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1 Working scientifically

This chapter covers the skills needed to successfully plan and conduct investigations
using primary and secondary sources.

1.1 Questioning and predicting explains how to develop, propose and evaluate
inquiry questions and hypotheses. When creating a hypothesis, a consideration of
the variables must be included.

1.2 Planning investigations explores how to identify risks and to make sure all
ethical concerns are considered. It is important to choose appropriate materials and
technology to carry out your investigation. You will also need to confirm that your
choice of variables allows for a reliable collection of data.

1.3 Conducting investigations describes methods for accurately collecting and
recording data to reduce errors. Appropriate procedures need to be carried out
when disposing of waste.

1.4 Processing data and information describes ways to present your data from
an array of visual representations. You will learn to identify trends and patterns in
your data.

1.5 Analysing data and information explains error and uncertainty and how to
construct mathematical models to better understand the scientific principles of your
research.

R

1.6 Problem solving describes how to understand the scientific principles underlying
the solution to your inquiry question.

1.7 Communicating explains how to appropriately use scientific language,
nomenclature and scientific notation and describes different forms of
communication.

Outcomes
By the end of this chapter you will be able to:

+ develop and evaluate questions and hypotheses for scientific investigation
(PH11-1)

+ design and evaluate investigations in order to obtain primary and secondary data
and information (PH11-2)

+ conduct investigations to collect valid and reliable primary and secondary data
and information (PH11-3)

+ select and process appropriate qualitative and quantitative data and information
using a range of appropriate media (PH11-4)

+ analyse and evaluate primary and secondary data and information (PH11-5)

+ solve scientific problems using primary and secondary data, critical thinking skills
and scientific processes (PH11-6)

« communicate scientific understanding using suitable language and terminology

for a specific audience or purpose (PH11-7).



Content

By the end of this chapter you will be able to:

+ develop and evaluate inquiry questions and hypotheses to identify a concept
that can be investigated scientifically, involving primary and secondary data
(ACSPHOO1, ACSPHO61, ACSPHO96)
modify questions and hypotheses to reflect new evidence
assess risks, consider ethical issues and select appropriate materials and
technologies when designing and planning an investigation (ACSPHO31,
ACSPHO097)
justify and evaluate the use of variables and experimental controls to ensure
that a valid procedure is developed that allows for the reliable collection of data
(ACSPHO02)
evaluate and modify an investigation in response to new evidence
employ and evaluate safe work practices and manage risks
(ACSPHO31)
use appropriate technologies to ensure and evaluate accuracy
select and extract information from a wide range of reliable secondary sources
and acknowledge them using an accepted referencing style
select qualitative and quantitative data and information and represent them
using a range of formats, digital technologies and appropriate media (ACSPHO04,
ACSPHOO7, ACSPHO64, ACSPH101)
apply quantitative processes where appropriate
evaluate and improve the quality of data
derive trends, patterns and relationships in data and information
assess error, uncertainty and limitations in data (ACSPH004, ACSPHOOS5,
ACSPHO033, ACSPH099)
assess the relevance, accuracy, validity and reliability of primary and secondary
data and suggest improvements to investigations (ACSPHOO05)
use modelling (including mathematical examples) to explain phenomena, make
predictions and solve problems using evidence from primary and secondary
sources (ACSPH006, ACSPHO10)
use scientific evidence and critical thinking skills to solve problems
select and use suitable forms of digital, visual, written and/or oral forms of
communication
select and apply appropriate scientific notations, nomenclature and scientific
language to communicate in a variety of contexts (ACSPHOO8, ACSPHO036,
ACSPHO67, ACSPH102)
construct evidence-based arguments and engage in peer feedback to evaluate an
argument or conclusion (ACSPH034, ACSPHO36).

Physics Stage 6 Syllabus © NSW Education Standards Authority
for and on behalf of the Crown in right of the State of NSW, 2017.
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FIGURE 1.1.1 There are many elements to

a practical investigation, which may appear
overwhelming to begin with. Taking a step-by-
step approach will help the process and assist in
completing a solid and worthwhile investigation.

1.1 Questioning and predicting

Before you are able to start the practical side of your investigation, you first need
to understand the theory behind it. This section is a guide to some of the key steps
that should be taken when first developing your inquiry questions and hypotheses.

DEVELOPING AN INQUIRY QUESTION AND PURPOSE,
FORMULATING HYPOTHESES AND MAKING PREDICTIONS

The inquiry question, purpose and hypothesis are interlinked. It is important to
note that each of these can be refined as the planning of the investigation continues.

Inquiry questions, purposes and hypotheses

The inquiry question defines what is being investigated. For example:
‘What is the relationship between voltage and current in a DC circuit?’

The purpose is a statement describing what is going to be investigated. For
example:

“The purpose of the experiment is to investigate the relationship between voltage
and the current in a circuit of constant resistance.’

The hypothesis is a testable prediction based on previous knowledge and
evidence or observations, and attempts to answer the inquiry question. For example:

‘If voltage is directly proportional to current in a circuit of constant resistance
and you increase the voltage, then the current will also increase.’

Formulating a question

Before formulating a question, it is good practice to conduct a literature review of
the topic to be investigated. You should become familiar with the relevant scientific
concepts and key terms.

During this review, write down questions or correlations as they arise.

Compile a list of possible ideas. Do not reject ideas that initially might seem
impossible. Use these ideas to generate questions that are answerable.

Before constructing a hypothesis, decide on a question that needs an answer.
This question will lead to a hypothesis when:

e the question is reduced to measurable variables
e a prediction is made based on knowledge and experience.
The different types of variables are discussed on pages 6—7.

Evaluating your question

Once a question has been chosen, stop to evaluate the question before progressing.
The question may need further refinement or even further investigation before it
is suitable as a basis for an achievable and worthwhile investigation. It is important
not to attempt something that you cannot complete in the time available or with the
resources on hand. For example, it might be difficult to create a complicated device
with the facilities available in the school laboratory.
To evaluate the question, consider the following:
Relevance: Is the question related to the area of study?
e Clarity and measurability: Can the question be framed as a clear hypothesis?
If the question cannot be stated as a specific hypothesis, then it is going to be
very difficult to complete the research.
e Time frame: Can the question be answered within a reasonable period of time?
Is the question too broad?
¢ Knowledge and skills: Do you have the knowledge and skills that will allow you
to answer the question? Keep the question simple and achievable.

4 CHAPTER 1 | WORKING SCIENTIFICALLY



Practicality: Are the resources such as laboratory equipment and materials you
will need likely to be readily available? Keep things simple. Avoid investigations
that require sophisticated or rare equipment. Readily available equipment
includes timing devices, objects that could be used as projectiles, a tape measure
and other common laboratory equipment.

Safety and ethics: Consider the safety and ethical issues associated with the
question you will be investigating. If there are issues, can these be addressed?
Adpvice: Seek advice from the teacher about the question. Their input may prove
very useful. Their experience may lead them to consider aspects of the question
that you have not thought about.

Sourcing information

Once you have selected a topic, the next step is to source reliable information. Some
of the steps involved in sourcing information are:

identifying key terms

evaluating the credibility of sources

evaluating experimental data/evidence.

Sources can be:

primary sources—original sources of data and evidence generated by a person
or group directly; for example, by personally conducting a practical investigation
secondary sources—analyses and interpretations of primary sources; for
example, textbooks, magazine articles and newspaper articles. This also includes
interpreting other people’s experimental data such as reports, graphs and
diagrams.

Some of the sources that may contain useful information include:

newspaper articles and opinion pieces

journal articles (from peer-reviewed journals)

magazine articles

government reports

global databases, statistics and surveys

laboratory work

computer simulations and modelling

interviews with professionals (e.g. on-line or by email)

Some reputable science journals and magazines are:

Cosmos

Double Helix

ECOS

Nature

New Scientist

Popular Science

Scientific American.

Hypothesis

A hypothesis is a prediction, based on evidence and prior knowledge or
observations, that attempts to answer the inquiry question. A hypothesis often takes
the form of a proposed relationship between two or more variables in a cause-and-
effect relationship, such as ‘If X happens, thenY will happen.’

Here are some examples of hypotheses:

If F= ma, then for a constant force, when mass is increased the acceleration of
an object will decrease.

Assuming that all objects fall at the same speed due to gravity, if two objects are
simultaneously dropped from the same height, they will both land at the same
time.

0 Hypotheses can be written
in a variety of ways, such as ‘A
happens because of B’, or ‘when A
happens, B will happen’. However
they are written, hypotheses
must always be testable and must
clearly state the independent and
dependent variables.

CHAPTER 1 | WORKING SCIENTIFICALLY
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« Ifvelocity increases when radius decreases, then a gymnast who has a set angular
momentum when in the air will rotate faster during a somersault when they tuck
their legs in towards their chest than if they keep their legs stretched out.

It is important to keep in mind that your hypothesis is only a prediction, so
you may find that after conducting your investigation your hypothesis is actually
incorrect. In that case, rather than supporting your hypothesis with your results, you
would analyse your data to explain what you found and re-evaluate the hypothesis.

Variables

A good scientific hypothesis can be tested (that is, supported or refuted) through

investigation. To be a testable hypothesis, it should be possible to measure both what

is changed or carried out and what will happen. The factors that are monitored

during an experiment or investigation are called variables. An experiment or

investigation determines the relationship between variables and measures the results.
There are three categories of variables:

¢ An independent variable is a variable that is selected by the researcher and
changed during the investigation.

* A dependent variable is a variable that may change in response to a change in
the independent variable. This is the variable that will be measured or observed.

* A controlled variable is a variable that is kept constant during the investigation.
It is important to change only one independent variable during the investigation.

Otherwise you might not be able to tell which variable caused the changes you

observed.
The following is an example of a typical investigation.

Prediction: For a projectile launched into the air at a constant speed, the horizontal

distance it travels will be greatest when the launch angle is 45°.

* independent variable: launch angle

e dependent variable: horizontal distance travelled

e controlled variables: launch speed, mass of projectile, air resistance (including wind)
Completing a table like Table 1.1.1 will assist in evaluating the inquiry question

or questions. In this investigation a marble is launched using a spring-release

mechanism inside a tube.

TABLE 1.1.1 Break the question down to determine the variables.

Inquiry question How does the angle of release of an arrow affect its projectile
motion?

Hypothesis If the horizontal distance a projectile reaches is dependent on
the velocity and the launch angle and the initial velocity is kept
constant, a maximum horizontal distance will be reached when
the launch angle of a projectile is 45°.

Independent variable angle of launch
Dependent variable horizontal distance travelled

Controlled variables mass of the arrow
tension in the bow string before launch (i.e. initial velocity of the
arrow)

Qualitative and quantitative variables

Variables are either qualitative or quantitative, with further subsets in each category.

* Qualitative variables (sometimes called categorical variables) can be observed
but not measured. They can only be sorted into groups or categories such as
brightness, type of material or type of device.

* Nominal variables are qualitative variables in which the order is not important;
for example, the type of material or type of device.

¢ Ordinal variables are qualitative variables in which order is important and groups
have an obvious ranking or level; for example, brightness (Figure 1.1.2).



FIGURE 1.1.2 When you record qualitative data, describe in detail how each variable will be defined.
For example, if you are recording the brightness of light globes, pictures are a good way of clearly
defining what each assigned term represents.

* Quantitative variables can be measured. Length, area, weight, temperature
and cost are all examples of quantitative data.

* Discrete variables are quantitative variables that consist only of integer numerical
values (i.e. whole numbers); for example, the number of pins in a packet, the
number of springs connected together, or the energy levels in atoms.

« Continuous variables are quantitative variables that can have any numerical value
within a given range; for example, temperature, length, weight, or frequency.

Formulating a hypothesis
Once the inquiry question is confirmed, formulating a hypothesis comes next.
A hypothesis requires a proposed relationship between two variables. It should
predict that a relationship exists or does not exist.

Identify the two variables in your question. State the independent and dependent
variables.

For example: If I do/change this (independent variable), then this (dependent
variable) will happen.

A good hypothesis should:
* Dbe a statement
* Dbe based on information contained in the inquiry question or purpose
* be worded so that it can be tested in the experiment
¢ include an independent and a dependent variable
e include variables that are measurable.

The hypothesis should also be falsifiable (able to be disproved). This means that
a negative outcome would disprove it. For example, the hypothesis in Table 1.1.1
would be disproved if you found that an angle of 30° resulted in the greatest distance
travelled. Unfalsifiable hypotheses cannot be proved by science. These include
hypotheses on ethical, moral and other subjective judgements.

CHAPTER 1 | WORKING SCIENTIFICALLY
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Modifying a hypothesis

As you collect new evidence from secondary sources, it may become necessary to
adjust your inquiry question or hypothesis. For example, your hypothesis may be:
‘If objects all accelerate under gravity at the same rate, then objects with different
masses dropped from the same height will land at the same time.’

As you continue your research of secondary sources, you may find that you did not
take into account air resistance when formulating your hypothesis, so you could
modify your hypothesis to:

‘If objects all accelerate under gravity at the same rate, then objects with different
masses and negligible air resistance that are dropped from the same height will land
at the same time.

Defining the purpose of the investigation

Defining the purpose is a key step in testing the hypothesis. The purpose should
directly relate to the variables in the hypothesis, and describe how each will be
measured. The purpose does not need to include the details of the method.

Example
e Hypothesis 1: If F =ma, then when the force is kept constant, the acceleration
decreases as the mass increases.

Extension: When the force is kept constant, doubling the mass halves the

acceleration.

* Hypothesis 2: When the mass is kept constant, the acceleration increases with
increasing force.

Extension: When the mass is kept constant, doubling the force doubles the

acceleration.

e Purpose: The purpose of the experiment is to investigate the relationship
between force, mass and acceleration.

In the first stage of the experiment, mass will be the independent variable (select
a number of different masses) and the force is constant. The resulting acceleration
(dependent variable) will be measured.

Then in the second stage of the experiment, force will be the independent
variable (you select a number of different forces) and the mass will be kept constant.
The resulting acceleration (dependent variable) will be measured.

These two investigations when combined create the classic Newton’s second law
experiment.

* Hypothesis 1 should give a result that mass is inversely proportional to the
acceleration.
* Hypothesis 2 should give a result that force is proportional to the acceleration.

Using the data collected from both stages of the experiment, the relationship
between the three variables can be determined.

This level of ‘neatness’ is not always possible, especially with a student-designed
experiment, but you should strive towards this.
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1.

1 Review

SUMMARY

Before you begin your research it is important to
conduct a literature review. By utilising data from
primary and/or secondary sources, you will better
understand the context of your investigation to
create an informed inquiry question.

The purpose is a statement describing what

is going to be investigated. For example: ‘The
purpose of the experiment is to investigate the
relationship between force, mass and acceleration’
The hypothesis is a testable prediction based on
previous knowledge and evidence or observations,
and attempts to answer the inquiry question.
Once a question has been chosen, stop to evaluate
the question before progressing. The question
may need further refinement or even further
investigation before it is suitable as a basis for

an achievable and worthwhile investigation.

KEY QUESTIONS

1

Scientists make observations from which a hypothesis

is stated and this is then experimentally tested.

a Define ‘hypothesis’.

b How are theories and principles different from a
hypothesis?

Which of the following describes an inquiry question?

A If an object is subject to a constant net force, then it
will move with a constant acceleration.

B What features suggest that sound is a mechanical
wave?

C Increasing the voltage in an electric circuit causes
an increase in the current.

D The momentum in an inelastic collision was
conserved.

In a practical investigation, a student changes the

voltage by adding or subtracting batteries in series to

the circuit.

a How could the voltage be a discrete variable?

b How could it be a continuous variable?

It is important not to attempt something that you

cannot complete in the time available or with

the resources on hand. For example, it might be

difficult to create a complicated device with the

facilities available in the school laboratory.

There are three categories of variables:

- An independent variable is a variable that is
selected by the researcher and changed during
the investigation.

- A dependent variable is a variable that
may change in response to a change in the
independent variable. This is the variable that
will be measured or observed.

- A controlled variable is a variable that is kept
constant during the investigation.

It is important to change only one independent

variable during the investigation.

In another experiment a student uses the following
range of values to describe the brightness of a light:
dazzling, bright, glowing, dim, off

What type of variable is ‘brightness’?

Select the best hypothesis from the three options

below. Give reasons for your choice.

A Hypothesis 1: If both the angular momentum and
inertia of a rotating system are increased, then the
angular (rotational) velocity will also increase.

B Hypothesis 2: Your position during angular airborne
motion affects your inertia.

C Hypothesis 3: If rotational velocity increases as
radius decreases, then a springboard diver’s
angular (rotational) velocity is slower when they
hold a stretched (layout) position than when they
are in a tuck position, if they take off with the same
angular momentum.

__________________________________________________________________________________________
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FIGURE 1.2.1 Replication increases the
reliability of your investigation. By repeating the
investigation you can average the results and
minimise random errors.

1.2 Planning investigations

Once you have formulated your hypothesis, you will need to plan and design your
investigation. Taking the time to carefully plan and design a practical investigation
before beginning will help you to maintain a clear and concise focus throughout.
Preparation is essential. This section is a guide to some of the key steps that should
be taken when planning and designing a practical investigation.

WRITING THE METHODOLOGY

The methodology of your investigation is a step-by-step procedure. When detailing
the methodology, ensure it meets the criteria for a valid, reliable and accurate
investigation.

Methodology elements
Validity

Validity means that an experiment or investigation is actually testing the hypothesis
and following the purpose. Will the investigation provide data that is relevant to the
question?

To ensure an investigation is valid, it should be designed so that only one variable
is being changed at a time. The remaining variables must remain constant so that
meaningful conclusions can be drawn about the effect of each variable in turn.

To ensure validity, carefully determine:

* the independent variable; that is, the variable that will be changed and how it will
be changed

e the dependent variable; that is, the variable that will be measured

¢ the controlled variables; that is, the variables that must remain constant, and how
they will be maintained.

A valid experiment must also gather accurate and reliable results. In other words,
if the data generated is not reliable then the method is not a valid choice for testing
the hypothesis.

Reliability

Reliability means that if an experiment is repeated many times, the results will be
consistent. Reliability can be ensured by:

* defining the control

e ensuring there is sufficient replication of the experiment to minimise error.

It is important to understand the difference between the controlled variables and
the control. Controlled variables are variables that are kept constant in the experiment
so that they do not affect the results. The control is an identical experiment except
that the independent variable is not changed.

A control can be:

* negative: the effect or change is expected in the experimental group but not in
the control

» positive: the effect or change is expected in the control but not in the experimental
group.

The expectations are based on previous experiments or observations. When
the controls do not behave as expected, the data obtained from an experiment or
observation is not reliable.

It is also important to determine how many times the experiment needs to be
replicated (Figure 1.2.1). Many scientific investigations lack sufficient repetition to
ensure that the results can be considered reliable and repeatable. For example, if
you were to only take one reading in an investigation there is a possibility that the
result is reliable, but you would have no way of knowing. You need to repeat the
experiment enough times to ensure that the result is reliable.
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* Repeat readings: Repeat each reading three times, record each measurement
and then average the three measurements. This allows random errors to be
identified. If one reading differs too much from the others, you might have to
discard it before averaging. ('This type of reading is called an outlier.) Averaging
your results minimises random error. The different types of error are discussed
in greater detail in Section 1.3.

e Sample size: If your experiment involves finding something out about all the
objects in a group, such as the average mass of eggs produced by a farm, you
may not be able to test all the objects. Instead you can test a smaller number of
objects (called a sample) that represent all the objects. If you do this, you need
to make sure your sample contains enough objects to ensure they truly represent
the whole group. The larger the number of objects in your sample, the more
reliable your data will be.

¢ Repeats: If possible repeat the experiment on a different day. Don’t change
anything. If the results are not the same, think about what could have happened.
For example, was the equipment faulty, or were all the controlled variables
correctly identified and kept the same? Repeat the experiment a third time to
confirm which run was correct. More repeats are better; three is a good number
but, if time and resources allow, aim for at least five.

Accuracy and precision

Accuracy refers to the ability to obtain the correct measurement. Precision is the
ability to consistently obtain the same measurement. To obtain precise results, you
must minimise random errors.

Are the instruments to be used sensitive enough? What units will be used? Build
some testing into your investigation to confirm the accuracy and reliability of the
equipment and your ability to read the information obtained.

To understand more clearly the difference between accuracy and precision,
think about firing arrows at an archery target (Figure 1.2.2). Accuracy is being able
to hit the bullseye, whereas precision is being able to hit the same spot every time
you shoot. If you hit the bullseye every time you shoot, you are both accurate and
precise (Figure 1.2.2a). If you hit the same area of the target every time but not the
bullseye, you are precise but not accurate (Figure 1.2.2b). If you hit the area around
the bullseye each time but don’t always hit the bullseye, you are accurate but not
precise (Figure 1.2.2¢). If you hit a different part of the target every time you shoot,
you are neither accurate nor precise (Figure 1.2.2d).

FIGURE 1.2.2 Examples of accuracy and precision: (a) both accurate and precise, (b) precise but not
accurate, (c) accurate but not precise, and (d) neither accurate nor precise.

Reasonable steps to ensure the accuracy of an investigation include considering:
¢ the unit in which the independent and dependent variables will be measured
* the instruments that will be used to measure the independent and dependent

variables.

Select and use appropriate equipment, materials and methods. For example,
select equipment that can measure in smaller units to reduce uncertainty, and repeat
the measurements to confirm them.

Describe the materials and method in appropriate detail. This should ensure that
every measurement can be repeated and the same result obtained within reasonable
margins of experimental error (less than 5% is reasonable).

GO TO » | Section 1.3, page 15

r

____________________________

Scientific data

All scientists strive to measure

and report accurate and precise
results. However very precise
measurements can be unwieldy —
imagine entering a calculation
with five numbers that were all
measured to 20 decimal places!
Scientists therefore restrict some
measurements to a certain
amount of significant figures or
decimal places.

For example, the speed of

light has been calculated

to be 2.998 x 108ms™ to

four significant figures. It is

also commonly written as

3.0 x 108ms™!, which has been
rounded to two significant figures.
Neither measurement is incorrect,
but 2.998 x 108ms™ is the more
precise measurement.

It is important that you are aware
that the reliability of scientific data
can vary, depending on the source.
Always check that the data you

are using has come from a reliable
source.
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Sourcing appropriate materials and technology

When designing your investigation, you will need to decide on the materials,
technology and instrumentation that will be used to carry out your research. It is
important to find the right balance between items that are easily accessible and those
that will give you accurate results. As you move onto conducting your investigation,
it will be important to take note of the precision of your chosen instrumentation and
how this affects the accuracy and validity of your results. This is discussed in more
detail in Section 1.3.

Data analysis

Data analysis is part of the method. Consider how the data will be presented and
analysed. Preparing an empty table showing the data that needs to be obtained will
help you to plan the investigation.

A wide range of analysis tools are available. For example, tables organise
data so that patterns can be seen, and graphs can show relationships and make
comparisons. The nature of the data being collected, such as whether the variables
are qualitative or quantitative, influences the type of method or tool that you can
use to analyse the data. The purpose and the hypothesis will also influence the
choice of analysis tool.

Data analysis is covered in more detail in Section 1.4.

Modifying the procedure

The procedure (also known as the methodology) may need modifying as the

investigation is carried out. The following actions will help to determine any issues

in the procedure and how to modify them:

* Record everything.

* Be prepared to make changes to the approach.

¢ Note any difficulties encountered and the ways they were overcome. What
were the failures and successes? Every test carried out can contribute to the
understanding of the investigation as a whole, no matter how much of a disaster
it may seem at first.

* Do not panic. Go over the theory again, and talk to the teacher and other
students. A different perspective can lead to a solution.
If the expected data is not obtained, don’t worry. As long as it can be critically

and objectively evaluated, and the limitations of the investigation are identified and

further investigations proposed, the work is worthwhile.

ETHICAL AND SAFETY GUIDELINES
Ethical considerations

When you are planning an investigation, identify all possible ethical considerations

and consider how to reduce or eliminate them. Ethical issues could include:

e How could this affect wider society?

* Does it involve humans or animals?

e Does one group benefit over another; for example, one individual, a group of
individuals or a community? Is it fair?

e Who will have access to the data and results?

* Does it prevent anyone from gaining their basic needs?

*  How can this impact on future ethical decisions or issues? For example, even if
an application is ethical, could it lead to applications that are unethical?
Investigations that involve humans or animals usually require ethics approval.

This includes experiments directly involving humans or animals, as well as public

surveys and other investigations that collect information about people. Ask your

teacher for further information about this issue.
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Risk assessments

It is important for the safety of yourself and the safety of others that the potential

risks are considered when you are planning an investigation.

Everything we do has some risk involved. Risk assessments are performed to
identify, assess and control hazards. A risk assessment should be performed for
any situation, whether in the laboratory or outside in the field. Always identify the
risks and control them to keep everyone safe. For example, carry out electrical
experiments with low DC voltages (e.g. less than 12 volts) coupled to resistors so
that the currents in the circuits are of the order of milliamps. At all times avoid direct
exposure to 240V AC household voltages (Figure 1.2.3).

To identify risks, think about:

e the activity that will be carried out

e the equipment or materials that will be used.

The following list of risk controls is organised from most effective to least
effective:

1 Elimination: Eliminate dangerous equipment, procedures or substances.

2 Substitution: Find different equipment, procedures or substances to use that will
achieve the same result, but have less risk associated.

3 TIsolation: Ensure there is a barrier between the person and the hazard. Examples
include physical barriers such as guards in machines, or fume hoods to work
with volatile substances.

4 Engineering controls: Modify equipment to reduce risks.

5 Administrative controls: Provide guidelines, special procedures, and warning
signs for any participants, and ensure that behaviour is safe.

6 Protective equipment: Wear safety glasses, lab coats, gloves and respirators etc.
where appropriate, and provide these to other participants.

Science outdoors

Sometimes investigations and experiments will be carried out outdoors. Working
outdoors has its own set of potential risks and it is equally important to consider
ways of eliminating or reducing these risks.

As an example, read Table 1.2.1, which contains examples of risks associated
with outdoor research.

TABLE 1.2.1 Examples of risks associated with outdoor research.

sunburn wear sunscreen, a hat and sunglasses; use shade where
possible

hot weather rest and drink fluids regularly

cold, wind, rain wear warm, windproof and waterproof clothing

bites and stings use insect repellent and look out for snakes, wasps and

other dangerous animals

trip hazards be aware of tree roots, rocks etc.
public safety create barriers so that people know not to enter the area
First aid

Minimising the risk of injury reduces the chance of requiring first aid assistance.
However, it is still important to have someone with first aid training present during
practical investigations. Always tell the teacher or laboratory technician if an injury
or accident happens.

FIGURE 1.2.3 When planning an investigation
you need to identify, assess and control hazards.
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Personal protective equipment

Everyone who works in a laboratory wears items that help keep them safe. This is

called personal protective equipment (PPE) and includes:

* safety glasses

¢ shoes with covered tops
» disposable gloves for handling chemicals

» adisposable apron or a lab coat if there is risk of damage to clothing

e ear protection if there is risk to hearing.

1.2 Review

» The methodology of your investigation is a
step-by-step procedure. When detailing the
methodology, ensure it meets the requirements
for a vali, reliable and accurate investigaton.

» ltis important to determine how many times
the experiment needs to be replicatd. Scientific
investigations sometimes lack sufficient
repetitions to ensure that the results are reliable
and repeatabl.

+ Risk assessments must be carried out before
conducting an investigation to make sure tht,

KEY QUESTIONS

1

A ournal article reported the materials and method

used in order to conduct an experimet. The

experiment was repeated three tmes, and all values

were reported in the results section of the artile.

Which one of the following is supported by repeating

an experiment and reporting results?

A validity

B reliability

C credibility

D systematic errors

A student wanted to find out whether you can hit a

ball harder with a two-handed grip of the bat instead

of a one-handed grip What would be the independent

variable for their experiment?

a Explain what is meant by the term controlled
experimen.

b Using an exampl, distinguish between independent
and dependent variable.

when you carry out your methodology, you and
others are kept sae. If you have elements of your
investigation which are not safe you will need to
reevaluate your desin.

