net force on the car 
becomes zero until the driving force is restored. 

4.4 SAMPLE PROBLEM 2

What is the net force acting on a 1200 kg car if the 
car is acted upon by a driving force of 2000 N and a 
frictional force of 800 N?

SOLUTION:

Fnet = FA – Ff
= 2000 – 800
= 1200 N, forwards

Ff = 800 NFA = 2000 N

W

R

FIGURE 4.15
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Rolling downhill
A car left parked on a hill will begin to roll down the hill with increasing speed if it is left out of gear and 
the handbrake is off. Figure 4.16 shows the forces acting on such a car. In order to simplify the diagram, 
all the forces are drawn as if they were acting through the centre of mass of the car. The direction of net 
force acting on the car is down the hill. It is clear that the pull of gravity (the weight of the car) is a major 
contributor to the downhill motion of the car.

It is often useful to divide vectors into parts called components. Figure 4.17 shows how the weight can 
be broken up, or resolved into two components — one parallel to the slope and one perpendicular to the 
slope. Notice that the vector sum of the components is the weight. By resolving the weight into these two 
components, two useful observations can be made:
1. The normal reaction force is balanced by the component of weight that is perpendicular to the surface. 

The net force has no component perpendicular to the road surface. This must be the case because there 
is no change in motion perpendicular to the slope.

2. The net force is the vector sum of the component of the weight that is parallel to the surface, and the 
sum of road friction and air resistance.

Road friction
and air resistance

Normal reaction force

Weight

FIGU E 4.16  A simplified 
diagram showing the forces 
acting on a car rolling down 
a slope.

Road friction
and air resistance

Components
of weight

Normal reaction force

Weight

FIGURE 4.17 Vectors can be 
resolved into components. 
In this case, the weight 
has been resolved into two 
components. The net force is 
parallel to the slope, and the 
car will accelerate down the 
slope.

PHYSICS IN FOCUS

Anti-lock brake systems
When car brakes are applied too hard, as they often are when a driver panics in an emergency, the wheels lock. 
The car skids, steering control is lost and the car takes longer to stop than if the wheels were still rolling. Drivers 
are often advised to ‘pump’ the brakes in wet conditions to prevent locking. This involves pushing and releasing 
the brake pedal in quick succession until the car stops. This, however, is very difficult to do in an emergency 
situation.

Anti-lock brake systems (ABSs) allow the wheels to keep rolling no matter how hard the brakes are applied. A 
small computer attached to the braking system monitors the rotation of the wheels. If the wheels lock and rolling 
stops, the pressure on the brake pads (or shoes) that stops the rotation is reduced for a very short time. This 
action is repeated up to 15 times each second. Anti-lock brake systems are most effective on wet roads. However, 
even on a dry surface, braking distances can be reduced by up to 20 per cent.
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Driving uphill
When a car is driven up the slope, as shown in figure 
4.18, the driving force is greater than or equal to the 
magnitude of the sum of the air resistance, road friction 
and the component of the weight that is parallel to the 
surface.

Driving force

Components
of weight

Normal reaction force

Weight

Road
friction and

air resistance

FIGU E 4.18  This diagram shows the 
forces acting on a car driven up a slope. 
In this case, the car is accelerating up 
the slope.

4.4 SAMPLE PROBLEM 3

A car of mass 1600 kg left parked on a steep but rough 
road begins to roll down the hill. After a short while it 
reaches a constant speed. The road is inclined at 15° 
to the horizontal. Its speed is sufficiently slow that 
the air resistance is insignificant and can be ignored. 
Determine the magnitude of the road friction on the 
car while it is rolling at constant speed.

SOLUTION:

Because the car is rolling at constant speed, the 
net force acting on it must be zero. The weight, 
W, can be resolved into two components — one 
down the slope, W // and one perpendicular to it, W⟂
. The perpendicular component of the weight, W⟂
, is balanced by the normal reaction force. The magnitude of the road friction must be equal to the 
magnitude of the weight component down the slope, W //.
In the triangle formed by the weight and its components:

sin 15° =
W//  

W
       W// = W sin 15°

= mg sin 15°
= 1600 × 9.8 × sin 15° (substituting data)
= 4.1 × 103 N.

The magnitude of the road friction is therefore 4100 N while the car is rolling with a constant speed.

Road friction

Normal reaction force

Weight
WII = magnitude of road
         friction

W┴ = magnitude of
         normal reaction force

15º

15º

FIGURE 4.19

4.4 Exercise 1
1 A box s af fected by three forces acting on it: 100 N at 30° north of east, 200 N west and 200 N south. What 

is the net force acting on the box?
2 What is the net force acting on a book lying on a desk? Explain.
3 A chew toy s beng pued n df ferent directions by two dogs. One dog pulls the toy east with a force of 6 N 

while the other pulls it south-west with a force of 5 N. In what direction will the chew toy move?
4 A team of donkeys pulls a cart full of tourists up a 20° hill in Greece. If the cart (including tourists) has a 

mass of 600 kg, how much force must be exerted by the donkeys on the cart to move it up the hill at a 
steady speed? (Ignore friction.)
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4.5 Newton’s Second Law of Motion
Casual observations indicate that the acceleration of a given object increases as the net force on the object 
increases. It is also clear that lighter objects change their velocity at a greater rate than heavier objects 
when the same force is applied.

It can be shown experimentally that the acceleration, a, of an object is:
 • proportional to the net force, Fnet, applied to it
 • inversely proportional to the mass, m.

a ∝ Fnet    a ∝ 1
m

Thus:

   a ∝ Fnet

m

⇒ a = kFnet

m
where k = a constant of proportionality.

The SI unit of force, the newton (N), is defined such that a net force of 1 N causes a mass of 1 kg to 
accelerate a 1 m s−2. The value of the constant, k, is 1. It has no units. Thus:

 a = Fnet

m
Fnet = ma.
The previous equation describes Newton’s Second Law of Motion. This statement of Newton’s Second 

Law allows you to:
 • determine the net force acting on an object without knowing any of the individual forces acting on it. 

The net force can be deduced as long as you can measure or calculate (using formulas or graphs) the 
acceleration of a known mass.

5 A 5000 kg truck is parked on a road surface inclined at an angle of 20° to the horizontal. Calculate the 
component of the truck’s weight that is:
(a) down the slope of the road
(b) perpendicular to the slope of the road.

6 In the case of the car in 4.4 sample problem 3, what is:
(a) the component down the road surface of the normal reaction force acting on it
(b) the normal reaction force?

7 A car of mass 1400 kg is left parked on a 10° hill. Unknown to the owner, the handbrake fails and the car 
starts to move down the hill. What is the car’s acceleration if
(a) the effect of friction and air resistance is ignored
(b) air resistance is negligible but the coefficient of friction is 0.14?

 Watchthis Lesson:  Air resistance
Searchlight ID: eles-0035

 Watchthis Lesson:  Friction as a driving force
Searchlight ID: eles-0032

 Try out this Iteactivity:  Friction as a driving force
Searchlight ID: int-0054

 Watchthis Lesson:  Newton’s First Law
Searchlight ID: med-0035

 Watchthis Lesson:  Forces acting on a moving bicycle on level ground
Searchlight ID: med-0038

 Try out this Iteactivity:  One Giant Leap
Searchlight I: int-6611

 RESOURCES
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 • determine the mass of an object. You can do this by measuring the acceleration of an object on which a 
known net force is exerted.

 • predict the effect of a net force on the motion of an object f known mass.

4.5.1 Applying Newton’s second law in real life
Many of the sample problems and exercises in this chapter are simplifications of the much more compli-
cated interactions that occur when forces act on an object. For example, when a tennis ball is served, the 
force applied by the tennis racquet, the weight of the ball, air resistance and the compressive forces acting 
on the ball and the racquet strings all act to change the motion of the struck ball. However, when calcu-
lating the acceleration of this ball, it may be that only the force of the racquet on the ball is used in the cal-
culation. The other forces are assumed to be negligible; that is, they are so small compared with the force 
of the racquet on the ball that they can be ignored while the racquet is in contact with the ball.

Surfaces might be described as ‘smooth’ in sample problems and exercises. This description does not imply 
that the surfaces are without friction (a near impossibility as we have seen in the previous section). Instead, it 
is included so that you would know that the force of friction is so small as to be considered negligible.

The event described in 4.5 Sample Problem 1 was also simplified. It is unlikely that the net force on the 
teacher gliding down the slide would be constant.

These simplifications describe an idealised environment in which we may develop an understanding 
of basic physics concepts and ideas. While these simplifications are often employed with minimal effect 
on the accuracy of the calculations made for a particular situation, caution is needed when making 
idealisations. For example, it would be unreasonable to ignore the air resistance on a tennis ball while it is 
soaring through the air at 150 km h−1(42 m s−1) after the serve was completed as, at such speeds, the force 
of air resistance has a significant effect on the ball’s motion.

4.5 SAMPLE PROBLEM 1

A 65 kg physics teacher, starting from rest, glides gracefully down a slide in the local playground. The 
net force on her during the slide is a constant 350 N. How long will it take her to reach the bottom of 
the 8.0 m slide?

SOLUTION:

     Fnet = ma
⇒ 350 N = 65 kg × a (substituting magnitudes)

    ⇒ a = 350 N
65 kg

= 5.4 m s−2

Thus, u = 0, a = 5.4 m s−2, s = 8.0 m and v = ?
apply v2 = u2 + 2as
    

⇒ v2 = 0 + 2 × 5.4 m s−2 × 8.0 m
= 86.4 m2 s−2

    ⇒ v = 9.3 m s−1

4.5 SAMPLE PROBLEM 2

When the head of an 80 kg bungee jumper is 24 m from the surface of the water below, her velocity 
is 16 m s−1 downwards and the tension in the bungee cord is 1200 N. Air resistance can be assumed 
to be negligible.
(a) What is her acceleration at that instant?
(b) If her acceleration remained constant during the rest of her fall, would she stop before hitting the 

water?
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SOLUTION:

Firstly, a diagram must be drawn to show the forces acting on the bungee jumper (see figure 4.20). 
The only two forces that need to be considered are the tension (T) in the cord and the jumper’s 
weight (W).

The bungee jumper,s weight,  W = mg
= 80 kg × 9.8 m s−2 down
= 784 N down.

(a) Apply Newton’s second law to determine the acceleration. Assign up as 
positive for this part of the question.
                          Fnet = ma
               ⇒ T − W = ma               (assigning up as positive)
⇒ 1200 N − 784 N = 80 kg × a       (substituting data)

           
⇒ 80 kg × a = 416 N

                         
⇒ a = 416 N

80 kg
                         

⇒ a = 5.2 m s−2  in an upwards direction
(b) If the jumper’s acceleration were constant, one of the constant acceleration 

formulae could be used to answer this question. Assign down as positive for 
this part of the question as the bungee jumper has a downwards initial velocity 
and displacement during the time period being considered.

                          u = 16 m s−1, v = 0, a = −5.2 m s−2, s = ?

                         v2 = u2 + 2as

                  
⇒ 0 = (16 m  s−1) 

2 + 2 (−5.2 m s−2)s  (substituting data)

                   
⇒ 0 = 256 m2 s−2 − 10.4 m s−2 × s

⇒ 10.4 m s−2 s = 256 m2 s−2

                     
⇒ s = 24.6 m                 (dividing both sides by 10.4 m s−2)

 

Alas, the bungee jumper would not stop in time. However, do not be upset! In practice, the 
acceleration of the bungee jumper would not be constant. The tension in the cord would increase 
as she fell. Therefore, the net force on her would increase and her upwards acceleration would be 
greater in magnitude than the calculated value. She will therefore almost certainly come to a stop in 
a distance considerably less than that calculated.

FIGURE 4.20

T = 1200 N

W = mg
= 784 N

4.5 SAMPLE PROBLEM 3

A waterskier of mass 80 kg, starting from rest, is pulled in a northerly direction by a horizontal rope 
with a constant tension of 240 N. After 6.0 s, he has reached a speed of 12 m s−1.
(a) What is the net force on the skier?
(b) If the tension in the rope were the only horizontal force acting on the skier, what would his 

acceleration be?
(c) What is the sum of the resistance forces on the skier?

SOLUTION:

A diagram must be drawn to show the forces acting on the skier. Assign the positive direction as 
north as shown in figure 4.21.
(a) The net force cannot be determined by adding the individual force vectors because the resistance 

forces are not given, nor is there any information in the question to suggest that they can be ignored. 
It can, however, be calculated by applying Newton’s second law if the acceleration is known.
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                     u = 0, v = 12 m s−1, t = 6.0 s, a = ?
                    v = u + at

         12 m s−1 = 0 + a × 6.0 s        (substituting data)
⇒ a × 6.0 s = 12 m s−1                       (dividing both sides by 6.0 s)

            ⇒ a = 2.0 m s−2

Thus,

Fnet = ma
= 80 kg × 2.0 m s−2 north
= 160 N north.

The net force on the skier is 160 N north.

(b) The net force on the skier is horizontal. If the 
tension were the only horizontal force acting on the 
skier, it would be equal to the net force since the 
vertical forces on the skier add to zero.

Thus, the acceleration would be given by:

a = Fnet

m

= 240 N north
80 kg

= 3.0 m s−2 north.

(c) The sum of the resistance forces (friction caused by the water surface and air resistance) on the 
skier is the difference between the net force and the tension.
sum of resistance forces = Fnet − tension

= 160 N north − 240 N north
= 80 N south

FIGURE 4.21

Tension = 240 N

Normal reaction force = 800 N

Resistance
forces

Weight = mg
   = 784 N

4.5 SAMPLE PROBLEM 4

A loaded supermarket shopping trolley with a total mass of 60 kg is left standing on a footpath that is 
inclined at an angle of 30° to the horizontal. As the tired shopper searches for his car keys, he fails to 
notice that the trolley is beginning to roll away. It rolls in a straight line down the footpath for 9.0 s 
before it is stopped by an alert (and very strong) supermarket employee. Find:
(a) the speed of the shopping trolley at the end of its roll
(b) the distance covered by the trolley during its roll.

Assume that the footpath exerts a constant friction force of 270 N on the runaway trolley.

SOLUTION:

A diagram must be drawn to show the three forces acting on the shopping trolley (see figure 4.22). 
Air resistance is not included as it is negligible. The forces should be shown as acting through 
the centre of mass of the loaded trolley. The components of the weight, which are parallel and 
perpendicular to the footpath surface, should also be shown on the diagram.

The motion of the runaway shopping trolley, originally at rest, can be described by using the 
information provided, along with Newton’s second law, which is used to determine its acceleration.

The net force can be found by ‘breaking up’ the weight into two components — one parallel 
to the footpath surface (W //) and the other perpendicular to the surface (W⟂). We know that (W⟂) 
is balanced by the normal reaction force because there is clearly no acceleration of the trolley 
perpendicular to the surface. The net force is therefore down the slope and has a magnitude of:
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Fnet = W// − friction
= mg sin 30° − 270 N
= 588 N sin 30° − 270 N
= 294 N − 270 N
= 24 N.

Newton’s second law can now be applied to determine the 
acceleration of the trolley down the slope. Assign the positive 
direction as down the slope.
                          Fnet = ma
⇒ 24 N down slope = 60 kg × a

                              a =
24 N down slope

60 kg
= 0.40 m s−2 down slope

The final speed and distance travelled by the trolley can now be 
calculated.

u = 0, a = 0.40 m s−2, t = 9.0 s, v = ?, s = ?

v = u + at

= 0 + 0.40 m s−2 × 9.0 s

= 3.6 m s−1

s = ut + 1
2
at2

= 0 × 9.0 s + 1
2

× 0.40 m s−2 × (9.0 s)2

= 1
2

× 0.40 m s−2 × 81 s2

= 16.2 m

At the end of its roll, the trolley was travelling at a speed of 3.6 m s−1 and had moved a distance 
of 16.2 m down the slope.

FIGURE 4.22
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4.5 SAMPLE PROBLEM 5

The velocity-versus-time graph in figure 4.23 describes the motion of a 45 kg girl on rollerblades as she 
rolls from a horizontal concrete path onto a rough horizontal gravel path.
(a) What was the magnitude of the net force on the girl on the concrete surface?
(b) If the only horizontal force acting on the blades is the friction force 

applied by the path, what is the value of the following ratio?
friction force of gravel path on rollerblades

friction force of concrete path on rollerblades

SOLUTION:

(a) The magnitude of acceleration of the girl while on the concrete surface 
can be determined from the first 6.0 s of the motion described by the 
graph. It is equal to the gradient of the graph.

a = rise
run( = Δv

Δt)

= −2.0 m s−1

6.0 s
= −0.33 m s−2

 

FIGURE 4.23

2

2

4

6

8

4 6
Time (s)

8 10



TOPIC 4 Forces 81

4.5.2 Falling down
Objects that are falling (or rising) through the air are generally subjected to two forces — weight and air 
resistance. The weight of the object is constant. The magnitude of the air resistance, however, is not constant. 
It depends on many factors, including the object’s speed, surface area and density. It also depends on the 
density of the body of air through which the object is falling. The air resistance is always opposite to the 
direction of motion. The net force on a falling object of mass m and weight W can therefore be expressed as:

                            Fnet = ma   (where a is the acceleration of the object)
   W −  air resistence = ma.

When dense objects fall through small distances near the surface of the Earth it is usually quite reasonable 
to assume that the air resistance is negligible. Thus:

 W = ma
mg = ma     (where g is the gravitational field strength)
   g = a.

The acceleration of a body in free fall in a vacuum or 
where air resistance is negligible is equal to the gravitational 
field strength. At the Earth’s surface, where g = 9.8 N kg−1, 
this acceleration is 9.8 m s−2.

If a bowling ball, a tennis ball and a table-tennis ball 
were dropped at the same instant from a height of 2.0 m in 
a vacuum, they would all reach the ground at the same time. 
This is because each ball would have the same initial velocity 
of zero and the same acceleration.

If, however, the balls are dropped either in a classroom or 
outside, the table-tennis ball will reach the ground a moment 
later than the other two balls.

The magnitude of the net force on the girl is therefore:
Fnet = ma

= 45 kg × 0.33 m s−2

= 15 N.
(b) If the only horizontal force acting on the rollerblades is friction, the net force on the girl is the 

same as the friction force on the blades. Thus:

friction  force of gravel path on rollerblades

friction  force of concrete path on rollerblades
=

Fnet on girl  while on  gravel

Fnet on girl while on concrete

=
ma on gravel

ma on concrete

=
a (during last 4.0 s)

a (during first 6.0 s)

=
gradient (for last 4.0 s)

gradient (for first 6.0 s)

=

−6.0 m s−1

4.0 s

−2.0 m s−1

6.0 s

= 4.5.

FIGU E 4.24  A bowling ball, a golf ball 
and a table-tennis ball dropped from a 
height of 2.0 m. Which one would you 
expect to reach the ground first?
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WORKING SCIENTIFICALLY 4.4
Terminal velocity is reached by a falling object when the upward force of air resistance acting on the object is 
equal in magnitude to the downward force of the object’s weight, causing the object to fall at a constant speed. 
A parachute attached to an object allows a larger drag force to be exerted so that terminal velocity can be 
reached more quickly.

Design, build and test a parachute system that, once attached to a 100 g mass, allows it to fall for at least 2 
metres at terminal velocity. You will also need to devise a method to prove that this objective has been reached.

4.5 Exercise 1
1 What is the magnitude of the average force applied by a tennis racquet to a 58 g tennis ball during service if 

the average acceleration of the ball during contact with the racquet is 1.2 × 104  m s−2?
2 A toy car s pued acr oss a smooth, polished horizontal table with a spring balance. The reading on the spring 

balance is 2.0 N and the acceleration of the toy car is measured to be 2.5 m s−2. What is the mass of the toy car? 
(Note that, because the table is described as smooth and polished, friction can be ignored.)

3 A loaded sled with a mass of 60 kg is being pulled across a level snow-covered field with a horizontal rope. 
It accelerates from rest over a distance of 9.0 m, reaching a speed of 6.0 m s−1. The tension in the rope is a 
constant. The frictional force on the sled is 200 N. Air resistance is negligible.
(a) What is the acceleration of the sled?
(b) What is the magnitude of the tension in the rope?

4 A cyclist rolls freely from rest down a slope inclined at 20° to the horizontal. The total mass of the bicycle 
and cyclist is 100 kg. The bicycle rolls for 12 seconds before reaching a horizontal surface. The surface 
exerts a constant friction force of 300 N on the bicycle.
(a) What is the net force on the bicycle (including the cyclist)?
(b) What is the acceleration of the bicycle?
(c) What is the speed of the bicycle when it reaches the horizontal surface?

5 If the velocity-versus-time graph in 4.5 SAMPLE PROBLEM 5 was applied to a car of mass 1200 kg on two 
road surfaces, what net force (in magnitude) acts on the car during:
(a) the first 6.0 seconds
(b) the final 4.0 seconds?
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The acceleration of each of the balls is:

a = Fnet

m

= mg − A
m

    (where A is air resistance)

= mg
m

− A
m

= g − A
m

 

The acceleration depends on the air resistance and the mass of each ball as well as g.

The term A
m

 is very small for the bowling ball and the golf ball. Even though the air resistance on the 

table-tennis ball is small, its mass is also small and the term A
m

 is not as small as it is for the other two balls.

WARNING: Do not drop a bowling ball. If you wish to try this experiment, replace the bowling ball 
with a medicine ball and keep your feet out of the way!
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4.6 Newton’s Third Law of Motion
Forces always act in pairs (see figure 4.25). When you lift a heavy schoolbag you can feel it pulling down 
on you. When you slump into a comfortable chair at the end of a long day at school you can feel it pushing 
up on you. When you catch a fast-moving ball you can feel it push on your hand as you apply the force to 
stop it.

Sir Isaac Newton recognised that forces always acted in pairs in his Third Law of Motion, which is most 
commonly stated as:

For every action there is an equal and opposite reaction.

A more precise statement of the Newton’s Third Law is:

Whenever an object applies a force (an action) to a second object, the second object applies an equal 
and opposite force (called a reaction) to the first object.

It is very important to remember that the forces that make up action–reaction pairs act on different 
objects. That is why it makes no sense to add them together so that they ‘cancel out’. The motion of each 
object in figure 4.25 is determined by the net force acting on it.

The net force on the student sitting in the chair in figure 4.25b is zero because the upward push of the 
chair is balanced by the downward force of gravity, or weight of the student.

The tennis ball in figure 4.25c slows down because the net force on the tennis ball is not zero. The push 
of the hand on the ball is much larger than any of the other forces acting on the ball. The net force on the 
hand is zero if the hand does not change its motion during the catch. The push of the ball is balanced by the 
push of arm muscles on the hand.

FIGU E 4.25  Forces always act in pairs. (a) The arm pulls up on the bag; the bag pulls down on the arm.  
(b) The student pushes down and back on the chair; the chair pushes up and forward on the student. (c) The 
hand pushes on the ball; the ball pushes on the hand.

Arm 
pulls 
bag

(a) (b) (c)

Chair 
pushes
student

Bag
pulls
arm

Student 
pushes
chair

Tennis
ball
pushes
hand

Hand pushes
tennis ball
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4.6.1 Newton’s Third Law of Motion 
in action
The rowing boat shown in figure 4.26 is propelled forward by 
the push of water on the oars. As the face of each oar pushes 
back on the water, the water pushes back with an equal and 
opposite force on each oar. The push on the oars, which are 
held tightly by the rowers, propels them and their boat for-
ward. A greater push (or action) on the water results in a 
greater push (or reaction) on the oar.

In fact, none of your forward motion, whether you are on 
land, water or in the air, could occur without an action–reaction 
pair of forces.
 • When you swim, you push the water backwards with your hands, arms and legs. The water pushes in the 

opposite direction, propelling you forwards.
 • In order to walk or run, you push your feet backwards and down on the ground. The ground pushes in 

the opposite direction, pushing forwards and up on your feet.
 • The forward driving force on the weels of a car is the result of a push back on the road by the wheels.
 • A jet or a propeller-driven plane is thrust forward by air. The jet engines or propellers are designed to push air 

backward with a very large force. The air pushes forward on the plane with an equally large force. 

4.6.2 Multiple bodies
Figure 4.27 shows a small dinghy being 
pulled by a larger boat. The forces 
acting on the larger boat are labelled in 
red while the forces acting on the small 
dinghy are labelled in green. Newton’s 
Second Law of Motion can be applied 
to each of the two boats. Figure 4.28 
shows only the forces acting on the 
system of the two boats and the rope 
joining them. When Newton’s Second 
Law of Motion is applied to the whole 
system, the system is considered to be a 
single object.

The thrust that acts on the larger 
boat and the system is provided by 
the water. The propeller of the larger 
boat pushes back on the water and 
the water pushes forward on the pro-
peller blades. The only force that can 
cause the small dinghy to accelerate 
forward is the tension in the rope. If 
the tension in the rope is greater than 
the resistance forces on the dinghy, it 
will accelerate. If the tension in the 
rope is equal to the resistance forces 
on the dinghy, it will move with a 
constant velocity. If the tension in the 

FIGURE 4.27 This diagram shows the forces acting on each of the 
two boats.

ThrustTensionTension

Normal reaction force

Normal reaction force

Weight

Weight

Resistance
forcesResistance

forces

FIGU E 4.28  This diagram shows the forces acting on the system. 
The system consists of the two boats and the rope joining them.

Thrust

Normal reaction forces
on both boats

Weight of boats and rope

Resistance
forces on

both boats

System

FIGU E 4.26  This rowing team relies on a 
reaction force to propel itself forward.



TOPIC 4 Forces 85

rope is less than the resistance forces on the dinghy, it will slow down. That is, its acceleration will 
be negative.

The rope pulls back on the larger boat with the same tension that it applies in a forward direction on 
the small dinghy. This is consistent with Newton’s Third Law of Motion. Through the rope, the larger 
boat pulls forward on the small dinghy with a force that is equal and opposite to the force with which the 
smaller dinghy pulls on the larger boat.

4.6 SAMPLE PROBLEM 1

A car of mass 1600 kg tows a trailer of mass 400 kg. The coupling between the car and trailer is 
rigid. The driving force acting on the car as it starts from rest is 5400 N in an easterly direction. 
The frictional forces resisting the motion of the car and trailer are insignificant and can be ignored. 
Calculate:
(a) the acceleration of the car and trailer
(b) the net force acting on the trailer
(c) the force applied on the trailer by the car
(d) the force applied on the car by the trailer.

SOLUTION
(a) Because the coupling between the car and trailer is rigid, they have equal accelerations. 

Newton’s Second Law of Motion can be applied to the system of the car and trailer.
   Fnet = ma

      a =
Fnet

m

= 5400
2000

= 2.7 m s−2 east
(b) Apply Newton’s Second Law of Motion to the trailer.

Fnet = ma
= 400 × 2.7

= 1080 N east
(c) The only horizontal force acting on the trailer is the force applied by the car. The force applied 

on the trailer by the car is therefore 1080 N east.
(d) According to Newton’s Third Law of Motion, the force applied on the car by the trailer is equal 

and opposite in direction to the force applied on the trailer by the car. That force is therefore 
1080 N west.

Driving forceCoupling

FIGU E 4.29  The car towng a traer . The only external horizontal force is the 
driving force.
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4.7 Chapter Review
4.7.1 Summary
 • Force is a vector quantity.
 • Weight is a measure of the force on an object due to the pull of gravity.
 • The weight of an object is directly proportional to its mass.
 • The vector sum of the forces acting on an object is called the net force.
 • The velocity of an object can only change if there is a non-zero net force acting on it. This statement is 

an expression of Newton’s First Law of Motion.
 • When a non-zero net force acts on an object, it accelerates in the direction of the net force.
 • Acceleration occurs when there is a change in speed and/or direction.
 • Inertia is the tendency of an object to resist a change in its motion.
 • The forces acting on a moving vehicle are:

 – weight, downwards
 – the normal reaction force, applied perpendicular to the surface of the road
 – the driving force, applied in the direction of motion by the road
 – road friction, applied to the non-driving wheels opposite to the direction of motion
 – air resistance, applied opposite to the direction of motion.

 • The motion of a vehicle depends on the net force acting on the vehicle.
 • Newton’s Second Law of Motion describes the relationship between the acceleration of an object, the net 

force acting on it, and the object’s mass. It can be expressed as Fnet = ma.
 • Newton’s Second Law can be applied to a single object, or a system of multiple bodies that are in contact 

or connected together.
 • When an object applies a force (an action) to a second object, the second object applies an equal and oppo-

site force (a reaction) to the first object. This statement is an expression of Newton’s Third Law of Motion.
 • The frictional force, Ff , acts between pairs of surfaces such that it opposes the relative motion of one 

surface across the other. The frictional force always acts parallel to the surface interface. Ff = μR where 
μ is the coefficient of friction and R is the normal force.

4.7.2 Questions
Assume that the magnitude of the gravitational field strength at the Earth’s surface is 9.8 m s−2.
1. Describe the difference between a vector quantity and a scalar quantity.
2. State which of the following are vector quantities:

(a) mass (b) weight (c) gravitational field strength
(d) time (e) acceleration.

4.6 Exercise 1
1 A boat of mass 2000 kg tows a small dinghy of mass 100 kg with a thick rope. The boat’s propellers provide 

a forward thrust of 4700 N. The total resistance forces of air and water on the boat and dinghy system 
amount to 400 N and 100 N respectively.
(a) What is the acceleration of the boat and dinghy?
(b) What is the net force on the dinghy?
(c) What is the magnitude of the tension in the rope?

 Watchthis Lesson:  Newtons Third Law
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3. A slightly overweight physics teacher steps off the bathroom scales and proudly remarks, ‘My weight 
is down to 75 kg!’ The physics teacher clearly should have known better. Rewrite the remark in two 
different ways so that it is correct.

4. A family sedan has a mass of 1400 kg with a full tank of petrol.
(a) Calculate the magnitude of its weight at the surface of the Earth.
(b) Calculate the weight of the car on the surface of Mars where the magnitude of the gravitational 

field strength is 3.6 m s−2.
(c) Calculate the mass of the car on the surface of Mars.

5. Estimate your own mass in kilograms and calculate:
(a) the magnitude of your weight at the surface of the Earth
(b) your weight on the surface of Mars where the magnitude of the gravitational field strength is 

3.6 m s−2

(c) your mass on the planet Mars.
6. The set of kitchen scales in figure 4.30a is used to determine mass. As the spring inside is compressed, the 

pointer in front of the scale moves. The beam balance in figure 4.30b is used in many school laboratories to 
determine mass. Which of the two instruments would you prefer to use to measure the mass of a small rock 
(with a mass of less than 300 grams) on the Moon? Explain your answer.

7. Determine the net force in each of the situations illustrated in 
figure 4.31.

8. In the illustrations in figure 4.32, the net force is shown along with 
all but one of the contributing forces. Determine the magnitude and 
direction of the missing force.

FIGURE 4.30
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9. When you stand in an elevator there are only two significant forces acting on 
you — your weight and the normal reaction force. It is important to note that 
the tension in the cable is not pulling on you — it is pulling on the elevator. 
The only object that can push you upwards is the floor of the elevator.
(a) State whether the normal reaction force is less than, equal to or 

greater than your weight when the elevator is:
(i) stationary
(ii) moving upwards with a constant speed
(iii) speeding up on its way to the top floor
(iv) slowing down as it approaches the top floor.

(b) Explain how the movement of elevators in tall buildings sometimes 
makes you feel ‘heavy’ or ‘light’.

10. A car is moving north on a horizontal road at a constant speed of 
60 km h−1.
(a) Draw a diagram showing all of the significant forces acting on the 

car. Show all of the forces as if they were acting through the centre of mass.
(b) Calculate the net force on the car.

11. When you are standing on a bus or train that stops suddenly, you lurch forwards. Apply Newton’s 
First Law of Motion to explain why this happens.

12. The ancient Greek philosopher Aristotle would have explained a car rolling to a stop on a horizontal 
road by saying that it slowed down because there was no constant force to keep it going. Propose a 
better explanation.

13. If the bicycle that you are riding runs into an obstacle like a large rock, you may be flung forwards 
over the handlebars. Explain in terms of inertia why this happens.

14. When you try to push a broken-down car with its handbrake still on, it does not move. Explain other 
forces that are acting on the car to produce a net force of zero.

15. Explain why a car takes longer to stop if the brakes are applied too hard.
16. Determine the magnitude of the horizontal components of each of the following forces (figure 4.34).

17. A car rolls freely down a hill with an increasing speed.
(a) Draw a diagram to show all the forces acting on the car.
(b) What is the direction of the net force on the car?
(c) What is the largest single force acting on the car?
(d) When the car reaches a horizontal surface it slows, eventually coming 

to a stop. Why does this happen?
18. A cyclist of mass 60 kg is riding at a constant speed up a hill that is 

inclined at 30° to the horizontal. The mass of the bicycle is 20 kg. Figure 
4.35 shows the forces acting on the bicycle–cyclist system.
(a) Calculate the net force on the bicycle–cyclist system.
(b) The sum of the magnitudes of the road friction and air resistance on the 

system is 10 N. What is the magnitude of the component of the weight 
of the system that is parallel to the road surface?

FIGURE 4.34
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(c) Calculate the magnitude of the driving force D.
(d) Calculate the magnitude of the normal reaction force on the bicycle–cyclist system.

19. An experienced downhill skier with a mass of 60 kg (including skis) is moving with increasing 
speed down a slope inclined at 30°. She is moving in a straight line down the slope.
(a) Calculate the direction of the net force on the skier.
(b) Draw a diagram showing the forces acting on the skier. Show all the forces as if they were acting 

through her centre of mass.
(c) Calculate the magnitude of the component of the skier’s weight that is parallel to the slope.
(d) If the sum of the forces resisting the movement of the skier down the slope is 8.0 N, calculate the 

magnitude of the net force on her.
20. A ball of mass 0.50 kg is thrown vertically upwards.

(a) Calculate the velocity of the ball at the top of its flight.
(b) Calculate the magnitude of its acceleration at the top of its flight.
(c) Calculate the net force on the ball at the top of its flight.

21. Calculate the magnitude of the net force on each of the following objects:
(a) a 1600 kg car while it is accelerating from 0 to 72 km h−1 (20 m s−1) in 5.0 s
(b) a 500 tonne Manly ferry while it is cruising at a constant speed of 20 km h−1

(c) a space shuttle at lift-off, when its acceleration is 3.0 m s−2 and its lift-off mass is 2.2 × 106 kg.
22. A car of mass 1200 kg starts from rest on a horizontal road and a forward thrust of 10 000 N is 

applied. The resistance to motion due to road friction and air resistance totals 2500 N.
(a) Calculate the magnitude of the net force on the car.
(b) Calculate the magnitude of the acceleration of the car.
(c) Calculate the speed of the car after 5.0 s.
(d) Calculate the distance the car has travelled after 5.0 s.

23. A train of mass 8.0 × 106 kg, travelling at a speed of 30 m s−1, brakes and comes to rest in 25 s with a 
constant deceleration.
(a) Calculate the frictional force acting on the train while it is decelerating.
(b) Calculate the stopping distance of the train.

24. A physics teacher decides, just for fun, to use bathroom scales (calibrated in newtons) in an elevator. 
The scales provide a measure of the force with which they push up on the teacher. When the lift is 
stationary the reading on the bathroom scales is 823 N. Calculate the reading on the scales when the 
elevator is:
(a) moving upwards at a constant speed of 2.0 m s−1

(b) accelerating downwards at 2.0 m s−2

(c) accelerating upwards at 2.0 m s−2.
25. A roller-coaster carriage (and its occupants), with a total mass of 400 kg, rolls freely down a straight 

part of the track inclined at 40° to the horizontal with a constant acceleration. The frictional force on 
the carriage is a constant 180 N. Assume that air resistance is insignificant. What is the magnitude of 
the acceleration of the carriage?

26. A skateboarder with a mass of 56 kg is rolling freely down a straight 
incline. The motion of the skateboarder is described in the graph in 
figure 4.36. Assume that air resistance is insignificant.
(a) Calculate the magnitude of the net force on the skateboarder.
(b) If the friction force resisting the motion of the skateboarder 

is a constant 140 N, at what angle is the slope inclined to the 
horizontal?

FIGURE 4.36
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27. The magnitude of the air resistance, R, on a car can be approximated by the formula: 
R = 1.2 v2

where R is measured in newtons and v is the speed of the car in m s−1.
(a) Design a spreadsheet to calculate the magnitude of the force of air resistance and the net force on 

the car for a range of speeds as it accelerates from 20 km h−1 to 60 km h−1 on a horizontal road. 
Assume that while accelerating, the driving force is a constant 1800 N and the road friction on the 
non-driving wheels is a constant 300 N.

(b) Use your spreadsheet to plot a graph of the net force versus speed for the car.
(c) Modify your spreadsheet to show how the net force on the car changes when the same acceleration 

(from 20 km h−1 to 60 km h−1) is undertaken while driving up a road inclined at 10° to the 
horizontal.

28. A 6 kg bowling ball and a 60 kg gold bar are dropped at the same instant from the third floor of the 
Leaning Tower of Pisa. Use Newton’s Second Law of Motion to explain why:
(a) they both reach the ground at the same time
(b) a 6 kg doormat dropped from the same location at the same time takes longer to reach the ground.

29. Copy and complete the following table by fully describing the missing half of the action–reaction pairs.

You push on a wall with the palm of your hand.

Your foot pushes down on a bicycle pedal.

The ground pushes up on your feet while you are standing.

The Earth pulls down on your body.

You push on a broken-down car to try to get it moving.

A hammer pushes down on a nail.

30. What force provides the forward thrust that gets you moving when you are:

 (a) cycling
 (d) skateboarding

 (b) downhill skiing
 (e) swimming

 (c) water skiing
 (f) rowing?

31. Two loaded trolleys of masses 3.0 kg and 4.0 kg (which are joined by a light string) are pulled by a 
spring balance along a smooth horizontal laboratory bench as shown in figure 4.37. The reading on the 
spring balance is 14 N.

(a) Calculate the acceleration of the trolleys.
(b) Calculate the magnitude of the tension in the light 

string joining the two trolleys.
(c) Calculate the net force on the 4.0 kg trolley.
(d) Calculate the acceleration of the 4.0 kg trolley if the 

string was cut.
32. A warehouse worker applies a force of 420 N to push two crates 

across the floor as shown in figure 4.38. The friction force 
opposing the motion of the crates is a constant 2.0 N for each 
kilogram.

FIGURE 4.37
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FIGURE 4.38
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(a) Calculate the acceleration of the crates.
(b) Calculate the net force on the 40 kg crate.
(c) Calculate the force exerted by the 40 kg crate on the 30 kg crate.
(d) Calculate the force exerted by the 30 kg crate on the 40 kg crate.
(e) Would the worker find it any easier to give the crates the same 

acceleration if the positions of the two crates were reversed? Support 
your answer with calculations.

33. A well-coordinated in-line skater is playing with a yo-yo while accelerating 
on a horizontal surface. Figure 4.39 shows that when the yo-yo is at its 
lowest point it makes an angle of 5° with the vertical. Determine the 
acceleration of the in-line skater.

34. The graph in figure 4.40 shows the acceleration experienced by a wooden  
block placed on a concrete floor as it is pushed across the floor by  
a force FA.
From this graph, determine:
(a) the limiting friction
(b) the mass of the block
(c) the sliding friction.

35. A 3 kg lantern suspended from a verandah roof by a 50 cm 
chain is blown by the wind so that it hangs at an angle θ  
to the vertical for the duration of the wind gust. If the wind 
blows from the east and exerts a constant force of 20 N , 
determine the tension, T, in the chain and the angle θ .

FIGURE 4.40
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PRACTICAL INVESTIGATIONS

Investigation 4.1: Force as a vector
Aim
(a) To show that force is a vector and that the net force is the vector 

sum of all the forces acting on an object
(b) To analyse the forces acting on an object by resolving the forces 

into components

Apparatus
three spring balances (5 N)
slotted masses (set of nine 50 g masses and carrier)
marking pen
sheet of A4 paper
masking tape
protractor

Theory
When a point is stationary, the net force acting at that point is zero. 
We know this because if the point is stationary, it is not changing its 
motion. The net force is the vector sum of all the forces acting at the point. If the net force at a point is zero, the 
components of the forces in any direction will add up to zero.

Method
1. Check that the spring balances are ‘zeroed’ and test them for accuracy by weighing known masses.
2. Using three 5 N spring balances, apply three small forces horizontally to a point, P, so that the point is in 

equilibrium (see figure 4.41). Use masking tape to secure the ends of the spring balances in place while 
maintaining the tension so that the net force at the point P is zero. The point P is the point at which the three 
hooks are in contact.

FIGURE 4.41 Set up three spring 
balances horizontally as shown.

90°

P θ

Sheet of A4 paper

F3 

F2

F1 

y

x



92 Jacaranda Physics 11

3. Place a sheet of A4 paper on the table beneath the point P. Use the protractor to measure the angle θ . You 
need to think carefully about the best way to ensure that the directions are as shown.

4. Draw a diagram of the situation, showing the spring balances and the point P, and label the angles.
5. Draw a separate vector diagram showing the point P and the three forces acting at point P.

Analysis and questions
Determine the net force acting on point P using the two methods (a) and (b) below.
(a) Vector addition method

Apply the ‘head to tail’ rule for vector addition to all forces. Take care when transferring vectors.
1 Label the net force clearly and state its magnitude and direction.
2 What is the expected magnitude and direction of the net force?
3 Account for any difference between your measured net force and the expected net force.

(b) Component method
1 Transfer your original vector diagram carefully onto graph paper with point P at the origin.
2 Use your graph to find the ‘x’ component of each of the three forces. Add the ‘x’ components to obtain 

the sum of the ‘x’ components. Repeat the process for the ‘y’ components.
3 Summarise your results in a table like the one below.

FORCE 'X' COMPONENT (N) 'Y ' COMPONENT (N)

F1

F2

F3

SUM

4 How does the sum of the ‘x’ components of the three forces compare with the expected value of the sum?
5 How does the sum of the ‘y’ components of the three forces compare with the expected value of the sum?

Investigation 4.2: Newton
,
s Second Law of Motion

Aim
(a) To examine the relationship between 

the net force acting on a system, 
the mass of the system and its 
acceleration

(b) To use Newton’s Second Law of 
Motion to determine the mass of an 
object

Apparatus
low-friction trolley
timing and recording device (e.g. ticker-

timer, photogates, motion detector
and computer interface)

pulley
light string
slotted masses (set of nine 50 g masses

and carrier)
metre rule
balance suitable for measuring the mass of the trolley

Theory
Newton’s Second Law of Motion describes the relationship between the acceleration of an object, the net force 
acting on it, and the object’s mass. It can be expressed as Fnet = ma.

Method
1. Use the balance to measure the mass of the trolley. Record its mass.
2. Place 400 g of slotted masses on the trolley. Connect a load of 100 g to the trolley with a light string over a pulley 

as shown in figure 4.42. The load provides a known external force on the system of the trolley and all of the 
slotted masses. The magnitude of this external force is equal to the magnitude of the weight of the load.

3. Use your timing and recording device to collect data that will allow you to determine the acceleration of the 
trolley or glider at several instants as the load is falling.

FIGURE 4.42

Trolley Light string Pulley

Load
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4. Repeat this procedure for different loads by taking 100 g from the trolley and adding it to the load. That 
changes the load, and therefore the external force on the system, without changing the mass of the system. 
Continue to repeat the procedure until you have removed all of the slotted masses from the trolley.

Analysis
1. Use your data to determine the average acceleration of the system for each external force.
2. Summarise your data in a table that shows the force applied to the system by each external force and the 

corresponding acceleration of the system.
3. Use your table to plot a graph of external force versus acceleration.
4. Use your graph to make an estimate of the mass of the system of the slotted masses and trolley.

Questions
1. If the force applied by the load through the string was the only horizontal force acting on the trolley, where 

would the graph cross the vertical axis?
2. What quantity does the intercept on the vertical axis represent?
3. Using your estimate of the mass of the system, what is your estimate of the mass of the trolley?
4. How does your estimate of the mass of the trolley compare with the mass measured by the balance? 

Suggest reasons for differences between the estimated mass and the measured mass.

Investigation 4.3: Weight and Mass
Aim
To examine the relationship between weight and mass

Apparatus
10 × 50 g masses (usually sold as a set with a suspender base)
5-newton spring scale
retort stand
clamp and boss head

Method
1. Assemble the retort stand with clamp and boss head.
2. Calibrate the spring scale. This is usually done by pulling or pushing the metal tag at the top of the scale 

until the indicator is aligned with the zero mark. For some scales, you will need to twist an adjustment screw 
(usually also at the top of the scale).

3. Hang the calibrated scale from the clamp of the retort stand.
4. Suspend a 50 g mass from the scale hook. Read the spring scale and enter the weight registered in the table 

below.
5. Repeat step 4 with masses of 100 g, 150 g and so on up to 500 g.

Results

Mass (g) Mass (kg) Weight (N)

50

100

150

200

250

300

350

400

450

500
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Analysis
1 On the graph section below, plot the results that you have entered in the table above, ensuring that the 

mass (in kg) is on the horizontal axis and weight (in N) is on the vertical axis. Draw a line of best fit through 
your results.

Determine the gradient of the line of best fit.

2 Weight (W) and mass m) are related by the equation W = mg, where g is the acceleration due to gravity in 
m s−2; its value will be the gradient that you calculated above. On average, this value should be 9.81 m s–2.
Calculate the % error in your determination of g compared to the theoretical value of 9.81 m s–2:

% error = ∣ theoretical value − experimental value

theoretical value ∣ × 100 %

3 What explanations can you give for any discrepancy between your investigational value and the theoretical 
value?

Conclusion

What have you found out about the relationship between weight and mass in this investigation?

Investigation 4.4: Static, sliding and rolling friction
Aim
To compare the relative sizes of different forms of friction

Apparatus
Wooden block in the shape of a rectangular prism
string
spring scale (newton scale)
a wooden surface (such as a floor
board, plank or benchtop)
10 × wooden dowels (each 10 cm long)
Note: Ideally, the wooden surface, dowels and block should be of the same type of wood and the same level of 
finish.
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Method
1. Tie a loop of string tightly around the wooden block, ensuring that the largest surface area is not crossed 

with string.
2. Zero the spring scale, then attach the hook on the spring scale to the string loop.
3. Place the block and spring scale on the wooden surface so that the largest surface area is face down.
4. Pull the scale gently until the block just starts to move. Note the reading on the scale. This will be the static 

friction value, Fs. Enter this value into the table below.
5. Lift the block from the surface, replace it and then repeat step 4 twice more.
6. Now pull the block across the wooden surface at a uniform speed (as much as possible) and note the 

reading on the spring scale. This will be the sliding friction value, Fk. Enter this value into the table below. 
Note: if you are pulling with a constant speed, then the reading on the spring scale remains at the same 
value.

7. Replace the block at its starting position and then repeat step 6 twice more.
8. Lay the wooden dowels on the wooden surface so that they lie as close as together as possible. Run your 

hand lightly over them to ensure that they roll smoothly. If a dowel seems to roll unevenly, replace it with 
another.

9. Put the dowels back in their starting position and place the block on top of them so that the end of the 
block lies on the last dowel. Once again, ensure that you place the largest surface area face down.

10. Pull the spring scale and block at a constant speed until the block no longer rolls over the dowels. Note the 
measurement on the scale. This will be the value of rolling friction, Fr. Enter this value into the table below.

11. Repeat steps 9–10 twice more.

Results

Type of friction

Force of friction (N)

Trial 1 Trial 2 Trial 3 Average

Static friction

Sliding friction

Rolling friction

Analysis
1. What variables were controlled during this short investigation?
2. Calculate the average values obtained for each of the three types of friction and enter them into the final 

column in the table above.
3. According to your average values, place the friction types (static, sliding and rolling) in order from lowest to 

highest.
4. Is this the order that you would expect them to appear theoretically?
5. Would you expect this order to be the same if the wooden surface and dowels were replaced with steel while 

the block remained wood? Explain your answer.
6. Discuss at least 3 problems that you encountered in this investigation and propose possible solutions.
7. Give 2 situations in the real world where static friction is relied upon.

Conclusion
State the largest and smallest types of friction for two wooden surfaces.





TOPIC 5 Energy and work 97

TOPIC 5  
Energy and work

5.1 Overview
5.1.1 Module 2: Dynamics
Forces, acceleration and energy
Inquiry question: How can the motion of objects be explained and analysed?
Students:
 • apply the special case of conservation of mechanical energy to the quantitative analysis of motion 

involving:
 – work done and change in the kinetic energy of an object undergoing accelerated rectilinear motion in 
one dimension (W =  Fnet 

s)
 – changes in gravitational potential energy of an object in a uniform field (ΔU =  mgΔh).

 • conduct investigations over a range of mechanical processes to analyse qualitatively and quantitatively 

the concept of average power (P =  Δ E
t

,  P =  Fv), including but not limited to:

 – uniformly accelerated rectilinear motion
 – objects raised against the force of gravity
 – work done against air resistance, rolling resistance and friction.

FIGURE 5.1 Jumping up and down on a trampoline involves the transformation of one energy form into 
another. Kinetic energy, gravitational potential energy, elastic potential energy, chemical potential energy 
and heat are all involved.
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5.2 Describing work
5.2.1 The concept of energy
The word energy is often used to describe the way that you feel. For example, you might say ‘I don’t have 
a lot of energy today’ or on a better day you might say ‘I have enough energy to run a marathon’. The word 
‘energy’ is also used to describe something that food has. In each of these cases, the word ‘energy’ is being 
used to describe something that provides you with the capacity to make something move. It could be a 
heavy object, a bicycle or even your own body. Most dictionaries and some physics textbooks define energy 
as the capacity to do work. Work is done when an object moves in the direction of a force applied to it.

The following list of some of the characteristics of energy provides some further clues as to what it 
really is.
 • All matter possesses energy.
 • Energy is a scalar quantity — it does not have a direction.
 • Energy takes many different forms. It can therefore be classified. Light energy, sound energy, thermal 

energy, kinetic energy, gravitational potential energy, chemical energy and nuclear energy are some of 
the different forms of energy.

 • Energy can be stored, transferred to other matter or transformed from one form into another. For example, 
when you hit a cricket ball with a bat, energy is transferred from the bat to the ball. When you dive into 
a swimming pool, gravitational potential (stored) energy is transformed into kinetic energy.

 • Some energy transfers and transformations can be seen, heard, felt, smelt or even tasted.
 • It is possible to measure the quantity of energy transferred or transformed.
 • Energy cannot be created or destroyed. This statement is known as the Law of Conservation of Energy. 

The quantity of energy in the universe is a constant. However, nobody knows how much energy there is 
in the universe.

Transferring energy
Energy can be transferred to or from matter in several different ways. 
Energy can be transferred by:
 • emission or absorption of electromagnetic or nuclear radiation
 • heating and cooling an object or substance as a result of a temperature difference
 • the action of a force on an object resulting in movement.

The transfer of energy by the action of a force is called mechanical energy transfer.

5.2.2 Getting down to work
When mechanical energy is transferred to or from an object, the amount of mechanical energy transferred 
is called work.

The work, W, done when a force, F, causes a displacement of s, in the direction of the force, is defined 
as:

work = force × displacement in the direction of the force
    W = Fs.

Work is a scalar quantity. The SI unit of work is the joule. One joule of work is done when a force with 
a magnitude of one newton causes a displacement of one metre in the same direction as the force. That is, 
1 J =  1 N × 1 m =  1 N m. Because energy is a measure of the capacity to do work, the SI unit of energy is 
also the joule.
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  5.2.3  Making an effort 
 No work is done on a wall when a force is exerted on it (such as, for example, pushing against a solid wall 
that doesn’t move). However, If the same force were exerted to push a shopping trolley across a fl oor, work 
is done on the trolley because the force   F   is applied to give the trolley a displacement   s   that is in the same 
direction as the force.    

 But what if you were to lift a box and then carry it across the room? 
 In lifting the box, you are exerting a force upwards and, in moving it upwards, you have given the box 

a displacement that is in the same direction as the force — thus work has been done on the box against 
gravity. However, when you walk across the fl oor, you continue to apply the same upwards force to the 
box to hold it up, but you are now 
displacing the box in a direction that is 
at right angles to the force. As a result, 
no work is done on the box while it is 
being carried across the fl oor.    When 
you put the box down on the ground 
again, the displacement will be in the 
opposite direction to the force you are 
applying on the box; as a result, you do 
negative work on the box against 
gravity: 
W =  F(−s)   

s = 0

F

  FIGURE 5.2  The work done 
pushing against a wall is zero.  

s

F

  FIGURE 5.3  Work is done in applying a force to move a trolley 
across a fl oor.  

F

s

s

F(a) (b)

  FIGURE 5.4  Work is done in (a) but not in (b).  
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  5.2.4  Effort at an angle 
 Now consider a box being dragged across a smooth fl oor by means of a rope that makes an angle   θ    with 
the fl oor, as shown in fi gure 5.5.  

  In this case, only the component of the force that is acting in the same direction as the box’s 
displacement,   F cos θ   , will contribute to the work being done. 

 5.2 SAMPLE PROBLEM 2 

 A sled is dragged   100 m   across ice by means of a tow rope that makes an angle of   30°   to the 
horizontal. If a force of   70 N   is applied to pull the sled, how much work is done? 

 SOLUTION:  

70 N

100 m

30º

  FIGURE 5.6   

θ

F

s

F cos θ

  FIGURE 5.5  Dragging a box across the fl oor by 
means of a rope at angle   θ   .  

 5.2 SAMPLE PROBLEM 1 

 How much work is done in pushing a   5 kg   box across a smooth fl at surface for   4 metres   by applying 
a horizontal force of   10  N  ? 

 SOLUTION: 

   

W = Fs
= 10 N × 4 m
= 40 N m
= 40 J

   

 Note that, although work is the product of two vectors, it is a scalar quantity and so has no direction 
associated with it. 
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5.2 SAMPLE PROBLEM 3

A 10 kg box is pushed for 5 metres at constant speed over a timber floor that has a frictional  
coefficient of 0.4.
(a) What work is done on the box by pushing it?
(b) What work is done on the box by the frictional force?

SOLUTION:

(a) Because the box is travelling at constant speed, the magnitude of the force applied to the box to 
push it must be equal to the magnitude of the frictional force opposing the motion.
Ff = μFN =  μWeight
 = μ m g

= 0.4 × 10 kg × 9.8 ms−2

 = 39.2 N, west

As FA =  −Ff , 

 FA =  39.2 N, east

 As FA is directed in the same direction 
as the displacement s,

W = FA s
= 39.2 N × 5 m
= 196 N m
= 196 J

(b) The frictional force Ff  acts in the opposite direction to the displacement s, and so the work done 
on the box by the frictional force equals −196 J.

FN

FAFf

Weight

s = 5 m

FIGURE 5.7

WORKING SCIENTIFICALLY 5.1
Design and perform an investigation to determine the relationship between the radius of the wheels on a cart 
and the force needed to move the cart a fixed distance.

First, the component of force acting in the direction of the displacement is found:

F// = F cos θ  =  70 cos 30°  =   60.6 N

W = F// s =  60.6 N × 100 m

= 6060 N m
= 6060 J

5.2 Exercise 1
 1  How much work is done on a 20 kg box in the following cases if it is:

(a) pushed 5 m across a smooth floor with a force of 300 N?
(b) lifted to a height of 2 m and then carried for 10 m?
(c) pushed for 20 m around the room until it returns to its starting point? (Assume a smooth floor.)

 2 (a)   How much work is done by a 30 kg child who climbs to the top of a 3.2 m slippery slide?
(b) How much work is done by the child in sliding back to the bottom?

 3 A warehouse worker pushes a heavy crate a distance of 2.0 m across a horizontal concrete floor against a 
constant friction force of 240 N. He applies a horizontal force of 300 N on the crate. How much work is done 
on the crate by:
(a) the warehouse worker
(b) the net force?
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5.3 Kinetic energy
5.3.1 The energy of movement
Kinetic energy is the energy associated with the movement of an object. By imagining how much energy 
it would take to make a stationary object move, we can deduce that kinetic energy depends on the mass and 
speed of the object.

The change in kinetic energy of an object is equal to the work done on it by the net force acting on it. If 
an object initially at rest is acted on by a net force of magnitude Fnet and moves a displacement s (which 
will necessarily be in the direction of the net force), its change in kinetic energy, ΔEk, can be expressed as:

Δ Ek =  
Fnet s

The quantity of kinetic energy it possesses is:
Ek = Fnet s

because the initial kinetic energy was zero.
Applying Newton’s Second Law (Fnet = ma) to this expression:

Ek = mas

where
m is the mass of the object and a is its acceleration.

The movement of the object can also be described in terms of its final velocity v and its initial velocity u. 
The magnitudes of the quantities a,  s,  v and u are related to each other by the equations:

a =  v − u
t

and s =   1
2

(u + v)t

Substituting into the expression for kinetic energy:

Ek = mas

= m × (v − u)
t

× 1
2

(u + v)t

= 1
2

× m × (v2 − u2)

= 1
2

mv2 − 1
2

mu2 

Because the object was originally at rest, u = 0.
The kinetic energy of an object of mass m and velocity v can therefore be expressed as:

Ek =  1
2

 mv2

 Watch thiseLesson:  When work is done
Searchlight ID: med-0123
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5.3 SAMPLE PROBLEM 1

DOING WORK TO CHANGE KINETIC ENERGY

A trailer is being pulled along a straight, rough, horizontal road by a car. The trailer and the car travel 
at a constant speed of 50 km h−1. The forward force applied to the trailer by the car is 4000 N.  
Frictional forces oppose this force.
(a) In moving a horizontal distance of 500 metres, how much work is done on the trailer by:

(i) the car?
(ii) the net force?
(iii) the force of gravity?

(b) If the force applied to the trailer by the car is increased to 5000  N and nothing else changes, how 
much kinetic energy is gained by the trailer over the distance of 500 metres?

SOLUTION:

(a) (i) W = F s
= 4000 × 500
= 4 × 103 × 5 × 102

= 2.0 × 106 J
The work done on the trailer by the car is 2.0 × 106 J.

(ii) The work done on the trailer by the net force is equal to the change in kinetic energy of the 
trailer. The trailer is travelling at constant speed, so there is no change in kinetic energy.
No work is done by the net force.

(iii)     The work done on the trailer by the force of gravity is zero because the force of gravity has 
no component in the direction of motion.

(b) When the towing force was 4000  N, the net force was zero. The towing force balanced frictional 
forces. When the towing force is increased to 5000  N, the net force becomes 1000  N in the 
direction of motion of the trailer.

ΔEk = F net 
s

= 1000 × 500
= 500 000 J

The kinetic energy gained is 5.0 × 105 J.

5.3 SAMPLE PROBLEM 2

KINETIC ENERGY CALCULATIONS

Compare the kinetic energy of a 100 m Olympic track athlete with that of a family car travelling 
through the suburbs.
Estimate the mass of the athlete to be 70 kg and the velocity of the athlete to be 10 m s−1.
Estimate the total mass of the car and its passengers to be 1500 kg and the velocity of the car to be 
about 60 km h−1  (17 m s−1).

SOLUTION:

For the athlete: m =  70 kg,  v =  10 m s−1

Ek = 1
2

 mv2

= 1
2

× 70 × (10)2

= 3.5 × 103 J
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PHYSICS FACT
The truth of the advertising slogan ‘Speed kills’ can be appreciated by comparing the kinetic energy of a 
1500 kg car travelling at 60 km h−1 (16.7 m s−1) with the same car travelling at 120 km h−1 (33.3 m s−1).

At 60 km h−1 its kinetic energy is: 

Ek = 1
2

 mv2

= 1
2

× 1500 × (16.7)2

= 2.09 × 105 J.
At 120 km h−1  its kinetic energy is:

Ek = 1
2

 mv2

= 1
2

× 1500 × (33.3)2

= 8.32 × 105 J.
A doubling of velocity produces a fourfold increase in the kinetic energy and, therefore, a fourfold increase in 

the work that needs to be done on the car to stop it during a crash. It also means that four times as much 
energy has to be transformed into the energy of deformation, heat and sound or transferred to other objects.

WORKING SCIENTIFICALLY 5.2
When you rub your hands together, the movement of the friction ridges on your hands across one another 
causes some of the kinetic energy to be converted into heat. Devise a method allowing you to measure the 
increase in temperature of your hands. Then, use this method in an experiment to investigate one of the 
following:

• the relationship between hand surface area and heat increase
• the mathematical relationship between the relative speed of the hands and the increase in hand surface 

temperature.

5.3 Exercise 1
 1 (a)   Calculate the kinetic energy of a 2000  kg elephant charging at a speed of 8.0 m s−1.

(b) Estimate the kinetic energy of:
(i) a cyclist riding to work
(ii) a small crawling across a footpath.

 2 A gardener pushes a loaded wheelbarrow with a mass of 60  kg a distance of 4.0  m along a straight horizon-
tal path against a constant friction force of 120  N. He applies a horizontal force of 150  N on the wheebar -
row. If the wheelbarrow is initially at rest, what is its final speed?

For the car: m =  1500 kg,  v =  17 m s−1

Ek = 1
2

 mv2

= 1
2

× 1500 × (17)2

= 2.2 × 105 J

The value of the ratio 
Ek(car)

Ek(athlete)
 =  

2.2 × 105

3.5 × 103
 =  63.

The car has about 60 times as much kinetic energy as the athlete.
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5.4 Potential energy
5.4.1 Stored energy
Energy that is stored is called potential energy. Objects that have potential energy have the capacity to 
apply forces and do work. Potential energy takes many forms.
 • The food that you eat contains potential energy. Under certain conditions, the energy stored in food 

can be transformed into other forms of energy. Your body is able to transform the potential energy in 
food into internal energy so that you can maintain a constant body temperature. Your body transforms 
some of the food’s potential energy into the kinetic energy of blood, muscles and bones so that you 
can stay alive and move. Some of it is transformed into electrochemical energy to operate your 
nervous system.

 • Batteries contain potential energy. In the next chapter, you will see how the energy stored by ‘separating’ 
charges that are attracted to each other can be transformed into other forms of energy by completing a  
circuit.

 • An object that is in a position from which it could potentially fall has gravitational potential energy. 
The gravitational potential energy of an object is ‘hidden’ until the object is allowed to fall. 
Gravitational potential energy exists because of the gravitational attraction of masses towards each 
other. All objects with mass near the Earth’s surface are attracted towards the centre of the Earth. The 
further away from the Earth’s surface an object is, the more gravitational potential energy it has.

 • Energy can be stored in objects by compressing them, stretching them, bending them or twisting them. If 
the change in shape can be reversed, energy stored in this way is called strain potential energy. Strain 
potential energy can be transformed into other forms of energy by allowing the object to reverse its 
change in shape.

5.4.2 Gravitational potential energy
When an object is in free fall, work is done on it by the force of gravity, transforming gravitational 
potential energy into kinetic energy. When you lift an object, you do work on it by applying an 
upwards force on it greater than or equal to its weight. Although the gravitational field strength, g, 
decreases with distance from the Earth’s surface, it can be assumed to be constant near the surface. 
The increase in gravitational potential energy ΔUg by an object of mass m lifted through a height Δh 
can be found by determining how much work is done on it by the force (or forces) opposing the force 
of gravity.

         W = Fs
= mgΔh (substituting F = mg  and  s = Δh)

⇒ ΔUg = mgΔh

This formula only provides a way of calculating changes in gravitational potential energy. If the gravitational 
potential energy of an object is defined to be zero at a reference height, a formula for the quantity of gravita-
tional potential energy can be found for an object at height h above the reference height.

     ΔUg = mgΔh
⇒ Ug − 0 = mg(h − 0)
⇒ Ug = mgh
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Usually the reference height is ground or floor level. Sometimes it might be more convenient to choose 
another reference height. However, it is the change in gravitational potential energy that is most important 
in investigating energy transformations. Figure 5.8 below shows that the gain in gravitational potential 
energy as a raw egg is lifted from the surface of a table is mgd. When the raw egg is dropped to the table, 
the result will be the same whether you use the height of the table or ground level as your reference height. 
The gravitational potential energy gained will be transformed into kinetic energy as work is done on the 
egg by the force of gravity.

ΔUg = mgΔh
= mg(he − 0)
= mgd

 
ΔUg = mgΔh

= mg(H − ht)
= mgd 

h = he h = H

h = hth = 0 

h = 0

dd

FIGU E 5.8  The choice of reference height does not have any effect on the 
change in gravitational potential energy.

5.4 SAMPLE PROBLEM 1

A 30 kg child sits at the top of a smooth slide. The vertical distance of the slide is 3 metres.  
Calculate
(a) the child’s gravitational potential energy at the top of the slide
(b) the child’s velocity when he is 1 metre above the ground.

AS A MATTER OF FACT
High jumpers use a technique called the Fosbury 
Flop, which allows them to clear the bar while 
keeping their centre of mass as low as possible. The 
gravitational potential energy needed to clear the bar 
is minimised. Thus, with their maximum kinetic 
energy at take-off, high jumpers can clear those extra 
few centimetres.

Incidentally, you might like to estimate just how 
much energy is needed to clear the bar in the high 
jump. Start by working out the change in height of 
an athlete’s centre of mass during a jump of about 
2.0 m.

FIGUE 5.9  The Fosbury Flop can place a 
high jumper’s centre of mass below the bar 
during the jump.
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5.5  Conservation of energy 
  5.5.1  Energy and effi ciency 
   Along with kinetic energy, gravitational potential energy and strain potential energy are referred to as forms 
of mechanical energy. Transformation to or from each of these forms of energy requires the action of a 
force. A single bounce of a tennis ball onto a hard surface involves the following mechanical energy trans-
formations. 
 •    As the ball falls, the force of gravity does work on the ball, transforming gravitational potential energy 

into kinetic energy. 
 •    As soon as the bottom of the tennis ball touches the ground, the upward push of the ground does work 

on the tennis ball, transforming kinetic energy into strain potential energy. A small amount of gravita-
tional potential energy is also transformed into strain potential energy. This continues until the kinetic 
energy of the ball is zero. 

 5.4 Exercise 1 
 1     A ski-lift carries a   60 kg   skier to the top of a ski run that is   40 metres   above the bottom of the ski run. 

(a)    What is her gravitational potential energy relative to the bottom of the ski run? 
(b)    What would be the skier’s speed at the bottom of the ski run if she does not control her progress 

(sensible skiers do!) and if friction and air resistance are ignored?   
 2    A   1.5 kg   model rocket is fi red directly up into the air at a speed of   40 m s−1  . 

(a)    What height will the rocket reach? 
(b)    What will be the rocket’s gravitational potential energy at the top of its fl ight path?   

 3    A   100 g   weight is attached to the end of a   60 cm   long wire and raised until the wire makes an angle of   45°   to 
the vertical. What will be the speed of the weight at the bottom of its swing?   

 SOLUTION: 

(a) Ug = mgh
= 30 kg × 9.8 m s−2 × 3 m
= 882  J

   

(b)   By the Law of Conservation 
of Energy, the child’s total 
energy will always be the 
sum of his gravitational 
potential energy and his 
kinetic energy, so any loss in 
gravitational potential energy 
will be equal to his gain in 
kinetic energy: 

   
−Δ Ug = ΔEk

−mg Δ h = 1
2

 mv2
   

   

−30 kg × 9.8 m s−2 × (1m – 3 m) =  1
2

× 30 kg × v2

588 J =  15 v2

v =  6.3 m s−1
     

3.0 m

  FIGURE 5.10   
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 • As the ball begins to rise and remains in contact with the ground, the upward push of the ground does 
work on the tennis ball, transforming strain potential energy into kinetic energy and a small amount of 
gravitational potential energy until the ball loses contact with the ground.

 • As the ball gains height, the force of gravity does work on the ball, transforming kinetic energy into 
gravitational potential energy.
Of course, if mechanical energy were conserved, the ball would return to the same height from which 

it was dropped. In fact, mechanical energy is not conserved. During each of the mechanical transformations 
that occur during the bounce, some of the mechanical energy of the ball is transformed. Some of the 
ball’s mechanical energy is transformed to thermal energy of the air, ground and ball, resulting in a small 
temperature increase. Some mechanical energy can be lost as sound, while permanent deformation through 
the breaking of bonds between atoms can also lead to a loss of such energy.

Mechanical energy losses to thermal energy, sound etc. are largely permanent. It is very difficult to 
convert this lost energy back into mechanical energy and so it is not considered useful. The  
efficiency, η, of an energy transfer is calculated from the ratio:

η =  
useful energy out

total energy in

where η is the Greek letter eta.

5.5.2 Conservation of total mechanical energy
While it is not possible to completely remove these mechanical energy losses, it is possible to take these 
mechanical energy losses into account when considering the total energy of a system.

WORKING SCIENTIFICALLY 5.3
When a ball is dropped from a height, it bounces a number of times, with each bounce reaching a lower peak 
height than the one before it. By measuring the heights of at least five bounces for a tennis ball, derive a 
mathematical model that would allow you to predict the bounce height of the ball based on the bounce number. 
Use the model to determine the number of bounces after which the ball has effectively stopped bouncing (the 
‘bounce extinction point’).

5.5 SAMPLE PROBLEM 1

A ball dropped from 1.50 m rebounds to 1.20 m. What is the efficiency?

SOLUTION:

η =  
useful energy out

total energy in
The ‘total energy in’ is the gravitational potential energy of the ball at rest at a height of 1.50 m.

Ug = mgh1
= mg × 1.50 m

The ‘useful energy out’ is the gravitational potential of the ball at its rebound height of 1.20 m.

Ug = mgh2
= mg × 1.20 m

   η = 1.2mg
1.5mg

= 80%
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 5.5 Exercise 1    
 1    A   100 g   ball thrown vertically into the air with a speed of   8 m s−1   rises to a height of   2.8 m   before returning to 

the thrower. 
(a)    What is the magnitude of air resistance acting on the ball on its way up? 
(b)    What will be the speed of the ball when it returns to the thrower?   

 2    A   40 kg   child slides down a slippery slide that is   2.5 m   high and makes an angle of   37°   with the ground. If 
the slide provides friction equal to   1 N   , what will be the child’s speed: 
(a)    at the bottom of the slide? 
(b)    halfway down the slide?   

  3    When Susan is at the top of her path when on a swing, she is   2.5 m   above the ground. If Susan has a
mass of   60 kg   and we ignore the effects of friction, calculate: 
(a)    her   Ek   at the top of the path 
(b)    her speed at the bottom 
(c)    her   Ug   when she is   1.5 m   above the ground 
(d)    her speed when she is   1 m   above the ground.     

 5.5 SAMPLE PROBLEM 2     

 A   40 kg   child sits at the top of a   2.6 m   high slide that is inclined at an angle of   30°   to the horizontal, 
as shown in � gure 5.11. If a frictional force of   28 N   acts on the child as she comes down the slide, 
what will be her velocity at the bottom? 

 SOLUTION: 

 We can see that there are three things 
to be considered in this system: 
gravitational potential energy   (Ug)  , 
kinetic energy   (Ek)   and the work 
done on the child by friction   (Wf)  . 
 As the total energy in the system is 
conserved, it can be seen that: 

   
0 = ΔUg + ΔEk + Wf

0 = mg(hf − hi) + 1
2

m(v2 − u2) + Ff 
s
   

 The displacement over which the 
frictional force acts will be equal to 
the length of the slide and so: 

   s =  2.6 m
cos 30°

 =  3.0 m   

 Substituting values into the conservation equation above: 

   

 0 = 40 × 9.8 × (0 − 2.6) + 1
2

 40 × (v2 − 02) + (28)(3.0)

0 = −1019.2 + 20 v2 + 84.0
v2 = 46.76
 v = 6.8 m s−1

   

30º

2.6 m

  FIGURE 5.11   
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5.6 Work and power
5.6.1 Defining power
Power is the rate at which energy is transferred or transformed. In the case of conversions to or from 
mechanical energy or between different forms of mechanical energy, power, P, can be defined as the rate at 
which work is done.

P =  
W
Δt

where
W =  the work done
Δt =  the time interval during which the work is done.

The SI unit of power is the watt (W), which is defined as 1 J s−1.
The power delivered when a force, F, is applied to an object can also be expressed in terms of the 

object’s velocity v.

P =  
W
Δt

 =  F s
Δt

   =  F × s
Δt

  and  since  speed  v equals distance over time, 

   =  Fv

5.6 SAMPLE PROBLEM 1

A student of mass 40 kg walks briskly up a flight of stairs to climb four floors of a building, a vertical 
distance of 12 m in a time interval of 40 s.
(a) At what rate is the student doing work against the force of gravity?
(b) If energy is transformed by the leg muscles of the student at the rate of 30 kJ every minute, what 

is the student’s power output?

SOLUTION:

(a) The work done by the student against the force of gravity is equal to the gain in gravitational 
potential energy.
W =  mgΔ h
The rate at which the work is done, or power (P), is:

WORKING SCIENTIFICALLY 5.4
Many people jump on small trampolines as a method of burning off chemical potential energy. How effective 
would swinging on a playground swing be as a form of physical exercise? Design an investigation that would 
allow you to estimate the amount of chemical potential energy that a person needs to supply (in effort) to keep a 
swing coming up to the same height for a set period of time. Carry out the investigation for different swing 
heights and determine how energy expenditure is affected by swing height.

 Explore ore withthis weblink:  Video analysis app

 RESOURCES
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P = W
Δt

  =   
40 kg × 10 N kg−1 × 12 m

40 s
=  120 W 

(b) P =
energy transferred

time taken
= 30 kJ  min −1

= 30 000 J
60 s

= 500 W

AS A MATTER OF FACT
Which is easier — riding a bike 
or running?
A normal bicycle being ridden 
at a constant speed of 4.0 m s−1 
on a horizontal road is subjected 
to a rolling friction force of about 
7 N and air resistance of about 
6 N. The forward force applied to 
the bicycle by the ground must 
therefore be about 13  N. The 
mechanical power output 
required to push the bicycle 
along at this velocity is:
P = F v

= 13 N × 4.0 m s−1

= 52 W.
Running at a velocity of 

4.0 m s−1 requires a mechanical 
power output of about 300 W. 
Even walking at a speed of 
2.0 m s−1 requires a mechanical 
power output of about 75 W.

Riding a bicycle on a horizontal 
surface is less tiring than walking 
or running for two reasons.
1 Less mechanical energy is 

needed. The body of the rider does not rise and fall as it does while walking or running, eliminating the 
changes in gravitational potential energy.

2 Because the rider is seated, the muscles need to transform much less chemical energy to support body 
weight. The strongest muscles in the body can be used almost exclusively to turn the pedals.

Once you start riding uphill or against the wind, the mechanical power requirement increases significantly. For 
example, in riding along an incline that rises 1 m for every 10 m of road distance covered, the additional power 
needed by a 50 kg rider travelling at 4.0 m s−1 would be:

P =
ΔUg

Δt

=
mgΔh

Δt
.

In a time interval of 1.0 s, the vertical climb is 1
10

 of 4.0 m =  0.4 m.

⇒ P =
50 kg × 10 N kg−1 × 0.4 m

1.0  s
=  200 W

FIGURE 5.12
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5.7 Review
5.7.1 Summary
 • The Law of Conservation of Energy states that energy cannot be created or destroyed.
 • Work is done when energy is transferred to or from an object by the action of a force. The work done on 

an object by a force is the product of the magnitude of the force and the magnitude of the displacement 
in the direction of the force.

 • All moving objects possess kinetic energy. The kinetic energy of an object can be expressed as

 Ek =  1
2

  mv2.

 • The work done on an object by the net force is equal to the object’s change in kinetic energy.
 • The change in gravitational potential energy of an object near the Earth’s surface can be expressed as 

ΔUg = mgΔh where Δh is the object’s change in height.
 • Kinetic energy and gravitational potential energy are referred to as forms of mechanical energy. During a 

mechanical interaction, it is usually reasonable to assume that total mechanical energy is conserved.

 • The efficiency of an energy transfer is calculated from the ratio:

efficiency, η =  
useful energy out

total energy in

 • Power is the rate at which energy is transferred or transformed. In mechanical interactions, power is also 
equal to the rate at which work is done.

 • The power delivered by a force is the product of the magnitude of the force and the velocity of the object 
on which the force acts.

5.6 Exercise 1
Consider the section of roller-coaster track illustrated here:

  1 (a)    Determine the amount of work done by the track motor in raising a 3200 kg roller-coaster from A to B.
(b) If the motor has a power of 12.4 kW, how long will it take to lift the roller-coaster to the crest?

 2 (a)    If all of the 720 J of energy stored in the hind legs of a young 50 kg kangaroo were used to jump 
vertically, how high could it jump?

(b) What is the kangaroo’s power output if the 720 J of stored energy is transformed into kinetic energy 
during a 1.2 second interval?

A

B

C

D

E
F

10 m

0 m

28 m

45 m

G

FIGURE 5.13
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  5.7.2  Questions   
1.    How are mechanical energy transfers different from other types of energy transfer? 
2.    Distinguish between an energy transformation and an energy transfer. 
3.    How much work is done on a   4.0 kg   brick as it is lifted through a vertical distance of   1.5 m  ? 
4.    Imagine that you are trying to single-handedly push-start a   2000 kg   truck with its handbrake on. Not 

surprisingly, the truck doesn’t move. How much work are you doing on the truck? 
5.    Estimate the kinetic energy of: 

(a)    a car travelling at   60 km h−1     (16.7 m s−1)   on a suburban street 
(b)    a tennis ball as it is returned to the server in a Wimbledon fi nal 
(c)    a cyclist riding to work 
(d)    a snail crawling across a footpath.   

6.    A car of mass   1200 kg   is being towed by a thick rope connected to a larger car. After stopping at 
traffi c lights, the tension in the rope is a constant   4000 N   for a distance of   50 metres  . The frictional 
force resisting the motion of the smaller car is   400 N  . 
(a)    Calculate how much work is done on the smaller car by the net force. 
(b)    Evaluate the kinetic energy of the smaller car after the distance of   50 metres   has been covered. 
(c)    Calculate the velocity of the smaller car at the end of the   50 metres   of towing.   

7.    A weightlifter holds a loaded bar above his head for three seconds. Is he doing any work on the bar 
during this time? Explain. 

8.    If you drop a book onto the fl oor, it comes to rest. What has happened to the gravitational potential 
energy that it had before you dropped it? 

9.    Figure 5.14 shows a drawing by the artist M.C. Escher. Explain the essential fl aw underlying the 
motion of the water in terms of energy conservation.     

  FIGURE 5.14  M.C. Escher,  Waterfall , © 2007 The M.C. 
Escher Company, Holland.  
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10. A  60 kg hiker carries a 10 kg backpack up a 10 m high hill.
(a) How much work will be done by the hiker?
(b) If the hiker takes 40 seconds to climb the hill, what average power did he develop? (Assume that 

he walked up the hill at constant speed.)
11. (a)    What percentage of energy has been dissipated by a rubber ball striking the ground if it bounces to 

a height of 1.2 m after being dropped from a height of 2 m?
(b) Where has this energy gone?

12. Katrina throws a 100 g ball vertically with an initial upward velocity of 12 m s−1, and it rises to a 
height of 5 m before returning to her.
(a) What was the average force provided by air resistance as the ball rose into the air?
(b) Assuming that the same amount of air resistance acts on the ball as it falls back down, calculate 

the velocity of the ball when Katrina catches it again.
13. A toddler swings her fluffy toy by a string around in circles at a constant speed. How much work does 

she do on the toy in completing:
(a) one full revolution
(b) half of a full revolution?

14. Use the formulae for work and kinetic energy to show that their units are equivalent.
15. Estimate the amount of work done on a 58 g tennis ball by the racquet when the ball is served at a 

speed of 200 km h−1.
16. Estimate the change in gravitational potential energy of:

(a) a skateboarder riding down a half-pipe
(b) a child sliding from the top to the bottom of a playground slide
(c) you at your maximum height as you jump up from rest.

17. A truck driver wants to lift a heavy crate of books 
with a mass of 20 kg onto the back of a truck 
through a vertical distance of 1 m. The driver needs 
to decide whether to lift the crate straight up, or 
push it up along a ramp.
(a) What is the change in gravitational potential 

energy of the crate of books in each case?
(b) How much work must be done against the force 

of gravity in each case?
(c) If the ramp is perfectly smooth, how much 

work must be done by the truck driver to push 
the crate of books onto the back of the truck?

(d) In view of your answers to (b) and (c), which of 
the two methods is the best way to get the crate 
of books onto the back of the truck? Explain your answer.

18. World-class hurdlers raise their centre of mass as little as possible when they jump over the hurdles. 
Why?

19. If a 160 g cricket ball is dropped from a height of 2.0 m onto a hard surface, calculate:
(a) the kinetic energy of the ball as it hits the ground
(b) the maximum amount of elastic potential energy stored in the ball
(c) the height to which it will rebound.
Assume that 32% of the kinetic energy of the cricket ball is stored in it as it bounces on a hard 
surface.

20. A tourist on an observation tower accidentally drops her 1.2 kg camera to the ground 20 m below.
(a) What kinetic energy does the camera gain before shattering on the ground?
(b) What is the velocity of the camera as it hits the ground?

(a)

(b)

FIGURE 5.15
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21. A girl of mass 50 kg rollerblades freely from 
rest down a path inclined at 30° to the 
horizontal. Figure 5.16 shows how the 
magnitude of the net force on the girl 
changes as she progresses down the path.
(a) What is the kinetic energy of the girl 

after rolling a distance of 8.0 m?
(b) What is the sum of the friction force and 

air resistance on the girl over the first 
8.0 m?

(c) What is the kinetic energy of the girl at 
the end of her 20 m roll?

(d) How much gravitational potential energy 
has been lost by the girl during her 20 m 
roll?

(e) Account for the difference between 
your answers to (c) and (d).

22. Figure 5.17 shows part of a roller-coaster 
track. As a fully loaded roller-coaster car 
of total mass 450 kg approaches point A 
with a velocity of 12 m s−1, the power 
fails and it rolls freely down the track. 
The friction force on the car can be 
assumed to be negligible.
(a) What is the kinetic energy of the 

loaded car at point A?
(b) Determine the velocity of the loaded 

car at each of points B and C.
(c) What maximum height will the car reach  

after passing point D?
23. Figure 5.18 shows how the driving force on 

a 1200 kg car changes as it accelerates from 
rest over a distance of 1 km on a horizontal 
road. The average force opposing the motion 
of the car due to air resistance and road 
friction is 360 N.
(a) How much work has been done by the 

forward push (the driving force) on the 
car?

(b) How much work has been done on the 
car to overcome both air resistance and 
road friction?

(c) What is the velocity of the car when it has travelled 1 km?
24. Jo and Bill are conducting an experimental investigation into the bounce of a basketball. Bill drops the 

ball from various heights and Jo measures the rebound height. They also use an electronic timer with 
thin and very light wires attached to the ball and to alfoil on the floor to measure the impact time. A 
top-loading balance measures the mass of the ball. What physical quantities can they calculate using 
these four measurements?

4 8 12 16 20
Distance (m)

200

300

100

0

FIGURE 5.16
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25.    A tractor engine has a power output of   80 kW  . The tractor is able to travel to the top of a   500 m   hill in 
  4   minutes and   30   seconds. The mass of the tractor is   2.2   tonnes. What is the effi ciency of the engine? 

26.    Human muscle has an effi ciency of about   20%  . Take a heavy mass, about   1–2 kg  , in your hand. With 
your hand at your shoulder, raise and lower the mass   10   times as fast as you can. Measure the mass, 
your arm extension and the time taken, and calculate the amount of energy expended, your power 
output and your power input. 

27.    A pile driver has an effi ciency of   80%  . The hammer has 
a mass   500 kg   and the pile a mass of   200 kg  . The 
hammer falls through a distance of   5.0 m   and drives the 
pile   50 mm   into the ground. Calculate the average 
resistance force exerted by the ground. 