It is important to choose appropriate equipment
for your experimen. This means not only personal
protective equipment (PPE) that will help keep you
safe but also instrumentation that will give you
accurate resuls.

4  You are conducting an experiment to find the time

taken for a swimmer to complete a lap of a poo.

Discuss the accuracy of your results if you ae:

a using a stop watch

b watching a clock

¢ recording the motion with a camea.

You are conducting a practical investigation to find the

acceleration due to gravity by dropping a ball from

different heights and measuring the time it takes to fall

to the groun. What sort of risks may be involved in

this investigation?

Give the correct term (vald, reliale, or accurate) that

describes an experiment with the following condition.

a The experiment addresses the hypothesis and
purposes

b The experiment is repeated and consistent results
are obtaine.

¢ Appropriate equipment is chosen for the desired
measurement.

14
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1.3 Conducting investigations

Once the planning and design of a practical investigation is complete, the next
step is to undertake the investigation and record the results. As with the planning
stages, there are key steps and skills to keep in mind to maintain high standards and
minimise potential errors throughout the investigation (Figure 1.3.1).

This section will focus on the best methods of conducting a practical investigation,
by systematically generating, recording and processing data.

COLLECTING AND RECORDING DATA

For an investigation to be scientific, it must be objective and systematic. Ensuring
familiarity with the methodology and protocols before beginning will help you to
achieve this.

When working, keep asking questions. Is the work biased in any way? If changes
are made, how will they affect the study? Will the investigation still be valid for the
purpose and hypothesis?

It is essential that during the investigation the following are recorded in the
logbook:

« all quantitative and qualitative data collected
* the methods used to collect the data

e any incident, feature or unexpected event that may have affected the quality or
validity of the data.

The data recorded in the logbook is the raw data. Usually this data needs to
be processed in some manner before it can be presented. If an error occurs in the
processing of the data or you decide to present the data in an alternative format, the
recorded raw data will always be available for you to refer back to.

Safe work practices
Remember to always employ safe work practices while conducting your experiment.
See Section 1.2 for how to conduct risk assessments.

You will also need to keep in mind safe procedures to follow when disposing of
waste. T'his will depend on the types of waste produced throughout your experiment.
Your teacher will be able to direct you on how best to approach waste disposal.
Education or government websites can also be a great source of information.

IDENTIFYING ERRORS

Most practical investigations have errors associated with them. Errors can occur for a
variety of reasons. Being aware of potential errors helps you to avoid or minimise them.
For an investigation to be accurate, it is important to identify and record any errors.

There are three types of errors:
* mistakes (avoidable errors)
e systematic errors
e random errors.

Types of error

Mistakes

Mistakes are avoidable errors. For example, mistakes made during water quality
analysis could include:

* misreading the numbers on a scale

* not labelling a sample adequately

¢ spilling a portion of a sample.

A measurement that involves a mistake must be rejected and not included in any
calculations, or averaged with other measurements of the same quantity. Mistakes
are often not referred to as errors because they are caused by the experimenter
rather than the experiment or the experimental method.

FIGURE 1.3.1 When carrying out your
investigation try to maintain high standards
to minimise potential errors.

GO TO » | Section 1.2, page 13
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FIGURE 1.3.2 To avoid a systematic error, make
sure that you are using measuring equipment
correctly. Laser speed guns, for example, are
held so that the aim is kept on a single target
point for the duration of the reading.

Systematic errors

Systematic errors are ecrrors that are consistent and will occur again if the
investigation is repeated in the same way. They are usually a result of instruments
that are not calibrated correctly or methods that are flawed.

An example of a systematic error would be if a ruler mark indicating 5cm was
actually at 4.9cm because of a manufacturing error. Another example would be
if the researcher repeatedly used a piece of equipment that was not calibrated
correctly throughout the investigation. Figure 1.3.2 shows how traffic police reduce
systematic errors in their data collection.

Random errors

Random errors occur in an unpredictable manner and are generally small. A
random error could be, for example, the result of a researcher reading the same result
correctly one time and incorrectly another time, or an instrument not functioning
correctly because of a power failure or low battery power. If a controlled variable is
not kept constant throughout the investigation, this can also be the cause of random
errors.

Techniques to reduce error

Designing the method carefully, including selection and use of equipment, will help
reduce errors.

Appropriate equipment

Use the equipment that is best suited to the data that needs to be collected to validate
the hypothesis. Determining the units of the data being collected and at what scale
will help to select the correct equipment. Using the right unit and scale will ensure
that measurements are more accurate and precise (with smaller systematic errors).

Significant figures are the numbers that convey meaning and precision. The
number of significant figures used depends on the scale of the instrument. It is
important to record data to the number of significant figures available from the
equipment or observation. Using either a greater or smaller number of significant
figures can be misleading.

Review the following examples to learn more about significant figures:

* 15 has two significant figures
* 3.5 has two significant figures
* 3.50 has three significant figures
* 0.037 has two significant figures
e 1401 has four significant figures.

Although digital scales can measure to many more than two figures and
calculators can show up to 12 figures, be sensible and follow the significant figure
rules. Do not round off your answer until you no longer need it for subsequent
calculations. Here is an example:

To calculate gravitational potential energy (U), the formula is AU = mgAh.

If g=9.81 ms 2, m=7.50 kg, and %z = 0.64m (64 cm) then:

U=9.81x7.50%0.64=47.09]

However, you can only give the answer to the least number of significant figures
in the data, which in this case is two for 4, so U= 47].

Calibrated equipment

Some equipment, such as some motion sensors, needs to be calibrated before use
to account for the temperature at the time. Before carrying out the investigation,
make sure the instruments or measuring devices are properly calibrated and are
functioning correctly. For example, measure the temperature and apply a correction
to the speed of sound to calibrate a motion sensor if necessary. Making sure your
equipment is correctly calibrated will help to ensure accuracy in your data.
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Correct use of equipment
Use the equipment properly. Ensure any necessary training has been done to use the
equipment and that you have had an opportunity to practise using the equipment
before beginning the investigation. Improper use of equipment can result in
inaccurate, imprecise data with large errors, and the validity of the data can be
compromised (Figure 1.3.3).

Incorrect reading of measurements is a common misuse of equipment. Make
sure all of the equipment needed in the investigation can be used correctly, and
record the instructions in detail so they can be referred to if the data doesn’t appear
to be correct.

Repeat the investigation

As discussed in Section 1.2, repeating the investigation and averaging the results will
generate data that is more reliable. Modifications to your procedure may need to
be looked at before repeating the investigation to ensure that all variables are being
tested under the same conditions.

Using information from secondary sources

As you conduct your investigation, it is important to note any information you use
that has come from secondary sources. This must then be stated in your written
report. This is discussed in more detail in Section 1.7.

Categorising the information and evidence you find while you are researching
will make it easier to locate information later and to write your final investigation.
Categories you might use while researching could include:

* research methods
* key findings

* evidence

» research relevance
* use

» future concerns.

Record information from resources in a clear way so you can retrieve it and use
it. The style used to record the resources you use is described in Section 1.7.

GO TO » | Section 1.2, page 10

GO TO » | Section 1.7, page 37

GO TO » | Section 1.7, page 39

FIGURE 1.3.3 In order to produce accurate data, make sure all your equipment is calibrated correctly
and you have taken the time to understand how to use it safely and correctly.
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1.3 Review

It is essential that during the investigation the
following are recored:

- all quantitative and qualitative data collected
- the methods used to collect the data

- any incident feature or unexpected event that
may have affected the quality or validity of
the data

A systematic error is an error that is consistent

and will occur again if the investigation is repeated

in the same wa. Systematic errors are usually
a result of instruments that are not calibrated
correctly or methods that are flawd.

KEY QUESTIONS

1

Both sets of data below contain error. Identify which

set is more likely to contain a systematic error and
which is more likely to contain a random eror.

Dataset A 114109 118 106 15111
Data set B 25 27 22 26 23 25 27

What type of error is associated wit:
a inaccurate measurements?
b imprecise measurements?

It is possible to calculate the speed of a moving obect

by dividing the distance travelled by the time takn.
You are able to run 250m in 1667 s calculate your
speed to the correct number of significant figurs.

f you use a value of .50 kg for mass and 14 ms™ for
speed in a calculation what would be the appropriate

number of significant figures in the answer?

CHAPTER 1 | WORKING SCIENTIFICALLY

5

Random errors occur in an unpredictable manner
and are generally smal. A random error coul be,
for exampl, the result of a researcher reading

the same result correctly one time and incorrectly
another time

The number of significant figures used depends
on the accuracy of the measuremens. It is
important to record data to the number of
significant figures available from the equipment
or observatio.

A scientist carries out a set of experiment, analyses

the results and publishes them in a scientific journa.

Other scientists in different laboratories repeat the
experimen, but do not get the same results as the
original scientist Suggest several reasons that could
explain thi.
The masses of 1cm? cubes of potato were recored,
then the cubes were placed in distilled watr. After
60 minutes the cubes were weighed again and the
difference in mass was calculatd. What type of error
is involved
a if the electronic scales only measured in
1gincrements?
b if the electronic scales were affected briefly by
a power surge?



1.4 Processing data and information

Once you have conducted your investigation and collected data, you will need
to find the best way of presenting and analysing it. This section is a guide to the
different forms of representation that will help you to better understand your data.

RECORDING AND ORGANISING QUANTITATIVE DATA

Raw data is unlikely to be used directly to evaluate the hypothesis. However, raw
data is essential to the investigation and plans for collecting the raw data should
be made carefully. Consider the formulas or graphs that will be used to analyse
the data at the end of the investigation. This will help to determine the type of raw
data that needs to be collected (and the equipment needed) in order to evaluate the
hypothesis.

For example, to calculate take-off velocity for a vertical jump, three sets of raw
data will need to be collected: the athlete’s standing body weight (using scales), the
ground reaction force (using a force platform) and the time between take-off and
landing (using a stopwatch). The data can then be processed to obtain the take-off
velocity.

Once you have determined the data that needs to be collected, prepare a table in
which to record the data.

ANALYSING AND PRESENTING DATA

The raw data that has been obtained needs to be presented in a way that is clear,
concise and accurate.

There are a number of ways of presenting data, including tables, graphs, flow
charts and diagrams. The best way of visualising the data depends on its nature.
Try several formats before making a final decision, to create the best possible
presentation.

Presenting raw and processed data in tables

Tables organise data into rows and columns and can vary in complexity according
to the nature of the data. Tables can be used to organise raw data and processed data
or to summarise results.

The simplest form of a table has two columns. The left column contains the
independent variable (the one being changed) and the right column contains
the dependent variable (the one that may change in response to a change in the
independent variable).

Tables should have the following features:

e adescriptive title

¢ column headings (including the unit)

¢ aligned numbers (align the decimal points)
¢ the independent variable in the left column
¢ the dependent variable in the right column.

Look at the table in Figure 1.4.1, which has been used to organise raw and
processed data about the effect of current on voltage.
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Effect of current on voltage clear title

Resistance i
Sample Current (A) | Voltage (V) (Qor VAT | =] hea&g%g?r: Ei;?kcecélst;mn
1 0.05 1.81 36.20
2 0.05 1.56 31.20
3 0.04 1.42 35.50
4 0.04 1.24 31.00
5 0.03 1.05 35.00
g 883 822 gégg consistent use of
: . . - significant figures

8 0.02 0.63 31.50
A A A

replicates [|independent|| dependent

grouped variable variable

together

FIGURE 1.4.1 A simple table listing the raw data obtained in the second and third columns and
processed data in the fourth column

A table of processed data

the results.

To report processed data
as well.

Uncertainty

When there is a range of measurements of a particular value, the mean must be
accompanied by the uncertainty for your results to be presented as a mean in an
accurate way. In other words, the mean must be accompanied by a description of

the range of data obtained.

usually presents the average values of the data, called
the mean. However, the mean on its own does not provide an accurate picture of

more accurately, the uncertainty should be presented

Uncertainty is calculated by:
uncertainty = £(maximum difference from the mean)

Worked example 1.4.1

CALCULATING UNCERTAINTY

46, 50, 55, 48, 50, 58, 45

The speeds, in km h™!, of cars travelling down a certain road were:

Find the mean speed and the uncertainty for these values.

Thinking

Working

Calculate the mean speed.

Mean = (46 + 50 + 55 + 48 + 50 + 58 + 45) + 7
=50.3 =50kmh™

Calculate the maximum
difference from the mean.

Maximum difference is 58 — 50 = 8, so the
uncertainty is 8.

Write out the mean speed
and include the uncertainty.

Mean speed is 50 + 8kmh™.

Worked example: Try yourself 1.4.1
CALCULATING UNCERTAINTY

James is practising his tennis
45,52, 51, 49, 49, 53,47
Find the mean and uncertai

serve. The speed of the ball, in ms, is measured to be:

nty for these values.
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Absolute uncertainty

The absolute uncertainty is related to the precision of the instrument being used.
Absolute uncertainty is equal to half the smallest unit of measurement. For
example, if you are measuring the length of an object with a ruler on which the
smallest units are millimetre markings, you will be able to measure to the nearest
millimetre. The true value of the measurement could then be anywhere within half
a millimetre of your observed length, so the absolute uncertainty in this case would
be £0.5 mm.

Percentage uncertainty

Percentage uncertainty, also known as relative uncertainty, is another way of
stating how precise a measurement is. To calculate the percentage uncertainty
take the absolute uncertainty and divide it by the measurement, then multiply by
100. For example, if you have measured a distance of 230 cm using a ruler and the
absolute uncertainty for this measurement is £0.5 cm, then:

Percentage uncertainty = % x100=%0.2%

ﬁ Absolute uncertainty = i%x precision

Percentage uncertainty = 220lute unceranty 7 5y

Absolute and percentage uncertainty are sometimes referred to as absolute and
percentage error.

Other descriptive statistics measures

The mean and the uncertainty are statistical measures that help describe data

accurately. Other statistical measures that can be used, depending on the data

obtained, are:

¢ mode: the mode is the value that appears most often in a data set. This measure
is useful to describe qualitative or discrete data. For example, the mode of the set
of values [0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.04] is 0.02.

¢ median: the median is the ‘middle’ value of an ordered list of values. It is the
value that has equal numbers of values to its left and to its right. For example, the
median of the set of values [5, 5, 8, 8,9, 10, 20] is 8. The median is used when
the data range is spread, which may happen if unusually large or small results
make the mean unreliable.

Graphs
In general, tables provide more detailed data than graphs, but it is easier to observe
trends and patterns in data in graphical form than in tabular form.

Graphs are used when two variables are being considered and one variable is
dependent on the other. The graph shows the relationship between the variables.

There are several types of graphs that can be used, including line graphs, bar

graphs and pie charts. The best one to use will depend on the nature of the data.
General rules to follow when making a graph include the following:

¢ Keep the graph simple and uncluttered.

¢ Use a descriptive title.

¢ Represent the independent variable on the x-axis and the dependent variable on
the y-axis.

¢ Make axes proportionate to the data. For example, your y-axis data might range
from O to 100 and your x-axis data might be between 1 and 5. So you could
divide the y-axis into 10 units of 10 and your x-axis into 5 units of 1.

e Clearly label axes with both the variable and the unit in which it is measured.
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Graph of velocity of glider with time as
it travels down an inclined air track

N

Always gve a descrptve ttle
to the graph or dagram

40 —
Always mark where axs value s
30 —
°
°
Draw Ine of best fit
o : Use a ruler for straght
\;vays vlvrlttT Ines and a practsed
20 — values clearly sweep for curves

If you have an outler go
back to your workngs
and check t agan to see

10
/ fyou can explan why

Orgn does not havetobe ( 00)

/

0
I I I I I I
0/, 0.5 1.0 1.5 2.0 2.5 3.0 Time(s)
Different scales Gve the quantty name
may be used n fuwth untsn ()

FIGURE 1.4.2 A graph shows the relationship between two variables.

Line graphs

Line graphs (Figure 1.4.2) are a good way of representing continuous quantitative

data. In a line graph, the values are plotted as a series of points on the graph. There

are two ways of joining these points:

* A line can be ruled from each point to the next, as shown in Figure 1.4.3(a).
This only shows the overall trend; it does not predict the value of the points
between the plotted data. This type of graph is used when there is no obvious
trend between the variables.

e The points can be joined with a single smooth straight or curved line, as shown
in Figure 1.4.3(b).This creates a trend line, also known as a line of best fit. The
trend line does not have to pass through every point but should go close to as
many points as possible. It is used when there is an obvious trend between the
variables. A trend line can be linear or curved.
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(b)

Height of river at bridge flood gauge Stopping distance for car

3 50

40
2 30
1 20

10
0 0

JEFMAMYJ JASOND 0 20 40 60 80
Months 2010 Speed of car (km h™)

FIGURE 1.4.3 (a) The data in the graph is joined from point to point. (b) The data in the graph is
joined with a line of best fit, which shows the general trend.

Outliers

Sometimes there may be one data point that does not fit with the trend and is clearly
an error. This is called an outlier. An outlier is often caused by a mistake made in
measuring or recording data, or from a random error in the measuring equipment. If
there is an outlier, include it on the graph and label it as an outlier, but ignore it when
adding a trend line. This is shown in Figure 1.4.2, where the point (1.5, 6) is an outlier.

1.4 Review

+ Consider how the data will be presented and by the uncertainty, for your results to be presented
analysed A wide range of analysis tools could be as a mean in an accurate wy.
used For exampe, tables organise data so that + General rules to follow when making a graph
patterns can be established and graphs can show include the following

relationships and comparison. - Keep the graph simple and uncluttered.

+ The simplest form of a table is a two-column - Use a descriptive title
format in which the first column contains the
independent variable (the one being changed)
and the second column contains the dependent
variable (the one that may change in response to
a change in the independent variable.

* When there is a range of measurements of a

particular valu, the mean must be accompanied

KEY QUESTIONS

- Represent the independent variable on the
x-axis and the dependent variable on the y-axis

- Make axes proportionate to the dta.

- Clearly label axes with both the variable and the
unit in which it is measure.

1 Define the term outlier 4 How can the general pattern (trend) of a graph be
2  For the set of numbers 2,2, 1, 1, 2, 2, represented once the points are plotted?
determine 5 State the mean and uncertainty for the following data
a the mean 333628372927 3031
b the mode 6 In conducting an experiment comparing the speed
¢ the median of sound to air temperature, your thermometer has
3 Plot the following data set assigning each variable to units of 1°C and you have found the air temperature
the appropriate axis on the grah. to be 20°C Calculate
Current (A) Voltage (V) a the absolute uncertainty
0.06 207 b the percentage uncertaint.
005 156
004 124
0.03 0.93
0.02 0.63
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1.5 Analysing data and information

Now that the chosen topic has been thoroughly researched, the investigation has
been conducted and data collected, it is time to draw it all together. You will now
need to analyse your results to better understand the physical processes behind
them.

W\

.
.

FIGURE 1.5.1 To discuss and conclude your investigation, utilise the raw and processed data.

EXPLAINING RESULTS IN THE DISCUSSION

The discussion is the part of the investigation where the evaluation and explanation
of the investigation methods and results takes place. It is the interpretation of what
the results mean.

The key sections of the discussion are:

e analysing and evaluating data

» evaluating the investigative method

* explaining the link between the investigation findings and the relevant physics
concepts.

Consider the message to be conveyed to the audience, when writing the discussion.
Statements need to be clear and concise. At the conclusion of the discussion, the
audience must have a clear idea of the context, results and implications of the
investigation.

ANALYSING AND EVALUATING DATA

In the discussion, the findings of the investigation need to be analysed and

interpreted.

e State whether a pattern, trend or relationship was observed between the
independent and dependent variables. Describe what kind of pattern it was and
specify under what conditions it was observed.

e Were there discrepancies, deviations or anomalies in the data? If so, these should
be acknowledged and explained.

¢ Identify any limitations in the data you have collected. Perhaps a larger sample
or further variations in the independent variable would lead to a stronger
conclusion.
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Trends in line graphs

Graphs are drawn to show the relationship, or trend, between two variables, as

shown in Figure 1.5.2.

e Variables that change in linear or direct proportion to each other produce a

straight, sloping trend line.

e Variables that change exponentially in proportion to each other produce a

curved trend line.

e When there is an inverse relationship, one variable increases as the other variable

decreases.

*  When there is no relationship between two variables, one variable will not change

even if the other changes.

Direct or linear proportional
relationship

+ Variables change at the same
rate (graph line is straight,
slope is constant).

+ Bsitive relationship—as
x increases, y increases.

Exponential relationship

» As xincreases, y increases
slowly, then more rapidly.

Exponential rise, then levels off
or plateaus (stops rising)

* As x increases, y increases
rapidly at first, then slows,
then finally does not increase

Inverse direct or linear
proportional relationship

+ Variables change at the same
rate (graph line is straight,
slope is constant).

* Negative relationship—as
x increases, y decreases.

X

Inverse exponential relationship

+ As xincreases, y decreases
rapidly, then more slowly, until
a minimum y value is reached.

X

No relationship between x and y
* As x increases, y remains the same.

at all—y reaches a maximum value.
FIGURE 1.5.2 Various relationships can exist between two variables.
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_____________________________

SKILLBUILDER

Graphing a linear
relationship

When analysing data from a linear
relationship, it is first necessary to
obtain a graph of the data and an
equation for the line that best fits
the data.

If you are plotting your graph
manually on paper then proceed
as follows:

1

2

Plot each data point on clearly
labelled, unbroken axes.
Identify and label but otherwise
ignore any suspect data points.
Draw, by eye, a ‘line of best

fit’ for the points. The points
should be evenly scattered
either side of the line.

Locate the vertical axis intercept
and record its value as c.
Choose two points on the

line of best fit to calculate the
gradient. Do not use two of the
original data points as this will
not give you the gradient of the
line of best fit.

Write y = mx + ¢, replacing

x and y with appropriate
symbols, and use this equation
for any further analysis.

_____________________________
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Remember that the results may be unexpected. This does not make the
investigation a failure. However, the findings must be related to the hypothesis,
purpose and method.

Mathematical models

After analysing your data using tables and graphs, it might be possible to find a
mathematical relationship to describe your results. For example, your graph may
produce a straight line, so there is some sort of linear relationship between the two
variables.

Linear relationships

Some relationships studied in physics are linear (that is, a straight line) while others
are not. It is possible to manipulate non-linear data so that a linear graph reveals a
measurement. Linear relationships and their graphs are fully specified with just two
numbers: gradient, m, and vertical axis intercept, ¢. In general, linear relationships
are written:
y=mx+c
The gradient m can be calculated from the coordinates of two points on the line:
rise

M= tun

V2N
X2 =X

where (x;, y;) and (x,, ¥,) are any two points on the line. Don’t forget that m
and ¢ have units. Omitting these is a common error.

Worked example 1.5.1
FINDING A LINEAR RELATIONSHIP FROM DATA

Some students used a computer with an ultrasonic detector to obtain

the speed-time data for a falling tennis ball. They wished to measure the
acceleration of the ball as it fell. They assumed that the acceleration was nearly
constant and that the relevant relationship was v = u + at, where v is the speed of
the ball at any given time, u was the speed when the measurements began, a is
the acceleration of the ball and t is the time since the measurement began.

Their computer returned the following data:

0.0 1.25
0.1 2.30
0.2 3.15
0.3 4.10
0.4 5.25
0.5 6.10
0.6 6.95

Find their experimental value for acceleration.
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Thinking

Working

Decide which axes each
of your variables should
be on.

The independent variable is the speed, so this will go
on the y-axis.

The dependent variable is the time, so this will go on
the x-axis.

Graph your data as a
scatter plot and draw a
line of best fit.

y=9.5714x + 1.2857

0.40 0.60

Time (s)

0.20 0.80

Find the equation for the
line of best fit.

This graph of the data was created on a computer
spreadsheet. The line of best fit was created
mathematically and plotted. The computer
calculated the equation of the line. Graphics
calculators can also do this.

v=95714t + 1.2857

Write out your linear
relationship in the form
required.

v=9.5714t + 1.2857

If this is rearranged and the constants are rounded
off, the equation is:

v=1.3+9.6t.

State the answer.

The acceleration is 9.6 ms™.

Worked example: Try yourself 1.5.1
FINDING A LINEAR RELATIONSHIP FROM DATA

0.25 24
0.50 49
0.75 7.4
1.0 9.9
1.3 12.8

The downward force is measured for a variety of different masses.

Mass (kg) Force (N)

Find the linear relationship between the values for mass m and force F.

Manipulating non-linear data

Suppose you were examining the relationship between two quantities B and d and
had good reason to believe that the relationship between them is:

_k
B=3

where k is some constant value.
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Clearly, this relationship is non-linear and a graph of B against d will not be a
straight line. By thinking about the relationship it can be seen that in ‘linear form’:

B=kl
TT7T
y=mx+c

The graph of B (on the vertical axis) against 5 (on the horizontal axis) will be
linear. The gradient of the line will be % and the vertical intercept ¢ will be zero. The
line of best fit would be expected to go through the origin because, in this case, there
is no constant added and so c is zero.

In the above example, the graph of the raw data would just show that B is larger
as d is smaller. It would be impossible to determine the mathematical relationship
just by looking at a graph of the raw data.

A graph of raw data will not give the mathematical relationship between the
variables but can give some clues. The shape of the graph of raw data may suggest a
possible relationship. Several relationships may be tried and then the best is chosen.
Once this is done, it is not proof of the relationship but, possibly, strong evidence.

When an experiment involves a non-linear relationship, the following procedure
is followed:

1 Plot a graph of the original raw data.

2 Choose a possible relationship based on the shape of the initial graph and your
knowledge of various mathematical and graphical forms.

3 Work out how the data must be manipulated to give a linear graph.

4 Create a new data table.

Then follow the steps given in the SkillBuilder on page 26. It may be necessary
to try several mathematical forms to find one that seems to fit the data.

Worked example 1.5.2
FINDING A NON-LINEAR RELATIONSHIP FROM DATA

Some students were investigating the relationship between current and
resistance for a new solid-state electronic device. They obtained the data shown
in the table.

Current, I (A) Resistance, R (Q2)

1.5 22
1.7 39
2.2 46
26 70
3.1 110
34 145
39 212
4.2 236

According to the theory they had researched on relevant internet sites, the
students believed that the relationship between / and R is:

R=dP+g
where d and g are constants.

By appropriate manipulation and graphical techniques, find the students’
experimental values for d and g.




Thinking

Plot a graph of the
raw data

Working
250
[ J
2001 o
150 .
100- ud
[
50- . ®
[ )
0 T T T T T
0 1 2 3 4 5
Current (A)

It might be argued that the second piece of data is
suspect. The rest of this solution supposes the students
chose to ignore this piece of data.

Work out what you
would have to graph
to get a straight line.

You can see what to graph if you think of the equation
like this:

R=dDI +g¢g
T 1
Yy =m X + ¢

A graph of R on the vertical axis and /2 on the
horizontal axis would have a gradient equal to d and
a vertical axis intercept equal to g.

Make a new table of
the manipulated data.

The data is manipulated by finding the cube of each of
the values for current.

Current cubed, I° (A%) | Resistance, R (Q)

Plot the graph of
manipulated data.

3.38 22
10.65 46
17.58 70
29.79 110
39.30 145
59.32 212
74.09 236
200 y=3.1412x + 15.092
250 "
200 e
150-
100-
50-
) 20 40 60 80

Current cubed (A%)
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Calculate the line of This graph of the data was created on a computer
best fit. spreadsheet. The line of best fit was created
mathematically and plotted. The computer calculated
the equation of the line. Graphics calculators can also

do this.
y=3.1x+15.1
Find the equation The regression line has the equation y = 3.1x + 15.1,
relating / and R. so the equation relating / and R is
R=3.1P+15.1.
Write out the d=310QA°3
values for d and g. g=151Q

Remember to include
the correct units.