28.    Estimate the average power delivered to a   58 g   tennis 
ball by a racquet when the ball is served at a speed of 
  200 km h−1   and the ball is in contact with the racquet 
for   4.0 ms  . 

29.    At what average rate is work done on a   4.0 kg   barbell as 
it is lifted through a vertical distance of   1.5 m   in   1.2 s  ? 

30.    In the sport of weightlifting, the clean-and-jerk involves 
bending down to grasp the barbell, lifting it to the 
shoulders while squatting and then jerking it above the 
head while straightening to a standing position. In 1983, 
Bulgarian weightlifter Stefan Topurov became the fi rst 
man to clean and jerk three times his own body mass 
when he lifted   180 kg  . Assume that he raised the barbell 
through a distance of   1.8 m   in a time of   3.0 s  . 
(a)    How much work did Stefan do in overcoming the 

force of gravity acting on the barbell? 
(b)    How much power was supplied to the barbell to 

raise it against the force of gravity? 
(c)    How much work did Stefan do on the barbell while 

he was holding it stationary above his head?   
31.     A small car travelling at a constant speed of   20 m s−1   on a horizontal road is subjected to air resistance 

of   570 N   and road friction of   150 N  . What power provided by the engine of a car is used to keep it in 
motion at this speed? 

32.    While a   60 kg   man is walking at a speed of   2.0 m s−1  , his centre of mass rises and falls   3.0 cm   with each 
stride. At what rate is he doing work against the force of gravity if his stride length is   1.0 m  ? 

33.    A bicycle is subjected to a rolling friction force of   6.5 N   and an air resistance of   5.7 N  . The total mass 
of the bicycle and its rider is   75 kg  . Its mechanical power output while being ridden at a constant 
speed along a horizontal road is   56 W  . 
(a)    At what speed is it being ridden? 
(b)    If the bicycle was ridden at the same speed up a slope inclined at   30°   to the horizontal, what 

additional mechanical power would need to be supplied to maintain the same speed? Assume that 
the rolling friction and air resistance are the same as on the horizontal road.   

34.      A roller-coaster rolling down the fi rst hill starts to climb the next hill, which (by poor design) is the same 
height as the fi rst. Sketch a graph that demonstrates the most likely motion of the roller-coaster with 
time,   t  , on the horizontal axis and height above ground level,   h  , on the vertical axis. 

35.    Engineers designing a super drop ride determine that the riders will be raised to a height 
of   200 m  , with a braking zone starting   20 m   from the bottom of the ride. Evaluate the feasibility of 
this design. 

  FIGURE 5.19 A pile driver.   
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36.    An electric motor is to power a lifting chain that raises a   1500 kg   roller-coaster up a   70 m   hill in 
  3   minutes. If the roller-coaster is moving at   4 m s−1   at the top of the hill, what will the minimum power 
of the motor need to be? (Assume that the roller-coaster is stationary at the botom of the hill.)                

 PRACTICAL INVESTIGATIONS 

 Investigation 5.1: Climbing to the top 
 Aim 
 To calculate the work required and the power that must be developed to displace a mass vertically upwards 

 Apparatus 
   bathroom scales 
   builder’s tape measure or laser distance meter 
   access to a fl ight of stairs 
   stopwatch 
   schoolbag with books (total mass at least   3 kg  ) 

   Theory 
 In running up a fl ight of stairs, you are doing work against gravity. The amount of work is described by the 
equation   W =  m  g Δ h  , where m is the mass being moved,   g   is the gravitational acceleration, and   Δh   is the 
upwards displacement. The energy exerted in doing the work against gravity is provided by the conversion of 
chemical potential energy stored in the muscles. 
 The power developed in moving this mass upwards depends upon the rate at which work is done: that is,

P   =  
W
Δt

   where   W   is the work done in joules and   Δt   is the time interval in seconds over which the work is done. 

 Method 
   Measure and record your mass in kilograms. 
   Measure the height of the fl ight of stairs in metres. 
   Measure and record the time taken for you to run up the fl ight of stairs. 
   After you have recovered, measure and record your mass while carrying the schoolbag full of books. 
   Measure and record the time taken for you to run up the fl ight of stairs while carrying the loaded school bag. 
   Enter your results in the table below. 

   Results 

mass, m (kilograms) height, Δh (metres) time, Δt (seconds)

without load

with load

             Analysis 
 Use your results to calculate the work done against gravity and the power developed as you ran up the stairs (a) 
without the bag of books, and (b) while carrying the bag of books. 

 Questions 
1.    What effect (if any) did increasing the mass have on the amount of work done to travel the same vertical 

distance? 
2.    What effect did increasing the mass have on the amount of power developed? 
3.    If your muscles are   25%   effi cient, at what rate was chemical energy transformed by your body to get you up 

the stairs when (a) you were not carrying the bag of books, and (b) when you were carrying the bag of 
books? 

4.    Compare and comment on the difference that the extra load makes to the work done against gravity and the 
power developed.   
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TOPIC 6
Momentum, energy and simple 
systems

6.1 Overview
6.1.1 Module 2: Dynamics
Momentum, energy and simple systems
Inquiry question: How is the motion of objects in a simple system dependent on the interaction between 
the objects?
Students:
 • conduct an investigation to describe and analyse one-dimensional (collinear) and two-dimensional  

interactions of objects in simple closed systems (ACSPH064)
 • quantitatively analyse and predict, using the law of conservation of momentum ( Σ mvbefore = Σ mvafter) and 

the conservation of kinetic energy (Σ  
1
2

 mv2 
before = Σ  

1
2

 mv2
after), the results of interactions in elastic  

collisions* (ACSPH066)
 • investigate the relationship and analyse information obtained from graphical representations of force as a 

function of time
 • evaluate the effects of forces involved in collisions and other interactions, and analyse the interactions 

quantitatively using the concept of impulse (Δp = FΔt)
 • analyse and compare the momentum and kinetic energy of elastic and inelastic collisions (ACSPH066).

*Note: in the text, vbefore (initial velocity) will be represented by u, and vafer  (final velocity) will be  
represented by v.

FIGURE 6.1 This collision is a mechanical interaction. The motion of the car is changed as a 
result of the action of a force. The change in motion depends on the size of the force and the 
mass of the car. However, it is obvious that not just the motion of the car has changed. Some of 
the car’s kinetic energy has been transferred to the object it has collided with — making it vibrate 
and even changing its shape. Some of the car’s kinetic energy has been transformed into other 
forms of energy — for example, sound, heat, and energy stored in the deformed panels. An 
understanding of mechanical interactions such as these can teach us how to design safer cars, 
save countless lives and reduce serious injuries.
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6.2 Momentum and impulse
6.2.1 A sporting example
When two objects collide, there is an interaction between them that arises from Newton’s Third Law of 
Motion. As the two objects come into contact, they will exert equal but opposite forces on each other. For 
example, when a golf club hits a golf ball, the club exerts a force upon the ball that accelerates the ball into 
motion. However, at the same time, the golf ball will exert an equal force back upon the golf club, which 
will cause the club to decelerate as it acts in the opposite direction.
If we look at this mathematically, we can see that:
Fball = –Fclub  [1]
where the negative sign in front of Fclub indicates that it is a force acting in the opposite direction to Fball.
In keeping with Newton’s Second Law, we can give the relationship between the force exerted, mass and 
acceleration for both the club and the ball as:
Fclub = mclub aclub [2]
Fball = mball aball  [3]

Substituting [2] and [3] into [1], we get:
m ball a ball = −m club a club  [4]

As a = v − u
Δt

we can further modify equation [4]:

 mball 
(vball −  uball)

Δt
= − mclub 

(vclub −  uclub)
Δt

 

As the time interval taken to accelerate the ball will be equal to the time interval taken to decelerate the golf 
club, we can cancel Δt from both sides to get:
mball(vball − uball) = −mclub(vclub − uclub)

Using the distributive law, we end up with:
mball vball − mball uball = −(mclub vclub − mclub uclub)  [5]

The product of an object’s mass and its velocity is referred to as an object’s momentum, p. Momentum is 
a vector quantity and it is measured in either newton seconds (N s) or in kilogram metres per second 
(kg m s–1).

Fclub on ball

Fball on club
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Equation [5] can be modified to show the relationship between the momenta of the ball and the club before 
and after their collision:

pball final − pball initial = −( pclub final − pclub initial)  [6]

or, more simply:

Δpball = −Δpclub

That is, the gain in momentum of the ball is equal to the loss of momentum experienced by the club.

6.2.2 The conservation of momentum
We can consider equation [6] in terms of the interaction between two colliding objects A and B as:

pA final − pA initial = −( pB final − pB initial)

Rearranging, we get:

pA final − pA initial = − pB final + pB initial

then,

pA final + pB final = pB initial + pA initial  [7]

We can see that the sum of the momenta of the objects after collision is equal to the sum of the momenta 
of the objects before collision. This idea is embodied in the Law of Conservation of Momentum:

For any closed isolated system, the sum of the momenta of all objects in that system is a constant.

before the collision

during the collision

after the collision

pA

FA FB

pB

pA + pB

pB 

A

B

A
B

pA 

A
B
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6.2.3 Impulse
The actual change in momentum of an object, Δp, is also referred to as its impulse.
The impulse of an object can be found in terms of its mass and change in velocity:
Δp = mΔv = m(v − u)

As F = ma
 

and a = v − u
Δt

 

F = m 
v − u

Δt
 

FΔt = m(v − u)
As a result, we can see that the impulse of an object can also be determined from the force acting on the 
object that changes its velocity, and the time interval over which the force acted on the object:

Δp = FΔt

SOLUTION:

(a) Assign the direction to the right as positive. The expressions uA and uB are the velocities of 
blocks A and B respectively before the collision, and mA and mB are the respective masses of 
blocks A and B.

Therefore, Σ pbefore = mAuA + mBuB

= 5.0 kg × 4.0 m s−1 + 3.0 kg × −4.0 m s−1

= 20.0 kg m s−1 − 12.0 kg m s−1

= 8.0 kg m s−1

 According to the Law of Conservation of Momentum, the total momentum of the system before 
the collision is the same as the total momentum of the system after the collision.

Therefore, Σpafter = Σpbefore = 8.0 kg m s−1

Using the expressions vA and vB for the respective velocities of A and B after collision,

8.0 kg m s−1 = mAvA + mBvB

                    = 5.0 kg × −0.50 m s−1 + 3.0 kg × vB

                    = −2.5 kg m s−1 + 3.0 kg × vB

Rearranging, we get:

8.0 kg m s–1 + 2.5 kg m s–1 = 3.0 kg × vB

10.5 kg m s–1 =  3.0 kg ×  vB

vB =
10.5 kg m s− 1

3.0 kg
    = 3.5 m s− 1

Block B moves off to the right at 3.5 m s−1.

(b) In this case, the blocks A and B will move away from the collision with a combined mass of 
(m A + m B) and with a common velocity that can be expressed as vAB.

Σ  pafter = (m A + m B)vAB

8.0 kg m s− 1 = (5.0 kg + 3.0 kg)vAB

8.0 kg m s− 1 = 8.0 kg × vAB

vAB =
8.0 kg m s− 1

8.0 kg
     = 1.0 m s− 1

The velocity of the blocks after the collision is 1.0 m s−1 to the right.
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6.2 SAMPLE PROBLEM 2

A putter exerts a force of 8 N for a time interval of 0.01 s on a golf ball at rest on the green. With what 
velocity will the ball leave the putter if the ball has a mass of 50 g?

SOLUTION

Given: m = 50 g = 0.05 kg; F = 8 N; Δt = 0.01 s; u = 0

To find: v
               FΔt = m(v − u)
8 N × 0.01 s = 0.05 kg × (v − 0) m s−1

         0.08 Ns = 0.05v kg m s−1

                   v = 0.08
0.05

                      = 1.6 m s−1

 

The putter gives the ball a velocity of 1.6 m s−1.

6.2 SAMPLE PROBLEM 3

MOMENTUM AND IMPULSE OF A CAR

A 1200 kg car collides with a concrete wall at a speed of 15 m s−1 and takes 0.06 s to come to rest.
(a) What is the change in momentum of the car?
(b) What is the impulse on the car?
(c) What is the magnitude of the force exerted by the wall on the car?
(d) What would be the magnitude of the force exerted by the wall on the car if the car bounced back 

from the wall with a speed of 3.0 m s−1 after being in contact for 0.06 s?

SOLUTION

(a) Assign the initial direction of the car as positive.

m = 1200 kg, u = 15 m s−1, v = −3.0 m s−1, Δt = 0.06 s

Δp = mv − mu
    = m (v − u)

     = 1200 (0 − 15)
     = 1200 × −15
     = −1.8 × 104 kg m s−1

   

The change in momentum is 1.8 × 104 kg m s−1 in a direction opposite to the original  
direction of the car.

(b) Impulse on the car = change in momentum of the car

= −1.8 × 104 kg m s−1

The impulse on the car is 1.8 × 104 N s in a direction opposite to the original direction of the 
car.

(c) Magnitude  of  impulse = FΔt

 1.8 × 104 = F × 0.06

             F = 1.8 × 104

0.06
                = 3.0 × 105 N
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6.2 SAMPLE PROBLEM 4 SPEED OF A ROLLER SKATER

The graph in figure 6.4 describes the changing horizontal force on a 40 kg roller skater as she begins 
to move from rest. Estimate her speed after 2.0 seconds.

(d)      Impulse = mΔv
                  = 1200 (−3 − 15)
                  = 1200 × −18
                  = −2.16 × 104 N s 

2.16 × 104 = FΔt
2.16 × 104 = F × 0.06

               F = 2.16 × 104

0.06
                  = 3.6 × 105 N

  

100

200

300

400

0.5 1.0 1.5 2.0
Time (s)

0

A

C

B

FIGURE 6.4

WORKING SCIENTIFICALLY 6.1
Different types of golf balls have different numbers of dimples on them. Investigate the relationship between the 
number and distribution of dimples on golf balls and the air resistance that they experience when dropped from 
a set height.

6.2.4 Investigating impulse using a graph of force as a  
function of time
The force that was determined in 6.2 sample problem 3 was actually the average force on the car. In fact, 
the force acting on the car is not constant. The impulse delivered by a changing force is given by 
impulse = FavΔt. If a graph of force versus time is plotted, the impulse can be determined from the area 
under the graph.
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WORKING SCIENTIFICALLY 6.2
A ball dropped from a height onto a hard floor will bounce higher than one that is dropped onto a sheet of foam. 
Devise and conduct an experiment that will allow you to derive a mathematical relationship between the bounce 
height and the foam thickness.

SOLUTION

The magnitude of the impulse on the skater can be determined by calculating the area under the 
graph. This can be determined by either counting squares or by finding the shaded area.

Magnitude  of  impulse = area A + area B + area C

                                     = 1
2

× 1.1 × 400 + 0.9 × 200 + 1
2

× 0.9 × 200

                                     = 220 + 180 + 90

                                     = 490 N s

 

 Magnitude of change in momentum = mΔv
                                                    490 = 40 × Δv

                                                      Δv = 490
40

                                                            = 12 m s−1

As her initial speed is zero (she started from rest), her speed after 2.0 seconds is 12 m s−1.

6.2 Exercise 1
1. A 70 kg basketball player lands on the ground after a jump at a speed of 10 m s−1 and is brought to a stop 

by the ground in 0.35 s. What is the average force exerted on her by the ground?
2. A sprinter with a mass of 60 kg leaves the blocks at the start of a race by pushing off with a force of 700 N 

exerted over a 0.4 s interval of time. At what speed does the sprinter leave the blocks?
3. A 60 kg trampolinist jumps straight up in the air by exerting an average force of 1060 N on the trampoline 

bed for a time of 0.5 s.
(a) What is the impulse of the trampolinist on the trampoline?
(b) At what speed does he leave the trampoline?
(c) What will be the maximum height that he reaches?

4. Consider a collision in which a model car of mass 5.0 kg travelling at 2.0 m s−1 in an easterly direction 
catches up to and collides with an identical model car travelling at 1.0 m s−1 in the same direction. The cars 
lock together after the collision. Friction can be assumed to be negligible.
(a) What was the total momentum of the two-car system before the collision?
(b) Calculate the velocity of the model cars as they move off together after the collision.
(c) What is the change in momentum of the car that was travelling faster before the collision?
(d) What is the change in momentum of the car that was travelling slower before the collision?
(e) What was the magnitude of impulse on both cars during the collision?

  f ) How are the impulses on the two cars different from each other?

 Watch thiseLesson:  Examples of momentum and impulse
Searchlight ID: med-0043

 Watch thiseLesson:  Examples of calculations using impulse-momentum
Searchlight ID: med-0044

 RESOURCES
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 6.3 Conservation of momentum in two dimensions 
  6.3.1  Components of momentum 
      So far, we have only really looked at the conservation of momentum in one dimension. However, it must be 
remembered that momentum is conserved in two and even three dimensions as well. When momentum is 
conserved in two dimensions, this means that the total momentum before collision is equal to the total 
momentum after collision in both horizontal and vertical directions. This is certainly apparent to anyone 
who has played pool. Let’s look at a particular pool shot to make this idea a bit clearer.  

 A   200 g   white ball strikes a stationary   6   ball, also   200 g  , at a speed of   3 m s−1  . After the collision, the 
white ball and the   6   ball head off at different angles as shown in fi gure 6.5. 

 The fi gure shows that the white ball now moves at   2 m s−1   at an angle of   30°   to its original motion, while 
the   6   ball travels at an angle of   38.2°   at   1.62 m s−1  .  

 Let’s see how momentum is conserved in this collision in two 
dimensions. In the   x  -direction (horizontal), the total momentum 
before collision,   Σpx   is equal to:

  Σpx = (0.2 × 3 cos 0°) + (0.2 × 0) = 0.6 N s   

 Now, the total momentum after collision in the x-direction, 
Σpx

′ , can also be found:

  
 Σpx

′ = (0.2 × 2 cos 30°) + (0.2 × 1.62 cos 321.8°)
        =  0.35 + 0.25
        =  0.6 N s

   

 So, we can see that Σpx = Σpx
′  which tells us that momentum has 

been conserved in the   x  -direction. We can proceed in a similar way 
for the   y  -direction. 

  Σpy = (0.2 × 3 sin  0°) + (0.2 × 0) = 0   

After the collision, 
   Σpy

′ = (0.2 × 2 sin 30°) + (0.2 × 1.62 sin 321.8°)
        = 0.2 + −0.2

         = 0
     

 Thus, momentum is conserved in both the   x  -direction and the 
  y  -direction.         

38.2º
30º

uw = 3 m s–1

vw = 2 m s–1

u6 ball = 0 m s–1

v6 ball  = 1.62 m s–1

(a) Before collision

(b) After collision

6

6

  FIGURE 6.5  A collision between 
pool balls shows that momentum is 
conserved in two dimensions.  

y

x

(c) x-and y-coordinates

 6.3 SAMPLE PROBLEM 1 

 In a game of lawn bowls, a bowl is travelling at a speed of   5 m s−1   when it strikes the jack. After the 
collision, the bowl travels at an angle of   20°   to its original direction at a speed of   4 m s−1  . If the mass 
of the bowl is   1.6 kg   and the mass of the jack is   0.28 kg  , fi nd the speed and direction at which the jack 
is moving after the collision 

 SOLUTION 

 Given:   mB = 1.6 kg  ;   uB = 5 m s−1   at   0°  ;   vB = 4 m s−1   at 
  20°  ;   mJ = 0.28 kg  ;   uJ = 0    
 To fi nd:   vJ   and   θ J   

 As we know that momentum will be conserved in both 
  x  - and   y  -directions, we can write that   Σpx = Σpx

′   and 
  Σpy = Σpy

′   . 

uB = 5 m s–1
�B = 4 m s–1

J = 0
J = ?

J = ?

20º

� �

  FIGURE 6.6   
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Looking at the x-direction first:

Σpx = Σpx
′

                           mBuB + mJuJ = mBvB + mJvJ
  (1.6 × 5 cos 0°) + (0.28 × 0) = (1.6 × 4 cos 20°) + (0.28 × vJ cos θ J)
                                             8  =  6.00 + 0.28vJ cos θ J
                                         2.00 = 0.28vJ cos θ J 
                                   vJ cos θ J = 7.14 N s

Now, let’s look at the y-direction components:
                          mBuB + mJuJ = mBvB + mJvJ
(1.6 × 5 sin 0°) + (0.28 × 0) = (1.6 × 4 sin 20°) + (0.28 × vJ sin θ J)
                                             0 = 2.19 + 0.28vJ sin θ J
                                      −2.19 = 0.28vJ sin θ J 
                                   vJ sin θ J = −7.82 N s

As the magnitude of the velocity is generally positive, the positive x-component and the negative  
y-component indicate that the jack is directed into the fourth quadrant. So we now have 
vJ cos θ J = 7.14 N s and vJ sin θ J = −7.82 N s. Although this may not seem to get us very far, don’t 
forget that we can use the relationship for finding the tan of an angle.

tan θ = sin θ
cos θ

 

therefore, 

tan θ J =
sin θ J

cos θ J

This in turn means that: 

tan θ J =
vJsin θ J

vJcos θ J

We can then substitute our numerical values to get:

tan θ J = 7.82
7.14

      θ J = tan−1 (1.09)
          = 47.6°

Substituting this value back in to vJ cos θ J = 7.14:

 vJ cos 47.6° = 7.14

                vJ = 7.14
0.67

                   = 10.6 m s−1

We find that, after the collision, the jack moves at 10.6 m s−1 at an angle of 312.4° to the original 
direction of motion of the bowl.

uB = 5 m s–1
vB = 4 m s–1

uJ = 0

vJ = 10.6 m s–1 

20º

47.6º

FIGURE 6.7

6.3 Exercise 1
Question
1. A 5 kg ball moving due east at 4.0 m s−1 collides with a 4.0 kg ball moving due west at 3.0 m s−1. Just after 

the collision, the 5.0 kg ball has a velocity of 1.2 m s−1 due south.
(a) What is the magnitude of the 4.0 kg ball’s velocity just after the collision?
(b) In what direction does it move?
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6.4 Momentum and road safety
6.4.1 Reducing the net force
In the event of a car collision, the net force applied to your body as its motion suddenly changes can be 
controlled in two ways:
1. By reducing your initial momentum and therefore, your change in momentum, by driving at a moderate 

speed. Of course, by driving at a moderate speed, you are less likely to have a collision in the first 
place. Low-speed zones, speed humps and strict enforcement of speed limits contribute to making 
accidents less likely and to reducing injuries when accidents do occur.

2. By increasing the time interval during which the change in momentum of the car, and the change in 
momentum of its occupants, takes place.

Cars that crumple
Cars are designed to crumple at the front and rear. 
This provision increases the time interval during 
which the momentum of the car changes in a collision, 
further protecting its occupants from death or serious 
injury. Even though the front and rear of the car 
crumple, the passenger compartment is surrounded by 
a rigid frame. The engine is also surrounded by rigid 
structures that prevent it from being pushed into the 
passenger compartment. The tendency of the roof to 
crush is currently being reduced by increasing the 
thickness of the windscreen and side windows, using 
stronger adhesives and strengthening the roof panel.

The inside of the passenger compartment is also 
designed to protect occupants. Padded dashboards, collapsible 
steering wheels and airbags are designed to reduce the rate of 
change of momentum of occupants in a collision. Interior  
fittings like switches, door knobs and the handbrake are sunk 
so that the occupants do not collide with them.

Don’t be an egghead
In a serious bicycle accident, the head is likely to collide at 
high speed with the road or another vehicle. Even a simple 
fall from a bike can result in a collision of the head with the 
road at a speed of about 20 km h−1. Without the protection 
of a helmet, concussion is likely as the skull decelerates 
very quickly due to the large net force on it. It will come to 
rest while the brain is still in motion. The brain will collide 
with the skull. If the net force on the skull and its subsequent 
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deceleration is large enough, the brain can be severely bruised or torn, often resulting in permanent brain 
damage or death. The effect is not unlike that of dropping a soft-boiled egg onto a hard floor.

Bicycle helmets typically consist of an expanded polystyrene liner about two centimetres thick, covered 
in a thin, hard, polymer shell. They are designed to crush on impact. Although a helmet does not guarantee 
survival in a serious bicycle accident, it does reduce the net force applied to the skull, and therefore 
increases the chances of survival dramatically. The polystyrene liner of the helmet increases the time 
interval during which the skull changes its momentum.

Helmets used by motorcyclists, in horseriding, motor racing, cricket and in many other sports serve the 
same purpose — that is, to increase the time interval over which a change in momentum takes place.

Seatbelts and safety
In a high-speed head-on car collision, each car comes to a stop rapidly. An occupant not wearing a seatbelt 
continues at the original speed of the car (as described by Newton’s First Law of Motion) until acted on by a 
non-zero net force. An unrestrained occupant therefore moves at high speed until:
 • colliding with part of the interior of the car, stopping even more rapidly than the car itself, usually over 

a distance of only several centimetres. (Most deaths and injuries in car crashes are caused by collisions 
between the occupants and the interior of the car.)

 • crashing through the stationary or almost stationary windscreen into the other car or onto the road
 • crashing into another occupant closer to the front of the car.

An occupant properly restrained with a seatbelt stops with te car. In a typical suburban crash, the  
deceleration takes place over a distance of about 50 cm. The rate of change of the momentum of a restrained 
occupant is much less than that of an unrestrained occupant Therefore, the net force on a restrained  
occupant is less. As well as increasing the time interval over which its wearer comes to  
a stop, a properly fitted seatbelt spreads the force over a larger area of the body.

Inertia-reel seatbelts
Inertia-reel seatbelts allow car occupants 
some freedom of movement while they 
are worn. However, in the event of a 
sudden change in velocity of the car, 
they lock and restrain the occupant (see 
figure 6.10). Inertia-reel seatbelts are 
designed with Newton’s First Law of 
Motion in mind. When the car stops sud-
denly, a pendulum continues to move 
forward. Part of the pendulum prevents 
the reel holding the belt from turning. 
This locks the belt into place. The name 
‘inertia reel’ is given to these seatbelts 
because the inertia of the pendulum 
causes the belt to be locked. Another 
type of seatbelt uses an electronic sensor. 
When the sensor detects an unusually 
large deceleration it releases a gas pro-
pellant that causes the reel to be locked.

Seatbelt

Inertia shift
wheel

Front of car

Pendulum
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PHYSICS IN FOCUS
Airbag technology
Airbags are designed to increase the time interval during which the occupant’s momentum decreases 
in a collision, reducing the net force on the occupant. Airbags inflate when the crash sensors in the car 
detect a large deceleration. When the sensors are activated, an electric current is used to ignite  
the chemical compound sodium azide (NaN3), which is stored in a metal container at the opening of 
the airbag. The sodium azide burns rapidly, producing other sodium compounds and nitrogen gas. The 
reaction is explosive, causing a noise like the sound of gunfire. The nitrogen gas inflates the airbag to 
a volume of about 45 litres in only 30 milliseconds.

When the occupant’s body makes contact with the airbag, nitrogen gas escapes through vents in the 
bag. The dust produced when an airbag is activated is a mixture of the talcum powder used to lubricate 
the bags and the sodium compound produced by the chemical reaction. Deflation must be rapid 
enough to allow a driver to see after the accident.

Before any physical testing of a new car takes 
place, the vehicle structure is modelled on a 
computer to ensure that it has adequate durability, 
comfort (in terms of noise and vibration for 
example) and accident performance. The 
computer modelling is then verified with the first 
physical testing of real vehicles. Following this, 
the design will progress through a number of 
refinements before the new model is ready for 
sale to the public.

One interesting aspect in the development of 
an airbag system is the calibration of the sensor 
that triggers the airbags. Current ‘state of the 
art’ technology for driver and passenger airbags 
uses a single sensing module mounted within 
the passenger compartment of the vehicle. This 
module continually monitors the longitudinal 
acceleration of the car. Complex calculations 
and comparisons are performed by a micropro-
cessor within the sensing module before it 
‘decides’ whether or not to trigger the airbags.

Many cars are crashed on the computer and in 
real life during the development of the vehicle 
structure and airbag system. The crash events 
used to develop an airbag calibration include 
high- and low-speed collisions, full and angled 
frontal impacts and pole- or tree-type collisions.

FIGURE 6.11 Airbags increase the time interval 
during which the occupant’s momentum decreases.

FIGURE 6.12 Crash test with a BMW displayed at 
the 2010 Paris Motor Show.

6.4.2 Modelling real collisions
The Law of Conservation of Momentum makes it possible to predict the consequences of collisions between 
two cars or, in the case of traffic investigation forensics, estimate the speeds at which vehicles were 
travelling before a collision.
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6.5 Elastic and inelastic collisions
6.5.1 Transfer of kinetic energy
In collisions, kinetic energy may be transferred between the colliding objects. When a moving billiard ball 
strikes one that is stationary, we would not be surprised to see that the first ball moves a bit more slowly 
after the collision and the stationary ball is now in motion. In this case, the first ball has transferred some 
of its kinetic energy to the second. As the first ball has lost kinetic energy, it moves at a lower speed. The 
second ball, in gaining kinetic energy, is now in motion.

In a perfect collision between two objects in which no energy is lost in the form of sound, heat or elastic 
potential energy, the kinetic energy lost by one object is equal to the kinetic energy gained by the other. In 
other words, for two colliding objects A and B:

ΔEkA = −ΔEkB

1
2

 mAv2
A − 1

2
 mAu2

A = −(1
2

 mBv2
B − 1

2
 mBu2

B)

6.4 SAMPLE PROBLEM 1

A 2000 kg delivery van collides with a small stationary car of mass 1000 kg. The two vehicles lock 
together and the tangled wreck continues to move in the direction in which the van was travelling. By 
examining the marks left by the tangled vehicles after collision until the wreck came to rest, investi-
gators were able to determine that they were travelling together at a speed of 20 m s–1 immediately 
after impact.

At what speed was the van travelling just before it hit the small car?

SOLUTION

Σpafter = (mvan + mcar) vvan+car

          = (2000 kg + 1000 kg) × 20 m s−1

          = 3000 kg × 20 m s−1

          = 60 000 kg m s−1

As Σpafter = Σpbefore = mvan uvan + mcar ucar

60 000 kg m s−1 = 2000 kg × uvan + 1000 kg × 0

60 000 kg m s−1 = 2000 kg × uvan

uvan =
60 000 kg m s−1

2000 kg

uvan = 30 m s−1

6.4 Exercise 1
1. A 1500 kg car travelling at 12 m s−1 on an icy road collides with a 1200 kg car travelling at the same speed, 

but in the opposite direction. The cars lock together and travel at 1.3 m s–1 in the direction of the first car 
after impact. What was the speed of the second car before the collision?

2. A 3.0 kg target is balanced on a post at the end of an archery range. Michelle fires a 45 g arrow that travels 
at 20 m s–1 as it enters the target. If the arrow moves through the target and emerges on the other side with 
a speed of 12 m s–1, what will be the speed of the target as it is knocked from the post?

 Explore ore withthis weblink:  Car safety systems

 RESOURCES
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 We can rearrange this to get:

  1
2

 mAu2
A + 1

2
 mBu2

B = 1
2

 mAv2
A + 1

2
 mBv2

B  

or,

  ΣEk  before = ΣEk  after   

 In such perfect collisions, kinetic energy is conserved and the sum of kinetic energies of the objects within 
the system is a constant. A collision in which both momentum and kinetic energy are conserved is called an 
  elastic collision  . 

 The vast majority of collisions in the real world, however, are not elastic. Although momentum will be 
conserved regardless, the transfer of kinetic energy between colliding objects is usually incomplete. This is 
because some of the original kinetic energy is converted into other forms of energy, such as sound and heat, 
leaving only a fraction of the kinetic energy to be transferred. Collisions in which kinetic energy is not 
conserved are said to be  inelastic .                   

  FIGURE 6.13  Billiard balls collide in a nearly 
elastic collision.  

  FIGURE 6.14  Humans do not collide elastically.  

 SAMPLE PROBLEM 6.5 

 A   60 kg   skater travelling at   4 m s−1   collides with a   40 kg   skater moving in the opposite direction at 
  6 m s−1  , and the two skaters are both bounced in directions opposite to the ones they had before col-
lision. After the collision, the larger skater is moving at a speed of   1 m s−1   but the smaller skater has 
a speed of   1.5 m s−1  . Is this an elastic collision or an inelastic collision? 

 SOLUTION  

mA = 40 kg

uA = 6 m s–1

uB = –4 m s–

mB = 60 kg

  FIGURE 6.15   
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6.6 Review
6.6.1 Summary
 • The momentum of an object is the product of its mass and its velocity.
 • The impulse delivered to an object by a force is the product of the force and the time interval during 

which the force acts on the object.
 • The impulse delivered by the net force on an object is equal to the change in momentum of the object: 

FΔt = mΔv.
 • The impulse delivered by a force can be found by determining the area under a graph of the force versus 

time.
 • The net force on a human body during a collision can be decreased by increasing the time interval during 

which its momentum changes. Vehicle safety features such as crumple zones, together with seatbelts and 
airbags, are designed to increase this time interval. Low-speed zones and speed humps encourage people 

If the collision is an elastic one, then we would expect kinetic energy to be conserved.

Ek before = 1
2

 mAu2
A + 1

2
 mBu2

B

           = 1
2

 60 kg (4 m s−1)2 + 1
2

 40 kg (−6 m s−1)2

           = 480  kg m2 s−2 + 720 kg m2 s−2

           = 1 200 J

Ek after = 1
2

 mAv2
A + 1

2
 mBv2

B

         = 1
2

 60 kg (−1 m s−1)2 + 1
2

 40 kg (1.5 m s−1)2

         = 30 kg m2 s−2 + 45 kg m2 s−2

         = 75 J
As you can see, Ek  before > Ek  after, therefore this is an inelastic collision.

WORKING SCIENTIFICALLY 6.3
Is there a relationship between the speed at which two balls collide and the proportion of kinetic energy lost in 
the collision? Design a method allowing you to investigate this. You will need to measure the speed of the balls 
before and after the collision, you will need to direct the balls in such a way so the collision only happens in one 
dimension, and you will need to change the initial speed of the balls.

6.5 Exercise 1
A 2 kg dynamics cart travelling at 2 m s–1 collides with a 3 kg dynamics cart travelling in the opposite direction 
at 4 m s–1. If the 2 kg cart rebounds from the collision at 3 m s–1, determine:

(a) the velocity of the 3 kg cart after collision
(b) whether this was an elastic collision.

 Watch thiseLesson:  'Sticky' collisions and momentum conservation
Searchlight ID: med-0122
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to drive at lower speeds and, therefore, with less momentum — reducing the likelihood of injury when a 
collision does occur.

 • If the net force acting on a system is zero, the total momentum of the system does not change. This state-
ment is an expression of the Law of Conservation of Momentum.

 • When two objects collide, the force applied by the first object on the second is equal and opposite to the 
force applied by the second object on the first.

 • Momentum is conserved in one-, two- and three-dimensional collisions.
 • The kinetic energy, Ek , of an object is proportional to its mass and the square of its velocity. Kinetic 

energy is measured in joules (J).
 • An inelastic collision is one in which only momentum is conserved.
 • An elastic collision is one in which both kinetic energy and momentum are conserved.

6.6.2 Questions
1. Joggers are advised to run on a soft surface such as grass rather than on hard surfaces such as bitumen 

or concrete to reduce knee injury. Why is this so?
2. What is the difference between an energy transfer and an energy transformation?
3. Why is a heavy bowling ball able to knock over more pins on average than a lighter ball?
4. Why does the use of boxing gloves make modern boxing safer than bare-knuckle fighting?
5. Most dance halls have what are referred to as sprung wooden floors, which are very bouncy. Why 

would such floors be needed in a dance hall?
6. Explain in terms of the Law of Conservation of Momentum how 

astronauts walking in space can change their speed or direction.
7. Make an estimate, to one significant figure, of the magnitude of each 

of the following:
(a) the momentum of an Olympic athlete in the 100 m sprint
(b) the momentum of a family car travelling at the speed limit along a 

suburban street
(c) the impulse that causes a 70 kg football player running at top speed to 

stop abruptly as he collides with an unseen goalpost
(d) the impulse applied to a netball by a goal shooter as she pushes 

it up towards the goal at a speed of 5 m s−1

(e) the change in momentum of a tennis ball as it is returned to the server in a Wimbledon final.
8. A railway cart of mass 500 kg travelling at 3.0 m s−1 due west comes to rest in 2 0 s when the engine 

pulling it stops.
(a) Calculate the impulse that has been applied to he cart.
(b) Calculate the change in momentum of the cart.
(c) Calculate the magnitude of the average force acting on the cart as it omes to a stop.

9. The graph in the figure 6.17 shows how the net 
force on an object of mass 2.5 kg changes with 
time.
(a) Calculate the impulse applied to the object 

during the first 6.0 s.
(b) If the object was initially at rest, what is its 

momentum after 12 s?
(c) Draw a graph of acceleration versus time 

for the object.

FIGURE 6.16

6 12
Time (s)

0
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FIGURE 6.17
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10. A car with a total mass of 1400 kg (including occupants), travelling at 60 km h−1, hits a large tree and 
stops in 0.080 s.
(a) Calculate the impulse that is applied to the car by the tree.
(b) Calculate the force exerted by the tree on the car.
(c) Calculate the magnitude of the deceleration of the 70 kg driver of the car if he is wearing a 

properly fitted seatbelt.
11. Figure 6.18 shows how the horizontal 

force on the upper body of each of two 
occupants of a car changes as a result of a 
head-on collision. One occupant is 
wearing a seatbelt while the other is not. 
Both occupants are stationary 0.10 s after 
the initial impact.
(a) What is the horizontal impulse on the 

occupant wearing the seatbelt?
(b) If the mass of the occupant wearing 

the seatbelt is 60  kg, determine the 
speed of the car just before the initial 
impact.

(c) Is the occupant not wearing the seatbelt heavier or lighter than the other (more sensible) occupant? 
Write a paragraph explaining the difference in shape between the two curves on the graph.

12. A 75 kg basketballer lands vertically on the court with a speed of 3.2 m s−1.
(a) What total impulse is applied to the basketballer’s feet by the ground?
(b) If the basketballer’s speed changes from 3.2 m s−1 to zero in 0.10 s, what total force does the 

ground apply to his feet?
13. Use the ideas presented in this chapter to explain why:

(a) dashboards of cars are padded
(b) cars are deliberately designed to crumple at the front and rear
(c) the compulsory wearing of bicycle helmets has dramatically reduced the number of serious head 

injuries in bicycle accidents.
A single answer (rather than three separate answers) is acceptable.

14. It is often said that seatbelts prevent passengers from being thrown forwards in a car collision. What is 
wrong with such a statement?

15. Airbags are fitted to the centre of the steering wheel of many new cars. In the event of a sudden decelera-
tion, the airbag inflates rapidly, providing extra protection for a driver restrained by a seatbelt. Explain 
how airbags reduce the likelihood of serious injury or death.

16. A toy car with a mass of 2.0 kg collides with a wall at a speed of 1.0 m s−1 and rebounds in the 
opposite direction with a speed of 0.50 m s−1.
(a) What is the change in momentum of the toy car?
(b) What is the impulse applied by the toy car to the wall? Explain how you obtained your answer 

without any information about the change in momentum of the wall.
(c) Does the wall actually move as a result of the impulse applied by the toy car? Explain your answer.

17. A physics student is experimenting with a low-friction cart on a smooth horizontal surface. Predict the 
final velocity of the 2.0 kg cart in each of these two experiments.
(a) The cart is travelling at a constant speed of 0.60 m s−1. A suspended 2.0 kg mass is dropped onto it 

as it passes.
(b) The cart is loaded with 2.0 kg of sand. As the cart moves with an initial speed of 0.60 m s−1 the 

sand is allowed to pour out through a hole behind the rear wheels.

0

2000

4000

6000

0.02 0.04 0.06 0.08 0.10
Time (s)

Occupant without seatbelt Occupant with
seatbelt

FIGURE 6.18
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18. Two stationary ice skaters, Denise and Lauren, are facing 
each other and use the palms of their hands to push each 
other in opposite directions. Denise, with a mass of 50 kg, 
moves off in a straight line with a speed of 1.2 m s−1. 
Lauren moves off in the opposite direction with a speed of 
1.5 m s−1.
(a) Calculate Lauren’s mass.
(b) Calculate the magnitude of the impulse that results in 

Denise’s gain in speed.
(c) Calculate the magnitude of the impulse on Lauren 

while the girls are pushing each other away.
(d) What is the total momentum of the system of Denise 

and Lauren just after they push each other away?
(e) Would it make any difference to their final velocities 

if they pushed each other harder? Explain.
19. Gavin and Andrew are keen rollerbladers. Gavin 

approaches his stationary brother at a speed of 2.0 m s−1 
and bumps into him. As a result of the collision, Gavin, 
who has a mass of 60 kg, stops moving, and Andrew, who 
has a mass of 70 kg, moves off in a straight line. The 
surface on which they are ‘blading’ is smooth enough that 
friction can be ignored.
(a) With what speed does Andrew move off?
(b) Calculate the magnitude of the impulse on Gavin as a 

result of the bump.
(c) Calculate the magnitude of Gavin’s change in 

momentum.
(d) Calculate the magnitude of Andrew’s change in 

momentum.
(e) How would the motion of each of the brothers after 

their interaction be different if they pushed each other 
instead of just bumping?

(f) If Gavin held onto Andrew so that they moved off together, what would be their final velocity?
20. An unfortunate driver of mass 50 kg, travelling on an icy road in her 1200  kg car, collides with a 

stationary police car with a total mass (including occupants) of 1500  kg. The tangled wreck moves off 
after the collision with a speed of 7.0 m s−1. The frictional force on both cars can be assumed to be 
negligible.
(a) At what speed was the unfortunate driver travelling before her car hit the police car?
(b) What was the impulse on the police car due to the collision?
(c) What was the impulse on the unfortunate driver of the offending car (who was wearing a properly 

fitted seatbelt) due to the impact with the police car?
(d) If the duration of the collision was 0.10 s, what average net force was applied to the police car?

21. A car of mass 1500 kg travelling due west at a speed of 20 m s−1 on an icy road collides with a truck 
of mass 2000 kg travelling at the same speed in the opposite direction. The vehicles lock together after 
impact.
(a) What is the velocity of the vehicles immediately after the collision?
(b) Which vehicle experiences the greater change in speed?
(c) Which vehicle experiences the greater change in momentum?
(d) Which vehicle experiences the greater force?

FIGURE 6.19

FIGURE 6.20



TOPIC 6 Momentum, energy and simple systems 137

22. A train of mass 4.0 × 106 kg rolls freely along a horizontal track at a speed of 3.0 m s−1 towards a 
loaded coal cart. The mass of the coal cart is 5 × 105 kg and it is rolling freely at a speed of 2.0 m s−1 
in the same direction as the train. When the train reaches the coal cart, they remain in contact and 
continue to roll freely. What is their common speed after contact is made?

23. In a real collision between two cars on a bitumen road on a dry day, is it reasonable to assume that the 
total momentum of the two cars is conserved? Explain your answer.

24. A well-meaning politician makes the suggestion that if cars were completely surrounded by rubber 
‘bumpers’ like those on dodgem cars, they would simply bounce off each other in a collision and the 
passengers would be safer. Discuss the merit of this suggestion in terms of impulse, change in 
momentum and force.

25. In a paragraph, discuss the accuracy of the following statement. Make estimates of the physical 
characteristics of the car and the wall so that you can support your arguments with calculations.

When a car collides with a solid concrete wall firmly embedded into the ground, the total 
momentum of the system is conserved. Therefore, the concrete wall moves, but not quickly enough to 
allow any measurement of the movement to be made.

26. Design a spreadsheet to model head-on collisions between two cars on an icy road. Assume that the 
cars are locked together after impact. Use your spreadsheet to predict the speed of the cars after the 
collision for a range of masses and initial speeds.

27. A 1.20 kg sports pistol discharges while lying on a highly polished tabletop, firing a 3 g bullet at 
420 m s−1 in one direction while it recoils in the opposite direction. How far along the tabletop will 
the gun move before coming back to rest if the coefficient of friction between the gun and the tabletop 
is 0.12?

28. Two identical hockey pucks slide along the ice towards each other. At the moment that they collide 
elastically, one has a speed of 10 m s−1 and the other has a speed of 5 m s−1. If they bounce off each 
other, what will be their speeds after collision?

29. Figure 6.21 shows a billiards shot that causes a red ball to be sunk in the corner pocket. 
If the white ball and the red ball have the same mass and the red ball was initially stationary, what 

speed did the red ball have after collision? (Note: in reality, the white ball is slightly smaller than the 
other balls on the table.)

20º

30º
uw = 4 m s–1

Vr = ?

Vw = 2 m s–

FIGURE 6.21
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PRACTICAL INVESTIGATIONS

Investigation 6.1: Impulse and change in momentum
Aim
To compare the change in momentum of an object with the impulse delivered by an external force

Apparatus
low-friction trolley or linear air-track glider  
timing and recording device (e.g. ticker-timer, spark generator, photogates, motion detector and computer 
interface)  
pulley 
light string 
load (500 g or 1.0 kg mass)
metre rule 

Theory
The impulse delivered to an object by a force is the product of the force and the time interval during which  
the force acts on the object. The impulse delivered by the net force on an object is equal to the change in 
momentum of the object.

Method
1. Connect a load of known mass to a 

dynamics trolley or linear air-track glider 
with a light string over a pulley, as shown in 
figure 6.22.

2. Use your timing and recording device to 
collect data that will allow you to determine 
the instantaneous velocity of the trolley or 
glider at two separate instants as the load is 
falling.

3. Measure and record the mass of the trolley 
or glider.

Analysis and questions
Use your record of the motion to determine the instantaneous velocity at two separate instants and hence 
calculate the change in velocity.

1. What is the mass of the system?
2. Calculate the change in momentum of the system.
3. What is the magnitude of the net force applied to the system?
4. Use the net force and the appropriate time interval to calculate the impulse delivered to the system by the net 

force.
5. Compare the impulse and change in momentum of the system, and discuss any difference between your 

expected results and your calculations. 
6. Express the discrepancy between the change in momentum and the impulse as a percentage of the impulse.
7. Which of the measured quantities was the least accurate? Why?

Investigation 6.2: Simulating a collision
Aim
To show that momentum is conserved in a collision in which there are no unbalanced external forces acting on 
the system

Apparatus
low-friction trolleys or linear air-track gliders 
timing and recording device (e.g. ticker-timer, spark generator, photogates, motion detector and computer interface) 
brick or other weight to add to one trolley or glider
balance suitable for measuring the mass of the trolleys or gliders and the added weight 
velcro, double-sided tape or plasticine 
metre rule

Trolley Light string Pulley

Load

FIGURE 6.22
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Theory
If the net force acting on a system is zero, the total momentum of the system does not change. This statement 
is an expression of the Law of Conservation of Momentum. Therefore, if no external forces act on two vehicles 
during a collision between them, the total momentum of the system of the two vehicles remains constant. It 
follows that the change in momentum of the first car is equal and opposite to the change in momentum of the 
second car.

Method
1. Use two low-friction trolleys or linear air-track gliders to simulate a collision between a furniture truck and a 

medium-sized passenger car. The truck, travelling at a moderate speed, collides with the rear end of the car 
on an icy road. After the collision, the two vehicles lock together.

2. Attach an adhesive substance (e.g. velcro, double-sided sticky tape or plasticine) to one or both trolleys or 
gliders to ensure that they lock together after the collision. Record the mass of each ‘vehicle’ (after adhesive 
is attached) before setting up the collision. Place a small, light, unrestrained object on to each of the vehicles 
to represent loose objects.

3. Use your timing and recording device to collect data that will allow you to determine the velocity of each 
‘vehicle’ just before and just after the collision.

Results
Record your data in a table similar to the one below.

Analysis and questions
1. Describe the motion of each of the loose objects after the collision. What are the implications of your 

observations for the drivers and passengers in each vehicle?
2. What was the total momentum of the system before the collision?
3. If there were no unbalanced external forces acting on this system, what would you expect the total momen-

tum to be after the collision?
4. What was the total momentum of the system after the collision?
5. How do you account for the fact that momentum was not fully conserved in this collision? Mass was 

recorded in the tables in grams. Why is there no need to convert it to kilograms?
6. What was the impulse applied to the car during the collision?
7. What was the impulse applied to the furniture truck during the collision?
8. According to Newton’s Third Law of Motion, the impulse applied to the car by the furniture truck should be 

equal to the impulse applied to the furniture truck by the car. Explain your answers to questions 6 and 7 in 
the light of this. 

9. An elastic collision is one in which the total kinetic energy of the system before the collision is the same as 
the total kinetic energy after the collision. Is this simulated collision elastic? Show your reasoning.

Furniture truck Medium-sized car

Mass (g)

Velocity before collision (cm s−1)

Velocity after collision (cm s−1)

Momentum before collision (g cm s−1)

Momentum after collision (g cm s−1)
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TOPIC 7
Wave properties

7.1 Overview
7.1.1 Module 3: Waves and Thermodynamics
Wave properties
Inquiry question: What are the properties of all waves and wave motion?
Students:
 • conduct a practical investigation involving the creation of mechanical waves in a variety of situations in 

order to explain:
 – the role of the medium in the propagation of mechanical waves
 – the transfer of energy involved in the propagation of mechanical waves (ACSPH067, ACSPH070).

 • conduct practical investigations to explain and analyse the differences between:
 – transverse and longitudinal waves (ACSPH068)
 – mechanical and electromagnetic waves (ACSPH070, ACSPH074).

 • construct and/or interpret graphs of displacement as a function of time and as a function of position 
of transverse and longitudinal waves, and relate the features of those graphs to the following wave 
characteristics:
 – velocity
 – frequency
 – period
 – wavelength
 – wave number
 – displacement and amplitude (ACSPH069).

 • solve problems and/or make predictions by modelling and applying the following relationships to a 
variety of situations

 –  v = f λ

 –  f = 1
T

 –  k = 2π
λ

FIGURE 7.1 Waves in a ripple tank.
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7.2 Types of waves
7.2.1 What is a wave?
A wave is a disturbance that travels through a medium from the source to the detector without any 
movement of matter. Waves therefore transfer energy without any net movement of particles. Periodic waves  
are disturbances that repeat themselves at regular intervals. Periodic waves propagate by the disturbance in 
part of a medium passing on to its neighbours. In this way, the disturbance travels, but the medium stays 
where it is.

When a small rock is thrown into the centre of a still pond, the kinetic energy of the rock is transferred to 
the water as it enters. This energy is carried through the water in the form of evenly spaced ripples, which 
are small waves. If there are objects on the surface of the water such as twigs or lily pads, they move up 
and down rather than being carried along with the waves. It is the energy that is travelling from the centre 
of the pond out to the edges in the form of the waves through the water, not the water itself.

7.2.2 Transverse and longitudinal waves
One way of categorising waves is to describe 
them in terms of their orientation relative to 
their direction of motion. A transverse wave 
is one in which the disturbance caused by the 
transfer of energy acts perpendicularly to the 
direction of the wave itself. The ripples on 
the surface of a pool when a rock has been 
dropped into it, such as in figure 7.2a, form 
transverse waves, with the surface of the water 
moving vertically up and down as the wave moves outwards horizontally parallel with the rest position of 
the water.

The highest points of transverse waves are called crests or peaks while the lowest points are called 
troughs.

A longitudinal wave (also called a compression wave) is one in which the disturbance moves in 
the same direction as the wave. As the disturbance moves through the particles of the medium, it alter-
nately pushes them closer together and then pulls them further apart. The positions where the particles 
are crowded together the closest are called compressions, and those where the particles are spread 
furthest apart are referred to as rarefactions. Sound waves move as longitudinal waves, as do some 
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of the waves produced during earth-
quakes. The ‘push’ waves created in 
a stretched ‘slinky’ spring are also 
longitudinal, with the compressions 
noticeable where the coils pack 
closely together, and the rarefactions 
noticeable where the coils spread 
furthest apart.

7.2.3 Features of waves
All waves can be described in terms of 
their wavelength, frequency, amplitude 
and speed. 

The period of a periodic wave is 
the time taken for a source to produce 
one complete wave, and it is the same as the time taken for a complete wave to pass a given point. The 
period is measured in seconds and is represented by the symbol T .

The frequency, f , of a wave is a measure of how many waves pass a location in a time interval of one 
second. The unit of frequency is the hertz (Hz), with 1 Hz = 1 s−1.

The frequency of a wave is equal to the reciprocal of its period: 

T = 1
f

For example, if a sound wave has a frequency of 256 Hz (corresponding to the pitch of middle C on 
a piano), then the sound source is producing 256 waves every second. The period of one of these waves 

(the time taken for one complete wave to be produced by the source) is equal to 1
256 s

= 0.0039 s or  
3.9 milliseconds.

The wavelength of a wave series is 
the distance between successive waves 
and it is equal to the distance travelled 
by each wave during a time interval 
equal to one period The symbol for 
wavelength is the Greek letter λ (called 
lambda and pronounced ‘lam-duh’) 
For transverse waves, wavelength 
may be measured from the crest of 
one wave to the crest of the following 
wae, or between successive trughs, 
or between any two equivalent points 
on successive waves. In longitudinal 
waves, the wavelength is usually meas-
ured between successive compressions 
or successive rarefactions. As it is a 
measurement of length, the SI unit for 
wavelength is the metre.

The amplitude, A, of a wave 
relates to the amount of energy that is 
associated with the wave. The bigger the amplitude of the wave, the more energy it has. The amplitude 
is generally defined as the difference between the maximum displacement and the normal, undisturbed 

Compression
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FIGURE 7.4 Longitudinal waves in (a) a slinky and (b) air.
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position of a particle in the wave medium. The units of amplitude vary from wave type to wave type. For 
example, in sound waves the amplitude is measured in units of pressure, whereas the amplitude of a water 
wave would normally be measured in centimetres or metres. The amplitude of light is measured in terms of 
its intensity or, if we are considering visible light, its brightness.

The speed of a periodic wave (represented by the symbol v) is related to the wave’s wavelength and 
frequency by a relationship known as the wave equation:

v = f λ.

7.2 SAMPLE PROBLEM 1

What is the speed of a sound wave if it has a period of 2.0 ms and a wavelength of 68 cm?

SOLUTION:

Step 1:
 Note down the known variables in their appropriate units. Time must be expressed in seconds and 
length in metres.
T = 2.0 ms
  = 2.0 × 10−3 s
λ = 68 cm
 = 0.68 m

Step 2:
Choose the appropriate formula.

υ = λ
T

 (as f = 1
T)

Step 3:
Transpose the formula. (Not necessary in this case.)

Step 4: 
Substitute values and solve.

υ =
0.68 m

2.0 × 10−3 s
  = 340 m s−1

7.2 SAMPLE PROBLEM 2

What is the wavelength of a sound of frequency 550 Hz if the speed of sound in air is 335 m s−1?

SOLUTION:

f = 550 Hz,  υ = 335 m s−1

           υ = f λ

⇒ λ = υ
f

        = 335 m s−1

550 Hz

        = 0.609 m
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The wave number (represented by the symbol k) of a periodic wave series is equal to the number of 

waves per unit distance. Just as frequency is equal to the reciprocal of the period, the wave number is the 

reciprocal of the wavelength: k = 2π
λ

This quantity is particularly important in quantum physics as your later studies will show.

7.2.4 Propagation of waves
Waves are categorised according to how they propagate or transfer energy from place to place. There are 
two major groups of waves: mechanical waves and electromagnetic waves. Mechanical waves involve 
the transfer of energy through a medium by the motion of the particles of the medium itself. The particles 
move as oscillations or vibrations around a fixed point and, after the wave has passed, the particles move 
back to exactly the same places they occupied before they were disturbed. There is no bulk transfer of par-
ticles from one place to another.

However, because mechanical waves transfer energy by means of particle vibration, energy is lost, due 
to friction, over the course of the wave transmission through the medium. As a result, the waves have less 
energy and thus a smaller amplitude the further they travel from the source.

Electromagnetic waves are transverse waves that consist of alternating electric and magnetic force fields posi-
tioned at ninety degrees relative to each other and to the direction of energy propagation. Unlike mechanical 
waves, electromagnetic waves do not need a medium to travel in. In fact, they slow down when travelling in any 
physical medium apart from a vacuum. As electromagnetic waves do not need the movement of any particles 
to propagate (as mechanical waves do), they are not subject to the same energy losses due to friction between 
particles. Therefore, they potentially have much greater travel ranges than mechanical waves.

WORKING SCIENTIFICALLY 7.1
When an object is dropped into water, ripples radiate out from the position at which it entered the water. 
Design and perform an experiment to determine how the amplitude and velocity of the ripples produced are 
related to (a) the mass of the object, (b) the height from which the object is dropped, or (c) the depth of the 
water.

TABLE 7.1 Some examples of mechanical waves.

Wave Source Medium Detector Disturbance

Sound Push/pull of a  
loudspeaker 

Air Ear Increase and decrease 
in air pressure

Rope Upward flick of  
hand 

Rope Person at 
other end

Section of rope is lifted 
and falls back

Stretched 
spring

Push of hand Coils in the 
spring

Person at 
other end

Bunching of coils

Water Dropped stone Water Bobbing 
cork

Water surface is lifted 
and drops back

speaker

compressions

Sound waves

Pulse on a rope

compessions

Compressions moving along a 
stretched spring

Ripples on waterRipples on water
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All electromagnetic waves travel at 
the same speed in a vacuum. This is 
referred to as the speed of light, c, and 
it is equal to 299 792 458 m s–1. This is 
usually approximated to 3 × 108 m s–1.

While electromagnetic waves may 
travel at the same speed, they vary widely 
in wavelength and frequency. Figure 7.7 
shows the range of wavelengths and fre-
quencies for the various kinds of electro-
magnetic radiation.

Direction of 
energy transfer and
propagation direction

Key
 lectic force eld
 Magneic force eld
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7.3 Representing wave motion
7.3.1 Displacement-time graphs of wave motion
As a wave travels through a medium, the particles of the medium are displaced. By plotting the displace-
ment of the medium at a particular point over time, a displacement-time graph may be produced. From 
such a graph, the period and amplitude of the wave may be read directly and the frequency calculated.

7.3 SAMPLE PROBLEM 1

A stone is dropped into a still pond, and the motion of a leaf on the surface of the water is observed 
as the ripples move past it. The displacement-time graph below describes the motion of the leaf over 
time.
Use the graph to determine the wave’s:
(a) period
(b) frequency
(c) amplitude
(d) wavelength, given that the wave speed is 

2 m s–1.
(e) the distance of the leaf from the wave’s 

point of origin.

SOLUTION:

(a) The period is the time taken for one complete 
wave to be formed. From the graph, we see 
that the leaf makes one complete cycle (up  
and down again) every 0.5 seconds.

(b) The frequency, f , is equal to the reciprocal 
of the period, T: 

f = 1
T

= 1
0.5 s

= 2 Hz

(c) The amplitude corresponds to the distance 
between the equilibrium position and the 
wave crest. The amplitude of the wave  
is 5 cm.

(d) Substituting values into the wave equation:
v = f λ
⇒ λ = v

f

= 2 m s−1

2 Hz
= 1 m

(e) By inspecting the graph, it can be seen that the first wave did not arrive at the leaf until 
t = 0.25 s. Given that the wave speed was 2 m s–1, we can substitute these values into the  
equation for average speed:
s = vav t
 = 2 m s–1 × 0.25 s

= 0.5 m

That is, the leaf was 0.5 m from the wave source (presumably where the stone entered the 
water).
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7.3 SAMPLE PROBLEM 2

Consider the displacement-position graph below, which represents a slinky spring during an 
experiment to model transverse waves at a particular moment in time.
(a) Use the graph to determine the wave’s:

(i) wavelength
(ii) maximum displacement

(iii) speed, given that waves were sent through the slinky at a rate of 2 per second.
(b) A represents a point on the slinky. 

Assuming that the wave is moving from 
right to left, describe whether point A is 
in the process of moving up or moving 
down, or will always remain in its cur-
rent position.

SOLUTION:

(a)  (i)  The wavelength is equal to the 
distance between successive  
peaks, so the wavelength is equal 
to 160 cm, or 1.6 m.

(ii) As with the displacement- 
time graph, the amplitude 
corresponds to the distance 
between the equilibrium position 
and the maximum displacement. Therefore, the amplitude is equal to 0.6 m.

(iii) As f = 2 s–1 and λ = 1.6 m (from part (i) above), we use the wave equation to determine 
the speed of the wave:  
v = fλ

= 2 × 1.6
 = 3.2 m s–1

(b) As the wave is moving from left to right, we can see that the displacement of point A from the 
equilibrium position will increase, so it is moving upwards at the moment in time at which the 
graph was made.

7.3.2 Displacement-position graphs of wave motion
While a displacement-time graph represents a wave as a function of time for a specific location in the 
medium, the displacement-position graph represents the wave as a function of position at a specific 
moment in time. It can almost be thought of as a ‘snapshot’ of the wave in the medium.

7.3 Exercise 1
Figure 7.13 shows a wave travelling from left 
to right in a string.
1 Which particles in the string are:

(a) moving upwards
(b) moving downwards
(c) temporarily at rest?

2 Determine the wave’s:
(a) wavelength
(b) amplitude
(c) frequency, given that the wave is travelling at 4 m s–1.
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7.4 Review
7.4.1 Summary
 • Waves can be categorised as:

 – mechanical waves, consisting of particles with energy, which require a medium for propagation
 – electromagnetic waves, which do not require a medium for propagation.

 • A wave consists of two motions:
1. a uniform motion in the direction of wave travel; this is the direction of energy transfer
2. a vibration of particles or fields about an equilibrium or central point.

 • The vibration disturbance component of the wave may occur:
 – at right angles (90°) to the direction of propagation; these waves are called transverse waves
 – in the same direction as the direction of propagation; these waves are called longitudinal waves.

 • For transverse and longitudinal waves, v = f λ and f =  
1
T

 • Waves transmit energy but do not transfer matter
 • Properties of waves that can be measured include speed, wavelength, period, amplitude, wave number 

and frequency
 • A displacement-time graph represents a wave as a function of time for a specific location in the 

medium
 • A displacement-position graph represents the wave as a function of position at a specific moment in time.

7.4.2 Questions
1. Describe how each of the following observations allows you to determine that waves are carriers of 

energy.
(a) On a camping trip, infra-red and visible radiation from the Sun is absorbed by a solar shower, 

heating the water.
(b) Sound waves hitting the diaphragm of a microphone cause the still diaphragm to begin to vibrate.
(c) A tsunami destroys a coastal village.
(d) A big surf removes the sand from a 10 km stretch of beach.
(e) Light falling on a photovoltaic cell produces stored chemical energy in a battery that is used to 

produce electrical energy to power a solar garden light.
2. Describe each of the following waves as propagating in one, two or three dimensions:

(a) the light emitted from the Sun
(b) sound from a bell
(c) a sound wave travelling along a string telephone made from a tight string and two tin cans
(d) a water wave produced by dropping a rock into the centre of a lake
(e) a compression wave produced in a slinky.

3. Define the following terms as they would apply when describing the wave model:
(a) medium
(b) displacement
(c) amplitude
(d) period
(e) compression
(f) rarefaction
(g) crest
(h) trough.
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4. Draw a representation of a transverse wave, showing displacement versus time as a sine wave and 
label the following features:
(a) the amplitude of the wave
(b) a change in frequency of the wave
(c) a wavefront
(d) a trough 
(e) a crest.

5. In movies it is common to see a spacecraft blown up, accompanied by a large bang. With reference to 
the properties of mechanical waves, explain why this is impossible in space.

6. An astronomer tells you that observing the star she is showing you is like looking back in time  
100 million years. Identify what this tells you about the light from the star and its nature of travel.

7. Light travels at a velocity of 3 × 108 m s−1. If the light reaching Earth from a blue star has a wavelength 
of 410 nm (410 × 10−9 m), what is the frequency of the light?

8. Look at the transverse wave represented in 
figure 7.14. Calculate the frequency of the wave.

9. A cathode-ray oscilloscope (CRO) is a device 
that enables you to look at the electrical sig-
nal produced by a sound wave hitting the 
diaphragm of a microphone. The CRO acts like 
a sensitive voltmeter. Identify which property 
of the sound wave produces the sympathetic fluctuations in the voltage generated in the microphone.

10. The CRO trace in figure 7.15 is produced by a sound wave. The time base of the CRO is set at a 
constant value. That means every horizontal division of the figure 
represents a constant 0.001 s. Is the velocity of this wave constant? 
Explain your answer.

11. Sound travels in air at a speed of 330 m s−1. Calculate the  
wavelength of a sound wave with a frequency of 256 Hz.

12. The centre of a compression in a sound wave (longitudinal or 
compression wave) is equivalent to the crest of a transverse wave, and 
the centre of a rarefaction is equivalent to the trough of a transverse 
wave. Use this information to present, in a diagram, a transverse 
wave representation of the sound wave shown in figure 7.16. Lines 
close together represent high pressure zones (compressions) and lines 
spread far apart (rarefactions) represent low pressure zones.

13. Explain why both representations of a wavelength λ on  figure 7.16 
are correct.

14. Sound is travelling in a medium at 330 m s−1. Using lines to represent 
wavefronts, present a scaled, labelled diagram to represent a 100 Hz 
sound wave. Include two compressions and two rarefactions in your drawing.

15. A p-type earthquake wave is a longitudinal wave, whereas an s-type earthquake wave is a transverse 
wave. Describe how each of these wave types would express itself in terms of earth movements  
underfoot as it passed. Assume that the waves you are comparing are of equal intensity and that the 
waves are travelling along the ground surface towards you.

16. Identify the features of sound that are wave-like.
17. Explain why it is necessary to use a wave model to explain features of the behaviour of sound and 

light.
18. Light is an electromagnetic wave that is considered to be transverse in nature. What feature of this wave 

type suggests it is a transverse wave?
19. Explain why it is not possible to have a mechanical wave in a vacuum.
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20. On a CRO trace of a sound wave that looks like figure 7.15, explain what the baseline represents in 
terms of the sound wave.

21. What is the wavelength of a sound that has a speed of 340 m s−1 and a period of 3.0 ms?
22. What is the speed of a sound if the wavelength is 1.32 m and the period is 4.0 × 10−3 s?
23. The speed of sound in air is 340 m s−1 and a note is produced that has a frequency of 256 Hz.

(a) What is its wavelength?
(b) This same note is now produced in water where the speed of sound is 1.50 × 103 m s−1. What is 

the new wavelength of the note?
24. Copy and complete table 7.2 by applying the universal wave formula.

TABLE 7.2

v(m s−1) f(Hz) λ (m)

 500 0.67

  12 25

1500 0.30

60 2.5

 340 1000

 260  440

PRACTICAL INVESTIGATIONS

Investigation 7.1: Investigating waves in a slinky spring
Aim
To observe and investigate the behaviour of waves (or pulses) travelling along a slinky spring

Apparatus
slinky spring
other pieces of apparatus as required

Theory
In a slinky spring, the velocity of the wave is quite small and it is not difficult to make observations of waves or 
pulses as they move along the spring. Many important properties of waves can be observed using this simple 
equipment. 

Method
1. Stretch out a slinky spring, preferably on a smooth floor, until it is about three metres long. (Clamp one end 

to a fixed object.) 
2. Displace the end of the spring to one side and quickly return it to its original or equilibrium position. This 

should cause a transverse pulse to travel along the spring.
3. Now, instead of a movement to the side to send a transverse pulse, gather up a few coils of the spring and 

then release them. This should produce a longitudinal or compression pulse.
4. You are now in the position to make investigations of the behaviour of pulses travelling in springs. It will be 

better to use transverse rather than longitudinal pulses for your experiments. You should be able to devise a 
series of simple experiments that can be used to investigate the following.
(a) Do the pulses you produce really carry energy?

Design and demonstrate a simple experiment that will show that the pulses do carry energy.
(b) Do the pulses lose energy as they travel along?

What observations can you make that show that the energy carried by each pulse is slowing dying 
away? Suggest a reason why this is happening. You may be able to think of a way to reduce the rate at 
which the energy is lost. This will probably involve changing the condition of the slinky.

(c) Does the speed of a pulse depend on the condition of the slinky?
As the tension of the slinky is changed, what happens to the speed of a pulse?

(d) Does the speed of a pulse depend on the amplitude of the pulse?
Is it possible to detect a change in the speed of the pulse along the slinky as the amplitude of the pulse 
is changed?
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(e) Does the speed of a pulse depend on the length of a pulse?
Is it possible to detect a change in speed of the pulse along the slinky as the length of the pulse is 
changed?

(f) Do identical pulses travel at the same speed along identical slinkies?
Obtain a second slinky and lay the two side by side. Investigate how identical pulses travel in what are 
hopefully identical slinkies. The two ‘free’ ends of the slinkies could be fixed to a metre ruler (or wooden 
board) and movement of this could launch identical pulses simultaneously in the two slinkies.

(g) Do identical pulses travel at the same speed along slinkies that are at a different tension?
Changing the tension of one slinky by clamping a few coils to the board could enable you to observe 
identical pulses travelling in different media.

Extension work
(h) Reflection from a fixed end

You could also investigate what happens to pulses when they are reflected from the clamped end of a 
slinky.

(i) Reflection from a free end
You might repeat investigation (h) with the end tied to a length of light string so that it is free to move 
when the pulse reaches the end of the slinky. There will still be a reflected pulse but it should be different 
from the reflected pulse in (h).

(j) Crossing boundaries
What happens when a pulse travels from one spring to another?
If you have a different spring, connect it to a slinky and see what happens when a pulse in one spring 
travels into the other.

Investigation 7.2: Observing water waves
Aim
To observe a wave motion travelling in two dimensions

Apparatus
20 corks
small tank of water or a shallow, still-water pond

Theory
A simple transverse water wave is a wave travelling in two dimensions.

Method
1. Place 20 corks in a ring in the water.
2. Drop a small mass such as a stone in the centre of the ring of corks. This will make a wave in the water 

emanating from where the stone landed.
3. Observe what happens to all of the corks.

Analysis
Any movement of the corks outwards from the central disturbance is minor and at a very slow rate compared 
with the rate of energy transfer as indicated by the wavefront travelling away from the source.

Questions
1. In how many dimensions does the wave propagate?
2. What does this show about the energy of the wave motion from the central disturbance point?
3. In the previous practical activity, you observed that the energy carried by a pulse in the slinky was gradually 

lost. The same thing happens with the water waves. Compare the reasons for the decrease in the ampli-
tude, and hence energy of a wave, in the slinky and in a wave spreading out on water.

Investigation 7.3: Relating frequency and amplitude
Aim
To explore the relationship between the displacement and time of constant frequency waves with varying ampli-
tude described by the equation:
y = n sin ft
where
y =  displacement of the wave
n =  amplitude of the wave
f =  frequency of the wave
t =  time
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Apparatus
access to a graphics calculator or a graphing program for the computer. Some graphing programs can be 
downloaded from the internet. 
access to a printer

Method
1. Plot the equation given under ‘Aim’ above into a graphics calculator or a graphing program on the com-

puter.
2. Plot graphs with the following variables and if a printer is available, print the graphs out.

Frequency (Hz) Amplitude (units)

1 1

2 2

0.5 1

4 1

1 4

Analysis
Study the graphs to ensure that you can identify the features of amplitude and frequency.
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TOPIC 8 
Wave behaviour

8.1 Overview
8.1.1 Module 3: Waves and Thermodynamics
Wave behaviour
Inquiry question: How do waves behave?
Students:
 • explain the behaviour of waves in a variety of situations by investigating the phenomena of:

 – reflection
 – refraction
 – diffraction
 – wave superposition (ACSPH071, ACSPH072).

 • conduct an investigation to distinguish between progressive and standing waves (ACSPH072)
 • conduct an investigation to explore resonance in mechanical systems and the relationships between:

 – driving frequency 
 – natural frequency of the oscillating system 
 – amplitude of motion 
 – transfer/transformation of energy within the system (ACSPH073).

FIGURE 8.1 Ocean waves entering a gap in a barrier will experience diffraction — a behaviour exhibited by all 
waves under the right circumstances.
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8.2 Interference of waves
8.2.1 Wave superposition
While waves pass through each other without affecting each other’s frequency or wavelength, effects arise when 
two or more waves arrive at the same place at the same time. Depending on the relative positions of the crests and 
troughs, the waves will combine to either reinforce each other, or partially or completely cancel each other out. 
This is called interference. Interference can occur between periodic waves or between pulses  
(a single disturbance) in a medium.

When waves in a medium interfere with each other, the amplitudes of the individual wave pulses add together 
to give the amplitude of the total disturbance of the medium. This is called superposition.

The shape of the resultant disturbance can be found by applying the superposition principle: ‘The resultant 
wave is the sum of the individual waves’. For convenience, we can add the individual displacements of the 
medium at regular intervals where the pulses overlap to get the approximate shape of the resultant wave. Dis-
placements above the position of the undisturbed medium are considered to be positive and those below the 
position of the undisturbed medium are considered to be negative. This is illustrated in figure 8.3, in which two 
pulses have been drawn in green and blue with a background grid. The sum of the displacements on each ver-
tical grid line is shown with a dot, and the resultant disturbance, drawn in black, is obtained by drawing a 
smooth line through the dots.

(a)

(b)

(c)

(d)

FIGURE 8.2 (a) Two pulses of different shapes approach each 
other on a spring. (b) The pulses begin to pass through each 
other. (c) As the pulses pass through each other, the amplitudes 
of the individual pulses add together to give a resultant 
disturbance. (d) After passing through each other, the pulses 
continue on undisturbed.

undisturbed medium

resultant disturbance
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8.2 SAMPLE PROBLEM 1

ADDING WAVES

Add the two waves graphed in figure 8.4.

SOLUTION:

The resulting graph is shown in figure 8.5.

FIGURE 8.4
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FIGURE 8.5

8.2 SAMPLE PROBLEM 2

ADDING WAVES

Add the two waves graphed in figure 8.6.

SOLUTION:

The resulting graph is shown in figure 8.7.
As you can see, the addition of rather simple 
wave shapes can form a complex wave.
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8.2 SAMPLE PROBLEM 3

ADDING WAVES

Add the two waves graphed in figure 8.8.
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FIGURE 8.8

SOLUTION: 

The resulting graph is shown in figure 8.9.
This wave shows annulment of the waves.  
The two waves added were out of phase  
by 180°.

y

x

FIGURE 8.9
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8.2.2 Constructive and destructive Interference
Waves are said to be in phase if they have the same 
frequency and their crests and troughs (or, in the 
case of longitudinal waves, compressions and 
rarefactions) occur simultaneously.

When two waves in phase with each other 
interfere and the sum of their amplitudes is 
greater than that of the individual waves alone, 
we say that constructive interference occurs.

Conversely, when two waves combine such that 
the sum of their amplitudes is less than the ampli-
tude of either of the individual waves, we say that 
destructive interference has occurred. Complete 
destructive interference occurs when two waves com-
pletely cancel each other out so that the amplitude of the 
resultant disturbance is equal to zero. This occurs when 
the two waves have the same frequency and amplitude but 
have opposite phase, with one wave’s peaks coinciding 
with the other wave’s troughs.

8.2.3 Interference of waves in two 
dimensions
Interference of waves is best observed in a ripple tank. 
When two point sources emit continuous waves with the 
same frequency and amplitude, the waves from each source 
interfere as they travel away from their respective sources. 
If the two sources are in phase (producing crests and 
troughs at the same time as each other), an interference pat-
tern similar to that shown in figure 8.12 is obtained.

Lines are seen on the surface of the water where there 
is no displacement of the water surface. These lines are 
called nodal lines. They are caused by destructive inter-
ference between the two sets of waves. At any point on a 
nodal line, a crest from one source arrives at the same 
time as a trough from the other source, and vice versa. Any point 
on a nodal line is sometimes called a local minimum, because of 
the minimum disturbance that occurs there.

Between the nodal lines are regions where constructive interfer-
ence occurs. The centres of these regions are called antinodal lines. 
At any point on an antinodal line, a crest from one source arrives at 
the same time as a crest from the other source, or a trough from one 
source arrives at the same time as a trough from the other source, and 
so on. Any point on an antinodal line is sometimes called a local 
maximum, because of the maximum disturbance that occurs there.

When the two sources are in phase, as shown in figure 8.12, the 
interference pattern produced is symmetrical with a central antinodal line. Note that any point on the cen-
tral antinodal line is an equal distance from each source. Since the sources produce crests at the same time, 
crests from the two sources will arrive at any point on the central antinodal line at the same time.

A B A B

A
B

AB

A
B

A

B

A

B

A

B

(a)

(b)

Individual pulses
Cumulative effect (what is seen) 

FIGURE 8.11 Where two wave pulses in a 
medium meet, they will interfere. This can be in 
the form of (a) constructive interference or  
(b) destructive interference.
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Similar analysis will show that, for any point 
on the first antinodal line on either side of the 
centre of the pattern, waves from one source have 
travelled exactly one wavelength further from 
one source than from the other. This means that 
crests from one source still coincide with crests 
from the other, although they were not produced 
at the same time (see figure 813) Point P A is on 
the first antinodal line from the centre of the pat-
tern It can be seen that P A is 4.5 wavelengths 
from S1 and 3.5 wavelengths from S2.

A way to establish whether a point is a local 
maximum or not is to look at the distance it is 
from both of the two sources. If the distance that the point is from one source is zero or a whole number mul-
tiple of the wavelength further than the distance it is from the other source, then that point is a local max-
imum. This ‘rule’ can be re-expressed as: ‘If the path difference at a point is nλ, the point is a local maximum’.

Therefore, for a point to be an antinode:
d(PS1) − d(PS2) = nλ  n = 0,  1,  2,  3,  4,…

where

 n is the number of the antinodal line from the centre of the pattern
P is the point in question
S1 and S2 are the sources of the waves
d(PS1) is the distance from P to S1.

Similar analysis shows that, for a point on a nodal line, the difference in distance from the point to the two 

sources is 1
2

 λ or 1 
1
2

 λ or 2 
1
2

 λ and so on. This means that a crest from one source will coincide with a trough from 

the other source, and vice versa. Point PN in the figure is 5 wavelengths from S1 and 4.5 wavelengths from S2.

For a node:

d(PS1) − d(PS2) = (n − 1
2

)λ  n = 1,  2,  3,  4,…

where

n is the number of the nodal line obtained by counting outward from the central antinodal line.
The same formulas that were used for water waves can be used to determine whether a point is part of a 

nodal or antinodal reion.
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trough
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A
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WORKING SCIENTIFICALLY 8.1
Draw a plan of your school assembly hall and mark the location of the speakers. Draw nodal and antinodal lines 
on your plan of the speaker system for sound waves with a frequency of 200 Hz (the mid-range of human 
speech) to determine where constructive and destructive interference occurs in your hall.

AS A MATTER OF FACT
Complete destructive interference rarely occurs as the sounds produced from each source are usually not of 
equal intensity, due to the different distances travelled by the individual waves and the inverse square law that 
describes this variation in intensity with distance from the source.

8.2 SAMPLE PROBLEM 5

A student arranges two loudspeakers, A and B, so that they are connected in phase to an audio amplifier. 
The speakers are then placed 2.00 m apart and they emit sound that has a wavelength of 0.26 m.

Another student stands at a point P, which is 15.00 m directly in front of speaker B. The situation 
representing this arrangement is shown in figure 8.14. Describe what the student standing at point P 
will hear from this position.

SOLUTION:

In this type of question, it is impor-
tant to determine whether the point 
is a node or antinode.

This is done by determining the 
path difference and then comparing 
this to the wavelength.
λ = 0.26 m,  d(PB) = 15.00 m

d(PA) can be found by applying Pythagoras’s theorem.

   d(PA2) = 15.00 m2 + 2.00 m2

               = 229 m2

So d(PA) = 15.13 m
  

      d(PA) − d(PB) = 15.13 m − 15.00 m
                = 0.13 m.

         0.13 m =  1
2

λ

  

Therefore, as P corresponds to a local node, the sound intensity here will be a minimum.

200 m

B

A

P

15.00 m

ampli�er

FIGURE 8.14

(b) d(PS1) is greater than d(PS2); d(PS1) = 10.00 m,  λ = 1.00 m
If P is on the first nodal line from the central antinodal line, then:

d(PS1) − d(PS2) = 1
2

 λ.

Therefore,

d(PS2) = d(PS1) − 1
2

λ

           = 10.00 m − 0.50 m
          = 9.50 m.
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8.3 Standing waves
8.3.1 Reflection of waves
When waves arrive at a barrier, reflection occurs. Reflection is the returning of a wave into the medium in 
which it was originally travelling. When a wave strikes a barrier, or comes to the end of the medium in 
which it is travelling, at least part of the wave is reflected.

A wave’s speed depends only on the medium, so the speed of the reflected wave is the same as for the 
original (incident) wave. The wavelength and  frequency of the reflected wave will also be the same as for 
the incident wave.

When a string has one end fixed so that it is unable to move (for example, when it is tied to a wall or is 
held tightly to the ‘nut’ at the end of a stringed instrument), the reflected wave will be inverted. This is 
called a change of phase. If the end is free to move, the wave is reflected upright and unchanged, so there 
is no change of phase. These situations are illustrated in figure 8.18.

8.2 Exercise 1
In each case, sketch the shape of the resultant disturbance created when the pulses are superimposed.

1 

2 

3 

4 Two wave sources are in phase and placed 20 cm apart and send out 8 waves per second. If the waves 
have a speed of 40 cm s–1, how many nodal lines will be produced between the two sources?

5 Owen is sitting between two speakers that are in phase and producing a signal that has a wavelength of 
2 m. If he is 4 m from one speaker and 9 m from the other, will he hear a minimum or a maximum of 
sound intensity?

FIGURE 8.15

FIGURE 8.16

FIGURE 8.17
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8.3.2 Standing waves
Most of the waves that have been 
examined so far in this topic have 
been examples of progressive (or 
travelling) waves. These are waves 
that move freely through a medium 
until a boundary is met. For 
example, ocean waves travel freely 
through water until they meet land 
or a barrier of some kind.

However, under some circum-
stances, waves can appear to stand 
still. If a guitar string such as that in 
figure 8.18 is plucked, wave pulses 
are sent travelling down the length 
of the string. When the pulses reach 
the fixed end of the string at the fret 
nut, they are reflected back along 
the string. These reflected pulses 
have the same wavelength and 
speed as the incident pulses but are 
inverted. Where the incident waves and the reflected waves coincide, interference between the waves occurs. 
When the incident pulses are produced in the string with particular frequencies, the incident and reflected 
waves will combine in such a way that the positions at which the waves interfere constructively and at which 
they interfere destructively are evenly spaced along the string. This makes the resultant superimposed wave 
appear to be fixed in position. As a result, waves that are produced in these circumstances are referred to as 
standing waves.

NNN
A

N

S

Pt = 0

(a) resultant wave (R)

NNNN

(d)
resultant wave (R)

P

S

Distance Distance

Distance Distance

A
NNNN

(c) resultant wave (R)

P

S

node

antinode

A
NNNNN

S

P
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T
4

t = T
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Standing waves occur at wave frequencies where there is interference between the initially generated 
waves and the reflected waves. Where an incident wave coincides with a reflected wave that is opposite 
in phase, the two waves will essentially cancel each other out due to destructive interference, leaving the 
medium at that location undisturbed. In a standing wave, these undisturbed points (called nodes) are 
evenly spaced.

At locations where an incident wave coincides with a reflected wave that is equal in phase, constructive 
interference occurs and the amplitudes of the two waves reinforce each other both as peaks and as troughs. 
The points where the medium is disturbed the most are called antinodes.

Figure 8.19 shows how standing waves are formed in a string by an incident wave series P and the 
reflected waves S. It is important to note that the wavelength of the waves involved in the standing wave is 
twice the distance between adjacent nodes (or adjacent antinodes).

Figure 8.20 shows the motion of a spring as it carries a standing wave. It shows the shape of the spring 

as it completes one cycle. The time taken to do this is one period (T). Note that (i) at t = T
4

  and at t = 3T
4

  the 

medium is momentarily undisturbed at all points, and (ii) that adjacent antinodes are opposite in phase — 
when one antinode is a crest, those next to it are troughs.

(a) (b)

(c) (d)

(e)

t = 0

t = T

t = T
2

t = T
4

t =3T
4
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8.4 Bending waves
8.4.1 Diffraction
Waves spread out as they pass objects or 
travel through gaps in barriers. This is 
readily observable in sound and water 
waves. For example, you can hear someone 
speaking in the next room if the door is 
open, even though there is not a direct 
straight line between the person and your 
ears.

Diffraction is the directional spread of 
waves as they pass through gaps or pass 
around objects. The amount of diffraction 
depends on the wavelength of the wave and 
the width of the gap or the size of the 
obstacle.

For example, the spreading out of sound 
from loudspeakers is the result of diffrac-
tion. The sound waves spread out as they 
pass through the opening in the front of the 
loudspeaker. Without diffraction, hardly 
any sound would be heard other than from 
directly in front of the speaker cone.

WORKING SCIENTIFICALLY 8.2
Design and perform an investigation to determine the relationship between the extension given to a slinky 
spring, the spring constant and the speed of the compressional wave produced in it.

8.3 Exercise 1
1 What is the longest wavelength of a standing wave that can be produced on a 30 cm string fixed at both 

ends?
2 Consider the wave formed in figure 8.21.

(a) If the distance between the first and last nodes is 240 cm, what is the wavelength of the incident wave in 
the string?

(b) What is the speed of the incident wave in the string if the waves are produced with a frequency of 200 Hz?
(c) At what frequency would the wave need to be produced for only 2 antinodes to be seen?

3 Which of these conditions must be fulfilled by the incident and reflected waves for a standing wave to be 
produced in a string fixed at both ends?

(i) have the same amplitude
(ii) have different amplitudes
(iii) travel in the same direction
(iv) travel in opposing directions
(v) have the same frequency
(vi) have different frequencies
(vii) have equal wavelengths
(viii) have different wavelengths
(ix) are in phase
(x) are out of phase
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Diffraction of water waves
The diffraction of waves in general can be modelled with water waves in a ripple tank. Figure 8.22 shows the 
way water waves diffract in various situations. The diagrams apply equally well to the diffraction of both 
transverse and longitudinal waves.

The region where no waves travel is called a shadow. The amount of diffraction that occurs depends on 
the wavelength of the waves. The longer the wavelength, the more diffraction occurs. As a general rule, if 
the wavelength is less than the size of the object, there will be a significant shadow region.

When waves diffract through a gap of width w in a barrier, the ratio 
λ
ω is important. As the value of this 

ratio increases, so, too, does the amount of diffraction that occurs.

8.4.2 Refraction
Refraction of waves describes the change in the direction of travel that occurs when the waves enter a 
medium through which they travel at a different speed.

As an example, consider the effect of water waves moving from deep water into shallow water. The 
waves travel faster in deeper water than they do in shallow water but their frequency remains unchanged. As 
a result, when the waves enter a shallow region, their wavelength gets shorter and they appear to ‘bunch up’.

AS A MATTER OF FACT
Barriers built next to freeways are effective in protecting nearby residents from high-frequency sounds as these 
have a short wavelength and undergo little diffraction. The low-frequency sounds from motors and tyres, how-
ever, diffract around the barriers because of their longer wavelengths.

barrier

high-frequency sound low-frequency sound

FIGURE 8.23 The diffraction of low and high frequencies around a freeway 
barrier

8.4 SAMPLE PROBLEM 1

Two sirens are used to produce frequencies of 200 Hz and 10 000 Hz. Describe the spread of the two 
sounds as they pass through a window in a wall. The window has a width of 35 cm. Assume that the 
speed of sound in air is 330 m s−1.

SOLUTION:

First calculate the wavelengths of the sounds using the formula v = f λ. These calculate to 165 cm and 
3.3 cm respectively. There will be a very small diffraction spread for the sound of wavelength 3.3 cm 
because the wavelength is small compared with the opening. There will be a large diffraction spread 
for the sound of wavelength 165 cm because the wavelength is large compared with the opening.
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When the interface between deep water and shallow water is sharply defined, waves striking that interface 
at right angles will continue to move in the same direction, although at a slower speed and with a shorter 
wavelength. However, if the waves encounter the interface at an angle, then the part of each wave that enters 
the shallow region first will slow down before the rest of the wave. This causes the wave to bend (refract).

λDeep

Deep Shallow

λShallow
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8.5 Resonance
8.5.1 Natural and forced vibration
When you pull a pendulum back and let it go, 
it will swing backwards and forwards at a rate 
dictated by the length of the string. In the same 
way, if you blow across the top of an empty 
bottle, the sound that you hear is a function of 
the bottle’s size, shape and the material it is 
made from. This sound arises from the bottle’s 
natural vibration.

The natural vibration of an object is the rate 
at which it oscillates once set into motion, and 
it is inherent to the object’s structure. A tuning 
fork, when struck with a rubber hammer, will 
vibrate at the same rate regardless of how hard 
it is hit, because its vibrational rate is deter-
mined by the metal it is made from, its length and the spacing f its prongs. A tuning fork tuned to the  
A above middle C will vibrate at 440 Hz when struck. As a result, we can say that this is its natural 
frequency.

(b) Again, we rearrange the wave equation and substitute the values for frequency and speed in water:
v = f  λ

⇒ λ = v
f

= 1500 m s−1

300 Hz
= 5 m

WORKING SCIENTIFICALLY 8.3
Use Google Earth to locate coastal regions where ocean waves can be observed. Use observations of changing 
wavelength to locate sudden changes in ocean depth. Correlate the wavelength changes with ocean floor 
profile maps for the regions to develop a general equation relating wavelength change with depth change.

8.4 Exercise 1
1 Water waves approach a boundary at which the wave 

speed changes from 40 cm  s–1 to 24 cm s–1. If the waves 
initially had a wavelength of 10 cm, what will be their 
wavelength after they have crossed the boundary?

2 In figure 8.26, the direction of propagation of a wave 
travelling through medium X and then into medium Y is 
shown. If the wave travels at a higher speed in medium Y, 
which line best represents the direction of propagation of 
the wave when it enters the new medium?

3 A water wave with a wavelength of 4 cm approaches a 2 m 
gap in a barrier. Draw a diagram representing the 
observed diffraction of the wave.

A

medium Y

medium X

B

C
D

FIGURE 8.26

FIGURE 8.27 A tuning fork vibrates at its natural 
frequency.
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   Unlike natural vibration,  forced vibration  occurs when an object is compelled to vibrate by placing it in 
contact with another vibrating object. 

 If we pluck a guitar string, it will vibrate at its natural frequency, which is a function of the string’s 
thickness, material, tension and length. However, the sound produced by a guitar string vibrating on its own 
is not very loud at all. Forced vibration is necessary for sound amplifi cation. The vibration of the string 
causes the bridge, which is attached to the string, to vibrate at the same frequency and this, in turn, causes 
the body of the guitar and the air in the body to vibrate as well. While the string’s vibration is natural, the 
bridge, the body and the air in the body all undergo forced vibration. The frequency of a forced vibration is 
referred to as the  driving frequency . 

 Due to the shaping of the body of a guitar, the air and belly of the guitar are able to produce a much 
louder sound at the same frequency than the string alone.   

    8.5.2  Resonant frequency 
 You have probably heard of opera singers producing high notes to shatter a winelass. While extraordinarily 
diffi cult to do and requiring ideal circumstances and peparation, this can be done becaus of resonance. 

  Resonance  occurs when an object is exposed to a driving frequency equal to the object’s natural 
frequency. This has the effect of increasing the amplitude of the object’s vibration due to constructive 
interference. For our opera singer, the note that they sing has the same frequency as the wine glass. 

Soundboard

Saddle
Bridge

4

1

5

2

3

  FIGURE 8.28  1. When picked or strummed, each string vibrates at its natural frequency.   2  . 
Vibration of a string causes forced vibration of the saddle and bridge.   3  . Vibration of the 
bridge causes the forced vibration of the soundboard and guitar body.   4  . This causes 
forced vibration of the air within the hollow body.   5  . Amplifi ed sound is then heard.  
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The driving frequency of the sound waves that the singer produces causes the wine glass to oscillate with 
an increasing amplitude until, finally, the amplitude of vibration exceeds the limits of the glass’s matrix 
structure and the glass shatters.

Resonance can also be observed when you push a child on a swing. By pushing a child at the point where 
they are just about to swing forward, you will notice that, even if you push with the same force each time, the 
swing goes higher and higher. This happens because you have reinforced the amplitude of the swing’s vibra-
tion by applying an external force at the same frequency as the natural oscillating frequency of the swing.

8.6 Review
8.6.1 Summary
 • Superposition is the adding together of amplitudes of two or more waves passing through the same point.
 • Destructive interference is the addition of two wave disturbances to give an amplitude that is less than 

either of the two waves.
 • Constructive interference describes the addition of two wave disturbances to give an amplitude that is 

greater than either of the two waves.
 • Reflection is the returning of the wave into the medium in which it was originally travelling. When a 

wave strikes a barrier, or comes to the end of the medium in which it is travelling, at least a part of the 
wave is reflected.

 • Standing waves are caused by the superposition of two wave trains of the same frequency travelling in 
opposite directions.

 • Nodes are points on a standing wave that undergo the least disturbance, while antinodes form where the 
medium undergoes the most disturbance.

 • Diffraction is the spreading out, or bending of, waves as they pass through a small opening or move past 
the edge of an object.

 • Refraction describes the change in the direction of travel that occurs when waves enter a medium through 
which they travel at a different speed.

 • Resonance is the condition where a medium responds to a periodic external force by vibrating with the 
same frequency as the force.

8.6.2 Questions
1. How is a periodic wave different from a single pulse moving along a rope?
2. In each of the diagrams in figure 8.29, two 

waves move towards each other. Which 
diagram or diagrams show waves that, as they 
pass through each other, could experience:
(a) only destructive interference
(b) only constructive interference?

3. You arrive late to an outdoor concert and 
have to sit 500 m from the stage. Will you 
hear high-frequency sounds at the same time 
as low-frequency sounds if they are played 
simultaneously? Explain your answer.

AS A MATTER OF FACT
An army company marching in step will always break step when crossing a rope suspension bridge. If they were 
to cross the bridge in step, the bridge would start to resonate at the same frequency and with increasing 
amplitude. Eventually, the bridge would either fail or throw them off.

A

B

C

FIGURE 8.29
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4. What is superposition and when does it occur?
5. What is constructive interference and when does it occur?
6. Describe the interference pattern produced when two sound sources produce sounds of equal 

frequency in phase. How can you determine whether a point on the interference pattern is a local 
maximum or local minimum?

7. Figure 8.30 shows the positions of three sets of two pulses as they 
pass through each other. Copy the diagram and sketch the shape of 
the resultant disturbances.

8. What is the wavelength of a standing wave if the nodes are separated 
by a distance of 0.75  m?

9. Figure 8.31 shows a standing wave in a string. At that instant (t = 0) 
all points of the string are at their maximum displacement from their 
rest positions.
If the period of the standing wave is 0.40 s, sketch diagrams to show 
the shape of the string at the following times:
(a) t = 0.05 s
(b) t = 0.1 s
(c) t = 0.2 s
(d) t = 0.4 s.

10. Kim and Jasmine set up two loudspeakers in accordance with the 
following arrangements:
• They face each other.
• They are 10 m apart.
• The speakers are in phase and produce a sound with a frequency of 330 Hz.

Jasmine uses a microphone connected to a CRO and detects a series of points between the speakers 
where the sound intensity is a maximum. These points are at distances of 3.5 m,  4.0 m and 4.5 m from 
one of the speakers.
(a) What causes the maximum sound intensities at these points?
(b) What is the wavelength of the sound being used?
(c) What is the speed of sound on this occasion?

11. A standing wave is set up by sending continuous waves from opposite ends of a string. The frequency 
of the waves is 4.0 Hz, the wavelength is 1.2 m and the amplitude is 10 cm.
(a) What is the speed of the waves in the string?
(b) What is the distance between the nodes of the standing wave?
(c) What is the maximum displacement of the string from its rest position?
(d) What is the wavelength of the standing wave?
(e) How many times per second is the string straight?

12. Explain what is meant by the expression ‘interference pattern’ when applied to two sound sources that 
are in phase.

13. A wave of wavelength λ passes through a gap of width w in a barrier. How will the following changes 
affect the amount of diffraction that occurs?
(a) λ decreases
(b) λ increases
(c) w decreases
(d) w increases.

14. Present diagrammatically (on graph paper) the following two transverse waves (that are initially in 
phase) and add the waves to produce a resultant wave.
Wave 1: wavelength 2 cm, amplitude 1 cm
Wave 2: wavelength 4 cm, amplitude 2 cm

(c)

(a)

(b)

FIGURE 8.30

FIGURE 8.31
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15. Present, as diagrams on graph paper, the following two transverse waves (that are initially out of 
phase) and add the waves to produce a resultant wave.
Wave 1: wavelength 2 cm, amplitude 1 cm
Wave 2: wavelength 4 cm, amplitude 2 cm

16. Does the amplitude of a wave affect its speed through a medium?
17. The voice of a person who has inhaled helium sounds higher than normal. Why does this happen?

PRACTICAL INVESTIGATIONS

Investigation 8.1: Reflection of pulses in springs
This investigation comprises three different activities for each of which you will need to work in pairs. You will 
need to use a long slinky spring.
1. One person firmly holds the end of the spring at floor level. The other person then sends a short thensverse 

pulse down the spring. Sketch the shape and orientation of the spring before and after reflection.
2. One person loosely attaches the end of the spring to a metal bar (such as a retort stand), or uses a piece of string 

to support one end of the spring. This will model reflection from a free end. The other person sends a short 
transverse pulse down the spring. Sketch the shape and orientation of the spring before and after reflection.

3. One person holds the end of the slinky firmly at floor level. The other person sends a short longitudinal pulse 
down the spring. Record your observations for this activity.

Investigation 8.2: Thin soap films
For this investigation you will need the following equipment:
• glass or beaker
• soap solution.

The interference effect of light from oil on water can be observed 
in the kitchen. Soap bubbles often have a coloured appearance, 
which can be enhanced and observed in the following way.

Prepare a soapy solution. Take the glass or beaker and put the 
open end in the water, then take it out to see if a soap film fills the 
opening. If not, try again.

Hold the glass or beaker up so that the soap film is vertical. Place 
yourself so that there is a dark background behind the beaker and a 
source of light behind or near you, shining on the soap film.

You should now be able to observe the bands of colour in the soap 
film, like those figure 8.32. The bands will appear because the soap is 
flowing to the bottom of the film, making it wedge shaped — thin at 
the top and thick at the bottom. As the soap falls to the bottom, the 
thickness of the film changes and so the colours change.

As with the oil film, the light is being reflected off the front and back 
surfaces of the soap film. As the thickness of the film changes, the path 
difference changes and different colours will be reinforced or cancelled.

Note that at the top, where the film is very thin and there is a very small path difference, the film is black, not 
white as you would expect. This is because cancellation occurs in this part of the film. When the light is 
reflected off a material with a higher refractive index, a change of phase occurs; that is, an incoming crest is 
reflected as a trough. This change of phase occurs when the light enters the soap film. It does not happen at 
the back surface, where the light travelling in soapy water meets air on the other side. When the two reflected 
waves meet after a very short path difference, they cancel.

Investigation 8.3: Diffraction of waves in a ripple tank
1. Set up a ripple tank with a plane wave generator. Introduce a barrier into the ripple tank that allows waves to 

pass by its edge, and investigate the effects that wavelength has on the amount of diffraction that occurs. 
Sketch your findings, clearly showing the shadow region.

2. Now set up a barrier with a gap in its centre at right angles to the direction of wave propagation. Study the 
effect that varying the gap size for a constant wavelength has on the amount diffraction. Then study the effect 
that varying the wavelength (while keeping the gap size constant) has on the amount of diffraction that occurs.

Summarise your results.

FIGURE 8.32
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TOPIC 9
Sound waves

9.1 Overview
9.1.1 Module 3: Waves and thermodynamics
Sound waves
Inquiry question: What evidence suggests that sound is a mechanical wave?
Students:
 • conduct a practical investigation to relate the pitch and loudness of a sound to its wave characteristics
 • model the behaviour of sound in air as a longitudinal wave
 • relate the displacement of air molecules to variations in pressure (ACSPH070)
 • investigate quantitatively the relationship between distance and intensity of sound
 • conduct investigations to analyse the reflection, diffraction, resonance and superposition of sound waves 

(ACSPH071)
 • investigate and model the behaviour of standing waves on strings and/or in pipes to relate quantitatively 

the fundamental and harmonic frequencies of the waves that are produced to the physical characteristics 
(e.g. length, mass, tension, wave velocity) of the medium (ACSPH072)

 • analyse qualitatively and quantitatively the relationships of the wave nature of sound to explain:

 – beats ( fbeat = ∣  f2 − f1∣ )

 – the Doppler effect f ′ = f 
(vwave + vobserver)
(vwave − vsource)

FIGURE 9.1 A cathode-ray oscilloscope (CRO) is an electronic device that can be used 
to study sound waves. The CRO enables you to see sound waves.



174 Jacaranda Physics 11

    9.2  Sound: Vibrations in a medium 
  9.2.1  What is sound? 
 Sound is created when a vibrating 
object causes particles in a medium to 
be alternately pushed closer together 
(compression) and spread further apart 
(rarefaction). When an object such as a 
tuning fork, a drum membrane or a loud-
speaker vibrates, it transfers some of its 
kinetic energy to the medium that car-
ries the sound wave or vibrational energy 
away from the source in the form of lon-
gitudinal waves. The longitudinal waves 
move outwards from the object much as 
the ripples in a pond spread outwards 
from the point where you have dropped 
a stone into it. 

 The drum is a good example of a 
device acting as a source of vibrational 
energ. As shown in fi ue 9.2, the back 
and forth vibrations of the drum skin 
(note the red line on the surface of the 
drum skin in the fi gure) produce differ-
ences in air pressure The varying air 
pressure produces a vibration effect in 
the air particles that results in zones of 
high air pressure ( compression ) and 
zones of low air pressure ( rarefaction )   

   When the vibrations strike the human 
ear, the eardrum (under the infl uence of 
the very small increases and decreases 
in air pressure that make up the sound 
wave) will undergo forced vibraion. 
The vibration in the eardrum in turn 
causes fi ne structures in the inner ear 
to vibrate The neural signals sent from 
these receptors travel along the audi-
tory nerve to the brai, which interprets 
the signals as sond.   

    9.2.2 Looking at sound 
 For ease of interpretatin, sound waves are often shown diagrammatically as transverse wave traces with 
either time or distance from the sound source on the horizontal axis and pressure on the vertical axi. As the 
compressions of longitudinal sound waves involve higher particle pressure than normal in the edium, they 
are represented as peaks on the transverse graph. Conversely, the rarefactions of a sound wave at which the 
medium pressure is lower than normal are shown as troughs on the transverse graph.   

RarefactionCompressionMembrane of drum

  FIGURE 9.2  Production of a sound wave in air by the vibrating 
skin of a drum.  

Tuning fork
vibrating

Air particles vibrate

Air in ear 
canal vibrates

Ear drum 
vibrates

Sound waves spread outwards from sound source

  FIGURE 9.3  How we are able to hear a vibrating object.  



TOPIC 9 Sound waves 175

Devices such as cathode-ray oscil-
loscopes (CROs) and software appli-
cations such as Audacity®, Raven or 
Garage Band display sound waves in 
the form of transverse amplitude–time 
graphs. The amplitude of the sound 
wave may indicate the maximum air 
pressure or the maximum intensity of 
the sound wave. The devices and apps 
work in a similar way. The microphone 
attached to the CRO, laptop, tablet or 
phone converts the sound wave energy 
into an electrical signal. The size of the 
electrical voltage induced at the micro-
phone is a function of the pressure of the 
air striking the microphone diaphragm. 
The pressure differential changes the 
voltage to a higher or lower value as it passes into the device. The voltage input registers on the screen as the 
amplitude of a waveform over time — providing the trace of the sound signal. The period is the time it takes 
for the signal to complete one cycle.

+∆P

– ∆P

Air pressure

C R C R C

Distance from source (m)
C = compression
R = rarefaction

C C C

R R
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If a sound wave of a particular fre-
quency, for example, one generated by 
a tuning fork, is brought near the micro-
phone and the tuning fork emits a loud 
sound due to a hard strike, the ampli-
tude of the sound trace produced is much 
greater than if a soft sound is emitted by 
the tuning fork (see figure 9.6). This is 
because the voltage (electrical energy) 
induced in the microphone is much 
greater and in proportion with the energy 
of the loud sound wave. The soft sound 
wave would produce a much lower ampli-
tude trace. It takes more energy to pro-
duce a large amplitude sound of the same 
frequency.

9.2 SAMPLE PROBLEM 1

Figure 9.7 shows the trace on a CRO screen produced by a microphone detecting a sound. The time 
scale is 1 cm equals 2 ms.

(a) What is the period of the sound?
(b) Sketch the trace produced by a sound of twice the frequency.
(c) Sketch the trace produced by a sound with the original 

frequency, but with twice the pressure variation.

SOLUTION:

(a) One complete cycle is 4 cm on the screen; multiplying this by 
the time scale gives a period of 8 ms.

(b) Doubling the frequency halves the period, so the trace shown 
in figure 9.8a is obtained.

(c) Doubling the pressure variation will double the amplitude of 
the trace, so the trace shown in figure 9.8b is obtained.

FIGURE 9.7

FIGURE 9.6 Two traces produced by sounds of the same 
frequency from a single tuning fork. The trace on the left was 
from a loud sound, hence the amplitude is quite large, whereas 
the sound that produced the trace on the right was much quieter 
and hence has a lower amplitude. The time base represented by 
horizontal grid divisions on the figures is the same.

(a) (b)

FIGURE 9.8
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9.2.3 The speed of sound and the physical characteristics of a medium
Sound travels through different media at different 
speeds. Generally, the speed of sound through 
a medium depends upon how close together 
the particles of that medium are and the elastic 
properties of that medium. The more easily that 
collisions between particles can occur (the pro-
cess that transfers kinetic energy), the faster a 
sound wave can travel through the medium. As 
a result, sound will travel faster through solids 
than through liquids, and faster through liquids 
than through gases. Table 9.1 shows the speed at 
which sound travels through different media.

The temperature of the medium also affects the 
speed with which sound waves can travel through 
it. As can be seen in table 9.1, sound travels at 
331 m s–1 through dry air at a temperature of 0 °C, 
but it travels at 344 m s–1 if the air is 20 °C. In other 
words, the higher the air temperature, the faster 
the sound will travel.

PHYSICS FACT
We usually speak about the speed of sound in dry air because, while an increase in air humidity causes an 
increase in the speed of sound, the size of that increase is so small that, for most purposes, it can be ignored.

9.2 Exercise 1
1 A siren produces a sound wave with a frequency 

of 587 Hz in air. Calculate the speed of sound if the 
wavelength of the sound is 0.571 m.

2 What is the frequency of the sound depicted in  
Figure 9.9?

3 What will be the frequency of a sound wave that travels 
through copper if it has a wavelength of 6 m?

4 Sound waves produced by a tuning fork in air at 20 °C 
have a frequency of 512 Hz. If they then travel from air 
through Pyrex glass, what is:
(a) the frequency of the sound waves
(b) wavelength of the sound waves?

5 The speed of sound in dry air can be determined using the equation

υT = 331√
T

273
+ 1

where T is the air temperature in oC.
Use this equation to calculate
(a) the speed of sound in dry air at −5 °C
(b) the temperature at which sound will travel through dry air with a speed of 350 m s–1.

6 Raul hears thunder rumble nine seconds after he saw the lightning flash that caused it. How far away from 
Raul did the lightning strike?

Medium Speed of sound (m s−1)

Air (0 °C) 331

Air (20 °C) 344

Water (pure) 1498

Sea water 1540

Alcohol 1207

Blood (37 °C) 1570

Body tissue (37 °C) 1570

Aluminium 5100

Copper 3900

Concrete 4500

Granite 5000

Lead 1960

Glass (Pyrex) 5170

Iron 5120

Steel 4700−6000 (average 5400)

Wood 4000−5300

TABLE 9.1 The speed of sound in different media.

8 10 12 14642

Tme (ms)

Pressure

+∆P

0

−∆P

FIGURE 9.9
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  9.3  Describing sound 
  9.3.1  Sound intensity 
 It’s a common thing for someone to be playing music 
at what they think is a respectable volume in their 
bedroom only to have their parents bang on the door 
saying, ‘It’s too loud! Turn it down!’ 

 But how do we describe the loudness of a sound? 
The term ‘loudness’ is a subjective measurement. Some 
people have sensitive ears and fi nd nearly everything too 
loud, while others may be quite unresponsive to a large 
amount of noise around them. As a result, it is more 
useful to consider the intensity of a sound when we dis-
cuss loudness.   

     The  intensity    (I)   of a sound wave is a measure of the amount 
of energy that it is able to transfer to a square metre of surface 
in a   1   second interval of time. The intensity of a sound that you 
experience depends upon how far away from the sound source 
you are. The noise of a plane fl ying overhead at a height of 
  8   kilometres is nowhere near as loud as the sound of that plane 
taking off from the runway when you are   400   metres away.   

        As we have already mentioned, sound waves transfer energy 
from the sound source through the medium. The amount of sound 

energy in joules being produced by a source every second is called 

the  acoustic power    (P)   of the source.  As   P = E
t
  , then the unit for 

power is the   J s–1  . This unit is referred to as a watt   (W)  . Sound waves travel 
from the source in three dimensions  with the vibrational energy effectively 
distributed over the surface of a sphere of ever-increasing radius.

 Intensity is equal to the amount of power that falls on a   1 m2   area of 
these ever-increasing spheres, so it is measured in   W m−2  . 

 At   1 m   away from a sound source, the intensity will be equal to 
the power of the source divided by the surface area of the   1 m   radius 
sphere that the power is distributed over at that point: 

   
I1 = P

4π(1)2

         = P
4π

    

 At   2 m   away, the same amount of power is distributed over a bigger 
sphere, and the intensity at   2 m   is: 

   
I2 = P

4π(2)2

          = P
16π

   

 As you can see, the intensity of sound experienced   2 m   from the source is one-quarter of the intensity at 
  1 m  . At   3   metres away, the intensity would be one-ninth of that for   1 m  , and so on. In general, the intensity 
of sound experienced a distance   d   from a sound source of power   P   is such that: 

   I = P

4πd 

2
             

  FIGURE 9.10  ‘What do you mean, “It’s too loud”?’  

1 m

direction
of sound
propagation

1 m

  FIGURE 9.11  The area is at right 
angles to the direction of propagation.  

r1

r2

Sound source

  FIGURE 9.12  Sound waves 
travel outwards from a sound 
source in three dimensions.  
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9.3 SAMPLE PROBLEM 3

If the sound intensity 3.0 m from a sound source is 4.0 × 10−6 W m−2, what is the intensity at (a) 1.5 m  
and (b) 12 m from the source?
SOLUTION:

(a) r1 = 3.0 m
I1 = 4.0 × 10−6 W m−2

r2 = 1.5 m
I2 = ?

 I2

I1
=

r 2
1

r 2
2

I2 =
I1r 2

1

r 2
2

= 4.0 × 10−6 W m−2 × (3.0 m)2

(1.5 m)2

= 1.6 × 10−5 W m−2

9.3 SAMPLE PROBLEM 1

What is the intensity of a sound if 6.0 × 10−3 W of acoustic power passes through an open window 
that has an area of 0.30 m2?

SOLUTION:

I = P
A

= 6.0 × 10−3 W

0.30 m2

= 2.0 × 10−2 W m−2

9.3 SAMPLE PROBLEM 2

Karen measures the sound intensity at a distance of 5.0 m from a lawnmower to be 3.0 × 10−2 W m−2. 
Assuming that the lawnmower acts as a point sound source and ignoring the effects of reflection and 
absorption, what is the total acoustic power of the mower?

SOLUTION:

P = 4π r2I
= 4π (5.0 m)2 × 3.0 × 10−2 W m−2

= 9.4 W

Referring back to the formula for the sound intensity produced by a source, I = P

4πr2
, it can be seen that, 

for a particular sound source, the sound intensity it produces is inversely proportional to the square of the 
distance from the source.

I ∝ 1

r2

This is the inverse square law, which can be restated as: the intensity of sound is inversely proportional to 
the square of the distance from the source.

When comparing the sound intensities at two distances r1 and r2 from a source, it should be remembered 
that the power of the source is a constant. Therefore, P = 4″r1

  2I1 = 4″  r2
2I2. This relationship then gives the 

following useful formula:
I2

I1
= r 2

1

r 2
2
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       9.3.2  Sound intensity level 
 While the human ear is able to pick up sounds with an intensity as small as   10−12 W m−2  , it is less sensiti-
tive to larger intensities of sound. Doubling the intensity of a fairly soft sound is a lot more noticeable to 
our ears than doubling the intensity of a loud one. 

 As a result, measurement of intensity alone is not a good indication of how loud a noise is. However, this 
sensitivity to lower intensities can be compensated for by comparing the logarithm of the ratio of sound 
intensities, called the  sound intensity level    (L)   .

 The sound intensity level, measured in decibels (dB), is a comparison of the intensity of the sound   (I)   
compared to the softest sound audible   (Io)  , which is   10−12 W m−2  . Sound intensity levels can be found using 
the equation: 

   L = 10  log (
I
Io

)   

 Using this sound scale, the softest noise able to be heard has a sound 
intensity level of   0 dB  . In order to double sound intensity level, you 
need to increase sound intensity by a factor of   100  .   

Table 9.2 contains some typical sound levels.

(b)     r1 = 3.0 m
I1 = 4.0 × 10−6 W m−2

r2 = 12 m
I2 = ?

            I2

I1
=

r 2
1

r 2
2

I2 =
I1r

2
1

r 2
2

=
4.0 × 10−6 W m−2 × (3.0 m)2

(12 m)2

= 2.5 × 10−7 W m−2

8
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  FIGURE 9.13  A sound level 
meter measures the sound 
intensity level.  

  Sound source    Sound intensity level  ( dB    )*
  Jet take-off at   30 m        125    

  Loud indoor rock concert      120    

  A shout at   1.5 m        100    

  City traffi c, pneumatic drill      80    

  Interior of a car moving at   90 km h−1        75    

  Classroom during an experiment      65    

  Normal conversation at   1 m        60    

  Quiet bedroom at night      30    

  Whisper      20    

 * Unconsciousness can occur at   140 dB  , the threshold of pain is   120 dB  , and the 
threshold of hearing is 0 dB    . 

 TABLE 9.2 Typical sound intensity levels. 

 AS A MATTER OF FACT 
Loudspeakers for entertainment systems are rated in watts. For example, a system might be fi tted with 
40 W speakers. In this case,   40 W does not refer to the acoustic power produced by the speakers, but to the 
maximum electrical power dissipated by the speakers. Under normal operating conditions, the acoustic power 
produced will be much less than the stated power rating.
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9.3.3 Pitch and frequency
Just as loudness is used to qualitatively describe sound intensity, the term pitch provides a general indi-
cation of a sound’s frequency. The higher the frequency of the sound, the more vibrations per second and 
the higher the pitch; a low-frequency sound is low pitched. If two different frequency (Hz number) tuning 
forks, producing sounds of equivalent amplitude, are used to produce graphical traces under identical con-
ditions, the amplitudes of the trace waves are equal but the frequency is higher for the higher pitched sound.

9.3 SAMPLE PROBLEM 5

What is the change in intensity level when a sound intensity is doubled? In this case, I2 = 2I1 .

SOLUTION:

ΔL = 10  log10  
I2

I1

= 10  log10  
2I1

I1

= 10  log10    
   2

= 3.01 dB

9.3 Sample problem 5 gives a useful rule of thumb: if the sound intensity doubles, the sound 
intensity level increases by 3 dB; if the sound intensity halves, the sound intensity level decreases 
by 3 dB. In fact, each 3 dB increase in the sound intensity level requires a factor of 2 increase in the 
sound intensity.

9.3 SAMPLE PROBLEM 4

What is the sound intensity level of a sound of intensity 2.6 × 10−7 W m−2?

SOLUTION:

L = 10  log10  
I
Io

= 10  log10  
2.6 × 10−7 W m−2

1.0 × 10−12 W m−2

= 10  log10   2.6 × 105

= 54 dB

9.3 SAMPLE PROBLEM 6

The recommended listening distance for music produced by a 40 W speaker is a minimum of 2 m. 
What is the maximum sound intensity level that a listener at this distance can be exposed to?

SOLUTION:

I = 40 W

4 π (2 m)2

= 0.80 W m–2

L = 10  log (
I
io)

= 10  log (
0.80 W m−2

10−12 W m−2)
= 119 dB
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  9.3.4  The Doppler effect 
 If you have ever been passed by a car with its horn blaring, you no doubt would have noticed that the pitch 
of the sound made by the horn seems to drop as the car approaches, comes level with you and then moves 
away. Similarly, when people imitate the sound of a fast passing car, they automatically change the pitch of 
the sound from high to low. This apparent shift in frequency of a sound source is called the Doppler effect. 
First described by Christian Johann Doppler in 1842, the Doppler effect is the result of the movement of the 
wave source and/or the observer of the wave relative to the wave medium. 

 As an example, consider a train whistle that produces a sound with a frequency of   260 Hz  . When the 
train is stopped at a station, the whistle is sounded to alert passengers of its imminent departure. People on 
the platform ahead of the train, behind the train or even on the train will all hear the whistle at its normal 
frequency of   260 Hz  . 

 Assuming a speed of sound of   340 m s–1  , the wavelength of the whistle can be found using the wave 
equation: 

   

λ =  
v
f

=  
340 m s−1

260 Hz
= 1.31 m

   

 AS A MATTER OF FACT 
 Having ‘perfect pitch’ is the ability to precisely name the note associated with a heard frequency, such as the 
hum produced by a ceiling fan or the vibration from a car fanbelt. In years past, a basic job requirement for 
piano tuners was to have perfect pitch. 

 At the other end of the scale are people who are tone-deaf. Such people are completely unable to distinguish 
between sounds differing in frequency; however, very few people are truly tone-deaf. In reality, most people 
lie between the two extremes of perfect pitch and tone-deafness and can be trained to distinguish pitch more 
precisely. 

 WORKING SCIENTIFICALLY 9.1 
 Use a sound level meter to test the effectiveness of several different devices that are designed to protect hearing. 
Examine the implications of your results in terms of workplace health and safety practices. 

  FIGURE 9.15  The traces of two sound waves with 
identical loudness (amplitude) but different frequencies. 
The fi gure on the left shows a low-pitch, lower frequency 
sound wave trace while the fi gure on the right shows 
a high-pitch, higher frequency sound wave trace. The 
time base represented by horizontal grid divisions on the 
fi gures is the same.  CRO

This waveform is more 
‘bunched-up’ than the waveform
shown back in figure 9.5a. It
represents a sound with a higher
frequency.

Tuning fork

This tuning fork
vibrates faster than the
one shown back in
figure 9.3. It makes a
Higher pitched sound.

  FIGURE 9.14    



TOPIC 9 Sound waves 183

The period of the whistle (i.e. the time that 
elapses between successive compressions 
reaching the observer) can be calculated as the 
reciprocal of the frequency:

T =  
1
f

= 1
260 Hz

= 0.0038 s or 3.8 ms

Now, let us consider the train in motion along the 
tracks at a constant speed of 20 m s–1(72 km h–1). As 
the train approaches a railway crossing, the whistle is 
sounded. The train driver, who is at rest relative to the 
train, hears the whistle at its usual 260 Hz. But what 
pitch is heard by the driver of a car that is stopped at 
the railway crossing?

Each of the compressions produced by the 
whistle radiates outwards at the speed of sound 
(340 m s–1) and there is a time interval of 0.0038 
seconds between the production of compres-
sions. However, during this time interval, 
between the production of one compression 
and the next, the train (and its whistle) have 
moved a small distance closer to the crossing 
at a speed of 20 m s–1:

d = v t
= 20 m s–1 × 0.0038 s
= 0.076 m

The compressions reaching the driver of the 
car at the crossing are therefore separated by a 
distance of 1.31 − 0.076 m = 1.234 m. As the 
compressions reaching the car driver are 1.234 m 
apart, the effective wavelength of the whistle as 
he hears it is also 1.234 metres. As a result, the 
frequency he hears can be calculated:

fcar driver = v
λ car driver

=  
340 m s−1

1.234 m
= 276 Hz

This means that the driver of the car perceives the pitch of the approaching train whistle to be higher 
than its actual frequency of 260 Hz.

When the train moves past the crossing, the whistle moves away from the car driver and he again hears 
a different pitch than that of the train driver.

Now, during the 0.0038 s between the production of successive compressions by the whistle, the train 
travels 0.076 m further away from the driver, with the result that the distance between successive compres-
sions reaching the car driver is equal to 1.31 m + 0.076 m = 1.386 m.

S

S

Compression 1

O

O

Compression 1 formed by source
t = 0

t = 0.0038 s

Compression 2 formed by source

Distance moved
by source

Distance between
successive
compressions

vs
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With this increase in the effective wavelength of the whistle as experienced by the car driver, there is a 
corresponding decrease in the whistle frequency:

fcar driver = v
λcar driver

=  
340 m s−1

1.386 m
= 245 Hz

We can use our train whistle example to come up with a general formula for the Doppler effect relating 
the speed of sound in the medium (v), the speed of the source relative to a stationary observer (vS), the 
frequency of the sound produced by the source ( f ) and the effective frequency of the sound heard by the 
observer ( f ′).

As the source (whistle) approaches the observer (car driver), the effective wavelength λ′ can be deter-
mined from the wavelength produced at the source (λ) and the decrease in wavelength produced by the 
movement of the source towards the observer:

λ ′ = λ − Δλ
= v 

f
−

vS

f
 

=
v − vS

f
This means that the effective frequency heard by the observer, f ′, can be described:

f ′ = v
λ′

=  
v

v − vS

f

=  
v f

v − vS

Similarly, when the source is moving away from the stationary observer and λ ′ = λ + Δλ:

λ ′ =
v + vS

f
and

f ′ = v
λ′

=  
v

v + vS

f

=  
v f

v + vS

Notice that the effective frequency will always be heard as higher when the sound source approaches the 
observe, and lower as it moves away.

9.3 SAMPLE PROBLEM 7

A noisy truck approaches a stationary pedestrian operating a frequency meter. The truck motor roars at a 
frequency of 2000 Hz as it approaches the pedestrian, and 1500 Hz as it moves away. What is the speed 
of the truck relative to the pedestrian? Take the speed of sound in air to be 340 m s−1.

SOLUTION:

Using the Doppler formulae, as the truck approaches, the effective frequency is:

f ′ =  
v f

v − vS

2000 Hz =  
340 m s−1 f

340 m s−1 − vS
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The Doppler effect is observed whenever the observer, the source or both move relative to the medium. 
In general, if both the source and the observer are moving towards each other relative to the medium, then 
the effective frequency heard by the observer is described by:

f ′ = f 
(v + vo)
(v − vs)

where v is the speed of sound in the medium, vo is the speed of the observer, vs is the speed of the source 
and f  is the frequency of sound produced by the source.

Note that, in the case where a moving source approaches a stationary observer, vo = 0 and so:

f ′ = f 
(v + 0)
(v − vs)that is,

f ′ =  
f   v

(v − vs)as we saw earlier.
If both the source and the observer are moving away from each other relative to the medium, then the 

effective frequency heard by the observer is described by:

f ′ = f 
(v − vo)
(v + vs)

As the truck recedes, the effective frequency is:

f ′ =  
v f

v + vS

1500 Hz =  
340 m s−1 f

340 m s−1 + vS

We now have two equations for f  and vS. We can solve them for vS by dividing the first equation by 
the second to eliminate f :

2000
1500

=
340 + vS

340 − vS

4
3

=
340 + vS

340 − vS

4(340 − vS) = 3(340 + vS)
340 = 7vS

vS = 48.6 m s–1

9.3 SAMPLE PROBLEM 8

The horn on a car travelling east at 14 m s–1 along a straight road produces a sustained sound of 500 Hz as 
the driver approaches a jogger travelling west at 3 m s–1. What does the jogger perceive the frequency of 
the horn to be when the car has driven past her? Assume the speed of sound is 340 m s–1.

SOLUTION:

In this case, neither the observer nor the source are at rest relative to the medium (air) and, when the 
car has passed the jogger, they are moving away from each other. The effective frequency of the horn as 
heard by the jogger will be:

f ′= f 
(v − vo)
(v + vs)

f ′ = 500 Hz ×  
(340 m s−1 − 3 m s−1)

(340 m s−1 + 14 m s−1)
= 476 Hz
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9.4 Reflection of sound waves
9.4.1 Bouncing back!
When waves arrive at a boundary between different media, reflection occurs, causing the return of the wave 
into the medium from which it was originally travelling. In topic 8, we saw how transverse waves travelling 
along strings were reflected, depending on the condition the wave met at the string’s end. A transverse wave 
reaching a fixed end is reflected back inverted along the string (and, so, out of phase with the original wave), 
while a wave reflected from an end that is free to move is not inverted (therefore, no change of phase occurs).

Sound waves, despite being compressional waves, can also be reflected; however, their reflection behav-
iour differs from that of the transverse waves travelling along strings. When a sound wave encounters 
a rigid medium such as a cliff 
wall, it is reflected back from 
the wall without a change 
of phase. This means that a 
compression hitting the wall 
bounces off as a compression, 
while rarefactions are reflected 
as rarefactions.

WORKING SCIENTIFICALLY 9.2
By considering the motion of an observer and a source relative to a stationary medium, derive the equation 

f ′ = f 
(v − vo)

(v + vs)
 given that the object and the source are moving away from each other.

WORKING SCIENTIFICALLY 9.3
Standing on a safe place on the kerb, record the sound of a car as it approaches and passes you. Use a sound 
analysis program such as Audacity® to identify the frequency shift of the car, and thus estimate the car’s speed.

9.3 Exercise 1
1 Calculate the sound intensity level of a whisper.
2 A scream at a distance of 1 m has a sound intensity level of 120 dB — twice that of normal conversation 

levels. How many times greater is the sound intensity of a scream compared to a chat?
3 A particular noise has a sound intensity 1000 times that of the threshold of hearing. What is this sound’s 

intensity level in dB?
4 The intensity of sound experienced 2 m from a sound source is 4 W m−2. How far from the sound source will 

the intensity be 1 W m−2?
5 How much power is produced by a sound source if an intensity of 2 mW m−2 is experienced 3 m away  

from it?
6 A window has an area of 0.50 m2, and 4.5 × 10−4 J of energy passes through the window in 30 seconds. 

Calculate (a) the acoustic power of the sound and (b) the sound intensity at the window.
7 A soccer coach yelling at his team solidly for 20 s produces sound at an intensity of 0.2 mW m−2. How much 

sound energy per square metre does the coach expend over this time interval?
8 Thuy and her friend Emily both go to a rock concert. Thuy is in the mosh pit located 5 m away from the front 

of a 450 W speaker while Emily is further back from the same speaker where the intensity of sound that she 
experiences is half that experienced by Thuy. How far away is Emily from Thuy?

9 The driver of a car travelling east along a road at 60 km h−1 hears a police siren although he cannot tell 
whether the police car is behind him or in front of him. Having perfect pitch, the driver identifies the pitch 
of the siren to be 528 Hz although he knows that the frequency of a stationary police siren is 500 Hz. At 
what speed is the police car travelling if it is travelling along the road (a) behind the driver but in the same 
direction, or (b) in front of the driver but in the opposite direction?

–

–

–

–

–
–

–
–

–
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9.4.2 Echoes
An echo occurs when an incident sound wave is reflected repeatedly.

When an echo bounces back from a solid surface, such as a cliff face or a brick wall, you don’t hear the 
full sound, but you do hear the last part of the original sound. If you are a significant distance from the 
wall, you will hear more of the original sound bounce back. If you are close to the reflecting surface, you 
probably won’t detect an echo. It does still occur, but the original sound drowns it out. There needs to be a 
time difference between the reflected sound and the original sound so that you can hear the echo. The size 
of that time difference is a minimum 0.1 seconds. Because sound travels around 340 m s−1 in air, both you 
and the sound must be at least 17 metres from the surface reflecting the sound for you to hear the echo. At 
this distance, the sound wave takes 0.05 seconds to reach the reflecting surface from the second source and 
0.05 seconds to bounce back.

9.4.3 Echolocation
Echoes are used by sonic rangers to 
determine the distance to objects. In 
the water, sonar and depth finders 
on boats are used to determine 
the distance to objects underwater 
or to the floor of the ocean (see 
figure 9.19). Sonic rangers are also 
used by industry in sonic level con-
trollers to tell how full storage tanks 
are. In most of these applications it 
is desirable to use short-wavelength, 
high-pitch sound waves. These ultra-
sonic or very high-frequency sound 
waves are emitted from a source 
and bounce back from objects. After 
bouncing back, they are detected by 
pressure-sensitive detectors. The time 
they take to return to their source can 
be determined accurately. Knowing 
the time for the reflected wave or 
echo to be received allows the dis-
tance to the object to be calculated. 
When calculating the distance, the speed of 
sound in a medium is assumed to be constant 
(even though slight fluctuations in the speed of 
sound do occur as the density changes).

Because there is a time difference between 
reflections of the same pulse if the reflecting 
surface is irregular in shape, it is possible 
to use ultra-high-frequency sound waves to 
‘see’ objects. The reflections from multiple 
surfaces are processed by a computer to gen-
erate an image of the object’s surface. This 
technology is used extensively in medicine to 

Transmitted signal

Re�ected signal

Transmitter/receiver
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perform non-invasive examinations of soft tissue injuries and diseased organs, or to check unborn chil-
dren for abnormalities (see figure 9.20).

9.4.4 Reverberation
Acoustics is the scientific study of sound. It has many applications; in architecture and engineering, for 
example, acoustics can be used to explain how the characteristics of spaces affect sounds within them.

The inside of a concert hall looks quite different from a simple school hall. This is because the surfaces, 
fittings and even seating of the concert hall have all been designed to make the music played on stage as 
clear as possible. You will not see flat walls or ceilings or too many hard surfaces, as these have a tendency 
to cause reverberation. This is an effect created when the audience hears a noticeable lag between the 
played note ending and the dying away of that note.

On the other hand, too many soft surfaces can absorb sound, making it ‘acoustically dead’. This can be 
an advantage in a recording studio where some rooms need to be completely soundproofed, so that the 
frequency and quality of the sound heard by the performer, the backing musicians and the sound technician 
are exactly the same. Many of these rooms are lined in heavily textured padding or even the bumpy bot-
toms of egg cartons, so that there is no spurious reflection or resonance of sound waves.

The quality of a concert hall can be evaluated in terms of its reverberation time, which is the time that 
elapses between the ending of a note and for the sound level of that note’s echoes from around the room to 
cease being heard. This is usually taken to be when the echoes have a sound level intensity less than 60 dB.

The formula to calculate the reverberation time of a performance space was first derived by Wallace 
Sabine in 1898 and is still in use today. He proposed that the reverberation time of a space (TR) was 
directly related to the volume of the space (V) and inversely proportional to its effective absorbing sur-
face area (A):

TR = 0.161 V
A

FIGURE 9.21 This theatre hall in the Sydney Opera House has been designed so that everyone in the audience 
will be able to hear clearly. The angled surfaces visible in the figure help to achieve this.
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 While it is fairly easy to calculate the volume of a hall, it is not quite so easy to assess how well the sur-
faces in that hall absorb sound. To calculate the effective absorbing surface area of a performance space, the 
effective absorbing surface of every fi xture in that space must be taken into account by assigning each of the 
surfaces (curtains, chairs, fl oors, ceiling, walls and so on) an absorption coeffi cient, which will be slightly 
different for sounds of differing frequency range. The absorption coeffi cient is the proportion of sound that is 
absorbed by that surface. Glass in a window, for example has an absorption coeffi cient of   0.18   for   500 Hz  ; this 
means that it absorbs   18%   of sound at   500 Hz   that 
falls on it. Thick carpet, on the other hand, has an 
absorption coeffi cient of up to   0.60   — absorbing 
60%   of sound. 

 The total effective absorbing surface area   (A)   is 
the sum of each of the individual effective absorp-
tion areas for each object and fi tting in the hall. 
For example, a   400 m2   wooden fl oor that has an 
absorption coeffi cient of   0.10   for   500 Hz   sounds 
would have an effective absorption area equal to 
  400 × 0.10 = 40 m2  . 

Table 9.3  indicates the absorption coeffi cients 
for common building materials when exposed to 
sound with a frequency of   500 Hz   (which lies in 
the middle of the frequency range for the voice 
and for musical instrument).   

 The best reverberation time for a concert hall 
depends upon the type of performance being 
given. Speech sounds best in a hall that has a reverberation time of between   0.4   to   0.8 s  , while halls with 
times of between   1.0   and   2.0 s   are generally better for music. A symphony hall for a full orchestra is best 
with a time of between   1.7   and   2.0 s  . 

 A performance space is considered to have good acoustics if there are no noticeable echoes, the loudness 
of all sounds is uniform throughout the space, and it does not allow noise from the outside world to be 
heard inside.    

  FIGURE 9.22  The contents and structure of a room will affect its acoustic 
properties.  

   Material      Absorption coeffi cient   

  Window glass      0.18    

  Plaster      0.06    

  Wood panelling      0.17    

  Wooden fl oor      0.10    

  Carpet laid on concrete      0.14    

  Carpet laid on underlay  0.57

  Lightweight curtains      0.11    

  Heavy curtains      0.55    

  Painted concrete blocks      0.06    

  Unpainted concrete blocks      0.31    

  Acoustic tile (suspended)      0.83    

  Acoustic tile (fi xed to concrete)      0.76    

 TABLE 9.3 Absorption coeffi cients for a variety of 
building materials (  500 Hz   )
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WORKING SCIENTIFICALLY 9.4
Calculate the reverberation time for several different spaces in your school, such as the auditorium, classrooms 
and laboratories. Compare their reverberation times and consider whether they are consistent with the function 
of the space. In cases where they are not suitable, suggest ways of improving their acoustic properties.

9.4 Exercise 1
1 A sound wave approaches a rigid surface as shown in 

figure 9.23.
Sketch the reflected wave.

2 While standing in a canyon, you hear the echo of your 
voice 2.8 s later. How far away is the rock wall responsible 
for this echo if the speed of sound is assumed to be 
344 m s–1?

9.4 SAMPLE PROBLEM 1

Estimate the reverberation time (at 500 Hz) for a small, empty bedroom.
The wooden floor is 5.0 by 5.0 m, three of the walls are plastered and the ceiling (also plastered) is 

2.8 m high. The fourth wall is made entirely of glass. (The door, in one of the plastered walls, may be 
assumed to have the same absorption coefficient as the wall.)

SOLUTION:

First, we will need to calculate the individual effective absorption areas:
wooden floor: A1 = (5.0 × 5.0) × 0.1 = 2.5 m2

glass wall: A2 = (5.0 × 2.8) × 0.18 = 2.52 m2

3 × plastered walls: A3 = 3 × (5.0 × 2.8) × 0.06 = 2.52 m2

ceiling: A4 = (5.0 × 5.0) × 0.06 = 1.5 m2

The total effective absorption surface area (A) can be found:
A = A1 + A2 + A3 + A4

= 2.5 + 2.52 + 2.52 + 1.5
= 9.04 m2

The volume of the bedroom (V) is easily found:
V = 5.0 × 5.0 × 2.8

= 70 m3

Therefore, we can find the reverberation time of the bedroom:

TR =
0.161(70)

(9.04)
= 1.25 s

CRCR
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  9.5  Superposition of sound 
  9.5.1  Interference of sound waves 
 When two sources emit sound at the same frequency and 
in phase, an interference pattern is produced. The pat-
tern is three-dimensional, but its features are the same as 
for interference patterns modelled two-dimensionally. 

 Consider what happens when a sound generator (such 
as a microphone or signal generator) is connected to two 
loudspeakers that are positioned at the left and right ends 
of a stage at the front of a hall, as shown in fi gure 9.25. 
Although the loudspeakers are in phase (that is, they both 
produce a compression at the same time and a rarefac-
tion at the same time), there will be positions in the hall 
where the combined sound they produce will be very 
loud and others where the sound will be very soft.   

S1   and   S2   represent the loudspeakers on the stage, 
and the concentric circles that are centred on each of 
the speakers represent the positions of compressions at 
a particular moment in time. The distance between suc-
cessive compressions will be equal to the wavelength 
of the sound produced at the speakers. Points along the 
central line OQ are equidistant from   S1   and   S2  . 

  Local antinodes , or  maxima , are points at which con-
structive interference between the waves produced by the 

3   Sonar can be used to map the ocean fl oor or to 
detect objects within the water. Figure 9.24 shows 
sonar being used by a salvage ship to fi nd sunken 
wrecks. 

  If   0.17 s   elapse between the sound waves being 
emitted and the refl ected waves from the wreck being 
detected, how far below the sonar transmitter/receiver 
is the wreck? The speed of sound in sea water is 
1540 m s–1  .     

4   The Cheese Puff Café has a high reverberation rate 
of   1.2 s   when fully booked, which means that the 
customers fi nd it very noisy and they have diffi culty 
hearing their dining partners. It has been suggested 
to the owners that replacing the concrete fl oor with 
carpet might help reduce this effect. Given that the 
volume of the café is   90 m3   and the concrete fl oor 
has an area of   30 m2  , by what percentage would the 
reverberation rate drop if carpet and underlay were put 
down?  

5   A starter pistol is fi red into the air at a race meet. The starter is located   200 m   from the east wall of the 
stadium and   500 m   from the stadium’s western wall. What will be the time interval between the echoes from 
each wall being heard by the starter?  

6   In an experiment to measure the speed of sound in different metals, a sound pulse was sent through 
identical lengths of aluminium and copper. The experimenter noted that the pulse took   0.3 ms   longer to 
travel through the copper sample than through the aluminium sample. If sound travels through aluminium at 
5100 m s−1   and through copper at   3900 m s−1  , how long were the samples?   

Transmitter/receiver

  FIGURE 9.24   

Stage

OS1 S2

Loudspeakers

B

C

Q

A

  FIGURE 9.25  Loudspeakers set up in a hall.  
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9.5 SAMPLE PROBLEM 1

A student arranges two loudspeakers, A and B, so that they are connected in phase to an audio amplifier. 
The speakers are then placed 2.00 m apart and they emit sound that has a wavelength of 0.26 m.

Another student stands at a point P, which is 15.00 m directly in front of speaker B. The situation 
representing this arrangement is shown in figure 9.26. Describe what the student standing at point P 
will hear from this position.

two speakers creates a sound of greater intensity than that created by one speaker alone. Points A and B in 
figure 9.25 are both maxima, with the waves from S1 and S2 arriving in phase and interfering constructively. 
At point A, compressions from S1 and S2 coincide, while, at point B, two rarefactions are coincident.

Local nodes, or minima, are points where destructive interference produces a sound with a much lower 
intensity than that produced by one source alone. Point C in figure 9.25 is such a point: compressions 
from one speaker coincide with rarefactions from the other speaker and vice versa. As the waves pass 
through these minima, there is very little variation in the air pressure, resulting in a very soft sound.

The same formulas that were used in section 8.2.3 to describe constructive and destructive interference 
in waves in general can be applied to sound waves and used to predict whether a point is part of a nodal or 
antinodal region and, therefore, whether the sound heard at that point would be especially softer or louder. 
For a point, P, to be an antinode, the path difference between the lines connecting each of the two sources 
to P must be a whole number multiple of the wavelength:

d(PS1) − d(PS2) = nλ  for  n =  0, 1, 2, 3, 4, …

where n is the number of the antinodal region from the centre of the pattern, and S1 and S2 are the sound sources.
In figure 9.25, it can be seen that point A is 3 wavelengths away from S1 and 2 wavelengths from S2, a 

path difference of 1 wavelength. Point B is 2.5 wavelengths from S1 and 3.5 wavelengths from S2, again 
providing a path difference of 1 wavelength. Both A and B lie on the first antinodal lines either side of the 
central antinodal line OQ.

For a point to be a node, the path difference is an odd numbered multiple of half the wavelength:

d(PS1) − d(PS2) = (n − 1
2)λ  for  n = 1, 2, 3, 4, …

where n is the number of the nodal line obtained by counting outwards from the centre line.
The nodal point C is located 4 wavelengths from S2 and 3.5 wavelengths from S1, giving a path differ-

ence of half a wavelength. It lies on the first nodal line away from the central antinodal line OQ.
Although we have modelled the interference of two sources in two dimensions where a central antinodal 

line OQ is observed, along which all points are equidistant from S1 and S2, we should remember that, in 
reality, interference between two sound sources occurs in a three-dimensional space. As a result, the points 
that are equidistant from each sound source lie on a central antinodal plane rather than a line.

AS A MATTER OF FACT
Complete destructive interference rarely occurs as the sounds produced from each source are usually not of 
equal intensity, due to the different distances travelled by the individual waves and the inverse square law that 
describes this variation in intensity with distance from the source.
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WORKING SCIENTIFICALLY 9.5
Draw a plan of your school assembly hall and mark the location of the speakers. Draw nodal and antinodal lines 
on your plan, for sound waves from the speakers having a frequency of 200 Hz (the mid range of human speech) 
to determine where constructive and destructive interference occurs within your hall.

9.5.2 Beats — a special case of superposition
When two sources of sound of the same amplitude but slightly 
different frequency are heard together, there will be a rhythmic 
change to the volume of the sound. When the two sound waves 
are in phase, the amplitude of the resulting sound wave is the 
sum of the amplitudes of the two waves, and results in a loud 
sound. As the waves drift out of phase, the resultant amplitude 
will become smaller, eventually reaching zero before increasing 
again as the waves drift back into phase. The term ‘beats’ is used 
to describe the variation in the loudness of the sound.

For example, beats may occur when members of an orchestra 
are warming up for a performance and are tuning their instru-
ments. As the tuning of the instruments becomes closer, the 
beat frequency decreases until it disappears. The beat frequency 
is determined by the difference in the frequency of the notes 
played by the different instruments when slightly out of tune.

That is, fbeat = ∣ f2 − f1∣

In figure 9.27, we can see the traces of two sound waves of differing frequency being played at the same 
time, and the resulting superposition.

f1 = 100 Hz

f2 = 120 Hz

Sum

Beat Beat

000 002 004
Time (seconds)

006 008

005 s

010

FIGURE 9.27 Two sound waves of dif-
fering frequency being played at the same 
time, and the resulting superposition.

SOLUTION:

In this type of question, it is important to determine whether the point is a node or antinode.
This is done by determining the path difference and then comparing this to the wavelength.

λ = 0.26 m,  d(PB) = 15.00 m
d(PA) can be found by applying Pythagoras’s theorem.

d(PA)2 = 15.00 m2 + 2.00 m2

= 229 m2

So d(PA) = 15.13 m
d(PA) − d(PB) = 15.13 m − 15.00 m

= 0.13 m.

              0.13 m = 1
2

λ

Therefore, the student is at a local minimum and will hear only a very soft sound.

2.00 m

B

A

P

15.00 m

Ampli�er

FIGURE 9.26
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For the two sounds, one at 100 Hz and the other at 120 Hz, the beat frequency is simply found:

fbeat = 120 Hz − 100 Hz
= 20 Hz

So, every 0.05 s, a louder beat tone will be heard.

9.5.3 Timbre
Timbre: Combining pure tones
The sound produced by a tuning fork is a pure tone. The CRO 
trace of such a sound is a sine wave, as shown in figure 9.28. Most 
sounds are not pure tones but are made up of a number of pure 
tones that have been superimposed in a particular way to produce a 
sound with a characteristic timbre (see figure 9.29).

Although the shapes of the waves for figure 9.28 an 9.29 are 
differen, the frequencies are approximately the sam. The difference 
is the timbre or complexity of the not. This is borne out in the dif -
ference in shape.

You are probably aware that different musical instruments playing 
in an orchestra can play the same musical note. However, while the 
sounds are of the same frequency, they do not appear to be the same. 
This is because the sounds produced have their own particular timbre. 
If viewed as a CRO trace, these common notes from the different instru-
ments produce a differently shaped wave trace even though the frequen-
cies are common. Figure 9.30 shows the wave traces for the same note 
played by a number of different instruments into a microphone.

FIGU E 9.28  A pure tone 
produced by a tuning fork. 
The CRO trace is a sine 
wave shape.

FIGU E 9.29  A complex 
sound produced by a person 
singing. Note that in any 
CRO trace figure, the trace 
represents a very small 
‘grab’ of time, much like a 
photograph.

9.5 Exercise 1
1 Two tuning forks with frequencies of 256 Hz and 262 Hz are 

placed next to each other and struck so that they vibrate. What 
beat frequency will be heard?

2 Whe tunng her gutar usng a sgna generator , a student hears 
a beat frequency of 4 Hz when the topmost string is plucked at 
the same time as the generator produces a sound wave with 
frequency 334 Hz. When she drops the frequency of the signal 
generator to 323 Hz and plucks the guitar string, she hears a 
7 Hz beat frequency. What is the frequency of the guitar string?

3 Two speakers are placed 4 metres apart in Rohith’s home 
theatre and he has placed his chair 3 metres from the front of 
one of the speakers, as shown in figure 9.31.

(a) Pipe organ

(b) Piano

(c) Clarinet

FIGU E 9.30  The CRO traces 
at the same settings of the 
same musical note played 
with approximately the same 
volume by a variety of different 
instruments: (a) pipe organ, 
(b) piano and (c) clarinet. These 
CRO traces are more complex 
than the sounds produced by 
tuning forks and often lack 
symmetry about the baseline.

3 m

4 m
S2S1

FIGURE 9.31
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9.6 Sound from strings
9.6.1 Vibrational modes in a string
A string will produce sound if it is held under tension by fixing it at both ends. When the string is made to 
vibrate by plucking it (such as a guitar string), running a bow across it (a violin string) or striking it with 
small padded hammers (piano and dulcimer strings), transverse waves are produced, which travel along the 
string in both directions from the vibration site and are reflected from the fixed ends of the string. When these 
reflected waves interfere with the waves coming 
in from the other end of the string, standing 
waves are produced. As the strings are fixed at 
each end, nodes (positions at which the string 
is not displaced) will always form there. Obvi-
ously, there are a number of different standing 
wave combinations that can be formed in the 
string, having a node at each end. The simplest, 
shown in figure 9.32, has a single antinode in 
the middle of the string. This type of standing 
wave is called the fundamental vibration mode 
(or the first harmonic). The frequency of the 
sound waves produced by this vibrational mode 
is referred to as the fundamental frequency.

The wavelength of the fundamental (λ0) is 
equal to twice the distance between two succes-
sive nodes. In this case, the distance between the 
nodes is equal to the string length, L. Therefore, 

λ0 = 2L
Substituting this into the wave equation, 

we derive an expression for the fundamental 
frequency:

f0 = v
2L

where v is the speed of the wave along the string.
A string vibrating in its next vibrational mode, as shown in figure 9.33a, will have two antinodes and 

three nodes.
The wavelength of such a vibration will equal the length of the string:

λ1 = L

L

N

A

N
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and the frequency of this second mode of vibration is found:

f1 = v
λ1

f1 = v
L

Further, by rearranging the equation for the fundamental frequency and substituting for v, we find:

f1 =
2 f0 L

L
f1 =  2 f0

The frequencies produced in a string that are higher than the fundamental frequency are called overtones. 
If the overtone frequency is equal to a whole number multiple of the fundamental frequency, then it is 
called a harmonic. The fundamental frequency, f0, is therefore the first harmonic while f1, which is equal 
to twice the fundamental frequency, is called the second harmonic.

In figure 9.33b, we see the string vibrating in its third vibrational mode, in which it displays three 

antinodes and four nodes. The wavelength, λ3, is equal to 2
3

L, and the frequency is found to be:

f2 = 3v
2L

and

f2 = 3 f0
Thus, the third vibrational mode produces the third harmonic.
By now, you can probably see a pattern emerging from all of this. In fact, we can determine that the 

frequency for any mode of vibration is such that:

fn =  
(n + 1)v

2L

where L is the length of the string, v is the speed of the wave along the string and n is the integer number 
associated with the vibrational mode, where n = 0, 1, 2 ...

This means that n = 0 for the first harmonic (fundamental), n = 1 for the second harmonic, and so on.
A plucked string will vibrate with frequencies such that all harmonics are produced, although the ampli-

tude of the harmonics will decrease as the harmonic number increases. As a result, the frequency heard 
most loudly is the fundamental of the string.
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9.6.2 Wave speed in strings
The speed at which a travelling wave moves along a stretched string depends primarily upon the length 
of the string and the mass of the string per unit length (also referred to as the string’s linear density). The 
relationship between these factors can be described by the equation:

v = √
T

m/L
 

where T  is the tension (in newtons) in the string and m is the mass in kilograms of the length L (in metres) 
of the string.

9.6 SAMPLE PROBLEM 1

What is the frequency of the third harmonic of a string if the fundamental frequency is 250 Hz?

SOLUTION:

The third harmonic, by definition, has a frequency three times the fundamental frequency. Therefore, 
the answer is 750 Hz.

9.6 SAMPLE PROBLEM 2

(a) The lowest E string on a guitar has a fundamental frequency of 82.4 Hz. If the guitar string has a 
vibrational length of 640 mm, at what speed do waves travel along its length?

(b) The low E string on the average guitar has a mass per unit length of 6.8 × 10–3 kg m–1. What is 
the tension in the stretched guitar string?

SOLUTION:

(a) In the first vibrational mode,

λ0 = 2L = 2(0.64 m) = 1.28 m

Using the wave equation,

v =  f λ

= 82.4 Hz × 1.28 m

= 105 m s–1

(b) Rearranging the velocity equation for strings, we get:

T = v2
(

m
L)

= (105 m s–1)2 × (6.8 × 10–3 kg m–1)
= 75 N

WORKING SCIENTIFICALLY 9.6
Simple musical instruments can be made by stretching rubber bands over wooden boxes. Determine if it is 
possible to make an instrument using a wooden box and rubber bands of a variety of thicknesses with the same 
acoustical range as (a) a ukulele, (b) a violin, or (c) a guitar.
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9.6 Exercise 1
1 A particular guitar string is 60 cm long, and waves move through it at 400 m s−1. Calculate:

(a) the fundamental frequency of the note produced when the string vibrates freely
(b) the fundamental frequency of the note produced when the string is pressed hard against the fingerboard 

halfway down the string’s length
(c) the second harmonic frequency produced by lightly touching the string halfway down the string’s length.

2 The A string on a small harp is 0.9 m long and has a fundamental frequency of 440 Hz, while the nearby C 
string made from the same material has a fundamental frequency of 512 Hz. If the wave speed is the same in 
both strings, what is the length of the C string?

3 What is the frequency of the third harmonic of a string if the fundamental frequency is 250 Hz?
4 A string produces a sound that has a second harmonic of 700 Hz. Calculate:

(a) the fundamental frequency
(b) the frequency of the fourth harmonic of this string.

5 One of the harmonic frequencies of a string fixed at both ends is 
375 Hz. The string’s next harmonic frequency is 450 Hz. What is 
the fundamental frequency of the string?

6 Which of the graphs in figure 9.35 best shows the relationship 
described in each case:
(i) the velocity of a travelling wave in a string with fixed length 

versus the tension in the wire
(ii) the frequency of the harmonic versus the harmonic number
(iii) frequency versus wavelength for a wave travelling in a string 

at constant speed?
7 The G string on a violin is 30 cm long and vibrates at a 

fundamental frequency of 196 Hz. How far from the top end of 
the string must you place your finger to play an A (220 Hz)?

8 The device shown in figure 9.36 is called a monochord, or 
sonometer.

A string is supported on the two bridges and is tensioned 
by suspending masses from one end as shown. If the string 
has a mass per unit length of 2 g m−1 and the distance 
between the bridges is 50 cm, what will be the fundamental 
frequency of the string if a 3 kg mass is used to tension the 
string?

9.7 Sound from pipes
9.7.1 Standing wave formation in pipes
Just as sound can be produced by the vibration of fixed-end strings to form standing waves, it can 
also be produced by the formation of standing waves in the air cavities of pipes and tubes. Unlike the 
transverse waves produced in strings, the standing waves in pipes are longitudinal waves produced 
by reflection that occurs at the ends of the pipes. The standing waves will differ in their geometry 
according to whether the pipe is open at both ends (referred to as an open pipe) or is sealed at one end 
(closed pipe).

A compression travelling from the open end to the closed end of a pipe is reflected back without a phase 
change, so it returns as a compression. Upon reaching the open end of the pipe, however, the compression 
is reflected back as a rarefaction. As the waves travel up and down the length of the pipe, the incident and 
reflected pulses interfere to form a standing wave.

Air particles at the open end of a pipe are able to freely enter and leave, and have the greatest degree 
of freedom. The air pressure at the open end is the same as the air pressure outside the pipe, and the air 

A B

C D

FIGURE 9.35

bridge bridge



TOPIC 9 Sound waves 199

particles maintain a uniform distance between them. As there is no change in air pressure at the open end 
of a pipe, we say that there is always a pressure node located there. At the same time, as the particles are 
able to move with maximum amplitude, there is always a displacement antinode located at the open end.

At the closed end of a pipe, the particles are not able to move as freely, and so it is here that the minimum 
displacement of air particles occurs. This means that there is a displacement node always located at the 
closed end of a pipe. At the same time, it is at the closed end where incident compressions are reflected as 
compressions; the waves interfere constructively to create compression waves with twice the amplitude of 
either wave alone. Similarly, incident rarefactions are reflected as rarefactions and interfere constructively. As 
the air pressure at the closed end is undergoing maximum change, there is always a pressure antinode located 
there. In general, displacement antinodes occur at the same positions in a pipe as pressure nodes, and displace-
ment nodes occur at the same positions as pressure antinodes.

Standing waves in pipes can be represented either in terms of the displacement of particles along the 
pipe, or as variations in air pressure along the pipe. In our following discussion of resonance in open and 
closed pipes, we will represent standing waves as variations in air pressure.

9.7.2 Resonance in closed pipes
All the brass instruments in an orchestra as well as 
instruments such as clarinets, oboes, bagpipes, pipe 
organs and didgeridoos act as closed pipes, as one end 
is effectively closed by the player’s mouth when the 
instruments are being played.

As mentioned previously, closed pipes will have a 
pressure antinode at their closed end and a pressure 
node at their open end. The fundamental vibrational 
mode for a closed pipe will have one node and one 
antinode, as shown in figure 9.38a.

(a)

(b)

FIGURE 9.37 (a) Compressions striking the closed end of a pipe are reflected back as 
compressions. (b) Compressions encountering the open end of a pipe are reflected as 
rarefactions.

L
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N
N NA(c) A A

L
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Remembering that the distance between successive nodes is equal to 
λ
2

, we can see from our diagram that 

the fundamental wavelength λ0 is equal to 4L, where L is the length of the pipe.
As v = fλ , we can write an expression for the fundamental frequency f0 of a closed pipe:

f0 = v
λ0

= v
4L

The second vibrational mode for a closed pipe has 2 nodes and 2 antinodes (figure 9.38b), and the wave-

length is equal to 4L
3

. The frequency f1 can therefore be derived:

f1 = 3v
4L

The frequency f1 is called the first resonant frequency, as it is the first frequency above the fundamental 
frequency at which resonance occurs.

Also, f1 = 3f0 , which can be described as the third harmonic of the closed pipe.
In general, the nth resonant frequency above the fundamental can be expressed as:

fn = (2n + 1)v
4L

and
fn = (2n + 1)f0

9.7.3 Resonance in open pipes
As both ends of an open pipe allow the free movement of air particles, there is a pressure node at each end. 
The fundamental mode of vibration for an open pipe will occur when there is an antinode in the centre of 
the pipe, as shown in Figure 9.39a.

As there are only two nodes in the fundamental mode, we can see that the fundamental wavelength will 

be equal to twice the length of the pipe: that is, λ0 = 2L . Thus, the fundamental frequency f0 = v
2L

.

9.7 SAMPLE PROBLEM 1

(a) What is the fundamental frequency for a pipe closed at one end if it is 0.80 m long and the speed 
of sound in air is 340 m s–1?

(b) What is the frequency of the third resonant frequency above the fundamental for this pipe?

SOLUTION:

(a) For the fundamental frequency, use λ = 4L.

 

λ = 4 × 0.80 m
= 3.2 m

f0 = υ
λ

= 340 ms−1

3.2 m
= 106.25 Hz

Therefore, the fundamental frequency is 1.1 × 102 Hz.

(b) The third resonant frequency above the fundamental is the seventh harmonic.
f3 = 7 f0

= 7 × 106.25 Hz
= 743.75 Hz

Therefore, the third resonant frequency above the fundamental has a frequency of 7.4 × 102 Hz.
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The second vibrational mode occurs when there are two antinodes and three nodes (figure 9.39b); here 
we can see that the length of the pipe is equal to the wavelength, and so the first resonant frequency above 
the fundamental can be found:

f1 = v
L

As f1 = 2f0, it is the second harmonic for the open pipe.
Similarly, the second resonant frequency is found to be

f2 = 3v
2L

and, as f2 = 3f0, it is also the third harmonic.
In general, the nth resonant frequency above the fundamental for an open pipe is given by:

fn = n × v
2L

and fn = (n + 1)f0
Note that this is the same relationship as that found for a vibrating string, which, being fixed at each end, 

also has a node at each end.
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9.7 SAMPLE PROBLEM 3

Figure 9.40 shows the pressure variation in a pipe open at both ends. At the instant shown in the 
figure, the pressure is at its maximum variation from normal pressure. The speed of sound in air is 
340 m s−1. The pipe has a length of 0.80 m.

(a) Mark the position of any pressure nodes and antinodes in the pipe.
(b) Sketch a graph showing the variation of air pressure as a function of distance along the pipe:

(i) at the instant shown in the diagram
(ii) one-quarter of a period later

(iii) one-half period later.
(c) What is the wavelength of this standing wave?
(d) What are the frequency and the period of this standing wave?
(e) What harmonic is this standing wave?
(f) What is the fundamental frequency of this pipe?

SOLUTION:

(a) Nodes occur at points where the air pressure is normal, antinodes occur where the air pressure is 
a maximum or a minimum. These points are shown in figure 9.41.

(b)  (i) The pressure variations are at a maximum. This situation is shown in figure 9.42 (a).
(ii) A quarter of a period later, the air pressure will be normal all along the pipe, as shown in figure 9.42 (b).

(iii)  One half a period after the first instant, the pressure variations will again be at a maximum,
but they will be the opposite of their original values, as shown in figure 9.42 (c).

(c) The wavelength is twice the distance between adjacent nodes, or the distance between alternate 
nodes. So λ = 0.80 m.

(d) f = υ
λ

= 340 m s−1

0.80 m
= 425 Hz

T = 1
f

= 1
425 Hz

= 2.35 × 10−3 s

Normal
atmospheric pressure

Normal
atmospheric pressure

FIGURE 9.40
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9.8 Diffraction of sound waves
9.8.1 Bending sound
Like other types of waves, sound waves demonstrate diffraction when they encounter an edge, barrier or 
gap, spreading out as they travel beyond the obstacle. The degree of diffraction that occurs depends upon 
the wavelength of the sound. Sounds with wavelengths that are short compared to the width of the gap or 

9.7 Exercise 1
1 A pipe that is open at both ends has a length of 60 cm. It produces a sound that has a second harmonic of 

550 Hz. Calculate:
(a) the fundamental frequency
(b) the speed of sound in air
(c) the frequency of the third overtone of the pipe.

2 A pipe that is closed at one end has a length of 40 cm. It produces a sound that has a first overtone of 
600 Hz. Calculate:
(a) the fundamental frequency
(b) the speed of sound in air
(c) the frequency of the third overtone of the pipe.

3 What is the fundamental frequency of a trumpet that has a tube length of 1.40 m?
4 Calculate the third harmonic wavelength of a 2.75 m long closed pipe.
5 How long does a closed organ pipe need to be in order to have a fundamental frequency of 256 Hz?
6 Why do pipes that are closed at one end sustain only the odd-numbered harmonics?

(e) This is the first standing wave above the fundamental, hence it is the second harmonic. (Refer 
back to figure 9.39e, showing standing waves in a pipe open at both ends.)

(f) The second harmonic is twice the fundamental frequency.

f0 = 425 Hz
2

= 212.5 Hz

Air pressure
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pressure

Air pressure
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atmospheric

pressure

Air pressure
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FIGURE 9.42
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obstacle show very little diffraction, with only slight bending of the waves. Sound waves with wavelengths 
similar to or longer than the obstacle or gap they encounter are diffracted more significantly.

9.8.2 Directional spread of different frequencies
The opening at the end of a wind instrument such 
as a trumpet, the size of someone’s mouth and the 
size of the loudspeaker opening all affect the amount 
of diffraction that occurs in the sound produced. 
High-frequency sounds can best be heard directly in 
front of these devices.

When a loudspeaker plays music, it is reproducing 
more than one frequency at a time. Low-frequency 
soundwaves from a bass have a large wavelength; 
high-frequency soundwaves from a trumpet have a 
short wavelength. Short-wavelength, high-frequency 
sounds do not diffract (spread out) very much when 
they emerge from the opening of a loudspeaker, but 
long wavelength sounds do. If a single loudspeaker 
is used, the best place to hear the sound is directly in 
front of the speaker.

High 
frequencies

Less bright
soundLow 

frequencies

‘Bright’
sound
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9.9 Review
9.9.1 Summary
 • Sound waves are vibrations of particles in a medium.
 • Compressions relate to the crests of a transverse wave and rarefactions relate to the troughs of a trans-

verse wave.
 • The pitch of a sound wave increases as the frequency of the sound wave increases.
 • The amplitude of a sound wave increases as the sound’s volume grows louder.
 • An echo is a reflection of a sound wave.
 • Waves can interfere when they come into contact. This can result in the amplitude of the waves increasing 

if the waves are in phase, or decreasing if the waves are out of phase. The addition of waves is called 
superposition.

 • Beats occur when sound waves that are close but not identical in frequency are played at the same time. 
The beat frequency is equal to the difference in the frequencies of the two sound waves: fbeat = ∣ f2 − f1∣ .

 • Sound waves can be studied with a cathode-ray oscilloscope (CRO) or cathode-ray oscilloscope sim-
ulator application. Different musical instruments produce sound waves that produce different shaped 
traces on a CRO.

 • The Doppler effect is the result of a wave source moving through the medium. The waves move at con-
stant speed relative to the medium, resulting in a higher frequency in front of the moving source and 
a lower frequency behind. For an observer and a source moving towards each other, the effective fre-

quency heard by the observer is f ′ = f 
(v + vo)
(v − vs)

. For an observer and a sound source moving away from 

each other, f ′ = f 
(v − vo)
(v + vs)

 where v is the speed of sound in the medium, vo is the speed of the observer 

and vs is the speed of the source.

9.8 SAMPLE PROBLEM 1

Two sirens are used to produce frequencies of 200 Hz and 10 000 Hz. Describe the spread of the two 
sounds as they pass through a window in a wall. The window has a width of 35 cm. Assume that the 
speed of sound in air is 330 m s−1.

SOLUTION:

First calculate the wavelengths of the sounds using the formula v = fλ. These calculate to 165 cm and 
3.3 cm respectively. There will be a very small diffraction spread for the sound of wavelength 3.3 cm 
because the wavelength is small compared with the opening. There will be a large diffraction spread 
for the sound of wavelength 165 cm because the wavelength is large compared with the opening.

9.8 Exercise 1
1 (a) What is diffraction?

(b) Why is diffraction an important concept to consider when designing loudspeakers?
2 A sound of wavelength λ passes through a gap of width w in a barrier. How will the following changes affect 

the amount of diffraction that occurs:
(a) λ decreases
(b) λ increases
(c) w decreases
(d) w increases?
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 • The intensity (I) of a sound is the acoustic power per unit area at a point separated from the sound source 

by a distance d, and it is measured in W m–2: I = P

4πd2

 • The intensity level (L) of a sound is measured in decibels (dB):  L = 10  log (
I
I0

) where I0 is the inten-

sity of the softest audible sound (10−12 W m–2).
 • The fundamental frequency, f0, of a string or pipe is the lowest frequency at which a standing wave 

occurs.
 • Harmonics are whole number multiples of the fundamental frequency.
 • Resonant frequencies are frequencies above the fundamental frequency at which resonance occurs.
 • Stringed instruments form standing waves that have a node at each end.
 • A closed pipe will form a pressure node at its open end and a pressure antinode at its closed end. An 

open pipe will form pressure nodes at both ends.
 • Pitch is a qualitative measurement of frequency.
 • Timbre is a qualitative measure of the complexity of sound produced by an instrument. It is dependent 

upon the number of harmonic frequencies that are produced.

9.9.2 Questions
1. What is the intensity level of a sound that has an intensity of 10–8 W m–2?
2. Calculate the intensity of a sound that measures 65 dB on a sound level meter.
3. The intensity level of a stereo placed in the open air is 100 dB at a distance of 10.0 m from the 

speaker. If the speaker has a total power output of 20 W, what percentage of the speaker’s power is 
converted into sound?

4. (a) What is the speed of sound in dry air at a temperature of 30 °C?
(b) At this temperature, how far away from the observer did lightning strike if the thunder was heard 

7 s after the flash was seen?
5. Figure 9.45 shows the variation in air pressure near a sound source producing a single note as a 

function of time.
(a) What is the period of this sound?
(b) What is this sound’s frequency?
(c) What is the wavelength of this sound if the 

speed of sound is assumed to be 344 m s–1?
6. An ear trumpet that has a circular opening with a 

diameter of 15 cm is used by a hearing-impaired 
person. If we assume that the ear trumpet is 
100% efficient, by what factor is sound intensity 
incident on the eardrum increased by the device 
if the surface area of the eardrum is 0.5 cm2?

7. A rifleman fires a shot and hears its echo from a 
surface 200 m away 1.2 s later. What was the air temperature at this time?

8. Figure 9.46 shows the audibility range of the human ear. Use it to answer the following questions.
(a) What is the highest frequency noise that can be made with the human voice?
(b) What is the loudest sound level at that someone can shout?
(c) Sounds with frequencies that lie below the human hearing threshold are said to be subsonic. 

Below what frequency are subsonic noises?
(d) For what frequency range is the pain threshold below 120 dB?
(e) What frequencies are able to be made by musical instruments but not by human voices?

–∆P

+∆P

0
Tme (ms)

075 15 225 30 375 45

FIGURE 9.45
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4.5 m

L1 L2

FIGURE 9.47
9. Jan is sitting in a concert hall five rows from the front of the stage 

on which are mounted two loudspeakers, L1 and L2, as shown in 
figure 9.47.

She notices that the sound from the performance doesn’t seem 
as loud where she’s sitting compared to where she has sat in other 
performances, particularly for notes that have a wavelength of 1.5 m, 
and she realises (being a Physics student) that she is sitting in a 
position that is a minimum. Given that she is 4.5 m away from L1 
and at least that from L2, what is the smallest distance that can be 
separating her from L2?