Worked example: Try yourself 1.5.2
FINDING A NON-LINEAR RELATIONSHIP FROM DATA

Some students were investigating the relationship between distance and the
intensity of sound. They obtained the data shown in the table.

Distance, r (m) Intensity, I (Wm™)

1 0.04
2 0.01
3 0.005
4 0.003
5 0.002

According to the theory they had researched on relevant internet sites, the

students believed that the relationship between / and r is:
_P
2

where P is some constant.

By appropriate manipulation and graphical techniques, find the students’
experimental value for P.

EVALUATING THE METHOD

It is important to discuss the limitations of the investigation methodology. Evaluate
the method and identify any issues that could have affected the validity, accuracy or
reliability of the data. Sources of errors and uncertainty must also be stated in the
discussion.

Once any limitations or problems in the methodology have been identified,
recommend improvements on how the investigation could be conducted if repeated;
for example, suggest how bias could be minimised or eliminated.

Bias
Bias may occur in any part of the investigation method, including sampling and
measurements.
Bias is a form of systematic error resulting from the researcher’s personal
preferences or motivations. There are many types of bias, including:
* poor definitions of both concepts and variables (for example, classifying cricket
pitch surfaces and their interaction with the ball according to resilience without
defining ‘slow’ and ‘fast’)
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incorrect assumptions (for example, that footwear type, model and manufacturer
do not affect ground reaction forces, and as a result failing to control these variables
during an investigation on slip risk on different indoor and outdoor surfaces)
errors in the investigation design and procedure (for example, taking a sample
of a particular group of athletes that samples one particular gender more than
the other in the group).

Some biases cannot be eliminated, but should at least be addressed in the

discussion.

Accuracy

In the discussion, evaluate the degree of accuracy of the measurements for each
variable of the hypothesis. Comment on the uncertainties obtained.

When relevant, compare the chosen method with any other methods that might

have been selected, evaluating the advantages and disadvantages of the selected
method and the effect on the results.

Reliability

When discussing the results, indicate the range of the data obtained from replicates.
Explain how the sample size was selected. Larger samples are usually more reliable,
but time and resources might have been scarce. Discuss whether the results of the
investigation have been limited by the sample size.

The control group is important to the reliability of the investigation. A control

group helps determine if a variable that should have been controlled has been
overlooked and may explain any unexpected results.

Error

Discuss any source of systematic or random error and suggest ways of improving
the investigation.

CRITICALLY EVALUATING SECONDARY SOURCES

Not all sources are credible. It is essential to critically evaluate the content and its
origin. Questions you should always ask when evaluating a source include:

Who created this message? What are the qualifications, expertise, reputation
and affiliation of the authors?

Why was it written?

Where was the information published?

When was the information published?

How often is the information referred to by other researchers?

Are conclusions supported by data or evidence?

What is implied?

What is omitted?

Are any opinions or values being presented in the piece?

Is the writing objectively and accurately describing a scientific concept or
phenomenon?

How might other people understand or interpret this message differently from me?
When evaluating the validity or bias of websites, consider its domain extension:
.gov stands for government hd

.edu stands for education o = o
.. N —
.org stands for a non-profit organisation = 2 e

com stands for commercial/business FIGURE 1.5.3 Honest evaluation and reflection
play important roles in analysing methodology.
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1.5 Review

» After completing your investigation you will need
to analyse and interpret your dat. A discussion of
your results is required.

- State whether a pattern trend or relationship
was observed between the independent and
dependent variable. Describe what kind
of pattern it was and specify under what
conditions it was observe.

- If possible create a mathematical model to
describe your data

- Were there discrepanies, deviations or
anomalies in the data? f so these should be
acknowledged and explaine.

- ldentify any limitations in the data collected
Perhaps a larger sample or further variations
in the independent variable would lead to a
stronger conclusio.

KEY QUESTIONS

1 What relationship between the variables is indicated by
a sloping linear graph?

2 What relationship exists if one variable decreases as
the other increases?

3 What relationship exists if both variables increase or
both decrease at the same rate?
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t is important to discuss the limitations of the
investigation method Evaluate the method and
identify any issues that could have affected the
validit, accurcy, precision or reliability of the
data Sources of errors and uncertainty must also
be stated in the discussion

When discussing the result, indicate the range
of the data obtained from replicats. Explain how
the sample size was selecte. Larger samples are
usually more reliabe, but time and resources are
likely to have been scare. Discuss whether the
results of the investigation have been limited by
the sample size

What might cause a sample size to be limited in an
investigation?

After analysing the motion of a falling tennis bal, you
create a mathematical model to describe the speed of
the ball as a function of time y=13 + 961t Describe
what each of the values in this equation represets.



1.6 Problem solving

Having analysed your results you can then apply them to physics concepts in order
to evaluate your conclusions. In this section you will learn how analysing your
investigation leads to a better understanding of the underlying scientific principles
of your research.

DISCUSSING RELEVANT PHYSICS CONCEPTS

To make the investigation more meaningful, it should be explained within the right
context, meaning the related physics ideas, concepts, theories and models. Within
this context, explain the basis for the hypothesis.

For example, if you are studying the impact of temperature on the linear strain
of a material (e.g. a rubber band), some of the contextual information to include in
the discussion could be:

* the definition of linear strain

» the functions of linear strain

* the relationship between linear strain and temperature

* the definitions of material behaviour such as plastic and elastic
» the factors known to affect linear strain

» existing knowledge on the role of temperature on linear strain

* the ranges of temperatures investigated and the reason these temperatures were
chosen

¢ the materials studied and the reasons for this choice
¢ methods of measuring the linear strain of a material.

Relating your findings to a physics concept

During the analysing stage of your investigaton (Section 1.5) you were able to find

trends, patterns and mathematical models of your results. This is the framework

needed in which to discuss whether the data supported or refuted the hypothesis.

Ask questions such as:

¢ Was the hypothesis supported?

¢ Has the hypothesis been fully answered? (If not, give an explanation of why
this is so and suggest what could be done to either improve or complement the
investigation.)

¢ Do the results contradict the hypothesis? If so, why? (The explanation must be
plausible and must be based on the results.)

Providing a theoretical context also enables comparison of the results with
existing relevant research and knowledge. After identifying the major findings of
the investigation, ask questions such as:
¢ How do the findings fit with the literature?
¢ Do the findings contradict the literature?

* Do the findings fill a gap in the literature?
¢ Do the findings lead to further questions?
¢ Can the findings be extended to another situation?

Be sure to discuss the broader implications of the findings. Implications are
the bigger picture. Outlining them for the audience is an important part of the
investigation. Ask questions such as:
¢ Do the findings contribute to or impact on the existing literature and knowledge

of the topic?

e Are there any practical applications for the findings?

GO TO » | Section 1.5, page 24
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DRAWING EVIDENCE-BASED CONCLUSIONS

A conclusion is usually a paragraph that links the collected evidence to the hypothesis

and provides a justified response to the research question.

Indicate whether the hypothesis was supported or refuted and the evidence on
which this is based (that is, the results). Do not provide irrelevant information. Only
refer to the specifics of the hypothesis and the research question and do not make
generalisations.

Read the examples of conclusions for the following hypothesis and research
question.

Hypothesis: If linear deformation (change in length) has a positive relationship
with temperature, then an increase in temperature will cause an increase in linear
deformation.

» Poor response to the hypothesis: Linear deformation has value y, at temperature
t; and value y, at temperature t,.

* Better response to the hypothesis: An increase in temperature from #; to ,
produces an increase in linear deformation of x in the rubber band.

Inquiry question: Does temperature affect the maximum linear deformation the
material can withstand?

* Poor response to the research question: The results show that temperature does
affect the maximum deformation of a material.

e Better response to the research question: Analysis of the results of the effect of
an increase in temperature from #; to ¢, in the rubber band supports current
knowledge on the effect that an increase in temperature has on increasing
maximum linear deformation.

INTERPRETING SCIENTIFIC AND MEDIA TEXTS

Sometimes you may be required to investigate claims and conclusions made by

Section 1.4, page 31 other sources, such as scientific and media texts. As discussed in Section 1.4, some
sources are more credible than others. Once you have analysed the validity of the
secondary source, you will be able to follow the same steps described above in
evaluating their conclusions in order to solve scientific problems.

MODELS

Scientific models are used to create and test theories and explain concepts. Different
types of models can be used to study systems, such as the motion of planets within
our solar system (Figure 1.6.1). However, every model has limitations on the type
of information it can provide. For example, the model in Figure 1.6.1 does not show
the relative distances of the planets from the Sun, or the relative sizes of the planets
and the Sun.

Models are created to answer specific questions. How a model is designed will
depend on the questions you want to answer. T'he two most familiar types of models
are visual models and physical models, but mathematical and computer models are
also common.

Visual models are two-dimensional representations of concepts, such as diagrams
and flow charts. Physical models are three-dimensional versions of reality that can

FIGURE 1.6.1 A physical model of the solar be scaled up or down.

system. Models help to make sense of ideas by visualising:

* objects that are difficult to see because of their size (too big or too small)
e processes that cannot easily be seen directly, such as feedback loops

e abstract ideas, such as energy transfer

e complex ideas, such as climate change.
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1.6 Review

To make an investigation more meaningul, it
should be explained within the right contet,
meaning the related physics idea, concept,
theories and models Within this contex, explain
the basis for the hypothesis

Indicate whether the hypothesis is supported
or rjected and on what evidence this is based
(that is the results. Do not provide irrelevant
information Only refer to the specifics of the
hypothesis and the inquiry question and do not
make generalisatios.

KEY QUESTIONS

1

Which of the following would not support a strong

conclusion to a report?

A The concluding paragraphs are relevant and provide
evidence

B The concluding paragraphs are written in emotive
language

C The concluding paragraphs include reference to
limitations of the researh.

D The concluding paragraphs include suggestions for
further avenues of researh.

Before you begin your investigatio, you come up

with the hypothesis According to Newto's second

law, for a constant fore, if the mass is increased the
acceleration is decreasd.

After conducting the experiment you table your results
below

Mass (kg) Acceleration (ms‘2)
10 30
20 20
30 10

If you were to analyse these resuls, how would they
support or refute your hypothesis?

Models are useful tools that can be created and
used to gain a deeper understanding of concepts
Some common types of models are visua,
physical mathematical and computational

3 You conduct an investigation to test the hypothesi: If

two obects are simultaneously dropped vertically from
the same height they will both land at the same time
What is one conclusion you could reach if your results
found the following times for obects dropped from 1 m

Obect Time (s)
Feather 2
Tennis ball 05
Bowling ball 0.4

A procedure was repeated 30 tmes. How should the
following statement be rewritten?
Many repeats of the procedure were conduted.
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SKILLBUILDER

Structuring body
paragraphs

The body paragraphs of a report
or essay need to be structured so
each idea is presented in a clear
way. Good paragraphs build up to
a report that has a logical flow.
One way to ensure each paragraph
is structured well is to use the
acronym TEEL: Topic, Elaborate,
Evidence, Link back.

Topic sentence

i This establishes the key idea or :
. argument that will be put forward |
. in the paragraph. It supports the :
. main proposition of the overall :
E report. E

Elaborate on the idea

Add further detail to the initial
topic sentence.

Evidence

Provide evidence to support the
idea or argument in the topic
sentence.

Link back to the topic
sentence

Summarise the argument in the

paragraph and how it links to the
overall proposition set out by the
overall report.

1.7 Communicating

The way you approach communicating your results will depend on the audience
you want to reach. If you are communicating with a general audience you may want
to discuss your investigation in the style of a news article or blog post. These types of
communication don’t use too much scientific language as you need to assume that
your audience does not have a science background.

Throughout this course you will need to present your research using appropriate
nomenclature such as scientific language and notation. There are many different
presentation formats that you are used to such as posters, oral presentations and reports.
This section covers the main characteristics of effective science communication and
report writing, including objectivity, clarity, conciseness and coherence.

STRUCTURING A REPORT

Your report should have a clear, logical structure.

Introduction

* The first paragraph should introduce your research topic and define key terms.

Body paragraphs

e Each subsequent paragraph should cover one main idea.

e The first sentence of each paragraph should summarise the content of the
paragraph.

* Use evidence to support statements.

* Avoid very long or very short paragraphs.

Conclusion

e The final section should summarise the main findings.
e It should relate to the title of the investigation.

e The conclusion should include limitations.

e It should discuss implications and applications of the research and potential
future research.

Analysing information relevant to your
research investigation

Scientific research should always be objective and neutral. Any premise presented
must be supported with facts and evidence to allow the audience to make its own
decision. Identify the evidence supporting or contradicting each point you want to
make. It is also important to explain connections between ideas, concepts, theories
and models. Figure 1.7.1 lists the questions you need to consider when writing your
investigation report.

Have you identified
social, economic,
environmental and
ethical factors
relevant to your
research question?

Can you use a
labelled diagram
to help explain
concepts or
present evidence?

What are the
limitations of the
information
you are
presenting?

Do the sources

agree? What is

similar? What
is different?

What questions
do you have?
What are the

implications for

further research?

Summarise main
ideas from sources.
Is the evidence
valid and reliable?

inquiry
question

FIGURE 1.7.1 Questions you need to consider when writing your investigation report.
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Once you have analysed your sources, annotate your outline, indicating where
you will use evidence and what the source of that evidence is. Try to introduce only
one idea per sentence and one theme per paragraph.

For example, for a report on ‘Experimental research into biodegradability of
plastics’, the third paragraph might contain information from:

e Sclke et al. (2015), who reported no significant degradation
¢ Chiellini et al. (2007), who reported a significant degradation.

A report should include an analysis and synthesis of your sources. The information
from different sources needs to be explicitly connected, and it should be clear where
sources agree and disagree. In this example, the final sentences could be:

Selke et al. (2015) reported that tests of plastic polymers treated with
biodegradation additives resulted in no significant biodegradation after three years.
This finding contrasts with that of Chiellini et al. (2007), who reported significant
biodegradability of additive-treated polymers.

The different results can be explained by differences in the studies. The 2007
study tested degradation in natural river water, whereas the 2015 study tested
degradation under ultraviolet light, aerobic soil burial and anaerobic aqueous
conditions (Chiellini et al. 2007; Selke et al. 2015). As well as using different additives
and different experimental techniques, Selke et al. (2015) used additive rates of
1-5% and tested polyethylene terephthalate (PET) as well as polyethylene, whereas
Chiellini et al. (2007) used additive rates of 10—15% and tested only polyethylene.

Both studies were conducted under laboratory conditions, so they may not
reflect what happens in the natural environment.

WRITING FOR SCIENCE

Scientific reports are usually written in an objective or unbiased style. This is in
contrast with essay writing that often uses the subjective techniques of rhetoric or
persuasion. Read Table 1.7.1, which contrasts persuasive and scientific writing
styles.

TABLE 1.7.1 Persuasive writing versus scientific writing styles

Persuasive writing examples Scientific writing equivalent examples

Use of biased and subjective language
Examples:

The results were extremely bad, atrocious,
wonderful etc.

This is terrible because ...

This produced a disgusting odour.

Health crisis

Use of exaggeration

Example:

The object weighed a colossal amount, like
an elephant.

Use of everyday or colloquial language
Examples:

The bacteria passed away.

The results don't ...

The researchers had a sneaking
suspicion ...

Use of unbiased and objective language
Examples:
The results showed ...

The implications of these results suggest ...

The results imply ...
This produced a pungent odour.
Health issue

Use of non-emotive language
Example:
The object weighed 256 kg.

Use of formal language

Examples:

The bacteria died.

The results do not ...

The researchers predicted/hypothesised/
theorised ...
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Consistent reporting narrative

Scientific writing can be written either in first-person or in third-person narrative.
Your teacher may advise you on which to select. In either case, ensure that you keep
the narrative point of view consistent. Read the examples of first-person and third-
person narrative in Table 1.7.2.

TABLE 1.7.2 Examples of first-person and third-person narrative.

| put 50g of marble chips in a First, 50g of marble chips was weighed into the
conical flask and then added 10 mL conical flask and then 10 mL of 2M hydrochloric
of 2M hydrochloric acid. acid was added.

After | observed the reaction, | found  After the reaction was completed, the results
that... showed...

My colleagues and | found... Researchers found...

Qualified writing

Be careful of words that are absolute, such as always, never, shall, will and proven.
Sometimes it may be more accurate and appropriate to use qualifying words,
such as may, might, possible, probably, likely, suggests, indicates, appears, tends,
can and could.

Concise writing

It is important to write concisely, particularly if you want to engage and maintain
the interest of your audience. Use shorter sentences that are less verbose (contain
too many words). Read Table 1.7.3, which shows some examples of more concise
wording.

TABLE 1.7.3 Examples of verbose and concise language

Verbose example Concise example

Due to the fact that Because

Smith undertook an investigation into... Smith investigated
It is possible that the cause could be... The cause may be...
A total of five experiments Five experiments
End result Result

In the event that If

Shorter in length Shorter

Visual support

Identify concepts that can be explained using visual models and information that
can be presented in graphs or diagrams. This will not only reduce the word count of
your work but will also make it more accessible for your audience.

EDITING YOUR REPORT

Editing your report is an important part of the process. After editing your report, save

new drafts with a different file name and always back up your files in another location.
Pretend you are reading your report for the first time when editing. Once you

have completed a draft, it is a good idea to put it aside and return to it with ‘fresh

eyes’ a day later. This will help you find areas that need further work and give you

the opportunity to improve them. LLook for content that is:

e ambiguous or unclear

e repetitive
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e awkwardly phrased

e too lengthy

* not relevant to your research question

e poorly structured

¢ lacking evidence

¢ lacking a reference (if it is another researcher’s work).

Use a spellchecker tool to help you identify typographical errors, but first, check
that your spellchecker is set to Australian English. Also be wary of words that are
commonly misused, for example:
¢ where/were
¢ their/they’re/there
* affect/effect
¢ lead/led
¢ which/that.

REFERENCES AND ACKNOWLEDGEMENTS

All the quotations, documents, publications and ideas used in the investigation need

to be acknowledged in the ‘references and acknowledgments’ section in order to

avoid plagiarism and to ensure authors are credited for their work. References and
acknowledgements also give credibility to the study and allow the audience to locate
information sources should they wish to study it further.

When referencing a book, include in this order:

e author’s surname and initials; date of publication; title; publisher’s name; place

of publication.

For example:

Rickard G. et al. (2005), Science Dimensions 1, Pearson Education, Melbourne,
Victoria.

When referencing a website, include in this order:

e author’s surname and initials, or name of organisation, or title; year website was
written or last revised; title of webpage; date website was accessed; website address.
For example:

Wheeling Jesuit University/Center for Educational Technologies (2013),
NASA Physics Online Corse: Forces and Motion, accessed 16 June 2015,
http://nasaphysics.cet.edu/forces-and-motion.html

MEASUREMENT AND UNITS

In every area of physics we have attempted to quantify the phenomena we study. In
practical demonstrations and investigations we generally make measurements and
process those measurements in order to come to some conclusions. Scientists have a
number of conventional ways of interpreting and analysing data from their investigations.
There are also conventional ways of writing numerical measurements and their units.

Correct use of unit symbols

The correct use of unit symbols removes ambiguity, as symbols are recognised
internationally. The symbols for units are not abbreviations and should not be
followed by a full stop unless they are at the end of a sentence.

Upper-case letters are not used for the names of any physical quantities of
units. For example, we write newton for the unit of force, while we write Newton
if referring to someone with that name. Upper-case letters are only used for the
symbols of the units that are named after people. For example, the unit of energy is
joule and the symbol is J. The joule was named after James Joule who was famous
for studies into energy conversions. The exception to this rule is ‘I for litre. We do
this because a lower-case ‘I’ looks like the numeral ‘1°. The unit of distance is metre
and the symbol is m. The metre is not named after a person.
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The product of a number of units is shown by separating the symbol for each
unit with a dot or a space. Most teachers prefer a space but a dot is perfectly correct.
The division or ratio of two or more units can be shown in fraction form, using
a slash, or using negative indices. Most teachers prefer negative indices. Prefixes
should not be separated by a space.Table 1.7.4 shows some examples of the correct
use of units and symbols.

TABLE 1.7.4 Some examples of the use of symbols for derived units.

N T

ms™ ms™ m.s_z, m/s?
kWh kW h kW.h

kgm™ kgm™ kg.m3, kg/m?
Nm Nm N.m

U m um

Units named after people can take the plural form by adding an ‘s’ when used
with numbers greater than one. Never do this with the unit symbols. It is acceptable
to say ‘two newtons’ but wrong to write 2 Ns. It is also acceptable to say ‘two newton’.

Numbers and symbols should not be mixed with words for units and numbers.
For example, twenty metres and 20 m are correct while 20 metres and twenty m are
incorrect.

Scientific notation

To overcome confusion or ambiguity, measurements are often written in scientific
notation. Quantities are written as a number between 1 and 10 and then multiplied
by an appropriate power of ten. Note that ‘scientific notation’, ‘standard notation’
and ‘standard form’ all have the same meaning.

Examples of some measurements written in scientific notation are:

0.054m=54x10"m
245.7] = 2.457 x 10%]
2080N =2.080 x 10°N or 2.08 x 10°N

You should be routinely using scientific notation to express numbers. This
also involves learning to use your calculator intelligently. Scientific and graphics
calculators can be put into a mode whereby all numbers are displayed in scientific
notation. It is useful when doing calculations to use this mode rather than frequently
attempting to convert to scientific notation by counting digits on the calculator
display. It is quite acceptable to write all numbers in scientific notation, although
most people prefer not to use scientific notation when writing numbers between
0.1 and 1000.

An important reason for using scientific notation is that it removes ambiguity
about the precision of some measurements. For example, a measurement recorded
as 240 m could be a measurement to the nearest metre; that is, somewhere between
239.5m and 240.5m. It could also be a measurement to the nearest ten metres, that
is, somewhere between 235m and 245 m. Writing the measurement as 240 m does
not indicate either case. If the measurement was taken to the nearest metre, it would
be written in scientific notation as 2.40 x 10°m. If it was taken to the nearest ten
metres only, it would be written as 2.4 x 10°m.

PREFIXES AND CONVERSION FACTORS

Conversion factors should be used carefully. You should be familiar with the
prefixes and conversion factors in Table 1.7.5. The most common mistake made
with conversion factors is multiplying rather than dividing. Some simple strategies
can save you this problem. Note that the table gives all conversions as a multiplying
factor.
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Do not put spaces between prefixes and unit symbols. It is important to give the
symbol the correct case (upper or lower case). There is a big difference between

1mm and 1 Mm.

TABLE 1.7.5 Prefixes and conversion factors.

Multiplying factor Scientific notation m Symbol

1000000000000 10%? tera
1000000000 10° giga
1000000 108 mega
1000 10° kilo
0.01 1072 centi
0.001 1073 milli
0.000001 107 micro
0.000000001 1072 nano
0.000000000001 o2 pico

There is no space between prefixes and unit symbols. For example, one-
thousandth of an ampere is given the symbol mA. Writing it as m A is incorrect.

The space would make the symbol mean ‘metre ampere’.

1.7 Review

» A scientific report must include an introductin,
body paragraphs and conclusin.

» The conclusion should include a summary of the
main findings a conclusion related to the issue
being investigated limitations of the researh,
implications and applications of the researh, and
potential future research.

KEY QUESTIONS

1 Which of the following statements is written in
scientific style?
A The results were fantastic...
B The data in Table 2 indicates...
C The researchers felt...
D The smell was awful...
2 Which of the following statements is written in first-
person narrative?
A The researchers reported...
B Samples were analysed using...
C The experiment was repeated three times...
D | reported...

FIGURE 1.7.2 A scientific calculator.

Scientific writing uses unbiased obective
accurat, formal languag. Scientific writing
should also be concise and qualified

Visual support can assist in conveying scientific
concepts and processes efficientl.

Ensure you edit your final repot.

Scientific notation needs to be used when
communicating your result.

The variables acceleratin, torue, momentum and
density each have different unit. Write the units for
each of the following in correct scientific notatio.

a acceleratio; metres per second squared

b torqu; newton metre

¢ momentum kilogram metre per second

d density kilogram per metre cubed

Convert 45 gigawatts (GW) into megawatts (M).
Discuss why you might need to convert between

different multiplying factos, for example centimetres

to millimetre.
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Chapter review

KEY TERMS

absolute error
accuracy

affiliation

bias

controlled variable
credible
dependent variable
expertise
hypothesis
independent variable
mean

median

mistake

KEY QUESTIONS

mode

nomenclature

outlier

percentage uncertainty

personal protective
equipment (PPE)

persuasion

phenomenon

precision

primary source

qualitative variable

quantitative variable

random error

raw data
reliability
reputation
rhetoric
secondary source
significant figures
systematic error
trend

trend line
uncertainty
validity

variable

What is a hypothesis and what form does it take?

The following steps of the scientific method are out of

order. Place a number (1-7) to the left of each point to

indicate the correct sequence.

Form a hypothesis.

Collect results.

Plan experiment and equipment.

Draw conclusions.

Question whether results support hypothesis.

State the inquiry question to be investigated.

Perform experiment.

List these types of hazard controls from the most

effective to the least effective:

substitution, personal protective equipment,

engineering controls, administrative controls,

elimination, isolation

Consider the hypothesis provided below. What are the

dependent, independent and controlled variables?

Hypothesis: Releasing an arrow in archery at an angle

greater or smaller than 45 degrees will result in a

shorter flight displacement (range).

What is the dependent variable in each prediction?

a If you push an object with a fixed mass with a larger
force, then the acceleration of that object will be
greater.

b The vertical acceleration of a falling object is
constant.

¢ A springboard diver rotates faster when in a tucked
position than when in a stretched (layout) position.
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11
12

13

The speed of a toy car rolling down an inclined plane
was measured 6 times. The measurements obtained
(incms™) were 7.0, 6.5, 6.8, 7.2, 6.5, 6.5. What is the
uncertainty and the mean of these values?

Which of the statistical measurements of mean, mode
and median is most affected by an outlier?

What relationship between variables is indicated by a
curved trend line?

If you hypothesise that impact force is directly
proportional to drop height, what would you expect a
graph of the data to look like?

What is meant by the ‘limitations’ of the investigation

method?

What is ‘bias’ in an investigation?

Which of the following is the correct way to reference

the source?

A Duffy et al. (2014) did find a dip in the star
formation rate.

B Duffy, A., Wyithe, S., Mutch, S. & Poole, G. (2014).
Low-mass galaxy formation and the ionizing photon
budget during reionization.

C Duffy, A, Wyithe, S., Mutch, S. & Poole, G. (2014).
Low-mass galaxy formation and the ionizing photon
budget during reionization, Monthly Notices of the
Royal Astronomical Society, 443(4), 3435-3443.

D Duffy et al. (2014) Low-mass galaxy formation and
the ionizing photon budget during reionization,
Monthly Notices of the Royal Astronomical Society.

Convert 2.5mm (millimetres) into ym (micrometres).
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15

16

17

18

19

List three things that need to be considered when
preparing a risk assessment.

A scientist designed and conducted an experiment

to test the following hypothesis: An increased

consumption of fast food causes a decrease in the

function of the liver.

a The discussion section of the scientist’s report
included comments on the accuracy, precision,
reliability, and validity of the investigation. Read
each of the following statements and determine
whether they relate to accuracy, reliability or
validity.

i Only teenage boys were tested.
ii Six boys were tested.

b The scientist then conducted the fast food study
with 50 people in the experimental group and 50
people in the control group. In the experimental
group, all 50 people gained weight. The scientist
concluded all the subjects gained weight as a result
of the experiment. Is this conclusion valid? Explain
why or why not.

¢ What recommendations would you make to the
scientist to improve the investigation?

What is the purpose of referencing and acknowledging

documents, ideas and quotations in your investigation?

You have measured the weight of an object using a set

of scales to be 200g and the absolute uncertainty of

the scales is £0.1 g. What is the percentage uncertainty
for this measurement?

a What is a controlled variable?

b What is a control experiment?

Identify which of the following pieces of information

about a cup of coffee are qualitative, and which are

quantitative. Place a tick in the appropriate column.

Information | Qualitative | Quantitative

cost $3.95

robust aroma

coffee temperature 82°C

cup height 9cm

frothy appearance

volume 180mL

strong taste

white cup

20

21
22

Explain the meaning of the term ‘trend’ in a scientific

investigation and describe the types of trends that

might exist.

Explain the terms ‘accuracy’ and ‘validity’.

Which graph from the following list would be best to

use with each set of data listed here?

Graph types: pie diagram, scatter graph (with line of

best fit), bar graph, line graph

a The number of moons around each planet in the
solar system

b The temperature of water sampled at the same
time of day over a period of a month

¢ The magnitude of the gravitational constant at
different distances above sea level

d The proportion of energy being used by different
components in an electrical circuit

You are conducting an experiment that requires you

to measure the air temperature at the same time each

day. Using a thermometer which measures in units of

1°C you collect the following data.

22 24 21 25 27

Temperature (°C)

a Calculate the absolute uncertainty in your data.

b What is the percentage uncertainty for the
temperature on day 3?

¢ Calculate the uncertainty from the mean.
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MODULE

Kinematics

Motion is a fundamental observable phenomenon. The study of kinematics
involves describing, measuring and analysing motion without considering the
forces and masses involved in that motion. Uniformly accelerated motion is
described in terms of relationships between measurable scalar and vector
quantities, including displacement, speed, velocity, acceleration and time.

Representations—including graphs and vectors, and equations of motion—can
be used qualitatively and quantitatively to describe and predict linear motion.

Outcomes
By the end of this module you will be able to:

« design and evaluate investigations in order to obtain primary and secondary
data and information PH11-2
conduct investigations to collect valid and reliable primary and secondary data
and information PH11-3
+ select and process appropriate qualitative and quantitative data and
information using a range of appropriate media PH11-4
« analyse and evaluate primary and secondary data and information PH11-5 \’
+ solve scientific problems using primary and secondary data, critical thinking
skills and scientific processes PH11-6
+ describe and analyse motion in terms of scalar and vector quantities in l -
two dimensions and make quantitative measurements and calculations for '
distance, displacement, speed, velocity and acceleration PH11-8.

Physics Stage 6 Syllabus © NSW Education Standards Authority
for and on behalf of the Crown in right of the State of NSW, 2017.
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CHAPTER

2 Motion in a straight line

Motion, from simple to complex, is a fundamental part of everyday life. In this
chapter you will learn how to use the mathematical quantities of scalars and vectors
to understand the concepts of forces and motion. From a train pulling in to a station
to a swimmer completing a lap of a pool, physics can model the motion of just
about anything.

Content

NQURY QUESION

How is the motion of an object moving in a straight line
described and predicted?
By the end of this chapter you will be able to:

« describe uniform straight-line (rectilinear) motion and uniformly accelerated

motion through:
- qualitative descriptions
- the use of scalar and vector quantities (ACSPHO60)
conduct a practical investigation to gather data to facilitate the analysis of
instantaneous and average velocity through:
- quantitative, first-hand measurements
- the graphical representation and interpretation of data (ACSPHO61)
calculate the relative velocity of two objects moving along the same line using
vector analysis
conduct practical investigations, selecting from a range of technologies, to record
and analyse the motion of objects in a variety of situations in one dimension in
order to measure or calculate:

time

distance

displacement

speed

velocity

acceleration
use mathematical modelling and graphs, selected from a range of technologies,
to analyse and derive relationships between time, distance, displacement, speed,
velocity and acceleration in rectilinear motion, including:

- S=at+Lat®

- V=u+at
- v2 =u?+23 (ACSPHO061)

Physics Stage 6 Syllabus © NSW Education Standards Authority
for and on behalf of the Crown in right of the State of NSW, 2017.




tail head
10 m, east

head tail
5 m, west

FIGURE 2.1.1 A simple vector diagram. The top
vector is twice as long as the bottom vector, so

it has twice the magnitude of the bottom vector.

The arrowheads indicate that the vectors are in
opposite directions.
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2.1 Scalars and vectors

You will come into contact with many physical quantities in the natural world every
day. For example, time, mass and distance are all physical quantities. Each of these
physical quantities has units with which to measure them; for example, seconds,
kilograms and metres.

Some measurements only make sense if there is also a direction included. For
example, a GPS navigation system tells you when to turn and in which direction.
Without both of these two instructions, the information is incomplete.

All physical quantities can be divided into two broad groups based on what
information you need for the quantity to make sense. These groups are called
scalars and vectors. Often vectors are represented by arrows. Both of these types of
measures will be investigated throughout this section.

SCALARS

Many physical quantities can be described simply by a magnitude (size) and a
unit. For example, you might say that the speed of a car is 60 kilometres per hour.
The magnitude is 60 and the unit is kilometres per hour. Quantities like this that
have only a magnitude and a unit are called scalars.

The magnitude depends on the unit chosen. For example, 60 kilometres per
hour can also be described as 1 kilometre per minute. Here the magnitude is 1 and
the unit is kilometres per minute. Some examples of scalars are:

e time

e distance

e volume

e speed.
VECTORS

Sometimes a physical quantity also has a direction. For example, you might say that
a car is travelling at 60 kilometres per hour north. Quantities like this that have a
magnitude, a unit and a direction are called vectors. Some examples of vectors are:
e position

e displacement

e velocity

e acceleration

o force.

0 Scalars are represented by a simple italic symbol, such as t for time and d for
distance.
Vectors are represented using vector notation. The most common type of vector
notation uses an arrow above the symbol. For example, force is written as F and
velocity is written as v. thout an arrow, F means only the magnitude of force
and v means only the magnitude of velocity.
You might see a different type of vector notation in books and journals. This uses
bold or bold italics to represent a vector, instead of an arrow. For example, force
is written as F or F and velocity is written as v or v.

VECTORS AS ARROWS

A vector has both a magnitude and a direction. Any vector can be represented
visually by an arrow. The length of the arrow represents the magnitude of the vector,
and the direction of the arrow (from tail to head) represents the direction of the
vector.

A diagram in which one or more vectors are represented by arrows is called a
vector diagram. Figure 2.1.1 is a vector diagram that shows two vectors.



A force is a push or a pull, and the unit of measure for force is the newton (N)
If you push a book to the right, it will respond differently compared to pushing it to
the left So a force is described properly only when a direction is included, which
means that force is a vecor. Forces are described in more detail in Chpter 4.

In most vector diagrams, the length of the arrow is drawn to scale so that it
accurately represents the magnitude of the vector.

In the scaled vector diagram in Figure 2.1.2, a force F = 4N left acting on the toy
car is drawn as an arrow with a length of 2cm In this example a scale of 1 cm = 2N
force is used.

An exact scale for the magnitude is not always needed, but it is important that
vectors are drawn accurately relative to one anoher. For example, a vector of 50 m
north should be half as long as a vector of 100m south, and should point in the
opposite direction.

Point of application of arrows

Vector diagrams may be presented slightly differently, depending on what they are
depicting If the vector represents a force, the tail end of the arrow is placed at the
point where the force is applied to the obect. If it is a displacement vector, the tail
is placed where the object started to move.

Figure 2.1.3 shows a force applied by a foot to a ball (95N east) and an opposing
friction force (20N west).

DIRECTION CONVENTIONS

Vectors need a direction in order to make sense. However, there needs to be a way
of describing the direction that everyone understands and agrees upon.

Vectors in one dimension

For vector problems in one dimension, there are a number of direction conventions
that can be used. For example:

» forwards or backwards

e up or down

e left or right

* north or south

e east or west.

For vectors in one dimension there are only two possible directions. The two
directions must be in the same dimension or along the same line. The direction
convention that is used should be shown graphically in all vector diagrams. Some
examples are shown in Figure 2.1.4. Arrows like these are placed near the vector
diagram so that it is clear which convention is being used.

u
P backwards <—— forwards

left «—— right
down S

FIGURE 2.1.4 Some common one-dimensional direction conventions.

Sign convention

In calculations involving one-dimensional vectors, a sign convention can also
be used to convert physical directions to the mathematical signs of positive and
negative. For example, forwards can be positive and backwards can be negative, or
right can be positive and left can be negative. A vector of 100 m up can be described
as —100m, as long as the relationship between sign and direction conventions are
clearly indicated in a legend or key. Some examples are shown in Figure 2.1.4.

The advantage of using a sign convention is that the signs of positive and negative
can be entered into a calculator, while words such as ‘up’ and ‘right’ cannot. This is
useful when adding or subtracting vectors.

FIGURE 2.1.2 A force of 4N left acts on a
toy car.

FIGURE 2.1.3 The force applied by the foot acts
at the point of contact between the ball and
the foot. The friction force acts at the point of
contact between the ball and the ground. The
kicking force, as indicated by the length of the
arrow, is much larger than the friction force.
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Worked example 2.1.1

DESCRIBING VECTORS IN ONE DIMENSION

left «—right
- +

70 m

Describe the vector above using:

a the direction convention shown

Thinking

Working

Identify the magnitude and unit of the
vector.

The magnitude is 70 and the unit is
m (metres).

Identify the vector direction according
to the direction convention.

The vector is pointing to the right
according to the direction convention.

Combine the magnitude, unit and

The vector is 70m right.

direction.

b the sign convention shown.

Thinking

Working

Convert the physical direction to the
corresponding mathematical sign.

The physical direction of right is
positive and left is negative. In this
example, the arrow is pointing right, so
the mathematical sign is +.

Combine the mathematical sign with The vector is +70m.

the magnitude and unit.

Worked example: Try yourself 2.1.1
DESCRIBING VECTORS IN ONE DIMENSION

west -— east
- +

50N

Describe the vector above using:

a the direction convention shown

b the sign convention shown.

ADDING VECTORS IN ONE DIMENSION

Most real-life situations involve more than one vector acting on an object. If this is
the case, it is usually desirable to combine the vector diagrams to find the overall
effect of the vectors. When two or more vectors are in the same dimension, they are
said to be collinear (in line with each other).

This means that the vectors must either point in the same direction or point in
opposite directions. For example, the vectors 10 m west, 15m east and 25 m west are
all in one dimension, because east is the opposite direction to west. When vectors are
combined, it is called adding vectors.

Graphical method of adding vectors

Vector diagrams, like those shown in Figure 2.1.5, are convenient for adding vectors.
To combine vectors in one dimension, draw the first vector, then start the second
vector with its tail at the head of the first vector. Continue adding arrows ‘head to
tail’ until the last vector is drawn. The sum of the vectors, or the resultant vector, is
drawn from the tail of the first vector to the head of the last vector.



5 m east

wl
Il

. _ 5, =15 m east s
5, =15 m east s,=5m east

+ =

5, =20 m east

FIGURE 2.1.5 Adding vectors head to tail. This particular diagram represents the addition of 15m
east and 5m east. The resultant vector, shown in red, is 20 m east.

In Figure 2.1.5 the two vectors §; (15m east) and 5, (5m east) are drawn
separately. The vectors are then redrawn with the head of s; connected to the tail
of 5,.The resultant vector si is drawn from the tail of § to the head of §,.The
magnitude (size) of the resultant vector is the sum of the magnitudes of the separate
vectors: 15m + 5m =20m.

Alternatively, vectors can be drawn to scale; for example, 1cm = 1m. The
resultant vector is then measured directly from the scale diagram. The direction of
the resultant vector is the direction from the tail of the first vector to the head of the
last vector.

Algebraic method of adding vectors

To add vectors in one dimension using algebra, a sign convention is used to represent
the direction of the vectors, as in Figure 2.1.4 on page 49. When applying a sign
convention, it is important to provide a key explaining the convention used.

The sign convention allows you to enter the signs and magnitudes of vectors
into a calculator. The sign of the final magnitude gives the direction of the resultant
vector.

Worked example 2.1.2
ADDING VECTORS IN ONE DIMENSION USING ALGEBRA

A student walks 25 m west, 16 m east, 44 m west and then 12 m east.

Use the sign convention in Figure 2.1.4 on page 49 to determine the resultant
displacement for the student.

Thinking Working

Apply the sign convention 25m west =-25m
to change each of the 16m east = +16m

directions to signs. A4 m west = —44m
12meast=+12m

Add the magnitudes and Resultant vector = (-25) + (+16) + (-44) + (+12)
their signs together. =-41m

Refer to the sign and Negative is west.
direction conventions to
determine the direction of
the resultant vector.

State the resultant vector. The resultant vector is 41 m west.

Worked example: Try yourself 2.1.2
ADDING VECTORS IN ONE DIMENSION USING ALGEBRA

A box has the following forces acting on it: 16 N up, 22N down, 4N up and 17N
down. Use the sign and direction conventions in Figure 2.1.4 on page 49 to
determine the resultant force on the box.

0 Vectors are added head to tail.
The resultant vector is drawn from
the tail of the first vector to the
head of the last vector.
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Double negatives

It is important to differentiate between
the terms subtract, minus, take away
or difference between and the term
negative. The terms subtract, minus,
take away or difference between are

processes, like add, multiply and divide.

You will find them grouped together

on your calculator. The term negative
is a property of a number that means
that it is opposite to positive. There is a
separate button on your calculator for
this property.

When a negative number is subtracted

from a positive number, the two numbers

are added together. For example,
5—(-2)=7.

FIGURE 2.1.6 Velocity is a vector, so its direction
is important. The velocity of a tennis ball
immediately before it hits a racquet is different
to its velocity immediately after it leaves the
racquet, because it is travelling in a different
direction.

Av=6m s west

-, =9ms™" west

FIGURE 2.1.8 Subtracting vectors using the
graphical method.

v,=3 ms east
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SUBTRACTING VECTORS IN ONE DIMENSION

To find the difference between two vectors, you must subtract the initial vector
from the final vector. To do this, work out which is the initial vector, then reverse its
direction to obtain the opposite of the initial vector. Then add the final vector to the
opposite of the initial vector.

This technique can be applied both graphically and algebraically.
Graphical method of subtracting vectors

Velocity indicates how fast an object is moving, and in what direction. It is a vector
because it involves both magnitude and direction. For example, in Figure 2.1.6 the
velocity of the tennis ball as it hits the racquet is different from the velocity of the
ball when it leaves the racquet, because the ball has changed direction. The concept
of velocity is covered in more detail in Section 2.2, but it is useful to use the example
of velocity now when discussing the subtraction of vectors. The processes applied to
the subtraction of velocity vectors works for all other vectors.

To subtract velocity vectors in one dimension using a graphical method,
determine which vector is the initial velocity and which is the final velocity. The
final velocity is drawn first. The initial velocity is then drawn, but in the opposite
direction to its original form. The sum of these vectors, or the resultant vector, is
drawn from the tail of the final velocity to the head of the reversed initial velocity.
This resultant vector is the difference between the two velocities, A7.

0 The mathematical symbol A (delta) is used to represent the change in a
variable. For example, AV means the change in velocity.

0 To find the difference between two vectors in the same dimension, subtract the
initial vector from the final vector. Vectors are subtracted by adding the negative
of one vector to the positive of the other vector.
In Figure 2.1.7, two velocity vectors 9, (9ms™! east) and 7, (3ms™., east) are
drawn separately. The initial velocity 9 is then redrawn in the opposite direction to
form —7; or 9ms! west.

v,=3ms" east
—_—

v, =9 ms! east -V, =9 ms™" west

FIGURE 2.1.7 Subtracting vectors using the graphical method

Figure 2.1.8 illustrates how the difference between the vectors is found. First
the final velocity, 9,, is drawn. Then the opposite of the initial velocity, —7;, is drawn
head to tail. The resultant vector, Av, is drawn from the tail of 9, to the head of —.

The magnitude of the resultant vector, A7, can be calculated from the magnitudes
of the two vectors. Alternatively, you could draw the vectors to scale and then
measure the resultant vector against that scale, for example 1ms™! = 1 cm.

The direction of the resultant vector, A7, is the same as the direction from the tail
of the final velocity, 7, to the head of the opposite of the initial velocity, —7;.

Algebraic method of subtracting vectors

To subtract velocity vectors in one dimension algebraically, a sign convention is
used to represent the direction of the velocities. Some examples of one-dimensional
directions include east and west, north and south and up and down. These options
are replaced by positive (+) or negative (—) signs when calculations are performed.
To change the direction of the initial velocity, simply change the sign from positive
to negative or from negative to positive.



The equation for finding the change in velocity is: up +
change in velocity = final velocity — initial velocity
Av=0v, -7
which is the same as:
change in velocity = final velocity + the opposite of the initial velocity

down —

Av =0, +(-7y)

The final velocity is added to the opposite of the initial velocity. Because the change
in velocity is a vector, it will consist of a sign, a magnitude and a unit. The sign of the
answer can be compared with the sign and direction convention (Figure 2.1.9) to
determine the direction of the change in velocity.

backwards -+——— forwards
- +

left «— right

- +
Worked example 2.1.3 N
+
SUBTRACTING VECTORS IN ONE DIMENSION USING ALGEBRA
An aeroplane changes course from 255ms! west to 160ms-! east. Use the sign
and direction conventions in Figure 2.1.9 to determine the change in the velocity S -
of the aeroplane.
W=-——>E
Thinking Working - +
- ; ; FIGURE 2.1.9 One-dimensional direction
Apply the sign and direction v, = 255ms! west = -255ms-! conventions can also be expressed as sign

convention to change the directions
to signs.

V, =160ms ! east =+160ms! conventions.

Reverse the direction of the initial

se ! _ -V = 255ms! east
velocity v; by reversing the sign.

=+255ms!

Use the formula for change in velocity

A = —! =
to calculate the magnitude and the v=ve+ () = (+160) +_(r255)
sign of AV. =+415ms

Refer to the sign and direction Positive is east.
convention to determine the direction
of the change in velocity.

State the resultant vector. The resultant vector is 415ms-! east.

Worked example: Try yourself 2.1.3
SUBTRACTING VECTORS IN ONE DIMENSION USING ALGEBRA

A rocket accelerates from 212ms! to 2200m s upwards. Use the sign and
direction conventions in Figure 2.1.9 to determine the change in velocity of the
rocket.
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2.1 Review

Scalar quantities have only a magnitude and a
unit

Vector quantities have a magnitud, a unit and
a directio. They are represented using vector
notation An arrow above the variable indicates
that it is a vector.

Combining vectors is known as adding vectors
Adding vectors in one dimension can be done
graphically using vector diagras. After adding
vectors head to tail the resultant vector can be
drawn from the tail of the first vector to the head
of the last vector.

KEY QUESTIONS

1 Find the resultant vector when the following vectors

2

are combine: 2 m west 5 m east and 7m west
Add the following vectors to find the resultant vecto:
3m up 2 m down and 3m down

Determine the resultant vector of a model train that
moves in these direction: 23 m forwars, 16 m
backwards, 7m forwards and 3 m backwards.

When adding vector B to vector A using the head to
tail method from what poin, and to what poin, is the
resultant vector drawn?

A from the head of , to the tail of B

B from the tail of , to the head of A

C from the head of, to the tail of A

D from the tail of , to the head of B

MODULE 1 | KINEMATICS

Adding vectors in one dimension can be done
algebraically by applying a sign conventio.
Vectors with direction become vectors with either
positive or negative signs

To find the difference between two vectos,
subtract the initial vector from the final vectr.

Vectors are subtracted by adding the negatve, or
opposite of a vector.

Subtracting vectors in one dimension can be done
graphically using a scal.

Subtracting vectors in one dimension can also be
done algebraicall.

A car that was initially travelling at a velocity of 3ms-1
west is later travelling at 5ms-! east What is the
difference between the two vectors?

Determine the change in velocity of a runner who
changes from running at 4ms-1 to the right on grass
to running 2ms-1 to the rght n sand

A student throws a ball up into the air at 4ms=1 A
short time later the ball is travelling back downwards
to hit the ground at 3ms-1 Determine the change in
velocity of the ball during this time

Jamelia applies the brakes on her car and changes
her velocity from22.2 ms-1 forwards to8.2 ms!
forwars. Calculate the change in velocity of
Jamelias car.



2.2 Displacement, speed and velocity

In order to describe and analyse motion, it is important to understand the terms
used to describe it, even in its simplest form. In this section you will learn about
some of the terms used to describe rectilinear or straight-line motion, such as
position, distance, displacement, speed and velocity.

CENTRE OF MASS

Motion is often more complicated than it seems at first. For example, when a
freestyle swimmer travels at a constant speed of 2ms~!, their head and torso move
forwards at this speed, but the motion of their arms is more complex. At times their
arms move forwards through the air faster than 2ms™!, and at other times they
move backwards through the water.

It is beyond the scope of this course to analyse such a complex motion. However,
the motion of the swimmer can be simplified by treating the swimmer as a simple
object located at a single point called the centre of mass. The centre of mass is the
balance point of an object. For a person, the centre of mass is just above the waist.
The centres of mass of some objects are shown in Figure 2.2.1.

POSITION, DISTANCE AND DISPLACEMENT
Position

One important term to understand when analysing straight-line motion is position.

« Position describes the location of an object at a certain point in time with respect
to the origin.

« Position is a vector quantity and therefore requires a direction.

Consider Sophie doing laps in a 50 m pool, as shown in Figure 2.2.2.To simplify
her motion, Sophie is treated as a point object with her centre of mass just above her
waist. The pool can be treated as a one-dimensional number line, with the starting
block defined as the origin. The direction to the right of the starting block is taken
to be positive.

Sophie’s position as she is warming up behind the starting block is —10m, as
shown in Figure 2.2.2(a). The negative sign indicates the direction from the origin,
i.e. to the left. Her position could also be described as 10 m to the left of the starting
block.

At the starting block, Sophie’s position is 0 m, as shown in Figure 2.2.2(b). Then
after swimming a little over half a length of the pool she is +25m or 25 m to the right
of the origin, as shown in Figure 2.2.2(c).

(a)

60 m

Position
(b)
I ! l |
-10 10 20 30 40 5 60 m
Position
(c)
| | 2l |
-10 10 20 30 40 5 60 m
Position

FIGURE 2.2.2 The position of the swimmer is given with reference to the starting block. (a) While
warming up, Sophie is at =10 m. (b) When she is on the starting block, her position is zero. (c) After
swimming for a short time, she is at a position of +25m.

(a)

(b)

(9

(d)

FIGURE 2.2.1 The centre of mass of each object
is indicated by a cross.
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Distance travelled

Position describes where an object is at a certain point in time. But distance
travelled is how far a body travels during a journey. For example, the tripmeter
or odometer of a car or bike measures distance travelled. Distance travelled is
represented by the symbol d.

0 e Distance travelled (d) describes the length of the path covered during an
object’s entire journey.
e Distance travelled is a scalar quantity and is measured in metres (m).

For example, if Sophie completes three lengths of the pool, the distance travelled
during her swim will be 50 + 50 + 50 = 150 m.

The distance travelled is not affected by the direction of the motion. That is, the
distance travelled by an object always increases as it moves, regardless of its direction.

Displacement

Displacement is the change in position of an object, and is represented by the
symbol 5. Displacement considers only where the motion starts and finishes. The
route taken between the start and finish has no effect on displacement. If the motion
is in one dimension, a word such as east or west, or a positive or negative sign, can
be used to indicate the direction of the displacement.

O ¢ Displacement is the change in position of an object in a given direction.
¢ Displacement s = final position — initial position.
e Displacement is a vector quantity and is measured in metres (m).

Consider the example of Sophie completing one length of the pool. During
her swim, the distance travelled is 50m. Her final position is +50m and her initial
position is 0 m. Her displacement is:

s = final position — initial position
=50-0
=+50m or 50m in a positive direction

Notice that magnitude, units and direction are required for a vector quantity. The
distance will be equal to the magnitude of displacement only if the body is moving
in a straight line and does not change direction. If Sophie swims two lengths, her
distance travelled will be 100m (50m out and 50m back) but her displacement
during this swim will be:

s = final position — initial position
=0-0
=0m

Even though Sophie has swum 100m, her displacement is zero because the
initial and final positions are the same.

The above formula for displacement is useful if you already know the initial and
final positions of the object. An alternative method to determine total displacement,
if you know the displacement of each section of the motion, is to add up the
individual displacements for each section of motion.

0 The total displacement is the sum of individual displacements.

It is important to remember that displacement is a vector and so, when adding
displacements, you must obey the rules of vector addition (discussed in Section 2.1).

In the example above, in which Sophie completed two laps, overall displacement
could have been calculated by adding the displacement of each lap:
s =sum of displacements for each lap
= 50m in the positive direction + 50 m in the negative direction
=50+ (-50)
=0m



SPEED AND VELOCITY

For thousands of years, humans have tried to travel at ever greater speeds. This
desire has contributed to the development of all sorts of competitive activities, as
well as major advances in engineering and design. World records for some of these
pursuits are given in Table 2.2.1.

TABLE 2.2.1 World record speeds for a variety of sports or modes of transport

Activity or object World record speed (ms1) World record speed (kmh1)

luge 43 140
train 167.5 603
tennis serve 73.1 263
waterskiing (barefoot) 60.7 218
cricket delivery 44.7 161
racehorse 19.7 71

Speed and velocity are both quantities that give an indication of how quickly
the position of an object is changing. Both terms are in common use and are often
assumed to have the same meaning. In physics, however, these two terms have
different definitions.

0 e Speed is the rate at which distance is travelled. Like distance, speed is a
scalar. A direction is not required when stating the speed of an object.

e Velocity is the rate at which displacement changes. It has direction, so it is a
vector quantity. A direction must always be given when stating the velocity of
an object.

e The standard S| unit for speed and velocity is metres per second (ms™1).

Instantaneous speed and velocity

Instantaneous speed and instantaneous velocity tell you how fast something is
moving at a particular point in time. The speedometer on a car or bike indicates
instantaneous speed.

If a speeding car is travelling north and is detected on a police radar gun at
150kmh™1, it indicates that this car’s instantaneous speed is 150kmh™, while its
instantaneous velocity is 150kmh~! north. The instantaneous speed is always equal
to the magnitude of the instantaneous velocity.

Average speed and velocity

Average speed and average velocity both give an indication of how fast an object is
moving over a particular time interval.

O average speed v, = distance tavelled _— d-

average velocity v, = JsPacement _ .
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FIGURE 2.2.3 Australian Anna Meares won
the UCI Mexico Track World Cup 2013. She

rode 500 m in a world record time of 32.8365s.

Her average speed around the track was

55.6kmhL, but her average velocity was zero.

Average speed is equal to instantaneous speed only when a body’s motion is
uniform; that is, if it is moving at a constant speed.

The average speed of a car that takes 30 minutes to travel 20 km from Macquarie
Park to Manly Beach is 40kmh™!. But this does not mean that the car travelled the
whole distance at this speed. In fact it is more likely that the car was sometimes
moving at 60kmh™!, and at other times was not moving at all.

A direction (such as north, south, up, down, left, right, positive, negative) must
be given when describing a velocity. The direction of velocity is always the same
as the direction of displacement. And like the relationship between distance and
displacement, average speed will be equal to the magnitude of average velocity only
if the body is moving in a straight line and does not change direction.

For example, in a cycling race of one lap around a track (Figure 2.2.3), the
magnitude of the average velocity will be zero, because the displacement is zero.
This is true no matter what the average speed for the lap is.

____________________________________________________________

SKILLBUILDER

Converting units

PHYSICSFILE

Reaction time

Drivers are often distracted by loud
music or phone calls. These distractions
result in many accidents and deaths on
the road. If cars are travelling at high
speeds, they will travel a large distance
in the time that the driver takes just to
apply the brakes. A short reaction time
is very important for all road users.
This is easy to understand given the
relationship between speed, distance
and time.

distance travelled =v x t
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The usual unit used in physics for velocity is ms1, but kmh-! is often used in
everyday life. So it is important to understand how to convert between these
two units.

Converting kmh1 to ms!

You should be familiar with 100kmh-! because it is the speed limit for
most freeways and country roads in Australia. Cars that maintain this speed
would travel 100km in 1 hour. Since there are 1000 metres in 1 kilometre
and 3600 seconds in 1 hour (60s x 60min), this is the same as travelling
100000 m in 3600s.