10. Figure 9.48 (a) shows the pressure variation 
as a function of distance from a sound 
source at an instant in time. The graph 
shown in figure 9.48 (b) shows the pressure 
variation as a function of distance from 
the sound source. The speed of sound in 
air is 340 m s–1.
(a) What is the wavelength of this sound?
(b) What is the period of this sound?
(c) Using the same scale as shown in 

figure 9.48 (b), sketch the distribution of 
particles, and the pressure variation one-
quarter of a period later.

(d) Using the same axes as shown in figure 9.48 (b), sketch a graph of pressure variation versus 
distance one-quarter of a period later than shown in the graph.

(a)

FIGURE 9.48
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11. Figure 9.49 shows the variation of air pressure 
as a function of time near a sound source.
(a) What is the period of this sound?
(b) What is the frequency of this sound?
(c) What is the wavelength of this sound if 

the speed of sound is 330 m s–1?
12. What is the acoustic power of a source if it 

produces 2.0 J in 100 s?
13. What is the sound intensity if 4.0 × 10–8  W 

pass through an area of 0.080 m2?
14. Calculate the power passing through an area of 2.0 m2 if the sound intensity is 4.5 × 10–5 W m–2?
15. One siren produces a sound intensity of 3.0 × 10–3 W m–2 at a point that is 10 m away. What would be 

the sound intensity produced at that point if five identical sirens sounded simultaneously at the same 
place as the original?

16. If the sound intensity 4.0 m from a point sound source is 1.0 × 10–6 W m–2, what will be the sound 
intensity at each of the following distances from the source?
(a) 1.0 m

   (c)  8.0 m
 (b) 2.0 m
 (d) 40 m

17. What are the sound intensity levels associated with the following sound intensities?
(a) 5.0 × 10–10 W m–2

   (c)  4.9 × 10–3 W m–2
 (b) 3.2 × 10–7 W m–2

 (d) 1.8 × 10–9 W m–2

18. Calculate the sound intensities associated with the following sound intensity levels:
(a) 7.0 dB

   (c)  54 dB
(b) 25 dB

 (d) 115 dB
19. The fourth harmonic frequency of a particular string is 880 Hz. What will be its:

(a) fundamental frequency?
(b) third harmonic frequency?

20. The speed of waves in a 0.8 m guitar string is 240 m s–1. Find:
(a) the longest wavelength that can be formed by the string
(b) the fundamental frequency
(c) the distance between nodes in the fourth vibrational mode
(d) the wavelength for the third harmonic.

21. A viola string vibrating in its third harmonic has a wavelength of 0.40 m.
(a) What is the length of the string?
(b) How long would a similar string need to be if it vibrates in its second harmonic at the same 

wavelength as this first string?
(c) If the frequency of the first string is 400 Hz, calculate the speed of the waves in the string.

22. Calculate the fundamental, second harmonic and third harmonic frequencies for the following pipes 
on a day when the speed of sound is 340 m s–1:
(a) 60 cm long open pipe
(b) 120 cm long closed pipe
(c) 30 cm long closed pipe
(d) 2.00 m long open pipe
(e) 2.00 m long closed pipe.

23. How many octaves apart are 131 Hz and 524 Hz?
24. A closed pipe in air (at 20 °C) resonates at its fundamental frequency of 200 Hz. If the same pipe 

is submerged completely in a tank of pure water, at what fundamental frequency will it then 
resonate?

1
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FIGURE 9.49
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25.   A tube is placed with one end in water as shown in 
fi gure 9.50. By raising and lowering the tube in the water, 
we are able to consider it a closed tube of variable length. 

  A tuning fork with a frequency of   524 Hz   is struck and then 
held above the mouth of the tube. As the length of the pipe 
is changed, there are some lengths at which the sound of the 
tuning fork is very loud and others at which it is very soft.  
(a)   Explain why this happens.  
(b)   The lengths at which the loud vibrations occur are 

0.33 m   apart. What was the speed of sound on that day?       
26.   A fl ute is designed to be played in the key of C major; that 

is, when all of the fi nger holes are covered and the fl ute 
played, middle C   (262 Hz)   is the fundamental frequency. 
What is the approximate separation between the mouthpiece 
and the end of the fl ute?  

27.   An open E string is   0.70 m   long and vibrates at a 
frequency of   330 Hz  . How far up the length of the string 
must a fi nger be pressed onto the string to produce the 
note A   (440 Hz)  ?  

28.   (a)    What is the resonant frequency of the column of air in 
the outer ear of a human, which is about   2.5 cm   long?  

(b)   Is this within our range of hearing? Explain your answer.    
29.   All the strings of a violin are the same length. How are they able to produce different notes when open?  
30.   A railway worker strikes a steel rail with a hammer, and the noise is heard both through the air and 

through the rail by another worker   600 m   away. What time interval elapses between the two sounds 
arriving?  

31.   Why isn’t it possible for a guitar string of length   L   to form a standing wave pattern that has a 

wavelength equal to   3L
4

  ?  

32.   The node at the open end of a pipe has, in this course, been assumed to be exactly at the end. In fact, 
the node is located slightly beyond the end of the tube. How far beyond the end of the tube this node 
is located depends upon the diameter of the pipe itself. We are able to compensate for this effect by 
using the end correction equation for a pipe open at both ends: 

   Leffective = Lactual + 0.58d    

 where   d   is the pipe diameter. The end correction is usually ignored as it is quite small. 
 How long would a 1.6 cm diameter pipe instrument need to be in order for the percentage 

difference between the actual and effective lengths to reach 5%?  
33.   A maker of organ pipes decides to use aluminium instead of steel to make his pipes. How will the 

change in material affect the present design of the pipes?   
34.   Figure 9.51 shows pressure variation in 

and around a pipe open at both ends as it is 
resonating at one of its harmonics. Assume 
that the speed of sound in air is   340 m s–1  .   
(a)   What harmonic is represented in the 

diagram?  
(b)   If the pipe is 0.85 m, what is the 

wavelength of the tone that the pipe is 
producing?  

Effective
length
of tube

Water

  FIGURE 9.50   

Normal
atmospheric pressure

Normal
atmospheric pressure

  FIGURE 9.51   
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(c) What is the frequency of the tone being produced?
(d) Make a sketch to show the pressure variation in and around the pipe half a period later than the 

instant shown.
(e) Sketch the pressure variation in and around the pipe one-quarter of a period later than the instant shown.
(f) What is the period of the sound being produced by the pipe?
(g) What is the frequency of the second resonant frequency above the fundamental for this pipe?

35. Figure 9.52 shows the pressure variation in 
and around a pipe closed at one end as it is 
resonating at one of its harmonics. Assume 
that the speed of sound in air is 340 m s–1.
(a) What harmonic is represented in the 

diagram?
(b) If the pipe has a length of 50 cm, what is 

the wavelength of the tone that the pipe 
is producing?

(c) What is the frequency of the tone being 
produced?

(d) What is the fundamental frequency for this pipe?
(e) What is the frequency of the third resonant frequency above the fundamental of this pipe? What 

harmonic does this frequency correspond to?
(f) Make a sketch to show the pressure variation in and around the pipe half a period later than the 

instant shown.
36. Figure 9.53 shows the design of a dentist’s waiting room and surgery.

There are two people sitting in the waiting room at points A 
and B. The door to the surgery is open and has a width of 1.0 m. 
A drill is operating and produces a sound of 5000 Hz frequency. 
The patient groans at a frequency of 200 Hz. Assume the speed 
of sound is 340 m s−1.
(a) What is the wavelength of the patient’s groan?
(b) What difference, if any, is there between the sound intensity 

levels produced by the patient’s groan at points A and B? 
Justify your answer.

(c) What difference, if any, is there between the sound intensity 
levels produced by the dentist’s drill at points A and B? 
Justify your answer.

37. A 1500 Hz sound and an 8500 Hz sound are emitted from a loudspeaker whose diameter is 0.30 m. 
Assume the speed of sound in air is 343 m s−1.
(a) Calculate the wavelength of each sound.
(b) Find the angle of the first minimum for each sound for this speaker.
(c) A sound engineer wants to use a different speaker for the 8500 Hz sound so that it has the same 

angle of dispersion as the 1500 Hz sound has for the 0.30 m diameter speaker. Calculate the 
diameter of the new speaker if this is to occur.

38. A trumpeter on a moving train first demonstrated the Doppler effect. (Use 340 m s−1 as the speed of sound.)
(a) How fast would the train be travelling if the trumpeter played an A (f = 440 Hz) and the observers 

on the platform heard an A sharp ( f = 466 Hz)?
(b) What frequency would the observers hear once the train had passed?
(c) How fast would the train need to be travelling for the pitch of the note to rise a full octave (that is, 

double its frequency)?

Normal atmospheric pressure

FIGURE 9.52
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39. Lyn cannot hear sound above 1.5 × 104 Hz. She decided to investigate the Doppler effect by strapping 
a speaker to the roof of a car. She connects a signal generator to the speaker so that it produces a 
sound of frequency 1.2 × 104 Hz. She predicts that if the car is driven towards her with sufficient 
speed she will not be able to hear the sound.
(a) At what speed can she no longer hear the sound? (Assume there are no other sounds to drown 

it out.)
(b) What does she hear as the car accelerates?

40. Shelly is concerned about the speed of traffic in her street. She measures the dominant frequency of 
the sound of a car as it approaches to be 1100 Hz, and as it moves away to be 919 Hz. What was the 
speed of the car? (Take the speed of sound in air to be 340 m s−1.)

41. Explain why high-frequency sound waves are preferred for tasks such as echolocation rather than low-
frequency sound waves.

42. If astronauts lose radio contact with one another when they are outside their spacecraft, they can 
converse by touching the face plates of their helmets together. Why do they need to do this, rather 
than just getting close enough to shout at one another?

43. Does the amplitude of a wave affect its speed through a medium?
44. The voice of a person who has inhaled helium 

sounds higher than normal. Why does this happen?
45. In the Victorian era, hearing-impaired people used 

ear trumpets to improve their hearing. An ear 
trumpet was a cone-shaped device, the smaller end 
of which was placed in the ear. How would these 
devices have worked?

46. Timekeepers for races are advised to watch for the 
smoke from the starter’s gun rather than listening 
for the sound of the gun being fired in order to 
start their stopwatches at the correct moment. Why 
is this?

FIGURE 9.54

PRACTICAL INVESTIGATIONS

Investigation 9.1: Analysing sound waves from a tuning fork
Aim
To observe and collect sound traces from a CRO

Apparatus
at least two tuning forks of different frequency 
access to a CRO or a CRO simulation program for the computer
a microphone to convert the sound wave into an electrical signal

Theory
The traces from a CRO can provide you with a snapshot of a number of different sound waves. The waves are 
a small time-grab of a much larger train of sound waves. These short interval grabs can show you some of the 
features of a sound.

Method
1. Connect the microphone to the input of the CRO or the microphone input on the computer if using a CRO 

simulation program.
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2. Tune and adjust the CRO so that when a single 
tuning fork is brought near to the microphone, a 
sine-wave trace is produced. Observe what 
happens to the amplitude of the wave as the tuning 
fork loses its vibrational energy and the sound 
becomes softer.

3. Check out all the traces of all tuning forks you have. 
When doing this, keep the same CRO settings to 
make comparison easier. Note the frequencies and 
shape of the waves produced. If you are using a 
CRO simulation computer program, you should be 
able to freeze the CRO traces, save them and print 
them out.

4. Try striking two different frequency tuning forks and 
having the microphone collect the sound from both tuning forks. You will notice the shape of the CRO trace 
wave becomes more complex.

5. Try adding a third sound from another tuning fork to the input into the CRO. Observe the increasingly 
complex CRO trace.

Investigation 9.2: Observing wave interference
Aim
To hear sound waves interfering with each other

Apparatus
tuning fork

Theory
Each of the vibrating tuning fork prongs acts as a coherent source of sound because it has the same frequency, 
amplitude and phase in relation to the other when producing a sound wave in air. Hence, there are two 
sound waves generated by the tuning fork prongs. Each one radiates from a slightly different position. As a 
compression is produced between the prongs, a rarefaction is produced outside each of the prongs and vice 
versa. The sound waves propagate outwards from each tuning fork prong but on some paths they overlap. This 
is either because there is a full wavelength difference in the travel path length or because in some directions 
they meet at a point one half wavelength out of phase. In these directions where the sound waves are exactly 
one half wavelength out of phase (compression meets rarefaction) the sound waves will add. If the amplitudes 
are the same, one sound wave’s compression is annulled by the rarefaction from the other. This produces a 
sound minimum.
 The sound waves can add to form a maximum if the path difference is equal to a whole number of 
wavelengths. The result is a higher amplitude sound.

Method
1. Strike a tuning fork so that it produces a note.
2. Hold the tuning fork to your ear and rotate the tuning fork about its long axis.
3. Listen carefully to the sound you hear. Note when the sound waves appear to increase in amplitude and 

decrease in amplitude.

Investigation 9.3: Analysing sound waves from musical instruments
Aim
To observe the sound from musical instruments on a CRO or CRO computer simulation program

Apparatus
access to a CRO or a CRO simulation computer program
microphone
variety of musical instruments

Theory
The notes produced by a musical instruments have a characteristic timbre. An examination of the CRO 
traces of the same note played by a number of different musical instruments will highlight the differences in  
the nature of the sound waves.

Oscilloscope

Wave pattern

Microphone

Sound
waves
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Method
1. Connect the microphone to the input of the CRO or the microphone input on the computer if using a CRO 

simulation program.
2. Tune and adjust the CRO so that, when a single tuning fork is brought near to the microphone, a sine-wave 

trace is produced.
3. Using a variety of musical instruments, play the same note into the microphone, attached to the CRO and 

observe the differently shaped wave patterns that are produced. If you are using a CRO simulation computer 
program, you may be able to freeze and save the CRO traces and then print them out.

Analysis
Compare the shapes of the CRO traces for each instrument. Are there any similarities? Which instruments are 
most similar?

Investigation 9.4: Observing sound
Connect a signal generator to an audio amplifier that has a built-in speaker. Then connect a CRO across the 
output of the amplifier. With the signal generator producing a sinusoidal signal, and making any necessary 
adjustments to the timebase and voltage scales of the CRO, increase the frequency from about 20 Hz to 
20 000 Hz. Observe what happens and then answer the following questions.
1. What happened to the period, pitch and loudness as the frequency increased?
2. What were the lowest and highest frequencies you could hear?
3. How is amplitude related to loudness?
4. Replace the signal generator with a microphone and produce sounds on various instruments and 

voices. Sketch and compare the different waveforms produced. Do they have a definite period?

Investigation 9.5: Sound intensities and intensity levels
This investigation consists of two parts:
1. Use a sound level meter to construct your own table of sound intensities and intensity levels for a number of 

everyday sounds that you wish to select. Why is it important that you note how far the meter is from the 
sound sources?

2. The second part of this investigation should be carried out in an outdoor setting where there is little  
interference from reflection. Measure the sound intensity level at distances of 1.0 m, 2.0 m, 4.0 m, 10.0 m, 20.0 m 
and 50.0 m from a sound source that radiates sound evenly in all directions (a lawnmower would do). Produce a 
graph of the log of sound intensity versus the log of distance from the source. Comment on your results.

Investigation 9.6: Finding the speed of sound in air
The aims of this investigation are:
1. To establish that resonance occurs in the tube, at different frequencies.
2. To determine the velocity of sound in air, at room temperature, by means of a resonance tube.
You will need the following equipment:
• length of glass tubing of approx. internal diameter of 40 mm
• retort stand and clamp for the tube
• frequency generator
• audio amp and speaker
• sound level meters
• thermometer.

For all forms of wave motion, v = fλ, where v is velocity, f is frequency and λ is wavelength.
The air inside the tube will resonate for certain 

frequencies when standing waves can be set up so that a 
pressure node occurs at the both open ends of the tube.

Figure 9.56 shows the simplest standing wave that 
can be set up in the resonating tube. The frequency 
that causes such a standing wave is called the 
FUNDAMENTAL and always occurs for the shortest 
length of tube that produces resonance.

Note: the standing wave is actually slightly longer than the length of the pipe. The ‘end correction’ at each 
end is 0.3 × the diameter of the pipe; therefore, the ‘effective length’ is L + 2 × 0.3d.

At resonance, the length of the tube, L, is related to the wavelength of the standing wave set up in the air 
inside the tube, and, since the resonant frequency, f, and wavelength, λ, are related to the velocity of sound in 
the air, the speed of sound in air can be determined.

FIGURE 9.56
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Clamp the tube to the retort stand. Position the audio amp and speaker at one end of the tube. Connect 
the audio amp to the frequency generator. Select a low frequency and gradually increase the frequency while 
observing the sound level meter. Look for ‘spikes’ on the sound level meter and record the frequencies at 
which these spikes occur. (Resonance causes an increase in the amplitude of the sound.) Repeat until several 
resonant frequencies are obtained.

Record the pipe length and diameter in both cm and m. Hence, calculate the effective length, L, of the pipe 
by adding 2 × 0.3 × diameter of the pipe.

Record the frequencies that caused resonance and their harmonic number, n.

Calculate the speed of sound from v = 2 × L × f
n

 where n is the harmonic number.

Analysis
1. Explain what is meant by the term ‘resonance’.
2. What is the average value for the speed of sound obtained from this experiment with an error range?
3. What is the theoretical speed of sound based on the air temperature?

Investigation 9.7: Resonant frequencies in a tube
Take the centre and stopper out of a ballpoint pen, then hold the pen vertically. With the bottom uncovered, 
blow across the top until you produce the fundamental frequency. Blow harder and produce the first resonant 
frequency above the fundamental and any others if possible.
1. Comment on the pitch of each frequency.
Cover the bottom and produce the fundamental frequency.
2. How does this frequency compare with that produced when the pen has both ends open?
3. Try to produce resonant frequencies above the fundamental and comment on the pitch of each.
4. Explain your observations in terms of the key ideas you have studied so far.

Investigation 9.8: Diffraction and sound intensity levels for sounds of different frequencies
This investigation aims to measure the effect that frequency and gap size have on the diffraction of sound 
waves. It should be carried out in an outdoor setting where there is little interference from reflection.
You will need the following equipment:
• sine wave signal generator
• audio amplifier
• loudspeaker
• sound level meter
• soundproof box (cardboard lined with pillows with an adjustable gap for sound to pass through).

Place the loudspeaker in the box facing the opening. Start the investigation by using a gap of 0.20 m. Adjust 
the signal generator to a frequency of 500 Hz and adjust the amplifier to give a sound intensity level of 80 dB at 
a distance of 5.0 m directly in front of the opening in the box. Maintaining a distance of 5.0 m from the opening, 
measure the sound intensity at angles of 20,  40,  60 and 80 degrees on either side of the first reading.

Adjust the signal generator to a frequency of 5000 Hz and adjust the amplifier to give a sound intensity level 
of 80 dB at a distance of 5.0 m directly in front of the opening in the box. Maintaining a distance of 5.0 m from 
the opening, measure the sound intensity at angles of 20,  40,  60, and 80 degrees on either side of the first 
reading.
1. Make a table of your results and draw graphs showing how the sound intensity level and the sound intensity 

carried with the angle for each frequency.
2. Adapt this procedure to investigate how gap size affects the amount of diffraction.
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TOPIC 10
Ray model of light

10.1 Overview
10.1.1 Module 3: Waves and Thermodynamics
Ray model of light
Inquiry question: What properties can be demonstrated when using the ray model of light?
Students:
 • conduct a practical investigation to analyse the formation of images in mirrors and lenses via reflection 

and refraction using the ray model of light (ACSPH075)
 • conduct investigations to examine qualitatively and quantitatively the refraction and total internal reflec-

tion of light (ACSPH075, ACSPH076)
 • predict quantitatively, using Snell’s Law, the refraction and total internal reflection of light in a variety of 

situations
 • conduct a practical investigation to demonstrate and explain the phenomenon of the dispersion of light
 • conduct an investigation to demonstrate the relationship between inverse square law, the intensity of light 

and the transfer of energy (ACSPH077)
 • solve problems or make quantitative predictions in a variety of situations by applying the following rela-

tionships to:
 – nx = c

vx
 – for the refractive index of medium x, vx is the speed of light in the medium

 – n1sin (i) = n2sin (r) (Snell’s Law)

 – sin (ic) = 1
nx

 – for the critical angle ic of medium x

 – I1r 

2
1 = I 2r 

2
2 – to compare the intensity of light at two points, r1 and r2

FIGURE 10.1 Rainbows are the result of refraction, reflection and dispersion of light 
rays by fine water droplets in the air.
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10.2 What is light?
10.2.1 Electromagnetic waves
Light is the term commonly used to 
describe electromagnetic radiation; more 
specifically, we tend to use it to describe 
only a small part of the electromagnetic 
spectrum known as the visible spectrum.

Electromagnetic radiation travels in the 
form of transverse waves. However, unlike 
mechanical waves such as sound, earth-
quake tremors and pond ripples, electro-
magnetic waves do not need a medium to 
travel in; in fact, they slow down when 
travelling in any physical medium apart 
from a vacuum. All electromagnetic waves 
travel at the same speed in a vacuum. This 
is referred to as the speed of light, c, and it 
is equal to 299 792 458 m s–1. For most 
purposes, the speed of light is approxi-
mated to 3 ×  108 m s–1.

While electromagnetic waves may travel 
at the same speed, they vary widely in 
wavelength and frequency. The visible 
spectrum — the range of electromagnetic 
radiation to which human eyes respond — 
makes up only a very small section of the 
electromagnetic spectrum.

10.2.2 Sources of light
Light sources of different kinds can be 
classified as being either luminous or illu-
minated. Luminous bodies are those that 
emit electromagnetic radiation in the vis-
ible part of the spectrum either as a result 
of chemical processes or because they are 
incandescent. Incandescent objects glow 
because they are very hot and, the hotter 
they are, the more light they produce. The 
Sun’s incandescence is the result of the 
enormous heat generated by the thermo-
nuclear reactions within its interior. On a 
much smaller scale, the tiny particles of 
hot carbon produced in a candle flame 
provide incandescent light, and the tung-
sten filament in a light bulb can produce 
light as a result of becoming white hot 
when electric charges move through it.
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FIGURE 10.2 The electromagnetic spectrum.

FIGURE 10.3 The Pleiades open cluster in the constellation 
Taurus. All stars are incandescent sources of light.
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Non-luminous (or illuminated) objects don’t produce 
their own light; instead, they are reflectors of light pro-
duced by a luminous source. A non-luminous body can 
only act as a light source when there is a luminous body 
present. The source of the moonlight that allows us to 
see in the night is actually light from the Sun reflected 
from the surface of the Moon. When we wish to read a 
book in a dark room, we turn on a lamp whose light then 
reflects from the white pages of the book, allowing us to 
see it.

10.2.3 The ray model of light
When encountering a surface, light can exhibit a number of dif-
ferent behaviours. It may be reflected from the surface, it may 
be absorbed by the material, it may pass through the material, 
or it may exhibit a combination of these behaviours. What light 
does when it enters a new medium depends upon the nature of 
the material and the condition of the interface between the 
media.

All light travels in straight lines. As a result, we can only see an 
object if the light from that object can travel directly to our eye. 
You can easily see the book that is right in front of you on the 
desk, but you won’t be able to see the people sitting behind you. 
You may not even be able to see the people sitting beside you 

Light

Bulb

FIGURE 10.7 Rays are straight lines 
indicating light propagating from a 
light source. The further apart they 
are, the dimmer the light.

FIGURE 10.6 An image seen through a night-vision 
device.

AS A MATTER OF FACT
Generally, solid objects start to emit visible light when their temperature reaches about 525 

oC (called the Draper 
point). At temperatures lower than this, electromagnetic radiation is still being released by warm objects but, 
because the light waves produced are in the infra-red part of the spectrum, we are unable to see the objects.

FIGURE 10.4 When liquid Luminol comes into 
contact with the iron in blood haemoglobin in 
the presence of ultraviolet light, the blood is 
luminous as a result of the chemical reaction 
rather than because of incandescence.

FIGURE 10.5 The Moon is a non-luminous object; it 
reflects light from the Sun.
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clearly. However, while light may only move in a straight 
line, we are able to manipulate its path and see what was 
previously hidden by exploiting light’s ability to be 
refl ected and refracted.  

 As light travels in straight lines, it is often convenient to 
represent the paths taken by light as rays when drawing 
diagrams. This will be particularly useful in our next sec-
tions. Remember that the ray is only a representation. 
Although the diagram in fi gure 10.9 shows nine rays leaving the surface of the light bulb, it should be 
understood that this is only to imply the spreading nature of the light. We could as easily have drawn ten or 
a hundred rays in a similar way. 

 It is also handy at this point to defi ne the normal to a surface. The  normal  is an imaginary line drawn 
perpendicular to a surface at the point where a light ray is incident upon it. We will be using the concept of 
the normal a great deal over the rest of the chapter.   

     10.2.4  Transmission of light through a medium 
 Light that strikes the surface of a material and is not refl ected may pass through it. We are able to see 
through glass windows because light rays travelling from outside objects are able to pass through easily 
to  our eyes. However, we cannot see what lies on the other side of a brick wall because light rays are 

  FIGURE 10.8  We can see an object only if light 
from that object is able to travel to our eyes. This 
person cannot see the yellow objects.  

  FIGURE 10.9  A ray diagram of a light bulb.  

Normal

Incident
light ray

Surface

  FIGURE 10.10  The normal is an imaginary 
line drawn perpendicular to a surface where a 
light ray is incident upon it.  
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unable to pass through it. The ability of a material to allow light to pass through it is referred to as its 
optical transmissivity. This is dependent upon the arrangement, type and size of atoms that the material is 
made from.

A material through which light rays are able to travel without distortion of their relative pathways is said 
to be transparent. Glass, Perspex and cling wrap are all examples of transparent materials. We are able to 
see and identify objects through them without losing clarity.

Some materials, such as frosted glass and thin rice paper, allow us to see that there is an object on the 
other side of them, but light rays cannot pass through them easily enough to see a clear image of the object. 
Such materials are said to be translucent. These translucent materials allow light rays to pass through 
them, but irregularities in their structure cause the rays to be scattered as they do so. As these scattered rays 
emerge, they are able to give a vague impression of the object but not a clear picture.

Opaque materials are those which light is unable to pass through at all. Wood, brick, concrete and the 
human body itself are all opaque. (Some parts of the human body, such as skin and nails, are translucent 
when they are separate from the rest of the body.)

Upon striking an opaque material, light rays may be reflected from it or, in some cases, they may be 
absorbed completely. A black object with a rough surface will tend to absorb light, allowing almost none of 
it to be reflected back to the observer’s eye. The absorbed light energy is usually converted into heat energy. 
Light rays striking an opaque material cannot be transmitted through it.

FIGURE 10.11 A teddy bear as seen through materials that are (a) transparent, (b) translucent and (c) opaque

(a) (b) (c)

WORKING SCIENTIFICALLY 10.1
Baking paper is a translucent material that allows a limited quantity of light from a light source to pass through 
it. If enough layers of baking paper are placed over one another, they act as an opaque medium. Use a light 
meter to measure the amount of light that is transmitted from a light bulb or other consistent light source 
through a single layer of baking paper. Investigate the relationship between the number of layers and the 
amount of light transmitted.
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10.2.5 Light intensity
The luminous intensity, I, of light is a quantitative measure of the effective brightness of a light source and 
takes into account the amount of light energy produced by the light source each second and the area over 
which that light energy is distributed.

The amount of light energy in joules produced by a light source each second is measured by its lumi-
nosity, L. The luminosity of a light source (also referred to as its luminous power) is measured in joules 
per second or watts (W).

Like mechanical waves such as sound, light waves travel 
outwards from their source in three dimensions, forming a 
spherical wavefront, with the light energy distributed each 
second over a larger and larger area. The area of this spherical 
wavefront increases with distance from the source:

Asphere = 4πd2

As the intensity of the light can be described as the 

amount of energy distributed over each square metre of the 

wavefront each second, we can then describe the intensity 

in terms of the luminosity of the light source and the 

observer’s distance away from it:

I = L

4 πd 

2

with intensity having the units W m–2. 

The Inverse-Square Relationship for Light

Sphere, distance r from source

Light source

At a distance 2r from the source the radiation is spread
over four times the area so is only 1/4 the intensity that
it is a distance r.

r
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A
A

A
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A A
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A A
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Intensity ∝ 1/r2

FIGURE 10.12 Light obeys an inverse-square 
relationship with distance. 

10.2 SAMPLE PROBLEM 1

A white sheet of paper is held 30 cm from a 60 W reading light. By what factor is the intensity of the 
light incident on the paper reduced if the paper is moved 50 cm further away from the reading light?

SOLUTION:

First, the intensity of the light at the two positions can be described by:

I1 = L

4 π (d1)2

and

I2 = L

4 π (d2)2

As the luminous power of the source is the same in both cases, the two equations can be combined 
by substituting for L and cancelling common terms to get the relationship:

I1(d1)2 = I2(d2)2

and so,

I1

I2
= ( 

d2

d1)
2

Substituting in values, we find

I1

I2
= (

0.8 m
0.3 m)

2

I1

I2
=  7.1

Therefore, by moving the paper 50 cm further away, the intensity of light on the paper has been 
reduced by a factor of 7.1.
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WORKING SCIENTIFICALLY 10.2
Only a fraction of the energy produced by a light bulb is in the form of light energy; most of the energy is lost as 
heat energy. Devise a method to determine exactly what proportion of light energy is produced by a light bulb 
and then use this method to investigate the relationship (if any) between the wattage of a light bulb and the 
proportion of light energy it produces.

10.2 Exercise 1
1 Which of the graphs in figure 10.13 best describes 

the relation between luminous intensity and distance 
from the light source?

2 Which of the graphs in figure 10.13 best describes 
the relation between luminous intensity and the 
power of the light source?

3 Which of the following are not luminous bodies in 
the visible spectrum:
(a) a star
(b) the Moon
(c) a candle
(d) an incandescent light globe
(e) an LED light bulb
(f) coals that are hot but not glowing?

4 Place these forms of electromagnetic radiation in 
order of increasing wavelength: ultraviolet, infrared, 
microwaves, gamma rays, visible light, X-rays

5 Which of the following materials can be described 
as translucent:
(a) frosted glass
(b) crystal glass
(c) cardboard
(d) steel?

6 The Earth is located 150 million kilometres from the Sun. How long does light from the Sun take to 
reach the Earth?

7 A light is placed 40 cm from a screen. If the luminous intensity of light falling on the screen is 25 W m–2, 
what will be the luminous intensity of light on the screen if the light source is placed 70 cm from the 
screen?

8 A 20 W light bulb illuminates the page of a book with a luminous intensity of 5 W m–2. What will be the 
luminous intensity incident on the page if the 20 W bulb is replaced with a 50 W bulb?

9 Two light sources, A and B, are placed either side of a white screen. When source A is placed 5 m from 
the screen, it provides the same luminous intensity as source 
B does on its side of the screen. If source B is ten times 
stronger as a light source than source A, how far away from 
the screen has source B been placed?

10 The Sun has a luminosity of 3.846 × 1026 W and is located 150 
million km from the Earth.
(a) Calculate the intensity of the Sun’s light on the Earth.
(b) Assuming that the Earth is a sphere with a radius of 6370 km, 

calculate the amount of solar energy that falls on the surface 
of the Earth each second. (Hint: remember that only half of the 
Earth’s face is illuminated by the Sun at any one time.)

11 Draw light rays to represent light shining from the reading lamp 
shown in figure 10.14.

12 Draw a diagram showing the normal to the surface at the point 
where a light ray is incident upon it.

C

A

D

B

FIGURE 10.13

FIGURE 10.14
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  10.3  Refl ection 
  10.3.1  The Law of Refl ection 
 Refl ection is, essentially, the bouncing of light 
from a surface. Light rays from luminous 
objects enter our eyes directly but we see 
non-luminous objects because some of the 
light rays falling on them from luminous 
sources are refl ected into our eyes. We see the 
Moon because light from the Sun strikes the 
surface and bounces (refl ects) off it. Some of 
this refl ected light reaches our eye and, so, we 
see the Moon. Light may bounce from sev-
eral things before it reaches our eyes. A 
moonlit river is the result of light from the 
Sun bouncing off the Moon, and this moon-
light then refl ecting from the river to us.     

 The degree to which the light rays falling 
on a non-luminous object are refl ected from 
it depends upon the nature of the object’s 
surface. In some cases, the surface is such 
that very little of the light falling upon it is 
refl ected at all — instead, most of the energy 
from the light rays is absorbed by the sur-
face. 

 For example, when light from the Sun 
falls on a black bitumen road, most of the 
light is absorbed, so very little of the Sun’s 
light is refl ected from it to our eyes. As a 
result, we perceive the bitumen road to be 
very dark. Conversely, almost all the sunlight 
falling on packed snow is refl ected, so it 
appears very bright to our eyes. 

 Under ideal conditions, a surface may be 
so smooth as to refl ect nearly all the light 
incident upon it, allowing a clear image to be 
formed. 

 The geometry of perfect refl ection is sum-
marised in the  Law of Refl ection , which 
states that  the angle between the incident 
light ray and the normal where it strikes the 
surface will be equal to the angle between 
the normal and the re� ected ray.  

 We can express this mathematically as 

   i = i′   
 where   i   is the incident angle formed between 
the incoming ray and the normal, and   i′   is the 
angle of refl ection.     

normal

incident
ray

angle of
incidence

i i′

angle of
re�ection

re�ected
ray

mirror

normal

re�ected ray

mirror

incident ray

  FIGURE 10.16  Diagram showing incident and refl ected 
rays for a plane surface.  

  FIGURE 10.15  Light rays from a luminous object hitting a 
book and refl ecting into an eye.  
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10.3.2 Types of reflection
Reflection of light rays from a non-luminous surface 
can be described as being either specular or diffuse.

Specular reflection (also referred to as regular 
reflection) is observed from surfaces that are very 
smooth or highly polished, such as still water and 
good-quality mirrors. When parallel rays strike 
these surfaces, each ray is reflected evenly from the 
surface so the reflected rays are also parallel to each 
other. The more polished and even the surface, the 
less we see the surface itself and the more we see 
the reflection of other objects in it instead.

Surfaces that are irregular will not reflect parallel 
incident rays uniformly but will scatter them. We call 
this type of reflection diffuse (or irregular) reflection.

When each incident ray strikes the surface, it 
obeys the Law of Reflection. However, as the section 
of surface that each ray strikes is angled differently 
due to the surface irregularity, the normal for each 
point of incidence will not be parallel to the normal 
for the next section. As the angle of incidence for 
each ray is different, the reflected angles for the rays 
will also differ, causing the reflected light to be scat-
tered. Only some of these reflected rays will reach 
our eyes. Thus, while a very white piece of ‘smooth’ paper will reflect enough diffuse rays to our eyes to 
appear bright and light, the irregularity of those rays prevents the formation of a coherent reflected image in it.

10.3.3 Images formed by plane mirrors
When you look in the mirror, what you see is a reflected 
image of your face. Assuming that the mirror you are 
looking at is a plane (flat) mirror, you can see that the 
image is about the same size as you would expect your 
head to be when viewed at that distance, and it is the right 
way up. You might also notice that the image appears to 
be behind the mirror at the same distance behind it as you 
are in front of it. You know that there is not really an 
image behind the mirror. That space is probably in another 
room or outside. The image of your face in the mirror is 
an optical illusion caused by the reflection of light in the 
mirror. This image is called a virtual image.

The ray model helps us to understand how this image 
forms. In figure 10.20 you can see the object (your head) 
and the mirror from a view to one side. Your head is 
non-luminous, but because you are in a lit room, light 
striking your head is diffused in all directions. Consider 
light striking the top of your head. Some of this light 
reflects in the direction of the mirror. We can choose to investigate the behaviour of any of the rays that hit 
the mirror, but let’s start with the ray that passes horizontally to the mirror (ray 1). It will reflect with i = i′ 

FIGURE 10.18 Aurora Borealis reflected in a 
perfectly calm fjord on a cold winter night.

FIGURE 10.19 The image of your face in the 
mirror is an optical illusion caused by the 
reflection of light in the mirror. It is called a 
virtual image.

Incident rays Re�ected rays

Surface

FIGURE 10.17 Regular reflection occurs when 
parallel incident rays are reflected from a surface in 
such a way that the reflected rays are also parallel.
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so that the reflected ray retraces the path of 
the incident ray. Since this ray returns to the 
top of your head, it never actually enters 
your eye, so it does not contribute to the 
image formed by your eye.

Now consider what happens to a ray of 
light that passes from the top of your head 
to the mirror and reflects back to your eye 
(ray 2 ). Again, we know its path because 
i = i′. This ray helps to form the image that 
your eye sees.

Consider another ray that travels from the top of your head to the mirror and reflects back to touch your 
chin (ray 3). Again, this ray does not enter your eye.

What we can see is that all three rays can be traced back to a single point behind the mirror. This point, 
labelled I, is exactly where we see the image of the top of our head in the mirror. There is nothing special 
about the three rays chosen. Draw any other ray and trace back its reflected ray, and we see that it too 
appears to come from this point.

Only one ray that we drew enters the eye. How can the eye form an image of the top of the head from a 
single ray? A ray represents an infinitesimally small beam of light. Many rays of light enter the pupil of the 
eye, all from slightly different angles, so the eye can interpret them as diverging from a point behind the 
mirror.

When drawing diagrams such as this, it 
is much easier to use rays of light that are 
well spread out, even if they do not enter 
the eye. It does not make any difference to 
the result.

We have now located the position of  
the image of the top of your head using the 
technique of ray tracing. We can do the 
same for the chin. See figure 10.22. What 
we find is that the image is the same size as 
the object, it is upright and appears to be at 
the same distance behind the mirror as the 
object is in front of the mirror. It is also a 
virtual image, because the light only appears 
to come from the image. In reality, the light 
from your head does not pass through the 
image at all.

Next we will investigate the formation of 
other types of images. Real images are 
actually formed by the light rays. These are 
essential in the eye and in cameras, both of 
which have sensors that respond to the light 
of the image. We can only see virtual images 
because our eyes make real images of the light appearing to come from virtual images.

An interesting fact about plane mirrors is that the image is laterally inverted. This means that the left-
hand side of the object is the left-hand side of the image, but the image is facing the object. So if you wear 
a watch on your left hand (the object), the image will have the watch on its right hand. This is simply 
explained by drawing a ray diagram as seen from above the situation.

I

FIGURE 10.21 Light diverging from a virtual image to your 
eye.

o
I1

2

3

FIGURE 10.20 Locating the image in a plane mirror.

o
I

FIGURE 10.22 Locating the image of your chin.
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Images are not always the same size as their objects. The effect of an optical device on the size of the 
image is indicated by the magnification:

M = H1

H0

where H1 is the height of the image and H0 is the height of the object. As the image in a plane mirror is the 
same height as the object, the magnification is 1. In a device such as the bottom of a spoon, where the 
height of the image is smaller than the height of the object, then the magnification is between 0 and 1. This 
is known as a diminished image. When the magnification is greater than 1, the image is said to be enlarged. 
If you look at the reflection of your eye in the concave (curved inwards) side of a polished spoon, with 
your eye very close to the spoon, you may see an enlarged image of your eye.

10.3 SAMPLE PROBLEM 1

Joan is 160 cm tall and her eyes are located a distance 8 cm from the top of her head. What will be the 
shortest length mirror that she can purchase in order to see a full-length image of herself?

SOLUTION:

We can represent Joan’s length by a line AZ with the point E marking the position of her eyes as 
shown in the figure above.
 We know that her image will be located the same distance from the mirror M as she herself is so. If 
we say that she is a distance d from the mirror when she sees a complete image of herself, then we 
know her image must be located on the line I.
 Light rays leaving A must reflect back to point E, as must those leaving Z if Joan is to see an image 
of them in the mirror. Joan’s eye will see the image of A at A′ and of Z at Z′. The rays reflected from A 
and Z back to E will appear to come from A′ and Z′, and the reflection points will be at AA and ZZ. The 
distance between AA and ZZ is the minimum length of the mirror that Joan needs to buy. Using geom-
etry, we can calculate this distance.
 We can see that ZZ will be located at a height halfway between E and Z (which will be 76 cm from 
the ground), while AA will be located halfway between A and E (a point 4 cm below Joan’s head 
height). This means that AA and ZZ are 80 cm apart.
 Hence, Joan will need to buy a mirror that is at least 80 cm long if she is to see a full length-image 
of herself in it.

Z′

IM

dd
Z

E

A A′AA

ZZ
152 cm

8 cm

FIGURE 10.23
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10.4 Curved mirrors
10.4.1 Concave and convex  mirrors
Sometimes mirrors are used for purposes that require them to be curved rather than flat plane mirrors. 
Curved mirrors can be either concave (with the polished surface on the interior curve like inside the bowl of 
a spoon, as shown in figure 10.25a) or convex (where the polished surface is on the outside curve, as shown 
in figure 10.25b).

Most curved mirrors are shaped as sections from a sphere or an ovoid; for the moment, we will concen-
trate on spherical mirrors only.

To better understand how curved mirrors reflect incident rays, consider a concave mirror to perform sim-
ilarly to a series of plane mirrors arranged in a curve, as shown in figure 10.26.

Parallel incident rays striking these individual plane mirrors will be each reflected according to the angle at 
which they strike the mirror. For each mirror, the angle at which the reflected ray leaves the mirror surface 
will be equal to the incident angle. As each mirror is arranged at a different angle to the one beside it, the 
reflected rays will not be parallel; rather, they meet at a common point referred to as the focus, F, of the 
mirror.

10.3 Exercise 1
1 A ray of light strikes the surface of a plane mirror so that the angle between it and the mirror is 35 °.

(a) Determine:
(i) the angle of incidence
(ii) the angle of reflection.

(b) What do the incident ray, the normal and the reflected ray all 
have in common (other than being straight lines)?

2 A man who is 170 cm  tall stands 50 cm in front of a plane 
mirror mounted on a wall. What is the shortest mirror that 
could be used if he is to see his entire body reflected? Assume 
that his eyes are 5 cm down from the top of his head.

3 Explain why the lettering on the front of emergency vehicles is 
written back-to-front.

4 Explain why you can see your reflection in a highly polished sheet 
of silver metal but not in a sheet of paper.

5 An object is placed between two mirrors that form a 45 o angle 
between them. Copy the diagram in figure 10.24 and use ray 
tracing to locate all the images formed in the mirrors.

45°

Obect

FIGURE 10.24

FIGURE 10.25 Reflections in concave and convex surfaces.

(a) (b)
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Because concave mirrors cause parallel rays 
to come together to a point (or converge), they 
are also referred to as converging mirrors  
(see figure 10.27).

Convex mirrors, on the other hand, cause 
parallel rays striking the surface to be spread 
out on reflection, and so they are called 
diverging mirrors (see figure 10.28).

The spreading rays reflected from a convex 
mirror appear to originate at a common point inside the convex mirror. 
As for the concave mirror, this common point is referred to as the 
focus. The main difference between the foci of the two mirror forms 
is that reflected light rays actually intersect at the focus of the con-
cave mirror while, for the convex mirror, the focus is virtual and the 
reflected light rays do not intersect there.

10.4.2 Mirror terminology
The geometry of concave (and convex) mirrors is critical to the way 
in which they focus incoming light and form images, so it is useful to 
describe the main features of a spherical mirror as follows:
 • The centre of curvature (C) is the geometric centre of the sphere 

of which the curved mirror is a section.
 • The optical centre (O) is the centre of the curved mirror’s face.
 • The radius of curvature (R) is the radius of this sphere; this will 

be the distance between the centre of curvature and the geometric 
centre of the mirror.

 • The principal focus (F) is the point at which the reflected rays con-
verge when the incident rays are parallel to the principal axis (con-
cave mirror) or the point from which diverging reflected rays 
appear to originate (convex mirror).

 • The principal axis is the line upon which the centre of curvature, the principal focus and the optical 
centre lie.

 • The focal length (f) is the distance between the principal focus and the optical centre. For a spherical 
mirror, the focal length is half the radius of curvature.

principal axis
F OC

R
f

FO C
principal axis

Concave (converging) mirror
Convex (diverging) mirror

R

f

FIGURE 10.29 The geometric features of a spherical mirror.

FIGURE 10.26

F

incident rays
reflected rays

FIGURE 10.27

incident rays

F

reflected rays

direction from which reflected
rays appear to come

FIGURE 10.28
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Parallel rays incident on a spherical mirror but which do not approach parallel to the principal axis will still 
be focused at a point. However, rather than intersecting at the focal point of the mirror, the reflected rays 
intersect at a position on the focal plane.

10.4.3 Ray tracing
When an object is placed in front of a curved mirror, an image may be formed. This image may be real or 
virtual depending upon both the distance the object is placed in front of the mirror and the type of mirror 
being used.

Scale diagrams incorporating the paths taken by light rays can be used to determine the characteristics of 
the image formed by each type of mirror at different object distances. This process is referred to as optical 
ray tracing.
While an infinite number of light rays could be drawn travelling from an object to the mirror, the paths of 
four rays, in particular, are the most easily traced:
1. Any ray that travels parallel to the principal axis from the object to the mirror will be reflected so that it 

passes through the mirror’s focus.
2. A ray that passes through the focus as it travels from the object to the mirror will be reflected so that it 

travels parallel to the principal axis.
3. Rays that travel through the centre of curvature as they travel 

from the object to the mirror are reflected back along their 
original path.

4. A ray that travels from the object to the optical centre is 
reflected so that the angle made between the reflected ray and 
the principal axis is equal to the incident angle.
As an example, let’s look at how ray tracing can be used 

to find the type, height and orientation of an image formed 
by a converging mirror of an object located between the 
focus (F) and the centre of curvature (C). In this case, let us 
assume that the mirror has a focal length of 3 cm.
Step 1. First, a horizontal line is drawn that represents the 
principal axis. A point is marked on the principal axis to represent 
the centre of curvature (C) of the mirror. As we know the focal 
length of the mirror is 3 cm, the radius of curvature of the mirror 
will be twice that — that is, 6 cm. Using a compass, we draw a 
part circle with a radius of 6 cm and centred on point C, as 
shown in figure 10.31.

F F

Focal plane

O O

Focal plane

FIGURE 10.30 The focal plane of a spherical mirror.

C

FIGURE 10.31
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Step 2. The focus (F) is marked on the principal axis 3 cm away from the centre 
of the mirror. The object (represented by a thick arrow, OP) is drawn with its 
base on the principal axis, as shown in figure 10.32.
Step 3 Two rays are drawn from the top of the object at P, as shown in  
figure 10.33:
 • Ray 1 leaves the head of the object parallel to the principal axis, is reflected 

by the mirror and passes back through the focus.
 • Ray 2 passes through the focus, is reflected by the mirror, and then travels 

back parallel to the principal axis.
Where these rays intersect, the image of P (P)′ will be formed. Note that while 

two, three or even all four of the main ray paths may be employed to locate the 
image position, the clarity of the diagram drawn can be lost.
Step 4. As OP was placed perpendicularly to the principal axis, the image of O 
(O)′ will be located on the principal axis such that O′P′ is also perpendicular, as 
shown in figure 10.34.

The image O′P′ formed is a real image because light rays actually pass through it. If a screen was placed 
at that location, the clear image would be seen upon it.

The image is upside-down compared to the object, so we say that it has been inverted.
The image can also be described as enlarged or dilated because the height of O′P′ is greater than that of 

OP. The image is located at a distance greater than 2f.
In a similar way, scaled ray diagrams can be drawn to determine the location (di), height (hi) and the 

nature of the image formed by an object placed at a distance do from a converging mirror and having a 
height of ho. The formation of these images is summarised in Table 10.1

TABLE 10.1 Images formed by a converging (concave) mirror.

Ray diagram

Object Image

position position
Inverted or 

upright? Size
Real or 
virtual

do > 2f 2f > di > f inverted hi < ho real

(contnued )

C O

P

P

ray 1 ray 2

F

FIGURE 10.33

C

P

O

ray 1 ray 2

F

P

O

FIGURE 10.34
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C F O

C FO

P

FIGURE 10.32
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TABLE 10.1 Images formed by a converging (concave) mirror.

Ray diagram

Object Image

position position
Inverted or 

upright? Size
Real or 
virtual

do = 2f di = 2f inverted hi = ho real

2f > do > f di > 2f inverted hi > ho real

do = f di = ∞ (no image formed)

do < f di > −2f upright hi > ho virtual

While concave mirrors can form both real and virtual images 
depending upon how close the object is to the mirror, convex mirrors 
can only form virtual images.

Ray diagrams for convex mirrors are drawn in much the same 
way as for concave mirrors. However, as convex mirrors have no 
true focus, the reflected paths taken by rays travelling from the 
object to the mirror will be related to the virtual focus, which  
appears to lie inside the mirror.

When an object PQ is placed in front of the diverging mirror, 
as shown in figure 10.35, we consider the paths taken by two rays 
leaving P and travelling to the mirror, as shown in figure 10.36:
 • Ray 1 leaves P and travels parallel to the principal axis. On 

reaching the mirror, the ray is reflected so it appears to travel 
through the focus.

 • Ray 2 travels in a straight line directed from P to the focus; on 
striking the mirror, the reflected ray travels parallel to the 
principal axis.

Q′
Q

P′

P

C F O

Q′

P′

C

P

Q OF
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P

Q
C
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Q′

P

Q OF

P
ray 2

ray 1

Q F C

FIGURE 10.36

P

Q F C

FIGURE 10.35
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The intersection of the continuing lines of ray 1 and ray 2 marks 
the location of the image of P (P′). As PQ is perpendicular to the 
principal axis, Q′ can be located directly underneath P′, as shown 
in figure 10.37.

The virtual image P′Q′ formed in this case is smaller than the 
object PQ and is positioned closer to mirror.

All images formed by convex mirrors are:
 • virtual
 • upright
 • reduced in height.

10.4.4 The mirror equations
While ray tracing provides qualitative information 
about the position, size and nature of the images 
formed by concave and convex mirrors, more precise 
numerical information about the position and size of 
the images can be obtained by use of the mirror equa-
tion and the magnification equation.

The mirror equation relates the distances of the 
object (do) and the image (di) from the mirror to the 
mirror’s focal length f :

1
f

=  
1
do

+  
1
di

In general:
 • do has a positive value
 • for a concave mirror, f  is a positive value (as it has a true focus where light rays intersect) while a 

convex mirror has a negative value for the focal length
 • for a virtual image, di will have a negative value. This is the case when an object is placed within the 

focus of a concave mirror, and for all images formed by a convex mirror.
The magnification M describes the height of the image (hi) relative to the height of the object (ho):

M = hi

ho

The magnification can also be determined from the distances of the object and the image from the mirror:

M = − 
di

do

For a concave mirror, all real images will be inverted and hi has a negative value, while virtual images 
are upright and hi has a positive value.

By combining the two equations, we find a third form of the magnification equation:
hi

ho
= − 

di

do

P
P

Q

ray 2

ray 1

Q F C

FIGURE 10.37

FIGURE 10.38 Convex mirrors are often used to 
help improve vision around corners.

10.4 SAMPLE PROBLEM 1

A 4 cm high object is placed 10 cm in front of a converging mirror having a radius of curvature of 16 cm.
(a) Calculate where the image forms relative to the mirror.
(b) Calculate the height of the image.
(c) Determine whether the image is

(i) real or virtual,
(ii) upright or inverted, and
(iii) enlarged or reduced.
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10.4 SAMPLE PROBLEM 2

A 5 cm object is placed 12 cm from a diverging mirror that has a focal length of 10 cm. Determine the 
location, height and nature of the image formed.

SOLUTION:

As the mirror is convex (diverging), the focal length will have a negative value: f = –10 cm.
Substituting values:

1
−10 cm

=  
1

12 cm
+  

1
di

1
di

= − 
1

10 cm
−  

1
12 cm

1
di

= − 
11
60

 cm

di = − 
60
11

 cm

= −5.4 cm
hi

ho
= − 

di

do

hi

5 cm
= − 

−5.4 cm
12 cm

SOLUTION:

(a) As the focal length of a spherical mirror is equal to half the radius of curvature, 

f = 16 cm
2

= 8 cm

As the mirror is a converging mirror, the focal length will have a positive value.
Substituting values into the mirror equation:

1
f

=  
1
do

+  
1
di

1
8 cm

=  
1

10 cm
+  

1
di

1
di

=  
1

8 cm
−  

1
10 cm

1
di

=  
1

40 cm

di = 40 cm
The image will be located 40 cm from the mirror.

(b) Using the magnification equations:
hi

ho
= − 

di

do
hi

4 cm
= − 

40 cm
10 cm

hi = –4 × 4 cm
  = –16 cm

The image has a height of 16 cm.
(c) (i) As di > 0, a real image has formed
  (ii)  As hi < 0, the image is inverted
  (iii) The image is 16 cm high while the object is only 4 cm  high, therefore the image is enlarged.
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WORKING SCIENTIFICALLY 10.3
Archimedes is famously credited with using a series of spherical concave mirrors to set enemy ships alight. 
Some translations of the story give the distance from the mirrors to the ships as being equivalent to 1.5 km. 
Assess the feasibility of this story by considering the distance over which such a feat might be possible, the 
diameter of the mirrors, the number of mirrors needed, their radius of curvature, and the temperature achievable 
by focusing the rays of the Sun.

hi = 2.25 cm

M = hi

ho
=  

2.25 cm
5 cm

= 0.45

Therefore, the image is 2.25 cm  high and it appears to form 5.4 cm inside the mirror. The image is 
virtual (as di < 0), upright (as hi > 0) and reduced in size (as M < 1).

10.4 Exercise 1
1 Dentists often place a small mirror inside the patient’s mouth to examine their teeth. Is the mirror used 

more likely to be concave, convex or flat?
2 A lit match is placed 5 cm from a converging mirror that has a radius of curvature of 10 cm. Which best 

describes the image:
(a) real, reduced and inverted
(b) real, enlarged and inverted
(c) virtual, enlarged and upright
(d) no image is formed?

3 Which of the following statements is true:
(a) concave mirrors can only form real images
(b) convex mirrors can only form virtual images
(c) the image formed by a plane mirror is always the same size as the object
(d) the image formed in a plane mirror always appears to be the same distance from the mirror as the object
(e) concave mirrors can be used as magnifying makeup mirrors
(f) an object placed at the focus of a converging mirror reflects rays parallel to the principal axis
(g) the Law of Reflection is only true for plane mirrors and does not apply to spherical mirrors?

4 A 3 cm  high object is placed 6 cm from a diverging mirror with a focal length of 4 cm. How high is the 
image formed as a result?

5 An object placed 6 cm from a converging mirror forms a real image 10 cm from the surface of the mirror. 
What is the mirror’s focal length?

6 How far from a concave spherical mirror with a focal length of 12 cm must an object be placed to 
produce a virtual image that is 3 times larger than the object?

7 Use ray tracing to show the approximate location and nature of the image formed when an object is 
placed 4 cm in front of a spherical converging mirror with a focal length of 3 cm.

8 Use ray tracing to show the approximate location and nature of the image formed when a 6 cm high 
object is placed in front of a spherical diverging mirror with a focal length of 4 cm.

Comlete thisdiital doc:  Model of a concave mirror
Searchlight ID: doc-0055



10.5 Refraction
10.5.1 The speed of light
Visible light travels in a vacuum at the same 
speed as all other electromagnetic radiation — 
3 × 108 m s–1. When it encounters any other 
medium, it will slow down. The degree to 
which the speed of light is slowed when it 
moves through a material is described by the 
absolute refractive index (n) of the material. 
This value is the ratio of the speed of light in a 
vacuum (c) compared to its speed in the 
medium (v):

n = c
v

Table 10.2 shows the absolute refractive 
indices of some common media.

10.5.2 The bending of light
Refraction refers to the bending of light that occurs when light travels through transparent media that have 
different refractive indies. The reason that the light bends is connected to the fact that light travels at dif -
ferent speeds in different media.

We’re going to use an analogy at this point to help us understand how a changing speed leads light to 
bend when travelling through different media.

You may have noticed that a four-wheel drive travels faster over packed wet sand on the beach than it 
does over dry loose sand. In this way, the four-wheel drive is much like light in that it will travel more 
slowly through some media than others. Now, let’s say that the four-wheel drive is travelling along a sec-
tion of wet sand when it comes to a section of dry sand. It is headed towards the demarcation line between 
the two types of sand at an angle i as shown in Figure 10.39a.

The first tyre to hit the dry sand will be the right front tyre in our diagram. As soon as it enters the dry 
sand region, it will start turning more slowly than the other wheels (figure 10.39b). This has the effect of 
causing the front of the car to be dragged off course, and it will veer to the right as it enters the dry sand 
(figure 10.39c). As a result, the course of the car has been altered.

Light entering a new medium will behave similarly to the four-wheel drive on the beach. If we could 
look at the light waves as they strike the interface between media, we would see that they too are diverted 
from their course.

TABL 10.2  Absolute refractive indices.

Material Index of refraction

Vacuum 1.00

Air* 1.00

Water 1.33

Quartz 1.46

Car headlight glass 1.48

Perspex (average) 1.50

Window glass 1.51

Crystal wineglass (24% lead) 1.54

Diamond 2.42

* The slowing of light in air is fairly small and, for most cases, 
can be assumed to be negligible.

10.5 SAMPLE PROBLEM 1

Light travels at a speed of 2.26 × 108 m s–1 in water. Calculate water’s absolute refractive index.

SOLUTION:

n = 3 × 108 m s−1

2.26 × 108 m s−1

  = 1.33
The refractive index of water is 1.33. This means that light travels 1.33 times faster in air than it 
does in water.
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 Figure 10.40 shows a light wave entering a medium in 
which it travels more slowly. The line AB represents a wave-
front approaching the interface between air and glass. The 
section of the wavefront at A strikes the boundary before 
that — at point B. On entering the glass, the light waves at 
A will slow down while the rest of each wave continues to 
travel through air at the original, faster speed. During the 
time taken for the waves at A to travel to position C in the 
new medium, the waves at the other end of the wavefront 
have travelled a larger distance from B to D. As a result, the 
wavefront changes direction as it crosses the interface.     

 The extent to which light is bent when it enters a second 
medium depends upon the speed of light in the individual 
media. As you will recall, the speed of light in a medium 
can be related by the absolute refractive index   (n)   of that material. 

 When light strikes an interface between media at an angle   i   (which is the angle between the incident ray 
and the normal), it will be refracted so that the transmitted light will travel at the refracted angle   r   (the 
angle between the refracted light and the normal). If light travels from a lower refractive index medium to 
a medium with a higher refractive index, it will bend towards the normal — that is, if   n2 > n1   then   r < i  . 
Conversely, if the second medium has a refractive index that is lower than that of the fi rst medium, then the 
light will be bent away from the normal as it is transmitted — that is,   r > i  if n2 < n1.           

Normal

Refracted ray

Incident ray

n1
n2

n1 < n2

i

r

  FIGURE 10.41  Light entering a 
medium with a higher refractive 
index will be bent towards the 
normal as it is transmitted.  

Normal

Refracted ray

Incident ray

n1
n2

n1 > n2

i

r

  FIGURE 10.42  Light entering a medium 
with a lower refractive index will be bent 
away from the normal as it is transmitted.  

Wet sand

Dry sand

Wet sand

Dry sand

Wet sand

Dry sand

(a) (b) (c)

  FIGURE 10.39  A four-wheel drive entering an area of dry sand.  

Air
A
C

D

B

Glass

  FIGURE 10.40  The refraction of light at a 
boundary between different media.  
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10.5.3 Snell’s Law
The extent to which light is bent when it changes medium can be determined using Snell’s Law, which was 
first formulated in approximately 1621 by the Dutch scientist Willebrord Snell:

n1 sin (i) = n2 sin (r)
where n1 is the refractive index of the incident medium, i is the incident angle, n2 is the refractive index of 
the new medium, and r is the angle of refraction.

i

r

normal

medium 1
refractive index n1

boundary

medium 2
refractive index n2

n1 sin  = n2  sin r

FIGURE 10.43 A graphical depiction of Snell’s Law for any two substances. Note that the light ray has no 
arrow, because the relation is true for the ray travelling in either direction.

10.5 SAMPLE PROBLEM 2

A ray of light strikes a glass block of refractive index 1.45 at an angle of incidence of 30°. What is the 
angle of refraction?

SOLUTION:

1.0 × sin 30° = 1.45 × sin θglass (substitute values into Snell
,
s Law)

     sin θglass = sin 30°
1.45

 (divide both sides by 1.45,  the refractive index of glass)

= 0.3448 (calculate value of expression)
           θglass = 20.17° (use inverse sine to find the angle whose sine is 0.3448)
           θglass = 20° (round off to two significant figures)

10.5 Exercise 1
1 Light travels at a speed of 2.1 × 108 m s–1 through medium X. What is this medium’s refractive index?
2 What w be the frequency of iletight ( λ = 420 nm) as it passes through window glass?
3 Calculate the speed at which light travels through diamond.
4 How many times faster does light travel through glass than it does diamond?
5 Which of these statements is true:

(a) light rays entering a new medium change frequency
(b) light rays travel through glass at a lower speed than they do through a vacuum
(c) light rays entering a medium with a higher refractive index will be bent towards the normal
(d) light rays directed at right angles to the boundary between two media are not refracted?

6 Light travelling from water into glass nglass = 1.53) is refracted at an angle of 49°. At what angle was the 
light incident upon the glass?
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10.6 Lenses
10.6.1 Converging and diverging lenses
The word ‘lens’ is a familiar one to anyone who wears glasses or has ever used a microscope or telescope. 
A lens describes any transparent optical object with a curved surface that refracts light as it transmits it, 
allowing redirection.

To begin to understand a lens, we can start with a rectangular block of glass as in figure 10.44. Parallel rays 
from the left pass through the block without a change in direction if they are normal to the block (blue lines). 
Parallel rays that are not normal to the block are refracted when passing through the block, but emerge parallel on 
the other side (green lines). This is essentially what happens with light passing through a pane of glass in a 
window.

If the block is shaped so that its surface is a continuous curve in the arc of a circle (figure 10.45a), all 
sets of parallel rays entering the lens converge on the other side.

Lenses come in a variety of different forms, but can be generally classified as being either converging or 
diverging.

7 If a laser light is shone onto a pool of water at an incident angle of 15° to the normal, what will be its angle 
of refraction?

8 A beam of light shines onto a glass slab nglass = 1.51) that has a thickness of 4 cm. If the beam makes an 
angle of 30° with the slab surface, how far horizontally will the beam exit the block from where it entered?

9 A ray of light enters a plastic block at an angle of incidence of 40°. The angle of refraction is 30°. What is the 
refractive index of the plastic?

10 In a science fiction story, a transparent material called ‘slow glass’ can slow down light rays entering the 
material so much that they can take years to emerge from the other side. What would the refractive index  
of such a material be if light entering a 20 cm  thick pane of the glass took one day to emerge from the  
other side?

Watch ths eLesson  Refraction and Snell’s Law
Searchlight ID: else-0037
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The lens form we have considered so far 
is referred to as a converging lens. A 
converging lens causes parallel light rays 
passing through it to be refracted towards a 
single point. As for a converging mirror, 
this intersection point is referred to as a 
focus. The converging lens comes in several 
forms: the bi-convex, which has convex sur-
faces on each side; the plano-convex, which 
has a convex shape on one side but is flat on 
the other; and the converging meniscus, 
which is convex on one side but concave on 
the other. Regardless of their variations in 
shape, all converging lenses are thicker in 
the middle than at their edges.

A diverging lens causes parallel light rays to be spread further apart after being refracted. The diverging 
rays appear to come from a focus on the opposite side of the lens. Diverging lenses are thicker at their edges 
than in their centres and can have a variety of forms: the bi-concave, which has both of its faces concave; 
the plano-concave, where one of the lens’s faces is flat while the other is concave; and the diverging 
meniscus, which has both concave and convex faces.

10.6.2 Lens terminology
Many of the terms we will encounter in our study of 
lenses will be familiar from our earlier study of mirrors:
 • The optical centre (or pole) of a lens is the point in the 

exact centre of the lens itself. Light rays that pass 
through the optical centre of a lens will not be diverted, 
but will continue undeflected.

 • The centre of curvature (C) for the face of a lens is 
the centre of the circle, an arc of which corresponds to 
the curve of the lens face. A flat face of a lens has a 
centre of curvature located at infinity.

 • The radius of curvature (R) is the distance between 
the centre of curvature and the surface of the lens.

R Centre of
curvature

Lens

FIGURE 10.48 The centre of curvature for a 
lens face.

(a) (c)(b)

FIGURE 10.46 The 
converging lens in its 
different forms: (a) bi-convex, 
(b) plano-convex, (c) convex 
meniscus.

(a) (b) (c)

FIGURE 10.47 The 
diverging lens in its 
different forms: 
(a) bi-concave, 
(b) plano-concave, 
(c) diverging meniscus.

(a) Convex lens (b) Concave lens

F F

FIGURE 10.45 Refraction of rays through (a) a convex and (b) a concave lens.
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 • The principal axis is a line that can be drawn through the centres of curvature for both faces of a lens 
and the optical centre.

 • The focus (F) is the point at which light rays entering the lens parallel to the principal axis converge (or, 
in the case of a diverging lens, appear to originate) on exiting the lens. Because light can pass through 
either side of a lens, there is one focus on each side.

 • The focal length (f) is the distance between the optical centre and the focus. The focal length of a lens 
depends upon the curvature of the lens faces, the thickness of the lens and the material from which it is 
made. In general, the greater the curvature of the lens face, the shorter the focal length.

 • The focal plane is a plane through the focus that is perpendicular to the principal axis. When rays that 
are parallel to one another enter the lens at an angle to the principal axis, they will converge at some 
point on the focal plane.

10.6.3 Images formed by converging lenses
Light rays passing from an object through a converging lens can form images of that object. However, the 
orientation, size and nature of that image depend on how far the object lies from the lens and the focusing 
ability of the lens itself.

As in the earlier section on images formed by mirrors, ray tracing can be used to give a qualitative 
impression of the size and location of an image formed by a lens, as well as the nature of the image.

Four main principles are observed when using ray tracing for converging lenses:

1. Incident rays that travel parallel to the principal axis when approaching the lens will be refracted to pass 
through the focus on the other side.

2. Incident rays that pass directly through the focus on the side nearest to the object as they approach the 
lens will be refracted to pass parallel to the principal axis on the other side.

3. Incident rays that pass through the optical centre (pole) of a thin lens and that are incident at small angles 
to the principal axis continue to travel in the same direction.

4. Images form where rays converge.
By considering these principles, a ray diagram can be drawn for an object PQ placed outside the focal 

length of a converging lens and the image’s relative size and location determined. It should be noted that, 
while refraction of rays occurs at each boundary between the air and the lens, in reality, the lenses in this 
text are considered to be very thin. As a result, by convention, the bending of the light rays within the lens 

(a)

(b)

F

F

FIGURE 10.49 The lens’s radius of curvature 
influences the location of the focus.

F

Focal plane

FIGURE 10.50 Parallel rays entering a lens at an angle 
to the principal axis will converge on the focal plane.
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is represented by a single refraction at the lens axis (a line that passes through the pole of the lens that is 
perpendicular to the principal axis).

From figure 10.51, we see that the image P′Q′ is located at a position greater than 2f and that it is 
enlarged and inverted. The image is formed on the opposite side of the lens and is described as real. This 
means that, should a screen be placed at the image position, an image will form on that screen.

The image obtained depends on the placement of the object in relation to the focus. A range of these 
applications is given in table 10.3.

convex lens

image

ray 2
ray 3

ray 1

object

3

1

F F
Q’

Q

P

P’

2

FIGURE 10.51 The location of the image is determined according to the point where the three rays 
cross. All the rays that pass through the lens pass through the image.

PHYSICS IN FOCUS
Flat lenses?

A lens works by changing the direction 
of the light ray at the front surface and 
then again at the back surface. The glass 
in the middle is there to keep the two 
surfaces apart. Augustin-Jean Fresnel 
devised a way of making a lens without 
the need for all the glass in the middle.

TABL 10.3  Simple applications of convex lenses

Location of object Uses Description of image

Very large distance away 
from lens

Objective lens of refracting 
telescope

Real, inverted, diminished and located near the 
opposite focus

Beyond twice the focal 
length from lens

Human eye; camera Real, inverted, diminished and located on other 
side between one and two focal lengths from lens

At twice the focal length 
from lens

Correction lens for terrestrial 
telescope

Real, inverted, same size and located two focal 
lengths from lens

Between twice the focal 
length from lens and the 
focus

Slide projector; objective lens of 
microscope

Real, inverted, magnified and located on other 
side of lens beyond two focal lengths

At the focus Searchlight; eyepiece of refracting 
telescope

No image. The emerging parallel rays do not meet.

Between focus and lens Magnifying glass; eyepiece lens of 
microscope; spectacles for 
long-sightedness

Virtual, upright, magnified and located on same 
side of the lens and further away

FIGURE 10.52 A side view of a convex Fresnel lens showing 
how it is constructed.
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 10.6 SAMPLE PROBLEM 1 

 A convex lens has a focal length of   10 cm  . A candle   10 cm   tall is located   16 cm   in front of the lens. 
Use ray tracing to determine the location, size, orientation and type of image formed. 

 SOLUTION: 

 Draw the principal axis, the focal points, the object and three rays, one passing through the centre of 
the lens without deviation, one parallel to the principal axis and one passing through the focus.  

convex lens

image

F F

object

  FIGURE 10.53     The image of the candle is   27 cm   
on the opposite side of the lens,   15 cm   tall, 
inverted and real.    

 The glass surface of the lens is a series of concentric rings. Each ring has the slope of the corre-
sponding section of the full lens, but its base is fl at. The slopes of the rings get fl atter towards the centre.  

 This design substantially reduces the weight of the lens, so lenses of this type are used in light-
houses. Their relative thinness means they are also used where space is at a premium, such as in over-
head projectors, and as a lens to be used with the ground-glass screens in camera viewfi nders. 

 Flat lenses, or Fresnel lenses as they are called, are now attached to the rear windows of vans and 
station wagons to assist the driver when reversing or parking.      

 10.6 SAMPLE PROBLEM 2 

 The candle is moved so that it is now   5 cm   in front of the same lens. Use ray tracing to determine the 
location, size, orientation and type of image formed. 

 SOLUTION: 

 Draw the principal axis, the focal points, the object
and the three rays.  

convex
lens

object

image

F F

  FIGURE 10.54     The image of the candle is 
  10 cm   on the same side of the lens,   20 cm   
tall, upright and virtual .
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10.6.4 Images formed by diverging 
lenses
The diverging lens shares the same features as the con-
verging lens; however, the diverging lens can only form 
virtual images, because it can never bring light rays to 
focus at a point and so form a real image.

Consider an object placed outside the focus of a diverging 
lens as shown in figure 10.55. By using ray diagrams as we 
did with converging lenses, we can observe the virtual 
nature of the image formed by the diverging lens.

In the figure, our first ray approaching the lens parallel 
to the principal axis is refracted away from the lens axis as it passes through so that the refracted ray 
appears to come from the focus nearest the object. The second ray is directed towards the focus on the 
opposite side of the lens. On reaching the lens axis, the emerging ray is directed parallel to the principal 
axis. The third ray travelling from the top of the object through to the centre of the lens passes through, as 
before, undiverted.

As the diagram indicates, these three refracted rays will never meet and, so, never form a real image. 
Instead, they form a virtual image at the location where the three rays seem to have a common origin. The 
virtual image formed here is smaller than the object, is upright and lies within the focus on the same side 
of the lens as the object.

10.6.5 The thin lens equation
Just as the mirror equations allow more precise evaluations of image size and position than those provided 
by ray tracing, so too can the thin lens equations allow the calculation of the position and size of the images 
formed by lenses.

Look at figure 10.57. The two triangles shaded in green are similar triangles as all of their corresponding 
angles are the same size. This would be true wherever the image is located.

Obect

F F

ray 3

ray 2

ray 1

Image

FIGURE 10.55 The ray diagram for a 
diverging lens.

10.6 SAMPLE PROBLEM 3

The lens is switched with a diverging lens with a focal length of −10 cm. What image of the candle is 
formed when it is placed 15 cm from the lens?

SOLUTION:

Draw the principal xis, focal pints, object  
and the three rays.

obect image

F F principal
axis

FIGURE 10.56 The image of the candle is 6 cm on 
the same side of the lens, 4 cm tall, upright and 
virtual.
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This means that the ratios of 
equivalent sides are equal, for 
example:

H0

H1
= u − f

f
  

Also, the triangles shaded in 
blue are similar:

H0

H1
= u

v

The left-hand sides of these equa-
tions are equal, so we can say:

u
v

= u − f

f
  

Which is the same as:

u
v

= u
f

− 1

1
v

= 1
f

− 1
u

1
f

= 1
u

+ 1
v

This formula is known as the thin lens formula. It gives a good approximation for thin lenses. When using 
it, you need to be careful with signs:
 • f  is positive for converging lenses and negative for diverging lenses
 • u is positive
 • v is positive when the image is on the opposite side of the lens to the object and negative when on the 

same side
We can compare the results of this formula with what we determined by ray tracing back in 10.6 Sample 
problem 1.

F F I

O

Ho

H

vu
ff

FIGURE 10.57

10.6 SAMPLE PROBLEM 4

Use the thin lens formula to find the position of the image when f = 10 cm and u = 16 cm.

SOLUTION:

1
f

= 1
u

+ 1
v

1
v

= 1
f

− 1
u

1
v

= 1
10

− 1
16

1
v

= 8
80

− 5
80

1
v

= 3
80

v = 80
3

= 27 cm behind the lens.
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10.6 SAMPLE PROBLEM 5

Use the thin lens formula to find the position of the image when f = 10 cm and u = 5 cm.

SOLUTION:

1
f

= 1
u

+ 1
v

1
v

= 1
f

− 1
u

1
v

= 1
10

− 1
5

1
v

= 1
10

− 2
10

1
v

= − 
1

10
v = −10 cm

The image is 10 cm in front of the lens (on the same side as the object).

WORKING SCIENTIFICALLY 10.4
Design and build a simple telescope, documenting each stage of development and construction.

WORKING SCIENTIFICALLY 10.5
Find an old pair of glasses and, through experimentation, determine the focal length of each of the lenses and 
the possible defects that the glasses were meant to correct.

10.6 Exercise 1
1 The box in the following diagram contains a lens. The scale of the grid is 1 cm per line. Draw rays from the 

object to the image to determine:
(a) whether the lens is converging or diverging
(b) its focal length.

image

object

FIGURE 10.58

We have defined the magnification to be equal to the height of the image divided by the height of the 

object, M = H1

H0
. We can see from the similar triangles in our derivation of the thin lens formula that 

H1

H0
= v

u
. 

However, zinverted (H1

H0
 is negative). Conversely, if v is negative, the image is upright (H1

H0
 is positive). 

To account for this we add a negative to the formula so that we have M = − 
v
u

.
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  10.7  Tricks of the light 
  10.7.1  On a bender 
 Many odd visual effects that you may have noticed can be explained by the refraction of light. One that we 
see all the time is the way that straight objects such as drinking straws, pencils and poles appear to be bent 
when placed in water. This phenomenon can be explained using the ray model.     

 Consider a straight pole placed into the pool in fi gure 10.60. Light rays from the submerged end of pole 
  (P)   can be drawn in all directions and, when they hit the interface between the water and the air, they bend 
because of refraction. As the refractive index of air is smaller than that of water, the light is bent away from 
the normal, and   r > i  . Some of these refracted rays originating at   P   fi nd their way to the observer’s eyes. 
However, as these refracted rays appear to originate from a position   P′  , the observer sees the image of the 
end of the pole here rather than in its true position. As a result,   P   appears to be closer to the surface than it 
really is. A similar thing happens for every point along the pole. As they all appear closer, the pole appears 
bent.     

2   A convex lens has a focal length of   12 cm   and is used as a magnifying glass by placing an object   4 cm   from 
the lens. Determine the magnifi cation achieved by the magnifying glass.  

3   A   4 cm    high object is placed   10 cm   in front of a diverging lens with a focal length of   6 cm  .  
(a)   How far from the lens will the image appear?  
(b)   Will the image be real or virtual?  
(c)   How high will the image be?    

4   When a   5 cm    high object is placed in front of a concave lens of focal length   8 cm  , it forms an image   
2.5    times smaller than the object. What is the distance between the object and the lens?  

5   Optometrists and opticians describe the focusing ability of a lens in terms of its power,   P  , which is equal to 
the inverse of the lens’s focal length   f  : 

   P = 1
f
   

   The unit of measurement for this type of power is the dioptre   (D)  , where   f   is measured in metres. 
   Susan has glasses with a power of   – 4.0 D  .  

(a)   What will be the focal length of her lenses?  
(b)   Will the lenses be converging or diverging lenses?  
(c)   Is Susan more likely to be short-sighted or long-sighted?  
(d)   An object is placed   40 cm   in front of one of Susan’s lenses. Where will the image formed by the lens 

appear?     

  FIGURE 10.59  An example of 
refraction.  

P

P

r

Incident
rays

Normal
Refracted
ay

i

  FIGURE 10.60  A straight pole appears bent 
where it enters the water.  
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10.7.2 Total internal reflection
As seen earlier in this topic, some of the light incident 
on a transparent surface will be reflected, while the 
rest will be transmitted into the next medium, as 
shown in figure 10.63a. This applies whether the 
refracted ray is bent towards or away from the normal.

As we know from Snell’s Law, an increase in the 
incident angle results in an increase in the reflected 
angle. However, a special situation applies when rays 
travelling from a medium with a higher refractive 
index into a medium with a lower refractive index 
meet the interface at certain incident angles. As the 
incident angle increases in size, it will reach a critical 
angle, ic, at which the angle of refraction equals its 
maximum value of 90o with the normal. At this point, 
the refracted ray travels parallel to the boundary between the two media (figure 10.63b).
The value of the critical angle depends upon the refractive indices of the two media. At the critical angle ic:

n1sin (ic) = n2sin (90o) 

so,

n1sin (ic) = n2

and thus,

sin (ic) =  
n2

n1

FIGURE 10.62 There are no mirrors in a fish tank 
but strange reflections can be seen.

PHYSICS IN FOCUS
Apparent depth
Spear throwers need to aim below a fish if they are to have a chance of spearing the fish. A similar 
phenomenon occurs when a spear thrower is directly above a fish. The fish appears to be closer to the 
surface than it actually is. This observation is known as apparent depth. Swimming pools provide 
another example of apparent depth: they look shallower than they actually are. The refraction of light 
combined with our two-eyed vision makes the pool appear shallower.

The relationship is illustrated in figure 10.61 and can be expressed as follows:

 
real depth

apparent depth
=  refractive index

apparent
depth

real
depth

air
water

FIGURE 10.61 The phenomenon of apparent depth.
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The value n2/n1 is referred to as the relative refractive index for media 1 and 2. It should be noted that a 
critical angle can only exist provided that the relative refractive index is less than 1 — that is, n1 > n2.

At incident angles greater than the critical angle, all the light is reflected back into the original medium and 
no refracted ray is formed. This circumstance is referred to as total internal reflection (figure 10.63c).

Total internal reflection is a relatively common atmospheric phenomenon (as in mirages) and it has 
technological uses (for example, in optical fibres).

10.7.3 Dispersion of light
Isaac Newton was the first person to discuss the 
breaking up of white light into the coloured spectrum 
in a process called dispersion. He observed that, as 
white light passes through a triangular glass prism, the 
individual spectral colours emerge. This occurs because 
the different colours of the visible light spectrum travel 
through the glass at different velocities. This means 
that light of each colour has a different refractive index 
and so the different colours are refracted through at 
different angles. Violet light, which travels the slowest, 
is refracted the most, while red light, which travels the 
fastest, is refracted the least.

Rainbows are formed when sunlight is incident on 
water particles suspended in the air, which is why they are most frequently seen after rain showers. When 
white light from the sun enters the water droplet, it is refracted and dispersion occurs, separating the indi-
vidual colours. These rays continue to travel until reaching the far surface of the water droplet, where some 

Red

Glass Prism

White
light

Violet

FIGURE 10.64 Dispersion by a glass prism.

r

i i
ic ic i i

(a)  < ic (b)  = ic (c)  > ic
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ray
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ray

no
refraction

(total internal re�ection)

FIGURE 10.63 Total internal reflection.

10.7 SAMPLE PROBLEM 1

What is the critical angle for light rays passing from water into air given that the refractive index of 
water is 1.3?

SOLUTION:

nair = 1.0; θ air = 90°; nwater = 1.3; θwater = ?
1.3 × sin θwater = 1.0 × sin 90° (substitute data into Snell's Law)

         √sin θwater = sin 90°
1.3

 (rearrange formula to get the unknown by itself)

= 0.7692 (determine sine values and calculate expression)
               θwater = 50.28° (use inverse sine to find angle)

                θwater = 50° (round off to two significant figures)
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emerge but the rest are totally internally refl ected back into 
the droplet. When they encounter the front boundary 
between the water of the droplet and the air, the rays are 
again refracted, further increasing the angle of dispersion.     

 The only dispersed rays reaching our eyes from each of 
those billions of droplets are those that have an angle 
between   40o   (violet light) and   42o   (red light) relative to the 
incident sunlight.     

 The arc of colour seen by the observer is the section of a 
circle subtended by these angles at a point called the anti-
solar point, which lies on the line between the observer’s 
eye and the sun.     

 The higher above the horizon the observer is, the higher above the ground the antisolar point is posi-
tioned and so the greater the proportion of the circle that is seen. At a very high altitude, an entire circular 
rainbow could be observed.  

Sunlight
42˚

Rain drop

  FIGURE 10.66  Angle of dispersion.  

sunlight

observer

antisolar
point

42 40

  FIGURE 10.67  How the arc of a rainbow forms.  
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  FIGURE 10.65  Dispersion in a water droplet.  

 10.7 Exercise 1  
1   Which of the following colours of light travels the fastest through glass:  

(a)   blue      (b)   green      (c)   yellow      (d)   violet?    
2   A glass fi bre has a refractive index of   x   and its cladding has a refractive index of   y  . What is the critical angle 

in the fi bre?  
3   What is the critical angle for light passing from diamond into water?  
4   The critical angle for light passing from a mystery liquid into air is   43.2o  . What is the absolute refractive 

index of the mystery liquid?  
5   A light positioned in the bottom of a   1.5 m   pool produces a circle of light on the water’s surface. What is the 

radius of the light circle?   
6   Mark stands at the edge of a fi sh pond and sees a large fi sh in the water. From where he is standing, the 

fi sh is   2 m   horizontally from the pond’s edge and appears to be   50 cm   below the surface. How far below the 
surface of the pond is the fi sh actually located? Assume that Mark’s eyes are   1.5 m   above pond level.  

7   Phuong placed a coin in the bottom of an opaque mug. From where she is sitting, she can’t quite see the 
coin. However, when she pours some water into the mug, she fi nds that she can now see the coin. How is 
this possible?   

Comlete thisdiital doc:  Refraction through a prism
  Searchlight ID: doc-0058  
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10.8 Review
10.8.1 Summary
 • The ray model depicts light as straight lines in a uniform medium.
 • All electromagnetic waves travel at the same speed in a vacuum and are slowed down when they enter 

any other media.
 • The speed of light in a vacuum is 299 792 458 m s–1, usually approximated to 3 × 108 m s–1.
 • A luminous body is one that can directly produce light. A body that produces light when heated is said 

to be incandescent. A non-luminous or illuminated body is one that does not itself produce light, but 
reflects it from another source of light.

 • The incident ray, reflected ray and the normal to the surface all lie in the same plane.
 • The absolute refractive index of a transparent medium is the ratio of the speed of light in a vacuum to the 

speed of light in the medium. The refractive index is always larger than 1.
 • A transparent material is one through which an object may be clearly seen. A translucent material allows 

light through it, but does not allow an object to be seen coherently through it. An opaque material is one 
through which light cannot pass at all.

 • A material may reflect, transmit or absorb light, or a combination of these, depending upon the nature of 
the material.

 • The Law of Reflection: the angle of incidence is equal to the angle of reflection.
 • A concave (converging) mirror reflects parallel light rays so that they converge on the focal plane of the 

mirror. A convex (diverging mirror) reflects parallel light rays so that they spread out.
 • Ray tracing and the mirror equations can be used to determine the location, size and nature of images 

produced by curved mirrors.
 • Light is refracted when it passes between different transparent materials. The degree of refraction is 

described by Snell’s Law: n1 sin i = n2 sin r.
 • A lens is a device made from a transparent medium that allows the refraction of light to be controlled.
 • A converging lens is thicker in the middle than at the edges. Parallel rays passing through a converging 

lens coincide at the focus of the lens. A diverging lens is thicker at its edges than in its middle. Parallel 
rays passing through a diverging lens spread out so that they appear to originate at a point on the focal 
plane nearest the object.

 • The focal length of a lens depends upon the curvature of the faces and the refractive index of the medium 
from which it is made.

 • The object distance (u) for lenses is assumed to be positive. The image distance (v) is negative for vir-
tual images and positive for real images.

 • A converging lens has a positive focal length, f , while a diverging lens has a negative focal length.
 • A real image is one created from converging light rays. It will manifest on a screen placed at the forma-

tion position.
 • A virtual image is unable to materialise on a screen, and can only be seen when viewed in a mirror or 

through a lens. Light rays do not converge at a virtual image.

 • The position of an image formed by thin lenses can be determined by accurate ray tracing and by using 

the thin lens equation: 1
f

= 1
u

  + 
1
v
.

10.8.2 Questions
1. Which of the following are luminous objects:

(a) the Sun
(b) a projector screen
(c) a star

(d) a campfire
(e) a red-hot piece of iron
(f) a television screen?
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2.   True or false? One type of transparent plastic has a refractive index equal to that of water   (n = 1.33)  . 
If you placed a lump of this plastic into water, you would not see it.  

3.   Calculate the angles   a, b   and   c   in fi gure 10.68.        
4.   What is the luminous intensity of a   50 W   light bulb at a distance of   2 m   

if we assume that all of the bulb’s energy is converted into light?  
5.   A light source with a luminous intensity of   36 W m–2   that is positioned 

  1.2 m   from a light meter produces the same reading as a second light 
source that is positioned   2.4 m   away from the meter. What is the lumi-
nous intensity of the second source?   

6.   What is the angle of refraction in water   (n = 1.33)   for an angle of 
incidence of   40°  ? If the angle of incidence is increased by   10°  , by how 
much does the angle of refraction increase?  

7.   A ray of light enters a plastic block at an angle of incidence of   55°   with an angle of refraction of   33°  . 
What is the refractive index of the plastic?  

8.   A ray of light passes through a rectangular glass block with a refractive index of   1.55  . The angle of 
incidence as the ray enters the block is   65°  . Calculate the angle of refraction at the fi rst face of the 
block, then calculate the angle of refraction as the ray emerges on the other side of the block. Com
ment on your answers.  

9.   Immiscible liquids are liquids that do not mix. Immiscible liquids will 
settle on top of each other, in the order of their density, with the densest 
liquid at the bottom. Some immiscible liquids are also transparent.  
(a)   Calculate the angles of refraction as a ray passes down through 

immiscible layers as shown in fi gure 10.69.  
(b)   If a plane mirror was placed at the bottom of the beaker, 

calculate the angles of refraction as the ray refl ects back to the 
surface. Comment on your answers.       

10.   Light rays are shown passing through boxes in fi gure 10.70. Identify 
the contents of each box from the options (a)–(g) given below. 
Option (b) is a mirror. All others are solid glass.
 Note:  There are more options than boxes.     

11.   An object is placed   40 cm   in front of a convex mirror that has a focal length of   30 cm  .  
(a)   Where is the image formed?  
(b)   Is the image:  

i   real or virtual,  ii   reduced or enlarged, or  iii   inverted or upright?      
12.   A concave mirror has a   40 cm   focal length. How far from the mirror must an object be positioned in 

order for:  
(a)   an image to appear   50 cm   from the mirror  
(b)   a real image to be formed that is twice the height of the object  
(c)   a virtual image to be formed that is three times the height of the object?        

mirror

a b

c
50°

  FIGURE 10.68   
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  FIGURE 10.70   
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13. Use ray tracing to determine the full description of the following objects:
(a) a 4.0 cm high object, 20 cm in front of a convex lens with a focal length of 15 cm
(b) a 3.0 mm high object, 10 cm in front of a convex lens with a focal length of 12 cm
(c) a 5.0 cm high object, 200 cm in front of a convex lens with a focal length of 10 cm.

14. What does ‘accommodation mechanism’ mean? Give an example.
15. (a)  You are carrying out a convex lens investigation at a bench near the classroom window and you 

obtain a sharp image of the window on your screen. A teacher walks past outside the window. 
What do you see on the screen?

 (b) The trees outside the classroom are unclear on the screen. What can you do to bring the trees into 
focus?

16. Use ray tracing to determine the magnification of an object placed under the following two-lens 
microscope. The object is placed 5.2 mm from an objective lens of focal length 5.0 mm. The eyepiece 
lens has a focal length of 40 mm. The poles of the lenses are 150 mm apart.

17. A convex lens with a focal length of 5.0 cm is used as a magnifying glass. Determine the size and 
location of the image of text on this page if the centre of the lens was placed:
(a) 4.0 cm above the page
(b) 3.0 cm above the page.

18. A 35 mm slide is placed in a slide projector. A sharp image is produced on a screen 4.0 m away. The 
focal length of the lens system is 5.0 cm.
(a) How far is the slide from the centre of the lens?
(b) What is the size of the image?
(c) Looking from the back of the slide projector, the slide contains a letter ‘L’. What shape will appear 

on the screen?
(d) The slide projector is moved closer to the screen. The image becomes unclear. Should the lens 

system be moved closer to or further away from the slide?
19. An object is placed at an equal distance a from two plane mirrors 

that are placed at right angles as shown in figure 10.71. How 
many images of the object are formed in the mirrors?

20. (a)  What is the angle of refraction in water (n = 1.33) of a light 
ray that has an incident angle of 30°?

 (b) By how much will the angle of refraction increase if the 
incident angle is increased by 10°?

21. Calculate the distance the photographic film needs to be from the 
centre of a camera lens of focal length 5.0 cm in order to take a 
sharp, focused photograph of a family group located 15.0 m away.

Mirror 1

Mirror 2

a

a

FIGURE 10.71
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22. Calculate the sideways deflection as a ray of light goes through a parallel-sided 
plastic block (n = 1.4) with sides 5.0 cm apart, as in figure 10.73.

23. During the course of an experiment, a student moves an object into 
different positions (do) in front of a converging lens and measures the 
resulting positions (di) of the image formed. His results are then plotted 
on a graph as shown in figure 10.74.
(a) What is the focal length of the lens?
(b) Describe the image formed for point X. Is it real or virtual? Is it 

enlarged or reduced?
(c) If the object is placed at the 50 cm position, where will the image 

form?
24. A lens held 20 cm from an object produces a real, inverted 

image of it 30 cm on the other side of the lens. What is the 
focal length of the lens? Is it converging or diverging?

25. A convex air pocket is formed inside a block of Perspex as 
shown in figure 10.75. What effect will this air pocket have 
on parallel light rays entering the block?

26. A converging lens with a focal length of 40  cm is placed 1 m in 
front of a diverging lens that has a focal length of 30  cm. A 
5  cm birthday candle is lit and placed a distance of 80 cm in 
front of the converging lens, as shown in figure 10.76. Under 
the influence of both lenses, where will the final image be 
formed, and how high will it be?

27. Describe the light path from a light source to your eye in seeing an 
object.

28. Use the ray model and the sources of light to rephrase the  
statements (a) ‘I looked at a flower through the window’ and  
(b) ‘I watched the TV’.

29. Explain how early astronomers knew the Moon must have a rough 
surface.

30. Copy figure 10.77 and draw the incident and reflected rays from 
the two ends of the object to the eye. Locate the image.

31. The two arrowed lines in figure 10.78 represent reflected rays. The line 
AB represents the plane mirror. Locate the image and the light source in 
each of the two figures.

32. A student argues that you cannot photograph a virtual image because 
light rays do not pass through the space where the image is formed. How 
would you argue against this statement?

A

A

B B

FIGURE 10.78
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33. Sketch the path of the rays entering 
each of the pair of joined mirrors in 
figure 10.79.

34. When slides are placed in a slide pro-
jector, they are put into the cartridge 
upside-down. Why is this done?

35. Explain how you can use two mirrors 
to see your view from behind.

36. As part of an experiment on Snell’s 
Law, a student measures the angle of 
refraction (θ2) obtained when an 
incident light ray enters a clear plastic block for a number of different 
incident angles (θ1). Her results are shown in the table at right.
(a) Draw a graph of this data.
(b) Use your graph to determine the refractive index of the plastic.

37. When you look into a plane mirror, your left and right sides appear 
reversed. This is called lateral inversion. Draw a diagram showing 
how you could position a series of plane mirrors so that you see your 
image upside-down.

FIGURE 10.79

PRACTICAL INVESTIGATIONS

Investigation 10.1: Snell’s Law
Aim
To observe the refraction of light and to use Snell’s Law to determine the refractive index of a medium

Materials
Power supply, ray box with single slit card, rectangular Perspex or glass block, ruler, protractor, pencil, blank A4 
paper, drawing board, drawing pins

Method

1. Use drawing pins to attach the A4 paper to the drawing board, which should be lying flat on the bench.
2. Place the block in the middle of the page. Use a pencil to draw around the block so that it can always be 

returned to the same position. Mark a point on the boundary and label it as O.
3. Reduce the amount of light in the room (by drawing curtains etc.). Turn on the ray box and direct a single ray 

of light so that it enters the block at point O at an angle and emerges on the other side of the block.
4. Without moving the ray or the block, mark 3 points along each of the incident ray and the emerging ray. 

Place a mark at the block boundary at the point where the light ray emerges from the block and label this R.
5. Turn off the ray box and remove the block from the paper. Using your pencil marks as guides, use a ruler to 

draw the path of the incident ray into the block, joining points O and R, and to draw the path of the emerging 
ray. Draw normals to the surface at points O and R.

6. Use your protractor to measure the angle of incidence θ1 and the angle of refraction θ2 as shown in  
figure 10.80. Enter these values into table 10.4A.

7. Repeat steps 1–6 for three other incident angles.

Results

θ 1 (degrees) θ 2 (degrees)

          
          
          
          

TABLE 10.4A

θ 1 (degrees) θ 2 (degrees)

0 0

10 6

20 12

30 18

40 24

50 29
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Analysing the results
1. For each of the angles in table 10.4A, complete table 10.4B 

at right.
2.  Snell’s Law states that n1 sin θ1 =  n2 sin θ2. Given that

  n1 =  1.00 (air), what variable does the ratio 
sin θ2

sin θ1
 

represent?
3. What is the approximate refractive index of the block?
4. In each case, is the ray refracted towards the normal or 

away from the normal as it passes into the block?
5. What do you notice about the angles of the incident ray 

entering the block at O and the ray emerging from the 
block at R?

Conclusion
State the relationship between the refractive index of the block, the 
angle of incidence and the angle of refraction in this investigation.

Investigation 10.2: Concave mirrors — an observation 
exercise
This investigation involves observing yourself in a concave mirror.
You will need the following equipment:
• concave mirror
• tape measure or metre ruler.
Look at yourself in a concave mirror.
1. How does your appearance change as you move towards and away from the mirror?
2. Describe your image (for example, size and orientation) as the distance changes. Note the distance.
3. Was there a distance at which the image changed markedly? If so, where did you notice that this occurred?
4. Do you notice any distortion of the image? If so, how was the image distorted and where did this occur?

Investigation 10.3: Converging Lenses
Aim
To investigate the formation of images by converging lenses

Materials
Biconvex glass lens, lens holder, metre ruler, small birthday candle mounted in a holder, white cardboard 
screen, masking tape

Method
1. Place the metre ruler flat on the benchtop.
2. Put the biconvex lens in the holder and place it next to the ruler at the 50 cm mark.
3. Light the candle and place it next to the 0 cm mark of the ruler. This location corresponds to do = 50 cm. 

Place the screen against the 100 cm mark and move it closer to the lens or further away from the lens until a 
clear image of the candle flame appears on the screen. Measure the distance di between the lens and the 
screen, and enter this value into table 10.5A. The image formed on the screen is said to be a real image.

4. Continue to move the candle closer to the lens in 5 cm increments and measure the corresponding values of di.

�

�2

R

O

10.80

di

Candle Lens Ruler Screen

do

FIGURE 10.81

sin θ 1 sin θ 2
sin θ 2

sin θ 1

               

               

               

               

TABLE 10.4B
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5. Eventually, you will reach values of do at which no clear image can be formed on the screen. This will occur 
when the candle is located at the focus of the lens (where no image of the candle can be formed) or closer 
(where only a virtual image can be formed). In the case of a virtual image, looking directly through the lens 
itself at the candle will reveal its image. The location of the virtual image can be estimated by using the 
adjacent ruler. Enter the di values of these images as negative values in table 10.5A.

Results

Analysing the results
1. When the candle is at the focus of the 

lens, F, no image (either real or virtual) 
can be formed. At what value of do 
did this occur?

2. Using your values for do and d  and the

equation 1
f

= 1
do

+ 1
di

, determine the

 value of f for the lens.

3. How do your values for question 1 
and question 2 compare?

4. Converging lenses are used as 
magnifying glasses. Is this magnified 
image a real or virtual image? Justify 
your answer.

5. The power P (in dioptres) of a lens is 
equal to the inverse of its focal length 
(in metres). What is the power of the 
lens you have used here?

Conclusion
1. Complete the following table summarising  

the locations and types of images formed by  
a converging lens.

Investigation 10.4: Using apparent depth to determine the refractive index
This investigation involves using apparent depth to determine the refractive index.
You will need the following equipment:
• rectangular glass or perspex block
• two pieces of grid graph paper.
Place the smallest face of a rectangular glass block on a sheet of grid graph paper as shown in figure 10.82.

Position of object Position of image
Description of 

image

2f > do > f

do = f

f > do

TABLE 10.5B

(do)  cm (d )  cm

Image

Real or 
virtual?

Erect or 
inverted?

Enlarged or 
reduced?

50

45

40

35

30

25

20

15

10

5

TABLE 10.5A
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 Look down a vertical face of the block so that you can see the grid of the graph paper through the glass and 
through the air. The grid seen through the glass will appear larger (closer). 

 Slowly bring another piece of identical graph paper up that face until the graph pattern seen through the block 
matches the pattern held beside the block. Take care, this is a diffi cult task. 

 Mark the point where the patterns are seen to match and measure its distance from the top of the block. 
 Repeat this exercise several times and calculate the average of your measurements. 
 Measure the full length of the glass block and calculate the refractive index of the block, using the equation: 

  
real depth

apparent depth
= refractive index.   

 Repeat the exercise to calculate the refractive index of water, using a fi sh tank or a large beaker instead of the 
glass block. 

 Investigation 10.5: Floating coins 
    AIM 
  To investigate the effect of refraction on the image of a submerged object  
   You will need:   
  2 beakers  
  evaporating dish  
  coin   

•   Place a coin at the bottom of an empty beaker and look at it from above 
while your partner slowly adds water from another beaker.  

•   Place the coin in the centre of an evaporating dish and move back just far 
enough so you can no longer see the coin. Remain in this position while your 
partner slowly adds water to the dish.  

•   Make a copy of the diagrams shown in fi gure 10.83. Use dotted lines to 
extend back the rays shown entering the observer’s eye to see where they 
seem to be coming from. This enables you to locate the centre of the image 
of the coin.    

Discussion   
1.   How does the position of the coin appear to change while the water is being 

added?  
2.   Which other feature of the coin appears to change?  
3.   What appears to happen to the coin as water is added to the evaporating 

dish?  
4.   Is the image of the coin above or below the actual coin?   

  FIGURE 10.83  The image 
of the coin is not in the 
same place as the actual 
coin.  

Beaker

Water

Coin

Water

Coin

Evaporating
dish

  FIGURE 10.82   
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Investigation 10.6: Total Internal reflection
Aim
To observe total internal reflection of light in a Perspex prism
You will need:
ray box kit
12 V DC power supply
Perspex triangular prism

• Connect the ray box to the power supply. Place the ray box over a 
page of your notebook. Use one of the black plastic slides in the ray 
box kit to produce a single thin beam of light that is clearly visible on 
the white paper.

• Place a Perspex triangular prism on your notebook and direct the thin 
beam of light towards it as shown in figure 10.84. Observe the beam 
as it passes through the prism.

• Turn the prism slightly anticlockwise, closely observing the thin light 
beam as it travels from the Perspex prism back into the air. Continue 
to turn the prism until the beam no longer emerges from the prism.

Discussion
1. Describe what happens to the thin light beam as it passes from air into 

the Perspex prism and back into the air.
2. Outline what happens to the beam of light when it no longer emerges 

from the prism.
3. Draw a series of two or three diagrams showing how the path taken by 

the beam of light changed as you turned the prism.

Narrow beam
of light from
ray box

Perspex
prism

FIGURE 10.84 Observe the 
beam of light as it passes 
through the prism.
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TOPIC 11
Thermodynamics

11.1 Overview
11.1.1 Module 3: Waves and Thermodynamics
Thermodynamics
Inquiry question: How are temperature, thermal energy and particle motion related?
Students:
 • explain the relationship between the temperature of an object and the kinetic energy of the particles 

within it (ACSPH018)
 • explain the concept of thermal equilibrium (ACSPH022)
 • analyse the relationship between the change in temperature of an object and its specific heat capacity 

through the equation ΔQ = mcΔT  (ACSPH020)
 • investigate energy transfer by the process of:

 – conduction
 – convection
 – radiation (ACSPH016)

 • conduct an investigation to analyse qualitatively and quantitatively the latent heat involved in a change of 
state

 • model and predict quantitatively energy transfer from hot objects by the process of thermal conductivity
 • apply the following relationships to solve problems and make quantitative predictions in a variety of 

situations:
 – ΔQ = mcΔT , where c is the specific heat capacity of a substance

 –
Q
t

=  
k A ΔT

d
, where k is the thermal conductivity of a material.

FIGURE 11.1 Incoming radiation is reflected off ice back into space, but is absorbed by the water. How will 
increasing air and ocean temperatures change this scene?
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11.2 Temperature and kinetic energy
11.2.1 Measuring temperature
Our bodies tell us when it is hot or cold. Our fingers warn us when we touch a hot object. However, for all 
that, our senses are not reliable.

Try this at home: Place three bowls of 
water in front of you. Put iced water in the 
bowl on the left, water hot enough for a bath 
in the bowl on the right, and room tempera-
ture water in the one in the middle. Place a 
hand in each of the two outer bowls, leave 
them there for a few minutes, then place both 
hands in the middle bowl. As you would 
expect, your left hand tells you the water is 
warmer, while your right hand tells you it is 
colder.

Thermometers were designed as a way to 
measure temperature accurately. A good ther-
mometer needs a material that changes in a 
measurable way as its temperature changes. 
Many materials, including water, expand when 
heated, so the first thermometer, built in 1630, 
used water in a narrow tube with a filled bulb 
at the bottom. The water rose up the tube as 
the bulb was warmed.

German physicist Daniel Fahrenheit replaced the 
water with mercury in 1724. Liquid thermometers 
now use alcohol with a dye added. Fahrenheit devel-
oped a scale to measure the temperature, using the 
lowest temperature he could reach, an ice and salt 
mixture, as zero degrees, and the temperature of the 
human body as 100 degrees. Fahrenheit also showed 
that a particular liquid will always boil at the same 
temperature. Swedish astronomer Anders Celsius 
developed another temperature scale in 1742, which is 
the one we use today. Celsius used melting ice and 
steam from boiling water to define 0 °C and 100 °C for 
his scale.

A third temperature scale was proposed in 1848 by 
William Thomson, later to be ennobled as Lord 
Kelvin. He proposed the scale based on the better 
understanding of heat and temperature that had devel-
oped by that time (see figure 11.11). This scale uses the symbol ‘K’ to stand for ‘Kelvin’.

Other materials, including gases and metals, also expand with temperature and are used as thermometers. 
A bimetallic strip is two lengths of different metals, usually steel and copper, joined together. The two metals 
expand at different rates, so the strip bends one way as the temperature rises, or the other as it cools. A bime-
tallic strip can be used as a thermometer, a thermostat or as a compensating mechanism in clocks.

joint of two different
metals

Heat source

iron wire

copper wire

FIGURE 11.2 This thermocouple is connected to 
a voltmeter which reads differing voltages as the 
thermocouple changes temperature.

Event 

Temperature

K °C

Absolute zero 0 −273

Helium gas liquefies 4 −269

Lead becomes a superconductor 7 −266

Nitrogen gas liquefies 63 −210

Lowest recorded air temperature on 
the Earth’s surface (Vostok, Antarctica)

184 −89

Mercury freezes 234 −39

Water freezes 273 0

Normal human body temperature 310 37

Highest recorded air temperature on 
the Earth’s surface (Death Valley, USA)

330 57

Mercury boils 630 357

Iron melts 1535 1262

Surface of the Sun 5778 5505

TABLE 11.1 Some temperatures on the Kelvin and Celsius 
scales.
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 Other properties that change with temperature that can be employed in designing a thermometer are:  
 •   electrical resistance of metals, which increases with temperature  
 •   electrical voltage from a thermocouple, which is two lengths of different metals with their ends joined; if 

one end is heated, a voltage is produced  
 •   colour change; liquid crystals change colour with temperature  
 •   colour emitted by a hot object; in steelmaking, the temperature of hot steel is measured by its colour.     

     11.2.2  What is the difference between heat and temperature? 
 If you mix a beaker of cold water at   10 °C   with a beaker of hot water at   50 °C  , you expect the fi nal 
temperature to be about   30 °C  . But if you mix the beaker of cold water with a jug of hot water, the fi nal 
temperature will be a lot closer to   50 °C  .  

  FIGURE 11.3  This steel is nearly   1000 °C   
and has recently been poured in a mould 
to shape it. The steel will continue to 
glow until it has cooled to about   400 °C  .  

  FIGURE 11.4  This liquid crystal 
thermometer indicates body temperature 
when the liquid crystals change colour. 
The thermometer is registering   37 °C  .  

  FIGURE 11.5    

10 °C 50 °C

? °C

Part A: Part B:

50 °C

10 °C

 PHYSICS IN FOCUS 
The lowest temperature: In 2015, the temperature of a cloud of   100 000   rubidium atoms was reduced 
to   50 × 10−12   degrees Kelvin (above absolute zero). The average speed of the atoms was less than   70   
micrometres per second.
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Obviously if an object has more mass, it contains more heat, but how are temperature and heat related?
Consider these two analogies to temperature and heat:

(a) If you drop a marble on your big toe from a height of 1 metre, you would notice it, but it would not hurt. 
However, if you dropped a 1 kg mass from only 10 cm, it would hurt.

The height is to temperature as the impact is to heat.
(b) If you rub your shoes across a carpet, you can generate a voltage as high as 10 000 volts, but the electric 

shock is no more than a twitch. However, a 6-volt car battery can deliver a charge to start the engine.
The voltage is to temperature as the spark is to heat.

These analogies don’t really help to explain what heat is. If an object cools down, there seems to be no 
physical difference other than the drop in temperature. The object does not weigh less because it has lost 
heat! What is being transferred when a hot object warms up a cold object?

In 1798 Benjamin Thompson, later to be called Count Rumford, conducted an experiment on the nature 
of heat. The barrel of a cannon is made by drilling a cylindrical hole in a solid piece of metal. Rumford 
observed that the metal and the drill became quite hot. He devised an experiment to investigate the source 
of the heat and how much heat was produced. Rumford put the drill and the end of the cannon in a wooden 
box filled with water. He measured the mass of water and the rate at which the temperature rose. He 
showed that the amount of heat produced was not related to the amount of metal that was drilled out. He 
concluded that the amount of heat produced depended only on the work done against friction. He said that 
heat was in fact a form of energy, not an invisible substance that is transferred from hot objects to cold 
objects. Instead a hot object had heat energy, in the same way as a moving object has kinetic energy or an 
object high off the ground has gravitational potential energy.

Kinetic energy is the energy associated with the movement of objects. Like all forms of energy, kinetic 
energy is a scalar quantity.

AS A MATTER OF FACT
Count Rumford was born Benjamin Thompson in Massachusetts in 1753.  
By the age of 16 he was conducting experiments on heat. By 1775, when 
the American War of Independence began, he was already a wealthy man 
and of some standing in his community. He joined the British side of the 
war, becoming a senior advisor. While with the army, he also investigated 
and published a paper on the force of gunpowder.

At the end of the war, he moved to England, where he was known as a 
research scientist. A few years later he moved to Bavaria, in what is now 
southern Germany, and spent 11 years there. He moved in royal circles and 
eventually became Bavaria’s Army Minister, tasked with reorganising the 
army. As part of those duties, he investigated methods of cooking, heating 
and lighting. He developed a soup, now called Rumford’s soup, as a 
nutritious ration for soldiers. He also used the soup to establish soup 
kitchens for the poor throughout Bavaria. For his services, he was made a 
Count of the Holy Roman Empire, taking the name ‘Rumford’ from his 
birthplace.

On returning to England, his activities included: (i) redesigning an industrial 
furnace, which revolutionised the production of quicklime, a component of 
cement, and also used for lighting (‘limelight’); (ii) redesigning the domestic 
fireplace to narrow the chimney at the hearth to increase the updraught, 
resulting in greater efficiency and preventing smoke from coming back into the 
room; and (iii) inventing thermal underwear, a kitchen range and a drip coffeepot.

With Joseph Banks and others, Rumford established the Royal Institution 
(RI) in London as a scientific research establishment with a strong emphasis on public education. Initial funding 
came from the ‘Society for Bettering the Conditions and Improving the Comforts of the Poor’, with which Count 
Rumford was centrally involved. Famous scientists in its early years included Humphrey Davy and Michael 
Faraday. Fifteen Nobel prize winners have worked at the RI, and 10 chemical elements were discovered there.

FIGURE 11.6

‘Ten chemical elements 
were discovered at the 
Royal Institution and 15 
Nobel Prize winners 
have worked there.’
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Rumford’s ideas about heat were not taken up for a few decades until, in 1840, James Prescott Joule 
conducted a series of experiments to find a quantitative link between mechanical energy and heat. In other 
words, how much energy is required to increase the temperature of a mass by 1 °C?

Joule used different methods and compared the results:
 • Using gravity: A falling mass spins a paddle wheel in an insulated barrel of water, raising the tempera-

ture of the water; Measure the temperature of water at the top and bottom of a waterfall.
 • Using electricity: Mechanical work is done turning a dynamo to produce an electric current in a wire, 

which heats the water.
 • Compressing a gas: Mechanical work is used to compress a gas, which raises the gas’s temperature.
 • Using a battery: Chemical reactions at the battery terminals produce a current, which heats the water.

Joule obtained approximately identical answers for all methods. This confirmed heat is a form of energy. 
To honour his achievement, the SI unit of energy is the joule (J). The unit, joule, is used to measure the 
kinetic energy of a runner, the light energy in a beam, the chemical energy stored in a battery, the  
electrical energy in a circuit, the potential energy in a lift on the top floor and the heat energy when water 
boils.

One joule is the energy expended when a force of 1 newton acts through a distance of 1 metre. The usual 
metric prefixes make the use of the unit more convenient. For example: 

1 kJ(kilojoule) = 103 J 1 MJ (megajoule) = 106 J 1 GJ (gigajoule) = 109 J
The chemical energy available from a bowl of breakfast cereal is usually hundreds of thousands of joules 

and is more likely to be listed on the packet in kilojoules. The amount of energy needed to boil an average 
kettle full of cold water is about 500 kJ.

Examples of 1 joule include:
 • the kinetic energy of a tennis ball moving at about 6 m/s
 • the heat energy needed to raise the temperature of 1 gram of dry air by 1 °C
 • the heat energy needed to raise the temperature of 1 gram of water by 0.24 °C
 • the energy released when an apple falls 1 m to the ground
 • the amount of sunlight hitting a square centimetre every 10 seconds when the Sun is directly above
 • the amount of sound energy entering your eardrum at a loud concert over 3 hours
 • the amount of electrical energy used by a plasma TV screen while on standby every 2.5 seconds
 • the energy released by the combustion of 18 micrograms of methane.

11.2.3 Explaining heat: the kinetic theory of matter
The kinetic theory of matter, which considers all objects as assemblies of particles in motion, is an old one.
First described by Lucretius in 55 AD, the kinetic view of matter was developed over time by Hooke, 
Bernoulli, Boltzmann and Maxwell.

The evidence for the existence of particles includes:
 • gases and liquids diffuse, that is, a combination of two gases or two liquids quickly becomes a mixture, 

for example a dye spreading in water. Even solids can diffuse; if a sheet of lead is clamped to a sheet of 
gold, over time the metals merge to a depth of a few millimetres.

 • the mixing of two liquids gives a final volume that is less than the sum of their original volumes
 • a solid dissolves in a liquid.

WORKING SCIENTIFICALLY 11.1
Devise an experiment to measure the heat generated when two hands are rubbed together. Use your design to 
investigate how/if the amount of heat generated is dependent upon (a) the speed with which the hands are rubbed 
together, (b) the surface area of the hands, or (c) the period of time for which the hands are rubbed together.
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   The kinetic theory of matter assumes that:  
 •   all matter is made up of particles in constant, random and rapid motion  
 •   there is space between the particles.    

 The energy associated with the motion of the particles in an object is called the internal energy of the 
object. The particles can move and interact in many ways, so there are a number of contributions to the 
internal energy. For example: 
 Gases:  In a gas made up of single atoms, such as helium, the atoms move around, randomly colliding with 

each other and the walls of the container: each atom has some translational kinetic energy.  

 However, if the gas is made up of molecules with two or more atoms, the molecules can also stretch, 
contract and spin, so these molecules also have other types of kinetic energy called vibrational and rotational 
kinetic energy.  

bending

spinning

moving

stretching

vibrational
kinetic energy

rotational
kinetic energy

translational
kinetic energy

  FIGURE 11.9  The movements of a molecule  .

(a) (b) (c)

  FIGURE 11.7  Iodine crystals sublimate (turn 
directly into a gas) when heated. (a) This 
diagram shows a gas jar with iodine crystals. 
(b) As the crystals warm up, they produce a 
purple gas that diffuses throughout the jar. 
(c) After a long period of time, the crystals 
have completely sublimated.  

  FIGURE 11.8  Moving single atoms have 
translational kinetic energy.  



TOPIC 11 Thermodynamics 265

Liquids:  Like a gas, molecules in a liquid are free to move, 
but only within the confines of the surface of the 
liquid. There is some attraction between molecules, 
which means there is some energy stored as 
molecules approach each other. Stored energy is 
called potential energy. It is the energy that must 
be overcome for a liquid to evaporate or boil.

Solids:  In a solid, atoms jiggle rather than move around. 
They have kinetic energy, but they also have a lot 
of potential energy stored in the strong attractive 
force that holds the atoms together. This means 
that a lot of energy is required to melt a solid.

Temperature is a measure of the average translational 
kinetic energy of particles. The other contributions to the 
internal energy do not affect the temperature. This becomes 
important when materials melt or boil because the added 
heat must go somewhere, but the temperature does not 
change.

The kinetic theory of matter is the 
origin of the Kelvin temperature 
scale. If temperature depends on the 
movement of particles, then the 
slower they move, the lower the tem-
perature. When the particles stop 
moving, the temperature will be the 
lowest that is physically possible. 
This temperature was adopted as 
absolute zero. But how do we 
measure it and what is its value?

In the early 1800s, gases were a 
good material to work with to explore 
the nature of matter. An amount of 
gas in a glass vessel could be heated 
and the variables of temperature, volume and pressure to keep the volume fixed could be easily measured. 
Joseph Gay-Lussac and Jacques Charles independently investigated how the volume of gases changed with 

FIGURE 11.10 Movement of atoms in a solid.

TABLE 11.2

  Internal energy

 
Movement that is NOT 
related to temperature

Movement that is related to 
temperature

Atoms in a gas None Moving and colliding

Molecules in a gas Spinning, stretching,  
compressing and bending

Moving and colliding

Molecules in a liquid Spinning, stretching,  
compressing and bending

Moving and colliding

Atoms in a solid Pulling and pushing Jiggling

Energy types Other types of kinetic energy, 
potential energy

Translational kinetic energy

−273

0

−200 −100 0 100 200 300

73 173 273 373 473 573

temperature

Kelvin scale (K)

Celsius
scale (°C)

extra
polation

FIGURE 11.11 
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temperature if they were kept under a constant pressure. They found that all gases kept at constant pressure 
expand or contract by 1/273 of their volume at 0 °C for each Celsius degree rise or fall in temperature.

From that result you can conclude that if you cooled the gas, and it stayed as a gas and did not liquefy, 
you could cool it to a low enough temperature that its volume reduced to zero. The temperature would be 
absolute zero. According to their experiments, absolute zero was −273 °C. Nowadays more accurate exper-
iments put the value at −273.15 °C.

In degrees Kelvin, absolute zero is 0 K. The increments in the Kelvin temperature scale are the same size 
as those in the Celsius scale so, if the temperature increased by 5 °C, it also increased by 5 K. The conver-
sion formula between the two temperature scales is:

degrees Kelvin = degrees Celsius + 273

11.2.4 Thermal equilibrium
Energy is always transferred from a 
region of high temperature to a region 
of lower temperature until both regions 
reach the same temperature. When the 
temperature is uniform, a state of 
thermal equilibrium is said to exist.

So, when a hot nail is dropped into 
a beaker of cold water, energy will be 
transferred from the hot nail into the 
water even though the hot nail has less 
total internal energy than the water. 
When thermal equilibrium is reached, 
the temperatures of the water and the 
nail are the same. The particles of 
water and the particles in the nail have 
the same amount of random transla-
tional kinetic energy. Figure 11.12 
shows how the kinetic particle model 
can be used to explain the direction of 
energy transfer in the beaker.

Implicit in the above discussion on 
thermal equilibrium and internal energy 
is the subtle but important point made 
by James Clerk Maxwell that ‘All heat 
is of the same kind’.

11.2 SAMPLE PROBLEM 1

What is the Kelvin temperature at which ice melts?

SOLUTION:

Ice melts at 0 °C, so the equivalent Kelvin temperature is 0 + 273 = 273 K.
Note: In 1968, the international General Conference on Weights and Measures decided that Kelvin 

temperatures do not use the ° symbol as do Celsius and Fahrenheit temperatures.

low kinetic energy,
low temperature

high kinetic energy,
high temperature

water

water

nail

Some of the
kinetic energy of the
particles in the nail is
transferred to the
water as the particles
in the nail collide with
particles of water.

FIGURE 11.12 The particles in the nail have more kinetic energy 
(on average) than those that make up the water. They collide 
with the particles of water, losing some of their kinetic energy 
and increasing the kinetic energy of individual particles of water. 
The temperature of the surrounding water increases.

Some energy is also
transferred to the air.

swimmer’s body
temperature 37 °C

Energy is transferred
to the water.

Energy is transferred
to the water.

water
temperature 15 °C

FIGURE 11.13 When you swim in a cold pool, energy is 
transferred from your body into the water. The water has much 
more total internal energy than your body because there is so 
much of it. However, the particles in your body have more 
random translational kinetic energy that can be transferred to 
the particles of cold water. Hopefully, you would not remain in 
the water long enough for thermal equilibrium to be reached.
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11.2.5 Laws of thermodynamics
Three laws of thermodynamics were progressively developed during the 19th century, but in the 20th century 
it became apparent that the principle of thermal equilibrium could be seen as the logical underpinning of these 
three laws. Consequently, the Zeroth Law of Thermodynamics became accepted.

Zeroth Law of Thermodynamics
Consider three objects: A, B and C. It is the case that A is in thermal equilibrium with B, and C is also in 
thermal equilibrium with B. Since ‘All heat is of the same kind’, it follows that A is in thermal equilibrium 
with C.

In practice this means that all three objects, A, B and C, are at the same  temperature, and the law enables 
the comparison of temperatures.

First Law of Thermodynamics
The First Law of Thermodynamics states that energy is conserved and cannot be created or destroyed. If 
there is an energy change in a system, all the energy must be accounted for. From a thermodynamics point 
of view, the internal energy of a substance and any change in it are a crucial part of this accounting exercise.

Consider a volume of air inside a balloon that is placed in direct sunlight. The air inside the balloon will 
get hotter and the balloon will expand slightly.

The First Law of Thermodynamics says:

Change in the internal energy  = Heat energy applied  − Work done 
of the air to the air by the air

Using symbols: ΔU =    Q −   W
The energy from the Sun heats the air inside the balloon, increasing the kinetic energy of the air mole-

cules. The air molecules lose some of this energy as they repeatedly collide with the wall of the balloon, 
forcing it outwards.

The First Law of Thermodynamics applies to many situations: cylinders in a car engine, hot air balloons, 
food consumption, pumping up a tyre, and the weather. Consequently, the word ‘system’ is often used as a 
generic name when discussing thermodynamics.
Note: The words in bold, ‘of’, ‘to’ and ‘by’, and the minus sign are important in the equation as Q and W 
can be either positive or negative.
Guide:
If a system absorbs heat, e.g. energy from sunlight, then Q > 0.

If a system releases heat, e.g. when you sweat, then Q < 0.

If a system does work on the surroundings, e.g. a hot balloon expands, then W > 0.

If the surroundings do work on the system. e,g, pumping up a tyre, then W < 0.

11.2 SAMPLE PROBLEM 2

(a) A balloon is placed in direct sunlight. The sunlight supplies 200 joules of energy to the balloon. 
The air inside pushes out the balloon surface, doing 50 joules of work. By how much does the 
internal energy of the air inside change?

(b) While doing some heavy lifting, you do 2500 joules of work on the weights while releasing 
3000 joules of heat. By how much did your internal energy change?

SOLUTION:

(a) Q = 200 J,  W = 50 J,  so ΔU = 200 − 50 = 150 J. The internal energy of the air in the balloon 
increased by 150 J.

(b) Q = −3000 J,  W = 2500 J, so ΔU = −3000 − 2500 = −5500 J. Your internal energy decreased 
by 5500 J.
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11.3 Changing temperature
11.3.1 Specific heat capacity
Once the temperature of materials could be accurately 
measured, it became apparent that, when heated, some 
materials increased in temperature more quickly than 
others. The property of the material that describes this 
phenomenon is called the specific heat capacity and is 
defined as the amount of energy required to increase the 
temperature of 1 kg of the substance by 1°C (or K).

It takes more energy to increase the temperature of 
water by 1°C than any other common substance. Water 
also needs to lose more energy to decrease in tempera-
ture. In simple terms, this means that water maintains its 
temperature well, cooling down and heating up more 
slowly than other materials.

Specific heat capacities differ because of two factors:
 • the different contributions to the internal energy by the 

forms of energy other than translational kinetic energy, and
 • the varying mass of individual atoms and molecules.

The internal energy of single-atom gases, such as helium, 
neon and argon, consists of only translational kinetic energy. 
So, the specific heat capacities should be the same if you 
account for their difference in mass. Look up the atomic 
weight for each gas and multiply it by each gas’s specific 
heat capacity and compare your answers.

11.2 Exercise 1
1 Estimate each of the following temperatures in Kelvin:

(a) the maximum temperature in Sydney on a hot summer’s day
(b) the minimum temperature in Sydney on a cold, frosty winter’s morning
(c) the current room temperature
(d) the temperature of cold tap water
(e) the boiling point of water.

2 How does the term ‘heat’ differ from the term ‘temperature’?
3 True or false? ‘You can tell whether the internal energy of a body is due to an energy transfer as heat or as work.’
4 Explain what is meant by the term thermal equilibrium.
5 Carbon dioxide sublimates, that is, it goes directly from solid to gas, at −78.5 °C. What is this tempera-

ture in degrees Kelvin?
6 The temperature of the surface of the planet Mars was measured by the Viking lander: it ranged from 

256 K  to 166 K. What are the equivalent temperatures in degrees Celsius?
7 A block of ice is melted by 100 joules of energy. What is the size and the sign of W and ΔU?
8 Some countries, such as the United States, use the Fahrenheit scale rather than the Celsius tempera-

ture scale. On the Fahrenheit scale, water boils at 212 oF and freezes at 32 oF. The temperature −40 oC 
is equal to −40 oF.
(a) Use this information to derive an equation that will convert a Fahrenheit temperature (F) into a Celsius 

temperature (C).
(b) What would be the Celsius temperature equivalent of 400 oF?

9 One joule of heat energy is needed to raise the temperature of 1 gram of water by 0.24 °C. How many joules 
of heat energy would be needed to raise the temperature of 120 grams of water from 20 oC to 60 oC?

10 On an X temperature scale, water freezes at −25 °X and boils at 375 oX. On a Y temperature scale, water 
freezes at −70 oY and boils at −30 oY. What will a temperature of 50 oY be on the X temperature scale?

TABL 11.3  Specific heat capacity of some 
common substances.

Substance
Specific heat 

capacty  (J kg−1 K−1)

Helium 5193

Water 4200

Human body (average) 3500

Cooking oil 2800

Ethylene glycol (used in 
car ‘antifreeze’)

2400

Ice 2100

Steam 2000

Fertile topsoil 1800

Neon 1030

Air 1003

Aluminium  897

Carbon dioxide  839

Desert sand  820

Glass (standard)  670

Argon  520

Iron and steel (average)  450

Zinc  387

Copper  385

Lead  129
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The quantity of energy, Q, transferred to or from a substance in order to change its temperature is directly 
proportional to three factors:
 • the mass of the substance (m)
 • the change in temperature (ΔT)
 • the specific heat capacity of the substance (c).

Thus, 
Q = mcΔT

This example is a good illustration of the implications of a high specific heat capacity. Even though there 
was a smaller mass of water than aluminium, the final temperature was closer to the original water 
temperature than the original aluminium temperature.

11.3 SAMPLE PROBLEM 1

(a) How much energy is needed to heat 8.0 L (about 8.0 kg) of water from a room temperature of 
15 °C to 85 °C (just right for washing dishes)?

(b) A chef pours 200 g of cold water with a temperature of 15 °C into a hot aluminium saucepan 
with a mass of 250 g and a temperature of 120 °C. What will be the common temperature of the 
water and saucepan when thermal equilibrium is reached? Assume that no energy is transferred 
to or from the surroundings.

SOLUTION:

(a) Q = mcΔT
where
c = 4200 J kg−1K−1 (from table 11.3)
m = 8.0 kg
ΔT = 70 K (same change as 70 °C)
Therefore,
Q = 8.0 kg × 4200 J kg−1K−1 × 70 K (substituting data)

= 2 352 000 J (solving)
= 2352 kJ (using the most appropriate units)
= 2.4 × 103 kJ.

The energy needed is best expressed as 2400 kJ.
(b) The solution to this question relies on the following three factors:

1. Energy is transferred from the saucepan into the water until both the saucepan and the water 
reach the same temperature (Tf  °C).

2. The amount of internal energy (Qw) gained by the water will be the same as the amount of 
internal energy lost by the saucepan (Qs).

3. The internal energy gained or lost can be expressed as mcΔT . (ΔT  can be expressed in K or °C 
since change in temperature is the same in both units.)

Therefore,
          Qw = Qs

mwcwΔTw = mscsΔTs

where
change in temperature of the water, ΔTw = Tf − 15 °C
change in temperature of the saucepan, ΔTs = 120 °C − Tf.

0.200 g × 4200 J kg−1 °C−1 × (Tf − 15 °C) = 0.250 g × 900 J kg−1 °C−1 × (120 − Tf)
 (substituting data)

840Tf − 12 600 = 27 000 − 225Tf (simplifying and expanding brackets)
1065Tf = 39 600 

Tf = 37 °C (solving)
The saucepan and water will reach a common temperature of 37 °C.
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11.3.2 Latent heat and the kinetic particle model of matter
In order for a substance to melt or evaporate, energy must be added. During the process of melting or evap-
orating, the temperature of the substance does not increase. The energy added while the state is changing is 
called latent heat. The word latent is used because it means ‘hidden’. The usual evidence of heating — a 
change in temperature — is not observed.

Similarly, when substances freeze or condense, energy must be released. However, during the process of 
changing state, there is no decrease in temperature accompanying the loss of internal energy.

In simple terms, the energy transferred to or from a substance during melting, evaporating, freezing or 
condensing is used to change the state rather than to change the temperature.

During a change of state, internal energy is gained or lost from the substance. Recall, however, that the 
internal energy includes the random kinetic and potential energy of the particles in the substance. The 
random translational kinetic energy of particles determines the temperature.

When a substance being heated reaches its melting point, the incoming energy increases the potential 
energy of the particles rather than the random translational kinetic energy of the particles. After the sub-
stance has melted completely, the incoming energy increases the kinetic energy of the particles again. 
When the substance is being cooled, the internal energy lost on reaching the melting (or freezing) point 
is potential energy. The temperature does not decrease until the substance has completely solidified.

The same process occurs at the boiling point of a substance. While evaporation or condensation takes 
place, the temperature of the substance does not change. The energy being gained or lost is latent heat, 
‘hidden’ as changes in internal potential energy take place.

Specific latent heat of fusion
The specific latent heat of fusion is the quantity of energy required to change 1 kilogram of a substance 
from a solid to a liquid without a change in temperature. Note that the same quantity of energy is lost 
without a change in temperature during the change from a liquid to a solid. The specific latent heat of 
fusion of water is 334 kJ kg−1.

Specific latent heat of vaporisation
The specific latent heat of vapor-
isation is the quantity of energy 
required to change 1 kilogram of a 
substance from a liquid to a gas 
without a change in temperature. 
Note that the same quantity of 
energy is lost without a change in 
temperature during the change 
from a gas to a liquid. The specific 
latent heat of vaporisation of water 
is 2.3 × 103kJ kg−1.

AS A MATTER OF FACT
Eating a hot pie can be a health hazard! The temperature of the pastry and filling of a hot pie are the same. 
Thermal equilibrium has been reached. So why can you bite into a pie that seems cool enough to eat and be 
burnt by the filling?

The reason is that the filling is mostly water, while the pastry is mostly air. When your mouth surrounds that 
tasty pie, energy is transferred from the pie to your mouth. Each gram of water in the filling releases about 4 J of 
energy into your mouth for every 1 °C lost (since the specific heat of water is 4200 J kg−1K−1). Each gram of air 
in the pastry releases only about 1 J of energy into your mouth for every 1 °C lost (since the specific heat of air is 
1000 J kg−1K−1). Gram for gram, the filling transfers four times more energy into your mouth than the pastry.

melting

latent heat
of fusion

latent heat
of vaporisation

temperature
increases

temperature
increases

temperature
increases

evaporation

freezing
temperature
decreases

temperature
decreases

temperature
decreases

condensation

SOLID LIQUID GAS

FIGURE 11.14 Changes of state and latent heat.
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Table 11.4 details both the specific latent heat of fusion and the specific latent heat of vaporisation of a 
number of common substances.

The graph in figure 11.15 shows how the temperature of water increases as it is heated at a constant rate. 
During the interval BC, the temperature is not increasing. The water is changing state. The energy trans-
ferred to the water is not increasing the random translational kinetic energy of water particles. Note that the 
gradient of the section AB is considerably less than the gradient of the section CD. What difference in the 
properties of water and steam does this reflect?

Algebraically, the quantity of energy, Q, required to change the state of a substance without a change in 
temperature can be expressed as:

 Q = mL
where

m = mass of the substance
L = specific latent heat of fusion or vaporisation.

11.3.3 Evaporation
Your skin is not completely watertight, which allows water from the skin 
and tissues beneath it to evaporate. The latent heat of vaporisation required 
for the water to change state from liquid to gas is obtained from the body, 
reducing its temperature. Evaporation of water from the mouth and lungs 
also takes place during the process of breathing. Even without sweating, the 
energy used to evaporate water in the body accounts for about 17% of the 
total heat transfer from the body to the environment.

Water evaporates even though its temperature is well below its boiling 
point. The temperature is dependent on the average translational kinetic 
energy of the water molecules. Those molecules with a kinetic energy greater 
than average will be moving faster than the others. Some of them will be 
moving fast enough to break the bonds holding them to the water and escape 
from the liquid surface. The escaping molecules obtained their additional 
energy from the rest of the liquid water, thus reducing its temperature.

TABL 11.4  Specific latent heat of some common substances.

Substance
Specific latent heat 
of fusion (J kg−1)

Specific latent heat of 
vaporisation (J kg−1)

Water 3.3 × 105 2.3 × 106

Oxygen 6.9 × 103 1.1 × 105

Sodium chloride 4.9 × 105 2.9 × 106

Aluminium 2.2 × 103 1.7 × 104

Iron 2.8 × 105 6.3 × 106
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FIGURE 11.15 A heating 
curve for water being 
heated at a constant rate.
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B

gas
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FIGURE 11.16 Particle A 
experiences forces of 
attraction from the other 
surrounding particles in all 
directions. Particle B does 
not experience as many 
forces, so it will need less 
kinetic energy to escape 
the forces of attraction and 
evaporate.

AS A MATTER OF FACT
A burn caused by steam at 100 °C is considerably more serious than a burn caused by the same mass of 
boiling water. Each kilogram of hot steam transfers 2600 kJ of energy to your skin as it condenses to water at 
100 °C. Each kilogram of newly condensed steam then transfers 4.2 kJ for each °C drop in temperature as it 
cools to your body temperature of about 37 °C. That’s about 265 kJ. The total quantity of energy transferred by 
each kilogram of steam is therefore about 2865 kJ. A kilogram of boiling water would transfer 265 kJ of energy 
as it cooled to your body temperature.
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  11.4  Transferring heat 
       11.4.1  Keeping warm, keeping cool 
 During heating and cooling, energy is always transferred from a 
region of high temperature to a region of lower temperature. There are 
many situations in which it is necessary to control the rate at which 
the energy is transferred.  
 •   Warm-blooded animals, including humans, need to maintain their 

body temperature in hot and cold conditions. Cooling of the body 
must be reduced in cold conditions. In hot conditions, it is important 
that cooling takes place to avoid an increase in body temperature.  

 11.3 Exercise 1  
1   How much energy is needed to increase the temperature of your body by   1°C  ?  
2   True or false? ‘When a hot object warms a cool object in a closed system, their temperature changes 

are equal in magnitude.’  
3   Explain why the presence of a large body of water such as an ocean or sea tends to moderate the 

temperature extremes experienced on adjacent dry land.  
4   What temperature increase would be experienced by a   200  -gram cube of iron if its thermal energy was 

increased by   2000 J  ?  
5   A jeweller drops a   10  -gram piece of silver that has been annealed at a temperature   520 °C   into a   1   litre 

water bath at a temperature of   20 °C   to cool it. What will be the fi nal temperature of both the water bath 
and the silver when they have reached thermal equilibrium? (Assume that no energy is lost to the 
surroundings. The specifi c heat capacity of silver is   233 J kg−1 K−1  .)  

6   An   800 g   rubber hot-water bottle that has been stored at a room temperature of   15 °C   is fi lled with   1.5 kg   
of water at a temperature of   80 °C  . Before being placed in a cold bed, thermal equilibrium between the 
rubber and water is reached. What is the common temperature of the rubber and water at this time? 
(Assume that no energy is lost to the surroundings. The specifi c heat capacity of rubber is 
  1700 J kg−1 K−1  . The specifi c heat capacity of water is   4200 J kg−1 K−1  .)  

7   How much energy is required to completely convert   2 kg   of ice at   −5 °C   into steam at   100 °C  ? Assume 
no energy loss to the surroundings.  

8   A mystery metal is used to make a   3.0 kg   container that is then used to hold   12 kg   of water. Both the 
container and the water have an initial temperature of   16 °C  . A   2.0 kg   piece of the mystery metal is 
heated to   200 °C   and dropped into the water. If the fi nal temperature of the entire system is   20 °C   when 
thermal equilibrium is reached, determine the specifi c heat of the mystery metal.  

9   A   50 kg   block of ice at   0 °C   slides along the horizontal surface of a thermally insulated material, starting 
at a speed of   5.4 m s–1   and fi nally coming to rest after travelling   28 m  . What mass of the ice melted as a 
result of friction between the block and the surface? (Assume that all of the energy lost by mechanical 
energy due to the friction is converted to thermal energy in the block of ice.)   

Conduction

Convection Convection

Radiation

Conduction

  FIGURE 11.17   

 WORKING SCIENTIFICALLY 11.2 
 Devise and perform an experiment to determine the specifi c heat constant for a ceramic coffee mug. 

          Try out this Iteractivity :  Thermal equilibrium 
  Searchlight ID: int-6390  

  Try out this Iteractivity :  Changes of state 
Searchlight ID: int-0222

RESOURCES
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 • Keeping your home warm in winter and cool in summer can be a costly exercise, both in terms of energy 
resources and money. Applying knowledge of how heat is transferred from one place to another can help you 
to find ways to reduce how much your house cools in winter and heats up in summer, thus reducing your 
energy bills.

 • The storage of many foods in cold temperatures is necessary to keep them from spoiling. In warm cli-
mates, most beverages are enjoyed more if they are cold. The transfer of heat from the warmer surround-
ings needs to be kept to a minimum.

There are three different processes through which energy can be transferred during heating and cooling: 
conduction, convection and radiation.

11.4.2 Conduction
Conduction is the transfer of heat through a substance as a result of collisions between neighbouring 
vibrating particles. The particles in the higher temperature region have 
more random kinetic energy than those in the lower temperature region. 
As shown in figure 11.18, the more energetic particles collide with the 
less energetic particles, giving up some of their kinetic energy. This 
transfer of kinetic energy from particle to particle continues until thermal 
equilibrium is reached. There is no net movement of particles during the 
process of conduction.

Solids are better conductors of heat than liquids and gases. In solids, 
the particles are more tightly bound and closer together than in liquids 
and gases. Thus, kinetic energy can be transferred more quickly. Metals 
are the best conductors of heat because free electrons are able to transfer 
kinetic energy more readily to other electrons and atoms.

The thermal conductivity (k) of a material is a constant that expresses 
how easily heat is transferred through it. Substances such as metals, which 
are good conductors of heat, have high thermal conductivity constants, while thermal insulators such as air 
or polystyrene have very low thermal conductivity constants, as shown in table 11.5.

The rate at which the heat is transferred across an object can be determined by considering the thermal con-
ductivity constant of the material from which the object is made, the difference in temperature across the object 

(ΔT), its cross-sectional area (A) and its thickness or length (d). The relationship between these variables and 

the rate of heat transfer (
Q
t ) is expressed in the thermal conduc-

tivity equation: 

Q
t

=  
k A ΔT

d
where A is in m2, T  is in oC, d is in m, and the rate of heat 
transfer is in J s−1.

TABL 11.5  Thermal conductivity 
constants of some common 
substances.

Material
Thermal conductivity 

constant, k (W m−1 oC−1)

Silver 427

Copper 398

Aluminium 237

Cast iron 55

Brick 1.6

Ice 2.18

Water 0.58

Expanded 
polystyrene

0.3

Air 0.024

Argon 0.016
d

Q

T2 > T

Material having
thermal conductivity k

Area A

T2 T1

FIGURE 11.19 Factors affecting the rate of heat 
transfer through a material.

direction of heat transfer

high
temperature

low
temperature

FIGURE 11.18 Conduction is 
the transfer of heat due to 
collisions between 
neighbouring particles.
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11.4.3 Convection
Convection is the transfer of heat through a substance as a result of the 
movement of particles between regions of different temperatures. 
Convection takes place in liquids and gases where particles are free to 
move around. In solids, the particles vibrate about a fixed position and 
convection does not occur.

The movement of particles during convection is called a convection 
current. Faster moving particles in hot regions rise while slower moving 
particles in cool regions fall. The particles in the warm water near the 
flame in figure 11.20 are moving faster and are further apart than those in 
the cooler water further from the flame. The cooler, denser water sinks, 
forcing the warm, less dense water upwards. This process continues as the 
warm water rises, gradually cools and eventually sinks again, replacing 
newly heated water.

Convection currents are apparent in ovens that do not have fans. As the 
air circulates, the whole oven becomes hot. However, the top part of the 
oven always contains the hottest, least dense air. As the air cools, it sinks 
and is replaced by less dense hot air for as long as the energy source at the 
bottom of the oven remains on. Fans can be used to push air around the 
oven, providing a more even temperature.

Home heating systems use convection to move warm air around. 
Ducted heating vents are, where possible, located in the floor. Without the aid of powerful fans, the warm 
air rises and circulates around the room until it cools and sinks, to be replaced with more warm air. In 
homes built on concrete slabs, ducted heating vents are in the ceiling. Fans are necessary to push the warm 
air downwards so that it can circulate more efficiently.

In summer, loose-fitting clothing is more comfortable because it allows air to circulate. Thus, heat can 
be transferred from your body by convection as the warm air near your skin rises and escapes upwards.

Hot summer days
During hot summer days, radiant energy from the Sun heats the land and sea. The land, however, has a 
lower specific heat capacity than the sea, and soon has a higher temperature than the water. The air near the 
ground becomes hot as a result of conduction. As this air gets hot, it expands, becoming less dense than the 
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water

FIGURE 11.20 Purple 
particles from a crystal of 
potassium permanganate 
carefully placed at the bottom 
of the beaker are forced 
around the beaker by 
convection currents in the 
heated water.

11.4 SAMPLE PROBLEM 1

The end of a 30 cm long copper rod at 20 oC is dropped into a campfire at a temperature of 400 oC   
If the rod is circular with a diameter of 1 cm, at what rate will the heat be transferred along the length 
of the rod?

SOLUTION:

First, the cross-sectional area of the rod is determined: 

A = π(r)2 = π (0.005 m)2 = 7.8 × 10−5 m2

Then, 
Q
t

= k A ΔT
d

Q
t

=  
(398 W m−1 °C−1) (7.8 × 10−5 m2) (400 °C −  20 °C) 

(0.3 m)

Q
t

= 39 J s−1
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cooler, denser air over the sea. 
The air over the sea rushes in 
towards the land, replacing the 
rising warm air, causing what is 
known as a sea breeze. Coastal 
areas generally experience less 
extreme maximum temperatures 
than inland areas as a result of 
sea breezes.  

 On the south coast of Australia, 
strong northerly winds blowing 
from the land will occasionally prevent convection from causing a sea breeze. When this happens in summer, 
temperatures can soar — often above   40 °C  . 

 During the night, if the land becomes colder than the sea, convection currents push cool air from the land 
towards the sea, creating a land breeze.  

     Convection inside the Earth 
 Energy transfer by convection is common in 
gases and liquids, but it can also occur in solids 
under the right conditions. The high tempera-
tures, about   2000 °C  , and pressures in the Earth’s 
mantle are enough to make solid rock move, only 
very slowly of course. The speed of the rock 
movement is a few centimetres per year. 

 The heat energy in the Earth comes from the 
radioactive decay of elements such as uranium. 
The heat energy is not evenly distributed and 
hot spots occur under the mantle. The hot 
lighter rock at these points slowly rises, while denser rock at colder spots slowly sinks. This sets up a con-
vection cell in the Earth’s mantle with the surface crust moving horizontally across the Earth. 

 The molten rock wells up at mid-ocean ridges and moves out. The rock eventually meets the edge of a conti-
nental plate and cools further, becoming denser, then sinks back towards the mantle in a deep ocean trench.  

  11.4.4  Radiation 
 Heat can be transferred without the presence of particles by the process of radiation. All objects with a 
temperature above absolute zero   (0 K)   emit small amounts of  electromagnetic radiation . Visible light, 
microwaves, infra-red radiation, ultraviolet radiation and x-rays are all examples of electromagnetic radia-
tion. All electromagnetic radiation is transmitted through empty space at a speed of   3.0 × 108 m s−1  , which 
is most commonly known as the speed of light. 

 Electromagnetic radiation can be absorbed by, refl ected from or transmitted through substances. Scientists 
have used a wave model to explain much of the behaviour of electromagnetic waves. These electromagnetic 
waves transfer energy, and refl ect and refract in ways that are similar to waves on water. 

warm air rises over land

cool air replaces warm rising air

warm ground heats air

  FIGURE 11.21  A sea breeze is caused by convection currents resulting 
from temperature differences between the land and the sea.  
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  FIGURE 11.22  New crust is formed at a ridge and 
returns to the mantle at a trench.  

 WORKING SCIENTIFICALLY 11.3 
Some coffee mugs seem better at keeping the coffee warm for a longer period of time than others. By 
investigating the effect that the material, wall thickness, shape and surface area of the opening of a coffee mug 
has on its ability to keep coffee warm, design the most effective mug possible.
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What distinguishes the different types of electromagnetic radiation from one another is:
 • their wavelength (the distance the wave takes to repeat itself)
 • their frequency (the number of wavelengths passing every second)
 • the amount of energy they transfer.

These properties in turn determine their ability to be transmitted through transparent or opaque objects, 
their heating effect and their effect on living tissue.

Figure 11.23 shows the electromagnetic spectrum and demonstrates that higher energy radiation 
corresponds to low wavelength.

Why do hot objects emit electromagnetic radiation?
All matter is made up of atoms. At any temperature above absolute zero, these atoms are moving and colliding 
into each other. The atoms contain positive and negative charges. The motion of the atoms and their collisions 
with other atoms affect the motion of the electrons. Because they are charged and moving around, the electrons 
produce electromagnetic radiation. Electrons moving in an antenna produce a radio signal, but in a hot object the 
motion is more random with a range of speeds.

So, a hot object produces radiation across a 
broad range of wavelengths. If its temperature 
increases, the atoms move faster and have more 
frequent and more energetic collisions. These pro-
duce more intense radiation with higher frequen-
cies and shorter wavelengths.

During the late 19th century, scientists con-
ducted investigations into how much radiation 
was produced across the spectrum and how this 
distribution changed with temperature. The results 
are displayed in figure 11.25.

The graphs for different temperatures are 
roughly the same shape. Starting from the right 
with long wavelengths, there is very little infra-red 
radiation emitted. As the wavelength gets shorter, 
the radiation produced increases to a maximum; 
finally, as the wavelength shortens even further, 
the amount of radiation drops away quite quickly. 
The graphs for higher temperatures have a peak at 
a shorter wavelength and also have a much larger 
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FIGURE 11.23 The electromagnetic spectrum is the full range of wavelengths of all electromagnetic waves. All 
objects emit some electromagnetic radiation.

FIGURE 11.24 Electromagnetic radiation from a hot 
body.
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area under the graph, meaning a 
lot more energy is emitted.

Early researchers such as 
Jozef Stefan were keen to find 
patterns and relationships in the 
data and to be able to explain 
their observations. In 1879, 
Stefan compared the area under 
the graph for different tempera-
tures. This area is the total 
energy emitted every second 
across all wavelengths, in other 
words, the power.

He found that the power was 
proportional to absolute temper-
ature to the power of 4, that is,

power ∝ T 4.
This means that if the abso-

lute temperature of a hot object 
doubles from 1000 K to 2000 K, the amount of energy emitted every second increases by 24 
(2 × 2 × 2 × 2 = 16 times).

Using this relationship, Stefan was able to estimate the temperature of the surface of the Sun as 5430 °C 
or 5700 K, which is very close to the value known today of 5778 K.

Ludwig Boltzmann later proved this from a theoretical standpoint, and so the power ∝ T 4 relationship 
is called the Stefan–Boltzmann law.

This relationship applies to all objects, but the constant of proportionality depends on the size of the 
object and other factors.

6000 K
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4000 K

3000 K

10 000 15 000 20 00050000

ultraviolet visible infra-red

Wavelength (× 10−10 m)

1.0

0.5

0

FIGURE 11.25 Intensity for different wavelengths across the electromag-
netic spectrum for four different temperatures: 3000 K,  4000 K,  5000 K 
and 6000 K.

11.4 SAMPLE PROBLEM 2

(a) When iron reaches about 480 °C, it begins to glow with a red colour. How much more energy is 
emitted by the iron at this temperature, compared to when it is at a room temperature of 20 °C?

(b) How much hotter than 20 °C would the iron need to be to emit 10 times as much energy?

SOLUTION:

(a) STEP 1
Change the temperature to Kelvin.
Temperature of hot iron = 480 °C + 273 = 753 K
Temperature of cold iron = 20 °C + 273 = 293 K

STEP 2
Calculate the ratio.
Ratio of power (hot to cold) = Ratio of temperatures to the power of 4

Phot

Pcold
= (

Thot

Tcold)
4

= (
753
293)

4
= 44

The hot iron emits 44 times as much energy every second as it does when it is at room temperature.
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Wilhelm Wien (pronounced Veen) in 1893 was able to show that as the temperature increased, the 
wavelength of maximum intensity of energy emitted decreased, and indeed the two quantities were inversely 
proportional. That is, the wavelength is proportional to the inverse of the temperature. This can be seen in the 
graph on the right in figure 11.26.

Wien’s law can be written as λmax × T = constant. The value of this constant is 2.90 × 10−3 mK  
(metre–degree Kelvin).

Temperature (Kelvin) 1
temperature

FIGURE 11.26

(b) STEP 1
Change the temperature to Kelvin.
Temperature of cold iron = 20 °C + 273 = 293 K

STEP 2
Calculate the ratio.
Ratio of power (hot to cold) = Ratio of temperatures to the power of 4

Phot

Pcold
= (

Thot

Tcold
)

4

   10 = (
Thot

293)
4

This can be rearranged to give 10
1
4 = Thot

293

To calculate 10
1
4, you can use the xy key on your calculator.

First, enter the number for x, in this case 10, then push the xy key, then enter the number for y, in this 
case 0.25, which is 1

4
 as a decimal. Then hit the equals key. You should get the answer 1.778.

1.778 =
Thot

293
   Thot = 1.778 × 293 = 521 K

STEP 3
Change the temperature to Celsius.
Temperature of hot iron = 521 − 273 = 248 °C
At 248 °C, the iron will emit 10 times as much energy every second as iron at 20 °C. 
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11.4 SAMPLE PROBLEM 3

(a) At what wavelength is the peak intensity of the light coming from a star whose surface temperature 
is 11 000 K (about twice as hot as the Sun)?

(b) In what section of the spectrum is this wavelength?

SOLUTION:

(a) λ max = 2.90 × 10−3 mK
11 000 K

        = 2.636 × 10−7 m

1 nanometre = 10−9 m, so λmax = 263.6 × 10−9 m = 264 nm
(b) 264 nm is beyond the violet end of the visible spectrum, so it is in the ultraviolet section of the 

electromagnetic spectrum.

11.4 Exercise 1
1 Which graph best describes the relationship between the rate of heat transfer through a metal sheet 

and its thickness?

2 At what speed does radiant energy move through space?
3 Why is it not practical to drink hot coffee in an aluminium picnic cup?
4 Stainless steel cookware often has a layer of copper or aluminium on the bottom. What is the most 

likely reason for this?
5 Explain why sweating is the only cooling option for the human body when the surrounding temperature 

is higher than about 34 oC?
6 Calculate the rate of heat loss through a 90 cm × 90 cm glass window in a house that is heated to 24 oC 

if the outside temperature is −5 oC and the glass pane is 10 mm thick. (kglass = 0.27 W m–1 oC–1)
7 The Sun has a surface temperature of 5778 K and radiates energy at a rate of 3.846 × 1026 watts. How 

much energy would a star of similar size radiate if its surface temperature was 8000 K?
8 Determine the surface temperature of a star that emits light at a maximum intensity of 450 nm.
9 What is the wavelength of the light with the peak intensity from our solar system’s closest neighbouring 

star, Proxima Centauri, which has an average surface temperature of 3042 K?
10 A 5 kg block of ice at 0 oC is placed inside a sealed styrofoam esky that has external dimensions of 

40 cm ×  40 cm × 60 cm. The walls, floor and cover of the esky are 1.5 cm thick. If it is assumed that the 
air temperature outside the esky is 25 oC, approximately how long would it take for the ice to melt?

Q/t A

d

Q/t B

d

Q/t C

d

Q/t D

d

FIGURE 11.27
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11.5 Review
11.5.1 Summary
 • A thermometer measures temperature, and various properties of materials can be used to make one.
 • There are different temperature scales, with Celsius and Kelvin being the common ones. Temperatures in 

one scale can be converted to any other.
 • The kinetic particle model of matter explains heat phenomena.
 • Internal energy is the energy associated with the random movement of molecules and it comes in many 

forms, including translational kinetic energy, rotational and vibrational kinetic energy, and potential 
energy.

 • Temperature is a measure of the average translational kinetic energy of the atoms and molecules in a 
substance.

 • Objects at different temperatures, if placed in contact, will reach a common temperature. This process is 
called thermal equilibrium and is described as the Zeroth Law of Thermodynamics.

 • The First Law of Thermodynamics states that if energy is transferred to or from a system, then the total 
energy must be conserved, with any changes in the internal energy of the system given by ΔU = Q − W , 
where ΔU is the change in internal energy, Q is the heat added to the system and W is the work done by 
the system.

 • The specific heat capacity, c, of a substance is the amount of energy required to increase the temperature 
of 1 kg of the substance by 1°C.

 • When substances of different specific heat capacities and different temperatures are mixed, the final tem-
perature can be determined by using the conservation of energy and the relationship Q = m c ΔT  for 
each substance.

 • The latent heat, L, of a substance is the amount of energy required to change the state from solid to 
liquid or liquid to gas of 1 kg of the substance. For a substance of mass m kg, the energy required is given 
by Q = m L.

 • Evaporation of a liquid occurs because some of the faster particles have sufficient energy and speed to 
break free of the surface. The removal of these particles lowers the overall average kinetic energy of the 
remaining particles and consequently the temperature of the liquid.

 • Heat energy can be transferred by conduction, convection and radiation.
 • Conduction is the transfer of heat energy through a material by collisions between adjacent particles.
 • Some materials conduct heat energy well and are called conductors. Others do not and are called insulators.
 • The thermal conductivity constant is a measure of how well a material conducts heat energy.
 • The rate of heat transfer through a material can be calculated using the equation

Q
t

=  
k AΔT

d

 • Convection is the transfer of heat energy through a substance, usually a liquid or a gas, by the movement 
of particles between regions of different temperature. Hotter material is less dense because faster moving 
particles push each other further apart. If free to move, the less dense and hotter material will rise, dis-
placing cooler material.

 • The movement of plates in the Earth’s crust is caused by convection from heat energy within the Earth.
 • Radiation is the transfer of heat energy by the emission of electromagnetic radiation.
 • The emitted radiation comes from a range of wavelengths across the electromagnetic spectrum.
 • The graph of the energy contribution of different wavelengths of emitted radiation has a characteristic 

shape.
 • For a given temperature, there is a specific wavelength at which the most energy is emitted. Its symbol is λmax.
 • The graph of the energy contribution of different wavelengths for a higher temperature has a lower λmax 

and a larger area under the graph.
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 • λmax is inversely proportional to the temperature measured in Kelvin (λmaxT = constant).
 • The amount of energy emitted per second is called power.
 • The area under the graph of energy contribution against wavelength is a measure of power. The area 

under the graph is proportional to the Kelvin temperature raised to the power of four. This can be 

expressed as power ∝ T 4.

11.5.2 Questions
1. Why is the Celsius scale of temperature commonly used rather than the Kelvin scale?
2. What is the main advantage of an absolute scale of temperature?
3. The temperature of very cold water in a small test tube is measured with a large mercury-in-glass thermom-

eter. The temperature measured is unexpectedly high. Suggest a reason why this might be the case.
4. James Joule showed that mechanical energy could be transformed into the internal energy of a substance or 

object. The temperature of a nail, for example, can be raised by hitting it with a hammer. List as many exam-
ples as you can of the use of mechanical energy to increase the temperature of a substance or object.

5. Explain in terms of the kinetic particle model why a red-hot pin dropped into a cup of water has less 
effect on the water’s temperature than a red-hot nail dropped into the same cup of water.

6. If today’s maximum temperature was 14 °C and tomorrow’s maximum temperature is expected to be 
28 °C, will tomorrow be twice as hot? Explain your answer.

7. Explain why energy is transferred from your body into the cold sea while swimming even though you 
have less internal energy than the surrounding cold water.

8. Why can’t you put your hand on your own forehead to estimate your body temperature?
9. It is said that thermometers indirectly measure the temperature of an object by measuring their own 

temperature. Explain this statement by referring to the concept of thermal equilibrium.
10. Adam says that ‘A thermometer measures the average temperature between itself and the object it is 

measuring,’ while Bob says that ‘A thermometer directly measures the temperature of the object.’ 
Explain why each is wrong.

11. For each of the following, calculate the values of Q,  W and ΔU and indicate whether the temperature 
increases, decreases or stays the same.
(a) A gas in a fixed container is heated by 500 J.
(b) A gas in a container with a flexible lid is cooled by ice with 250 J of energy extracted.
(c) A gas in a container with a plunger is squashed by a heavy mass moving down, losing 150 J of 

gravitational potential energy.
(d) A stretched rubber band at room temperature with 5 J of stored energy is released.

12. A can filled with a high-pressure gas has a balloon attached over the top. What happens to the temper-
ature of the gas inside the can as you allow the gas to expand into the balloon?

13. In figure 11.28, two beakers are filled with the 
same gas. A plunger is fitted so that no gas 
escapes; friction is negligible between the 
plunger and the beaker walls.

The block is removed from each plunger, 
and the plunger moves upward.
(a) In each case, does the gas do work or is 

work done on the gas? Explain your 
reasoning in a few sentences.

(b) Is there a larger transfer of thermal energy 
as heat between Gas A and the surroundings 
or between Gas B and the surroundings? 
Explain your reasoning in a few setences. Draw an arrow on each figure indicating the direction of 
thermal energy flow.
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FIGURE 11.28



282 Jacaranda Physics 11

(c) For the expansion of Gas A, how do the work and heat involved in this process affect the internal 
energy of the gas? Explain your reasoning in a few sentences.

(d) For the expansion of Gas B, how do the work and heat involved in this process affect the internal 
energy of the gas? Explain your reasoning in a few sentences.

14. A barbecue uses gas from a gas bottle as its energy source. After the BBQ has been running a while, 
ice is noticed around the top of the gas bottle. Explain the physics principles behind this observation.

15. Two insulated containers are connected by a valve. The valve is closed. One container is filled with 
gas, the other is a vacuum. The valve is opened. Is there any change in temperature? Is there any 
change in the internal energy? What are the values of Q and W in this situation?

16. Consider these three scenarios, then complete the table at the 
right, using either 0,  − or +.
(a) An insulated container, such as a thermos flask, has a 

piston that can be moved up and down without letting the 
air out. The piston is pushed down.

(b) A metal tin with a lid is heated.
(c) A metal tin with a sliding lid and a mass on top is 

heated.
Use the table of specific heat capacities at the right to answer 

questions 17, 18 and 19.
17. The same hotplate is used to heat 50 g of ethylene glycol 

(used in car antifreeze) and 50 g of cooking oil. Both 
substances are heated for 2 minutes. Use the data in the 
table to determine:
(a) which liquid needs more energy to raise its tempera-

ture by 1 °C
(b) which liquid will experience the greater increase in 

temperature.
18. The quantity of energy needed to increase the tempera-

ture of a substance is directly proportional to the mass, 
specific heat capacity and the change in temperature of 
the substance. If 200 kJ is used to increase the tempera-
ture of a particular quantity of a substance, how much 
energy would be needed to bring:
(a) twice as much of the substance through the same 

change in temperature?
(b) three times as much of the substance through a 

temperature change twice as great?
19. Use the table to answer the following questions.

(a) Why is the specific heat capacity of the human body so high?
(b) Why is the specific heat capacity of desert sand so much lower than that of fertile topsoil?
(c) When heating water to boiling point in a saucepan, some of the energy transferred from the 

hotplate is used to increase the temperature of the saucepan. Which would you expect to gain the 
most energy from the hotplate: an aluminium, copper or steel saucepan?

(d) Make some general comments about the order of substances listed in the table of specific heat 
capacities.

20. Use the data in the short table at the right to 
determine the quantity of energy needed to 
evaporate 500 g of water without a change in 
temperature.

  A B C

Heat (+ is in)      

Work (+ is out)      

ΔU      

Substance

Specific latent 
heat of fusion 

(J kg−1)

Specific latent heat 
of vaporisation 

(J kg−1)

Water 3.3 × 105 2.3 × 106

Substance

Specific heat 
capacity 

(J kg−1K−1)

Helium 5193

Water 4200

Human body (average) 3500

Cooking oil 2800

Ethylene glycol (used in 
car ‘antifreeze’)

2400

Ice 2100

Steam 2000

Fertile topsoil 1800

Neon 1030

Air 1003

Aluminium  897

Carbon dioxide  839

Desert sand  820

Glass (standard)  670

Argon  520

Iron and steel (average)  450

Zinc  387

Copper  385

Lead  129
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21. The graph in figure 11.29 shows the heating 
curve obtained when 500 g of candle wax in 
solid form was heated from room temperature 
in a beaker of boiling water.
(a) What is the boiling point of the candle wax?
(b) During the interval BC, there is no increase 

in temperature even though heating 
continued. What was the energy transferred 
to the candle wax being used for during this 
interval?

(c) In which state of matter was the candle wax 
during the interval CD?

(d) Use the heating curve to determine the 
latent heat of fusion of candle wax.

(e) Which is higher: the specific heat capacity 
of solid candle wax or the specific heat 
capacity of liquid candle wax? Explain your 
answer.

(f) Explain in terms of the kinetic particle model what is happening during the interval DE.
22. How much ice at 0°C could be melted with 1 kg of steam at 100 °C, assuming no loss of energy to the 

surroundings? Use the specific latent heat values quoted in table 11.4. The specific heat capacity of 
water is 4200 J kg−1K−1.

23. Explain why vegetables cook faster by being steamed than boiled.
24. Why are burns caused by steam more serious than those caused by boiling water?
25. In hot weather, sweat evaporates from the skin. Where does the energy required to evaporate the sweat 

come from?
26. Explain the importance of keeping a lid on a simmering saucepan of water in terms of latent heat of 

vaporisation.
27. Explain in terms of the kinetic particle model why you can put your hand safely in a 300 °C oven for 

a few seconds, while if you touch a metal tray in the same oven your hand will be burned.
28. How does the evaporation of water cause a reduction in the temperature of the surrounding air?
29. Give two reasons why you feel cooler when the wind is blowing than you would in still air at the 

same temperature.
30. In humid weather, evaporation of perspiration takes place as it does in dry weather. However, the 

cooling effect is greatly reduced. Why?
31. Explain with the aid of a well-labelled diagram how heat is transferred through a substance by con-

duction.
32. Why are liquids and gases generally poorer conductors of heat than solids?
33. Explain in terms of conduction and convection why you don’t heat a test tube of water with the 

Bunsen burner flame near the top of the test tube.
34. Explain with the aid of a well-labelled diagram how convection occurs in a liquid that is being heated 

from below.
35. Why is it not possible for heat to be transferred through solids by convection?
36. When you swim in a still body of water on a hot afternoon there is a noticeable temperature difference 

between the water at the surface and the deeper water.
(a) Explain why this difference occurs.
(b) If the water is rough, the difference is less noticeable. Why?

37. The daytime temperature of an area can decrease for several days after a major bushfire. Why does 
this happen?
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38. The microwave cooking instructions for frozen pies state that pies should be left to stand for two 
minutes after heating. What happens to the pie while it stands?

39. Standing near the concrete wall of a city building after a hot day, you can instantly feel its warmth 
from a few metres away.
(a) How is the energy transferred to you?
(b) What caused the building to get hot during the day?

40. Why do ducts in the ceiling need more powerful fans than those in the floor?
41. Why do conventional ovens without fans have heating elements at the bottom. What is the advantage 

of having an oven with a fan?
42. A 100 W light globe has a tungsten filament, which has a temperature of 2775 K when switched on.

(a) How much radiation does the filament emit at 20 °C?
(b) The voltage on the light globe is reduced to increase the lifetime of the filament. The temperature 

of the filament is now 2000 K. What is the power saving?
(c) The voltage is now increased so that the power output is 200 W. What is the new filament 

temperature in Kelvin?
43. (a)  A piece of iron has a yellow glow when it reaches 1150 °C. How much more energy is emitted 

every second at this temperature compared to when the iron glows red at 480 °C?
(b) At what temperature in degrees Celsius would the iron give off 10 times as much energy as it does 

at 480 °C?
44. Our Sun gives off most of its light in the ‘yellow’ portion of the electromagnetic spectrum. Its λmax is 

510 nm. Calculate the average surface temperature of the Sun.
45. The Earth’s surface has an average temperature of 288 K. What is the wavelength of maximum 

emission from the Earth’s surface?
46. The human body has a surface temperature of about 37 °C.

(a) What is the wavelength at which the human body emits the most radiation?
(b) In what part of the spectrum is this wavelength ?

47. (a)  A violet star has a spectrum with a peak intensity at a wavelength of 4 × 10−7 m. Determine the 
temperature at the surface of this star.

(b) A red star has a spectrum with a peak intensity at a wavelength of 7 × 10−7 m. Determine the 
temperature at the surface of this star.

48. Figure 11.30 shows how λmax (the 
wavelength of the peak of the radiation 
spectrum) for a range of stars varies 
with their surface temperatures.
(a) Use values from the graph to 

confirm Wien’s Law.
(b) Use the graph to estimate the 

surface temperature of a star whose 
intensity peaks at a wavelength of:
(i) 0.4 μm
(ii) 0.27 μm.

(c) Use the graph to estimate the peak 
wavelength for a star with a 
surface temperature of:
(i) 15 000 K
(ii) 5550 K.
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49. Suppose the surface temperature of the Sun was about 12 000 K, rather than about 6000 K.
(a) How much more thermal radiation would the Sun emit?
(b) What would happen to the Sun’s wavelength of peak emission?

50. Two stars have identical diameters. One has a temperature of 5800 K; the other has a temperature of 
2900 K. What are the colours of these stars? Which is brighter and by how much?

PRACTICAL INVESTIGATIONS

Investigation 11.1: The good oil on heating
Aim
This investigation aims to show that different substances require different quantities of energy to change their 
temperatures by the same amount.

It also aims to show that the quantity of energy required to change the temperature of a given substance is 
directly proportional to the mass of the substance.

Apparatus
hotplate
two 100 mL beakers
50 mL of water
cooking oil
electronic balance or other equipment to measure mass
2 thermometers
 Stopwatch or clock with a second hand.

Method
Switch on a hotplate to about half its maximum setting. While waiting for the temperature of the hotplate to 
stabilise, pour 50 mL of water at room temperature into a 100 mL beaker and measure its mass. Add cooking oil 
to an identical beaker so that the beaker and oil have the same total mass as the beaker of water. Record the 
temperature of each liquid.

Place the beaker of water on the hotplate and, while gently stirring, use a stopwatch to record the time taken 
for the temperature of the water to increase by 10 °C.

Pace the beaker of cookng o on the hotpate and whe genty sirin, record th time taken for the temper -
ature of the cooking oil to increase by 10 °C.

Results and analysis
1. Which liquid required more energy to increase its temperature by 10 °C?
2.  Which liquid has the greater resistance to change in temperature?

Repeat the procedure above using 100 mL of water at room temperature.
Before commencing, however, predict how long it will take the water to increase its temperature by 10 °C.

3. By what factor did the amount of energy required to increase the temperature by 10 °C change when the 
amount of water was doubled?

4. Was the result consistent with your prediction? If not, suggest some reasons for the inconsistency.
5. If the cooking oil and water were supplied with the same amount of energy by heating for the same amount 

of time on the same flame, which would experience the greater increase in temperature?