100kmh™ =100x1000mh!

=100000mh™*

100000 . -1
= 3600 MS

=27.8ms™ :
So kmh-1 can be converted to ms™1 by multiplying by 199 (or dividing by 3.6). |

3600
Converting ms1 to kmh?

A champion Olympic sprinter can run at an average speed of close to 10ms™1.
Each second, the athlete will travel approximately 10 metres. If they could
maintain this rate, in 1 hour the athlete would travel 10 x 3600 = 36000 m =
36km.

10ms'=10x3600mh™

=36000mh™

36000 1
= Too0 Kmh

=36kmh™!
So ms-1 can be converted to kmh-1 by - 36

multiplying by % or 3.6. /—\

When converting a speed from one unit km h-! m s
to another, it is important to think about \_/
the speeds to ensure that your answers < 36

make sense. The diagram in Figure 2.2.4
summarises the conversion between the
two common units for speed.

FIGURE 2.2.4 Rules for converting
betweenms~! andkmh=!.

____________________________________________________________



Worked example 2.2.1

AVERAGE VELOCITY AND CONVERTING UNITS

Sam is an athlete performing a training routine by running back and forth along a
straight stretch of running track. He jogs 100 m north in a time of 20s, then turns
and walks 50 m south in a further 25s before stopping.

a What is Sam’s average velocity in ms™1?

Thinking

Working

Calculate the displacement.
(Remember that total displacement is
the sum of individual displacements.)

Sam’s total journey consists of two
displacements: 100 m north and then
50msouth.

s =sum of displacements
=100m north+50m south
=100+ (-50)
=+50m or 50m north

S

start

| =il

start

o

Work out the total time taken for the
journey.

20+ 25=45s

Substitute the values into the velocity
equation.

Displacement is 50 m north.

Time taken is 45s.

Average velocity v, =5
50
a

o

1.1ms™

Velocity is a vector, so a direction must
be given.

1.1 ms™! north

b What is the magnitude of Sam’s avera

ge velocity in kmh=1?

Thinking

Working

Convert from ms™! to kmh-! by
multiplying by 3.6.

vV, =1.1ms™
=1.1x3.6
=4.0kmh™ north

As the magnitude of velocity is needed,
direction is not required in this answer.

Vay = 4.0kmh-!
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¢ What is Sam’s average speed in ms~1?

journey.

Thinking Working
Calculate the distance. (Remember d=100 + 50
that distance is the length of the path =150
covered over the entire journey. The

direction does not matter.)

Sam travels 100m in one direction

and then 50m in the other direction.

Work out the total time taken for the 20+ 25 =45s

Substitute the values into the speed
equation.

Distance is 150 m.
Time taken is 45s.

d
Average speed v,, = %

t
15
5

o

I
w
w
3
n
N

d What is Sam’s average speed in kmh=1?

17

Thinking

Working

Convert fromms=! tokmh-1 by
multiplying by 3.6.

Average speed v,, = 3.3ms™!
=33x36

=12kmh-!

Worked example: Try yourself 2.2.1
AVERAGE VELOCITY AND CONVERTING UNITS

Sally is an athlete performing a training routine by running backwards and forwards
along a straight stretch of running track. She jogs 100m west in a time of 20s, then
turns and walks 160 m east in a further 45s before stopping.

a What is Sally’s average velocity in ms™1?

b What is the magnitude of Sally’s average velocity in kmh-1?

¢ What is Sally’s average speed in ms™1?

d What is Sally’s average speed in kmh~1? Give your answer to two significant
figures.
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Alternative units for speed and distance

Metres per second is the standard unit for measuring
speed because it is derived from the standard unit
for distance (metres) and the standard unit for time
(seconds). However, alternative units are often used to
better suit a certain application.

The speed of a boat is usually measured in knots,
where 1knot = 0.51 ms=L. This unit originated in the
nineteenth century, when the speed of sailing ships would
be measured by allowing a rope, with knots tied at regular
intervals, to be dragged by the water through a sailor’s
hands. By counting the number of knots that passed
through the sailor’'s hands, and measuring the time taken
for this to happen, the average speed formula could be
applied to estimate the speed of the ship.

The speed of very fast aircraft, such as the one in
Figure 2.2.5, is often stated using Mach numbers. A speed
of Mach 1 equals the speed of sound, which is 340ms! at
the Earth’s surface. Mach 2 is twice the speed of sound, or
680ms, and so on.

The light-year is an alternative unit for measuring distance.

The speed of light in a vacuum is nearly 300000 kms™L.

FIGURE 2.2.5 Modern fighter aircraft are able to fly at speeds well
above Mach 2.

One light-year is the distance that light travels in one year.
Astronomers use this unit because distances between
objects in the universe are enormous. It takes about 4.24
years for light to travel from the nearest star (Proxima
Centauri) to us. That means the distance from our solar
system to the nearest star is about 4.24 light-years. Light
takes about 8.5 minutes to travel from the Sun to Earth, so
you could say that the Sun is 8.5 light-minutes away.

2.2 Review

» The motion of an object travelling in a straight line
is called rectilinear motio.

+ Position defines the location of an obect with
respect to a defined origi.

» Distance travelle, d tells us how far an object has
actually travelle. Distance travelled is a scalr.

» Displacement s is a vector and is defined as
the change in position of an object in a given
directio: s = final position — nta poston

» The average speed of a bod, v,, is defined as the
rate of change of distance and is a scalar quantit:

average speed v, = distance travelled _ ¢

+ The average velocity of a bod, v,, is defined as
the rate of change of displacement and is a vector
quantity

_ displacement

average velocity v,, = =5

time taken A

« The usual S unit for both speed and velocity is
metres per second (ms1) kilometres per hour
(kmh-1) is another S unit that is commonly used

+ To convert from ms=! to kmh-1 multiply by 36
+ To convert from kmh-! to ms™! divide by 36
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2.2 Review continued

KEY QUESTIONS

1 Agirl swims 10 lengths of a 25m pool Which one or

more of the following statements correctly describes
her distance travelled and displacement?

A Her distance travelled is zero.

B Her displacement is zer.

C Her distance travelled is 250m

D Her displacement is 250m

An insect is walking back and forth along a metre
ruler, as show in the figure belw. Taking the right as
positive determine both the size of the displacement
and the distance travelled by the insect as it travels on
the following paths

A B C D E
[T T T P T T T T T T T |
[0 0 20 30 40 50 60 70 80 90 00 |
| cm|
a AtoB
b CtoB
c CtoD

d Cto EandthentoD

During a training rid, a cyclist rides 50 km north then

30km sout.

a What is the distance travelled by the cyclist during
the ride?

b What is the displacement of the cyclist for this ride?

A lift in a city building shown in the figure belo,
carries a passenger from the ground floor down to the
basement then up to the top floor.

a What is the
displacement of
the lift as it travels
from the ground -
floor to the
basement?

b What is the -
displacement
of the ftas t
travels from the -
basement to the
top floor? S0m

¢ What is the -
distance travelled
by the lift during
this entire trip? -

d What is the
displacement of
the lift during this -
entire trip?

---4 top floor

ground
floor
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A car travelling at a constant speed was timed over

400m and was found to cover the distance in 12s.

a What was the ca’s average speed?

b The driver was distracted and his reaction time was
075 s before applying the brakes. How far did the
car travel in this time?

A cyclist travels 25km in 90 minutes

a What is her average speed in kmh-1?

b What is her average speed in ms™1?

Liam pushes his toy truck 5m east then stops it

and pushes it 4 m west The entire motion takes

10 seconds

a What is the trucks average speed?

b What is the trucks average velocity?

An athlete in training for a marathon runs 10km north

along a straight road before realising that she has

dropped her drink bottl. She turns around and runs
back 3km to find her bottle then resumes running

in the original directio. After running for .5 h the

athlete stops when she is 15km from her starting

position

a What is the distance travelled by the athlete during
the run?

b What is the athletes displacement during the run?

¢ What is the average speed of the athlete in kmh-1?

d What is the athletes average velocity in km h=1?



____________________________________________________________

PHYICS NQURY

Modelling acceleration

How is the motion of an object moving in a straight line
described and predicted?

COLLECTTHIS... 5 Drop the string and listen to the
beats the nuts make as they hit

¢ 5 large metal nuts
the tra.

¢ 5m length of strin
gt g 6 Using trial and erro, djust the

position of the nuts on the string so
they create equally spaced beats

.+ metal baking tray
E DO THS... when they hit the baking tra.

e ruler or measuring tape

1 Tie one nut onto the end of the RECORD HIS...
string

Present your results in a tabe.
2 Thread the other nuts onto

the string one at a time tying
the string to fix them at 10cm

Describe the spacing between each
nut that produced equally spaced

. beats
interval.
3 Place the metal baking tray on the REFLECT ON HIS...
groun, upside dow. How is the motion of an obect
4 Standing above the tra, hold the moving in a straight line described
string so that the first nut is just and predicted?
resting on the try. Explain why the pattern observed in

this experiment was creaed.

____________________________________________________________

Acceleration is a measure of how quickly velocity changes. When you are in a car
that speeds up or slows down, you experience acceleration. In an aircraft taking
off along a runway, you experience a much greater acceleration. Because velocity
has magnitude and direction, acceleration can be caused by a change in speed or a
change in direction. In this section you will look at the simple case of acceleration
caused by a change in velocity while travelling in a straight line.

FINDING THE CHANGE IN VELOCITY AND SPEED

The velocity and speed of everyday objects are changing all the time. Examples of
these are when a car moves away as the traffic lights turn green, when a tennis ball
bounces or when you travel on a rollercoaster.

If the initial and final velocity of an object are known, its change in velocity
can be calculated. To find the change in any physical quantity, including speed and
velocity, the initial value is subtracted from the final value.

Vector subtraction was covered in detail in Section 2.1.

0 Change in velocity is the final velocity minus the initial velocity:
Av=v—i
where i is the initial velocity in ms™!
v is the final velocity in ms™!
AV is the change in velocity in ms™.

Because velocity is a vector, this should be done using vector subtraction. Like all
vectors, velocity must include a direction.

0 Change in speed is the final
speed minus the initial speed:
Av=v—u
where u is the initial speed in ms™

v is the final speed in ms!
Av is the change in speed
inmsL.

Since speed is a scalar, direction

is not required.

GO TO » | Section 2.1, page 52
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Worked example 2.3.1

CHANGE IN SPEED AND VELOCITY PART 1

rebounds at 5.0msL.

u=5ms"

A ball is dropped onto a concrete floor and strikes the floor at 5.0ms™1. It then

y=5ms"!

a What is the change in speed of the ball?

Thinking Working

Find the values for the initial speed u=50ms!

and the final speed of the ball. v=50ms!

Substitute the values into the change Av=v—-u

in speed equation: Av=v —-u = (5.0) - (5.0)
=0ms!

b What is the change in velocity of the ball?

Thinking

Velocity is a vector. Apply the sign
convention to replace the directions.

Working

i =50ms"! down
=-50ms!

v=50mstup
=+5.0ms!

As this is a vector subtraction, reverse
the direction of u to get .

U=-5.0ms"1, therefore
—i=+5.0ms"!

Substitute the values into the change
in velocity equation:
Av =v +(-u)

Av =v +(-U)

= (+5.0) + (+5.0)
=+10ms!

Apply the sign convention to describe
the direction.

AV =10.0ms™1 up

Worked example: Try yourself 2.3.1

CHANGE IN SPEED AND VELOCITY PART 1

A ball is dropped onto a concrete floor and strikes the floor at 9.0ms-1. It then

rebounds at 7.0ms1.

a What is the change in speed of the ball?

b What is the change in velocity of the ball?




ACCELERATION

Consider the following information about the velocity of a car that starts from rest,
as shown in Figure 2.3.1. The velocity of the car increases by 10kmh™ to the right
each second. If right is taken to be the positive direction, the car’s velocity changes
by +10kmh™! per second, or +10kmh's™1,

FD\%%D&%

t=0s

FIGURE 2.3.1 A car’s acceleration as its velocity increased from Okmh™! to +30kmh.

The athlete in Figure 2.3.2 takes 3 seconds to come to a stop at the end of a race.
The velocity of the athlete changes by —2ms™! to the right each second. If right is
taken to be the positive direction, the athlete’s acceleration is —2 metres per second
per second, or —2ms™2

y=6ms’! 4ms! 2ms!
t=0s 2s

FIGURE 2.3.2 The velocity of the athlete changes by —2 ms~ each second. The acceleration is
-2ms=.

When the direction of motion is taken to be the positive direction, a negative
acceleration means that the object is slowing down in the direction of travel, like the
athlete in Figure 2.3.2. A negative acceleration can also mean the object is speeding
up but in the opposite direction.

Because acceleration is a vector quantity, a vector diagram can be used to find
the resultant acceleration of an object.

Average acceleration

Like speed and velocity, the average acceleration of an object can also be calculated.
To do this you need to known how long the change in velocity lasted.

ﬁ Average acceleration, a,,, is the rate of change of velocity:

= __ change in velocity
av —  change in time

— AV
At

u
At

where V is the final velocity in ms!
i is the initial velocity in ms™!
At is the time interval in seconds.
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Human acceleration

In the 1950s the United States Air Force used rocket
sleds (Figure 2.3.3) to study the effects of extremely large
accelerations on humans, with the aim of improving the
chances of pilots surviving crashes. At that time it was
thought that humans could not survive accelerations above
about 175ms2, so aircraft seats, harnesses and cockpits
were not designed to withstand larger accelerations.

One volunteer, Colonel John Stapp, was strapped into a
sled and accelerated to speeds of over 1000kmh=1 in a
very short time. Water scoops were used to stop the sled
in less than 2 seconds, producing a deceleration of more
than 450 ms=2. The effects of these massive accelerations
are evident on his face (Figure 2.3.4).

The results showed that humans could survive much
higher decelerations than previously thought, and that
the mechanical failure of seats, harnesses and cockpit
structures were major causes of deaths in aircraft
accidents.

_—

FIGURE 2.3.3 A rocket-powered sled used to test the effects of
acceleration on humans.

£ A /|

FIGURE 2.3.4 Photos showing the distorted face of Colonel John Stapp
during a sled run.

Worked example 2.3.2
CHANGE IN SPEED AND VELOCITY PART 2

A ball is dropped onto a concrete floor and strikes the floor at 5.0ms1. It then
rebounds at 5.0ms~L. The contact with the floor lasts for 25 milliseconds. What
is the average acceleration of the ball during its contact with the floor?

MODULE 1 | KINEMATICS

Thinking Working
Note the values you will need in order i=-5ms!
to find the average acceleration (initial _— 1
oo . . -u=5ms

velocity, final velocity and time). -

. . V=5ms!
Convert milliseconds into seconds by _ _1
dividing by 1000. (Note that AV was AV =10ms™ up
calculated for this situation in the At =25ms
previous Worked example.) =0.025s

Substitute the values into the average
acceleration equation.

= _ change in velocity
av — time taken
— AV
At
—_10
0.025

= 400ms™

Acceleration is a vector, so you must
include a direction in your answer.

d, =400ms=2up




Worked example: Try yourself 2.3.2
CHANGE IN SPEED AND VELOCITY PART 2

A ball is dropped onto a concrete floor and strikes the floor at 9.0ms™1. It then
rebounds at 7.0ms L. The contact time with the floor is 35ms. What is the
average acceleration of the ball during its contact with the floor?

1

2.3 Review

Change in speed is a scalar calculation
Av = final speed - initial speed =v —u
Change in velocity is a vector calculation
Av = final velocity — initial velocity =v —u

KEY QUESTIONS

A radio-controlled car is travelling east at 10kmh-1 t
runs over some sand and slows down to 3kmh-! east
What is its change in speed?

A lump of Blu Tack falling vertically hits the ground
at.0 ms1 without reboundin. What is its change in
velocity during the collision?

A ping pong ball hits the floor vertically at 50 ms-1
and rebounds directly upwards t 3.0 ms-! What is its
change in velocity during the bounce?

While playing soccer, Ashley is running north at

75 ms™! He slides along the ground and stops in.5 s
What is his average acceleration as he slides to a stop?
Olivia launches a model rocket vertically and it
reaches a speed of 150kmh-1 after 35 s What is the
magnitude of its average acceleration in kmh-1 s1?

6

Acceleration is usually measured in metres per
second per second (ms2)

Acceleration is a vecto. The average acceleration
of a body, a,, is defined as the rate of change of
velocity

V=i

AV
A A

gy =

A squash ball travelling east at 25 ms-! strikes the

front wall of the court and rebounds at 15ms~! west

The contact time between the wall and the ball is

0050 s Use vector diagram, where approprite, to

help you with your calculations

a What is the change in speed of the ball?

b What is the change in velocity of the ball?

¢ What is the magnitude of the average acceleration
of the ball during its contact with the wall?

A greyhound starts from rest and accelerates

uniformly.lts velocity after .2sis.0  ms! south

a What is the change in speed of the greyhound?

b What is the change in velocity of the greyhound?

¢ What is the acceleration of the greyhound?
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from the end of a 50m pool.

S(I)m

FIGURE 2.4.1 Anneka about to start her swim

gradent = veloity

Ax

Time (s)

FIGURE 2.4.3 The gradient of a position—time

graph.
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2.4 Graphing position, velocity and
acceleration over time

Sometimes the motion of an object travelling in a straight line is complicated. The
object could travel forwards or backwards, speed up or slow down, stop completely,
or stop and then start again. This information can be presented in a table, or in
graphical form.

Information in a table is not as easy to interpret as information presented graphically.
The main advantage of a graph is that it allows the motion to be visualised clearly. This
section examines position—time, velocity—time and acceleration—time graphs.

POSITION-TIME (x-t) GRAPHS

A position—time graph indicates the position x of an object at any time ¢, for motion
that occurs over an extended time interval. The graph can also show other information.

Consider Anneka, who is attempting to break her personal best for the 50m
freestyle, as shown in Figure 2.4.1. Her position—time data are shown inTable 2.4.1.
The pool is 50 metres long, and the edge where she dives in is treated as the origin.

TABLE 2.4.1 Anneka’s positions and times during her swim.

B o 5 10 15 20 25 30 35 40 45 50 55 60
IS o 10 20 30 40 50 50 50 45 40 35 30 25

Table 2.4.1 reveals several features of Anneka’s swim. For the first 25 s she swam
at a constant rate. Every 5s she travelled 10m in a positive direction, so her velocity
was +2ms~!. She reached the end of the pool after 25s. Then from 25s to 35s
her position did not change. Finally, from 35s to 60s, she swam back towards the
starting point, in a negative direction. On this return lap she maintained a more
leisurely rate of Sm every 5s, so her velocity was -1 ms™.

This data is plotted on the position—time graph in Figure 2.4.2.

50
45
40
35
30
25
20
15
10

5

0

T T T T T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)
FIGURE 2.4.2 The position—time graph for Anneka’s swim.

Anneka’s displacement s can be determined by comparing her initial and final
positions. For example, her displacement between 20s and 60s is:
s = final position — initial position
=25-40
=—15m



By further examining the graph above, it can be seen that during the first 25s,
Anneka has a displacement of +50m. This means her average velocity is +2ms™1,
i.e. 2ms~! to the right, during this time. Her velocity can also be obtained by finding

the gradient of this section of the graph (Figure 2.4.3).

0 The gradient of an x—t graph is the velocity.

A positive velocity indicates that the motion is in a positive direction. A negative
velocity indicates that the motion is in a negative direction.

To confirm that the gradient of a position—time graph is a measure of velocity,
you can use dimensional analysis:

: _ rise — Ax
Gradient of x—¢ graph = 1% =2
The units of this gradient is metres per second (ms~!), so gradient is a measure
of velocity. Note that the rise in the graph is the change in position, which is the

definition of displacement; that is, Ax =5.

Non-uniform velocity

For motion with uniform (constant) velocity, the position—time graph will be a
straight line, but if the velocity is non-uniform the graph will be not be straight. If
the position—time graph is curved, as in Figure 2.4.5, the instantaneous velocity (the
velocity at a particular point, such as A) is the gradient of the tangent to the line at
that time. The average velocity between two points (such as B and C) is the gradient
of the chord between the points at the start and end of that period.

1

e
-

Time

FIGURE 2.4.5 The instantaneous velocity at point A is the gradient of the tangent at that point. The
average velocity between points B and C is the gradient of the chord between these points on the
graph.

Worked example 2.4.1
ANALYSING A POSITION-TIME GRAPH

The motion of a cyclist is represented by the position-time graph below. A, B, C, D,
E and F represent points along the cyclist’s journey.

xm) D E
300 _—

250
200
150 -

100

50
A V.
0 20 40 60 80 100 1®)

_____________________________

SKILLBUILDER

Interpreting the
slope of a linear

graph i
Scientists often represent :
a relationship between two :
variables as a graph. For directly :
proportional relationships, the :
variables are connected by a E
straight line, where the slope (or !
gradient) of the line represents !
the constant of proportionality !
between the two variables. :
The slope or gradient of the :
line is defined as the ratio of :
change between two points in the |
vertical axis (Ay), divided by the :
change between two points in the !
horizontal axis (Ax). In other words, E
it measures the rate at which one !
variable (the dependent variable) !
changes with respect to the other !
(the independent variable). !
The graph below has two straight |
lines with different slopes. The :
steeper slope (blue line) indicates :
that the rate of change is higher. :
This means the change is :
happening more quickly. On the E
other hand, the flatter slope (red !
line) indicates that the rate of !
change is lower. This means the !
change is happening more slowly. |

y
8 -

7 4
6
54
4 4
3
2
14

T T T T T T T T
| 2 3 4%

FIGURE 2.4.4 Two lines with different slopes.

_____________________________

CHAPTER 2 | MOTION IN A STRAIGHT LINE 69




70

MODULE 1 | KINEMATICS

a What is the velocity of the cyclist between A and B?

s = final position - initial position

Thinking Working
Determine the change in position At A x=0m.
(displacement) of the cyclist between AtB, x=100m.
A and B using: $-100-0

=+100m or 100m forwards
(that is, away from the starting point)

Determine the time taken to travel
from A to B.

At=20-0
=20s

Calculate the gradient of the graph
between A and B using:

gradient of x-t graph = s¢ = &x

Remember that Ax = s.

Gradient = 100
=5

State the velocity, using:
gradient of x-t graph = velocity

Velocity is a vector so direction must
be given.

Since the gradient is 5, the velocity is
+5ms! or 5ms-! forwards.

b Describe the motion of the cyclist between B and C.

Thinking

Working

Interpret the shape of the graph
between B and C.

The graph is flat between B and C,
indicating that the cyclist’s position
is not changing for this time. So the
cyclist is not moving, and their the
velocity is Oms™1.

You can confirm the result by
calculating the gradient of the graph
between B and C using:

gradient of x-t graph = ¢ = &x

Remember that Ax = s.

Gradient =

o B|o

Worked example: Try yourself 2.4.1
ANALYSING A POSITION-TIME GRAPH

Use the graph shown in Worked example 2.4.1 to answer the following questions.

a What is the velocity of the cyclist between E and F?

b Describe the motion of the cyclist between D and E.




VELOCITY-TIME (v-t) GRAPHS
Analysing motion

A graph of velocity ¢ against time ¢ shows how the velocity of an object changes with
time. This type of graph is useful for analysing the motion of an object moving in a
complex manner.

Consider the example of Aliyah, who ran backwards and forwards along an aisle
in a store (Figure 2.4.6). Her velocity—time graph shows that she was moving with
a positive velocity, i.e. in a positive direction, for the first 6s. Between the 6 s mark
and the 7s mark she was stationary, then she ran in the opposite direction (because
her velocity was negative), for the final 3s.

The graph shows Aliyah’s velocity at each instant in time. She moved in a
positive direction with a constant speed of 3ms™! for the first 4s. Between 4s and
6 she continued moving in a positive direction but slowed down. At 6s she came
to a stop for 1s. During the final 3 s she accelerated in the negative direction for 1s,
then travelled at a constant velocity of =1 ms™! for 1s. She then slowed down and
came to a stop at 10s. Remember that whenever the graph is below the time axis the
velocity is negative, which indicates travel in the opposite direction. So Aliyah was
travelling in the opposite direction for the last 3s.

Finding displacement

A velocity—time graph can also be used to find the displacement of the object under
consideration.

It is easier to see why the displacement is given by the area under the v—t graph
when velocity is constant. For example, the graph in Figure 2.4.8 shows that in
the first 4s of motion, Aliyah moved with a constant velocity of +3ms™'. Note that
the area under the graph for this period of time is a rectngle. Her displacement,

5, during this time can be determined by rearranging the formula for velocity:
5

A

1)
Il

Xt

“©l
Il

L
0
height X base

are under v—t graph

3
2 area
=+12m
|| = displacement
Time (s)

0 I I T T T

1 2 7 8 9 10 11

14

FIGURE 2.4.8 Area values as shown in Aliyah’s v—t graph.

From Figure 2.4.8, the area under the graph for the first 4 seconds gives Aliyah’s
displacement during this time, i.e. +12m. The displacement from 4s to 6s is
represented by the area of the darker blue triangle and is equal to +3 m. The total
displacement during the first 6sis +12m + 3m =+15m.

] sa0n0n (O
LOEE] e e i
Inneged———— [T 1110

0 00Ol =—==

— >+

3
2
(1) Tme|(s)
1 1 2 3 4 5 6 8 9/10
-2

FIGURE 2.4.6 Diagram and v—t graph for a girl
running along an aisle.

o Displacement s is given by the
area under a velocity—time graph;
that is, the area between the
graph and the time axis.

Note that an area below the
time axis indicates a negative
displacement; that is, motion in a
negative direction.

area = dsplacement

t(s)

FIGURE 2.4.7 The area under a v—t graph
equals the displacement.
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Worked example 2.4.2

ANALYSING A VELOCITY-TIME GRAPH

The motion of a radio-controlled car, initially travelling east in a straight line across
a driveway, is represented by the graph below.

T T T T 1
3 4 6 7 8 9Time(s)

a What is the displacement of the car during the first 4 seconds?

Thinking

Working

Displacement is the area
under the graph.

So calculate the area under
the graph for the time period
for which you want to find the
displacement.

Use displacement = b x h for
squares and rectangles.

Use displacement = £ (bx h)
for triangles.

8
6 -

The area from O to 4s is a triangle, so:
area=1(bxh)
=%x4x8

=+16m

Displacement is a vector
quantity, so a direction is
needed.

displacement = 16 m east

b What is the average velocity of the car for the first 4 seconds?

Thinking Working
Identify the equation and variables, V= %
d ly the si tion.
and apply the sign convention S—+16m
At=4s
Substitute values into the equation: V= %
V=g _+16
X
=+4ms™!

Velocity is a vector quantity, so a
direction is needed.

V,,=4mst east




Worked example: Try yourself 2.4.2
ANALYSING A VELOCITY-TIME GRAPH

Use the graph from Worked example 2.4.2 to answer the following questions.

a What is the displacement of the car from 4 to 6 seconds?

b What is the average velocity of the car from 4 to 6 seconds?

FINDING ACCELERATION FROM A v-t GRAPH

The acceleration of an object can also be found from a velocity—time graph.
Consider the motion of Aliyah in the 2 s interval between 4 s and 6 s on the graph
in Figure 2.4.9. She is moving in a positive direction, but slowing down from 3ms™!
until she comes rest.
gradent = acceleraton

£(s)
FIGURE 2.4.9 Gradient as displayed in a v—t graph.

6 The gradient of a velocity—time graph gives the average acceleration of the
object over the time interval.

3
-3

2+ area gradient = 5 = _15ms2

=+12m ~ | .
14 = di5p|acement = acceleration

Time (s)
0 T T T , | |
2 3 4 6 IN\U8 9 10 11
~14 area=75x2x3

S.s=43m

FIGURE 2.4.10 Acceleration as displayed in Aliyah’s v—t graph.