Investigation 11.2: Cooling
Aim
This investigation aims to show that the internal energy of a substance can change without a subsequent change 
in temperature.

It also aims to produce a cooling curve that illustrates the concept of latent heat.

Apparatus
large test tube containing about 2–3 cm depth of paraffin wax
250 mL beaker
heat-proof mat, Bunsen burner and matches
tripod and gauze mat
retort stand and clamp
thermometer.

Method
Place some solid paraffin wax into a large test tube. Heat the test tube in a water bath until the temperature of 
the paraffin wax is about 80 °C.
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 Remove the test tube from the water bath and record the 
temperature of the paraffi n every minute until the temperature has 
fallen to about 30°C. Gently and carefully stir with the thermometer 
while the liquid paraffi n is cooling.   

Results and analysis
1.   Construct a graph of temperature versus time to display your 

data.  
2.   What causes the decrease in temperature of the liquid paraffi n?  
3.   How does the rate of cooling change as the liquid paraffi n 

solidifi es?  
4.   During the process of solidifi cation, what form of internal 

energy is being lost from the paraffi n? Where is it going?  
5.   What is the meaning of the term ‘latent heat of fusion’ and 

how does it relate to this investigation?   

 Investigation 11.3: Relating colour to temperature 
  Aim 
 To relate the colour of a hot object to its temperature 

 Apparatus 
   12 V   mounted lamp 
 voltmeter 
 variable   12 V   power supply 
 ammeter 
 hand spectroscope 

 Theory 
 Wien’s Law for black-body radiation tells us that as an object gets hotter, the dominant wavelength of the 
electromagnetic radiation it emits shifts towards the blue end of the spectrum. The object in this experiment is a 
lamp fi lament. Voltage and current readings will be taken during the experiment so that the resistance of the 
fi lament can be calculated. This will be used as an indication of temperature, as the resistance of a fi lament is 
approximately proportional to its temperature. 

 Method  
1.   Set up a circuit with the power supply, ammeter and mounted lamp in series; place the voltmeter in parallel 

with the lamp.  
2.   Darken the room, set the power supply to its lowest setting and turn it on. Record the readings on the 

voltmeter and ammeter, then calculate the resistance of the fi lament using Ohm’s Law.  
3.   Use the spectroscope to examine the dim light from the glowing fi lament, noting which colours are present 

and their relative intensities. Record this information by shading in the section of spectrum observed.  
4.   Repeat this process for each successively higher setting on the power supply.   

 Results 
 Your results table should resemble that shown below. 

 Questions  
1.   Does each successively higher setting on the power supply produce a higher resistance of the fi lament?  
2.   What colours are present in the spectrum on the lowest setting? Describe your impression of the fi lament 

colour, looking directly at it without the spectroscope.  
3.   What colours are present in the spectrum on the highest setting? Describe your impression of the fi lament 

colour this time, once again without the spectroscope.  
4.   Looking at your series of diagrams representing the spectra, what general change can be seen as 

temperature increases (aside from becoming brighter)?  
5.   Do your results agree with Wien’s Law?   
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  FIGURE 11.31 A water bath is used to 
heat the paraffi n wax.   
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TOPIC 12
Electrostatics

12.1 Overview
12.1.1 Module 4: Electricity and Magnetism
Electrostatics
Inquiry question: How do charged objects interact with other charged objects and with neutral objects?
Students:
 • conduct investigations to describe and analyse qualitatively and quantitatively:

 – processes by which objects become electrically charged (ACSPH002)
 – the forces produced by other objects as a result of their interactions with charged objects (ACSPH103)
 – variables that affect electrostatic forces between those objects (ACSPH103)

 • using the electric field lines representation, model qualitatively the direction and strength of electric 
fields produced by:
 – simple point charges
 – pairs of charges
 – dipoles
 – parallel charged plates

 • apply the electric field model to account for and quantitatively analyse interactions between charged 
objects using:

 – E = F
q

 (ACSPH103, ACSPH104)

 – E = − 
v
d

 – F = 1
4π∈0

× q1q2

r2
 (ACSPH102)

 • analyse the effects of a moving charge in an 
electric field, in order to relate potential 
energy, work and equipotential lines, by 
applying: (ACSPH105)

 – V = ΔU
q

, where U is potential energy 

and q is the charge

12.2 Electric Charge
12.2.1 Electric charge and the structure of atoms
The words electric and electricity are derived from the Greek word for amber: electron. Amber is a naturally 
occurring substance exuded as a resin from certain trees. As long ago as 500 BC, the Greeks had observed 
that if amber was rubbed, it would attract small pieces of material. Today we can observe this phenomenon 
more conveniently using certain man-made materials such as perspex. When a perspex rod is rubbed with 

FIGURE 12.1 Lightning is a naturally occurring example of 
electrical phenomena.
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silk, the rod acquires the ability to attract small pieces of materials such as paper. The rod is said to have 
become electrically charged.

Some other common observations of bodies becoming electrically charged are:
 • when you walk on a carpet on a dry day, your body becomes electrically charged. If you touch a metal 

door handle, you feel a slight shock as your body is discharged.
 • on a dry day a car becomes electrically charged as it moves through the air. If you touch the car you feel 

a slight shock as the car discharges through your body.
We now understand electric charge in terms of the basic structure of matter. All matter is made of atoms 

that are themselves made of electrons, protons and neutrons, as shown in figure 12.2.
Electric charge is a property of electrons and protons. Because of 

their electric charge, these particles exert electric forces on each other. 
Protons carry a positive charge; electrons carry a negative charge. 
The positive charge on a proton is equal in magnitude to the negative 
charge on an electron.

The directions of the forces between electric charges act such that:
 • two positive charges repel one another
 • two negative charges repel one another
 • a positive charge and a negative charge attract one another.

This is summarised as: like charges repel; unlike charges attract.
Neutrons, the third type of particle in atoms, have no electric charge 

and do not experience electric forces. Neutrons are uncharged or neutral.
The SI unit of electric charge is the coulomb (C). The name, is derived 

from Charles Augustin Coulomb (1736–1806), a French physicist who 
studied the forces between electric charges. The coulomb is defined in 
terms of electric current, but, for our purposes, it is sufficient to state that 
a charge of one coulomb is approximately equal to the total charge on 
6.25 × 1018 electrons (or 6.25 × 1018 protons). That is, the charge on one 
electron is approximately −1.60 × 10−19 C, and the charge on one proton is 
approximately +1.60 × 10−19 C.

A coulomb is a very large charge; two charges of 1 C placed 1 metre 
apart would exert forces on each other of approximately 1010 N. A smaller 
unit of charge, the microcoulomb (μC), is often used (1 μC = 10−6 C). 

The symbols Q and q are usually used to represent electric charge. For 
example: Q = 1.4 × 10−5 C.

12.2.2 Neutral and charged bodies
A body that has equal numbers of protons and electrons will be neutral. As each atom in a body normally 
has equal numbers of protons and electrons, most bodies are neutral. However, it is possible for a body to 
lose some of its electrons or to gain extra electrons.

If a body has gained electrons it will have more electrons than protons. The body has an excess of 
electrons and is negatively charged. If a body has lost electrons it will have fewer electrons than protons. 
The body has a deficiency of electrons and is positively charged. A charge on a body due to an excess or 
deficiency of electrons is called an electrostatic charge.

It is always electrons that are gained or lost by a body, as the protons are strongly bound in the nuclei at 
the centres of the atoms. For this reason, we talk about excess and deficiency of electrons rather than 
deficiency and excess of protons.

The deficiency or excess of electrons in a charged body is only a minute fraction (typically no more than 
1 in 1012) of the total number of electrons in the body. When we refer to the charge on a body, it is always 
the net charge that is meant.

FIGURE 12.3 Charles 
Augustin Coulomb, 
French physicist.

Proton

Neutron

Electron

FIGURE 12.2 The structure of an 
atom.
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12.2.3 Conductors and insulators
A conductor is a material that contains charge carriers; that is, 
charged particles that are free to move through the material. Examples 
of conductors and their charge carriers are:
 • salt solutions — the charge carriers are positive and negative ions 

that are free to move through the solution
 • metals — the charge carriers are electrons.

In this preliminary course, metals will be the only conductors 
studied.

An insulator is a material that contains no charge carriers. 
Common insulating materials are dry air, glass, plastics, rubber and 
ceramics. If an insulator is given an electrostatic charge at a particular 
area on the insulator, the charge will remain at that area.

If a conductor is given an electrostatic charge, there are two 
possibilities:
 • If the conductor is insulated (not earthed), there will be a movement 

of electrons within the conductor so that the electrostatic charge is 
as widely spread as possible. The electrostatic charge will be 
distributed on the surface of the conductor (see figure 12.4).

 • If the conductor is earthed, there is a conducting path between the 
conductor and the Earth. Electrons will move to or from the Earth 
to neutralise the conductor. (See figure 12.5 — note the symbol for 
an earth connection.) The Earth is so big that the negative charges 
going to or leaving the Earth produce no detectable charge on it.

12.2.4 Methods of charging
Charging by friction
If two bodies made of different materials are rubbed together, a small number of electrons will be transferred 
from one body to the other. The body that has lost electrons will have a deficiency of electrons and will be 
positively charged. The body that has gained electrons will have an excess of electrons and will be nega-
tively charged.

The direction in which electrons are transferred depends on what two materials are rubbed together. It is 
possible to list materials so that when two of them are rubbed together, the first-listed material becomes 

12.2 SAMPLE PROBLEM 1

A body has a charge of +4.60 μC.
(a) Does it have an excess or a deficiency of electrons?
(b) Calculate how many excess or deficient electrons the body has.

SOLUTION:

(a) Since the body is positively charged, it has a deficiency of electrons.
(b) As the charge on one electron is 1.60 × 10−19

 C, the number of deficient electrons, n, that have a 
charge equal to 4.60 μC is given by:

n =
(4.60 × 10−6)

(1.60 × 10−19)
= 2.88 × 1015
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FIGURE 12.4 Charge on 
insulated conductors: (a) Charge 
on a positively charged 
conductor and (b) charge on a 
negatively charged conductor.
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positively charged conductor and 
(b) earthing a negatively charged 
conductor.



290 Jacaranda Physics 11

positively charged and the later-listed material becomes negatively charged. A partial list of this type is 
shown here: Air, Rabbit fur, Glass, Human hair, Nylon, Wool, Silk, Steel, Wood, Perspex.

For example:
 • If glass is rubbed with silk, electrons are transferred from the glass to the silk (see figure 12.6).
 • If perspex is rubbed with wool, electrons are transferred from the wool to the perspex (see figure 12.7).

Charging by contact
If a charged conductor is brought into contact with an uncharged conductor, the charge will be shared 
between the two conductors. The uncharged conductor will be charged by contact.

Figure 12.8 shows a neutral conductor being charged by contact with a positively charged conductor. 
Figure 12.9 shows a neutral conductor being charged by contact with a negatively charged conductor.
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FIGURE 12.6 Positively charging glass by friction.
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FIGURE 12.7 Negatively charging perspex by friction.
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Charging by Induction
As an example of induced charges, consider what happens when a 
positively charged body is brought near an insulated, uncharged conductor. 
The positively charged body will attract electrons in the conductor. Some 
of these electrons will move to the area of the conductor closest to the 
positively charged body. As a result, that end of the conductor will have 
an excess of electrons (be negatively charged) and the opposite end of the 
conductor will have a deficiency of electrons (be positively charged). The 
charges on the conductor are called induced charges and the process is 
called induction. This is illustrated in figure 12.10.

Because they are closer, the positively charged body attracts the 
negative induced charges more strongly than it repels the positive induced charges. There will be a net force 
of attraction between the positively charged body and the conductor. This is illustrated in figure 12.11.

Induced charges are also produced if a charged body is brought near an insulator. For example, a posi-
tively charged body will attract the electrons and repel the nuclei in each atom of the insulator. These forces 
of attraction and repulsion result in a slight separation of positive and negative charges within each atom. 
As a result, one end of the insulator will be negatively charged and the other end will be positively charged, 
as illustrated in figure 12.12.

Induction explains why a charged body attracts small uncharged bodies such as pieces of paper. This is 
illustrated in figure 12.13.

Induced charges are usually not permanent; when the charging body is removed, the induced charges 
disappear. However, it is possible to charge an insulated conductor permanently by induction. One method 
of doing this is shown in figure 12.14.
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12.2.5 Conservation of charge
When two previously neutral bodies are charged by friction, the amount of positive charge produced on one 
body is equal to the amount of negative charge produced on the other body.

When two charged conductors are brought into contact, there is a redistribution of charge between the 
bodies but the total amount of charge remains the same.

Observations such as these lead to the conclusion that the total amount of electric charge never changes; 
that is, electric charge is conserved.

12.2 SAMPLE PROBLEM 2

Two identical, insulated metal spheres carry charges of +3.0 μC and −7.0 μC. The spheres are brought 
into contact and then separated. Calculate the new charge on each sphere.

SOLUTION

The total charge is −4.0 μC. As the spheres are identical, this charge will be shared equally by the 
two spheres. Therefore, the charge on each sphere will be −2.0 μC.

PHYSICS IN FOCUS
Lightning

Lightning is a natural phenomenon that illustrates some of the properties of electric charge. Processes inside a 
storm cloud cause the bottom of the cloud to become negatively charged and the top to become positively charged. 
The mechanism responsible for this separation of charge is not known for certain, but many scientists think that the 
following happens. The inside of the cloud contains minute particles of ice. When two ice particles of different sizes 
collide, there is a transfer of electrons, so that the smaller particle becomes positively charged and the larger 
particle becomes negatively charged. Under the influence of gravity and updraughts within the cloud, the larger, 
negatively charged ice particles move towards the bottom of the cloud and the smaller, positively charged ice 
particles move towards the top of the cloud. Charges in the order of a coulomb can accumulate in this way.

The negative charge at the bottom of the cloud repels electrons from the Earth’s surface. The ground under 
the cloud therefore becomes positively charged by induction.

Air is normally an insulator. Before lightning can occur, the air must become conducting. The negative charges at 
the bottom of the cloud and the positive charges on the ground under the cloud exert strong forces on the electrons 
and nuclei of atoms of air between the cloud and the Earth. The electrons experience forces towards the Earth; the 
nuclei experience forces towards the cloud. These forces can be so great that some electrons are removed from their 
atoms. An atom that has lost one or more electrons is positively charged. The liberated electrons and the positively 
charged atoms act as charge carriers, so the air becomes conducting. Once this process begins, a complicated 
chain of events follows, which leads to the 
establishment of a conducting path between 
the cloud and the Earth. Immediately after 
the conducting path is complete, there is a 
flow of negative charge from the cloud to 
the ground. This is a lightning flash and is 
shown in figure 12.1. A lightning flash usu-
ally consists of about four separate strokes, 
each stroke lasting about 30 microseconds.

The air along the path of a lightning 
stroke is heated to a temperature of about 
20 000°C, producing light. The heated air 
expands, producing a shock wave in the 
surrounding air that is heard as thunder.

As well as occurring between a cloud 
and the Earth, lightning also occurs within 
a cloud and between two clouds. 
Figure 12.15 illustrates different paths that 
lightning may travel.
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12.2.6 The development of Coulomb’s Law
For thousands of years, philosophers and scientists tried to explain the various manifestations of elec-
tricity, but an understanding of the phenomenon was elusive. Both attraction and repulsion were observed, 
but initially repulsion was considered less important. In 1551 Girolamo Cardano realised that this elec-
trical attraction was different from magnetic attraction. In 1600 William Gilbert, the physician to Eliza-
beth I, found that other substances such as glass and wax could be ‘electrified’, but he concluded that 
metals could not. In 1729 Stephen Gray discovered that electric charge could pass through materials 
such as the human body and metals. He concluded that some objects are conductors and others insula-
tors. In 1734 Charles du Fay showed that Gilbert was wrong about metals: they could be charged as long 
as the metal was in a handle of glass. However, du Fay thought there were two fluids, to explain the two 
types of charge, whereas Benjamin Franklin in 1746 suggested there was only one fluid. Objects with an 
excess of this fluid were designated positively charged, while negatively charged objects were deficient 
in the fluid.

Experiments continued, not only to identify what electricity was but also to determine how strong the 
electric force was and what affected its strength.

In 1766 Franklin tried an experiment involving a hollow metal sphere with a small hole. He charged up the 
sphere and then lowered a small cork carrying an electric charge inside the sphere. Nothing happened to it — 
it was not pushed around, no matter where he placed the test charge. He wrote about this to his friend Joseph 
Priestley in England. Priestley was aware of Newton’s Law of Universal Gravitation, which is an inverse 

square law (F ∝ 1

r2
). He also knew that Newton had proved mathematically that, because of the inverse square 

law, no net gravitational force exists inside a hollow sphere. That is, at every point inside the sphere, the grav-
itational force from the mass on one side is balanced by the force from the mass on the other side.

Priestley confirmed Franklin’s results and realised that this was strong evidence that the inverse square 
law applied to electricity. In 1767 he published his finding that electric force was an inverse square law. 
Unfortunately, his paper went unnoticed by other scientists of his time.

If the force between two charges was an inverse square law (that is F ∝ 1
r n

 where n = 2) could the value 
of n be experimentally confirmed?

In 1769 John Robison investigated how the 
force between charges changed with separation. 
He determined the value of the power, n, to be 
2.06, very close to 2. In the 1770s Henry 
Cavendish measured the value as between 1.96 
and 2.04, but he never published his results.

In 1788 and 1789, Charles-Augustin de 
Coulomb published a series of eight papers on 
different aspects of his electrical experiments, 
showing that the electric force satisfied the inverse square law.

These results are no better than the earlier ones, so why was Coulomb’s Law named after him?
Coulomb’s papers were excellent examples of scientific writing. They were well organised and thorough. He 

described his apparatus in detail, and he discussed possible sources of error in his measurements. He also used 
two different methods to determine the value of n, obtaining the same result with each.

WORKING SCIENTIFICALLY 12.1
A charged rod can be used to pick up small piece of paper or confetti. Devise an experiment that would allow 
you to find the relationship between the amount of charge given to the rod and the maximum mass of paper 
that can be picked up.

TABLE 12.1 The results of some of Coulomb’s experiments.

  Distance

Observed force Observed
Calculated from the 
inverse square law

36 units 36 units 36 units

144 units 18 units 18 units

576 units 8.5 units 9 units
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 To investigate the force between two charges, Coulomb designed a torsion 
balance. His torsion balance had a long silk thread hanging vertically with a 
horizontal rod attached at the end. On one end of the rod was a small 
metal-coated sphere. On the other end was a sphere of identical mass to keep 
the rod level. The metal sphere was given a quantity of charge and a second 
metal sphere, charged with the same type of charge, was lowered to be in line 
with the fi rst sphere. The electrical repulsion caused the silk thread to twist 
slightly. The angle of twist or defl ection of the rod was a measure of the 
strength of the repulsive force.  

 Coulomb was able to measure the force to an accuracy of less than a 
millionth of a newton. 

  Coulomb’s Law:  The force between two charges at rest is directly 
proportional to the product of the magnitudes of the charges and inversely 
proportional to the square of the distance between them.  

   F ∝ q1q2

r2
   

 This expression has no equals sign; it is not an equation or formula. Coulomb was able to measure the force 
and separation very accurately, but charge was such a new concept that there were no units to measure it. 
Coulomb was only able to show that halving the size of each charge reduced the size of the force by a quarter. 

 It was not until the unit for current, the ampere, was defi ned and precisely measured that a unit for charge 
could be defi ned and calculated using following the   relationship: charge = current × time     (Q = I × t)  . This 
unit was called the coulomb after Charles-Augustin de Coulomb. One coulomb of charge equals the amount 
of charge that is transferred by one ampere of current in one second. 

 A coulomb of charge is a large quantity of charge. For example, the amount of charge transferred when fur 
is rubbed against a glass rod is a few millionths of a coulomb. In a typical lightning strike, about 
  20   coulombs of charge is transferred, whereas, in the lifetime of an AA battery, about   5000   coulombs passes 
through the battery. 

 When the electron was discovered, its charge was determined as   1.602 × 10−19   coulombs, which means 
that the total charge of   6.241 × 1018   electrons would equal one coulomb. 

 Once a unit to measure charge was available, the above relationship for the force between charges could 
be written as an equation with a proportionality constant, k: 

   F = kq1q2

r2
   

 The value of the constant k depends upon the medium in which the charges are placed. Some media are 
more resistant to the establishment of an electric fi eld, a quality that is refl ected in the material’s permit-
tivity constant,   ε  . The value of   k   is related to the permittivity by the equation 

   k = 1
4 π ε

   

 In a perfect vacuum, where there are no molecules, the permittivity is equal to   8.854 × 10–12 C2 N–1 m–2  . 
This value is referred to as the  permittivity of free space,    εo  . As a result, for a vacuum, 

   k = 1
4 π εo

   

    = 1

4 π 8.854 × 10−12 
   

   = 8.9988 × 109 N m2 C−2   

 The value of   k   for air is similar to that for a vacuum. For ease of calculation and remembering, the value 
of   k   is usually approximated to   9.0 × 109 N m2 C−2  . While this constant has no special name, it is usually 
referred to as ‘the electric force constant’ or ‘Coulomb’s constant’.       

thin thread

insulating
rod

scale

charged spheres

+ +

  FIGURE 12.16  Coulomb’s 
torsion balance.  
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12.3 Electric fields
12.3.1 Field model of electric forces
Up to now we have considered a model where two electric charges exert 
forces directly on one another as shown in figure 12.17.

A different way of looking at the interaction between electric charges is in 
terms of electric fields. An electric field is a region where an electric charge 
experiences a force. On the field picture, every electric charge is surrounded 
by an electric field. If another charge, q, is placed in this electric field, the 
field exerts a force, F, on it. The field picture of electric force is illustrated 
in figure 12.18.

WORKING SCIENTIFICALLY 12.2
Build an apparatus that would allow you to replicate Coulomb’s experiment.

12.2 Exercise 1
1 When glass is rubbed with silk, the glass becomes positively charged. Explain, using a diagram, how 

this happens.
2 When referring to charged bodies, explain what is meant by:

(a) excess of electrons
(b) deficiency of electrons.

3 When each of these pairs of materials are rubbed together, identify which of the pair ends up with 
excess negative charge:
(a) nylon and perspex
(b) rabbit fur and steel
(c) glass and wool.

4 A body has a positive charge of 2.00 × 10−6 coulombs. Calculate the number of electrons it has  
lost.

5 How far apart would two charges, each of 1.0 coulomb, need to be to each experience an electric 
force of 10 N?

6 How many electrons would need to be removed from a coin to give it a charge of +10 μC?
7 The radius of a hydrogen atom is 5.3 × 10–11 m. What is the strength of the electric force between the 

nucleus and the electron?
8 If the force between two charges was 400 mN, how far apart would they need to be moved for the force 

to reduce by one-eighth?
9 Two small positively charged spheres have a combined charge of 5.0 × 10–5 C. If each sphere is repelled 

from the other by an electrostatic force of 1.0 N when the spheres are 2.0 m apart, what is the charge 
on each sphere?

10 Two point charges of +6 μC and –4 μC are placed on the x-axis at x = 0 and x = 20 cm respectively. 
What will be the magnitude and direction of the net electrostatic force acting on a +8 μC point charge 
positioned at x = 30 cm?

T
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When two charges are brought close together, each charge is in the field of the other and experiences a 
force, as illustrated in figure 12.19. Note that the field surrounding a charge does not exert any force on the 
charge itself, only on other charges placed in the field.

12.3.2 Electric field strength
An electric field exists at a point if an electric charge placed at the point 
experiences a force. The direction of the electric field at a point is 
defined as the direction of the force that acts on a positive electric 
charge placed at the point. A negative charge placed in an electric field 
experiences a force in the opposite direction to the field. This is 
illustrated in figure 12.20.

Compare an electric field with a gravitational field. An apple placed in 
the Earth’s gravitational field experiences a force in the direction of the 
field, that is, downwards. The electrical situation is complicated by the 
fact that there are two different types of charge: positive and negative. A positive charge experiences a force 
in the direction of the field; a negative charge experiences a force in the opposite direction to the field. This 
is illustrated in figure 12.21.

The magnitude of the electric field strength, E, at a point is found by putting a charge, q, at the point 
and measuring the force, F, which the field exerts on it.

This is illustrated in figure 12.22. The magnitude of the electric field strength is defined by the formula 

E = F
q

.

Field surrounding Q exerts a force
on q.  

Electric �eld surrounding Q 

Q

F

q
+ +

FIGURE 12.18 Field picture 
of electric force.

q1 q2

Field surrounding q1 exerts a force
on q2.

F F

q1 q2

Field surrounding q2 exerts a force
on q1.

+ + + +

FIGURE 12.19 Field picture of forces between two charges.
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FIGURE 12.20 Direction of 
force on a charge place in 
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FIGURE 12.21 Comparison 
of electric and gravitational 
fields.
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field strength.
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This can be expressed as: The magnitude of the electric field strength at a point is the magnitude of the 
force per unit charge at the point.

The SI unit of electric field strength is newton coulomb−1 (N C−1).
Force and electric field strength are vector quantities — they have magnitude and direction. We have 

defined the magnitude and the direction of the electric field strength separately, but it is possible to use a 
single definition that covers both.

If a force, F, acts on a positive charge, +q, placed at a point in an electric field, then the electric field 

strength, E, at the point is given by the equation: E = F
+q

. That is, the magnitude and direction of the elec-

tric field strength at a point is equal to the magnitude and direction of the force per unit positive charge 
placed at the point.

Note the use of bold to indicate vector quantities.
By combining the equation for electric field strength with Coulomb’s Law, an equation can be derived 

that can determine the electric field strength at a set distance from a point charge.
Let q be a test charge separated from a point charge Q by a distance r. According to Coulomb’s Law, the 

force exerted by the point charge Q on the test charge q in free space is described by:

F = 1
4πεo 

× Q q

r2
 (1)

12.3 SAMPLE PROBLEM 1 

A charge of +3.0 μC, placed at a point in an electric field, experiences a force of 2.0 × 10−4 N east. 
Calculate the electric field strength at the point.

SOLUTION:

The magnitude of the electric field strength is given by the formula:

E =
F
q

=
(2.0 × 10−4)

(3.0 × 10−6)
= 6.7 × 101 N C−1.

The positive charge experiences a force to the east, therefore the direction of the electric field is east.

12.3 SAMPLE PROBLEM 2

A charge of −4.0 μC is placed at a point where the electric field strength is 6.0 × 103 N C−1 north  
Calculate the force that will act on the charge.

SOLUTION

            E = F
q

6.0 × 103 = F

(4.0 × 10−6)
            F = 2.4 × 10−2 N

As the charge is negative, it will experience a force in the opposite direction to the field. Therefore, 
the direction of the force is south. Note that the sign of q is not used in this calculation.
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The electric field strength experienced by the test charge q is related to the force exerted on it by Q:

E = F
q

 (2)

This can be rearranged to give F in terms of E and q:

F = E q (3)

As (1) and (3) describe the same force, they can be equated:

1
4πεo 

× Q q

r2
= E q

This can be reduced to:

E = 1
4πεo 

× Q 

r2

or,

E = k Q

r2

12.3.3 Examples of electric fields
Electric fields are represented in a diagram by lines of electric field. These lines have no physical reality 
but are very useful for picturing the direction and the magnitude of the electric field.

The direction of the electric field lines indicates the direction of the electric field.
The spacing of the electric field lines indicates the magnitude of the electric field. The closer together the 

lines, the stronger the field.

Electric field surrounding a positive point charge
Consider a positive point charge, +Q. To determine the direction of the electric field surrounding +Q, a 
small positive test charge, +q, is placed near +Q. The direction of the force on +q will be away from +Q, 
as shown in figure 12.23. The electric field surrounding +Q will therefore point away from +Q.

Figure 12.24 shows the electric field surrounding a positive point charge, +Q. As you go further from the 
charge, the electric field lines are further apart indicating that the field is becoming weaker.

Figure 12.25 shows the forces that act on positive and negative charges placed in the field surrounding a 
positive point charge. A positive charge, +q, placed in the field will experience a force in the direction of 
the field, that is, away from the positive charge +Q. A negative charge, −q, placed in the field will experi-
ence a force in the opposite direction to the electric field, that is, towards the positive charge +Q.

12.3 SAMPLE PROBLEM 3

What is the magnitude and direction of the electric field at a point 30 cm left of a point charge  
of +2.0 × 10−5

 C?

SOLUTION

Using E = kQ

r 

2
, 

         E = 9.0 × 109 N m2 C−2 × 2.0 × 10−5 C

(30 × 10−2m)2

= 2.0 × 106 N C−1.

Because the point charge is positive, the direction of the electric field is to the left.
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In diagrams, electric fields are represented in two dimensions. It should be noted that electric fields are 
three dimensional.

Electric field surrounding a negative point charge
Consider a negative point charge, −Q. To determine the direction of the electric field surrounding −Q, a 
small positive test charge, +q, is placed in the field. The force on +q will be towards −Q. Therefore, the 
electric field surrounding −Q will be towards −Q. This is illustrated in figure 12.26.

Figure 12.27 shows the electric field surrounding a negative point charge, −Q.
Figure 12.28 shows the forces that act on charges placed in the field surrounding a negative point charge. 

A positive charge, +q, placed in the field will experience a force in the direction of the field, that is, 
towards the negative charge −Q. A negative charge, −q, placed in the field will experience a force in the 
opposite direction to the electric field, that is, away from the negative charge −Q.

Electric fields surrounding pairs of point charges
When there is more than one point charge producing an electric field, the fields from the individual charges 
combine to produce a single resultant field. Figures 12.29 to 12.33 show examples of electric fields pro-
duced by two point charges a small distance apart. In some of these examples, there are points where the 
fields from the two charges cancel one another. At these points, called null points, the electric field strength 
is zero. Null points are marked ‘n’ in the diagrams.

In drawing lines of electric field the following points should be noted:
 • lines start on positive charges and end on negative charges

+q

F

+Q

FIGURE 12.23 Direction of 
the force on a positive 
test charge placed in the 
field surrounding a 
positive point charge.

+Q
E

FIGURE 12.24 
Electric field 
surrounding a 
positive point charge.
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FIGURE 12.25 Forces 
on charges placed in 
the field surrounding a 
positive point charge.
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FIGURE 12.26 Force 
on a positive test 
charge placed in the 
field surrounding a 
negative point charge.
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FIGURE 12.27 Electric 
field surrounding a 
negative point charge.
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FIGURE 12.28 Forces 
on charges placed in 
a field surrounding a 
negative point charge.
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 • lines never cross (the field cannot have two directions at a point)
 • the greater the charge, the greater the number of lines starting or ending on it
 • equal charges have equal numbers of lines starting or ending on them.

Dipole fields
When a positive charge and a negative charge are separated 
by a short distance, the electric field around them is called a 
dipole field. This concept is more relevant to magnetic fields, 
where the ends of a bar magnet have different polarities 
(north and south). However, electric dipoles do occur in 
nature.

Electric dipoles mainly occur with the shared elec-
trons in the bonds between atoms in molecules. For 
example in a molecule of water, H2O, the oxygen atom 
more strongly attracts the shared electrons than do each 
of the hydrogen atoms. This makes the oxygen end of the molecule 
more negatively charged and the hydrogen end more positively 
charged. Because of this, the water molecule is called a polar mol-
ecule. It is this polarity that makes water so good at dissolving 
substances.

An antenna can be described as a varying electric dipole. To pro-
duce a radio or a TV signal, electrons are accelerated up and down the 
antenna. At one moment the top may be negative and the bottom posi-
tive, then a moment later the reverse is the case.

n E+ +

FIGURE 12.29 Electric field 
due to two equal positive 
point charges.

n– – E

FIGURE 12.30 Electric field 
due to two equal negative 
point charges.

–+ E

FIGURE 12.31 Electric field 
due to equal positive and 
negative point charges.

E + –

FIGURE 12.32 Electric field 
surrounding unequal positive 
and negative point charges.

+n E+

FIGURE 12.33 Electric field 
surrounding two unequal 
positive point charges.
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FIGURE 12.34 A water molecule (H2O) 
displays polarity because the shared 
electrons are attracted more strongly to the 
oxygen atom than to the hydrogen atoms.
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AS A MATTER OF FACT
The structure of DNA and electrical attraction

A DNA molecule is a long chain mole-
cule built from four small molecules: 
adenine (A), cytosine (C), guanine (G) 
and thymine (T). These are arranged 
along the DNA molecule according to a 
code called the genetic code. Different 
sequences of A, C, G and T code for 
different amino acids, which are com-
bined one after the other to produce 
different protein molecules. Two DNA 
molecules wrap around each other in a 
spiral to produce a double-helix chro-
mosome.

The two DNA molecules in the helix are held 
together by electrical attraction between the polar 
ends of the four small molecules, A, C, G, and T. The 
chromosome is able to replicate itself because A and 
T can only pair up with each other, and likewise C and 
G can only pair up with each other. If there is an A on 
one strand, there must be a T immediately opposite 
on the other strand, and so on.

Figure 12.37 shows that one of the oxygen atoms 
in the thymine molecule is slightly negative, and one 
of the hydrogen atoms in the adenine molecule is 
slightly positive. Similarly, a hydrogen atom in the thymine 
molecule is slightly positive, and a nitrogen atom in the 
adenine molecule is slightly negative. These two slight 
electrical attractions are enough to hold these two mole-
cules together, and the separations across these weak 
bonds are comparable in length.

Guanine and cytosine have a similar arrangement, 
except that there are three pairs of electrical attraction. 
Most importantly, the separations of the weak bonds 
between guanine and cytosine are comparable to each 
other and also to those of adenine and thymine. Without 
this matchup of separations, a chromosome could not hold 
together, nor could it form a double helix.
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FIGURE 12.37 Electrical attraction between 
thymine and adenine molecules.
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FIGURE 12.36 Electrical attraction in a DNA molecule.

12.3 Exercise 1
1 Draw the electrical fields around the following configurations:

(a) two separated negative charges
(b) two positive charges and two negative charges at the corners of a square with like charges diagonally 

opposite each other.
2 Sketch the electric field around two positive charges, A and B, where the charge on A is twice that on B.
3 Two charged objects, A and B, are held a short distance apart. Which object is the source of the 

electric field that acts on B?
4 What is the magnitude and direction of the electric field at a point 50 cm to the right of a point charge of 

−3.0 × 10−6 C?
5 An electric force of 3.0 N acts downwards on a charge of −1.5 μC. What is the strength and direction of 

the electric field?
6 Determine the strength of the electric field 30 cm from a charge of 120 μC.
7 What is the strength of the electric field 1.0 mm from a proton?
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12.4 Electric Potential Energy
12.4.1 Electric potential of charges in fields
Recall that potential energy is stored energy. An electric charge placed in an electric field has electric 
potential energy, which is similar to the gravitational potential energy of a mass in a gravitational field. 
The SI unit of electric potential energy is the joule (J).

A positive charge, +q, in an electric field will experience a force, F, in 
the direction of the field. If the charge is free to move, it will move in the 
direction of the field, increasing in speed and therefore gaining kinetic 
energy. The gain in kinetic energy has come from a loss in electric potential 
energy. This is illustrated in figure 12.39. The free movement of a charge in 
an electric field is similar to a mass falling in the Earth’s gravitational field.

To move the positive charge in the opposite direction to the field, energy 
must be expended to increase the electric potential energy of the charge.

When a positive charge moves in the direction of an electric field, its electric potential energy decreases. 
When it moves in the opposite direction to an electric field, its electric potential energy increases. Moving a 
positive charge in the opposite direction to an electric field is similar to raising a mass in a gravitational field.

A negative charge, −q, in an electric field will experience a force, F, in 
the opposite direction to the field. If the negative charge is free to move, it 
will move in the opposite direction to the field, increasing in speed and 
therefore gaining kinetic energy. The gain in kinetic energy has come 
from a loss in electric potential energy. This is illustrated in figure 12.40.

To move a negative charge in the direction of the field, energy must be 
expended to increase the electric potential energy of the charge.

When a negative charge moves in the opposite direction to an electric 
field, its electric potential energy decreases. When a negative charge moves 
in the direction of an electric field, its electric potential energy increases.

12.4.2 Potential difference
The potential difference between two points in an electric field 
is the change in electric potential energy per coulomb of charge 
that moves between the points.

Consider a charge, q, that moves between two points in an 
electric field. If the change in the electric potential energy of 
the charge is ΔU, then the potential difference, V , between the 

points is given by the formula: V = ΔU
q

.

Figure 12.41 shows a charge moving between two points in 
an electric field.

The SI unit of potential difference is the volt (V). A volt is equivalent to a joule coulomb−1. Potential 
difference is also referred to as voltage.

Charge accelerates in direction of
�eld.

F
E

+

FIGURE 12.39 Positive 
charge moving freely in an 
electric field.

Charge accelerates in opposite
direction to �eld.

F

E
–

FIGURE 12.40 Negative 
charge moving freely in an 
electric field.

+q

V

ΔU = change in electric potential energy

V = 
q

ΔU

E

FIGURE 12.41 Potential difference 
between two points in an electric fields.

8 At a point in an electric field, a positive charge of 3.00 × 10−6 C experiences a force of 6.50 ×  10−4 N 
east. Calculate the electric field strength at the point in magnitude and direction.

9 A +60 μC charge and a +80 μC charge are placed 20 cm apart. At what point is the net electric field 
equal to zero?

10 A proton and an electron form two corners of an equilateral triangle that has a side length of 
2.0 × 10−6 m. What is the magnitude and direction of their net electric field at the third corner?
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Note that in this book the symbol ‘V’ is used for potential difference and the symbol ‘V’ for its unit, the 
volt. For example V = 10V. This distinction is not made in ordinary handwriting.

A more complete treatment of potential difference dis-
tinguishes between a potential rise and a potential drop. 
This is similar to a rise in height and a drop in height in 
a gravitational field. Figure 12.42 illustrates the compar-
ison between an electric field and a gravitational field.

12.4.3 Changes in potential energy 
and kinetic energy in an electric field
A small positive charge is placed at point Q, some dis-
tance from a central positive charge. To move the charge 
to point P, you will need to push inwards against the 
repulsive electrical force. At point P the small charge 
will have electrical potential energy, like a compressed spring. The amount of potential energy it has will 
be equal to the area under the field–distance graph times its charge. If the small charge was released, all this 
potential energy would be converted into kinetic energy by the time the charge reached Q.

If instead a small negative charge was placed at Q, it would experience an attractive electrical force, and 
when the charge reached P, the shaded area would represent its gain in kinetic energy.

12.4 SAMPLE PROBLEM 1

When a charge of 2.50 × 10−4 C moves between two points in an electric field, the electric potential 
energy of the charge changes by 5.00 × 10−2

 J.
(a) Calculate the potential difference between the two points.
(b) Calculate the change in potential energy if a charge of  7.60 × 10−2 C were moved between the two points.

SOLUTION

(a) V = ΔU
q

= (5.00 × 10−2)

(2.50 × 10−4)
= 2.00 × 102 V

(b)               V = ΔU
q

2.00 × 102 =
ΔU

(7.60 × 10−2)
          ΔU = (2.00 × 102) × (7.60 × 10−2)

= 1.52 × 101 J

Gravitational
�eld

Electric
�eld

FIGURE 12.42 Comparison between electric 
potential difference and change in height in a 
gravitational field.
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FIGURE 12.44 A field– 
distance graph for a 
positive charge at P near a 
central positive charge at Q.
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FIGURE 12.43 Diagrams and field– 
distance graphs for the electric field 
around (a) a positive charge and (b) a 
negative charge.
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12.5 Uniform electric fields
12.5.1 Electric field between parallel plates
If a set of positive and negative charges were lined up in two rows 
facing each other, the lines of electric field in the space between the 
rows would be evenly spaced, that is, the value of the strength of the 
field would be constant. This is called a uniform electrical field.

It is also very easy to set up. Just set two metal plates a few centime-
tres apart, then connect one plate to the positive terminal of a battery 
and connect the other plate to the negative terminal of the battery. The 
battery will transfer electrons from one plate, making it positive, and 
put them on the other, making that one negative. The battery will keep 
on doing this until the positive plate is so positive that the battery’s 
voltage, or the energy it gives to each coulomb of electrons, is insuffi-
cient to overcome the attraction of the positively 
charged plate. Similarly, the negatively charged plate 
will become so negative that the repulsion from this 
plate prevents further electrons being added.

If a space contains a uniform field, that means 
that if a charge was placed in that space it would 
experience a constant electric force, F = Eq. The 
direction of the force on a positive charge will be in 
the direction of the field, and the force on a negative 
charge will be opposite to the field direction. Also, 
because the force is constant, the acceleration will 
be constant. As seen earlier, the situation with a 
charged particle in the space between the plates in 
the figure above is similar to the vertical motion under gravity. Indeed, if a charged particle is injected with 
speed into the field from one side, its subsequent motion is similar to projectile motion.

12.4 Exercise 1
1 True or false? “Electrons tend to move towards regions of high electric potential.”
2 In which of the following cases is positive work done:

(a) moving a negative charge from a potential of 10 V to a potential of 5 V
(b) moving a positive charge closer to another positive charge
(c) moving a negative charge in the same direction as the electric field
(d) moving a positive charge in the same direction as the electric field?

3 It takes 5 J of energy to move a charge of +5 × 10–4 C from point A to point B. What is the potential 
difference between A and B?

4 What is the potential difference between two points if it takes 10 J of work to move −0.04 C from one 
point to another?

5 What is the potential difference between two points that are 50 cm and 80 cm respectively from a point 
charge of +2 μC?

6 A proton is placed 2 cm from a point charge of +4 μC. When released it begins to move.
(a) What is the magnitude and direction of the electric field strength experienced by the proton at its starting 

position?
(b) What is the potential difference between the proton’s starting position and its position when it has 

travelled 8 cm?
(c) At what speed is the proton travelling when it is 10 cm away from the point charge?
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12.5.2 What is the strength of a uniform electric field?
In the situation of an electric field between two plates, it is not easy to apply Coulomb’s Law, as there are 
many charges on each plate interacting with each other. An alternative approach is needed — one that uses 
the concept of energy.

The emf of a battery, or its voltage, is the amount of energy that the battery gives to each coulomb of 
charge. A battery of V  volts would use up V  joules of energy transferring one coulomb of electrons from 
the top plate through the wires to the bottom plate. Once on the negative plate, this coulomb of electrons 
would have V  joules of electrical potential energy.

If this coulomb of electrons could be released from the negative plate, it would be accelerated by the 
constant force of the electric field between the plates, gaining kinetic energy like a stone falling in a 
gravitational field. And as in a gravitational field, the gain in kinetic energy equals the loss in electrical 
potential energy.

The gain in kinetic energy of one coulomb of charge = V  joules.
The gain in kinetic energy for q coulombs of charge = qV  joules.
This is the relationship ΔU = qV .

Work done on quantity of voltage drop or
q coulombs of charge (ΔU   ) 

=  
charge (q) 

×  
potential difference (V  )

However, work done (ΔU) also has a definition of motion:

Work done (ΔU) = force (F) × displacement (d)
                     ΔU = Fd

But the force, if it is an electrical force, is given by F = qE, so ΔU = qE × d, where d in this instance is 
the separation of the plates.

Equating the two expressions for work done,

qE × d = q × V

Cancelling the charge, q, gives

E = V
d

This provides an alternative unit for electric field of volts per metre or Vm−1. So, like gravitational field 
strength, electric field strength has two equivalent units: either newtons per coulomb or volts per metre. 
Using volts per metre makes it very easy to determine the strength of a uniform electric field.

DistancePlate Y Plate X

Voltage

V

E

DistancePlate Y Plate X

Electric
�eld

FIGURE 12.47 Electric field strength equals the gradient of the voltage–distance 
graph.
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12.5 Exercise 1
1 A 6 V battery is connected to two parallel plates as shown. 

X,  Y and Z are positions between the plates.
(a) Which of these statements is true:

A.  X and Y are at the same electric potential
B.  X and Z are at the same electric potential
C.  The electric field strength at Z is greater than at X
D.  The electric field strength at X is greater than at Y?

(b) If the plates are 4 cm apart and position X is located 1 cm 
from the top plate, what is the electric field strength at X?

(c) What is the direction of the electric field at Y?
A.  Left to right
B.  Right to left
C.  Top plate to bottom plate
D.  Bottom plate to top plate.

2 Two parallel metal plates are separated by 1 cm and are connected to a 12 V battery. How much work 
must be done to move an electron from the positive plate to the negative plate?

3 (a) Calculate the strength of the electric field between a storm cloud 1.5 km above ground and the 
ground itself if the voltage drop or potential difference is 30 000 000 V. Assume a uniform field.
(b) How would the strength of the electric field change if the storm cloud was higher?

4 Two metal plates, X and Y, are set up 10 cm apart. The X plate is connected to the positive terminal of a 
60 V battery and the Y plate is connected to the negative terminal. A small positively charged sphere is 
suspended midway between the plates and it experiences a force of 4.0 × 10−3 newtons.
(a) What would be the size of the force on the sphere if it was placed 7.5 cm from plate X?
(b) The sphere is placed back in the middle and the plates are moved apart to a separation of 15 cm. What 

is the size of the force now?
(c) The plates are returned to a separation of 10 cm 

but the battery is changed. The force is now 
6.0 × 10−3 newtons. What is the voltage of the 
new battery?

5 Two parallel plates are placed 2.5 mm apart 
vertically and connected to a 200 V power supply 
as shown in figure 12.49.

A charged oil drop is suspended halfway 
between the plates and remains stationary. If the 
oil drop holds a charge of +5.0 μC, what is the 
mass of the oil drop?

X Y

Z

6 V

FIGURE 12.48

2.5 mm 200 V

FIGURE 12.49

12.5 SAMPLE PROBLEM 1

What is the strength of the electric field between two plates 5.0 cm apart connected to a 100 V DC 
supply?

SOLUTION

V = 100 V,  d = 5.0 cm = 5.0 × 10−2 m,  E = ?

E = V
d

= 100 V

5.0 × 10−2 m
= 2000 V m−1
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12.6 Review
12.6.1 Summary
 • Protons have a positive electric charge; electrons have a negative electric charge.
 • Like charges repel; unlike charges attract.
 • The SI unit of charge is the coulomb (C).
 • Positively charged bodies have a deficiency of electrons; negatively charged bodies have an excess of electrons.
 • Bodies can be given electrostatic charges by friction, contact and induction.
 • An electric field is a region where an electric charge experiences a force.
 • The electric force between two objects with charges q1 and q2 separated by a distance of r metres is given 

by F = k 
q1q2

r2
 where k = 1

4πε0
. This equation is called Coulomb’s Law, and k = 9 ×  109 N m2 C–2 in air.

 • Every electric charge is surrounded by an electric field E. The electric field strength at a point is defined 

as the force per unit charge on a positive charge placed at that point: E =  
F
q

 • The direction of the electric field strength at a point is the direction of the force on a positive charge 
placed at the point.

 • The direction of the electric field surrounding a positive charge is away from the charge; the direction of 
the electric field surrounding a negative charge is towards the charge.

 • A charge in an electric field has electric potential energy. When a positive charge moves in the direction 
of an electric field, its electric potential energy decreases. When a negative charge moves in the opposite 
direction to an electric field its electric potential energy decreases.

 • The potential difference between two points in an electric field is the change in electric potential energy 

per coulomb when a charge moves between the two points: V =  

ΔU
q

 • The SI unit of potential difference is the volt. One volt is equivalent to one joule per coulomb.
 • A uniform electric field exists between two metal plates connected to a DC supply. The strength of the 

electric field, E, is given by the voltage drop or potential difference across the plates, V , over the plate 

separation, d: E =  

V
d

.

12.6.2 Questions
1. If one coulomb is equal to the charge on 6.25 × 1018 electrons, calculate the charge in coulombs on 

one electron.
2. When a piece of perspex is rubbed with a piece of silk, 3.40 × 105 electrons are transferred from the 

perspex to the silk. Calculate the charge in coulombs on:
(a) the perspex
(b) the silk.

3. (a)   Define the direction of an electric field.
(b) Using this definition, explain why the field surrounding a positive charge points away from the 

charge.
4. At a point in an electric field, a negative charge of 2.50 × 10−5 C experiences a force of 7.50 × 10−6 N 

south. Calculate the electric field strength, in magnitude and direction, at the point.
5. At a certain point, the electric field strength is 4.30 × 102

 N C−1 east. Calculate the force, in magnitude 
and direction, on each of the following placed at the point:
(a) an electron
(b) a proton
(c) a charge of +2.30 × 10−4 C
(d) a charge of −6.50 × 10−4 C.
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6. Figure 12.50 shows two points, X and Y, in an electric field.
(a) Explain why a positive charge would have more electric potential energy at X 

than at Y.
(b) Explain why a negative charge would have more electric potential energy at Y 

than at X.
7. A positive charge, +q, is brought nearer to a positive charge, +Q. As +q gets 

closer to +Q, discuss whether its electric potential energy increases or decreases.
8. A positive charge, +q, is brought closer to a negative charge, −Q. As the charge 

+q gets closer to the charge −Q, discuss whether its electric potential energy 
increases or decreases.

9. When a charge of 3.75 × 10−4
 C moves between two points in an electric field, the electric potential 

energy of the charge changes by 7.50 × 10−2J.
(a) Calculate the potential difference between the two points.
(b) Calculate the change in potential energy if a charge of 2.60 × 10−3 C moved between the two points.

10. What is the experimental evidence for there being two types of charge?
11. A and B are metal spheres x metres apart. Each has a charge of +q coulombs. The force they exert on 

each other is 5.0 × 10−4 newtons. Determine the magnitude of the force in each of the following 
situations. (Consider the situations separately.)
(a) The separation of A and B is increased to 2x metres.
(b) A charge of +2q coulombs is added to B. Are the forces on A by B and on B by A still equal in 

magnitude?
(c) A charge of −3q coulomb is added to A.
(d) The distance is halved and the charges are changed to +0.5q on A and 4q on B.

12. Find the force of repulsion between two point charges with charges of 5.0 microcoulombs (μC) and 
7.0 microcoulombs (μC) if they are 20 cm apart.

13. Two charged spheres are 5.0 cm apart, with one holding twice the amount of charge of the other. If the 
force between is 1.5 × 10−4 newtons, how much charge does each sphere have?

14. Two small spheres are placed with their centres 20 cm apart. The charges on each are +4.0 ×  10−8 C 
and +9.0 × 10−8

 C. Where between the two spheres would a test charge experience zero net force?
15. Coulomb’s Law is very similar to Newton’s Law of Universal Gravitation. How do these two laws 

differ? Compare electric charge and gravitational mass.
16. The nucleus of an iron atom has 26 protons, and the innermost electron is 1.0 × 10−12 m away from 

the nucleus. What is the strength of the electric force between the nucleus and the electron?
17. The nucleus of a uranium atom has 92 protons, and the innermost electron is about 5.0 × 10−13m 

away from the nucleus. What is the strength of the electric force between the nucleus and the elec-
tron?

18. A proton is made up of two ‘up’ quarks of charge +2e
3

 and one ‘down’ quark of charge −1e
3

. The 
diameter of a proton is about 8.8 × 10−16

 m. Using the diameter as the maximum value for the separa-
tion of the two ‘up’ quarks, calculate the size of the electrical repulsion force between them.

19. What equal positive charge would the Earth and the Moon need to have for the electrical repulsion to 
balance the gravitational attraction? Why don’t you need to know the separation of the two objects?

20. What is the charge in coulombs of 10 kg of electrons?
21. One example of alpha decay is uranium-238 decaying to thorium-234. The thorium nucleus has  

90 protons and the alpha particle has two protons. At a moment just after the ejection of the alpha 
particle, their separation is about 9.0 × 10−15

 m. What is the size of the electrical repulsion force 
between them, and what is the acceleration of the alpha particle at this point?

22. What is the size of the electric force between a positive sodium ion (Na+) and a negative chloride ion 
(Cl−) in a NaCl crystal if their spacing is 2.82 × 10−10 m?

Y

X

E

FIGURE 12.50
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23. An electric force of 1.5 N acts upwards on a charge of +3.0 μC. What is the strength and direction of 
the electric field?

24. A proton is suspended so that it is stationary in an electric field. Using the value of g = 10 m s−2, 
determine the strength of the electric field.

25. Use the statement ‘the electric force exerted by a charged object A on a charged object B is propor-
tional to the charge on B’ and Newton’s Third Law to show that the electric force between the two 
charges is proportional to the product of the charges.

26. Electric field lines can never cross. Why?
27. If a charged particle is free to move, will it move along an electric field line?
28. One of the units for gravitational field is that of acceleration. Is that also true for electric field? If not, 

why not?
29. Sketch the electric field around a positively charged straight plastic rod. Assume the charge is distrib-

uted evenly. Sketch the electric field as if the rod had a curve in it. If the plastic rod was bent into a 
closed circle, what would be the strength of the electric field in the middle?

30. A negative test charge is placed at a point in an electric field. It experiences a force in an easterly 
direction. What is the direction of the electric field at that point?

31. Two small spheres, A and B, are placed with their centres 10 cm apart. P is 2.5 cm from A. What is the 
direction of the electric field at P in the following situations?
(a) A and B have the same positive charge.
(b) A has a positive charge, B has a negative charge and the magnitudes are the same.

32. Determine the strength of the electric field 30 cm from a charge of 120 μC.
33. What is the strength of the electric field 1.0 mm from a proton?
34. Electrons from a hot filament are emitted into the space between two 

parallel plates and are accelerated across the space between them.
(a) Which battery supplies the field to accelerate the electrons?
(b) How much energy would be gained by an electron in crossing 

the space between the plates?
(c) How would your answer to (b) change if the plate separation was 

halved?
(d) How would your answer to (b) change if the terminals of the 6 V 

battery were reversed?
(e) How would your answer to (b) change if the terminals of the 100 V battery were reversed?
(f) How would the size of the electric field between the plates, and thus the electric force on the 

electron, change if the plate separation was halved?
(g) Explain how your answers to (c) and (f) are connected.

35. (a)   Calculate the acceleration of an electron in a uniform electric field of strength 1.0 × 106 N C−1.
(b) Starting from rest, how long would it take for the speed of the electron to reach 10% of the speed 

of light? (Ignore relativistic effects.)
(c) What distance would the electron travel in that time?
(d) If the answer to (c) was the actual spacing of the plates producing the electric field, what was the 

voltage drop or potential difference across the plates?
36. In an inkjet printer, small drops of ink are given a controlled 

charge and fired between two charged plates. The electric 
field deflects each drop and thus controls where the drop 
lands on the page.

Let m = the mass of the drop, q = the charge of the drop, 
v = the speed of the drop, l = the horizontal length of the 
plate crossed by the drop, and  
E = electric field strength.

6 V
100 V

FIGURE 12.51

l

drop
generator

charging
unit

paperde�ecting
plates

FIGURE 12.52
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(a)   Develop an expression for the defl ectionof the drop.  Hint:  This is like a projectile motion 
question.  

(b)   With the values   m = 1.0 × 10−10 kg,  v = 20 m s−1,  l = 1.0 cm   and   E = 1.2 × 106 N C−1  , calculate 
the charge required on the drop to produce a defl ection of   1.2 mm  .              

 PRACTICAL INVESTIGATIONS 

 Investigation 12.1: The Van de Graaff generator 
    Aim 
To investigate electrostatic charge  

  CAUTION 
Your teacher will carry out this activity. Do not touch the charged dome of a Van de Graaff generator unless 
instructed to by your teacher. Always use an earthed rod to discharge. Carry out the demonstration while 
standing on a plastic tray.  

  Apparatus  :
  Van de Graaff generator  
  several strands of wool  
  plastic tray  

Method
   Part A    

•   Turn the Van de Graaff generator on and let it charge up. Bring the 
 earthed  metal rod near it.  

•   Turn the generator off and discharge it using the earthed metal rod.   

   Part B    
•   Tape several strands of wool onto the dome. Make sure they are 

spread out over the surface of the dome. Turn the generator on and 
let it charge up once more.    

  Discussion   
1.    What do you observe occurring between the rod and the dome when 

it is turned on?   
2.    Explain your observation. Use words like charging and discharging in 

your explanation.   
3.    What happens to the wool?   
4.    Explain why this happens in terms of the charges on the dome and on 

the wool.   
5.    The wool forms a pattern around the dome. Explain why this pattern 

forms.    

  FIGURE 12.53   
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TOPIC 13
Electric circuits

13.1 Overview
13.1.1 Module 4: Electricity and Magnetism
Electric circuits
Inquiry question: How do the processes of the transfer and the transformation of energy occur in electric 
circuits?
Students:
 • investigate the flow of electric current in metals and apply models to represent current, including: 

 –  I =  
q
t
    (ACSPH038)

 • investigate quantitatively the current–voltage relationships in ohmic and non-ohmic resistors to explore 
the usefulness and limitations of Ohm’s Law using:

 –  V =  
W
q

 –  R =  
V
I

  (ACSPH003, ACSPH041, ACSPH043)

 • investigate quantitatively and analyse the rate of conversion of electrical energy in components of elec-
tric circuits, including the production of heat and light, by applying P = VI and W = Pt and variations 
that involve Ohm’s Law (ACSPH042)

 • investigate qualitatively and quantitatively series and parallel circuits to relate the flow of current through 
the individual components, the potential differences across those components and the rate of energy con-
version by the components to the laws of conservation of charge and energy, by deriving the following 
relationships: (ACSPH038, ACSPH039, ACSPH044)

 –  ΣI = 0 (Kirchoff’s current law — conservation of charge)
 –  ΣV = 0 (Kirchoff’s voltage law — conservation of energy)
 –  Rseries = R1 + R2 + … + Rn

 –  1
Rparallel

=  
1
R1

+  
1
R2

+ … +  
1
Rn

 • investigate quantitatively the application of the law of conservation of energy to the heating effects of 
electric currents, including the application of P = VI and variations of this involving Ohm’s Law 
(ACSPH043).
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13.2 Electric currents
13.2.1 A simple electric circuit
Before studying electric currents in more detail, we will look at a simple example to recall earlier work you 
have done on this subject. Figure 13.2 shows a familiar situation involving an electric current.

Note the following:
 • For the globe to light up there must be a complete conducting path between 

the terminals of the battery. The switch must be closed.
 • The battery is necessary for a current to flow around the circuit. The ability 

of the battery to cause a current to flow is often referred to as its voltage.
 • The battery has two terminals, marked positive and negative.
 • The light globe resists the flow of the current. As a result of this resistance, 

the current causes the light globe to heat up to such an extent that it gives 
off light.

 • The wires connecting the light globe to the battery do not heat up.
As an aid in representing electric circuits in diagrams, the symbols shown in 

figure 13.3 are used. Therefore, the circuit shown in figure 13.2 can be repre-
sented more simply as shown in figure 13.4.

+ –

Connecting
wire

Resistor

Battery

Switch

FIGURE 13.3 Symbols 
for circuit components.

FIGURE 13.2 A simple electric circuit.

FIGURE 13.4 Circuit 
diagram for circuit 
shown in figure 13.2.

FIGURE 13.1 Electricity is an integral part of modern life. How do the processes of the 
transfer and the transformation of energy occur in electric circuits?
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13.2.2 Defining 
current
Electric current is the move-
ment of charged particles 
from one place to another. The 
charged particles may be elec-
trons in a metal conductor or 
ions in a salt solution. Charged 
particles that move in a con-
ductor can also be referred to 
as ‘charge carriers’.

There are many examples 
of electric currents. Lightning 
strikes are large currents. 
Nerve impulses that control 
muscle movement are exam-
ples of small currents. Charge 
flows in household and auto-
motive electrical devices such 
as light globes and heaters. Both positive and negative charges flow in cells, in batteries and in the ionised 
gases of fluorescent lights. The solar wind is an enormous flow of protons, electrons and ions being blasted 
away from the Sun.

Not all moving charges constitute a current. There must be a net movement of charge in one direction for 
a current to exist. In a piece of metal conductor, electrons are constantly moving in random directions, but 
there is no net movement in one direction and no current. A stream of water represents a movement of mil-
lions of coulombs of charge as the protons and electrons of the water molecules move. There is no elec-
trical current in this case, because equal numbers of positive and negative charge are moving in the same 
direction.

For there to be a current in a circuit there must be a complete conducting 
pathway around the circuit and a device to make the charged particles move. 
When the switch in the circuit is open, the pathway is broken and the current stops 
almost immediately.

Electric current is a measure of the rate of flow of charge around a circuit. It 
can be expressed as:

I = Q
t

where I is the current and Q is the quantity of charge flowing past a point in the 
circuit in a time interval t.

The unit of current is the ampere (A). It is named in honour of the French 
physicist André-Marie Ampère (1775–1836).

The unit for charge is the coulomb (C), named after the French physicist 
Charles-Augustin de Coulomb (1736–1806).

One coulomb of charge is equal to the amount of charge carried by 6.24 × 1018 electrons. The charge 
carried by a single electron is equal to −1.602 × 10−19 C.

One ampere is the current in a conductor when 1 coulomb of charge passes a point in the conductor every second.
The charge possessed by an electron is the smallest free charge possible. All other charges are whole-

number multiples of this value. This so-called elementary charge is equal in magnitude to the charge of a 
proton. The charge of an electron is negative, whereas the charge of a proton is positive.

FIGURE 13.6 André-
Marie Ampère

(a) This is an electric current. A beam of electrons.

(b) This is an electric current. Movement of ions in a salt solution.

(c) This is not an electric current. Movement of a neutral body.
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FIGURE 13.5 Electric currents.
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In real circuits, currents of the order of 10−3 A are common. To describe 
these currents, the milliampere (mA) is used. One milliampere is equal to 
1 × 10−3 ampere.

To convert from amperes to milliamperes, multiply by 1000 or by 103. 
To convert from milliamperes to amperes, divide by 1000 or multiply  
by 10−3.

13.2 SAMPLE PROBLEM 3

Convert 450 mA to amperes.

SOLUTION:

450 mA
1000

= 0.450 A

So 450 mA is equal to 0.450 A.

13.2 SAMPLE PROBLEM 1

What is the current in a conductor if 10 coulombs of charge pass a point in 5.0  seconds?

SOLUTION:

Q = 10 C
 t = 5.0 s

 I = Q
t

= 10 C
5.0 s

= 2.0 C s−1

= 2.0 A

13.2 SAMPLE PROBLEM 2

How much charge passes through a load if a current of 3.0 A flows for 5  minutes and 20 seconds?

SOLUTION:

    I = Q
t

or Q = It
    I = 3.0 A

t = 5 minutes and 20 seconds = 320 s
   Q = 3.0 A × 320 s

= 960 C
= 9.6 × 102 C

AS A MATTER OF FACT
Charges smaller than that carried by the electron are understood to exist, but they are not free to move as a 
current. Particles such as neutrons and protons are composed of quarks, with one-third of the charge of an 
electron, but these are never found alone.

When the current is 1 ampere,
6.25 x 1018 electrons pass through a
cross-section of the conductor in one
second.

–
–

–

–
–

–

––

–

–

–
–

–
–

–

FIGURE 13.7 Meaning of 
ampere in terms of electrons.
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13.2.3 The hydraulic model of current
Most circuits have metal conductors, which means that the charge car-
riers will be electrons.

Metal conductors can be considered to be a three-dimensional arrange-
ment of atoms that have one or more of their electrons loosely bound. 
These electrons are so loosely bound that they tend to drift easily among 
the atom. Metals are good conductors of both heat and electricity 
because of the ease with which these electrons are able to move, trans-
ferring energy as they go. Diagrammatically, the atoms are represented 
as positive ions (atoms that have lost an electron and have a net positive 
charge) in a ‘sea’ of free electrons. 

When the ends of a conductor are connected to a battery, the free 
electrons drift towards the positive terminal. The electrons are attracted by the positive terminal and indeed 
accelerate, but constantly bump into atoms, so on average they just drift along.

The flow of electrons through a metallic conductor can be modelled by the flow of water through a pipe.
Electrons cannot be destroyed, nor, in a closed circuit, can they build up at a point. Therefore, if electrons 

are forced into one end of a conductor, an equal number will be forced out the other end. This is rather like 
pouring a cupful of water into one end of a full pipe. It forces a cupful of water to come out the other end, as 
shown in figure 13.8.

Note that when water is put in one end it is not the same water that comes out the other end, because the 
pipe was already full of water.

13.2.4 Charge movement through a metal
In a metal, some electrons become detached from their atoms and are able to 
move freely within the metal. These are called free electrons. The atoms that 
have lost electrons become positively charged ions. The positively charged 
atoms form a lattice through which the free electrons move freely. The free elec-
trons are the charge carriers that allow the metal to conduct an electric current.

The free electrons in a metal are in constant random motion. Each free 
electron makes frequent collisions with positive ions of the lattice. At each 
collision, the electron changes direction. Although the average speed of free 
electrons between collisions is of the order of 106

 m s−1, there is no net 
movement of the electrons, so there is no electric current. The random move-
ment of a free electron through a metal lattice is shown in figure 13.10a.

If there is an electric field in a metal, the free electrons, being negatively 
charged, will experience a force in the opposite direction to the field. As a 
result of this force, there will be a net movement in the direction of the force 
superimposed on the random movement of the free electrons. This net movement is called electron drift 
and constitutes an electric current. Electron drift is illustrated in figure 13.10b. The drift velocity of an elec-
tron is of the order of 10−4 m s−1, much smaller than the average speed of its random motion.

FIGURE 13.8 The hydraulic 
model for current flow. One 
cupful of water in one end of 
the pipe means one cupful out 
the other end.

Metal atom that has lost one or
more electrons.

Free electron
The free electrons are in
constant random motion. 
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FIGURE 13.9 Structure of 
a metal.
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FIGURE 13.10 Motion of free electron (a) with no electric field (b) with 
an electric field.
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As the free electrons drift in the opposite direction to the field, they lose electric potential energy and gain 
kinetic energy. The free electrons continually collide with the positive ions in the metal lattice. In these col-
lisions, the kinetic energy gained by the electrons is transferred to the positive ions of the lattice, causing 
them to vibrate with greater energy. The energy of vibration of the atoms of a body is heat energy. Thus, 
when an electric current flows through a metal, electric potential energy is transformed into heat energy.

13.2.5 Describing current direction
By the time the battery was invented by Ales-
sandro Volta in 1800, it was accepted that elec-
tric current was the movement of positive charge. 
It was assumed that positive charges left the pos-
itive terminal of the battery and travelled through 
a conductor to the negative terminal. This is 
called conventional current.

In reality, the charge carriers in a metal con-
ductor are electrons moving from the negative 
terminal towards the positive terminal of the bat-
tery. The effect is essentially the same as positive charges moving in the opposite direction.

When dealing with the mechanisms for the movement of electrons, the term ‘electron current’ is used.
Direct current (DC) refers to circuits where the net flow of charge is in one direction only. The current 

provided by a battery is direct current, which usually flows at a steady rate.
Alternating current (AC) refers to circuits where the charge carriers move backwards and forwards 

periodically. The electricity obtained from household power points is alternating current.

13.2.6 Measuring electric current
Electric current is measured with a device called an ammeter. This must be 
placed directly in the circuit so that all the charges being measured pass through 
it. This is known as placing the ammeter in series with the circuit.

Ammeters are designed so that they do not significantly affect the size of the 
current by their presence. Their resistance to the flow of current must be 
negligible.

The circuit diagram symbol for an ammeter is shown in figure 13.12.
Most school laboratories now use digital multimeters. These can measure voltage drop and resistance as 

well as current. Each quantity has a few settings to allow measurement of a large range of values. Labels on 
multimeters may vary, but those given below are most common.

The black or common socket, labelled ‘COM’, is connected to the part of the circuit that is closer to the 
black or negative terminal of the power supply. The red socket, labelled ‘VΩmA’, is used for measuring 
small currents and is connected to the part of the circuit that is closer to the red or positive terminal of the 

+
–

(b) Conventional current

+
–

(a) Electron current 

FIGURE 13.11 (a) Electron current direction.  
(b) Conventional current direction.

A

FIGURE 13.12 The 
circuit diagram symbol 
for an ammeter.

13.2 SAMPLE PROBLEM 4

A current of 5.00 A passes through a wire for 6.00 s. Calculate the number of electrons passing 
through a cross-section of the wire in this time.

SOLUTION:

As the current is 5.00 A, a charge of 5.00 C will pass through a cross-section of the wire in 1 s. 
Therefore, in 6.00 s a charge of 6.00 × 5.00 C will pass through. 1 C of charge is equivalent to 
6.25 × 1018 electrons. If n is the number of electrons, then:

n = 6.00 × 5.00 × 6.25 × 1018

= 1.88 × 1020.
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power supply. The red socket, labelled ‘  10A MAX  ’ 
or similar, is used for measuring large currents (see 
warning below). The dial has a few settings. First 
choose the setting for current, labelled ‘A’, with the 
largest value. If you want more accuracy in your 
measurement, turn the dial to a smaller setting. If the 
display shows just the digit ‘  1  ’, the current you are 
trying to measure exceeds the range of that setting 
and you need to go back to a higher setting.  

  WARNING: While for most quantities, multimeters 
are quite tolerant of values beyond a chosen setting, 
care must be taken when measuring current. 
Multimeters have a fuse that can blow if the current exceeds the rated value. For this reason, they have 
two red sockets. One socket is for exclusive use when measuring currents in the range   200 mA   to   10A  . 
This is labelled ‘  10A MAX  ’. (Some multimeters may be able to measure up to   20 A  .) The other red socket 
is for currents less than   200 mA   as well as the other quantities of voltage and resistance.  

 If you are using a needle type ammeter, the instructions above generally apply.      

  13.3  Supplying energy 
  13.3.1  Voltage 
 A power supply is a source of electric potential energy that enables electrons to move around a circuit. It 
separates positive and negative charges to produce a positively charged terminal and a negatively charged 
terminal. If a conductor joins the positive and negative terminals of a power supply, an electric fi eld is 
established through the conductor from the positive terminal to the negative terminal of the power supply. 
If the conductor is a metal, this fi eld will exert forces on the free electrons in the opposite direction to the 
fi eld, causing them to move towards the positive terminal. 

 13.2 Exercise 1  
1.   State the difference between conventional current and electron current.  
2.     (a)    Identify the charge carriers in a metal.  

(b)   Describe how charge carriers move in a conductor under the infl uence of a power supply.    
3.   True or False? ‘It is possible to have a charge of   6.0 × 10–19 C  .’  
4.   Convert   45 mA   to amperes.  
5.   What is the current passing through a conductor if   15   coulombs of charge pass a point in   3.0   seconds?  
6.   For how long must a current of   2.5   amperes fl ow to make   7.5   coulombs of charge pass a point in a circuit?  
7.   How long will it take an electron to travel from a car’s battery to a rear light globe if it has a drift velocity of 

  1.0 × 10–4 m s–1   and there is   2.5 m   of metal to pass through? (Electrons travel from the negative terminal of 
the battery through the car body towards the circuit elements.)  

8.   What is the current fl owing through a section of wire if   2.0 C   of charge passes through it in   5   seconds?  
9.   How many electrons move through a conductor every second if they produce a   3   A current?  

10.   How many electrons will move through the cross-section of a wire in an   8  -second period of time if the wire 
has a current of   1 A  ?   

  FIGURE 13.13  A digital 
multimeter, which can 
measure current, voltage 
drop and resistance.  
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Most power supplies convert another form of energy into electric potential energy. 
For example, a battery uses a chemical reaction to separate electrons, leaving one 
terminal short of electrons and, therefore, with an excess of positive charge. The 
other battery terminal has an excess of electrons and so is the negative terminal.

In the school laboratory, the power supply is usually a power pack that con-
verts electric potential energy from the mains supply into a form of electric 
potential energy that is more suitable for school use.

The potential difference V across a power supply is a measure of the number of 
joules of electric potential energy given to each coulomb of charge that passes through 
it. This potential difference is often referred to as the voltage across the power supply.

For example, a 5-volt battery gives 5 joules of electric potential energy to 
each coulomb of charge that passes through the battery. If electric potential 
energy, W, is given to a charge, q, that passes through the power supply, then the 
potential difference, V , across the power supply is given by the formula:

V =  
W
q

13.3.2 The conventional point of view
Looking from the perspective of conventional current, that is, positive charge 
carriers, the current would go in the opposite direction. In the circuit that follows, 
positive charges at A, the positive terminal, would leave with energy and arrive at 
F with no energy. The graph below shows the energy held by one coulomb of 
charge, that is, the voltage, as the charge moves around the circuit from A to F.

At the positive terminal, A, the coulomb of charge has 9 joules of energy; its 
voltage is 9 V. The wire, AB, from the battery to the globe is a good conductor, so 
no energy is lost and the voltage is still at 9 V. In the globe, as the current goes 
from B to C, the coulomb of charge loses 3 joules of energy and now has a voltage 

+ –

I

FIGURE 13.16 The 
circuit symbol for a 
battery showing 
direction of 
conventional current.

current

CB D E

A

(a) (b)

F
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motorglobe
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3

9
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0

FIGURE 13.17

FIGURE 13.15 A 
power pack is used in 
school laboratories to 
supply electrical 
potential energy to a 
circuit.

13.3 SAMPLE PROBLEM 1

Calculate the amount of electric potential energy given to 2.00 coulomb of charge that passes through 
a 1.50 × 102 V power supply.

SOLUTION:

              V = W
q

1.50 × 102 = W
2.00

             W = 3.00 × 102  J
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of 6 V at C. The conducting wire from C to D has no effect, so the coulomb of charge arrives at the motor,  
DE, with 6 joules of energy. This energy is used up in the motor so that at E the voltage is 0 V. The charge 
then moves on to F, the negative terminal, where the battery re-energises the charge to go around again.

Voltage is also called the electric potential. Using the hydraulic model, at A the charge is like water in a 
high dam that has gravitational potential energy that can be released when the dam opens. The charge at A has 
an electric potential of 9 V or 9 joules for every coulomb, which can be released when a switch is closed.

13.3.3 Measuring potential difference or voltage drop
The potential difference or voltage drop between any two points in a circuit can 
be measured with a voltmeter. The voltmeter must be connected across a part of 
the circuit. If the voltmeter was connected to points A and B in the circuit shown 
in figure 13.17a, it would display zero, as there is no difference in the potential 
or voltage between those two points. If instead it was connected across the globe, 
at BC, it would show a voltage drop of 3 V (9 − 6 = 3 V). This means 
that in the globe, 3 joules of electrical energy are lost by each coulomb 
of charge and transformed by the globe into light and heat.

Voltmeters are designed so that they do not significantly affect the size 
of the current passing through the circuit element. For this reason, the 
resistance of the voltmeter must be much higher than the resistance of the 
circuit elements involved. Resistance will be discussed later in this chapter. 
The circuit diagram symbol for a voltmeter is shown in figure 13.18.

As discussed in section 13.2.6, most school laboratories now use dig-
ital multimeters, which can generally measure both AC and DC volt-
ages. To measure DC voltages, use one of the settings near the ‘V’ with 
a bar beside it.

The black or common socket, labelled ‘COM’, is connected to the part of the circuit that is closer to the 
black or negative terminal of the power supply. The red socket, labelled ‘VΩmA’, is used for measuring 
voltages and is connected to the part of the circuit closer to the red or positive terminal of the power supply. 
The other red socket, labelled ‘10A MAX’ is only for large currents. The dial has a range of settings; when 
first connecting the multimeter, choose the setting with the largest value. If you want more accuracy in your 
measurement, turn the dial to a smaller setting. If the display shows just the digit ‘1’, the voltage you are 
trying to measure exceeds the range of that setting and you need to go back to a higher setting.

13.3.4 Energy transformed by a circuit
Charges experience a potential difference as they go from the negative terminal of a power supply to its 
positive terminal; this potential difference is equal in magnitude to the potential difference across the power 
supply. A charge travelling from the negative to positive terminal of a 12-volt power supply goes from 
having an electrical potential of 0 volts up to an electrical potential of 12 volts. With this increase in elec-
trical potential comes an increase in each charge’s electrical potential energy. This increase in energy is the 
result of work being done by the power supply on the charge. As a result, we have until now used W (the 
symbol for work) to represent the increase in electrical potential energy that a charge q experiences when it 
moves through a potential difference V:

that is, W = V q.
When the charges travel from the positive terminal of a power supply through an electric circuit and then 

back to the negative terminal, the charges experience a drop in electrical potential. This is because the elec-
trical potential energy carried by the charges decreases at every point in the circuit where some of their 
electrical energy is converted into some other form of energy. For example, when electric charges travel 
through a light globe, some of the electric potential energy of the charges is converted into heat energy, 
causing the bulb filament to glow. With the decrease in each charge’s electrical energy from one side of the 

+

−

+

−

circuit
element V

FIGURE 13.19 Connecting a 
voltmeter into a circuit.

V

FIGURE 13.18 The 
circuit diagram symbol 
for a voltmeter.
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globe to the other, there is a corresponding drop in each charge’s electric potential. A circuit component 
over which such a potential drop occurs is called a load.

Since the potential difference is a measure of the loss in electrical potential energy by each coulomb of 
charge, the amount of energy (W) transformed by a charge (Q) passing through a load can be expressed as:

        W = Vq

since V = W
q

where V  is the potential difference across the load.
The amount of charge passing through a load in a time interval t can be expressed as:
           q = It
Thus, W = V/t

where I is the currnt.

13.3.5 Power delivered by a circuit
In practice, it is the rate at which energy is transformed in an electrical load that determines its effect. The 
brightness of an incandescent light globe is determined by the rate at which electrical potential energy is 
transformed into the internal energy of the filament.

Power is the rate of doing work, or the rate at which energy is transformed from one form to another. 
Power is equal to the amount of energy transformed per second, or the amount of energy transformed 
divided by the time it took to do it. Power can therefore be expressed as:

P =  
W
t

where P is the power delivered when an amount of energy is transformed (i.e. an amount of work W is 
done) in a time interval t.

The SI unit of power is the watt (W).
1 watt = 1 joule per second = 1 J s–1

Since W = VIt and P =  
W
t

then P =  
VIt
t

or P = VI
And since V =  

W
q

 and q = It,

therefore, V =  
W
It

or W = VIt
This is a particularly useful formula because the potential difference V  and electric current I can be 

easily measured in a circuit.

13.3 SAMPLE PROBLEM 2

What is the potential difference across a heater element if 3.6 × 104 J of heat energy is produced when 
a current of 5.0 A flows for 30 s?

SOLUTION:

As W = V/t, 

      V = W
It

= 3.6 × 104 J
5.0 A × 30 s

= 240 V
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13.3.6 Transposing formulae
If you have trouble transposing formulae to solve a question, you could use the triangle shown in figure 13.20.

Cover the pronumeral you want to be the subject, for example I. What is visible in the triangle shows 
what that pronumeral equals. In this example,

I = P
V

.

This method can also be used for any formula of the form x = yz. For example, q = It and W = Vq.

×q V

W

×I t

q

FIGURE 13.21 Variants of the power 
formula triangle.

13.3 SAMPLE PROBLEM 4

How much energy is supplied by a mobile phone battery rated at 3.7 V and 1200 mAh? ‘mAh’ stands 
for milliamp hours, which means that the battery would last for one hour supplying a current of 
1200 mA or two hours at 600 mA.

SOLUTION:

V = 3.7 V
 I = 1200 mA = 12 A, 
 t = 60 × 60 = 3600 s.
The energy produced is given by E = VIt, so
E = 3.7 × 1.2 × 3600

= 16 KJ

×V I

P

FIGURE 13.20  
Power formula 
triangle.

13.3 SAMPLE PROBLEM 3

What is the power rating of an electric heater if a current of 5.0 A flows through it when there is a 
voltage drop of 240 V across the heating element?

SOLUTION:

or 1.2 kW

  I = 5.0 A
 V = 240 V
 P = VI
   = 240 V × 5.0 A
   = 1200 W

  

WORKING SCIENTIFICALLY 13.1
The power packs used in most school labs have a knob that is turned to change the size of the voltage sup-
plied. While the positions are marked 2V,  4V, etc., do you think this actually indicates the potential difference 
supplied to the circuit? Investigate whether the percentage difference between the marked voltage value and 
the voltage supplied to the circuit varies between packs and if it changes depending upon the resistances in the 
circuit that it is supplying.
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13.4 Resistance
13.4.1 Defining Resistance
The resistance, R, of a substance is defined as the ratio of the 
voltage drop, V , across it to the current, I, flowing through it.

R = V
I

The resistance of a device is a measure of how difficult it 
is for a current to pass through it. The higher the value of 
resistance, the harder it is for the current to pass through the 
device.

The SI unit of resistance is the ohm (symbol Ω). It is the 
resistance of a conductor in which a current of one ampere 
results from the application of a constant voltage drop of one 
volt across its ends.

1 Ω = 1VA−1

The ohm is named in honour of Georg Simon Ohm 
(1787–1854), a German phyiscist who investigated the effects 
of different materials in electric circuits.

 FIGURE 13.22 Georg Simon Ohm.

13.3 Exercise 1
1. If electrons are the carriers of charge around an electric circuit, why is current taken to travel from the 

positive terminal to the negative terminal of a power supply?
2. A mobile phone battery has a voltage of 3.7 V. During its lifetime, 4000 coulombs of charge leave the 

battery. How much energy did the battery originally hold?
3. What is the potential difference across a light globe if 1.44 × 103 J of heat is produced when a current of 

2.0 A flows for 1.0 minute?
4. How much energy does a 1.5 V battery give to 0.5 coulombs of charge?
5. The charge on an electron is 1.6 × 10–19 coulombs. How much energy does each electron have as it leaves 

a 1.5 V battery?
6. How much electrical potential energy will 5.7 μC of charge transfer if it passes through a voltage drop of 6.0 V?
7. A 6.0 V source supplies 3.6 × 10–4 J of energy to a quantity of charge. Determine the quantity of charge in 

coulombs and microcoulombs.
8.  Copy and complete the following table:

Potential difference Energy Charge

? V 32 J 9.6 C

? V     4.0 J 670 mC

9.0 V    ? J 3.5 C

12 V    ? J 85 mC

4.5 V 12 J ? C

240 V        7.5 kJ ? C

9. What is the energy loss when a current of 5 mA flows for 10 minutes through a conductor across which the 
potential difference is 2000 V?

10. An electron-Volt (eV) is a unit of energy representing the work done in moving an electron through a 
potential difference of 1 volt. Approximately how many joules is equal to one electron-Volt?
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13.4.2 Factors that determine resistance
The resistance of a conductor is a result of collisions between the free electrons and the lattice of positive 
ions The greater the number of collisions, the greater the resistanc. The resistance of a particular  
conductor is determined by four factors:
 • length
 • material
 • area of cross-section
 • temperature.

Resistance and length
Consider free electrons drifting through a metal 
wire. The longer the wire, the greater the chance 
of a collision between a free electron and an ion 
in the lattice. Therefore, the longer the wire, the 
greater its resistance. If two conductors differ 
only in length, the longer conductor will have 
the greater resistance. The resistance, R, is  
proportional to the length, I: R ∝ I.

If two conductors, differing only in length, have lengths l1 and l2 and resistances R1 and R2, then: 
R1

R2
= l1

l2
. 

If the length of a conductor is doubled, keeping all the other factors the same, the resistance will be doubled. 

A useful comparison is with the flow of water through a pipe. It is more difficult for water to flow 
through a long pipe than to flow through a short pipe.

Resistance and area of cross-section
Consider free electrons drifting through a metal wire. The smaller the area of cross-section of the wire, the 
greater the chance of a collision of a free electron with an ion in the lattice. Therefore, the smaller the area 

R2 will have greater resistance than R1.

R1

3 cm

R2

6 cm

FIGURE 13.23 Dependence of resistance on length.