Her acceleration is:

- A _77—12_0—3__ -2
a=4% =& =— =-l.5ms

Q)

Because acceleration is change in velocity divided by change in time, it is given
by the gradient of the v—¢ graph. As you can see from Figure 2.4.10, the gradient of
the line between 4s and 65 is —1.5ms™2.
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Worked example 2.4.3
FINDING ACCELERATION USING A v-t GRAPH

Consider the motion of the same radio-controlled car initially travelling east in a
straight line across a driveway as shown by the graph below.

0 T 1 T T T 1
1 2 3 4 6 7 8 9Time(s)

What is the acceleration of the car during the first 4s?

Thinking Working
Acceleration is the gradient 8
of a v—t graph. Calculate the ]
; [ 6 -
gradient us.lng. gradient = -2 m s
gradient = fise 44
2 4
04
5 Time (s)
]

Gradient from Q-4 = s

)
4
=-2ms=2
Acceleration is a vector Acceleration = —2ms2 east (or 2ms2 west)
quantity, so a direction is
needed.

Note: In this case, the car
is moving in the easterly
direction and slowing down.

Worked example: Try yourself 2.4.3
FINDING ACCELERATION USING A v-t GRAPH

Use the graph shown in Worked example 2.4.3. What is the acceleration of the
car during the period from 4 to 6 seconds?
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DISTANCE TRAVELLED

A velocity—time graph can be used to calculate the distance travelled. The process of
determining distance requires you to calculate the area under the v—¢ graph, similar
to when calculating displacement. However, because distance travelled by an object
always increases as the object moves, regardless of direction, you must add up all the
areas between the graph and the time axis, regardless of whether the area is above
or below the axis.

For example, Figure 2.4.11 shows the velocity—time graph of the radio-controlled
car in Worked example 2.4.3. The area above the time axis, which corresponds to
motion in the positive direction, is +16m, while the area below the axis, which
corresponds to negative motion, consists of two parts with areas —4m and —12m.
To calculate the total displacement, add up the displacements:

total displacement = 16 + (—4) + (-12)
=16-16
=0m

To calculate the total distance, add up the magnitudes of the areas, ignoring

whether they are positive or negative:
total distance = 16 +4 + 12
=32m

gradient = -2 m s72

Time (s)

2

-~
00—
____ __—_

gradient =-2 m s area=-12m

4

FIGURE 2.4.11 Both distance and displacement can be calculated from the areas under the velocity—
time graph.

Non-uniform acceleration

For motion with uniform (constant) acceleration, the velocity—time graph is a
straight line. For acceleration that is not uniform, the velocity—time graph is curved.
If the velocity—time graph is curved, the instantaneous acceleration is the gradient of
the tangent to the line at the point of interest; the average acceleration is the gradient
of the chord between two points. The displacement can still be calculated by finding
the area under the graph, but you will need to make some estimations.

ACCELERATION-TIME (a-t) GRAPHS

An acceleration—time graph shows the acceleration of an object as a function of time.
The area under an acceleration—time graph is found by multiplying the acceleration
a by the time Atz during which the acceleration occurs. The area gives a change in
velocity A9 value:

area = a XAt =Av0
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In order to establish the actual velocity of an object, its initial velocity must
be known. Figure 2.4.12 shows Aliyah’s velocity versus time (v—f) graph and
acceleration versus time (a—t) graph.

[T e nnnan LT

M e
’—‘\ H H | I_II_II_II_II_”_I

Rl ——

- - 4

(a)

(b)

area=+1ms!

Time (s)

(=)

area=—1ms™'

area=-3ms"'

FIGURE 2.4.12 (a) Aliyah's v—t graph. (b) Aliyah's a—t graph.

Between 4s and 6s the area shows A = —3ms™!. This indicates that Aliyah has
slowed down by 3ms~! during this time. Her v—¢ graph confirms this fact. Her initial
speed is 3ms™!, so she must be stationary (7 = Oms™!) after 6s. This calculation
could not be made without knowing Aliyah’s initial velocity.
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2.4 Review

* A position-time graph can be used to determine the + The gradient of a velocity-time graph is the
location of an obect at any given time Additional acceleration of the ojec.
information can also be derived from the grah: « The area under a velocity-time graph is the
- Displacement is given by the change in position displacement of the obect
of an obect » The area under an acceleration-time graph is the
- The velocity of an obect is given by the change in velocity of the obect

gradient of the position-time grah.

- If the position-time graph is curve, the
gradient of the tangent at a point gives the
instantaneous velocity.

KEY QUESTIONS

1 Which of the following does the gradient of a position- 6 During its 10s motion what was the ca’:
time graph represent? a distance travelled?
A displacement b displacement?
B acceleration 7 The velocity-time graphs for a bus and a bicycle
C time travelling along the same straight stretch of road are
D velocity shown below. The bus is initially at rest and starts
The following information relates to questions 2—. The moving as the bicycle passes it at time t=0s.
controlled toy ca. 12+ bus
8 <3 A28 S
6 bicycle
4 4
2_
0 T T T T T T T T T T T T
0 T T T T T T T T T 0 2 4 6 8 10 12 14 16 18 20 22 24
5 1 2 3 4 5 6 7 8N\9 10 Tme (s
4 a What is the magnitude of the initial acceleration of
Tme (s the bus?

b At what time does the bus overtake the bicycle?

2 Describe the motion of the car in terms of its position ¢ How far has the bicycle travelled before the bus

3 What was the position of the toy car afte:

catches it?

a 2s? d What is the average velocity of the bus during the

b 4s? first 8s?

¢ 6s? 8 a Draw an acceleration-time graph for the bus in

d 10s? question 7
4 When did the car return to its starting point? b Use your acceleration-time graph to find the change
5 What was the velocity of the toy ca: in velocity of the bus over the first 8s.

a during the first 2s?

b at3s?

¢ from 4sto 8s?

d at 8s?

e from 8sto 9s?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
graph represents the straight-line motion of a radio- :
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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2.5 Equations of motion

A graph is an excellent way of representing motion because it provides a great deal
of information that is easy to interpret. However, a graph can take a long time to
draw, and sometimes values have to be estimated rather than calculated precisely.

In Section 2.4, graphs of motion were used to evaluate quantities such as
displacement, velocity and acceleration. Here you will use a more powerful and
precise method of solving problems involving constant or uniform acceleration in
a straight line. This method involves the use of a series of equations that can be
derived from the basic definitions developed earlier.

DERIVING THE EQUATIONS

Consider an object moving in a straight line with an initial velocity # and a uniform
acceleration a for a time interval Az. Because i, ¥ and a are vectors and the motion
is limited to one dimension, the sign and direction convention of right as positive
and left as negative can be used.

After a period of time At the object has changed its velocity from an initial
velocity # and is now travelling with a final velocity . Its acceleration is given by:

AD _ D—ii

A=A~ "M

If the initial time is Os and the final time is ¢ s, then Az = ¢. The above equation
can then be rearranged as:

o V=i+at Equation 1

The average velocity of the object is:

- displ t_§
average velocity 7,, = it =

time taken t

When acceleration is uniform, the average velocity 7,, is the average of the initial
and final velocities:
Vyy =5 (U+0)

This relationship is shown graphically in Figure 2.5.1.

A
10

average
speed

Time (8)

FIGURE 2.5.1 Uniform acceleration displayed by a v—t graph.




So:

i

(u+9) I e R

(NI

t

This gives:

(i s=3u+v)t Equation 2

1
o . . L R area=5 (v—u)t
A graph describing motion with constant acceleration is shown in Figure 2.5.2. For 2%

constant acceleration, the velocity is increasing by the same amount in each time u
interval, so the gradient of the v—z graph is constant.

The displacement s of the body is given by the area under the velocity—time
graph.The area under the velocity—time graph, as shown in Figure 2.5.2, is given by
the combined area of the rectangle and the triangle: t

area = ut

<

=5=u 1 — 0 t
Area=5s =ut+5X(v—u)xt Time

Because a = ”;ﬁ FIGURE 2.5.2 The area under a \_/—t graph
divided into a rectangle and a triangle.

then: ¥ = +at, and this can be substituted for v —u:

§=ur+ixarxe
= = =n? .
0 s:ut+%at Equat|0n3

Making u the subject of Equation 1 gives:
u=v—at
You might like to derive another equation yourself by substituting this into
Equation 2.You will get:

O s-_vt-Lar Equation 4

Rewriting Equation 1 with ¢ as the subject gives:

_ 5-ii
r=2=
a

Now, if this is substituted into Equation 2:

_ Utv .\, v-u
=72 X3
_gr-i?
=2
Finally, transposing this gives:
o 90 o .
V- =u“+2as Equation 5
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§=1(u+v)t
§=ut+1at®
c_t_1342
s=vt 2at
v2 =12 +23s

where s is the displacement
in metres
ii is the initial velocity in ms™!
V is the final velocity in ms™!
3 is the acceleration in ms=2

t is the time taken in seconds.

MODULE 1 | KINEMATICS

SOLVING PROBLEMS USING EQUATIONS

When you are solving problems using these equations, it is important to think about

the problem and try to visualise what is happening. Follow the steps below.

Step 1 Draw a simple diagram of the situation.

Step 2 Write down the information that has been given in the question. You might
like to use the word ‘suvat’ as a memory trick to help you remember to
list the variables in the order s, i, v, @ and ¢ Use a sign convention to
assign positive and negative values to indicate directions. Convert units if
necessary (e.g. from kmh™! to ms™1).

Step 3 Select the equation that matches your data. It should include three values
that you know, and the one value that you want to solve.

Step 4 Use the appropriate number of significant figures in your answer.

Step 5 Include units with the answer, and specify a direction if the quantity is a
vector.

Worked example 2.5.1
USING THE EQUATIONS OF MOTION

A snowboarder in a race is travelling 10ms! north as he crosses the finishing line.
He then decelerates uniformly, coming to a stop over a distance of 20m.

a What is his acceleration as he comes to a stop?

Thinking

Working

Write down the known quantities as
well as the quantity you are finding.

positive and south is negative.

Apply the sign convention that north is

Take all the information that you can
from the question:

« constant acceleration, so use
equations for uniform acceleration

» ‘coming to a stop’ means that the
final velocity is zero.

$=+20m

i =+10ms!
Vv =0ms!
a =7

Identify the correct equation to use.

v2 =u? + 233

Substitute known values into the
equation and solve for a.

Include units with the answer.

v2 =u? + 233
02=102+2xax20

0=100 + 40a
-100 =40a
=-25ms=2

Use the sign convention to state the
answer with its direction.

a =2.5ms=2 south




b How long does he take to come to a stop?

Thinking

Working

Write down the known quantities as
well as the quantity you are finding.
Apply the sign convention that north is
positive and south is negative.

Take all the information that you can
from the question:

« constant acceleration, so use
equations for uniform acceleration

» ‘coming to a stop’ means that the
final velocity is zero.

$=+20m
U=+10ms1
V=0msl
d=-25ms>2?
t=7?

Identify the correct equation to use. vV=0u+at

Since you now know four values, any

equation involving t will work.

Substitute known values into the v=u+at

equation and solve for t. 0=10+(-25)xt

Include units with the answer. _10=_25¢

=4.0s

¢ What is the average velocity of the snowboarder as he comes to a stop?

Thinking

Working

Write down the known quantities

as well as the quantity that you are
finding.

Apply the sign convention that north is
positive and south is negative.

Take all the information that you can
from the question:

» constant acceleration, so we only
need to find the average of the final
and initial speeds.

U=+10ms!

Identify the correct equation to use.

Substitute known values into the
equation and solve for v,

Include units with the answer.

Use the sign convention to state the
answer with its direction.

Va = 5.0ms™! north
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Worked examl: Try yousel .5.1
USNG THE EQUTIONS OF OTION

A snowboarder in a race is travelling 15ms-! east as she crosses the finishing lin.
She then decelerates uniformly until coming to a stop over a distance of 30m

a What is her acceleration as she comes to a stop?

b How long does she take to come to a stop?

¢ What is the average velocity of the snowboarder as she comes to a stop?

2.5 Review

The following equations can be used for situations .
where there is a uniform acceleration, where:

- §=displacement (m)

- U= initial velocity (ms1) ’
- v =final velocity (ms) '
- &= acceleration (ms2) .
- t=time (s)

V=0+at

s=3(u+v)t

KEY QUESTIONS

1

A cyclist has a uniform acceleration as he rolls down a 3
hill. His initial speed is 5ms™1, he travels a distance of

30m and his final speed is 18 ms~1. Which equation

should be used to determine his acceleration?

A V=0+at
B s=3u+wt
C §=at+lat?
2
D s=vt-Jat
E V2 =i%+255
A new-model race car travels with a uniform
acceleration on a racetrack. It starts from rest and
covers 400m in 16s.
a What is the average acceleration during this time?

b What is the final speed of the car inms=1?
¢ What is the car’s final speed in kmh=1?

MODULE 1 | KINEMATICS

§=Ut+%at2
s=vt—1lat?
v2 =u? + 255
Vi =5=0

A sign and direction convention for motion in one
dimension needs to be used with these equations.

A hybrid car starts from rest and accelerates uniformly

in a positive direction for 8.0s. It reaches a final speed

of 16ms1.

a What is the acceleration of the car?

b What is the average velocity of the car?

¢ What is the distance travelled by the car?

During its launch phase, a rocket accelerates uniformly

from rest to 160ms-! upwards in 4.0s, then travels with

a constant speed of 160ms-1 for the next 5.0s.

a What is the initial acceleration of the rocket?

b How far (in km) does the rocket travel in this
9.0s period?

¢ What is the final speed of the rocket in kmh-1?

d What is the average speed of the rocket during the
first 4.0s?

e What is the average speed of the rocket during the
9.0s motion?




5 While overtaking another cyclist, Ben increases his 8 A caris travelling east along a straight road at

: velocity uniformly from 4.2ms-1 to 6.7 ms-1 east over 75kmh-1. In an attempt to avoid an accident, the

: a time interval of 0.50s. driver has to brake suddenly and stop the car.

. a What is Ben’s average acceleration during this time? a What is the car’s initial speed in ms1?

. b How far does Ben travel while overtaking? b If the reaction time of the motorist is 0.25s, what
: ¢ What is Ben’s average speed during this time? distance does the car travel while the driver is

E 6 A stone is dropped vertically into a lake. Which one of reacting to apply the brakes?

. the following statements best describes the motion of ¢ Once the brakes are applied, the car has an

: the stone at the instant it enters the water? acceleration of —-6.0ms=2. How far does the car

E A lts velocity and acceleration are both downwards. travel while pulling up?

! B It has an upwards velocity and a downwards d What total distance does the car travel from the
' acceleration. time the driver first reacts to the danger to when

C lts velocity and acceleration are both upwards. the car comes to a stop?

D It has a downwards velocity and an upwards
acceleration.

7 Adiver plunges headfirst into a diving pool while :
travelling at 4.4 ms! vertically downwards. The diver :
enters the water and stops after a distance of 4.0m. :
Consider the diver to be a single point located at her :
centre of mass, and assume her acceleration through :
the water is uniform. :
a What is the average acceleration of the diver as she E

travels through the water? !
b How long does the diver take to come to a stop? !
¢ What is the velocity of the diver after she has dived '
through 2.0m of water? !
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FIGURE 2.6.1 The time elapsed between each
image of the free-falling apple is the same, but
the distance it travels increases between each
image, which shows the apple is accelerating.
Without air resistance, this rate of acceleration is
the same for all objects.
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2.6 Vertical motion

Until about 500 years ago it was widely believed that heavier objects fall faster than
lighter objects. This was the theory of Aristotle, and it lasted for 2000 years until the
end of the Middle Ages. In the 17th century the Italian scientist Galileo conducted
experiments that showed that the mass of the object did not affect the rate at which
it fell, as long as air resistance was not a factor.

It is now known that falling objects speed up because of gravity. Many people
still think that heavier objects fall faster than light objects. This is not the case, but
the confusion arises because of the effects of air resistance. This section examines
the motion of falling objects.

ANALYSING VERTICAL MOTION

Some falling objects such as feathers and balloons are affected by air resistance to
a large extent. This is why these objects do not speed up much as they fall. However,
if air resistance can be ignored, all free-falling bodies near the Earth’s surface will
move with the same downwards acceleration.

The image in Figure 2.6.1 shows an apple accelerating as it falls, since the
distance travelled by the apple between each photograph increases. In a vacuum,
this rate of acceleration would be the same for a feather, a bowling ball, or any other
object. The mass of the object does not matter.

At the Earth’s surface, the acceleration due to gravity, g, is 9.8 ms~2 downwards,
and does not depend on whether the body is moving upwards or downwards.

As an example, a coin that is dropped from rest will be moving at 9.8 ms™! after
1s, 19.6ms™! after 25, and so on. Each second its velocity increases by 9.8 ms™!
downwards. This is illustrated in Figure 2.6.2.

However, if the coin was thrown straight up at 19.6 ms™!, then after 1s its speed
would be 9.8 ms™!, and after 2 it would be stationary. In other words, each second
it would slow down by 9.8 ms™!. The motion of a coin thrown vertically upwards is
shown in Figure 2.6.3.

v=0 QtzO:atrest v=20 % 2s

98ms! 9.8 ms™! @
l @ I's T b

19.6 m s 19.6 ms™!

FIGURE 2.6.2 A falling coin. FIGURE 2.6.3 A coin thrown vertically upwards.




So regardless of whether the coin is falling or rising, its speed changes at the
same rate. The speed of the falling coin increases by 9.8 ms™! each second and the PHYSICSFILE
sp'eed of the I‘iSiI'lg c'oin decreases by 9.8 m§‘1 each second. The acceleration of the Galileo’s experiment on the
coin due to gravity is 9.8 ms~2 downwards in both cases. Moon

B lerati f a free-falli i it i i :

ecause the acceleration of a free-falling body is constant, it is appropriate to use In 1971, astronaut David Scott went

the equations for uniform acceleration. It is necessary to specify whether up or down o
. .. . ; . to great lengths to show that Galileo’s
is positive when doing these problems. You can simply follow the mathematical prediction was correct. On the Apollo 15
convention of regarding up as positive, which would mean the acceleration due to e rrssian (e teek & e 2l

o -
gravity is —9.8ms™. a feather on the voyage. He stepped
onto the lunar surface, held the feather

PHYSICSFILE and hammer at the same height and
Acceleration due to gravity dropped them together. As Galileo

: . Acceleration due t ity at had predicted 400 years earlier, in
The acceleration due to gravity on the TABLE 2.6.1 Acceleration due o gravity a the absence of any air resistance the
surface of the Earth, g, varies slightly different locations on Earth, and on other

two objects fell side by side as they

bodies in the solar system.
accelerated towards the Moon's surface.

from 9.8 ms2 according to the location.

The reasons for this will be studied in Acceleration due to
Year 12 Physics. On the Moon gravity is gravity (ms2)
much weaker than on Earth, and falling
objects accelerate at only 1.6ms=2. Other

planets and bodies in the solar system South Pole 9.832
have different gravity values, depending

Sydney 9.797

on their mass and size. The value of Equator 9.780
g at various locations is provided in Moon 1.600
Table 2.6.1. Mars 3.600
Jupiter 24.600
Pluto 0.670

FIGURE 2.6.4 Astronaut David Scott holding
Worked example 2.6.1 a feather and a hammer on the Moon.

VERTICAL MOTION

A construction worker accidentally knocks a brick from a building, and it falls
vertically a distance of 50m to the ground. Use & = -9.8 ms2 and ignore air
resistance when answering these questions.

a How long does the brick take to fall halfway, to 25m?

Thinking Working
Write down the values of the quantities The brick starts at rest so u = 0.
that are known and what you are finding. | s = _25m
Apply the sign convention that up is =0ms-1
positive and down is negative. 5-_98ms2
t=7?
Select the equation for uniform S =it+1lat?
acceleration that best fits the data 2
you have.

Substitute known values into the equation 05— Oxt+lx—98xt
and solve for t. 2 ’

Think about whether the value seems =-49¢t?
reasonable. t= [=25
49
=23s
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b How long does the brick take to fall all the way to the ground?

Apply the sign convention that up is
positive and down is negative.

Thinking Working
Write down the values of the quantities $=-50m
that are known and what you are finding. | 5 _ gmg-t

3=-9.8ms!
=7

Identify the correct equation of uniform
acceleration to use.

§=at+1at?

Substitute known values into the equation
and solve for t.

Think about whether the value seems
reasonable.

Notice that the brick takes 2.3s to travel
the first 25m and only 0.9s to travel the
final 25m. This is because it is accelerating.

—50=O><t+%><—9.8><t2

-50 =-4.9¢t?
=3.2s

¢ What is the velocity of the brick as it hits

the ground?

positive and down is negative

Thinking Working
Write down the values of the quantities $=-50m
that are known and what you are finding. i=0ms-l
Apply the sign convention that up is V=2

Identify the equation for uniform
acceleration that best fits the data you
have.

Substitute known values into the equation
and solve for v.

Think about whether the value seems
reasonable.

7 =0+(-9.8)x3.2
=-31ms!

Use the sign and direction convention to

describe the direction of the final velocity.

v =-31ms!or31ms! downwards

Worked example: Try yourself 2.6.1
VERTICAL MOTION

A construction worker accidentally knocks a

hammer from a building, and it falls

vertically a distance of 60 m to the ground. Use & = -9.8 ms=2 and ignore air

resistance when answering these questions.

’ a How long does the hammer take to fall halfway, to 30m?

’ b How long does the hammer take to fall all the way to the ground?

’ ¢ What is the velocity of the hammer as it hits the ground?

When an object is thrown vertically up into the air, it will eventually reach a
point where it stops momentarily before returning downwards. So the velocity of
the object decreases as the object rises, becomes zero at the maximum height, and
then increases again in the opposite direction as the object falls. Throughout this
motion the acceleration due to gravity is —9.8 ms™2. Knowing that the velocity of
an object thrown in the air is zero at the top of its flight allows you to calculate the

maximum height reached.




Worked example 2.6.2
MAXIMUM HEIGHT PROBLEMS

On winning a tennis match the victorious

player, Michael, smashed the ball

vertically into the air at 27.5ms™L. In this example, air resistance can be ignored
and the acceleration due to gravity is -9.80ms=2,

a Determine the maximum height reached by the ball above its starting

Apply the sign convention that up is
positive and down is negative.

position.

Thinking Working

Write down the values of the quantities | j =27.5ms!

that are known and what you are 7=0

finding. At the maximum height the _ >

velocity is zero. a=-980ms
s=7?

Select an appropriate formula.

v2 =u? + 233

Substitute known values into the
equation and solve for s.

0=(27.5)2+2 x (-9.8) x §

< _ -756.25
=195

.. $=+38.6m

The ball reaches a height of 38.6m
above its starting position.

b Calculate the time that the ball takes t

o return to its starting position.

Thinking Working

To work out the time for which the ball | § = 275ms1
is in the air, it is often necessary to first | ; _ Oms-1
calculate the time that it takes to reach | _ 2
its maximum height. a=-9.80ms
Write down the values of the quantities | = 386

that are known and what you are t=7

finding.

Select an appropriate formula. V=0+at

Substitute known values into the
equation and solve for t.

0=275+(-98x1)
9.8t=275
~ t=281s

The ball takes 2.81s to reach its
maximum height. It will therefore take
2.81s to fall from this height back to
its starting point, so the whole trip will

last for 5.62s.

Worked example: Try yourself 2.6.2
MAXIMUM HEIGHT PROBLEMS

On winning a cricket match, a fielder throws a cricket ball vertically into the air at

15.0msL In this example, air resistance can be ignored and the acceleration due

to gravity is -9.80ms=—2,

a Determine the maximum height reached by the ball above its starting position.

b Calculate the time that the ball takes to return to its starting position.
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2.6 Review

f air resistance can be ignord, all bodies falling
freely near the Earth will move with the same
constant acceleratio.

The acceleration due to gravity is9.8 ms=2 n the
direction towards the centre of the Erth. It is
represented by the symbol g.

KEY QUESTIONS

For these question, ignore the effects of air resistance and
assume that the acceleration due to gravity is9.8 ms=2,

1

Angus inadvertently drops an egg while baking a cake,

and the egg falls vertically towards the grund. Which

one of the following statements correctly describes

how the egg falls?

A The eggs acceleration increass.

B The eggs acceleration is constan.

C The eggs velocity is constant

D The eggs acceleration decreass.

Max is an Olympic trampolinist who is practising

some routine. Which one or more of the following

statements correctly describes Ma’s motion when he

is at the highest point of a bounce? Assume that his

motion is vertical

A He has zero velocit.

B His acceleration is zero.

C His acceleration is upwards.

D His acceleration is downwards.

A window cleaner working on a skyscraper accidentally

drops her mobile phon. The phone falls vertically

towards the ground with an acceleration f 9.8 ms=,

a Determine the speed of the phone after 30 s.

b How fast is the phone moving after it has fallen
30m?

¢ What is the average velocity of the phone during a
fall of 30m?

The equations for uniform acceleration can be
used to solve vertical motion problem. It is
necessary to specify whether up or down is
positive

4 A rubber ball is bounced so that it travels straight up

into the air, reaching its highest point afterl.5 s.

a What is the initial velocity of the ball just as it leaves
the ground?

b What is the maximum height reached by the ball?

A book is knocked off a bench and falls vertically to

the floor. If the book takes0.40 s to fall to the floo,

calculate the following value.

a What is the books speed as it lands?

b What is the height from which the book fell?

¢ How far did the book fall during the first0.20 s?

d How far did the book fall during the final0.20 s?

While celebrating her birthda, Mishti pops a party

popper. The lid travels vertically into the ar. Being a

keen physics studen, Mishti notices that the lid takes

4.0s to return to its starting positio.

a How long did the lid take to reach its maximum

height?

How fast was the lid travelling initially?

What was the maximum height reached by the lid?

d What was the velocity of the lid as it returned to its
starting point?

o T
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Chapter review

KEY TERMS

acceleration

distance travelled

air resistance free-fall

centre of mass magnitude

collinear newton

dimension position

dimensional analysis rectilinear

direction convention resultant

displacement scalar

KEY QUESTIONS

1 Select the scalar quantities in the list below. (There

may be more than one answer.)

A force

B time

C acceleration

D mass

Select the vector quantities in the list below.

(There may be more than one answer.)

A displacement

B distance

C volume

D velocity

A basketballer applies a force with his hand to bounce
the ball. Describe how a vector can be drawn to
represent this situation.

Vector arrow A is drawn twice the length of vector
arrow B. What does this mean?

A car travels 15ms! north and another travels
20ms~! south. Why is a sign convention often used to
describe vectors like these?

If the vector 20N forwards is written as —20N, how
would you write a vector representing 80N backwards?
Add the following force vectors using a number

line: 3N left, 2N right, 6N right. Then also draw and
describe the resultant force vector.

Determine the resultant vector of the following motion:
45.0m forwards, then 70.5m backwards, then 34.5m
forwards, then 30.0 m backwards.

Determine the change in velocity of a bird that
changes from flying 3ms-! to the right to flying 3ms!
to the left.

speed

unit

vector

vector diagram
vector notation
velocity

10 A car travels at 95kmh-! along a freeway. What is its
speed in ms1?

11 A cyclist travels at 15ms! during a sprint finish. What
is this speed in kmh-1?

The following information relates to questions 12 and 13.

An athlete in training for a marathon runs 15km north

along a straight road before realising that she has dropped

her drink bottle. She turns around and runs back 5km

to find her bottle, then resumes running in the original

direction. After running for 2.0 hours, the athlete reaches

20km from her starting position and stops.

12 Calculate the average speed of the athlete in kmh-1.

13 Calculate her average velocity in:

a kmh!
b ms

14 A ping pong ball is falling vertically at 6.0ms as it
hits the floor. It rebounds at 4.0ms™! up. What is its
change in speed during the bounce?

15 A car is moving in a positive direction. It approaches
a red light and slows down. Which of the following
statements correctly describes its acceleration and
velocity as it slows down?

A The car has positive acceleration and negative
velocity.

B The car has negative acceleration and positive
velocity.