13.4 SAMPLE PROBLEM 1

A 2.0 cm length of wire has a resistance of 1.6 Ω . What would be the resistance of 1.0 × 102 cm of the 
wire?

SOLUTION:

The resistance of 1.0 cm of the wire is 1.6 Ω
2.0 cm

.

Therefore, the resistance, R, of 1.0 × 102 cm of the wire will be: (
1.6
2.0) × (1.0 × 102) Ω .

Therefore, R = 8.0 × 101 Ω .

PHYSICS IN FOCUS

The lie detector
The lie detector, or polygraph, is a meter that measures the resistance of skin. The resistance of skin is greatly 
reduced by the presence of moisture. When people are under stress, as they may be when telling lies, they 
sweat more. The subsequent change in resistance is detected by the polygraph and is regarded as an indication 
that the person may be telling a lie.
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of cross-section of the wire, the greater its 
resistance. (Note that doubling the area of 
cross-section is not the same as doubling the 
diameter of a wire. If the diameter is multiplied 
by two, the area of cross-section is multiplied by 
four.)

If two conductors differ only in area of 
cross-section, the conductor with the greater area 
of cross-section will have the lesser resistance. 

The resistance, R, of a wire is inversely proportional to the area of cross-section, A: R ∝ 1
A

.

If two conductors, differing only in area of cross-section, have areas of cross-section A1 and A2 and 

resistances R1 and R2, then: 
R1

R2
= A2

A1
.

If the area of cross-section of a conductor is doubled, keeping all the other factors the same, the resist-
ance will be halved. This is illustrated in figure 13.24.

The flow of water comparison applies here also. It is more difficult for water to flow through a narrow 
pipe than to flow through a wide pipe.

Resistance and material
When a free electron is drifting through a wire, the chance of a collision with an ion in the lattice depends, 
in a complex way, on what metal the wire is made of. The size of the postive ions, the geometry of the 
lattice and the distance between the ions will all have an effect on how many collisions are made between 
ions and electrons. These factors are reflected in the conductor’s resistivity (ρ) measured in ohm metres 
(Ω  m). Resistance is directly proportional to the resistivity:

R ∝  ρ
The larger the resistivity, the greater the resistance of the material. Two conductors made of dif-

ferent materials but having the same length, area of cross-section and temperature will have different 
resistivities and, so, will have differing resistances. Table 13.1 shows the resistivities of some common 
materials at 20 °C.

13.4 SAMPLE PROBLEM 2

Two pieces of resistance wire, X and Y, have the same length. Wire X has a cross-sectional area of 
1.00 mm2, and a resistance of 5.00 Ω . Wire Y has a cross-sectional area of 4.00 mm2. What will be the 
resistance of wire Y?

SOLUTION:

Area of cross-section of X
Area of cross-section of Y

= 1.00
4.00

.

 
Resistance of X
Resistance of Y

= 4.00
1.00

.

 
5.00

Resistance of Y
= 4.00

1.00
.

 Resistance of Y = 5.00 × 1.00
4.00

= 1.25 Ω .

R1 will have greater resistance than R2.

R1

0.8 cm2

R2

1.6 cm2

FIGURE 13.24 Dependence of resistance on area of 
cross-section.
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TABLE 13.1 Comparative resistivities of materials

Material Resistivity (Ω  m) Material Resistivity (Ω  m)

Silver 1.5 × 10–8 Tungsten 5.5 × 10–8

Copper 1.7 × 10–8 Carbon 3.5 × 10–5

Aluminium 2.6 × 10–8 Rubber approx. 1013–1016

Iron 12 × 10–8 Glass approx. 1010–1014

Nichrome 1 × 10–6 Wood (maple) 4 × 1011

The resistivity of a material influences its use. When a conductor with negligible resistance is required, 
copper is commonly used. When a conductor is required to have some resistance, for example, in a heating 
coil, a material such as nichrome is used. Materials such as glass and rubber are used to make insulators. 
For household circuits, copper wiring is used. Aluminium and steel (iron) are usually used for transmission 
lines as copper is too expensive and is not mechanically strong enough.

Resistance and temperature
When the temperature of a conductor is increased, the ions in the lattice vibrate with greater amplitude. 
This increases the chance of a collision between a free electron and an ion in the lattice. Therefore, 
increasing the temperature of a conductor increases its resistance.

As an example, consider a conductor made of copper with a resistance of 1.000 × 10−3 Ω  at 0° C. If its 
temperature is raised to 100°C, its resistance will be 1.393 × 10−3 Ω .

If the material experiences very little change in its temperature, as is assumed for the majority of the 
circuits we will consider, then the combined effects of length L, cross-sectional area A and resistivity ρ on 
the overall resistance R of a conductor can be related by the formula:

R = ρL
A

where A is in m2, L is in m and ρ is in Ω  m.

13.4 SAMPLE PROBLEM 3

Calculate the resistance of a copper wire that is 40 cm long and has a diameter of 2 mm.

SOLUTION:

Given: D = 2 mm = 2 × 10–3 m; L = 40 cm = 0.40 m; ρ = 1.7 × 10–8 (from table 13.1)
To find: R
First, we will need to calculate the cross-sectional area of the wire:
A = π r2

= π (
D
2 )

2

= π × (1 × 10−3)2

= 3.1 × 10−6 m2

Now, we can substitute in values to find R:

R =
ρL

A

=
(1.7 × 10−8) × 0.40

3.1 × 10−6

= 2.2 × 10−3 Ω
So, the wire has a fairly small value of resistance, 2.2 mΩ.
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13.4.3 Resistors
In many electrical devices, resistors are used to control the current 
flowing through, and the voltage drop across, parts of the circuits. Resis-
tors have constant resistances ranging from less than one ohm to millions 
of ohms. There are three main types of resistors. ‘Composition’ resistors 
are usually made of the semiconductor carbon. The wire wound resistor 
consists of a coil of fine wire made of a resistance alloy such as nichrome. 
The third type is the metal film resistor, which consists of a glass or pot-
tery tube coated with a thin film of metal. A laser trims the resistor to its 
correct value.

Some large resistors have their resistance printed on them. Others have a colour code to indi-
cate their resistance, as shown in figures 13.27 and 13.28, and in table 13.2. The resistor has four 
coloured bands on it. The first two bands represent the first two digits in the value of resistance. 
The next band represents the power of ten by which the two digits are multiplied. The fourth band 
is the manufacturing tolerance.

argon and nitrogen 
(at low pressure)

glass bulb

fuse

electrical contacts

tungsten
�lament

FIGURE 13.25 A 240-volt, 
60-watt globe.

(a) (b)

FIGURE 13.26 Examples of (a) carbon resistors and  
(b) a coiled wire resistor.

WORKING SCIENTIFICALLY 13.2
Investigate the resistance of a light globe at different temperatures. Does the degree of non-ohmic behaviour 
depend upon the wattage of the bulb?

FIGURE 13.27 Example of a metal film resistor.

conductortolerance

power of
ten multiplier

�rst digit

second digit

FIGURE 13.28 A resistor, showing 
the coloured brands.

wire conductor

laser-cut grooves
(to adjust resistance) glass or pottery tube

capmetal �lmcoloured bands



TOPIC 13 Electric circuits 327

TABL 13.2  The resistor colour code.

Colour Digit Multiplier Tolerance
Black 0 100 or 1
Brown 1 101

Red 2 102 ±2%

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Grey 8 108

White 9 109

Gold 10−1 ±5%

Silver 10−2 ±10%

No colour ±20%

13.4.4 Ohm’s Law
Georg Ohm established experimentally that the current I in a metal 
wire is proportional to the voltage drop V  applied to its ends.

I ∝ V
When he plotted his results on a graph of V  versus I, he obtained 

a straight line.
The equation of the line is known as Ohm’s Law and can be 

written:
V = IR

where R is numerically equal to the constant gradient of the line. This 
is known as the resistance of the metal conductor to the flow of 
current through it. Remember that the SI unit of resistance is the ohm.

If you have trouble transposing equations, you can use the triangle 
method for Ohm’s Law: simply cover the quantity you wish to calculate, 
and the triangle indicates what to do.

For example, if you are given the voltage drop and the current and you 

wish to find the resistance, cover R, and the triangle shows that R = V
I

.

V

I0

metal A

metal B

FIGURE 13.29 Graphs of V versus 
I for two different metal wires.

×I R

V

FIGURE 13.30 Triangle for 
Ohm’s Law.

13.4 SAMPLE PROBLEM 4

What is the resistance of the following resistors if their coloured bands are:
(a) red, violet, orange and gold
(b) brown, black, red and silver?

SOLUTION:

(a) Red = 2, violet = 7, so the first two digits are 27.
 The third band is orange, which means multiply the first two digits by 103. So the resistance is 
27 000 Ω , or 27 k Ω .

The fourth band is gold, which means there is a tolerance of 5%. This means that the true 
value is 27 000 Ω ± 1350 Ω  (5% of 27 000 Ω ).

(b) Brown and black give 10. Red means multiply by 102, so the resistance is 1.0 × 103 Ω , and the 
tolerance is 10%.
 When holding a resistor to read its value, keep the gold or silver band on the right and read the 
colours from the left.
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13.4.5 Ohmic and non-ohmic devices
An ohmic device is one for which, under constant physical conditions such as temperature, the resistance 
is constant for all currents that pass through it.

A non-ohmic device is one for which the resistance is different for different currents passing through it.
The graph in figure 13.29 has voltage on the y-axis and current on the x-axis. The graph is drawn this 

way so that the gradient of lines for the metals A and B gave the resistance of each. However, the size of 
the current in a circuit depends on the magnitude of the voltage; that is, the voltage is the independent var-
iable and the current is the dependent variable. The accepted convention graphs the independent variable on 

the x-axis and the dependent variable on the y-axis. So in figure 13.31a, the gradient equals 1
R

.

Non-ohmic devices
Many non-ohmic devices are made from elements that are semiconductors. 
They are not insulators as they conduct electricity, but not as well as metals. 
Common semiconductor elements are silicon and germanium, which are in 
Group 14 of the periodic table. Many new semiconductor devices are compounds 
of Group 13 and Group 15 elements such as gallium arsenide.

The conducting properties of silicon and germanium can be substantially changed by adding a very small 
quantity of either a Group 13 element or a Group 15 element. This is called doping and affects the move-
ment of electrons in the material.

VV0

I

I

(a) (b)

I = (   ) V1
–
R

FIGURE 13.31 The I versus V graphs for (a) an ohmic resistor and (b) a diode, 
which is a non-ohmic device.

FIGURE 13.32 Circuit 
symbol for a diode.

13.4 SAMPLE PROBLEM 5

A transistor radio uses a 6 V battery and draws a current of 300 mA. What is the resistance of the radio?

SOLUTION:

From Ohm’s Law: R = V
I

so R = 6 V
0.3 A

 (since 300 mA = 0.3 A)

= 20 Ω .
Remember, the voltage drop must be expressed in volts and current must be expressed in amperes.

Note that the equation used for defining resistance is R = V
I

. This is not Ohm’s Law unless R is 

constant. The V  versus I graph is not a straight line for a metallic conductor unless the temperature 
is constant.
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A diode is formed by joining two differently doped mate-
rials together. A diode allows current to flow through it in 
only one direction. This effect can be seen in the current–
voltage graph for a diode in figure 13.31b, where a small 
positive voltage produces a current, while a large negative 
or reverse voltage produces negligible current. 

Light-emitting diodes (LEDs) are diodes that give off 
light when they conduct. They are usually made from gal-
lium arsenide. Gallium nitride is used in blue LEDs.

Thermistors are made from a mixture of semiconductors 
so they can conduct electricity in both directions. They 
differ from metal conductors, whose resistance increases 
with temperature, as in thermistors an increase in tempera-
ture increases the number of electrons available to move 
and the resistance decreases.

Light-dependent resistors (LDRs) are like thermistors, except they respond to light. The resistance of 
an LDR decreases as the intensity of light shining on it increases. The axes in figure 13.34b for an LDR 
have different scales to the other graphs. As you move from the origin, each number is 10 times the pre-
vious one. This enables more data to fit in a small space.

13.4.6 Heating effects of currents
Whenever a current passes through a conductor, thermal energy is produced. This is due to the fact that the 
mobile charged particles, for example electrons, repeatedly collide with the atoms of the conductor, causing 
them to vibrate more and producing an increase in the temperature of the material.

This temperature increase is not related to the direction of the current. A current in a conductor always 
generates thermal energy, regardless of which direction the current flows. Examples of devices that make 
use of this energy include radiators, electric kettles, toasters, stoves, incandescent lamps and fuses.

10 000

1000

100

10
0.1 1 10

(b)

Illumination (lux)

100 1000

or

(a)

FIGURE 13.34 (a) Circuit symbols for an LDR; (b) resistance-versus-light intensity 
graph for an LDR

WORKING SCIENTIFICALLY 13.3
When the transformers/rectifiers for charging mobile phones are connected to the power point, they will often 
heat up. Investigate the relationship between the period of time the transformer/rectifier is plugged into the 
power point and the temperature of the casing when (a) the phone is connected and charging, (b) the phone is 
connected and already fully charged and (c) no phone is connected.

Temperature (°C)

2

1

20

(b)

40 600

(a)

FIGURE 13.33 (a) Circuit symbol for a 
thermistor. (b) resistance-versus-temperature 
graph for a thermistor.
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13.4.7 Power and resistance
The rate at which energy is dissipated by any part of an electric circuit can be expressed as:

P = VI
where

P = power
  I = current
V = voltage drop.

This relationship can be used, along with the definition of resistance, R = V
I

, to deduce two different 

formulae describing the relationship between power and resistance:

         P = VI = (IR)I
Thus P = I2R.

         P = VI = V(
V
R )

 

[1]

Thus P = V 2

R
. [2]

You now have three different ways of determining the rate at which energy is transferred as charge flows 
through a voltage drop in an electric circuit:

P = VI       P = I2R       P = V2

R
.

In addition, the quantity of energy transferred, ΔE, can be determined:
ΔE = W

= VIt
= I2Rt

= V2t
R

These formulae indicate that in conducting wires with low resistance, very little energy is dissi-
pated. If the resistance, R, is small and the voltage drop, V , is small, the rate of energy transfer is also 
small.

AS A MATTER OF FACT
Nichrome is a heat-resistant alloy used in electrical heating elements. Its composition is variable, but is usually 
around 62% nickel, 15% chromium and 23% iron.

13.4 SAMPLE PROBLEM 6

A portable radio has a total resistance of 18 Ω  and uses a 6.0 V battery consisting of four 1.5 V cells 
in series. At what rate does the radio transform electrical energy?

SOLUTION:

P = V   

2

R

= (6.0 V  )2

18 Ω
= 2.0 W
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13.4 SAMPLE PROBLEM 7

A pop-up toaster is labelled ‘240 V, 800 W’.
(a) What is the normal operating current of the toaster?
(b) What is the total resistance of the toaster while it is operating?

SOLUTION:

(a)     P = VI

⇒ I = P
V

= 800 W
240 V

= 3.3 A

(b)      P = V 2

R

⇒ R = V 2

P

= (240 V)2

800 W
= 72 Ω

PHYSICS IN FOCUS
Resistance thermometers
The change of resistance of a conductor with temperature change can be used to make a thermometer. 
Such a thermometer can be used over a much greater range of temperatures than a liquid-in-glass 
thermometer.

The metal element of such a thermometer consists of a fine wire 
(approx. 10−4 m diameter). As this element is fragile, it is wound 
around a support made of mica, a mineral that is an insulator with a 
high melting point. The element is connected to an electrical circuit 
so that its resistance can be measured. To use the thermometer, the 
element is inserted into the place where the temperature is to be 
measured. The resistance of the element is measured using the elec-
tric circuit connected to it, and the temperature is calculated from the 
known temperature–resistance characteristics of the element.

The most common metals used to make resistance thermometers 
are platinum, nickel and copper. Figure 13.35 shows how the relative 
resistance of copper varies with temperature. The relative resistance 
of a metal at a particular temperature is the ratio of the resistance of 
the metal at that temperature to its resistance at 0°C.

Copper wire elements are used between 120° C and 200°C; nickel elements between between 
150°C and 300°C; platinum elements between 258°C and 900°C. A resistance thermometer can 
measure temperature to an accuracy of ± 0.01°C.

–200 0 200 400 600 800 1000
Temperature (°C)

8
7
6
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2
1
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FIGURE 13.35 Relative 
resistance against 
temperature for copper.

13.4 Exercise 1
1. You are given four pieces of wire made of the same material. The lengths and diameters of the wires are 

given in the following table. List these in order of increasing resistance.

Length (cm) Diameter (mm)

(a) 10   1
(b) 10   2
(c) 20      0.5
(d) 20 11
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2. A 30 cm length of wire has a resistance of 1.6 Ω . How much resistance will a 90 cm length of wire have that 
is cut from the same roll of wire?

3. What will be the resistance of a 2 m length of nichrome wire if it has a diameter of 1 mm? (ρnichrome = 1 × 10−6 Ωm)
4. A 4 m length of wire has a cross-sectional area of 1 × 10–3 m2 and a resistance of 60.0 m Ω .

(a) Calculate the resistivity of the metal the wire is made from.
(b) What metal is the wire made from? (Use table 13.1.)

5. A microwave oven is labelled ‘240 V,  600 W’.
(a) What is the normal operating current of the microwave oven?
(b) What is the total resistance of the microwave oven when it is operating?

6. A temperature-sensing system in an oven uses a thermistor with 
the characteristics shown in figure 13.36.
(a) What is the resistance of the thermistor when the temperature 

in the oven is 100 °C?
(b) What is the temperature in the oven when the resistance of 

the thermistor is 400 Ω?
7. Calculate the current drawn by:

(a) a 60 W light globe connected to a 240 V source
(b) a 40 W globe with a voltage drop of 12 V across it
(c) a 6.0 V,  6.3 W globe when operating normally
(d) a 1200 W,  240 V toaster when operating normally.

8. How much energy is provided by a 6.0 V battery if a current of 
3.0 A passes through it for 1.0 minute?

9. Copy and complete the following table.

Potential difference Current Resistance

? 8.0 A 4.0 Ω
? 22 mA 2.2 kΩ
12 V ? 6.0 Ω
240 V ? 8.0 × 104 Ω
9.0 V 6.0 A ?

1.5 V 45 mA ?

10. What are the resistances and tolerances of resistors with the following colour codes:
(a) blue, green, red, gold
(b) orange, black, brown, silver
(c) black, brown, black, red?

100 000

Temperature (°C)

10

100

1000

10 000

50 100 150 200 250 300
0

FIGURE 13.36

 Watch thiseLesson:  Resistance
Searchlight ID: eles-2516
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13.5 Series and parallel circuits
13.5.1 Circuit diagrams
A circuit diagram shows schematically the devices used in constructing an electrical circuit. Table 13.3 
shows the symbols commonly used in drawing circuits.

13.5.2 Kirchoff’s Laws
We owe much of our understanding of electrical circuits to the German 
physicist Gustav Kirchoff. Building upon the work of Georg Ohm, Kir-
choff developed two essential laws that allow us to calculate the volt-
ages, currents or resistances for even very complex electrical networks.

Kirchoff’s Current Law — the conservation of charge
Electric charge is conserved. At any point in a conductor, the amount 
of charge (usually electrons) flowing into that point must equal the 
amount of charge flowing out of that point. Electrons do not build up 
at a point in a conductor, nor will they magically disappear. You don’t 
get traffic jams in electric circuits.

The sum of the currents flowing into a junction is equal in magnitude to the sum of the currents flowing 
out of that junction: Iin = Iou  or, ΣI = 0.

In figure 13.37, Ia + Ic = Ib + Id + Ie.

TABL 13.3  Symbols used in circuit diagrams.

Circuit component Symbol Circuit component Symbol

Connection between 
conductors

• Resistor with sliding 
contact to give a variable 
resistance

Terminal ◦ Semiconductor diode* or

Conductors  
not connected*

or Single pole switch (open)

Conductors 
connected* or

Button switch (open)

Earth*
or

Voltmeter

Battery Ammeter

Variable power 
supply*

or Incandescent lamp* or

Resistor

or

Light-dependent resistor 
(LDR)

Variable resistor*
or

Heat-dependent resistor 
(thermistor)

*The first of the two alternative symbols is used in this book.

Ia
Ib

Ic
Id

Ie

FIGURE 13.37 Five wires 
soldered at a junction.
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Kirchoff’s Voltage Law — the conservation of energy
Around a circuit, electrical energy must be conserved. This can be stated as:

In any closed loop of a circuit, the sum of the voltage drops must equal the sum of the emfs (increases in 

voltage) in that loop, that is ΣV = 0 for any closed-circuit loop.

13.5 SAMPLE PROBLEM 2

Find the values of currents a, b, c, d, e and f  as marked in figure 13.39.

SOLUTION:

At junction A,
          Iin = Iout
⇒ 15.3 = 7.9 + a

     ⇒ a = 7.4 mA.
At junction B,
                 Iin = Iout
⇒ 7.9 + 7.4 = b

             ⇒ b = 15.3 mA.
At junction C,
         Iin = Iout
⇒ 15.3 = c + 2.1

     ⇒ c = 13.2 mA.
At junction D,
          Iin = Iout
     ⇒ c = d + 6.5
⇒ 13.2 = d + 6.5

     ⇒ d = 6.7 mA.
At the resistor, 
   e = 2.1 mA, as Iin = Iout for the resistor.
At junction E,
                           Iin = Iout
      ⇒ d + 6.5 + e = f
⇒ 6.7 + 6.5 + 2.1 = f

                        ⇒ f = 15.3 mA.

6.5 mA

2.1 mA

7.9 mA

15.3 mA

c

e

d

b

a

f

A

B

CD

E

FIGURE 13.39

13.5 SAMPLE PROBLEM 1

Calculate the magnitude and direction of the unknown current in figure 13.38, showing currents 
meeting at a junction.

SOLUTION:

Currents flowing into the junction equal
1.0 + 4.0 = 5.0 A.
Currents flowing out of the junction equal
2.5 + 1.3 = 3.8 A.
Therefore the unknown current must be
5.0 − 3.8 = 1.2 A out of the junction.

2.5 A

1.3 A

4.0 A

I

1.0 A

FIGURE 13.38
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13.5.3 Resistors in series
There are two ways in which circuit elements can be connected: in series and in parallel.

When devices are connected in series, they are joined together one after the other. There is only one path 
for the current to take. 

When devices are connected in parallel, they are joined together so that there is more than one path for 
the current to flow through.

Many devices can be connected in series and parallel. These include resistors and cells.
When a number of resistors are placed in series, some basic rules can be derived.
There is only one path for the current to flow through. Therefore in figure 13.41, the current in R1 equals 

the current in R2 and in R3. I1 refers to the current in R1; I2 to the current in R2, etc. Similarly V1 is the 
voltage drop across R1; V2 is the voltage drop across R2, etc.

I = I1 = I2 = I3

Since  V = I R, 
         V1 = I R1

         V2 = I R2

         V3 = I R3

The total voltage drop, VT, across resistors in series is equal to the sum of the voltage drops across each 
individual resistor.

      VT = V1 + V2 + V3

⇒ VT = I R1 + I R2 + I R3

⇒ VT = I (R1 + R2 + R3)

Since VT = I RT (where RT is the effective resistance of all three resistors), the effective resistance offered 
by resistors in series is found by obtaining the sum of the individual resistances:

RT = R1 + R2 + R3.
This means that the effective resistance of a circuit is increased by adding an extra resistor in series with 

the others. The resistance of a series circuit is greater than that for any individual resistor.

R1

I

R2 R3

FIGURE 13.41 Resistors 
connected in series.

13.5 SAMPLE PROBLEM 3

Calculate the unknown voltage drop Vbc in figure 13.40.

SOLUTION:

           V = the sum of the voltage drops
            V = 9.0 V
⇒ 9.0 V = 5.2 V + Vbc
   ⇒ Vbc = 3.8 V V = 9.0 V

Vab = 5.2 V

Vbc

a

b

c

FIGURE 13.40

13.5 SAMPLE PROBLEM 4

Find the effective resistance of a circuit comprising three resistors, having resistance values of 15 Ω , 
25 Ω  and 34 Ω , connected in series.

SOLUTION:

RT = R1 + R2 + R3
= 15 Ω  + 25 Ω  + 34 Ω
= 74 Ω
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13.5.4 Resistors in parallel
In a parallel branch of a circuit, there is more than one path for the current to flow through.

The total current flowing into the parallel section of a circuit equals the sum of the individual currents 
flowing through each resistor.

IT = I1 + I2 + I3

As can be seen in figure 13.43, the left-hand sides of all the resistors are connected to point A, so they are 
all at the same voltage. This means that all charges on that side of the resistors have the same amount of elec-
trical potential energy. Similarly, the right-hand sides of the resistors are connected to point B, therefore they 
also are at the same voltage. This means that each resistor in a parallel section of a circuit has the same 
voltage drop across it.

VT = V1 = V2 = V3

In a parallel section of a circuit, the total current equals the sum of the individual currents, and the 
voltage drops across each resistor are the same. It is possible to derive an expression for the effective resist-
ance, RT, of a parallel section of a circuit.

       IT   = I1 + I2 + I3

⇒ V
RT

= V
R1

+ V
R2

+ V
R3

(since I = V
R

 for each resistor and the whole section of the circuit)

⇒ 1
RT

= 1
R1

+ 1
R2

+ 1
R3

 (dividing  both  sides  by  V )

13.5 SAMPLE PROBLEM 5

In the series circuit shown in figure 13.42 the emf of the power supply 
is 100 V, the current at point a, Ia, equals 1.0 A, and the value of R2 is 
60 Ω . Find the following quantities:
(a) the current at point b
(b) the voltage drop across R2

(c) the voltage drop across R1

(d) the value of R1.

SOLUTION:

(a) The current is the same at all points of a series circuit. Therefore the current at point b, Ib, is 1.0 A.
(b)               V2 = IR2

= 1.0 A × 60 Ω
= 60 V

(c)             ε = V1 + V2
⇒ 100 V = V1 + 60 V

           V1 = 40V
(d)   

    
    V1 = IR1
40 V = 1.0 A × R1
    R1 = 40 Ω

c

b

a

R1

R2ε

FIGURE 13.42

R1

R2

R3I3

I2

I1

IT IT

A B

FIGURE 13.43 A parallel branch of a circuit.
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This means that the reciprocal of the effective resistance is equal to the sum of the reciprocals of the 
individual resistances. The effective resistance is less than the smallest individual resistance. The more 
resistors there are added in parallel, the more paths there are for the current to flow through, and the easier 
it is for the current to flow through the parallel section.

Modelling resistors in parallel
One way to help understand this concept is to use the 
hydraulic model. Current is represented by water 
flowing in a pipe. Resistors are represented as thin 
pipes. The thinner the pipe, the greater the resistance 
and therefore less water can flow in the circuit. A 
conductor is represented by a large pipe through 
which water flows easily. The source of emf is repre-
sented by a pump that supplies energy to the circuit.

If there is only one thin pipe, it limits the flow 
of water. Adding another thin pipe beside the first 
allows more water to flow. The total resistance 
offered by the two thin pipes in parallel is less 
than that offered by an individual tin pipe.

pump

(a)

pump

(b)

FIGURE 13.44 The hydraulic model for resistors in 
parallel showing (a) a circuit with one ‘resistor’ and 
(b) a second ‘resistor’ added in parallel, which 
allows more current to flow and reduces the 
effective resistance.

13.5 SAMPLE PROBLEM 6

What is the effective resistance of three resistors connected in parallel if they have resistance values 
of 5.0 Ω , 10 Ω  and 20 Ω  respectively?

SOLUTION:

     1
RT

= 1
R1

+ 1
R2

+ 1
R3

     1
RT

= 1
5.0  Ω

+ 1
10  Ω

+ 1
20  Ω

⇒ 1
RT

= 4
20  Ω

+ 2
20  Ω

+ 1
20  Ω

⇒ 1
RT

= 7
20  Ω

⇒ RT = 20  Ω
7

= 2.9  Ω

Note that the effective resistance of a set of resistors connected in parallel is always less than the 
value of the smallest resistor used. Adding resistors in parallel increases the number of paths for 
current to flow through, so more current can flow and the resistance is reduced.

If there are n resistors of equal value, R, the effective resistance will be R
n

.

RT = R
n

13.5 SAMPLE PROBLEM 7

Consider the parallel circuit shown in figure 13.45.
The emf of the power supply is 9.0 V, R2 has a resistance of 10 Ω , and the current flowing through 

the power supply is 1.35 A. Find the following quantities:
(a) the voltage drop across R1 and R2

(b) I2, the current flowing through R2

(c) I1, the current flowing through R1
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Note: Adding a large resistance in parallel with a small resistance slightly reduces the effective resistance 
of that part of a circuit.

Parallel circuits are used extensively. Australian households are wired in parallel with an AC voltage of 
230 V. This is equivalent to a DC voltage of 230 V, and all the formulae that have been presented so far can 
be used for analysing AC circuits.

(d) the resistance of R1

(e) the effective resistance of the circuit.

SOLUTION:

(a) For a parallel circuit, V1 = V2, which in this case is 9.0 V.

(b)          I2 = V
R2

⇒ I2 = 9.0  V
10   Ω

= 0.90 A

(c)           IT = I1 + I2

⇒ I1 = IT − I2

= 1.35 A − 0.9 A
= 0.45 A

(d)        R1 = V
I1

⇒ R1 = 9.0 V
0.45A

⇒ R1 = 20 Ω

(e)       1
RT

= 1
R1

+ 1
R2

⇒ 1
RT

= 1
10  Ω

+ 1
20  Ω

⇒ 1
RT

= 3
20  Ω

⇒ RT = 20  Ω
3

= 6.7 Ω

IT = 1.35 A

I2

I1

R1

R2 = 10 Ω

V = 9.0 V

FIGURE 13.45

13.5 SAMPLE PROBLEM 8

Find the effective resistance when a 10 Ω resistor is placed in parallel with a 10 kΩ  resistor.

SOLUTION:

      1
RT

= 1
R1

+ 1
R2

= 1
10 Ω

+ 1
10 000 Ω

= 1000
10 000 Ω

+ 1
10 000 Ω

= 1001
10 000 Ω

⇒ RT = 10 000 Ω
1001

= 9.99 Ω
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The advantage of having parallel circuits is that all appliances have the same voltage across them and the 
appliances can be switched on indepen dently. If appliances were connected in series, they would all be on 
or off at the same time; and they would share the voltage between them, so no appliance would receive the 
full voltage. This would present problems when designing the devices, as it would not be known what 
voltage to allow for.

Car lights, front and rear, are wired in parallel for the same reason. If one lamp ‘blows’, the other lamps 
will continue functioning normally.

Short circuits
A short circuit occurs in a circuit when a 
conductor of negligible resistance is placed 
in parallel with a circuit element. This ele-
ment may be a resistor or a globe. The 
result of a short circuit is that virtually all 
the current flows through the conductor 
and practically none flows through the cir-
cuit element. Because there is effectively 
no voltage drop across the wire, there is 
also no voltage drop across the circuit ele-
ment, and no current flows through it. Think of what would happen in the hydraulic model if a conducting 
pipe were placed beside a thin pipe. This situation is represented in both ways in figure 13.46.

In this case, the current through the power supply passes through R1, but then flows through the short 
circuit effectively avoiding R2 and R3.

13.5.5 Non-ohmic devices in series and parallel
Non-ohmic devices do not obey Ohm’s Law. Their 
current-versus-voltage characteristics can be presented 
graphically.

The value of  
V
I

 is not constant for non-ohmic devices.

The rules for series and parallel circuits still apply 
when analysing circuits containing non-ohmic devices. 
Devices in series have the same current and share the 
voltage. Devices in parallel have the same voltage and 
the current is shared between them. The actual values of 
the voltage or current are obtained from the V–I graphs 
for the devices.

FIGURE 13.48 V–I characteristic for a silicon diode.

0.2 0.4 0.6 0.8
Voltage drop across diode

80

60

40

20

1.0 1.20

R2

R1

R3

(a)

R2

R1

R3

(b)

short
circuitpump

FIGURE 13.46 (a) Circuit diagram showing a short circuit. (b) 
Hydraulic model of a short circuit.

13.5 SAMPLE PROBLEM 9

Figure 13.47 shows a 10 kΩ  resistor that has been short circuited with a 
conductor of 0 Ω  resistance. Calculate the effective resistance of this 
arrangement.

SOLUTION:

     1
RT

= 1
R1

+ 1
R2

= 1
0 Ω

+ 1
10 000 Ω

= ∞
⇒ RT = 0 Ω

R2 = 10 kΩR1 = 0

FIGURE 13.47
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13.5.6 Power in circuits
Recall that the power being used in a circuit element is the product of the voltage drop across it and the 
current through it: P = VI. The total power being provided to a circuit is the sum of the power being used 
in, or ‘dissipated by’, the individual elements in that circuit. It does not matter if the elements are con-
nected in series or in parallel.

PT = P1 + P2 + P3 = ...

The voltage divider
The voltage divider is an example of resistors in series. It is used to divide or reduce a voltage to a value 
needed for a part of the circuit. A voltage divider is used in many control circuits, for example, turning on 
the heating in a house when the temperature drops.

The voltage divider has an input voltage, Vin, and an output voltage, Vout. 
A general voltage divider is shown in figure 13.50.

The current I flowing through R1 and R2 is the same, since R1 and R2 are in 
series.

       Vin = I(R1 + R2)

    ⇒ I = Vin

R1 + R2

     Vout = IR2

⇒ Vout = Vin

R1 + R2
× R2

13.5 SAMPLE PROBLEM 10

Figure 13.49 shows the current-versus-voltage graph for two elec-
trical devices.

If X and Y are in parallel, and the current through X is 2.0 A, 
calculate:
(a) the voltage across Y
(b) the current through Y.

SOLUTION:

(a) As X and Y are in parallel, the voltage across X equals the voltage 
across Y. From the graph, when the current through X is 2.0 A, the 
voltage is 10 V, so the voltage across Y is 10 V also.

(b) When the voltage across Y is 10 V, the current through Y is seen to be 3.0 A.

13.5 SAMPLE PROBLEM 11

A household electrical circuit is wired in parallel. Find the total current flowing in the circuit if the 
following appliances are being used: a 600 W microwave oven, a 450 W toaster and a 1000 W electric 
kettle. Household circuits provide a voltage drop of 230 V across each appliance.

SOLUTION:

The total power being used in the circuit is 600 + 450 + 1000 = 2050 W.

IT = PT

V

= 2050 W
230 V

= 8.91 A

X

Y

5

4

3

2

1

0
5 10 15 20 25

Voltage drop (V)

FIGURE 13.49

R1

R2

Vin

Vout

FIGURE 13.50 A 
general voltage divider.
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This can be rewritten as:

Vout = R2

R1 + R2
] Vin, or more generally, 

Vout = resistance across which Vout is taken
sum of all resistances ]Vin = Rout

Rtotal
Vin.

If R1 and R2 are equal in value, the voltage will be divided equally across both resistors. If R1 is much 
greater than R2, then most of the voltage drop will be across R1.

13.5 SAMPLE PROBLEM 12

Calculate the value of the unknown resistor in the voltage divider shown 
in figure 13.51, if the output voltage is required to be 4.0 V.

SOLUTION:

       Vout = R2Vin

R1 + R2

⇒ 4.0 V = 6.0 V × R2

2.2 k Ω + R2

⇒ 8.8 kΩV + 4.0 V R2 = 6.0 V R2
⇒ 2.0 VR2 = 8.8 kΩV
⇒ R2 = 4.4 kΩ

R1 = 2.2 kΩ

R2 Vout

0 V

6.0 V

FIGURE 13.51

13.5 Exercise 1
1. Find the effective resistance of three resistors in series if they have the following values: 1.2 kΩ ,  5.6 kΩ  and 

7.1 kΩ .
2. Find the effective resistance of two resistors in parallel if they have resistance values of 1.2 kW and 4.8 kW.
3. Find the total current owing through a household circuit when the following devices are being used: a 400 W 

computer, a 200 W DVD player, a 500 W television and a 60 W lamp.
4. Calculate the value of the unknown resistor in the voltage divider in figure 13.51 from sample problem 12 if 

the output voltage is to be 1.5 V. 
5. Two resistors of resistance 12.0 Ω  and 4.00 Ω  are connected in parallel to a power supply of 30.0 V. Calculate 

what the current will be through the power supply.
6. Calculate how many 20.0 W resistors, connected in parallel to a 2.00 V power supply, would result in a 

current of 1.00 A through the power supply.
7. Two resistors of 12.0 Ω  and 18.0 Ω  are connected in series to a 60.0 V power supply. Calculate the current 

flowing through the circuit.
8. Consider the circuit shown in figure 13.52. (a) Calculate the current through the 

2.50 Ω  resistor. (b) Calculate the current through the 6.00 Ω  resistor. 
(c) Calculate the voltage drop across the 6.00 Ω  resistor. (d) Calculate the 
voltage gain across the power supply.

9. (a)   Find the output voltage for the voltage divider shown in the circuit in 
figure 13.53.

(b) What is the output voltage of the circuit in figure 13.54 if a load of resistance 
4.4 kΩ  is connected across the output terminals of the voltage divider?

10.0 V

2.50 Ω 6.00 Ω

FIGURE 13.52

(a)

Vin = 6.0 V

R1 = 2.2 kΩ

R2 = 2.2 kΩ Vout

FIGURE 13.53

(b)

Vin = 9.0 V

R1 = 2.2 kΩ

R2 = 4.4 kΩ Vout

FIGURE 13.54
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13.6 Review
13.6.1 Summary

 • An electric current is a net movement of electric charge. The SI unit of current is the ampere (A). One 

ampere is equivalent to one coulomb per second: I =  
q
t
.

 • Metals are electrical conductors because they have free electrons that act as charge carriers.
 • Insulators are materials that have no charge carriers and, therefore, cannot carry an electric current.

 • The potential difference (voltage) between the terminals of a power supply is the number of joules of 

electric potential energy given to each coulomb of electric charge: V = W
q

.

 • If a conductor connects the terminals of a power supply, a current will flow through the conductor. The 
movement of electrons is from the negative to the positive terminal of the power supply. The conven-
tional current direction is from the positive to the negative terminal of the power supply.

 • A resistor is a conductor that resists the movement of the current through it.
 • When current flows through a resistor, electric potential energy is dissipated as heat energy: W = I2R.

10. Consider the circuit shown in figure 13.55. Determine:
(a) the total equivalent resistance R that would replace all of the 

resistors in the circuit without changing the value of I
(b) the value of I
(c) the value of I2
(d) the potential drop across the 8 Ω  resistor. 10 Ω

24 V

6 Ω 8 Ω

6 Ω 4 Ω

I

I1

I2

FIGURE 13.55
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 • The potential difference (voltage) between the ends of a resistor is the number of joules of electric poten-
tial energy dissipated for each coulomb of charge that passes through the resistor.

 • The resistance of a resistor is equal to the potential difference across the resistor divided by the current 

passing through the resistor: R =  
V
I

. The SI unit of resistance is the ohm (Ω ).

 • The resistance of a resistor depends on length, cross-section area, material and temperature: R = ρL
A

 at 

constant temperature.
 • An ammeter is used to measure current and is connected into a circuit in series. A voltmeter is used to 

measure electric potential difference and is connected into a circuit in parallel.
 • When resistors are connected in series to a power supply, the same current passes through each resistor 

and through the power supply.
 • When resistors are connected in series to a power supply, the sum of the voltage drops across the resis-

tors equals the voltage rise across the power supply.
 • When resistors are connected in parallel to a power supply, the sum of the currents through the resistors 

equals the current through the power supply.
 • When resistors are connected in parallel to a power supply, the voltage drop across each resistor equals 

the voltage rise across the power supply.
 • Non-ohmic devices such as LDRs, LEDs, diodes and thermistors do not obey Ohm’s Law.
 • Circuits containing non-ohmic devices can be analysed using the rules for series and parallel circuits 

with their voltage–current characteristic graphs.
 • The total power used in a circuit equals the sum of the powers used in individual devices.
 • A voltage divider is used to reduce an input voltage to some required value.
 • A voltage divider consists of two or more resistors arranged in series to produce a smaller voltage at its 

output.

 • The output of a voltage divider can be calculated using the equation: Vout = R2

R1 + R2
]Vin

13.6.2 Questions
1. Define an electric current.
2.   (a) Identify the charge carriers in a metal.

(b) Describe how these charge carriers move under the influence of an electric field in the metal.
(c) Describe how an electric field can be produced in the metal.

3. A current of 2.00 A is flowing through a wire.
(a) Calculate how many coulombs pass through a cross-section of the wire in 3.00 s.
(b) Calculate how many electrons pass through a cross-section of the wire in this time.

4. An electric current is flowing through a wire. A charge of 4.20 C passes through a cross-section of the 
wire in 3.00 s. Calculate the current in amps.

5. A current flows through a wire for 2.50 s. During this time 5.60 ×  1018 electrons pass through a 
cross-section of the wire.

(a) Calculate the charge passing through a cross-section of the wire in this time.
(b) Calculate the current in amps.

6. A current of 5.00 amps is passing through a wire.
(a) Calculate the charge passing through a cross-section of the wire in:

(i) 1.00 second
(ii) 1.00 minute.

(b) Calculate the number of electrons passing through a cross-section of the wire in each of these 
periods of time.

7. Explain how heat energy is produced when an electric current passes through a metal.
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8. Explain what is meant by the potential difference across the ends of a resistor.
9. When 2.50 C pass through a certain resistor, 50.0 J of heat energy is generated. Calculate the potential 

difference across the resistor.
10. The potential difference across a certain resistor is 32.0 V. Calculate how much heat energy is pro-

duced when 12.0 C of electric charge pass through the resistor.
11. A battery is marked 25 V. Explain what this means.
12. Calculate the change in electric potential energy as 2.00 C of charge passes through a 2.50 V battery.
13. Explain what is meant by:

(a) a conductor
(b) a resistor
(c) an insulator.

14. When a current of 2.00 A passes through a certain resistor, there is a  
potential difference of 16.0 volts across it. Calculate the resistance of the  
resistor.

15. A coil of wire has a resistance of 3.20 Ω . Calculate the potential difference  
across the coil when there is a current of 2.00 A passing through it.

16. The following table refers to the potential difference, V , across a resistor of resistance R when a 
current, I, passes through it. Calculate the values of the missing quantities and complete the table.

17. The table shown at right refers to the change in potential energy, W,  
when an electric charge, q, passes through an electrical potential 
difference, V . Calculate the values of the missing quantities and 
complete the table.

18. You are given four pieces of wire made of the same material. The 
lengths and diameters of the wires are given in the following table. 
List these in order of increasing resistance. Justify your answer.

19. Demonstrate by means of diagrams the correct way of connecting into a circuit:
(a) an ammeter
(b) a voltmeter.

20. Draw circuit diagrams showing resistors of 2.00 Ω , 
4.00 Ω  and 6.00 Ω  (a) in series and (b) in parallel with a 
12.0 V battery.

21. In the circuit shown in figure 13.56, the current through 
the 4.00 Ω  resistor is 5.00 A. Calculate:
(a) the current through the 8.00 Ω  resistor
(b) the current through the power supply.

V(v) I (A) R(Ω)

(a) 10.0    2.00

(b)      6.00 12.0

(c) 16.0 32.0

(d)      3.00 18.0

(e) 24.0    8.00

(f)    5.00    2.00

V(v) q(C) W(J)

(a) 12.0    2.00

(b) 25.0 50.0

(c)    6.00 42.0

(d)     8.00 32.0

(e)    4.00      0.50

(f)    2.00 16.0
Length (cm) Diameter (mm)

(a) 10 1

(b) 10 2

(c) 20 0.5

(d) 20 1

4.00 Ω 8.00 Ω

FIGURE 13.56
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22. In the circuit shown in figure 13.57, the current through the power supply is 6.00 A and the current 
through R1 is 4.00 A.

(a) Calculate the current through R2.
(b) Deduce which resistor has the greater resistance.

23. In the circuit shown in figure 13.58, the current through the 
power supply is 20.00 A and the current through the 6.00 Ω  
resistor is 4.00 A. Calculate the current through each of the 
3.00 Ω  resistors.

24. In the circuit shown in figure 13.59, the power supply has a 
voltage of 7.00 V and the voltage drop across R1 is 4.00 V.
(a) Calculate the voltage drop across R2.

(b) Deduce which resistor has the greater resistance.
25. In the circuit shown in figure 13.60, the power supply has a 

voltage of 20.0 V and the voltage drop across the 6.00 Ω  resistor 
is 12.0 V. Calculate the voltage drop across each of the 2.00 Ω  
resistors.

26. In the circuit shown in figure 13.61, the voltage drop across the 
5.00 Ω  resistor is 20.0 V.
 Calculate:
(a) the voltage drop across the 8.00 Ω  resistor
(b) the voltage of the battery.

R1

R2

FIGURE 13.57

6.00 Ω

300 Ω

3.00 Ω

FIGURE 13.58

R2R1

FIGURE 13.59

6.00 Ω 2.00 Ω 2.00 Ω

FIGURE 13.60

5.00 Ω

800 Ω

FIGURE 13.61
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27. In the circuit shown in figure 13.62, the voltage drop across 
the 12.0 Ω  resistor is 36.0 V.
 Calculate:
(a) the current through the 12.0 Ω  resistor
(b) the current through the 4.00 Ω  resistor
(c) the voltage drop across the 4.00 Ω  resistor
(d) the voltage of the power supply.

28. In the circuit shown in figure 13.63, the current through the 
5.00 Ω  resistor is 4.00 A. Calculate: 
(a) the voltage drop across the 5.00 Ω  resistor
(b) the voltage drop across the resistor R
(c) the current through the resistor R
(d) the resistance of the resistor R.

29. For the circuit shown in figure 13.64, calculate the current 
through the circuit.

30. For the circuit shown in figure 13.65, calculate:
(a) the potential drop across the 12.0 Ω  resistor
(b) the potential drop across the 4.00 Ω  resistor
(c) the current through the 4.00 Ω  resistor
(d) the potential gain across the power supply
(e) the current through the power supply.

31. For the circuit shown in figure 13.66, calculate:
(a) the current through the 25.0 Ω  resistor

(b) the current through the 15.0 Ω  resistor
(c) the current through the power supply.

32. For the circuit shown in figure 13.67, calculate:
(a) the total resistance
(b) the current through the power supply
(c) the potential drop across the 12.0 Ω  resistor.

12.0 Ω 4.00 Ω

FIGURE 13.62

5.00 Ω

60.0 V

R

FIGURE 13.63

2.00 Ω 3.00 Ω

20.0 V

FIGURE 13.64

12.0 Ω2.00  A

400 Ω

FIGURE 13.65

250 Ω

75.0 V

150 Ω

FIGURE 13.66

12.0 Ω 24.0 Ω

72.0 V

FIGURE 13.67
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33. When a certain resistor is connected to a 25.0 V power supply, the current through the resistor is 
12.5 A. Calculate the resistance of a second resistor, connected in series, that reduces the current to 
5.00 A.

34. In each of the following cases, calculate the total resistance:
(a) resistors of 12.0 Ω  and 16.0 Ω  in series
(b) resistors of 12.0 Ω  and 4.00 Ω  in parallel
(c) resistors of 12.0 Ω , 10.0 Ω  and 17.0 Ω  in series
(d) resistors of 12.0 Ω , 10.0 Ω  and 17.0 Ω  in parallel
(e) six 15.0 Ω  resistors in series
(f) five 2.00 Ω  resistors in parallel.

35. In each of the following cases, calculate:
(i) the current through each resistor
(ii) the voltage drop across each resistor.

(a) 5.00 Ω  and 7.00 Ω  resistors connected in series to a 6.00 V power supply
(b) 10.0 Ω , 20.0 Ω  and 40.0 Ω  resistors connected in series to a 140.0 V power supply
(c) 2.4 Ω  and 3.7 Ω  resistors connected in series to a 15 V supply
(d) 11.2 Ω , 20.4 Ω  and 31.5 Ω  resistors connected in series to a 128 V power supply
(e) 2.00 Ω  and 3.00 Ω  resistors connected in parallel to a 12.0 V power supply
(f) 12.0 Ω , 24.0 Ω  and 60.0 Ω  resistors connected in parallel to a 48.0 V power supply
(g) 17.3 Ω  and 25.6 Ω  resistors connected in parallel to a 125 V power supply
(h) 2.53 Ω, 7.12 Ω and 4.28 Ω  resistors connected in parallel to a 30.5 V power supply.

36. What are the resistances and tolerances of resistors with the following colour codes:
(a) orange, white, black, gold
(b) green, blue, orange, silver
(c) violet, green, yellow, gold?

37. Figure 13.68 shows the current versus voltage characteristic for 
an electronic device.
(a) Is this device ohmic or non-ohmic? Justify your answer.
(b) What is the current through the device when the voltage 

drop across it is 0.5 V?
(c) What is the resistance of the device when the voltage drop 

across it is 0.5 V?
(d) Estimate the voltage drop across the device, and its 

resistance, when it draws a current of 20 mA.
38. At what rate is thermal energy being transferred to a wire if it 

has a resistance of 5.0 Ω  and carries a current of 0.30 A?
39. Calculate the resistance of the following globes if their ratings are:

(a) 240 V, 60 W
(b) 6.0 V, 6.3 W
(c) 12 V, 40 W.

40. What is the power rating of an electric jug if it has a resistance of 48 Ω  
when hot and is connected to a 240 V supply?

41. The voltage-versus-current characteristic graph for a non-ohmic device 
is shown in figure 13.69.
(a) What is the device’s current when the voltage drop across it is 100 V?
(b) What is the voltage drop across the device when the current through 

it is 16 mA?
(c) What is the resistance of the device when it carries a current of 

16 mA?

02 04 06 0.8
Voltage drop across diode (V)

80

60

40

20

0

FIGURE 13.68

160
140
120
100
80
60
40
20

2 4 6 8 10 12 14 16
I (mA)

FIGURE 13.69
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42. Two students are discussing how to produce more power in a circuit.
 ‘P = VI,’ says Tom. ‘Since V = IR, P = I2R. This shows that power is proportional to resistance.

Therefore, if I want more power from a supply I should use a bigger resistance.’

‘I don’t agree’, says Henrietta. ‘It is true that P = VI, but Ohm’s Law gives I = V
R

. This means that

P = V2

R
, in which case power is proportional to the inverse of resistance. If I want to draw more power 

from a supply, I would use a smaller resistance.’
 Which student is correct, and under what circumstances is he/she correct?

43. What happens to the voltage drop across a variable resistor in a 
two-element voltage divider when its resistance decreases and the other resistance is unchanged?

44. Find the value of the unknown resistor in the voltage dividers shown in figure 13.70.

45. (a)   Given four 10 Ω  resistors, how many different total resistances can be obtained by placing them in 
varying combinations?

(b) What will be the highest resistance possible?
(c) What will be the lowest?

46. Determine the value on the ammeter in the circuit shown in figure 13.71.

240 V

12 Ω
3 Ω

10 Ω

2 Ω

4 Ω

4 Ω

8 Ω

I

A

FIGURE 13.71

30 k Ω
6.0 V

4.0 V

(a)

R

(b)
660 Ω

12 V

6.0 VR

10 kΩ
10 V

2.5 V

(c)

R

(d)

50 k Ω

9.0 V

6.0 V

R

FIGURE 13.70
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PRACTICAL INVESTIGATIONS

Note on practical activities
Instructions for activities involving electric currents:

• To measure the current through a component, connect an ammeter in 
series with the component.

• To measure the voltage across a component, connect a voltmeter in 
parallel with the component.

• Ammeters and voltmeters should be connected so that the connec-
tion from the positive terminal of the power supply goes to the 
positive terminal of the ammeter or voltmeter (see figure 13.72).

• If there is more than one range on a meter, start with the largest range 
(for example, if there is a 0–1 A range and a 0–5 A range on an 
ammeter, start with the 0–5 A range).

• Start with the lowest voltage setting on the power supply.
• If using a variable resistor to vary the current, start with its highest 

resistance.
• Tap the switch closed to check that the ammeters and voltmeters are 

correctly connected.
• When making a measurement, close the switch just long enough to make the measurement.
• Ask your teacher to check your circuit before switching on the power supply.
• Your teacher will advise you about what maximum current or maximum voltage you should use in a 

particular experiment.

Investigation 13.1: Potential difference in a simple circuit
Aim
To investigate the potential difference between different points around a simple circuit

Apparatus
power supply
voltmeter
two resistors, R1 and R2, of different resistance
switch
connecting wires

Theory
Potential difference is the change in electric potential energy per coulomb of charge. When a current flows 
through a circuit, several changes in potential occur. In the power supply there is an increase in electric potential 
energy and therefore, a potential rise. In a resistor, there is a decrease of electric potential energy and therefore, 
a potential drop. In a connecting wire, there is no change of electric potential energy and therefore, no potential 
difference.

Method
1. Connect the apparatus as shown in figure 13.73. 

Use R1.
2. Set the voltage of the power supply to a low 

voltage.
3. Connect the voltmeter, in turn, across each of the 

following components shown in figure 13.73:
• power supply
• resistor
• connecting wire 1
• connecting wire 2
• connecting wire 3 (including switch).

4. For each component, measure the voltage with 
the switch closed.

5. Repeat 3 using a higher voltage power supply.
6. Repeat 2, 3, and 4 using R2.

+

+

+

+

+

–

–

–

–

–

A A

V

V

FIGURE 13.72 Connecting 
ammeters and voltmeters to a 
power supply

Connecting
wire 2

Connecting
wire 3

Connecting
wire 1

FIGURE 13.73
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Results
Record the results in a table as shown below.

R1, low power supply voltage

Component Potential difference (V)

Power supply

Resistor

Connecting wire 1

Connecting wire 2

Connecting wire 3

Make similar tables for:
(i) R1, high power supply voltage
(ii) R2, low power supply voltage
(iii) R2, high power supply voltage.

Analysis
1. What are the voltages across the connecting wires?
2. What is the relation between the voltage across the power supply and the voltage across the resistor?

Question
Explain, in terms of energy, why the potential rise across the power supply equals the potential drop across the resistor.

Investigation 13.2: Measuring resistance
Aim
To show the relationship between voltage and current, and measure the resistance of a resistor

Apparatus
power supply 
ammeter 
voltmeter 
variable resistor 
two resistors, R1 and R2, of different resistance 
connecting wires 
switch

Theory
The voltage drop, V, across a resistor is proportional to the current, I, through the resistor. The graph of V 
against I will be a straight line. The slope of the line will equal the resistance.

Method
1. Connect the apparatus as in the circuit diagram in figure 13.74, 

using R1.
2. Pass at least five different currents through the resistor by 

varying both the voltage of the power supply and the resistance 
of the variable resistor.

3. For each value of the current, record the current through R1 and 
the voltage across R1.

4. Repeat steps 1, 2 and 3 using resistor R2.

Results
Record your results in a table as shown below.
Measurements for R1

v(v) I(A)

V

A

Variable resistor

FIGURE 13.74
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Analysis
1. For each resistor, draw a graph of V against I using the same sheet of graph paper.
2. Measure the slope of each graph.
3. Use the slopes of the graphs to find the values of the resistance. 

Questions
1. What are the shapes of the graphs?
2. Which graph has the steeper slope?
3. How do the values you found for the resistances compare with the values marked on the resistors?
4. Why would you expect your graphs to pass through the origin?
5. If your graphs do not pass through the origin suggest a reason.

Investigation 13.3: Dependence of resistance on length of resistance wire
Aim
To investigate how the resistance of a resistance wire varies with length

Apparatus
power supply 
voltmeter 
ammeter 
variable resistor 
switch 
two different lengths of resistance wire, l1 and l2  
gas jar 
metre rule

Theory
The resistance of a conductor of constant thickness increases as its length 

increases. Resistance can be calculated by the formula: R = V
I
.

Figure 13.75 Setup for resistance wire

Method
As the resistance of a wire varies with temperature, it is necessary to keep the 
resistance wire at constant temperature. This is done by immersing the resistance 
wire in water as shown in figure 13.75.
1. Measure the lengths of resistance wire.
2. Connect the apparatus as shown in figure 13.76 using one of the resistance 

wires.
3. Vary the voltage of the power supply and the resistance of the variable resistor 

until the current has the maximum value given by your teacher.
4. Measure the voltage and the current with the switch closed.
5. Repeat using the other length of resistance wire.

Results
Record your results in a table as shown below and calculate the resistances.

Length of wire 
(cm)

Current (A) Voltage (V) Resistance (Ω) 

R = V
I

Analysis
1. What is the ratio of the lengths of the wires?
2. What is the ratio of the resistances of the wires?
3. What conclusion can you draw from these values?

Questions
1. What would be the resistance of a 30 cm length of this wire?
2. What would be the resistance of a 2 cm length of this wire?
3. What is the resistance per unit length of this wire?

Glass 
rod

Resistance 
wire

Gas jar

Water

FIGURE 13.75

V

A

Resistance wire

FIGURE 13.76
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Investigation 13.4 (a) Current in a series circuit
Aim
To investigate current in a series circuit

Apparatus
power supply 
ammeter 
two resistors, R1 and R2, with different resistances 
switch 
connecting wires

Theory
In a series circuit the same current flows through each resistor.

Method
1. Connect the apparatus as shown in figure 13.77.
2. Connect the ammeter in turn to measure the current at each of the points X, Y and Z, when the switch is 

closed.

Results
Record the current measurements as in the table below.

Current at X

Current at Y

Current at Z

Analysis
1. What is the current passing through the power supply?
2. What is the current passing through R1?
3. What is the current passing through R2?
4. Write a sentence to sum up what you have observed about the current in a series circuit.

Questions
1. Does current decrease as it passes through a resistor?
2. What does decrease as a current passes through a resistor?
3. Does current increase as it passes through a power supply?
4. What does increase as a current passes through a power supply?

Investigation 13.4 (b) Current in a parallel circuit
Aim
To investigate current in a parallel circuit

Apparatus
power supply
ammeter 
two resistors, R1 and R2, with different resistances 
switch 
connecting wires

Theory
When current passes through resistors in parallel, the current 
passes partly through each of the resistors. The current 
through the power supply is equal to the sum of the currents 
through the resistors.

Method
1. Connect the apparatus as shown in figure 13.78.
2. Connect an ammeter in turn to measure the current at 

each of the points X, Y, and Z, when the switch is closed.

R1 R2Y

X Z

FIGURE 13.77

X

Y

Z

R2

R1

FIGURE 13.78
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Results
Record your results as in the table below.

Current at X

Current at Y

Current at Z

Analysis
1. What is the sum of the currents through the two resistors in parallel?
2. Compare this with the current through the power supply.
3. Write a sentence to sum up what you have observed about currents in a parallel circuit.

Questions
1. Which resistor had the higher current passing through it?
2. What is the ratio of current through R1 to the current through R2?
3. What is the ratio of R1 to R2?
4. Comment on your answers to questions 2 and 3.

Investigation 13.4 (c) Voltage in a series circuit
Aim
To investigate voltage in a series circuit

Apparatus
power supply 
voltmeter 
two resistors, R1 and R2, with different resistances 
switch 
connecting wires

Theory
In a series circuit, the voltage rise across the power supply equals the sum of 
the voltage drops across the resistors.

Method
1. Connect the circuit as in figure 13.79.
2. Connect the voltmeter in turn across the power supply and each of the 

resistors and record the readings when the switch is closed.

Results
Record the measurements as in the table below.

V across power supply

V across R1

V across R2

Analysis
1. What is the sum of the voltage drops across the resistors?
2. Compare this with the voltage gain across the power supply.
3. Write a sentence to state the relationship between the voltage across the power supply and the voltage 

drops across the resistors.

Questions
1. Which resistor had the higher voltage drop across it? 
2. What is the ratio of the voltage drop across R1 to the voltage drop across R2?
3. What is the ratio of R1 to R2?
4. Compare your answers to questions 2 and 3 and make a comment.

R2R1

FIGURE 13.79
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Investigation 13.4 (d) Voltage in a parallel circuit
Aim
To investigate the voltage in a parallel circuit

Apparatus
power supply 
voltmeter 
two resistors, R1 and R2, with different resistances 
switch 
connecting wires

Theory
In a parallel circuit, the voltage drop across each resistor is equal to the voltage gain across the power supply.

Method
1. Connect the apparatus according to the circuit diagram in  

figure 13.80.
2. Connect the voltmeter in turn to measure the voltage (with the 

switch closed) across the power supply and across each 
resistor.

Results
Record your results as in the table below.

V across power supply

V across R1

V across R2

Analysis
Write a sentence to sum up these results.

Questions
1. Does any current pass through both R1 and R2?
2. Consider only that part of the current that passes through R1.

(a) What is its voltage gain in the power supply?
(b) What is its voltage loss in R1?

3. Consider only that part of the current that passes through R2.
(a) What is its voltage gain in the power supply?
(b) What is its voltage loss in R2?

4. Consider the total current in the circuit.
(a) What is its voltage gain in the power supply?
(b) What is its voltage loss in the resistors?

Investigation 13.5: Addition of resistances
Aim
To use the laws of addition of resistances to predict the resistance of two resistors connected (a) in series and 
(b) in parallel and to test the predictions experimentally

Apparatus
power supply
variable resistor
ammeter
voltmeter
two resistors, R1 and R2, with different resistances
switch
connecting wires

Theory
The total resistance, Rseries, of two resistors, R1 and R2, connected in series, is given by the rule:

Rseries = R1 + R2

The total resistance, Rparallel, of two resistors, R1 and R2, connected in parallel, is given by the rule:
1

Rparallel
= 1

R1
+ 1

R2
.

R1

R2

FIGURE 13.80
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To measure the total resistance of a combination of resistors, 
measure the voltage drop, V, across the combination, and the 
current, I, passing through the combination. The total resistance is 

given by the formula: R = V
I
.

Method
1. Connect the circuit as shown in figure 13.81. Between the points 

X and Y, connect in turn:
(a) R1

(b) R2

(c) R1 and R2 in series
(d) R1 and R2 in parallel.

2. In each case adjust the voltage of the power supply and the 
resistance of the variable resistor so that the current has the 
value suggested by your teacher.

3. With the switch closed, measure the total current passing from X 
to Y and the voltage across XY.

Results
Record your results as in the table below.

V(V) I(A) R = V
I
(Ω)

R1

R2

R1 and R2 in series

R1 and R2 in parallel

The third column is calculated from the measurements of voltage and current. This column gives the 
experimental values of the resistances and their series and parallel combinations.

Analysis
1. Using the laws of addition of resistances, calculate the theoretical values Rseries and Rparallel. (Use the values 

of R1 and R2 found experimentally, not the nominal values written on the resistors.)
2. Compare the theoretical and experimental values by completing the following table.

Experimental value of 
resistance (Ω)

Theoretical value of 
resistance (Ω)

R1 and R2 in series

R1 and R2 in parallel

3. Comment on any differences between the experimental and theoretical values.

A
X Y

V

FIGURE 13.81
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TOPIC 14  
Magnetism

14.1 Overview
14.1.1 Module 4: Electricity and Magnetism
Magnetism
Inquiry question: How do magnetised and magnetic objects interact?
Students:
 • investigate and describe qualitatively the force produced between magnetised and magnetic materials in 

the context of ferromagnetic materials (ACSPH079)
 • use magnetic field lines to model qualitatively the direction and strength of magnetic fields produced by 

magnets, current-carrying wires and solenoids and relate these fields to their effect on magnetic materials 
that are placed within them (ACSPH083)

 • conduct investigations into and describe quantitatively the magnetic fields produced by wires and sole-
noids, including: (ACSPH106, ACSPH107)

 – B =  
μo I
2πr

 – B =  
μo NI

L
 • investigate and explain the process by which ferromagnetic materials become magnetised (ACSPH083)
 • apply models to represent qualitatively and describe quantitatively the features of magnetic fields.

FIGURE 14.1 This strong magnet sitting on top of a glass shelf 
creates a magnetic field that is able to attract small pieces of 
metal.
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14.2 Properties of magnets
14.2.1 Magnetic poles
The words magnet, magnetism and magnetic are derived from the name of a 
district in Greece called Magnesia. By 600 BC, the Greeks had discovered a 
mineral there, now called magnetite, with the property of attracting iron.

In any sample of the mineral, the property of attracting iron is concentrated 
in two regions called the poles. If the sample of mineral is suspended freely, it 
will align itself so that one pole points roughly north and the other pole points 
roughly south. The pole that points north is called the north-seeking pole; the 
pole that points south is called the south-seeking pole. These names are now 
abbreviated to north pole and south pole.

A natural magnet is made by shaping a piece of magnetite so that the 
poles are at the ends. Early compasses were made using natural magnets. 
Today, natural magnets are not used because better magnets can be made 
artificially. The method of making these artificial magnets will be described 
later in this chapter.

North and south poles always occur together in equal pairs. Such a  
pair of equal and opposite magnetic poles is called a magnetic dipole. An 
isolated north or south pole has never been observed. If a magnet is broken 
in two in an attempt to separate the north and south poles, new south and 
north poles appear, as shown in figure 14.2.

If two magnetic poles are brought close together they exert forces on 
one another as shown in figure 14.3. The directions of the forces between 
magnetic poles are:
 • two north poles repel each other
 • two south poles repel each other
 • a north pole and a south pole attract each other.

That is, like poles repel; unlike poles attract.
The closer two magnetic poles are to one another, the stronger the force 

of attraction or repulsion between them.
When two magnets are brought close to one another, there will be four pairs 

of forces between the poles, as shown in figure 14.4. This will result in an overall 
force of attraction or repulsion (depending on the positions of the two magnets).

14.2.2 Magnetic fields
Interactions between magnetic poles can be described by magnetic fields in 
the same way that interactions between electric charges were described by 
electric fields. In the field picture of magnetic interactions, each magnetic 
pole is surrounded by a magnetic field that exerts forces on other magnetic 
poles placed in the field, as shown in figure 14.5.

When a magnet is placed in a magnetic field, the north and 
south poles experience forces in opposite directions. The direc-
tion of the magnetic field at a point is defined as the direction 
of the force on a very small north pole placed at the point. The 
directions of the forces on the north and south poles of a magnet 
placed in a magnetic field are shown in figure 14.6. (In diagrams, 
a magnetic field is labelled B.)

N S

N S N S

N S N S N S N S N S

(a) Original magnet

(b) One break

(c) Several breaks
N S

FIGURE 14.2 Breaking 
a bar magnet.

N N

FF

S S

FF

N S

FF

FIGURE 14.3 Forces 
between magnetic poles.

FIGURE 14.4 Forces 
between two magnets.

N

Field produced by N

The field surrounding N exerts 
a force on S.

S

FIGURE 14.5 Magnetic 
field picture of magnetic 
interactions.

NS

FF

B

FIGURE 14.6 Forces on the north 
and south poles in a magnetic field.
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A compass consists of a magnet suspended so that it is free to rotate. When a compass is placed in a 
magnetic field, the forces on the north and south poles cause the compass to rotate until the north pole of 
the compass points in the direction of the magnetic field.

In practice, the direction of a magnetic field at a point is found by placing a small compass at that point. The 
direction in which the north pole of a compass points shows the direction of the magnetic field.

If a compass is placed at a point near a north pole, N, the 
north pole of the compass will experience a force away from 
N, and the south pole of the compass will experience a force 
towards N. The compass will point in the direction shown in 
figure 14.8a. The magnetic field therefore points away from N. 
Similarly, the magnetic field surrounding a south pole points 
towards the south pole. This is illustrated in figure 14.8b.

14.2.3 Representing Magnetic Fields
 • Magnetic fields are represented by magnetic field lines.
 • Magnetic field lines start at north poles and end at south poles.
 • The direction of the magnetic field lines, shows the direction of the  

magnetic field.
 • The spacing of the magnetic field lines shows the strength of the  

magnetic field: the closer the lines, the stronger the field.
A magnet has equal north and south poles at the ends. The magnetic field 

surrounding a magnet is shown in figure 14.9.
Consider two identical magnets with their north poles placed close to one 

another. The magnetic field in the region near the two equal north poles is 
shown in figure 14.10a. Similarly, the magnetic field near the two equal south 
poles is shown in figure 14.10b.

Magnetic �eld

N

S

F

F

Magnetic �eld

S N

FF

(a) (b)

FIGURE 14.7 Forces on a compass in a magnetic field. (a) Forces causing 
compass needle to rotate and (b) compass needle aligned with magnetic 
field.

N S

FIGURE 14.9 Magnetic 
field surrounding a 
magnet.

S S

(b)
B

N N

(a)
B

FIGURE 14.10 (a) Magnetic field near two equal north poles.  
(b) Magnetic field near two equal south poles.

N

(a)
B

S

(b)
B

FIGURE 14.8 (a) Magnetic field near a north 
pole. (b) Magnetic field near a south pole.
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Magnets can be designed to produce fields 
of different shapes. A horseshoe magnet with 
the ends adjacent produces a strong and even 
field between the ends. A circular magnet with 
a north end in the middle produces a radial 
field that points outward all the way around. 
This design is used in loudspeakers.

14.2.4 Measuring the 
magnetic field
The strength of the magnetic field around a mag-
netic material varies according to where it is 
measured. The magnetic field can be qualitatively 
represented by the separation of the field lines. 
Where field lines are shown close together — such 
as at the poles of a magnet — the magnetic field is stronger than at positions where the field lines are shown spread 
further apart. Generally, the influence of a magnetic material decreases with distance. This is readily seen with a 
magnet and iron filings, where the attraction of the filings to the magnet increases as the magnet gets closer to them.

The magnetic field strength (B) at a position is measured quantitatively in terms of the amount of twisting 
force exerted on a compass needle when it is positioned at an angle to the magnetic field. The greater the 
force twisting the compass needle so that it aligns with the magnetic field, the greater the magnetic field 
strength. Magnetic field strength is a vector quantity and it is measured in Tesla (T). The Earth’s magnetic 
field strength is fairly small: only 10–4 T or 0.1 mT. In comparison, the average fridge magnet has a magnetic 
field strength of about 30 mT, while a typical bar magnet used in the school lab is around 0.1 T.

14.2 Exercise 1
1 If north poles repel, why does the north pole of a compass point to  

the Earth’s north pole?
2 Draw field lines to represent the magnetic field around

(a) a single bar magnet
(b) two bar magnets with their south poles facing each other.

3 Draw field lines to represent the magnetic field for the diagram in  
figure 14.12.

4 Early Chinese explorers used a system of floating a piece of magnetite  
in a bowl of water, as shown in figure 14.13, for navigation purposes.
(a) Why was the magnetite placed in water rather than left on a flat  

surface?
(b) Give one disadvantage of this compass system when used at sea.

5 When a compass is used, the needle may be seen to tilt downwards 
rather than staying parallel. Explain why this happens.

(a) (b)

N NS

S
Horseshoe magnet Circular magnet

FIGURE 14.11 Differently shaped magnetic fields can be 
created by arranging the north and south ends of the 
magnet, as shown by (a) a horseshoe magnet and  
(b) a circular magnet.

AS A MATTER OF FACT
The strength of a magnetic field 1.0 cm from a wire carrying 100 A is about 2.0 m T. The small currents in the 
nerves of the human body produce magnetic fields of about 10−11 T. Electromagnets used in research have a 
short-term strength of about 70 T, which requires a momentary current of 15 000 A.

The magnetic field around the human heart is about 5 × 10−11 T, about one millionth of Earth’s magnetic field. 
To measure fields of this size, it is necessary to use a magnetically shielded room and a very sensitive detector 
called a SQUID (a Superconducting Quantum Interference Device) that can measure fields down to 10−14 T. The 
magnetocardiogram produced is a useful diagnostic tool.

N

N

S

S

FIGURE 14.12
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14.3 Magnetic fields and electric currents
14.3.1 Magnetic fields produced by a wire
Because the forces between magnetic poles are similar to the forces 
between electric charges, many early scientists suspected that there was 
a connection between magnetism and electricity.

In 1821, a Danish scientist, Hans Christian Oersted, while demon-
strating to friends the flow of an electric current in a wire, noticed that the 
current caused a nearby compass needle to change direction. Oersted’s 
observation showed that there was a magnetic field surrounding the elec-
tric current. Further investigation showed that all electric currents are 
surrounded by magnetic fields.

The magnetic field surrounding a wire carrying an electric current 
depends, in a complex way, on the shape of the wire. In this course, two 
important cases will be studied where the field produced by the current 
is comparatively simple.

The magnetic field lines surrounding a long, straight wire carrying a 
current are concentric circles around the conductor.

The direction of the magnetic field is given by the right-hand grip 
rule. This states:

Grip the wire with the right hand, with the thumb pointing in the 
direction of the conventional current and the fingers will curl around the 
wire in the direction of the magnetic field.

In drawing a diagram to represent the magnetic field surrounding a 
wire carrying a current, it is often convenient to imagine the wire being 
perpendicular to the page. In such a diagram, the wire is represented 
by a small circle at the point where the wire passes through the page. 
The direction of the current will be into the page or out of the page. 
Figure 14.18 shows the magnetic fields surrounding electric currents 
passing into and out of the page.

6 How would you use a magnet to test whether a piece of metal is 
magnetic?

7 Why do both ends of a magnet attract an iron nail?
8 What is the polarity of Earth’s magnetic field at the magnetic pole 

in the southern hemisphere?

S

N

FIGURE 14.13

B

I

FIGURE 14.16 Magnetic field surrounding a 
long, straight wire carrying a current.

Magnetic �eld line Direction of magnetic
�eld lines

Direction of conventional
current

Current

FIGURE 14.17 Right-hand grip rule.

FIGURE 14.15 Hans 
Christian Oersted (1851).

N S

Current

FIGURE 14.14 Oersted’s 
experiment.
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Magnetic fields directed into and out of the page are represented by the symbols ‘x’ and ‘•’. Figure 14.19 
shows the magnetic field at the sides of a wire carrying a conventional current towards the right of the page. 
By the right-hand grip rule, the magnetic field comes out of the page above the wire and goes into the page 
below the wire.

14.3.2 Magnetic field strength around a current-
carrying wire
The strength of the magnetic field produced by a long straight wire through 
which a current flows depends upon the size of the current and the distance 
from the wire at which the field is being measured. This relationship can be described by the equation:

B = μ o  
2π

 
I
r

where I is the current through the wire, r is the perpendicular distance from the wire and μo is a constant 
referred to as the permeability of free space. The value of μo is taken to be equal to 4π × 10–7 T m A–1.

It should be noted that this equation assumes that r is much smaller than the distance to the ends of the 
wire.

14.3 SAMPLE PROBLEM 1

A long straight wire carries a current of 10  A  
from west to east. What will be the magnetic field  
strength at a point 20 cm above the wire?

SOLUTION

By using the right-hand grip rule, we can see  
that, if the current is travelling west to east, the  
direction of the magnetic field above the wire  
will be directed from north to south.

To calculate the magnitude of the field, we  
substitute values into the wire equation:

B =  
μo

2π
 
I
r

 =  
4 π ×   10−7 T m A−1 ×  (10 A) 

2π ×  (0.2 m)
=  1  ×  10–5  T

Therefore, the magnetic field strength is 1 ×  10–5 T, south.

20 cm

side view

top view

W

W

B

B

E

E

l = 10A

FIGURE 14.20

(b) Conventional current out of page

B

(a) Conventional current into page

B

I I

FIGURE 14.18 Magnetic fields surrounding currents passing into 
and out of the page.

(out of page)B

(into page)B

Conventional current

FIGURE 14.19 Magnetic 
fields into and out of the 
page.
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14.3.3 Magnetic field produced by a solenoid  
carrying a current
If a straight wire carrying a current is bent into a loop, the magnetic field is 
as shown in figure 14.21. The magnetic field lines come out at one side of 
the loop, which is therefore like the north pole of a magnet. The magnetic 
field lines go in to the other side of the loop, which is therefore like the 
south pole of a magnet. The right-hand grip rule, applied to a section of the 
loop, gives the direction of the magnetic field.

Magnetic fields produced by coils have many more practical applica-
tions than magnetic fields produced by straight wires.

The strength of the magnetic field can be increased by using a coil 
with many turns.

A solenoid is a wire that has been wound into a closely packed helix 
(corkscrew shape). When a current passes through a solenoid, magnetic 
fields are produced both inside and outside the solenoid. The magnetic 
field outside the solenoid is similar to the magnetic field surrounding a bar 
magnet. For the solenoid, however, the lines of magnetic field do not stop 
at the ends of the solenoid but pass through the inside as parallel lines. The 
lines of magnetic field form closed loops. The end where the lines of mag-
netic field emerge from the solenoid is the north pole. The end where the 
lines of magnetic field enter the solenoid is the south pole. There are two 
methods of determining which end of a solenoid is the north pole.
1. Grip the solenoid with the right hand, with the fingers pointing in the 

direction of the conventional current around the solenoid. The thumb 
will point in the direction of the north pole of the solenoid as shown 
in figure 14.23.

2. Observe the solenoid end on. If the direction of the conventional 
current is anti-clockwise, the end is a north pole; if the conventional 
current is clockwise, the end is a south pole. This can be remembered 
by writing an N or an S with arrows as shown in figure 14.24.

14.3.4 Magnetic field inside a solenoid
The strength of the magnetic field inside a solenoid is directly proportional to the number of coils the sole-
noid has and the size of the current flowing through them, and is inversely proportional to the solenoid’s 
length. The relationship between these variables is described by the equation:

B =  
μo N I

L
where N is the number of loops or coils in the solenoid, I is the current, L is the solenoid length and μo is 
the permeability of free space.

As B is uniform inside the solenoid, the field strength is independent of the position.

NS

B

FIGURE 14.21 Magnetic 
field produced by a current 
loop.

S N

FIGURE 14.22 Magnetic 
fields produced by a current 
in a solenoid.
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Fingers in direction of current
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to north pole
of solenoid

Conventional current

FIGURE 14.23 Poles of a solenoid — first method.

Current clockwise
when observed
from this end

Current anticlockwise
when observed
from this end
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FIGURE 14.24 Poles of a solenoid — second 
method.
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14.3 Exercise 1
1 A magnetic field is set up in a solenoid. What would happen to the magnetic field strength inside the 

solenoid if:
(a) the current was doubled
(b) the solenoid was stretched so that its coils were further apart
(c) the direction of the current through the coil was reversed?

2 The equation for the magnetic field strength around a current-

carrying wire may also be encountered in the form B = k 
I
r
. 

Calculate the value of k.

3 A loop of wire has a current flowing through it as shown in figure 14.26. 
Use the symbols ⊗  and • to represent the direction of the magnetic field 
inside and outside the loop.

4 A vertical wire attached to a wall carries a current of 4.0 A 
upwards. What is the magnitude and direction of the 
magnetic field at a point 50 cm in front of the wire?

5 A magnetic field of 0.3 mT is measured inside a solenoid that 
has a current of 5.0 A passing through it. How many coils per 
metre does the solenoid have?

6 Two 3 m long, current-carrying wires are positioned vertically 
as shown in figure 14.27.
(a) What is the magnetic field strength due to wire A at point P?
(b) What is the magnetic field strength due to wire B at P?
(c) What is the net magnetic field strength experienced at  

point P?
(d) The direction of the current in wire A is reversed. What is the 

magnetic field strength at P now?
7 A 40 cm long, thin solenoid has 2000 loops of wire along its 

length. What is the magnitude of the magnetic field inside the 
solenoid if a current of 10 A passes through the coils?

I

I

FIGURE 14.26

8 mm

2 cm

I = 3 A I = 2 A

P

wire A wire B

FIGURE 14.27

14.3 SAMPLE PROBLEM 2

A 2.0 A current flows through a 5  cm  long thin  
solenoid as shown.

What is the magnetic field strength in the 
solenoid’s interior if it has 500 turns of wire?

SOLUTION

Using the right-hand rule for coils, it can be determined 
that the north pole of the solenoid will be on the right 
side of the coil. This means that the magnetic field 
inside the coil will be directed from left to right.

Substituting values into the coil equation:

B =  
μo N I

L

 = (4 π ×  10−7 T m A−1)  (500) (2.0  A)
(0.05  m)

= 0.025 T

Therefore, the magnetic field strength inside the coil is 25  mT, directed from left to right.

5 cm

I = 2.0 A

FIGURE 14.25
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14.4 Magnets and electromagnets
14.4.1 Ferromagnetism

14.4.2 Temporary and permanent magnets
When a magnetic material, such as iron, is placed in a magnetic field, it becomes magnetised. ‘Soft iron’ 
is a type of iron that becomes magnetised very quickly when placed in a magnetic field, and loses its 
magnetism very quickly when removed from the field. When soft iron is magnetised by being placed in a 
magnetic field, it is said to be a temporary magnet.

A piece of iron is attracted to a magnetic pole because it becomes magnetised by the magnetic field 
surrounding the pole.

8 A 30 cm long solenoid with a 2 cm diameter is to produce a 0.2 T magnetic field in its centre. If the 
maximum current is 8 A, how many turns must the solenoid have? (Assume that each coil is circular 
rather than helical.)

9 A solenoid with a radius of 1 cm has a magnetic field of 0.1 mT inside it directed from east to west. 
A long, straight wire is placed inside the solenoid along the solenoid’s central axis. If a current of 10 A is 
passed through the wire from west to east, what will be the magnitude of the magnetic field experienced 
at a distance of 4 mm from the wire?

10 If a maximum magnetic field strength of 1 mT is allowed at a distance of 30 cm from an electrical wire, 
what is the maximum current that the wire can carry?

It is now thought that all magnetic fields (including the magnetic fields of magnets) are produced by electric 
currents. This raises the question: ‘Where is the electric current that produces the magnetic field of a 
magnet?’.

Within every atom there are electric currents due to the movement of the electrons. Each electron moves 
in an orbit around the nucleus and spins on its axis. (This picture of the motion of an electron in an atom is 
much simpler than what physicists believe to be the actual situation.)

As a result of the movement of its electrons, each atom behaves like a current loop with a north and south 
pole. The magnetic properties of a material are due to the magnetic properties of its atoms.

As all materials consist of atoms, it follows that all materials will have magnetic properties. For most 
materials, the magnetism is very weak and cannot be detected without using very strong magnetic fields. In 
a few materials, the magnetism is strong. In these materials, the spins of the electrons producing the atomic 
magnetism tend to line up in neighbouring atoms. As a result, the north and south poles of the atomic 
magnets tend to line up and point in the same direction producing 
a strong magnetic field. These materials are called ferromagnetic 
materials. Examples of ferromagnetic materials are iron, cobalt and 
nickel. Magnets are made of ferromagnetic materials.

A ferromagnetic material is made up of many magnetic domains. 
Within each domain nearly all the atomic magnets are lined up in the same 
direction. Each domain contains 109–1015 atoms. When a ferromagnetic 
material is unmagnetised, the domains point in random directions so that 
there is no overall magnetism.

When the ferromagnetic material is placed in a magnetic field, the 
directions of magnetism of the domains tend to line up in the direction 
of the magnetic field. When all the domains are lined up with the mag-
netic field, the material is fully magnetised, or saturated. Figure 14.28 
shows the magnetic domains in an unmagnetised, a partially magnet-
ised and a fully magnetised sample of ferromagnetic material.

(a) Random direction of domains of an
unmagnetised magnetic substance.

(b) Domains begin to face in same
direction, producing a weak magnet.

(c) All domains face the same direction, 
resulting in a strong magnet.

FIGURE 14.28 Magnetic domains.
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‘Hard iron’ is used to refer to any alloy of iron that becomes 
magnetised slowly when placed in a magnetic field but retains its 
magnetism for a long time after it is removed from the field. Such an 
alloy is used to make a permanent magnet. To make a permanent 
magnet, a bar of hard iron is placed inside a solenoid, and a current is 
passed through the solenoid for a sufficient time to magnetise the iron.