C Both the velocity and acceleration of the car are
positive.

D Both the velocity and acceleration of the car are
negative.

16 A skier is travelling along a horizontal ski run at a
speed of 15ms~1. After falling over, the skier takes 2.5s
to come to rest. Calculate the average acceleration of
the skier.
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17 The following graph shows the position of a motorcycle

18

along a straight stretch of road as a function of time.
The motorcycle starts 200m north of an intersection.

500
400
300
200

100

0
10 20 30 40\ 50 60 Time(s)
-100

-200

a During what time interval is the motorcycle
travelling north?

b During what time interval is the motorcycle
travelling south?

¢ During what time intervals is the motorcycle
stationary?

d At what time is the motorcycle passing back
through the intersection?

For each of the situations listed below, indicate which
of the velocity-time graphs best represents the motion
involved.

A B C
v v v

t t

a A car comes to a stop at a red light.

b A swimmer is travelling at a constant speed.

¢ A motorbike starts from rest with uniform
acceleration.

MODULE 1 | KINEMATICS

19

20

21

22

The following velocity-time graph is for an Olympic
road cyclist as he travels, initially north, along a
straight section of track.

14+
12

10

0 T T T T T
0O 1 2 3 4 5 6
Time

L
8§ 9 10 11 12

—~ Q4
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a Calculate the displacement of the cyclist during his
journey.

b Calculate the magnitude, to three significant figures,
of the average velocity of the cyclist during this
11.0s interval.

¢ Calculate the acceleration of the cyclistat t=1s.

d Calculate the acceleration of the cyclist at t = 10s.

e Which one or more of the following statements
correctly describes the motion of the cyclist?

A He is always travelling north.

B He travels south during the final 2s.

C He is stationary at t = 8s.

D He returns to the starting point after 11s.

A car starts from rest and has a constant acceleration

of 3.5ms=2 for 4.5s. What is its final speed?

A jet-ski starts from rest and accelerates uniformly. If it

travels 2.0m in its first second of motion, calculate:

a its acceleration

b its speed at the end of the first second

¢ the distance the jet-ski travels in its second second
of motion.

A skater is travelling along a horizontal skate rink at a

speed of 10ms~1L. After falling over, she takes 10m to

come to rest. Calculate, to two significant figures, the
answers to the following questions about the skater’s
movement.

a What is her average acceleration?

b How long does it take her to come to a stop?



23 The following graph shows the position of Candice as
she dances across a stage.

A B c..D

12 -
8
4

0 T T T T T
0 5 10 15 20 25
Time (s)

a What is Candice’s starting position?

b In which of the sections A-D is Candice at rest?

¢ In which of the sections A-D is Candice moving in a
positive direction, and what is her velocity?

d In which of the sections A-D is Candice moving with
a negative velocity and what is the magnitude of
this velocity?

e Calculate Candice’s average speed during the 25s
motion.

24 Anna is cycling at a constant speed of 12ms-! when
she passes a stationary bus. The bus starts moving
just as Anna passes, and it accelerates uniformly at
1.5ms=2
a When does the bus reach the same speed as Anna?
b How long does the bus take to catch Anna?
¢ What distance has Anna travelled before the bus

catches up?

For the following questions, the acceleration due to gravity

is 9.8ms2 down and air resistance is considered to be

negligible.

25 Two physics students conduct the following
experiment from a very high bridge. Thao drops a
1.5kg sphere from a height of 60.0m, while at exactly
the same time Benjamin throws a 100 g cube with an
initial downwards velocity of 10.0ms™! from a point
10.0m above Thao.

a How long does it take the sphere to reach the
ground?

b How long does it take the cube to reach the ground?

26

27

28

29

At the start of an AFL football match, the umpire
bounces the ball so that it travels vertically upwards
and reaches a height of 15.0m.

a How long does the ball take to reach this
maximum height?

b One of the ruckmen is able to leap and reach to a
height of 4.0m with his hand. How long after the
bounce should this ruckman try to make contact
with the ball?

A billiard ball rolls from rest down a smooth ramp that

is 8.0m long. The acceleration of the ball is constant

at2.0ms=2

\\

\
0

40 m

8.0 m

a What is the speed of the ball when it is halfway
down the ramp?

b What is the final speed of the ball?

¢ How long does the ball take to roll the first 4.0m?

d How long does the ball take to travel the final 4.0m?

Four metal bolts are tied to a piece of rope. The rope is
dropped and the metal bolts hitting the ground create
a steady rhythm, making a sound at 0.25 second
intervals. Calculate the distances between each of the
metal bolts.

After completing the activity on page 63, reflect on

the following inquiry question: How is the motion

of an object moving in a straight line described and
predicted?
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@ Motion on a plane

Using the concept of vectors, this chapter will analyse the motion of objects moving
in two dimensions. You will learn how to break a vector down into its components
and then analyse the relative motion of objects such as aeroplanes flying through
strong winds or boats travelling across rivers with fast currents.

Content

NQURY QUESION

How is the motion of an object that changes its direction of
movement on a plane described?
By the end of this chapter you will be able to:

« analyse vectors in one and two dimensions to:

- resolve a vector into two perpendicular components

- add two perpendicular vector components to obtain a single vector
(ACSPHO61)

represent the distance and displacement of objects moving on a horizontal plane

using:

- vector addition

- resolution of components of vectors (ACSPH0O60)

describe and analyse algebraically, graphically and with vector diagrams, the ways

in which the motion of objects changes, including:

- velocity

- displacement (ACSPH060, ACSPHO61)

describe and analyse, using vector analysis, the relative positions and motions of

one object relative to another object on a plane (ACSPHO61)

analyse the relative motion of objects in two dimensions in a variety of situations,

for example:

- a boat on a flowing river relative to the bank

- two moving cars

- an aeroplane in a crosswind relative to the ground
(ACSPHO60, ACSPH132).

Physics Stage 6 Syllabus © NSW Education Standards Authority
for and on behalf of the Crown in right of the State of NSW, 2017.




_____________________________

PHYICS NQURY

Wind-assisted art

How is the motion of an
object that changes its

direction of movement on

a plane described?
COLLECTTHIS...

marbles or ball bearings all the

same size and mass

paint (3 or 4 different colours)
3 or 4 plates

roll of paper

fan with different speed settings

DO THS...

1

Set up the fan so that air will
blow across a tabl.

Tape the piece of paper down
to the table to prevent it from
flapping

Place a tablespoon of paint
on each plate Roll the marble
n the pantso thatts a
covere.

With the fan on the lowest
setting roll the marble along
the paper.

Repeat with the same colour,
moving down the paper each
time Try to roll all marbles at
the same speed

Repeat with different fan
settings changing the colour of

the paint to match the different

fan setting.

RECORD HIS...

Describe what shape the paint
create.

Present a diagram of your
investigation

REFLECT ON HIS...

How is the motion of an obect that
changes its direction of movement

on a plane described?

Where else have you seen
movement that created similar
paths?

_____________________________
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When motion is in one dimension, it is relatively simple to understand direction.
However, some motions require a description in a two-dimensional plane. You might
need to describe the motion of somebody walking up hill, a movement which includes
walking horizontally (forwards) and vertically (up). In this section you will learn how
to apply the rules of addition and subtraction to vectors in two dimensions.

VECTORS IN TWO DIMENSIONS

Just as in one-dimensional vector analysis, it is helpful to use certain direction
conventions to describe the two-dimensional planes. These planes could be:
e horizontal, which is commonly defined using north, south, east and west
» vertical,which can be defined in a number of ways including forwards, backwards,
up, down, left and right.
The description of the direction of these vectors is more complicated. Therefore,
a more detailed convention is needed for identifying the direction of a vector. There
are a variety of conventions, but they all describe a direction as an angle from a
known reference point.

Horizontal plane

For a horizontal, two-dimensional plane, the two common methods for describing

the direction of a vector are:

e full circle (or true) bearing — A ‘full circle bearing’ describes north as zero
degrees true. This is written as 0°T. In this convention, all directions are given as
a clockwise angle from north. As an example, 95°T is 95° clockwise from north.

e quadrant bearing — An alternative method is to provide a ‘quadrant bearing’,
where all angles are referenced from either north or south and are between 0°
and 90° towards east or west. In this method, 30°T becomes N30°E, which can
be read as ‘from north 30° towards the east’.
Using these two conventions, north-west (NW) would be 315°T using a full

circle bearing, or N45°W using a quadrant bearing. Figure 3.1.1 demonstrates

these two methods.

north
north-west or north-east or
315°T or 45°T or
N 45°W N 45°E
45° | 45°
west east

315°\/

south

FIGURE 3.1.1 Two horizontal vector directions, viewed from above, using full circle bearings and
quadrant bearings.

Vertical plane

For a vertical, two-dimensional plane the directions are referenced to vertical (upwards
and downwards) or horizontal (left and right) and are between 0° and 90° clockwise or
anticlockwise. For example, a vector direction can be described as ‘60° clockwise from
the left direction’. The same vector direction could be described as ‘30° anticlockwise
from the upwards direction’. The opposite direction to this vector would be ‘60°
clockwise from the right direction’. This example is illustrated in Figure 3.1.2.



Worked example 3.1.1

DESCRIBING TWO-DIMENSIONAL VECTORS

Describe the direction of the vector using an appropriate method.
up

70°

left

right

down

Thinking

Working

Choose the appropriate points to
reference the direction of the vector.

In this case using the vertical reference
makes more sense, as the angle is
given from the vertical.

The vector can be referenced to the
vertical.

30° anticlockwise from the upwards direction
or

60° clockwise from the left direction

up

30°

60°
left right
60°

30°

down

60° clockwise from the right direction
or
30° anticlockwise from the downwards direction

FIGURE 3.1.2 Two vectors in the vertical plane.

Determine the angle between the
reference direction and the vector.

In this example there is 70° from the
vertical to the vector.

Determine the direction of the vector
from the reference direction.

From vertically up, the vector is
clockwise.

Describe the vector using the sequence:
angle, clockwise or anticlockwise from
the reference direction.

This vector is 70° clockwise from the
upwards direction.

Worked example: Try yourself 3.1.1

DESCRIBING TWO-DIMENSIONAL VECTORS

Describe the direction of the following vector using an appropriate method.
up
left right
50° 8
down

ADDING VECTORS IN TWO DIMENSIONS

Adding vectors in two dimensions means that all of the vectors must be in the same
plane. The vectors can go in any direction within the plane, and can be separated by
any angle. The examples in this section illustrate vectors in the horizontal plane, but

the same strategies apply to adding vectors in the vertical plane.
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The horizontal plane is one that is looked down on from above. Examples include
looking at a house plan or map placed on a desk. The direction conventions that
suit this plane best are the north, south, east and west convention, or the forwards,
backwards, left and right convention. These are shown in Figure 3.1.3.

north forwards

west east left right

south backwards
FIGURE 3.1.3 The direction conventions for the horizontal plane.

Graphical method of adding vectors

The magnitude and direction of a resultant vector can be determined by measuring
an accurately drawn scaled vector diagram. There are two main ways to do this:

* head to tail method

¢ parallelogram method.

Head to tail method

To add vectors at right angles to each other using a graphical method, use an
appropriate scale and then draw each vector head to tail. The resultant vector is
the vector that starts at the tail of the first vector and ends at the head of the last
vector. To determine the magnitude and direction of the resultant vector, measure
the length of the resultant vector and compare it to the scale, then measure and
describe the direction appropriately.

In Figure 3.1.4, two vectors, 30.0m east and 20.0m south, are added head to
tail. The resultant vector, shown in red, is measured to be about 36 m according
to the scale provided. Using a protractor, the resultant vector is measured to be in
the direction 34° south of east. This represents a direction of S 56° E when using
quadrant bearings.

N : ISO.O m ealst :
W “1-’ E
S
+20.0 m south
R=36m
10 m

E 34°S
FIGURE 3.1.4 Adding two vectors at right angles, using the graphical method.




If the two vectors are at angles other than 90° to each other, the graphical
method is ideal for finding the resultant vector. In Figure 3.1.5, the vectors 15N
east and 10N S45°E are added head to tail. The magnitude of the resultant vector
is measured to be about 23 N. The direction of the resultant vector is measured by a
protractor from east to be 18° towards the south, which should be written as S72°E.

N : =15Neast= :
W‘-I—*E
10 N S45°E
S
R=23N
[——1
5N

i

4 —
Y,
U 1,

%% ‘,
~__ e = o
Ul S

wdﬂ/fﬂu/umh il uhnﬂ,\\,\\,\,\ﬁ&&

FIGURE 3.1.5 Adding two vectors not at right angles, using the graphical method.

E18°S

Parallelogram method

An alternative method for determining a resultant vector is to construct a
parallelogram of vectors. In this method the two vectors to be added are drawn tail
to tail. Next, a parallel line is drawn for each vector as shown in Figure 3.1.6. In
this figure, the parallel lines have been drawn as dotted lines. The resultant vector is
drawn from the tails of the two vectors to the intersection of the dotted parallel lines.

FIGURE 3.1.6 Parallelogram of vectors method for adding two vectors.

Geometric method of adding vectors

Graphical methods of adding vectors in two dimensions only give approximate
results as they rely on comparing the magnitude of the resultant vector to a scale
and measuring the direction with a protractor. A more accurate method to resolve
vectors is to use Pythagoras’ theorem and trigonometry. These techniques are
referred to as geometric methods. Geometric methods can be used to calculate
the magnitude of the vector and its direction. However, Pythagoras’ theorem and
trigonometry can only be used for finding the resultant vector of two vectors that
are at right angles to each other.

_____________________________

SKILLBUILDER

Understanding
Pythagoras’

theorem

. For any right-angled triangle,

E Pythagoras’ theorem states that
' the square of the length of the

' hypotenuse is equal to the sum of
1 the squares of the lengths of the
1 two shorter sides.

a’+b%=c?
A
b c
[ 1\
C a B

_____________________________
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SKILLBUILDER

Understanding
sine, cosine
and tangent
relationships
in right-angled
triangles

You will recall that:
sin(0) =

opposite
hypotenuse

adjacent
hypotenuse

cos(0) =

__opposite
tan(é)) ~ adjacent

The acronyms for each of these
rules are:

m sin(@) cos(@) tan(O)
SOH CAH  TOA

In the triangle shown, if two
variables are known then it is
possible to calculate all of the other
values. For example, if you have the
values of angle B and the length of
the hypotenuse, you can calculate b
using the formula:

: t
sinB = o e 4
_b
C
b=sinBxc
b c
[ 1\
C a B
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In Figure 3.1.7, two vectors, 30.0 m east and 20.0 m south, are added head to tail.
The resultant vector, shown in red, is calculated using Pythagoras’ theorem to be
36.1 m. The resultant vector is calculated to be in the direction S56.3°E. This result
is more accurate than the answer determined earlier in this section.

30.0 m east

20.0 m south

20.0
R?=30.0> + 20.0? tan 0 = 300
=900 + 400 0 = tan™' 0.6667
R =14/1300 =33.7°
=36.1m E33.7°S (or S56.3°E)

FIGURE 3.1.7 Adding two vectors at right angles, using the geometric method.

Worked example 3.1.2

ADDING VECTORS IN TWO DIMENSIONS USING GEOMETRY

A child runs 25.0m west and 16.0m north.

Determine the child’s resultant displacement vector.
Refer to Figure 3.1.3 on page 96 for sign and direction conventions if required.

Thinking Working

Construct a vector diagram
showing the vectors drawn
head to tail. Draw the

resultant vector from the tail of
the first vector to the head of
the last vector.

N
W<—1—>E
S

16.0 m north

[
25.0 m west

As the two vectors to be added

s?=25.0° + 16.0

the angle from the west vector 0=
to the resultant vector. 0

are at 90° to each other, - 625 + 256
apply Pythagoras’ theorem to

calculate the magnitude of the $ =881
resultant displacement. =29.7m
Using trigonometry, calculate 16

Determine the direction of the
vector relative to north or south.

90° - 32.6°=57.4°
The direction is N57.4°W

State the magnitude and
direction of the resultant vector.

§ =29.7m N57.4°W

Worked example: Try yourself 3.1.2

ADDING VECTORS IN TWO DIMENSIONS USING GEOMETRY

Forces of 5.0N east and 3.0N north act on a tree.
Determine the resultant force vector acting on the tree.
Refer to Figure 3.1.3 on page 96 for sign and direction conventions if required.




SUBTRACTING VECTORS IN TWO DIMENSIONS

Changing velocity in two dimensions can occur when turning a corner; for
example, walking at 3ms™! west, then turning to travel at 3ms! north. Although
the magnitude of the velocity is the same, the direction is different.

A change in velocity in two dimensions can be determined using either the
graphical method or the geometric method similar to vector addition. The initial
velocity must always be reversed before it is added to the final velocity.

The two-dimensional direction conventions were introduced earlier and are
shown here in Figure 3.1.8.

north forwards

west east left right

south backwards

FIGURE 3.1.8 The direction conventions for the horizontal plane.

Graphical method of subtracting vectors
To subtract vectors using a graphical method, use a direction convention and a scale
and draw each vector.
Using velocity as an example, the steps to do this are as follows:
¢ Draw in the final velocity first.
* Draw the opposite of the initial velocity head to tail with the final velocity vector.

* Draw the resultant change in velocity vector, starting at the tail of the final velocity
vector and ending at the head of the opposite of the initial velocity vector.

¢ Measure the length of the resultant vector and compare it to the scale to
determine the magnitude of the change in velocity.

¢ Measure an appropriate angle to determine the direction of the resultant vector.
Figure 3.1.9 shows the velocity vectors for travelling 3 ms ™ west and then

turninlg and travelling 3 ms ' north. The opposite of the initial velocity is drawn as

3ms  east.

N v,=3ms™ north
W“i"E 1 S 1
v,=3 ms" west
S f } } |
P 1 —»,=3ms" east
1ms!

FIGURE 3.1.9 Subtracting two vectors at right angles, using the graphical method.

0 A change in a vector can be
caused by a change in magnitude,
a change in direction, or a change
in both magnitude and direction.
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To determine the change in velocity, the final velocity vector is drawn first.
Then from its head the opposite of the initial velocity is drawn. This is shown in
Figure 3.1.10. The magnitude of the change in velocity (resultant vector) is shown
in red. It is measured to be about 4.3ms™! according to the scale provided. Using a
protractor, the resultant vector is measured to be in the direction N45°E.

3ms!east

3 m s~ north
Av=43ms!

FIGURE 3.1.10 Subtracting two vectors at right angles, using the graphical method.

Geometric method of subtracting vectors

The graphical method of subtracting vectors in two dimensions only gives
approximate results, as it relies on comparing the magnitude of the change in
velocity vector to a scale and measuring its direction with a protractor.

A more accurate method to subtract vectors is to use Pythagoras’ theorem and
trigonometry.

Figure 3.1.11 shows how to calculate the resultant velocity when changing from
25ms! east to 20.0ms ' south. The initial velocity of 25.0ms™ east and the final
velocity of 20.0ms™! south are drawn. Then the opposite of the initial velocity is drawn
as 25.0ms ™! west. The final velocity vector is drawn first, then from its head the opposite
of the initial velocity is drawn. The resultant velocity vector, shown in red, is calculated
to be 32.0ms™". The resultant vector is calculated to be in the direction S51.3°W.

The resultant vector is 32.0ms™' S51.3°W.

N v, =25.0m s east
WA_l_— E v,=20.0 m s™' south
—,=25.0m s west
S
0
Ay
v,=20.0 ms™' south
v, =25.0 m s west
25.0
2 2 2 _ ==
R?>=25.0>+20.0 tan 6 = 0.0
=625 + 400 0 =tan"' 1.25
R=1/1025 =51.3°
=320ms! S51.3°W

FIGURE 3.1.11 Subtracting two vectors at right angles, using the geometric method.




Worked example 3.1.3
SUBTRACTING VECTORS IN TWO DIMENSIONS USING GEOMETRY

Clare approaches a corner on her scooter at 18.7 ms~! west, and exits the corner
at 16.6ms™! north.

Determine Clare’s change in velocity.

Thinking Working

Draw the final velocity vector, N

vy, and the initial velocity W"I"E

vector, v, separately. Then

draw the initial velocity in the S

opposite direction. v, =187 ms™ west

v,=16.6 m s™ north

—»,=18.7m s east

Construct a vector diagram N
drawing v, first and then from

its head draw the opposite of v;. w '$' E
The change of velocity vector S

is drawn from the tail of the
final velocity to the head of the

opposite of the initial velocity.

—v,=18.7 m s east

v,=16.6 m s north

Av
[4
As the two vectors to be added | AV® = 16.6% + 18.72
are lat §0t°ht0 each ;ﬁheﬂ t = 275.26 + 349.69
apply Pythagoras’ theorem to -
calculate the magnitude of the Av = \'625'2571
change in velocity. =250ms
Calculate the angle from the tang = 187
north vector to the change in 16'671
velocity vector. 6 =tan""1.13
=48.4°
State the magnitude and AV = 25.0ms™! N48.4°E
direction of the change in
velocity.

Worked example: Try yourself 3.1.3
SUBTRACTING VECTORS IN TWO DIMENSIONS USING GEOMETRY

A ball hits a wall at 7.0ms™ south and rebounds at 6.0ms™ east.
Determine the change in velocity of the ball.
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Surveying

Surveyors use technology to measure, analyse and manage
data about the shape of the land and the exact location of
landmarks and buildings. They take many measurements,
including angles and distances, and use them to calculate
more advanced data such as vectors, bearings, co-ordinates,
elevations, maps etc. Surveyors typically use theodolites
(Figure 3.1.12 and Figure 3.1.13), GPS survey equipment,
laser range finders and satellite images to map the land in
three dimensions.

Surveyors are often the first professionals who work
on a building site, to ensure that the boundaries of the
property are correct. They also ensure that the building
is built in the correct location. Surveyors must liaise
closely with architects both before and during a building
project as they provide position and height data for walls
and floors.

3.1 Review

1

KEY QUESTIONS

+ Adding and subtracting vectors in two dimensions
can be estimated graphically with a scale and a
protractr.

* An alternative method of adding vectors in two
dimensions is to construct a parallelogram of vectos.

A jet plane in level flight makes a tur, changing

its velocity from 345ms™! south to 406 ms™* west
Calculate the change in the velocity of the et

Yvette hits a golf ball that strikes a tree and changes
its velocity from 4.0 ms™! east to 420 ms™! north
Calculate the change in the velocity of the golf ball

A yacht tacks during a rae, changing its velocity from
705 ms~! south to 525 ms™! west Calculate the
change in the velocity of the yach.

Describe the magnitude and direction of the resultant

vector, drawn in red, in the following diagam.

Adding and subtracting vectors in two dimensions
can be calculated using Pythagora’ theorem and
the trigonometric ratios of a right-angled triange.

=T

20 m south

40 m west

Forces of 2000N north and 6000N east act on an
obect What is the resultant force?
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3.2 Vector components

Section 3.1 explored how vectors can be combined to find a resultant vector. In
physics there are times when it is useful to break one vector up into two vectors that
are at right angles to each other. For example, if a force vector is acting at an angle
up from the horizontal, as shown in Figure 3.2.1, this vector can be considered to
consist of two independent vertical and horizontal components.

The components of a vector can be found using trigonometry.

v

FIGURE 3.2.1 The pulling force acting on the cart has a component in the horizontal direction and a
component in the vertical direction.

FINDING PERPENDICULAR COMPONENTS OF A VECTOR

Vectors at an angle are more easily dealt with if they are broken up into perpendicular
components; that is, two components that are at right angles to each other. These
components, when added together, give the original vector. To find the components
of a vector, a right-angled triangle is constructed with the original vector as the
hypotenuse. This is shown in Figure 3.2.2. The hypotenuse is always the longest
side of a right-angled triangle and is opposite the 90° angle. The other two sides of
the triangle are each shorter than the hypotenuse and form the 90° angle with each
other. These two sides are the perpendicular components of the original vector.

Geometric method of finding vector components

The geometric method of finding the perpendicular components of vectors is to
construct a right-angled triangle using the original vector as the hypotenuse. This
was illustrated in Figure 3.2.2. The magnitude and direction of the components are
then determined using trigonometry. A good rule to remember is that no component
of a vector can be larger than the vector itself. In a right-angled triangle, no side is
longer than the hypotenuse. The original vector must be the hypotenuse and its
components must be the other two sides of the triangle.

Figure 3.2.3 shows a force vector of 50.0N (drawn in black) acting on a box
in a direction 30.0° up from the horizontal to the right. The horizontal and vertical
components of this force must be found in order to complete further calculations.

F=500N -

vertical

30.0°

=

horizontal

FIGURE 3.2.3 Finding the horizontal and vertical components of a force vector.

20°

F = 45c0s20°
=42 N
FIGURE 3.2.2 The perpendicular components
(shown in red) of the original vector (shown in
blue). The original vector is the hypotenuse of
the triangle.
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PHYSICSFILE

Complex motion

When looking at more complex motion,
such as the projectile motion of a ball
thrown through the air, the vector
components become particularly
important. When you throw a ball, the
initial forward force from your arm
moves the ball across horizontally. At
the same time, the weight force of the
ball moves the ball down vertically. It is
the addition of these two components
which gives the complex shape you see
when you throw a ball.

FIGURE 3.2.4 Adding together the vectors

for the forward motion of the ball plus the

downward motion of the weight create this
parabola type shape.
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The horizontal component vector is drawn from the tail of the 50.0N vector
towards the right, with its head directly below the head of the original 50.0 N vector.
The vertical component vector is drawn from the head of the horizontal component
to the head of the original 50.0 N vector.

Using trigonometry, the horizontal component of the force is calculated to be
43.3N horizontally to the right. The vertical component is calculated to be 25.0N
vertically upwards. The calculations are shown below:

cosf = % sin@ = #ﬁfge
adj = hyp X cos 8 opp = hyp X sin@
F, = 50.0 x c0s30.0° F, =50.0 x sin30.0°
=43.3N horizontal to the right = 25.0N vertically upwards

Worked example 3.2.1
CALCULATING THE PERPENDICULAR COMPONENTS OF A FORCE

A 235N force acts on a bike in a direction 17.0° north of west.

Use the direction conventions to determine the perpendicular components of
the force.

Thinking Working

Draw Fy, from the tail of the 235N N _ F=235N
force along the horizontal direction, W<—$—>E Fy

then draw Ffyfrom the horizontal S L 17.0
vector to the head of the 235N force. F,

Calculate the west component of the cosg = adacent
force fy using ’ ~ hypotenuse
adjacent af'] =hyp x cosO
cosf = hypotenuse FW =235x%xco0s17.0°
=224.7 = 225N west
Calculgte the north component of the sing = _opposite
force Fy using hypotenuse
sing = _opposite opp = hyp x sin@
~ hypotenuse 'E ~ 235 . R
N = xsinl7.0
= 68.7 N north

Worked example: Try yourself 3.2.1
CALCULATING THE PERPENDICULAR COMPONENTS OF A FORCE

A 3540N force acts on a trolley in a direction 26.5° anticlockwise from the left
direction.

Use the direction conventions to determine the perpendicular components of
the force.




3.2 Review

A vector can be resolved into two perpendicular
component vectors

Perpendicular component vectors are at right
angles to each other.

Any component vectors must be smaller in
magnitude than the original vector.

The hypotenuse of a right-angled triangle is the
longest side of the triangle and the other two
sides are each smaller than the hypotenus.

KEY QUESTIONS

1

Rayko applies a force of 462N on the handle of a
mower in a direction of 3.0 ° clockwise down from the
right directio.

a What is the downwards force applied?

b What is the rightwards force applied?

A force of 2.9 N acts in the direction of S4.0 °E Find
the perpendicular components of the forc.

A ferry is transporting students to Rottnest Islan.
At one point in the ourney the ferry travels at

183 ms™' N756 °W Calculate its velocity in the
northerly direction and in the westerly direction at
that time

Zehn walks 4.0 m in the direction of S6.3 °E across
a hockey fiel. Calculate the change in Zeh’s position
down the field and across the field during that tim.