A solenoid with a soft iron core is called an electromagnet. 
A current through the coil produces a magnetic field that magnetises 
the soft iron core almost instantaneously. This produces a much 
stronger magnet than would be produced by the solenoid without the 
soft iron core. When the current is switched off, the soft iron core loses 
its magnetism almost instantaneously.

Electromagnets have many practical applications.
Figure 14.31 shows a circuit breaker that uses an 
electromagnet. If a sufficiently high current passes 
through the solenoid, the electromagnet will trip the 
mechanism and break the circuit.

N S N

S N S

Iron becomes magnetised and is
attracted to the north pole.

(a)

Iron becomes magnetised and is
attracted to the south pole.

(b)

FIGURE 14.29 Attraction of 
iron to (a) a north pole and 
(b) a south pole.

Iron core
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N

FIGURE 14.30 (a) An electromagnet (b) An electromagnet in action.

(a) (b)

Spring

Release
button

Catch

Switch-
operating
button

FIGURE 14.31 A circuit breaker.
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14.5 Magnetic force
14.5.1 Magnetic force on an electric current
Once the technology of electromagnets was developed, very 
strong magnetic fields could be achieved. This enabled the 
reverse of Oersted’s discovery to be investigated: what is the 
effect of a magnetic field on a current in a wire?

In Oerste’s experiment the magnetic field due to the cur -
rent exerts a force on the magnetic field of the compass. So, 
according to Newton’s Third Law of Motion, the compass 
exerts an equal and opposite force on the current. What is the 
size of this force and in what direction does it act?

Observations of the magnetic force applied to the 
current-carrying wire show that:
 • if the strength of the magnetic field increases, there is a 

larger force on the wire
 • if the magnetic field acts on a larger current in the wire, 

there is a larger force
 • if the magnetic field acts on a longer wire, there is a larger force
 • it is only the component of the magnetic field that is perpendicular to the current that causes the force
 • if there are more wires in the magnetic field, there is a larger force.

Combined, these findings can be expressed as:
 magnetic force on a current (F) =  number of wires (n) ×  current in each wire (I) ×  length of wire (l) ×  
strength of the magnetic field (B),
or

F = n × I × l × B.

The units are expressed as:
1 newton = 1 × 1 ampere × 1 metre × 1 tesla.

When the magnetic field is perpendicular to the direction of the current (and hence the length vector) in a 
single wire, the magnitude of the force is given by:

F = IlB.

When the magnetic field is not perpendicular to the direction of the current, it is important to remember 
that the force on the wire is less. In fact, if the magnetic field is parallel to the direction of the current, 
the force on the wire is zero. That is because the component of magnetic field perpendicular to the 
current is zero.

14.4 Exercise 1
1 Explain in terms of domains how a magnetic material can be ‘demagnetised’ when it is heated.
2 Which of the following materials can be described as ferromagnetic:

(a) aluminium
(b) stainless steel
(c) copper
(d) nickel?

3 What is the function of the coil in an electromagnet?
4 Explain why iron is used as the core of an electromagnet.
5 How could naturally occurring magnets have been formed?

+ –
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force

current

FIGURE 14.32 The magnetic field exerts a 
magnetic force on a current-carrying wire.
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If the magnetic field is pointing to the right across the page, and  the 
current is going down the page, the direction of the magnetic force is up, 
out of the page. The direction of this force will be important in applications 
such as meters and motors, so it is necessary to have a rule to determine the 
direction of the force in a variety of situations. There are two alternative 
hand rules commonly used. These are described below.

Left-hand rule
The left-hand rule applies as follows:
 • the index finger, pointing straight ahead, represents the magnetic field (B)
 • the middle finger, at right angles to the index finger, represents the current (I)
 • the thumb, upright at right angles to both fingers, represents the force (F).

Lock the three fingers in place so they are at right angles to each other. 
Now rotate your hand so that the field and current line up with the directions 
in your problem. The thumb will now point in the direction of the force.

Right-hand-slap rule
The right-hand-slap rule applies as follows:
 • the fingers (out straight) represent the magnetic field (B)
 • the thumb (out to the side of the hand) represents the current (I)
 • the palm of the hand represents the force (F).

Hold your hand flat with the fingers outstretched and the thumb out 
to the side, at right angles to your fingers. Now rotate your hand so 
that the field and current line up with the direction in your problem. 
The palm of your hand now gives the direction of the force, hence 
the name.

14.5.1 SAMPLE PROBLEM 1

If a straight wire of length 8.0 cm carries a current of 300 mA, calculate the magnitude of the force 
acting on it when it is in a magnetic field of strength 0.25 T if:
(a) the wire is at right angles to the field
(b) the wire is parallel with the field.

SOLUTION:

(a) The magnetic field is perpendicular to the direction of current.

F = IlB
= 3.00 × 10−1A × 8.0 × 10−2 m × 0.25 T
= 6.0 × 10−3 N

(b) The magnetic field is parallel to the direction of current. Therefore the component of magnetic 
field that is perpendicular to the current is zero.

 
F = IlB

= 3.00 × 10−1 A × 0 m × 0.25 T
= 0

force (F ) magnetic
�eld B)

current I)

FIGURE 14.33 Left-hand 
rule for determining the 
direction of the magnetic 
force of a magnetic field 
on a current.

force F )
(outwards
from palm)

magnetic
�eld (B)

current ( )

FIGURE 14.34 Right-hand- 
slap rule for determining 
the direction of the 
magnetic force of a 
magnetic field on a current.
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14.5.2 Magnetic force on charges
Electric current consists of electrons moving in a wire. A magnetic field acts on the electrons and 
pushes them sideways. This force then pushes the nuclei in the wire, and the wire moves. If the 
moving electrons were in a vacuum, free of the wire, the magnetic field would still exert a force at 
right angles to their velocity. What would be the effect of this force on a freely moving electron?

When an electron is moving across a magnetic field, it experiences a sideways force, which 
deflects the movement of the electron. The electron now moves in another direction given by the 
hand rule; however, it is still moving at right angles to the magnetic field, so the strength of the 
force is unchanged. The direction of the force will again be at right angles to the electron’s motion, 
and deflecting it again. The deflecting force on the moving electron will be constant in size and will 
always be at right angles to its velocity. This results in the electron travelling in a circle.

The magnetic force is always at right angles to the direction of the charge’s motion. So the magnetic 
force cannot increase the speed on the charge; it can only change its direction at a constant rate.

The mass spectrometer, the electron microscope and the synchrotron are instruments that use a magnetic 
force in this manner.

So what is the radius of the circle? How does it depend on the strength of the magnetic field, the speed 
of the charge and size of the charge?

The magnitude of the magnetic force on a current-carrying wire is given by:
F = IlB (1)

Imagine a single charge, q, travelling along at speed, v. The charge travels through a distance, or length, 
in a time of t seconds given by:

l = vt (2)
The electric current is given by:

I = q
t
 (3)

Substituting equations (2) and (3) into (1):

     F = q
t

× vt × B

⇒ F = qvB

Does this relationship make sense?

What do we observe? What does the formula predict? Match

If the charge is stationary, the current is zero, so no force. If v = 0, then F = 0. Yes

A stronger magnetic field will deflect the charge more. Force is proportional to the field. Yes

The magnitude of the net force on the charged particle as it moves in the magnetic field is:

Fnet = ma.

In this case the only significant force is the magnetic force, F = qvB.

⇒ qvB = ma

Because the acceleration is centripetal and constant in magnitude, its magnitude can be expressed as

a =  
v2

r
, where r is the radius of the circular motion.

⇒ qvB =  
mv2

r

The expression for the radius is therefore:

r =  
mv
Bq

.
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Does this relationship make sense?

What do we observe? What does the formula predict? Match

Hard to turn heavy objects The heavier the mass, the larger the radius Yes

Hard to turn fast objects The faster the object, the larger the radius Yes

The larger the force, the smaller the radius The stronger the field, the smaller the radius; 
the larger the charge, the smaller the radius

Yes

Note that because the direction of the magnetic field is always at right angles to the direction in which 
the charged particles are moving, the magnetic field cannot make the particles go faster — it can only 
change their direction. In this context, magnetic fields are not ‘particle accelerators’.

14.5.1 SAMPLE PROBLEM 2

An electron travelling at 5.9 × 106 m s−1 enters a magnetic field of 6.0 mT. What is the radius of its 
path?

SOLUTION: 

m = 9.1 × 10−31 kg,  q = 1.6 × 10−19 C,  v = 5.9 × 106 m s−1,  B = 6.0 mT

r =  
mv
Bq

=  
9.1 × 10−31 kg × 5.9 ×  106  m s−1

6.0 ×  10−3 T ×  1.6 ×  10−19 C
= 5.6 ×  10−3 m =  5.6 mm

β

α
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magnetic �eld
separation

FIGURE 14.35 (a) and (b) A mass spectrometer. (c) Positive alpha particles are deflected up and beta particles 
are deflected down. (d) and (e) An electron microscope.
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14.5.3 Crossed electric and magnetic fields
For mass spectrometers and electron microscopes to work, the 
charged particles all need to be travelling at the same speed. This 
is because the radius of the path in a magnetic field for a particle 
with a given charge and mass depends on the particle’s speed.

In 1898, Wilhelm Wien (after whom Wien’s Law in thermodynamics 
is named) was investigating the charged particles that are produced 
when electricity is passed through gases. To investigate their speed and 
their charge, he set up a magnetic field to deflect the beam of charged 
particles in one direction, and an electric field to deflect the beam in the 
opposite direction. For the charged particles that were undeflected, the 
magnetic force must have been balanced by the electric force.

The electric force on a charge in an electric field is F = qE, and 
the magnetic force on a moving charge is F = qvB. Equating these formulae gives

qE = qvB
and cancelling q gives

v =  
E
B

This configuration is now called a Wien filter.

–

+

E

B

+ v =v = E
B

v ≠v ≠ E
B

v ≠v ≠ E
B

FIGURE 14.36 A Wien filter 
(also known as a velocity 
selector).

AS A MATTER OF FACT
What happens to a stationary electron in a magnetic field? Surprisingly, there is no force! The electron is not 
moving, so there is, in effect, no current, and therefore no magnetic force. Similarly, the faster the electron 
moves, the stronger the force. This is a strange situation — that the size of a force on an object is determined 
by how fast that object is travelling. This raises an interesting conundrum: if you were sitting on an electron 
moving through a magnetic field, what would you observe? This question can only be resolved by Einstein’s 
Special Theory of Relativity.

AS A MATTER OF FACT
The aurorae at the North Pole and South Pole are glorious displays of waves of coloured light high in the 
atmosphere. They are produced when charged particles ejected by the Sun enter Earth’s magnetic field.
The particles spiral down to the pole, producing an amazing display of light as they move in smaller and smaller 
circles from the increasing magnetic field.

N

S

charged 
particles

FIGURE 14.37 Charged particles 
entering Earth’s magnetic field.

FIGURE 14.38 Aurora Australis, seen from the 
International Space Station.
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14.5.4 Harnessing magnetic forces
Magnetic propulsion
When a current flows along the closest rail (the lower of the two rails 
in figure 14.39), through the conductor rod and back to the power 
supply, the conductor will experience a force to the right due to the 
magnetic field. This force will make the conductor accelerate. If 
there is little friction, it can move at high speeds.

Meters
In the electrical meter illustrated in figure 14.40, the force on the 
wire BA is out of the page. The current travels around to D and 
then to C, so the force on wire DC is into the page. The two forces 
are the same size because the strength of the magnetic field is the 
same on both sides of the coil, the current through the coil is the 
same at all points and the lengths BA and DC are the same. How-
ever, the forces are in opposite directions. The net force is therefore 
zero. However, the forces do not act through the centre of the coil, 
so the combined forces have a turning effect. The turning effect of 
the forces is called a torque. The magnitude of the torque on a coil 
is the product of the force applied perpendicular to the plane of the 
coil and the distance between the line of action of the force and the 
shaft or axle.

If a spring is attached to the axle, the turning effect of the forces 
unwinds the spring until the spring pushes with an equal torque. 
A pointer attached to the axle measures the size of the torque, 
which depends on the size of the current. The larger the current 
through the meter, the larger the magnetic force and torque on 
the coil and the further the spring and the pointer are pushed 
back to achieve balance. Spiral springs have the fortunate prop-
erty that the deflection of the pointer is proportional to the 
torque. This means that the scale on the meter can be linear, or 
evenly spaced.

DC motors
A DC motor (a simplified example of which is 
given in figure 14.41) uses the current from a battery 
flowing through a coil in a magnetic field to produce 
continuous rotation of a shaft. How is this done?

A first attempt at a design might be to remove 
the restoring spring that is used in a meter.

When a coil is in position 1 (as shown in the 
top left figure in figure 14.42), the forces will 
make it rotate. As the coil rotates (position 2), the 
forces remain unchanged in size and direction. 
This is because the magnetic field and the current 
in the wire are still the same size and in the same 
direction. However, their lines of action are closer 
to the axle, so they have less turning effect. When 

F
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FIGURE 14.41 A simplified DC motor.
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FIGURE 14.39 A metal 
conductor rod rolling along 
two rails.
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FIGURE 14.40 An electrical 
meter.
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the coil reaches position 3, at right angles to the magnetic field, the forces are still unchanged in size and 
direction, but in this case the lines of action of the forces pass through the axle and have no turning 
effect. Since the coil was already moving before it got to position 3, the momentum of its rotation will 
carry it beyond position 3 to position 4(a). In position 4(a), the current is still travelling in the same 
direction, so in this position the forces will act to bring the coil back to position 3.

If this was the design of a DC motor, the coil would turn 90° and then stop! If the coil was in position 3 
when the battery was first connected, the coil would not even move.

So, if the motor is to continue to turn, it needs to be modified when the coil reaches position 3. If the 
direction of the forces can be reversed at this point, as shown in position 4(b), the forces will make the coil 
continue to turn for another 180°. The coil will then be in the opposite position to that shown for position 3. 
The current is again reversed to complete the rotation.

The current needs to be reversed twice every rotation when the coil is at right angles to the magnetic field.
This reversal is done with a commutator. The commu-

tator consists of two semicircular metal pieces attached to 
the axle, with a small insulating space between their ends. 
The ends of the coil are soldered to these metal pieces.

Wires from the battery rest against the commutator pieces. 
As the axle turns, these pieces turn under the battery con-
tacts, called brushes. This enables the current through the 
coil to change direction every time the insulating spaces pass 
the contacts.

Brushes are often small carbon blocks that allow charge 
to flow and the axle to turn smoothly.

A DC motor is a device used to turn electrical energy 
into kinetic energy, usually rotational kinetic energy. As 
an energy transfer device of some industrial significance, 
there are some important questions to be asked about the design for a DC motor. Are there some starting 
positions of the coil that won’t produce rotation? How can this be overcome? Can it run backwards and 
forwards? Can it run at different speeds?
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FIGURE 14.42 Force on a coil in a DC motor.

FIGURE 14.43 Commutator and coil from a 
hair dryer.
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14.5 Exercise 1
1 Explain how a moving electron could remain undeflected by a magnetic field.
2 Can a magnetic field move a stationary electron? Explain.
3 An electron and a proton are fired vertically upwards through a magnetic field that runs parallel to the 

earth from north to south. Describe the paths of the two particles.
4 Identify the direction of the force acting on 

each of the current-carrying conductors 
shown in figure 14.44. Use the terms ‘up the 
page’, ‘down the page’, ‘into the page’, ‘out 
of the page’, ‘left’ and ‘right’.

5 A wire of length 25 cm lies at right angles to 
a magnetic field of strength 4.0 × 10−2 T. A 
current of 1.8 A flows in the wire. Calculate the 
magnitude of the force that acts on the wire.

6 A long straight wire carries a current of 50 A. 
An electron, travelling at 107 m s–1, is 5 cm from 
the wire. What force acts on the electron if the 
electron’s velocity is directed
(a) perpendicular to the wire
(b) parallel to the wire?

7 Calculate the force on a 100 m length of 
wire carrying a current of 250 A when the strength of Earth’s magnetic field at right angles to the wire is 
5.00 × 10−5 T.

8 The force on a 10 cm wire carrying a current of 15 A when placed in a magnetic field perpendicular to B 
has a maximum value of 3.5 N. What is the strength of the magnetic field?

9 Calculate the speed of an electron that would move in an arc of radius 1.00 mm in a magnetic field of 6.0 mT.
10 What magnetic field strength would cause an electron travelling at 10% of the speed of light to move in 

a circle of 10 cm?
11 Calculate the size of the force of a magnetic field of strength 0.25 T on a wire of length 0.30 m carrying a 

current of 2.4 A at right angles to the field.
12 A wire of length 25 cm lies at an angle of 30o to a magnetic field of strength 4.0 × 10−2 T. A current of 

1.8 A flows in the wire. Calculate the magnitude of the force that acts on the wire. (Hint: you will need to 
consider the components of the magnetic field that lie perpendicular or parallel to the wire.)

13 Deduce both the magnitude and direction of the force acting on the lengths of conductors shown in 
figure 14.45.

AS A MATTER OF FACT
The principle of the electric motor was proposed by Michael Faraday in 1821, but a useful commercial motor 
was not designed until 1873. Direct current (DC) motors were installed in trains in Europe in the 1880s.

FIGURE 14.44
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FIGURE 14.52
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14.6.2 Questions
1. Two identical magnets are placed in each 

of the positions shown in figure 14.46. For 
each case draw a diagram showing the forces 
acting between the poles of one magnet and 
the poles of the other magnet (four pairs of 
forces in each case). Indicate the strengths 
of the forces by the lengths of the lines 
representing the forces. For each case, state 
whether the magnets will attract or repel one 
another.

2. In each of the cases shown in figure 14.47, 
sketch the magnetic field and mark the 
direction of the magnetic field at the points X,  Y and Z.

3. Sketch the magnetic fields due to the solenoids shown in 
figure 14.48. Mark the north and south poles in each case. Show 
the direction in which a compass needle will point at points X, 
Y and Z in each case. In each case, state the direction in which a 
compass needle inside the solenoid would point.

4. The diagrams in figure 14.49 represent currents in wires perpendicular 
to the page (⊗ represents a current into the page and ⨀ represents a 
current out of the page). For each case, draw lines of magnetic field 
strength to represent the magnetic field surrounding the wire. Mark 
the directions in which the north pole of a compass would point at 
X,  Y and Z in each of the cases shown.

5. In each of the cases shown in figure 14.50, show the magnetic 
field using the symbol ‘x’ to represent a field into the page and 
the symbol ‘•’ to represent a field out of the page.

6. Figure 14.51 represents a magnet placed in a magnetic field. 
Draw a diagram showing the forces that act on the poles of the 
magnet. If the magnet is free to move, how will it move? Justify 
your answer.

7. Figure 14.52 shows two electromagnets. Will they attract or 
repel one another? Justify your answer.

8. State the law of magnetic poles.
9. Draw a bar magnet and the magnetic field around it. Label 

the diagram to show that you understand the characteristics of 
magnetic field lines.

10. Are the north magnetic pole of the Earth and the north pole of a 
bar magnet of the same polarity? Explain your reasoning.
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11. Figure 14.53 shows three bar magnets and some of the field lines of 
the resulting magnetic field.
(a) Copy and complete the diagram to show the remaining field 

lines.
(b) Label the polarities of the magnets.

12. Draw a diagram to show the direction of the magnetic field lines 
around a conductor when the current is (a) travelling towards you  
and (b) away from you.

13. Each diagram in figure 14.54 represents two parallel current-carrying conductors. 
In each case, determine whether the conductors attract or repel each other. Explain 
your reasoning.

14. Each empty circle in figure 14.55 represents a plotting compass near a coiled 
conductor. Copy the diagram and label the N and S poles of each 
coil, and indicate the direction of the needle of each compass.

15. The diagrams in figure 14.56 show electromagnets. Identify 
which poles are N and which are S.

16. In figure 14.57 a current-carrying conductor is in the field 
of a U-shaped magnet. Identify the direction in which the 
conductor is forced.

17. A student wishes to demonstrate the strength of a magnetic 
field in the region between the poles of a horseshoe magnet. He 
sets up the apparatus shown in figure 14.58.

The length of wire in the magnetic field is 2.0 cm. When the 
ammeter reads 1.0 A, the force measured on the newton meter is 
0.25 N.
(a) What is the strength of the magnetic field?
(b) In this experiment the wire moves to the right. In 

what direction is the current flowing, up or down the 
page?

18. A wire with the shape shown in figure 14.59 carries a 
current of 2.0 A. It lies in a uniform magnetic field of 
strength 0 .6 0  T.
(a) Calculate the magnitude of the force acting on the 

section of wire, AB.
(b) Which of the following gives the direction of the force acting on the wire at the point, C?

i. Into the page ii. Out of the page
iii. In the direction OC iv. In the direction CO
v. In the direction OD vi. In the direction DO

S
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(c) Which of the following gives the direction of the net force acting on the semicircular section of wire?
i. Into the page
ii. Out of the page

iii. In the direction OC
iv. In the direction CO

v. In the direction OD
vi. In the direction DO

19. Draw the magnetic field lines for the following items (shown 
in figure 14.60):
(a) a loudspeaker magnet
(b) a horseshoe magnet.

20. In Oersted’s experiment, the compass needle initially points 
north–south. What would happen if the current in the wire 
above the needle ran:
(a) west–east
(b) east–west?

21. Use the right-hand-grip rule to determine the direction of the 
magnetic field at point X in the diagrams in figure 14.61.

22. Copy the diagrams in figure 14.62 and use the right-hand-grip 
rule and the direction of the magnetic field at X to determine the 
direction of the current in the wire in each case.

23. Use the right-hand-grip rule to determine the direction of the 
magnetic field at W,  X,  Y,  Z in the diagrams in figure 14.63. Figure (a) represents a circular loop of 
wire with a current and figure (b) represents a solenoid.

24. Use the answer key provided to indicate the direction of the force of the magnetic field on the current-
carrying wire in diagrams (a) to (h) in figure 14.64.
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25. Wires A and B are parallel to each other and carry current in the same direction.
(a) Draw a diagram to represent this situation, and determine the direction of the magnetic field at B 

due to wire A.
(b) This magnetic force will act on the current in wire B. What is the direction of the force by wire A 

on wire B?
(c) Now determine the direction of the magnetic field at A due to wire B and the direction of the force 

by wire B on wire A.
(d) Is the answer to (c) what you expected? Why? (Hint: Consider Newton’s laws of motion.)

26. Calculate the size of the force on a wire of length 0.05 m in a magnetic field of strength 0.30 T if the 
wire is at right angles to the field and it carries a current of 4.5 A.

27. Calculate the size of the force exerted on a loudspeaker coil of radius 1.5 cm and 500 turns that carries 
a current of 15 mA in a radial magnetic field of 2.0 T. (Hint: Consider what aspect of the circle takes 
the place of l in this question.)

28. Calculate the size of the force on a wire carrying a current of 1.8 A at right angles to a magnetic field 
of strength 40 mT, if the length of the wire is 8.0 cm.

29. Design a compass without a permanent magnet.
30. Describe a method to use a moving charge to determine the direction of a magnetic field.
31. Describe and discuss the force of Earth’s magnetic field on a horizontal section of a power line that 

runs in an east–west direction.
32. (a)  A beam of electrons is directed at right angles to a wire carrying a conventional current from left 

to right. What happens to the electrons?
(b) A beam of electrons is directed parallel to the same wire with the conventional current travelling 

in the same direction. What happens to the electrons?
33. An electron moving north enters a magnetic field that is directed vertically upwards.

(a) What happens to the electron?
(b) If the electron’s motion was inclined upwards at an angle, as well as travelling north, what would 

be the path of the electron?
34. An electron travelling east at 1.2 × 105 m s−1 enters a region of uniform magnetic field of strength 

2.4 T.
(a) Calculate the size of the magnetic force acting on the electron.
(b) Describe the path taken by the electron, giving a reason for your answer.
(c) Calculate the magnitude of the acceleration of the electron.

35. (a)   What is the size of the magnetic force on an electron entering a magnetic field of 250 m T at a 
speed of 5.0 × 106 m s−1?

(b) Use the mass of the electron to determine its centripetal acceleration.
(c) If a proton entered the same field with the same speed, what would be its centripetal acceleration?

36. Determine the direction of the magnetic force in the diagrams in figures 14.65, 14.66 and 14.67, using 
your preferred hand rule. Use the following terminology in your answers: up the page, down the page, 
left, right, into the page, out of the page.
(a) Magnetic field into the page, electron entering from left

(b) Magnetic field down the page, electron entering from left
(c) Magnetic field out of the page, proton entering obliquely from left

X X X

X X X

X X X

FIGURE 14.65

N

S

FIGURE 14.66 FIGURE 14.67
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37. An ion beam consisting of three different types of charged 
particle is directed eastwards into a region having a uniform 
magnetic field, B, directed out of the page. The particles making 
up the beam are (i) an electron, (ii) a proton and (iii) a helium 
nucleus or alpha particle. Copy figure 14.68 and draw the paths 
that the electron, proton and helium nucleus could take.

38. In a mass spectrometer, positively charged ions are curved in a 
semicircle by a magnetic field to hit a detector at different points 
depending on the radius and mass. The ions enter the chamber  
at the top left corner, and curve around to hit the detector  
(see figure 14.69). What should be the direction of the magnetic field 
for the spectrometer to work properly? Use the terminology from 
question 36 for your answers.

39. Calculate the radius of curvature of the following particles 
travelling at 10% of the speed of light in a magnetic field of 4.0 T.
(a) An electron
(b) A proton
(c) A helium nucleus

40. What strength of magnetic field would be needed to obtain a radius of 1000 m if an electron has 
momentum of 1.0 × 10−18 kg m s−1? (Assume the direction of the momentum of the electrons is 
perpendicular to the direction of the magnetic field.)

41. The storage ring of the Australian Synchrotron has a radius of 34.4 m and the strength of the magnetic 
field is 2.0 T. What is the momentum of an electron in the storage ring?

42. Design a velocity selector with a magnetic field down the page, assuming the charged particles are 
coming from the left.

43. (a) Calculate the speed acquired by an electron accelerated by a voltage drop of 100 V.
(b) The electron from part (a) enters a velocity selector with a magnetic field of strength 6.0 mT. For 

what electric field strength would the electron be undeflected?
(c) If the plate separation for the electric field was 5.0 cm, what is the voltage across the plates?

PRACTICAL INVESTIGATIONS

Investigation 14.1: Magnetic field surrounding a magnet
Aim
To use a compass to map the magnetic field surrounding a bar magnet

Apparatus
bar magnet
compass
large sheet of paper

Theory
The direction of a magnetic field at a point can be found by placing a small compass at the point. The north 
pole of the compass points in the direction of the magnetic field at the point.

Method
1. Place the sheet of paper on a horizontal surface.
2. Use the compass to find the N–S direction and mark this direction at the centre of the paper.
3. Place the bar magnet on the paper along the N–S line marked on the paper with the north pole of the 

magnet pointing north.
4. Mark on the paper the outline of the magnet and label the poles N and S.
5. Place the compass at a point near the north pole of the magnet. Mark with two points the position taken up 

by the compass needle.

ion beam

B

FIGURE 14.68

FIGURE 14.69
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6. Move the compass to a new position so that the 
position of the compass needle follows from the 
previous position. This is illustrated in figure 14.70.

7. Continue in this way until you reach a position near 
the south pole of the magnet.

8. Draw a continuous curve through the points you have 
marked on the paper.

9. Mark with arrows the direction of the magnetic field 
at several points along your line.

10. Repeat five times starting from different positions of 
the compass.

Analysis
1. At which pole do the magnetic field lines begin?
2. At which pole do the magnetic field lines end?
3. Where is the magnetic field strongest? How is this 

shown by the magnetic field lines?

Investigation 14.2: Magnetic field produced by a current in a long, straight wire
Aim
To map the magnetic field surrounding a long, straight wire carrying an electric current

Apparatus
50 cm length of straight wire
sheet of cardboard approximately 20 cm × 20 cm 
power supply
variable resistor
connecting wire
switch
compass
some means of supporting the wire
some means of supporting the cardboard

Method
1. Set up the apparatus as shown in figure 14.71. To increase 

the strength of the magnetic field, a number of loops of wire 
can be used.

2. Connect the power supply so that the conventional current 
flows downwards through the wire.

3. Adjust the voltage of the power supply and the variable 
resistance so that the current has the value given by your 
teacher.

4. Place the compass about 5 cm from the wire.
5. Switch on the current and mark the positions of the ends of 

the compass on the cardboard.
6. Proceed as in Investigation 14.1, tracing out the magnetic field line. (Ideally this should return to the starting 

point to form a closed loop.)
7. Mark the direction in which the north pole of the compass pointed at several places on the magnetic field line.
8. Repeat this a number of times with the initial position of the compass at different distances from the wire.
9. Draw smooth lines of magnetic field through each set of points.

10. Reverse the direction of the current and observe what happens to the compass needle.

Analysis
Show that your result is compatible with the right-hand grip rule.

Questions
1. When the current was coming upwards out of the cardboard, was the direction of the magnetic field lines 

around the wire clockwise or anticlockwise?
2. Can you use this to formulate an alternative rule for determining the direction of the magnetic field 

surrounding a current-carrying wire?

A

Compass on cardboard

FIGURE 14.71
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(a) Mark �rst direction of compass.
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(b) Place compass so that the direction follows on from 
     the previous direction.
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Investigation 14.3: Magnetic field of a solenoid carrying a current
Aim
To map the magnetic field surrounding a solenoid

Apparatus
solenoid
sheet of cardboard approximately 20 cm × 20 cm
scissors
connecting wires
power supply
variable resistor
switch
compass

Method
1. Connect the apparatus as shown in figure 14.72.
2. Note the direction of the conventional current around the solenoid.
3. Map the magnetic field around the solenoid using the same method as 

was used in the previous two practical activities.
4. Reverse the direction of the current through the solenoid. Note what 

happens to the direction of the magnetic field.

Analysis
1. With the first direction of the conventional current, which end of the 

solenoid was the north pole? Explain.
2. Is this result compatible with the right-hand grip rule for solenoids?
3. Draw a sketch showing how the right-hand grip rule for solenoids 

applies to your result.
4. What happened to the magnetic field when the direction of the current 

was reversed?
5. How does the magnetic field produced by a current in a solenoid compare with the magnetic field 

surrounding a magnet?

Investigation 14.4: Building an electromagnet
Aim
To build an electromagnet and observe its properties

Apparatus
iron rod for core of electromagnet
insulated conducting wire for coil
power pack
connecting wire
variable resistor
ammeter
small iron nails

Theory
A soft iron core is placed in a solenoid carrying a current and becomes magnetised. When the current is 
switched off the soft iron core loses its magnetism.

Method
1. Build the electromagnet by winding the conducting wire 

closely from one end of the iron core to the other. To make 
the electromagnet stronger one or more layers of coils can be 
wound on top of the first. It is essential that all layers of coils 
are wound in the same direction around the core.

2. Connect the electromagnet to the power supply as shown in 
figure 14.73.

3. Test the magnetism of the electromagnet by observing the 
attraction of small iron nails to the end of the soft iron rod. 
The greater the number of iron nails attracted to the rod, the 
greater is the magnetism.

A

FIGURE 14.73
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4. Observe the magnetism of the electromagnet when there is no current.
5. Observe the magnetism of the electromagnet for a range of currents.
6. Observe how much time is taken for the electromagnet to gain and lose its magnetism when the current is 

switched on and off.

Analysis
1. How did the magnetism change as the current was increased?
2. Was there any delay observed in the gain or loss of magnetism when the current was switched on or off?
3. Was there any magnetism left when the current was turned off?





GLOSSARY
absolute refractive index (n): the ratio of the speed of light in a vacuum to the speed of light in that material
absolute zero: the lowest temperature that is physically possible. At this temperature, particles cease to 

vibrate. It is equal to 0 K or approximately – 273 oC.
acceleration: the rate at which an object changes its velocity
accuracy: a measure of how well a measurement agrees with a set or standard value
acoustic power: amount of sound energy in joules being produced by a source every second 
air resistance or drag: the force applied to an object, opposite to its direction of motion, by the air 

through which it is moving
alternating current: (AC), refers to circuits where the charge carriers move backwards and forwards 

periodically
ammeter: an instrument used to measure the electric current in an electric circuit. An ammeter is 

connected into a circuit in series.
ampere: (A), the SI unit of electric current. An ampere is equivalent to a coulomb second–1.
amplitude: an object’s maximum displacement from its rest position while undergoing periodic motion
antinodal lines: lines where constructive interference occurs on a surface
antinodes: the points in a medium that are disturbed the most when standing waves form
beats: refers to the change in volume of a sound that occurs when two sounds of slightly different 

frequencies occur together
centre of curvature: the theoretical centre of the circle of which an arc corresponds to the curvature of a 

particular surface, such as a concave mirror. The centre of curvature of a mirror is located at a distance 
equal to twice the mirror’s focal length.

centre of curvature (C) for a lens: The centre of curvature (C) for the face of a lens is the centre of the circle, 
an arc of which corresponds to the curve of the lens face. A flat face of a lens has a centre of curvature 
located at infinity.

change of phase: the inversion of a wave when it is reflected
charge carrier: a charged particle that is free to move through a material
coefficient of friction ( μ): the ratio of the frictional force to the normal reaction force acting on an object 

moving across a surface. It is a measure of how easily the object moves across the surface, and depends 
upon characteristics of both the object and the surface.

commutator: a device that reverses the direction of the current flowing through an electric circuit
component: a part. Any vector can be resolved into a number of components. When all of the 

components are added together, the result is the original vector.
compression: a zone where the particles of the medium are pushed closer together. It is a zone of higher 

pressure.
concave: the profile of a lens or mirror that is shaped like the interior curve of a sphere or circle  

section (see diverging)
conduction: the transfer of heat through a substance as a result of collisions between neighbouring 

vibrating particles
conductor: a material that contains charge carriers
constructive interference: the disturbance caused when two waves reach a position at the same time and 

give rise to an amplitude that is greater than that due to each of the waves alone
contact forces: forces that arise between objects that are in physical contact with each other
convection: the transfer of heat in a fluid (a liquid or gas) as a result of the movement of particles within 

the fluid
convection current: a movement of particles during the transfer of heat through a substance
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conventional current: the movement of positive charges from the positive terminal of a cell through the 
conductor to the negative terminal

converging: term describing a lens or mirror that bends or reflects incident light rays such that they meet 
at a common point (focus)

convex: the profile of a lens or mirror that is shaped like the exterior curve of a sphere or circle section
coulomb: (C), the SI unit of electric charge
crest: the highest part of a transverse wave
critical angle: the angle where total internal reflection prevents the ray from escaping from a higher 

optical-density medium to a lower optical-density medium
deficiency of electrons: exists when a body has fewer electrons than protons
destructive interference: the disturbance that occurs when the sum of two superimposed waves is zero
diffraction: a phenomenon exhibited by waves when waves either bend behind a barrier or the wavefront 

is broken up into many small sources
diffuse reflection: occurs when parallel light rays striking a surface are scattered when reflected
dilated: same as enlarged
diminished: description of an image that is smaller than the original object
diode: a device that allows current to pass through it in one direction
dipole field: the field produced around two proximate objects with opposite polarities, for example: a 

positive charge and a negative charge; a north magnetic pole and a south magnetic pole
direct current: (DC), refers to circuits where the net flow of charge is in one direction only
direction of a magnetic field: the direction of the force on a very small magnetic north pole placed in the 

field
dispersion: the separation of light into a spectrum of colours as the result of refraction
displacement: a vector quantity representing the location of the destination relative to the origin of 

motion only, irrespective of the path actually negotiated between the two points
displacement antinode: position in an air column at which the particles are able to move with maximum 

amplitude
displacement node: position in an air column at which minimum displacement of air particles 

occurs
distance: the total length of the pathway taken between the origin and the destination point
diverging: term describing a lens or mirror that bends or reflects incident light rays such that they are 

spread out, appearing to come from a focal point behind the lens or mirror
doping: the process in which small quantities of either a Group 13 element or a Group 15 element are 

introduced into a semiconducting material to affect the way in which electrons move through it
driving frequency: the frequency of a forced vibration
earthed: when a body is connected to the Earth by a conducting path
elastic collision: a collision in which both momentum and kinetic energy are conserved
electric charge: a property of electrons and protons by which they exert electric forces on one another
electric current: the rate at which charge flows under the influence of an electric field
electric field: a field of force with a field strength equal to the force per unit charge at that point

electric field strength: E, given by the formula E = F
q

. The direction of the electric field strength is the 

direction of the force that acts on a positive charge placed in the field.

electric potential energy: the potential energy of an electric charge in an electric field
electromagnet: a temporary magnet produced when a solenoid wound around an iron core carries an 

electric current
electromagnetic wave: a wave that propagates as a perpendicular electric and magnetic field. 

Electromagnetic waves do not require a medium for propagation.
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electron current: the term used when dealing with the mechanisms for the movement of electrons
electron drift: the slow movement of electrons through a conductor in the opposite direction to the 

electric field. This movement is superimposed on the much faster, random motion of the electrons.
electrostatic charge: a charge due to an excess or deficiency of electrons
energy: the capacity to do work. It is a scalar quantity.
enlarged or dilated: describes an image that is larger than the  original object 
equilibrant: the force that, when added to an unbalanced system of forces, brings the system into equilibrium
excess of electrons: exists when a body has more electrons than protons
First Law of Thermodynamics: ∆U = Q – W or Q = U + W, where Q is the heat energy in joules, W is 

the work done in joules and U is the internal energy in joules
focal length: (of a lens or mirror) the distance between the geometric centre and the principal focus
focal plane: (of a lens or mirror) the plane set at right angles to the principal axis and passing through the 

focus
focus (F): the point where all rays from a converging lens or mirror are concentrated. It is also the 

point where the rays appear to originate after passing through a diverging lens or being reflected by a 
diverging mirror. 

force: an external influence that is able to alter the state of motion of an object. It is a ‘push’ or a ‘pull’ 
that has both magnitude and a direction.

forced vibration: occurs when an object, surface or medium is made to vibrate at the same rate as an 
adjacent vibrating object; also known as forced resonance

free electrons: electrons in a metal that are detached from their atoms and are free to move through the 
metal. A metal conducts an electric current by the movement of the free electrons.

frequency ( f ): (of a wave) equal to the number of waves that move past a given point in 1 second
fundamental frequency: the lowest frequency at which a standing wave is produced
gravitational field strength: (g), the force of gravity on a unit of mass
gravitational potential energy: the energy stored in an object as a result of its position relative to another 

object to which it is attracted by the force of gravity
harmonic: overtone frequency that is equal to a whole number multiple of the fundamental frequency
idealisation: an idealisation makes modelling a phenomenon or event easier by assuming ideal conditions 

that don’t exactly match the real situation
illuminated bodies: bodies that reflect light from another source and are not able to produce light by 

themselves
impulse: vector quantity representing the change in momentum of an object. It is the product of the force 

acting on the object and the time interval over which the force acts. It has SI units of N s or kg m s–1.
incandescent: refers to materials and objects that give off light when they reach a high enough 

temperature
induced charge: a charge produced in a body when another charged body is near it
induction: the production of induced charges
inelastic: (collision) a collision in which kinetic energy is not conserved
inertia: the tendency of an object to resist a change in its motion
instantaneous speed: the speed at a particular instant of time
instantaneous velocity: the velocity at a particular instant of time
insulated: refers to an object that is electrically isolated from its surroundings but not earthed
insulator: a material that does not contain charge carriers
intensity: an objective measure of how much energy a sound is able to transfer to a 1 m2 area of surface 

at a specific distance from the source
interference: the disturbance caused by the interaction of two or more waves at the same location
irregular reflection: occurs when parallel light rays striking a surface are scattered when reflected [note: 

same as diffuse reflection]
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joule: (J), the SI unit of work or energy. One joule is the energy expended when a force of 1 newton acts 
through a distance of 1 metre.

kinetic energy: the energy associated with the movement of an object
latent heat: the heat added to a substance undergoing a change of state that does not increase the temperature
Law of Conservation of Momentum: Law describing the momentum of a system: For any closed 

isolated system, the sum of the momenta of all objects in that system is a constant.
Law of Reflection: states that the angle between an incident light ray and the normal where it strikes the 

surface will be equal to the angle between the normal and the reflected ray
lens axis: a line that passes through the pole of the lens that is perpendicular to the principal axis
light-dependent resistor (LDR): a device that has a resistance which varies with the amount of light 

falling on it
light-emitting diode (LED): a small semiconductor diode that emits light when a current passes through it
limiting friction: the maximum amount of force that can be applied to a stationary object at a particular 

time before it commences movement
lines of electric field: the lines drawn on a diagram to represent the direction and magnitude of an 

electric field
load: the force acting on a structure or building component
local antinodes or maxima: points at which constructive interference between the waves produced by 

two sources in phase occurs. At these points, the amplitude of the combined wave is greater than that 
produced by one source alone.

local nodes or minima: points at which destructive interference between the waves produced by two 
sources in phase occurs. At these points, the amplitude of the combined wave is less than that produced 
by either source alone.

longitudinal wave or compression wave: a wave in which the disturbance moves in the same direction 
as the wave

luminosity (L): of a star; the total energy radiated by a star per second
luminous bodies: bodies that give off light directly
luminous intensity, (I): a quantitative measure of the effective brightness of a light source. It is 

dependent upon the amount of light energy produced by the light source each second and the area over 

which that light energy is distributed: I = L

4πd2
. It is measured in W m–2 .

luminous power (see luminosity): another term for luminosity. it is a measure of the amount of light 

energy in joules produced by a light source each second. Its units are J s–1 or W.
magnetic domain: region in a material in which the magnetic fields of the material’s atoms are aligned in 

the same direction
magnetic field: a force field surrounding a magnetic pole that exerts forces on other magnetic poles placed in 

the field
mechanical energy transfer: the transfer of energy by the action of a force
mechanical interaction: an interaction in which energy is transferred from one object to another by the action 

of a force
mechanical wave: a wave that requires the movement of particles to propagate forward
momentum: the product of the mass of an object and its velocity. It is a vector quantity.
natural frequency: the frequency at which an object will vibrate when stimulated. It is independent of the size 

of the stimulus, depending solely upon the object’s size, shape and composition. It is also the rate at which 
resonance occurs.

natural magnet: naturally occurring iron ores or materials such as magnetite that have magnetic 
properties

negative charge: the type of charge on an electron
negatively charged: a body that has an excess of electrons
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negligible: a quantity that is negligible is so small that it can be ignored when modelling a phenomenon 
or an event

net force: the vector sum of the forces acting on an object
neutral: refers to an object that carries an equal amount of positive and negative charge
newton: the derived unit of force; 1 newton (N) = 1 kilogram-metre per second squared (kg m s–2)
newton coulom–1: (N C–1), is the unit of electric field strength
nodal lines: lines where destructive interference occurs on a surface, resulting in no displacement of the 

surface
nodes: the points in a medium that remain undisturbed when two waves cancel each other out due to 

destructive interference
non-contact forces: forces that arise between objects that are not in direct physical contact with each other
non-ohmic device: a device for which the resistance is different for different currents passing through it
normal: an imaginary line drawn perpendicular to the interface between two media at the point where a 

light ray enters the interface
normal reaction: a force that acts perpendicular to a surface as a result of an object applying a force to 

the surface
ohmic device: a device for which, under constant physical conditions such as temperature, the resistance 

is constant for all currents that pass through it
opaque: refers to material that does not allow light to pass through it
optical centre (O) for a mirror: The optical centre (O) is the centre of the curved mirror’s face.
optical centre (or pole) for a lens: The optical centre (or pole) of a lens is the point in the exact centre of the lens 

itself. Light rays that pass through the optical centre of a lens will not be diverted, but will continue undeflected.
optical ray tracing: process by which the position, nature and size of an image produced by a lens or a 

mirror is determined by use of a scale diagram
optical transmissivity: the ability of a material to allow light to pass through it
overtones: frequencies produced in a string or air column that are higher than the fundamental frequency
parallel: devices connected in parallel are joined together so that one end of each device is joined at a 

common point and the other end of each device is joined at another common point
period: (of a cycle or series of events) is the amount of time one cycle or one event takes to occur
periodic waves: disturbances that repeat themselves at regular intervals
permanent magnet: a material that keeps its iron-attracting properties regardless of whether an external 

electromagnetic field is present
permeability of free space ( μo): measure of a vacuum’s resistance to the establishment of a magnetic 

field within it. In a perfect vacuum, permeability is equal to 4π × 10–7 T m A–1.
permittivity of free space (ε0): measure of a vacuum’s resistance to the establishment of an electric field 

within it. In a perfect vacuum, permittivity is equal to 8.854 × 10–12 C2 N–1 m–2.
pitch: directly related to the frequency of a sound. The higher the frequency of the sound, the more 

vibrations per second and the higher the pitch. A low-frequency sound is a low-pitched sound.
poles: regions of a magnetic material where the property of attracting iron is concentrated
positive charge: the type of charge on a proton
positively charged: a body that has a deficiency of electrons
potential difference: the change in potential energy per unit charge moving between two points
potential difference across a power supply: the number of joules of electric potential energy given to 

each coulomb of charge that passes through the power supply
potential drop (or voltage drop): the amount of electrical potential energy lost by each coulomb of 

charge in a given part of a circuit
power: the rate at which work is done, or the rate at which energy is transferred or transformed. It is 

measured in watts (W)
precision: a measure of how well a set of measurements agree with each other
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pressure antinode: position in an air column at which air pressure is undergoing maximum change over time
pressure node: position in an air column at which there is no change in air pressure
principal axis: (for a mirror) The principal axis is the line upon which the centre of curvature, the 

principal focus and the optical centre lie.
principal axis: (of a lens) the line that passes through the centre of the lens and is perpendicular to the 

plane of the lens
principal focus: (of a lens or mirror) the point on the principal axis at which incident parallel rays are 

converged
progressive (or travelling) waves: waves that move freely through a medium until a boundary is met.
radiation: heat transfer without the presence of particles
radius of curvature (R) for a lens: The radius of curvature (R) is the distance between the centre of 

curvature and the surface of the lens.
radius of curvature (R) for a mirror: The radius of curvature (R) is the radius of this sphere; this will 

be the distance between the centre of curvature and the geometric centre of the mirror.
rarefaction: a zone where the particles of the medium are spread further apart. It is a zone of lower pressure.
real image: an image through which light passes. A real image can be seen on a screen placed at the 

location of the image.
refraction: the change in direction that a light ray experiences when passing into a new medium
regular reflection (or specular reflection): occurs when parallel light rays striking a reflective surface 

are reflected in parallel
relative refractive index: a measure of how much light bends when it travels from any one substance 

into any other substance
resistance: a measure of how easily charge carriers are able to move through a conductor. It is equal to the 

potential difference across the resistor divided by the current passing through the resistor. The unit of 
resistance is the ohm (Ω).

resistor: a device used in circuits to control the current flowing through, and the potential drop across, a section 
of circuit. It is a conductor in which the electric potential energy of a current is converted into heat energy.

resolution: the fineness to which an instrument can be read
resonance: the condition where a medium responds to a periodic external force by vibrating with the 

same frequency as the force
reverberation: an effect created when the audience hears a noticeable time delay between the played note 

ending and the dying away of that note.
reverberation time: the period of time that elapses between the incidence of a sound and the noise level 

of that sound’s echo dropping below 60 dB. The reverberation time of a space depends upon its size 
and shape, and the nature of the surfaces and objects within it.

right-hand grip rule: a rule for finding the direction of the magnetic field surrounding an electric current
scalar: a quantity that specifies size (magnitude) but not direction
series: devices connected in series are joined together one after the other
Snell’s Law: n1

 sin θ
1
 = n

2
 sin θ

2

solenoid: a coil of wire wound into a cylindrical shape
sound intensity level: a comparison of the intensity of a sound compared to the softest sound audible
specific latent heat of fusion: the quantity of energy required to change 1 kilogram of a substance 

from a solid to a liquid without a change in temperature
specific latent heat of vaporisation: the quantity of energy required to change 1 kilogram of a substance 

from a liquid to a gas without a change in temperature
specular reflection: see regular reflection
speed: a measure of the time rate at which an object moves over a distance. It is a scalar quantity.
speed of light: represented by the symbol, c. It is the speed at which all electromagnetic waves travel in a 

vacuum; c = 299 792 458 m s–1 (usually approximated to 3 × 108 m s–1).
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standing wave (stationary wave): occurs at wave frequencies when there is interference between the 
initially generated waves and the reflected waves

strain potential energy: the energy stored in an object as a result of a reversible change in shape. It is 
also known as elastic potential energy.

superposition: the adding of two or more waves
temperature: a measure of the average translational kinetic energy of particles 
temporary magnet: an object that acts like a permanent magnet only while it is exposed to a strong 

electromagnetic field
thermal conductivity (k): a constant that expresses how easily heat is transferred through a material
thermal equilibrium: occurs when the temperature of two regions is uniform
thermistor: a device having a resistance that changes with a change in temperature
timbre: used to describe the richness of sound produced by a musical instrument. Good timbre depends 

upon the ability of the instrument to produce different harmonic frequencies at once.
torque: also referred to as moment; the turning effect of a force about a pivot or reference point
total internal reflection: the total reflection of light from a boundary between two substances. It occurs 

when the angle of incidence is greater than the critical angle.
translucent: refers to materials that allow light rays to pass through them, although the rays will be 

dispersed
transparent: refers to material that allows light to pass through it without dispersion or distortion
transverse wave: a wave in which the disturbance caused by the transfer of energy acts perpendicularly 

to the direction of motion of the wave itself
trough: the lowest part of a transverse wave
vector: a quantity that specifies size (magnitude) and direction
velocity: a measure of the time rate of displacement, or the time rate of change in position. It is a vector 

quantity.
virtual image: an image that is seen because light appears to be coming from it. It is unable to be 

‘captured’ on a screen.
volt: (V), the SI unit of potential difference
voltage: another name for potential difference. It is equal to the amount of electrical energy available for 

transformation at a point in a circuit by each coulomb of charge passing through that point.
voltage divider: a device used to reduce, or divide, a voltage to a value needed for a part of the circuit
voltage drop: see potential drop
voltmeter: an instrument used to measure the potential difference across a component in an electric 

circuit. A voltmeter is connected into a circuit in parallel.
wave: a disturbance that transfers energy through a medium or across a distance
wave equation: equations describing the relationship between the speed, frequency and wavelength of a 

periodic wave: v = f λ 
wave number: equal to the number of waves per unit distance for a periodic wave series. It is represented 

by the symbol k, and is equal to the reciprocal of the wavelength: k = 1/λ.
wavelength (λ): the distance between corresponding points on successive waves
weight: the force applied to an object due to gravitational attraction
work: a scalar quantity that is equal to the amount of energy transferred to or from an object by the 

action of a force
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APPENDIX 1
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ANSWERS
Topic 1 Learning to think like a physicist
1.2 Exercise 1
1. (a)  1.5 A; (b) 0.750 kg; (c) 250 000 000 000 W; (d) 520 m; (e) 

(f) 0.000 15 s; (g) 0.05 m; (h) 50 000 000 V; (i) 1.2 m

2. m s–2

3. (a)  N kg–1; (b) m s–2

1.3 Exercise 1
(a) 6.37 × 105 m; (b) 3.0 × 108 m s–1; (c) 3 × 10–10 m

1.4 Exercise 1
1. (a)  4; (b) 2; (c) 4; (d) 6; (e) 2; (f) 3

2. (a)  465 m2; (b) 337.4 m

3. 8.6 m s–1

1.5 Exercise 1
(a) (i)  9.6 ± 0.25; (ii)  8.5 ± 0.125; (iii)  11.85 ± 0.05

(b) 63.9 ± 0.05

Topic 2 Motion in a straight line
2.2 Exercise 1
1. (a)  100 m,  N; (b) 220 m; (c) 100 m; (d) 60 m,  S

2. (a)  800 m; (b) 400 m,  N; (c) 0

3. 400 m,  W

2.3 Exercise 1
1. 720 km

2. (i)  10 km h–1; (ii)   2.8 m s–1

3. 12 s

2.4 Exercise 1
1. approximately 16 m

2. approximately 30 m

2.5 Exercise 1
1. (a)  6.0 s; (b) 36 m

2. (a)  18 m; (b) –16 m s–2

3. –0.8 m s–2

4. (a)  8 m s–2; (b) 0.5 s

2.5 Exercise 2
(a) 1 m s–2; (b)  t = 0,  t = 20 s,  35 s ≤ t ≤ 40 s; (c)  25 m

2.6.2 Questions
1. (b), (d)

2. (a)  14.67 m s−1; (b)  2 h 56 min  6 s; (c)  1.9 h; (d)  (i)  78 km h−1 (ii)  0 km h−1

4. (b)  89 km h−1

6. 50 s

7. (a)  1.8 s; (b) 5.0 s

8. (a)  (i)  −40 km h−1 (ii)  40 km h−1, south or −40 km h−1, north;

(b) (i)  −20 m s−1 (ii)  −20 m s−1 in original direction;

(c) (i)  +5 m s−1 (ii)  −55 m s−1 in original direction

9. 4.0 m s−2, north

0.000 000 6 m;
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10. (a)  2.7 s; (b) 27 m s−1

11. (a)  12 m s−1; (b) −6.0 m s−2

12. (a)  3.45 s; (b) −8.05 m s−2

13. (a)  3.2 s; (b)  3.8 m s−2 down the slope; (c)  1.6 s

14. (a)  B,  C; (b) B,  D; (c) A,  E; (d) A,  E; (e) D

15. (a)  10 m, south; (b) 5.0 m s−2, north; (c) 3.0 m s−2, south; (d) 6.1 m s−1, south

16. (a)  B; (b) A,  D,  E; (c) 40 s; (d) 20 m, north;

(e) 260 m; (f) D; (g) E; (h) 3.3 m s−1;

(i) 6.0 m s−1, south; (j) approx. 3 m s−1, north

18. (a)  B,  D,  F; (b) +20 m; (c) 0.25 m s−1; (d) 30 s;

(e) It didn’t; (f) C,  G; (g) 20–30 s,  50–55 s,  70–80 s; (i) 0.20 m s−2;

(j) 0.050 m s−2

20. (a)  The jet skier after 8.0 s; (b)  (i)  21 m s−1 (ii)  33 m s−1

21. 3.7 h or 3 h 41 min 

22. 995 m

23. (a)  3.0 s; (b) 2.5 m s−2; (c) 10 s; (d) 80 m

Topic 3 Motion in a plane
3.2 Exercise 1
2. (a)  30 m s–1,  N 31° W; (b) 203 km h–1,  S 2° E

3.3 Exercise 1
1. (a)  12.8 km,  S 51° W; (b) 18 km

2. 12 m s–1,  S 57° E

3. 6.4 m s–1,  S 39° E

4. (a)  X = 78 km,  Y = 290 km; (b) X = –5.7 m s–1,  Y = –8.2 m s–1;

(c) X = 3.8 m,  Y = –4.6 m; (d) X = 2 m s–2,  Y = –3.5 m s–2

5. 1.1 km h–1,  S 28° W

3.4 Exercise 1
1. –1 m s–2,  S (or +1 m s–2,  N)

2. 56 m s–2,  63° relative to the original direction of motion

3. 2.4 m s–2,  N 73° W

4. (a)  21 kn,  N 73° E; (b) 21 kn,  S 73° W

5. (a)  N 60° E; (b) 35 s

3.5.2 Questions
1. no; yes

2. 19 N; 1 N

3. 45° and 225°

4. (c)

7. (a)  50 m; (b) 10 m

8. (a)  25 m,  90°; (b) 2 km,  90°; (c) 1.0 km,  81°; (d) 180 km,  68°

9. (b)  (i)  9.2 m,  130°; (ii)  57 km,  234°; (iii)  85 km,  95°; (iv)  2200 m,  24°

11. (a)  4.0 m s–2,  N; (b) 10 m s–2,  N 37° E; (c) 2.8 m s–2,  SE

12. 11 m s–2,  S 45° W

13. 645 km,  S 36° E

14. (b)  62 km; (c)  33 km,  S 12° W; (d)  (i)  6.2 km h–1 (ii)  3.3 km h–1,  S 12° W

15. (a)  216 s; (b) 360 m

16. 3.5 km h–1,  27° to the vertical

17. 1147 m

18. 460 km h–1,  S 46° E

19. 11 m s–2
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20. 154 km h–1,  N 25° W

21. 7 km h–1,  N 48° E

22. 91 m,  57° downward angle with the vertical

Topic 4 Forces
4.3 Exercise 1
1. 481 N

4. 39.2 N

5. (a)  31.8 N; (b) 7.8 N

6. 33.4 N

7. 11.8 N

8. 0.18

9. 0.13

4.4 Exercise 1
1. 188 N,  S 37° W

3. S 35° E

4. 2.0 × 103 N

5. (a)  1.7 × 104 N; (b) 4.7 × 104 N

6. (a)  0; (b) 1.5 × 104 N

7. (a)  1.7 m s–2; (b) 0.35 m s–2

4.5 Exercise 1
1. 700 N

2. 0.08 kg

3. (a)  2.0 m s–2; (b) 320 N

4. (a)  42 N; (b) 0.42 m s–2; (c) 5.0 m s–1

5. (a)  400 N; (b) 1800 N

4.6 Exercise 1
1. (a)  2.0 m s–2; (b) 200 N; (c) 300 N

4.7.2 Questions
2. (b), (c), (e)

4. (a)  1.4 × 104 N; (b) 5.0 × 103 N; (c) 1400 kg

5. If your mass is m kg, then (a)  9.8 m N; (b)  3.6 m N; (c)  m kg

6. The beam balance

7. (a)  3 N, east; (b) 1.4 × 102 N, east

8. (a)  346 N, east; (b) 53.6 N, east

9. (a)  (i)  equal to (ii)  equal to (iii)  greater than (iv)  less than

10. (b)  zero

16. (a)  1.8 × 102 N; (b) 100 N; (c) zero

17. (b)  down the hill; (c) weight

18. (a)  zero; (b) 3.9 × 102 N (392 N); (c) 4.0 × 102 N (402 N); (d) 6.8 × 102 N

19. (a)  down the slope; (c) 2.9 × 102 N (294 N); (d) 2.9 × 102 N (286 N)

20. (a)  zero; (b) 9.8 m s−2; (c) 4.9 N down

21. (a)  6.4 × 103 N; (b) zero; (c) 6.6 × 106 N

22. (a)  7500 N; (b) 6.3 m s−2; (c) 31 m s−1; (d) 78 m

23. (a)  9.6 × 106 N; (b) 3.8 × 102 m (375 m)

24. (a)  823 N; (b) 6.6 × 102 N (655 N); (c) 9.9 × 102 N

25. 5.8 m s−2

26. (a)  42 N; (b) 19°

31. (a)  2.0 m s−2 to the right; (b) 6.0 N; (c) 8.0 N to the right; (d) 3.5 m s−2 to the right

32. (a)  4.0 m s−2 to the right; (b) 160 N to the right; (c) 240 N to the left; (d) 240 N to the right
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33. 0.86 m s−2 to the right

34. (a)  20 N; (b) 2 kg; (c) 15 N

35. T = 36 N,  θ = 34°

Topic 5 Energy and work
5.2 Exercise 1
1. (a)  1500 J; (b) 392 J; (c) 0 J

2. (a)  940 J; (b) –940 J

3. (a)  600 J; (b) 120 J

5.3 Exercise 1
1. (a)  6.4 × 104 J; (b)  (i)  approximately 900 J (ii)  approximately 2 × 10–8 J

2. 2.0 m s–1

5.4 Exercise 1
1. (a)  2.4 × 104 J; (b) 28 m s–1

2. (a)  82 m; (b) 1200 J

3. 1.9 m s–1

5.5 Exercise 1
1. (a)  0.16 N; (b) 6.8 m s–1

2. (a)  6.8 m s–1; (b) 4.8 m s–1

3. (a)  0 J; (b) 7 m s–1; (c) 882 J; (d) 5.4 m s–1

5.6 Exercise 1
1. (a)  1.4 × 106 J; (b) 114 s

2. (a)  1.4 m; (b) 600 W

5.7.2 Questions
3. 59 J

4. zero

5. (a)  approx. 1 × 105 J; (b) approx. 40 J; (c) approx. 3 × 103 J; (d) approx. 5 × 10−9 J

6. (a)  1.8 × 105 J; (b) 1.8 × 105 J; (c) 17 m s–1

10. (a)  6.9 J; (b) 1.7 × 102 W

11. (a)  40%

12. (a)  0.46 N; (b) 7.2 m s–1

13. (a)  zero; (b) zero

15. 90 J

16. (a)  2 kJ; (b) 600 J

17. (a)  200 J; (b) 200 J

19. (a)  3.2 J; (b) 1.0 J; (c) 0.64 m

20. (a)  240 J; (b) 20 m s−1

21. (a)  1.9 × 103 J (1920 J); (b) 10 N; (c) 3600 J; (d) 5000 J

22. (a)  3.2 × 104 J; (b)  At B,  23 m s−1; at C,  20 m s−1; (c)  27 m

23. (a)  8.9 × 105 J; (b) 3.6 × 105 J; (c) 30 m s−1

25. 51%

27. 399 kN

28. 2.2 × 104 W

29. 50 W

30. (a)  3.2 × 103 J; (b) 1.1 kW; (c) none

31. 14 kW

32. 36 W

33. (a)  4.6 m s−1; (b) 1.7 × 103 W

36. 5.8 kW
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Topic 6 Momentum, energy and simple systems
6.2 Exercise 1
1. 2000 N

2. 4.7 m s–1

3. (a)  530 N s; (b) 8.8 m s–1; (c) 4.0 m

4. (a)  15 kg m s–1,  E; (b) 1.5 m s–1,  E; (c) 2.5 kg m s–1,  W;

(d) 2.5 kg m s–1,  E; (e) 2.5 N s; (f) opposite in direction

6.3 Exercise 1
1. (a)  2.5 m s–1; (b) N 53° E

6.4 Exercise 1
1. 1.3 m s–1

2. 0.12 m s–1

6.5 Exercise 1
1. (a)  0.7 m s–1 in its original direction of motion; (b) not elastic

6.6.2 Questions
7. (a)  8 × 102 kg m s−1; (b) 1 × 104 kg m s−1; (c) 6 × 102 N s; (d) 4 N s; (e) 10 kg m s−1

8. (a)  1500 N s due east; (b) 1500 kg m s−1 due east; (c) 750 N

9. (a)  60 N s; (b) 90 kg m s−1

10. (a)  2.3 × 104 N s opposite to the initial direction of the car;

(b) 2.9 × 105 N opposite to the initial direction of the car;

(c) 2.1 × 102 m s−2

11. (a)  approx. 160 N s; (b) 2.7 m s−1

12. (a)  240 N s upwards; (b) 3.1 × 103 N upwards

16. (a)  3.0 kg m s−1 opposite to the initial direction of the toy car;

(b) 3.0 N s in the initial direction of the car

17. (a)  0.30 m s−1; (b) 0.60 m s−1

18. (a)  40 kg; (b) 60 N s; (c) 60 N s; (d) zero

19. (a)  1.7 m s−1; (b) 120 N s; (c) 120 kg m s−1; (d) 120 kg m s–2; (f) 0.92 m s−1

20. (a)  15 m s−1; (b) 1.1 × 104 N s in the initial direction of the car;

(c) 420 N s opposite to the initial direction of the car; (d) 1.1 × 105 N

21. (a)  2.9 m s−1, east; (b) the car;

(c) they experience the same; (d) they experience the same

22. 2.9 m s−1

27. 0.47 m

28. 10 m s–1 and 5 m s–1 in opposite directions

29. 2.4 m s–1

Topic 7 Wave properties
7.2 Exercise 1
1. 0.15 m

2. 2 m s–1

3. 254 Hz

4. 335 m s–1

7.3 Exercise 1
1. (a)  C,  D; (b) A,  F,  G; (c) B,  E

2. (a)  40 cm; (b) 15 cm; (c) 10 Hz

7.4.2 Questions
7. f = 7.317 × 1014 Hz

8. 0.8 Hz
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11. λ = 1.29 m

21. 1.02 m

22. 330 m s−1

23. (a)  1.33 m; (b) 5.86 m

24. v (m s−1) f (Hz) λ  (m)

 335  500      0.67

 300   12 25

1500 5000      0.30

  60   24  2.5

 340 1000      0.34

 260  440      0.59

Topic 8 Wave behaviour
8.2 Exercise 1
4. 4

5. minimum

8.3 Exercise 1
1. 60 cm

2. (a)  120 cm; (b) 240 m s–1 (c) 100 Hz

3. (i) (iv) (v) (vii) (ix)

8.4 Exercise 1
1. 6 cm

2. A

8.6.2 Questions
2. (a)  C; (b) A and B

8. 1.50 m

10. (b)  1.0 m (c) 330 m s−1

11. (a)  4.8 m s−1; (b) 0.60 m; (c) 20 cm; (d) 1.2 m; (e) 8

Topic 9 Sound waves
9.2 Exercise 1
1. 335 m s–1

2. 125 Hz

3. 650 Hz

4. (a)  512 Hz; (b) 10.1 m

5. (a)  328 m s–1; (b) 32° C

6. approximately 3 km away

9.3 Exercise 1
1. 10–10 W m–2

2. 106

3. 30 dB

4. 4 m

5. 0.23 W

6. (a)  1.5 × 10–5 W; (b) 3 × 10–5 W m–2

7. 4 × 10–3 J m–2

8. 2.1 m

9. (a)  123 km h–1 (b) 3 km h–1
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9.4 Exercise 1
2. 482 m

3. 131 m

4. 58%

5. 1.8 s

6. 5 m

9.5 Exercise 1
1. 6 Hz

2. 330 Hz

3. (a)  (i) and (iii)

5. (a)  2.1 m; (b) 1.4 m

9.6 Exercise 1
1. (a)  333 Hz; (b) 667 Hz; (c) 667 Hz

2. 0.78 m

3. 750 Hz

4. (a)  350 Hz; (b) 1400 Hz

5. 75 Hz

6. (i)  B; (ii)  A; (iii)  D

7. 3.3 cm

8. 121 Hz

9.7 Exercise 1
1. (a)  275 Hz; (b) 330 m s–1; (c) 1100 Hz

2. (a)  200 Hz; (b) 320 m s–1; (c) 1400 Hz

3. 59 Hz

4. 3.7 m

5. 0.33 m

9.8 Exercise 1
2. (a) amount of diffraction decreases; (b) amount of diffraction increases;

(c) amount of diffraction increases; (d) amount of diffraction decreases

9.9.2 Questions
1. 40 dB

2. 3.2 × 10–6 W m–2

3. 63%

4. (a)  349 m s–1; (b) 2.4 km

5. (a)  1.5 ms; (b) 667 Hz; (c) 0.52 m

6. 90

7. 3.9o C

8. (a)  8000 Hz; (b) 78 dB; (c) 20 Hz;

(d) 1400–7500 Hz; (e) 45–100 Hz and 8000–15 000 Hz

9. 5.25 m

10. (a)  0.8 m; (b) 2.35 ms

11. (a)  4 ms; (b) 250 Hz; (c) 1.32 m

12. 2 × 10–2 W

13. 5.0 × 10–7 W m–2

14. 9.0 × 10–5 W

15. 1.5 × 10–2 W m–2

16. (a)  1.6 × 10–5 W m–2; (b) 4.0 × 10–6 W m–2; (c) 2.5 × 10–7 W m–2; (d) 1.0 × 1018 W m–2

17. (a)  27 dB; (b) 55 dB; (c) 97 dB; (d) 33 dB
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18. (a)  5 × 10–12 W m–2; (b) 3.2 × 10–10 W m–2; (c) 2.5 × 10–7 W m–2; (d) 0.32 W m–2

19. (a)  220 Hz; (b) 660 Hz

20. (a)  1.6 m; (b) 150 Hz; (c) 0.2 m; (d) 0.53 m

21. (a)  0.6 m; (b) 0.4 m; (c) 160 m s–1

22. (a)  283 Hz,  567 Hz,  850 Hz; (b) 71 Hz,  (no second harmonic),  213 Hz;

(c) 283 Hz,  (no second harmonic),  850 Hz; (d) 85 Hz,  170 Hz,  255 Hz;

(e) 43 Hz,  (no second harmonic),  129 Hz

23. two octaves

24. 871 Hz

25. (b)  346 m s–1

26. 65 cm

27. 17.5 cm

28. (a)  3400 Hz

30. 1.63 s

32. 0.19 m

34. (a)  third harmonic; (b) 0.57 m; (c) 600 Hz; (f) 1.7 × 10–3 s; (g) 600 Hz

35. (a)  third harmonic; (b) 0.67 m; (c) 510 Hz; (d) 170 Hz;

(e) 1200 Hz,  seventh harmonic

36. (a)  1.7 m

37. (a) 0.229 m,  0.040 m;  (b) 69°,  9.4°;       (c) 5.2 cm 

38. (a)  20 m s−1; (b) 416 Hz; (c) 170 m s−1

39. (a)  68 m s−1

40. 110 km h−1

Topic 10 Ray model of light
10.2 Exercise 1
1. D

2. C

3. (b) and (f)

4. gamma rays, X-rays, UV, visible, IR, microwaves

5. (a)

6. 500 s

7. 8.2 W m–2

8. 12.5 W m–2

9. 15.8 m

10. (a)  1360 W m–2; (b) 3.5 × 1017 J

10.3 Exercise 1
1. (a)  (i)  55o; (ii)  55o

2. 85 cm

10.4 Exercise 1
1. convex

2. (d)

3. (b), (c) and (d)

4. 1.2 cm

5. 3.75 cm

6. 8 cm

10.5 Exercise 1
1. 1.43

2. 7.14 × 1014 Hz
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3. 1.24 × 108 m s–1

4. 1.6 times faster

5. (b), (c) and (d)

6. 60o

7. 11.2o

8. 2.8 cm

9. 1.29

10. 1.3 × 1014

10.6 Exercise 1
1. (a)  converging; (b) 1.5 cm

2. 1.5

3. (a)  3.75 cm; (b) virtual; (c) 3.75 cm high

4. 12 cm

5. (a)  –25 cm; (b)  diverging; (c)  short-sighted; (d)  15.4 cm in front of the lens

10.7 Exercise 1
1. (c)

2. θ = sin–1 (Y/X)

3. 33.3o

4. 1.46

5. 1.7 m

6. 0.8 m

10.8.2 Questions
1. (a), (c), (d), (e), (f)

2. True

3. a = 40o; b = 40o; c = 50o

4. 1 W m–2

5. 144 W

6. increases by 6o

7. 1.5

9. (a)  acetone = 18.1o; glycerol = 16.7o; carbon tetrachloride = 16.8o

10. (a)  vi; (b) iii; (c) iv; (d) ii;

(e) none; (f) i; (g) v

11. (a)  17 cm within the mirror;

(b) (i) virtual, (ii)  reduced, (iii)  upright

12. (a)  200 cm; (b) 60 cm; (c) 26.7 cm

13. (a)  The image is real and inverted and located 60 cm from the lens on the other side from the object. It is about 12 cm high;

(b) The image is virtual and upright and located 60 cm from the lens on the same side as the object. It is 18 mm high;

(c) The image is real and inverted and located 10.5 cm from the lens on the other side from the object. It is about 2.5 mm high.

16. M = 50

17. (a)  di = –20 cm,  M = 5; (b) di = –7.5 cm,  M = 2.5

18. (a)  5.06 cm; (b) 2.76 m wide; (d) further away

20. (a)  22o; (b) 7o

21. 5 cm

22. 0.85 cm

23. (a)  15 cm; (b)  virtual, enlarged; (c)  20 cm from the lens

24. 12 cm, converging

26. 88 cm behind converging lens and 12 cm in front of diverging lens, 3 cm high (inverted)

36. (b)  1.6
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Topic 11 Thermodynamics
11.2 Exercise 1
5. 194.5 K

6. –17° C,  –107° C

7. W = –100 J,  ΔU = 100 J

8. (b)  204° C

9. 2 × 104 J

10. 1175° X

11.3 Exercise 1
1. your mass × 3500 J

4. 22.2° C

5. 20.3° C

6. 68.5° C

7. 6.12 × 106 J

8. 579 J kg–1 K–1

9. 2.2 g

11.4 Exercise 1
1. D

2. 3 × 108 m s–1

6. 634 J s–1

7. 1.4 × 1027 W

8. 6400 K

9. 9.53 × 10–7 m

11.5.2 Questions
11. (a)  Q = 500 J,  ΔU =  500 J,  increase;

(b) Q = −250 J,  W = −250 J,  ΔU = 0,  no change;

(c) Q = 0 J,  W = −150 J,  ΔU = 150 J,  increase;

(d) Q = 0 J,  W = −5 J,  ΔU = 5 J,  increase

16. A B C

Heat (+ is in) 0 + +

Work (+ is out) − 0 +

ΔU + + +

17. (a)  cooking oil; (b) ethylene glycol

18. (a)  400 kJ; (b) 1200 kJ

20. 1.15 × 106 J

21. (a)  230° C; (c) liquid; (d) 160 kJ kg−1

22. 8.2 kg

42. (a)  0.012 W; (b) 100 − 27 = 73 W; (c) 3300 K

43. (a)  12.8 times; (b) 1066° C

44. 5690 K

45. 1.0 × 10−5 m

46. (a)  9.4 × 10−6 m; (b) far infra-red

47. (a)  7250 K; (b) 4140 K

48. (b)  (i) 7500 K (ii)  10 500 K; (c)  (i) 0.4 μm (ii)  0.52 μm

49. (a)  16 times; (b)  The wavelength would be halved.

50. The colours of the stars are blue and infra-red; the blue star is 16 times brighter.
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Topic 12 Electrostatics
12.2 Exercise 1
3. (a)  perspex; (b) steel; (c) wool

4. 1.25 × 1013

5. 30 km

6. 6.15 × 1013

7. 8.2 × 10–8 N

8. They would need to be moved 2.8 times further apart.

9. 3.86 × 10–5 C,  1.14 × 10–5 C

10. 24 N, towards x = 0

12.3 Exercise 1
3. A

4. 1.08 × 105 N C–1, to the left

5. 2 × 106 N C–1, upwards

6. 1.2 × 107 N C–1

7. 1.44 × 10–3 N C–1

8. 217 N C–1, east

9. Between the two charges, at a distance of 9.28 cm from the 60 μC charge

10. 360 N C–1, directed at an external angle of 60o to the line connecting the corner with the electron

12.4 Exercise 1
1. true

2. (a), (b) and (c)

3. 10 000 V

4. 250 V

5. 4.4 × 104 V

6. (a)  9 × 107 N C–1, away from the point charge;

(b) 1.44 × 106 V;

(c) 1.7 × 107 m s–1

12.5 Exercise 1
1. (a)  A; (b) 150 N C–1; (c) C

2. 1.92 × 10–18 J (or 12 eV)

3. (a)  20 000 V m−1 (b)  decrease in strength

4. (a)  4 × 10–3 N; (b) 2.61 × 10–3 N; (c) 90 V

5. 41 g

12.6.2 Questions
1. 1.60 × 10−19 C

2. (a)  +5.44 × 10−14 C; (b) −5.44 × 10−14 C

4. 3.00 × 10−1 N C−1,  north

5. (a)   6.88 × 10−17 N,  west; (b) 6.88 × 10−17 N,  east;

(c) 9.89 × 10−2 N,  east; (d) 2.79 × 10–1 N,  west

9. (a)   2.00 × 102 V; (b) 5.20 × 10−1 J

11. (a)   1.3 × 10−4 N;

(b) 1.5 × 10−3 N; the forces remain equal;

(c) 1.0 × 10−3 N, but the force is now an attractive force;

(d) 4.0 × 10−3  N

12. 7.9 N

13. 2.04 × 10−8 C

14. 8 cm from the 4 × 10−6 C charge or 1.2 cm from the 9 × 10−6 C charge

16. 6.0 × 10−3 N
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17. 8.5 × 10−2 N

18. 1.3 × 102 N

19. 5.7 × 1013 C

20. 1.76 × 1012 C

21. F = 512 N,  a = 7.7 × 1028 m s−2

22. 2.9 × 10−9 N

23. 5.0 × 105 N C−1,  up

24. 1.02 × 10–7 N C−1

30. west

31. (a)  right; (b)  right (and stronger than in (a))

32. 1.2 × 107 N C−1

33. 1.44 × 10−3 N C−1

34. (a)  The 100 V battery;

(b) 1.6 × 10−17 J;

(c) The answer does not change;

(d) The answer does not change;

(e) The electrons would not be accelerated, so would not gain any energy;

(f) The field strength is doubled.

35. (a)  1.75 × 1017 m s−1; (b) 1.7 × 10−11 s; (c) 2.57 × 10−3 m; (d) 2.57 × 103 V

36. (b)  8 × 10−13 C

Topic 13 Electric circuits
13.2 Exercise 1
3. false

4. 4.5 × 10–2 A

5. 5 A

6. 3 s

7. 6.94 h

8. 0.4 A

9. 1.875 × 1019

10. 5 × 1019

13.3 Exercise 1
2. 14 800 J

3. 12 V

4. 0.75 J

5. 2.4 × 10–19 J

6. 3.42 × 10–5 J

7. 6 × 10–5 C,  60 μC

8. (from top to bottom):  3.3 V,  6.0 V,  31.5 J,  1.02 J,  2.7 C,  31.3 C

9. 6000 J

10. 1.6 × 10–19 J

13.4 Exercise 1
1. (b), (a), (d), (c)

2. 4.8 Ω
3. 2.6 Ω
4. (a)  1.5 × 10–8 Ω m; (b) silver

5. (a)  2.5 A; (b) 96 Ω
6. (a)  5000 Ω; (b) 200° C

7. (a)  0.25 A; (b) 3.3 A; (c) 1.05 A; (d) 5 A
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8. 1080 J

9. (from top to bottom): 32 V,  48.4 V,  2.0 A,  3.0 × 10−3 A or 3.0 mA,  1.5 W,  33.3 W

10. (a)  6500 Ω ± 5%; (b)  300 Ω ± 10%; (c)  1 Ω ± 2%

13.5 Exercise 1
1.  13.9 kΩ
2. 960 Ω
3. 4.8 A

4. 710 Ω
5. 10 A

6. 10

7. 2 A

8. (a)  4 A; (b) 4 A; (c) 24 V; (d) 34 V

9. (a)  3 V; (b) 6 V

10. (a)  3.6 Ω; (b) 6.63 A; (c) 4.23 A; (d) 11.3 V

13.6.2 Questions
3. (a)  6.00 C; (b) 3.75 × 1019

4. 1.40 A

5. (a)  8.96 × 10−1 C; (b)  3.58 × 10–1 A

6. (a)  (i) 5.00 C (ii)  3.00 × 102 C; (b)  3.13 × 1019,  1.88 × 1021

9. 2.00 × 101 V

10. 3.84 × 102 J

12. 5.00 J

14. 8.00 Ω
15. 6.40 V

16. (a)  5.00 Ω; (b) 72.0 V; (c) 0.500 A; (d) 0.167 Ω; (e) 3.00 A; (f) 10.0 V

17. (a)  24.0 J; (b) 2.00 V; (c) 7.00 C; (d) 4.00 V; (e) 0.125 C; (f) 32.0 J

18. (b), (a), (d), (c)

21. (a)  5.00 A; (b) 5.00 A

22. (a)  2.00 A; (b) R2

23. 8.00 A

24. (a)  3.00 V; (b) R1

25. 4.0 V

26. (a)  20.0 V; (b) 20.0 V

27. (a)  3.00 A; (b) 3.00 A; (c) 12.0 V; (d) 48.0 V

28. (a)  20.0 V; (b) 40.0 V; (c) 4.00 A; (d) 10.0 Ω
29. 4.00 A

30. (a)  24.0 V; (b) 24.0 V; (c) 6.00 A; (d) 24.0 V; (e) 8.00 A

31. (a)  3.00 A; (b) 5.00 A; (c) 8.00 A

32. (a)  36.0 Ω; (b) 2.00 A; (c) 24.0 V

33. 3.00 Ω
34. (a)  28.0 Ω; (b) 3.00 Ω; (c) 39.0 Ω; (d) 4.13 Ω; (e) 90.0 Ω; (f) 0.400 Ω
35. (a)  (i) 0.500 A,  0.500 A (ii) 2.50 V,  3.50 V;

(b) (i) 2.00 A,  2.00 A,  2.00 A (ii) 20.0 V,  40.0 V,  80.0 V

(c) (i) 2.5 A,  2.5 A (ii) 5.9 V,  9.1 V;

(d) (i) 2.03 A,  2.03 A,  2.03 A (ii) 22.7 V,  41.4 V,  63.9 V;

(e) (i) 6.00 A,  4.00 A (ii) 12.0 V,  12.0 V;

(f) (i) 4.00 A,  2.00 A,  0.800 A (ii) 48.0 V,  48.0 V,  48.0 V;

(g) (i) 7.23 A,  4.88 A (ii) 125 V,  125 V;

(h) (i) 12.1 A,  4.28 A,  7.13 A (ii) 30.5 V, 30.5 V,  30.5 V
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36. (a)  39 ± 2 Ω; (b) 56 000 ± 5600 Ω; (c) 750 ± 37.5 k Ω
37. (b)  0; (c) ∞ (infinity); (d) 32.5 Ω
38. 0.45 W

39. (a)  960 Ω; (b) 5.7 Ω; (c) 3.6 Ω
40. 1200 W

41. (a)  6 mA; (b) 140 V; (c) 8.75 kΩ
44. (a)  6.0 kΩ; (b) 660 Ω; (c) 3.3 kΩ; (d) 2.5 kΩ
45. (a)  10; (b) 40 Ω; (c) 2.5 Ω
46. 6.2 A

Topic 14 Magnetism
14.2 Exercise 1
 8. North

14.3 Exercise 1
1. (a)  field strength would be doubled;

(b) field strength would decrease;

(c) field strength would remain the same but would act in opposite direction

2. 2.0 × 10–7 N A–2

4. 1.6 × 10–6 T to the right

5. 48

6. (a)  7.5 × 10–5 T into the page; (b) 3.3 × 10–5 T into the page;

(c) 1.08 × 10–4 T into the page; (d) 4.2 × 10–5 T into the page

7. 6.3 × 10–2 T

8. 6000

9. 5.1 × 10–4 T

10. 1500 A

14.4 Exercise 1
 2. (b)

14.5 Exercise 1
4. (a)  up the page; (b) down the page; (c) to the right; (d) out of the page

5. 1.8 × 10–2 N

6. (a)  0; (b) 2 × 10–4 N

7. 1.25 N

8. 2.3 T

9. 1.1 × 106 m s–1

10. 1.7 × 10–3 T

11. 0.18 N

12. 9 × 10–3 N

13. (a)  6.8 × 10–3 N down the page; (b)  1.5 × 10–4 N out of the page

14.6.2 Questions
17. (a)  12.5 T

18. (a)  6.0 × 10−2 N; (b) iii; (c) v

24. (a)  into page; (b) into page; (c) S; (d) out of page;

(e) N; (f) E; (g) SE; (h) S

25. (b)  force up the page; (c)  force down the page

26. 0.07 N

27. 1.4 N

28. 0.0058 N

34. (a)  4.6 × 10−14 N; (b) 5.1 × 1016 m s−2
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35. (a)  2.0 × 10−13 N; (b) 2.2 × 1017 m s−2; (c) 1.2 × 1014 m s−2

36. (a)  down the page; (b)  out of the page; (c)  obliquely right and down

38. out of the page

39. (a)  0.043 mm; (b) 78 mm; (c) 16 mm

40. 6.3 mT

41. 1.1 × 10−17 kg m s−1

43. (a)  5.9 × 106 m s−1; (b)  3.56 × 104 V m−1 or N C−1; (c)  1.78 × 103 V
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