A right-angled triangle vector diagram can be
drawn with the original vector as the hypotenuse
and the perpendicular components drawn from
the tail of the original to the head of the original
The perpendicular components can be
determined using trigonometry.

5 A cargo ship has two tugboats attached to it by rope.

One tugboat is pulling directly nort, while the other is
pulling directly wes. The pulling forces of the tugboats
combine to produce a total force of 23000N n a
direction of N6.5 °W Calculate the force that each
tugboat applies to the cargo ship

Resolve the following forces into their perpendicular
components around the north-south lin. In part d
use the horizontal and vertical direction.

a 100N S60°E

b 60N north

¢ 300N 160°T

d 3 x 10°N 30° upwards from the horizonal.
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FIGURE 3.3.1 Two cars race towards the
finish line. The velocity of the each car can be
calculated relative to the ground (stationary
frame of reference), or relative to each other
(moving frame of reference).

«d alll b
& & O &

¥, =50 kmh! Vo = 60 kmh'!

FIGURE 3.3.2 Two cars approaching each other
from different directions.
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3.3 Relative motion

Now that you know how to algebraically work with vectors in two dimensions, it
is possible to analyse and describe the motion of objects moving on a plane. This
section will use some practical examples to further explore motion in two dimensions.

Relative motion refers to the fact that motion may involve different frames
of reference. A frame of reference is where an observation is being made from.
Sometimes this may be a stationary point; for example, standing on a platform
watching a train pull into a station. But at other times the frame of reference may also
be in motion. Take the example of two competing race cars (Figure 3.3.1). It may be
that you want to calculate their velocities relative to the finish line, which is a stationary
point. Or you may want to find the relative velocity between the two moving cars.

TWO MOVING CARS

To find the relative velocity between two moving objects you need to use the concept
of vector addition.

Choosing the right vector notation

In a one-dimensional example, two cars are approaching each other from different
directions (Figure 3.3.2). The velocities of the cars are both given relative to
the ground, which is a stationary frame of reference. The blue car travels east at
50kmh™ (Vgg) and the red car travels at 60kmh™ west (Vrg)-

The notation for each of these vectors gives you a clue as to what they are describing.
For example, Vg is for the velocity of the blue car (B) relative to the ground (G).
Similarly, Vi is for the velocity of the red car (R) relative to the ground (G).

By using vector addition you can calculate the resultant vector. The following
formula will calculate the velocity of the blue car relative to the red car:

Vpr =Vpg +VGr

The order of these vectors is important. If you were to look for the velocity of the

red car relative to the blue car you would use the formula:

VrRB =VRG TVGB

O When finding the relative velocity of object 1 relative to object 3, using a
stationary frame of reference as object 2, the equation needs to be in the order:

Vi3 =Vipt Vo3

Flipping vectors

There may be times that you will need to flip the order of the vector’s subscripts.
Using the car example, you are given the velocity of the red car relative to the ground
(Vrg) but the equation for Vg requires the velocity of the ground relative to the red

car (Vgg).To find Vgg you can use the vector rule:
O -

So the equation for the velocity of the red car relative to the blue car can now be
written as:

Vgr =Vpg tVgr
=Vpg +(—Vrg)
=+50+(--60)
=+50+(+60)
=+110 kmh™

This process can be used to find the relative velocity in two dimensions.



Worked example 3.3.1

FIND THE RELATIVE VELOCITY BETWEEN TWO CARS IN TWO DIMENSIONS

Two cars are both approaching the same intersection with different velocities.
The blue car is travelling at 50km h7! towards the east, and the silver car is

travelling 60 kmh™ north.

Find the velocity of the blue car relative to the silver car.

Thinking

Working

Define your vectors with appropriate
notation. Write out the equation for the
velocity of the blue car relative to the
silver car.

Vgg = velocity of the blue car relative to
the ground

Vgq = velocity of the silver car relative
to the ground

Vgg = velocity of the blue car relative to
the silver car

Vs =VBG *Vas

=Vgg +(-Vsg)
Construct a vector diagram showing N
the vectors drawn head to tail. Draw U, =50 kmh W<$>E
the resultant vector from the tail of S
the first vector to the head of the last
vector. R R
Vps Vg, = 60 kmh™!

As the two vectors to be added are at
90° to each other, apply Pythagoras’

vgs = 50? +60°

theorem to calculate the magnitude of =2500 + 3600

the resultant velocity. vgs =46100
=78kmh™

Using trigonometry, calculate the angle tang = 60

from the east vector to the resultant 50

vector. 6=tan"'(1.2)

=50°
Determine the direction of the vector 90 - 50 =40°

relative to north or south.

State the magnitude and direction of
the resultant vector.

Vgs = 78kmh™!, S40°E

Worked example: Try yourself 3.3.1

FIND THE RELATIVE VELOCITY BETWEEN TWO CARS IN TWO DIMENSIONS

A black car and a yellow car are travelling down the same road towards the
south at 55kmh™. The yellow car turns off onto a side road towards the west

and travels at 70kmh™L.

Find the velocity of the yellow car as it travels on the side road, relative to the

black car.
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FIGURE 3.3.3 When calculating the resultant
velocity of a boat you must take into
consideration its forward motion and the velocity
of the current.

108 MODULE 1 | KINEMATICS

BOAT ON A RIVER

It is possible to apply these rules of relative velocity to the motion of a boat on a
river. If a boat is travelling across a river with a strong current (Figure 3.3.3), you
will need to add the forward motion of the boat to the velocity of the river current

to find the resultant vector.

Using the same rules described earlier, the boat’s velocity relative to the ground

can be calculated as:

where Vg is the velocity of the boat relative to the ground

Vgy is the velocity of the boat relative to the water

Vg is the velocity of the water relative to the ground.

Worked example 3.3.2

CALCULATE THE RELATIVE VELOCITY OF A BOAT ON A RIVER

the nearest degree.

A boat is travelling at 5.0ms™ north across a river relative to the water. The
current is flowing downstream at 2.0ms™! east.

Determine the velocity of the boat relative to the ground, giving the direction to

Thinking

Working

Write out the equation describing the
resultant velocity.

VG = Vew tVwa

Construct a vector diagram showing
the vectors drawn head to tail. Draw
the resultant vector from the tail of
the first vector to the head of the last
vector.

T — —1
Vyo=2.0ms

by — —1
Vpyw = 5.0 ms -

As the two vectors to be added are at

vis =5.0%+2.0?

90° to each other, apply Pythagoras’ -254+4

theorem to calculate the magnitude of

the resultant velocity. Vee = V29
=54ms™

Using trigonometry, calculate the angle | ;9 = 20

from the north vector to the resultant >0

vector. 0= tarr 04

=218=22°

Determine the direction of the vector
relative to north or south.

The direction is N22°E

State the magnitude and direction of
the resultant vector.

Vge = 5.4ms™!, N22°E

Worked example: Try yourself 3.3.2

CALCULATE THE RELATIVE VELOCITY OF A BOAT ON A RIVER

the nearest degree.

A boat is travelling at 3.8 ms™ south across a river relative to the water. The
current is flowing upstream at 2.0ms™ west.

Determine the velocity of the boat relative to the ground, giving the direction to




Aeroplane in a cross wind

A similar situation can be applied to calculating the velocity of an aeroplane with
respect to the ground. As an aeroplane flies it will experience winds blowing
opposite to its direction of motion (head wind), in the same direction to its motion
(tail wind), or at some angle across its direction of motion (cross wind). If you
know both the velocity of the plane relative to the wind and the velocity of the wind
relative to the ground, by using the rules for vector addition the resultant vector of

these two values will describe the velocity of the plane relative to the ground.

i Vpg = Vpw Vg

where Vg is the velocity of the plane relative to the ground

Vpy is the velocity of the plane relative to the wind

Vg is the velocity of the wind relative to the ground

Worked example 3.3.3

FIND THE RESULTANT VELOCITY OF AN AEROPLANE IN A CROSS WIND

450kmh! west.

A light aircraft is travelling at 300 km h™* north, with a crosswind blowing at

Determine the velocity of the plane relative to the ground.

Thinking

Working

Write out the equation describing the
resultant velocity.

Vpa = VPw T Vwg

Construct a vector diagram showing
the vectors drawn head to tail. Draw
the resultant vector from the tail of
the first vector to the head of the last
vector.

Ty = 45 kmh!
i
W E
S 7 Upy = 300 kmh"
PG Pw

As the two vectors to be added are at
90° to each other, apply Pythagoras’
theorem to calculate the magnitude of

v = 3007 + 452
=90000 + 2025

the resultant velocity. Vpg = V92 025
=303kmh!
Using trigonometry, calculate the angle tang = 45
from the west vector to the resultant 300
vector. 6 =tan"'0.15
=8.53°

Determine the direction of the vector
relative to north or south.

The direction is N8.53°W

State the magnitude and direction of
the resultant vector.

Vpg = 303kmh™!, N8.53°W

Worked example: Try yourself 3.3.3

FIND THE RESULTANT VELOCITY OF AN AEROPLANE IN A CROSS WIND

85.0kmh! south.

A jet aircraft is travelling at 900 km h™! east, with a crosswind blowing at

Determine the velocity of the plane relative to the ground.

PHYSICSFILE

Components of flight

The velocity vector that describes the
direction and speed of an aeroplane
can be broken down into multiple
vector components. These are known
as thrust, lift, drag and weight forces.

The thrust is generated by the engines
and gives the plane its forward

motion. The weight force describes the
downwards pull due to gravity. The drag
component slows the plane down as

it pushes through the air. And the lift
component is produced by the wings
and makes the plane rise.

When designing a plane, all of these
components need to be considered.

FIGURE 3.3.4 There are multiple vector
components involved in the direction and
speed of an aeroplane.
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3.3 Review

The frame of reference describes where an
observation is being made frm.

A frame of reference can be stationary or it can be
in motion

Relative motion uses vector addition to find the
resultant vecto.

When describing the velocity of obect A relative to
obect B the vector notation looks like vag.

KEY QUESTIONS

1

The velocity of a car relative to the ground is given by
Ve and the velocity of a train relative to the ground is
given by vy Write out the equation to find the velocity
of the car relative to the tran.

A small boat pushes off from the edge of a river at
2.5ms™! north The current is running downstream to
the west at 08 ms™ Calculate the resultant velocity of
the boat

A boat pushes off from a pontoon and travels at

50 ms™ to the east while the pontoon floats away at
20 ms! south from its starting positio. Calculate the
velocity of the boat relative to the pontoo.

A plane is flying north even though it is pointing at
some angle towards the eat. The velocity of the plane
relative to the wind is 300kmh™! The crosswind has

a velocity of 500 kmh™ Using the diagram belo,
calculate the direction the plane is pointing towards in
order for it to fly due nort.

<l

PG

Upy = 300 kmh-

5

In order to calculate the relative velocity of two
moving obects a third stationary reference frame
must be used

When finding the relative velocity between ojects
A and B using the stationary reference fram C,
the equation will be

VaB =Vac tVca

When working with vectors remember tha:

Vag = —VBa

a A plane is travelling south at 910 kmh™ N nto a
headwind of 0.0 kmh™! Calculate the resultant
velocity of the plane relative to the groud.

b The wind changes direction and is now blowing
perpendicular to the plane towards the eat.
Calculate the resultant velocity of the plane relative
to the groun.

Two Formula 1 cars are racing straight towards the
finish line The velocity of car 1 relative to the ground
is 315kmh and the velocity of car 2 is 319 kmh™
Calculate the velocity of car 2 relative to car .

Ellisa is running across a soccer field at 6ms™ north
She kicks the soccer ball to another player and
continues running with the same velocity. The ball
travels at 20ms™ east Calculate the velocity of Ellisa
relative to the bal.

110
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Chapter review

KEY TERMS

component head wind
cross wind relative motion
frame of reference tail wind

KEY QUESTIONS

1 When finding the change in velocity between an initial
velocity of 34.0ms™ south and a final velocity of
12.5ms™ east, which two vectors need to be added
together?

2 Describe the following vector direction.

up

left right
70°

down

3 Draw the following vector directions.
a N25°E
b 344°T
4 For each of the following, which trigonometry function
(sin, cos or tan) would be needed to find the angle?
a

12.1 ms™

220 kmh! 200 kmh™!

10

C 90 kmh!

200 kmh!

Jordi walks 4.5 m east before turning north and
walking a further 7.2 m north. Using Pythagoras’
theorem, calculate the magnitude of the resultant
displacement vector.
Marta rides her bike with a velocity of 6.5ms™ N22°W.
Calculate the vector components of her velocity.
What is the magnitude of the resultant vector when
30.0m south and 40.0m west are added?
A 7.7m
B 44.7m
C 50.0m
D 2000m
What are the horizontal and vertical components of a
300N force that is applied along a rope at 60° to the
horizontal and used to drag an object across a yard?
An aeroplane flies a distance of 300 km due north,
then changes course and travels 400 km due
east. What is the distance travelled and the final
displacement of the aeroplane?
A distance = 700km, displacement = 500 km

north east
B distance = 700 km, displacement = 700 km

north east
C distance = 700km, displacement = 500 km

north 53.1° east
D distance = 700km, displacement = 500 km

north 36.9° east
Josie runs up a flight of stairs at a speed of 52ms.
The stairs have a rise angle of 30°. Calculate the
vertical and horizontal components of her velocity.

CHAPTER 3 | MOTION ON A PLANE 111




11

12

13

14

15

16

17

18
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Aliyah is walking straight up a steep slope. After
she has walked 8.0m at an angle of 20°, the slope
increases to 30° and she reaches the top in another
8.0 m. Add together the vertical components of her
displacement for each part of the slope to find the
total height of the slope.

Jess is swimming across a river with a current of
0.30ms™ to the north. Her velocity relative to the
water is 0.80ms™! to the east. Calculate her velocity
relative to the ground.

The velocity of a plane relative to the ground is given
by Vpg and the velocity of a helicopter relative to the
ground is given by Vyg. Write out the equation to find
the velocity of the plane relative to the helicopter.

A Cessna light plane is flying north at 300kmh™*
relative to the ground, while the plane itself is angled
8° towards the east. Calculate the velocity of the cross
wind relative to the ground.

A yacht is travelling across Parramatta River with a
velocity of 8.0ms™ north relative to the water. The
current of the river has a velocity of 2.2ms™ west

relative to the ground. Calculate the relative velocity of

the yacht to the ground.

An aeroplane is flying at 890kmh™! north and a tail

wind starts to blow at 40kmh™.

a What direction is the velocity of the tail wind?

b Calculate the new velocity of the aeroplane relative
to the ground.

A rowboat is travelling across a river where the current
is 2.4ms™ downstream to the west. The boat’s velocity

relative to the water is 3.0ms™ north. Calculate the
relative velocity of the boat to the ground.

A train and a car are both approaching a level
crossing. The train is travelling at 100kmh™! east and
the car is travelling at 60 kmh~! south. Calculate the
velocity of the train relative to the car.
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20

21

22

A marble is rolled across a table and a fan blows

perpendicular to its motion.

a The velocity of the marble is 0.80ms™ relative to
the table, at an angle of 10°T. The fan is to the west
of the marble. Calculate the magnitude of the vector
components of the marble’s velocity.

b Using vector notation, describe what each of
these components represents. For example, what
component describes the velocity of the fan’s wind
relative to the table?

a A boat pushes straight off from the edge of a river at
4.0msL. The current runs downstream at 1.5ms™..
Draw a vector diagram to describe this situation.

b Calculate the velocity of the boat relative to the
ground.

¢ The trip takes five minutes for the boat to reach
the opposite bank. Assuming that the velocity is
calculated in part b is the average velocity of the
boat, calculate the displacement.

d Calculate the width of the river.

e The captain of the boat had wanted to reach a
point on the bank directly opposite from where they
pushed off from. Because the current moved them
further downstream, calculate how far from their
destination the boat ended up.

a Describe how the motion of a ball being thrown
through the air can be broken down into vector
components.

b What shape describes the motion of the ball?

After completing the activity on page 94, reflect on
the following inquiry question: How is the motion of
an object that changes its direction of movement on a
plane described?
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Kinematics

Multiple choice

1 A car accelerates in a straight line at a rate of 5.5ms™
from rest. What distance has the car travelled at the end
of three seconds?
A 825m
B 1llm
C 165m
D 24.75m

2 A bike accelerates in a straight line at a rate of 2.5ms™
from rest. What distance does the bike travel in the third
second of its motion?

A 6.25m

B 13.75m
C 19.25m
D 2475m

3 A graph depicting the velocity of a small toy train versus
time is shown below. The train is moving on a straight
section of track, and is initially moving in an easterly
direction.

+0.2+
+0.1

0 T T T T T
2 4 6 8 10 12
Time (s)

—0.1+

—0.21

a What distance does the train travel in the first
6 seconds of its motion?
A Om
B 04m
C 0.8m
D 1.2m
b What is the displacement of the train after the first
11 seconds of its motion?
A Om
B 0.4m east
C 0.8m east
D 1.2m east

4 A ball dropped from rest from a height h hits the

ground with a speed v. The ball is then released from a
height of 2h. With what speed would the ball now strike
the ground?

1
A2v

B \2v
C 2v
D 4v

A ball is dropped, falls vertically and strikes the ground
with a velocity of +5ms™. It rebounds, and leaves the
ground with a velocity of ~=3ms™!. What is the change in
velocity that the ball experiences?

A -8ms™

B +8ms!

C 2ms™

D +2ms™!

An aeroplane flies a distance of 300 km due north, then
changes course and travels 400km due east.

What is the distance travelled and the final displacement
of the aeroplane?

A distance = 700km, displacement = 500 km north-east
B distance = 700km, displacement = 700 km north-east
C distance = 700km, displacement = 500km N53.1°E
D distance = 700km, displacement = 500km N36.9°E

A car that is initially at rest begins to roll down a steep
road that makes an angle of 11° with the horizontal.
Assuming a constant acceleration of 2 ms~!, what is the
speed of the cr after it has travelled 100 metres?

A 19ms!

B 20kmh™

C 72kmh

D 72ms™

Which equation can be used to calculate the velocity of

a boat relative to a submarine? (Use the subscripts B for
boat, S for submarine and G for ground.)

A Vgg = Vg + Vs
B Vgs = Vs + Vgs
C Vgg =Vgg + (—Vgg)
D Vgs = Vg + (-Vsg)

REVIEW QUESTIONS 113
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b What is the average speed of the sprinter for the total 14 Zeke is riding a scooter at a velocity of 6ms! N12°E.

time she is moving? What are the vector components of his velocity?

A 70ms™ A 1.2ms ! eastand 5.9ms™! north
B 80ms™! B 59ms eastand 1.2ms™! north
C 90ms™ C 40ms eastand 2.0ms™! north
D 100ms™ D 2.0ms™ east and 4.0ms™! north

10 The diagram below gives the position-time graph of the 15
motion of a boy on a bicycle. The boy initially travels in a
northerly direction.

9 The diagram is an idealised velocity—time graph for the 11 An apple falls vertically from a tree and hits the top of a
motion of an Olympic sprinter. fence at 6.3ms™. It bounces off the fence horizontally
with a velocity of 2.1 ms™!. What is the magnitude of the
104 change in velocity of the apple?
91 A 30ms™
81 B 59ms™
74 C 6.6ms™
6 D 89ms™
] 5 12 A sailboat changes course during a race. It was sailing
] 4+ east at 6.9ms™* but is now sailing north at 7.2ms™.
' 3 - What was the change in velocity of the boat?
i 2 A 10ms~! N44°E
1 1- B 10ms! N46°E
! ol N C 10ms™ N46°W
E 01 2 3 4 5 6 7. 8 9 10 11 12 13 14 15 D 10ms N44°w
1 Time () 13 A car is travelling with a velocity of 100kmh™ S44°W.
1 a What distance was this race? What are the vector components of the velocity?
1 A 15m A 70kmh™ west and 30kmh™! south
: B 10m B 70kmh™! west and 72kmh~! south
C 100m C 72kmh! west and 70kmh™! south
! D 120m D 30kmh™" west and 70kmh™" south

Jocelyn is swimming across a river in a current of
1.0ms™ east. Her velocity relative to the water is
1.3ms™! north. What is her velocity relative to the

904 A BC D E F G ground?
A 1.8ms™, N52°E
80+ B 1.6ms, N52°E
70 4 C 1.8ms™, N38°E
0 D 1.6ms, N38°E
16 Mia is driving alongside a train track at 60kmh™" east
50 4 and there is a train driving in the opposite direction at
40 150kmh! west. What is Mia’s velocity relative to the
train?
304 A 90kmh™ east
20 B 90kmh! west
104 C 210kmh™" east
D 210kmh™ west
0

U U 17 A plane is travelling at 600 kmh™ south when a head
0 1020 30 40 50 60 70 80 wind starts to blow at 38kmh™. What is the distance

Time (5) travelled by the plane at the resultant velocity in the next
During which one or more of the sections, A to G, is the two hours?
boy: A 562km
a travelling north? B 1276km
b speeding up? C 1200km

D 1124km
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18 Rachel and Taylor went for a hike in the Blue Mountains.
Using GPS on their phones, they found that after walking
for 2 hours they had travelled a distance of 6 km. What
was their average speed?

A 08ms!
B 5.0kmh™
C 3.0ms™
D 1.8kmh™

19 Two bikes are approaching an intersection. Briar is riding
at 5.5ms™! east and Mei is travelling at 5.1 ms™* north.
What is the magnitude of the velocity of Briar relative to
Mei?

A 75ms!
B 10.6ms™
C 04ms™
D 42ms™

20 A light aircraft is flying at 102kmh™ south and a tail
wind starts to blow at 30kmh™. What is the new velocity
of the plane relative to the ground?

A 72kmh! south
B 132kmh™ north
C 132kmh™ south
D 72kmh™ north

Short answer

21 An Olympic archery competitor tests a bow by firing an
arrow of mass 25g vertically into the air. The arrow leaves
the bow with an initial vertical velocity of 100ms™. The
acceleration due to gravity may be taken as § =-9.8ms 2
and the effects of air resistance can be ignored.

a At what time will the arrow reach its maximum
height?

b What is the maximum vertical distance that this arrow
reaches?

c What is the acceleration of the arrow when it reaches
its maximum height?

22 A hiker travels 8km in a northerly direction from his
campsite and then travels a further 7km in a north-
easterly direction.

a What is his final displacement?
b If the journey takes a total of 7 hours, calculate his
the average speed in ms™.

23 Helen and Ajuna conduct the following experiment from a
skyscraper. Helen drops a platinum sphere from a height
of 122m. At exactly the same time Ajuna throws a lead
sphere with an initial vertical velocity of ~10.0ms™ from a
height of 122m. Assume § = -9.80ms 2.

a How long does it take the platinum sphere to strike
the ground?

b Calculate the time taken by the lead sphere to strike
the ground.

¢ Determine the average velocity of each sphere over

24 The following position versus time graph depicts the
motion of a cyclist travelling east along a straight road
from points A to D.

500-
450
400
350-
300-
250-
200-
150
100

50

A
0 T T

0 10 2|O 3|0 4IO 50
Time (s)

Describe the motion of the cyclist in terms of speed.

What was the velocity of the cyclist for the first 30s?

What was the velocity of the cyclist for the final 10s?
Calculate the average velocity between points B and C.

Calculate the average acceleration between points B

and C.

f Calculate the average speed between points A and D.

O Q06 oo

25 A small car is found to slow down from 90kmh™ to

60kmh™ in 12s when the engine is switched off and

the car is allowed to coast on level ground. The car has a

mass of 830kg.

a What is the car’s deceleration (in ms™) during the
12s interval?

b Determine the distance that the car travels during the
12s interval.

26 A cyclist is riding downhill at 15ms™. When they reach
the end of the bike path they slow to a stop over 20m.
a How long does it take them to come to a complete
stop?
b What is their acceleration over this period?

27 A car with good brakes but smooth tyres has a maximum
retardation of 40ms 2 on a wet road. The driver has a
reaction time of 0.50s. The car is travelling at 72kmh™!
when the driver sees a danger and reacts by braking.

a How far does the car travel during the reaction time?

b Assuming maximum retardation, calculate the
braking time.

¢ Determine the total distance travelled by the car from
the time the driver realises the danger to the time the
car finally stops.

their 122 m fall.
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28 The following displacement-time graph shows the
motion of a person walking.

0 T T T T T T
2 4 6\8 10 A2 14
14 Time (s)

a Describe the motion of the person using this graph.

b Create a velocity-time graph.
¢ Create an acceleration-time graph.

29 The current world record time for the 100m sprint
is 9.58s.
a What is the average speed over this distance?
b If that speed could be maintained over longer

distances, how long would it take to run 1km?

30 Gina dives off the 10 m high diving board into a pool.
a Calculate how long it takes her to reach the water.
b What is her final velocity as she enters the water?

Extended response

31 During a physics experiment a student sets a multiflash

timer at a frequency of 10Hz. A marble is then rolled
across a horizontal table. The diagram shows the

position of the marble for the first four flashes: A, B, C

and D.

Assume that when flash A occurred t = 0, at which time

the marble was at rest.
A B C
(%) o (¥)

D
()

| 1.0cm | 3.0cm | 5.0cm

a Determine the average speed of the marble for these

distance intervals:
i AtoB
ii BtoC
iii CtoD
b Determine the instantaneous speeds of the marble
for these times:
i t=0.05seconds
ii t=0.15 seconds
iii t=0.25 seconds
¢ Describe the motion of the marble.
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32 An Australian yacht and a New Zealand yacht are neck-

and-neck in the Sydney to Hobart yacht race.

a At one point the Australian yacht is travelling at
exactly 26 kmh™! south and the New Zealand yacht is
sailing at exactly 22kmh™! east, relatively to the water.
What is the speed of the Australian yacht relative to
the New Zealand yacht?

b Assume the yachts both started travelling in
these directions from the same point. What is the
magnitude of the displacement between the yachts
after 60 seconds travelling at these velocities?

¢ The velocities given are both relative to the water.

If the current of the water is travelling at exactly
1.5ms™! south, calculate the velocity of:

i the New Zealand yacht relative to the land

ii the Australian yacht relative to the land.

d Using the resultant velocities calculated in part c,
and taking the starting point as the displacements
calculated in part b, find the magnitude of the total
displacement between the yachts after they have
travelled for a further 60 seconds.

33 Tessa is canoeing across a river with a current of

2.5ms™ to the west.

a Her resultant velocity (relative to the ground) is
3.6ms™! north. Calculate the velocity of the canoe
relative to the water.

b The current increases to 3.1ms™! west, but Tessa
continues with the same velocity relative to the water.
What is her resultant velocity relative to the ground?

¢ She continues in the same direction for 1 minute.
Calculate her displacement.

d The river is 219m across. Would she make it to the
other side?

Derive:
a v={0+at

b $=dt+lat®

c v2=u?+25

35 Two ships leave port at the same time. Ship 1 heads

south-west with a speed of 50kmh™L. Ship 2 travels at

60kmh™ N8O°E.

a Calculate the velocity of ship 2 relative to ship 1.

b Calculate the velocity of ship 1 relative to ship 2.

¢ The two ships continue to travel at these velocities.
What is the magnitude of the displacement between
the two ships 1.5 hours after leaving port?
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Dynamics

The relationship between the motion of objects and the forces that act on them
is often complex. However, Newton’s Laws of Motion can be used to describe the
effect of forces on the motion of single objects and simple systems. This module
develops the key concept that forces are always produced in pairs that act on
different objects and add to zero.

By applying Newton’s laws directly to simple systems, and, where appropriate, _
the law of conservation of momentum and law of conservation of mechanical e — ;
energy, the effects of forces can be examined. It is also possible to examine the /,;”

———

e
e

interactions and relationships that can occur between objects by modelling and -
representing these using vectors and equations. -

In many situations, within and beyond the discipline of physics, knowing the

rates of change of quantities provides deeper insight into various phenomena.

In this module, the rates of change of displacement, velocity and energy are of

particular significance and students develop an understanding of the usefulness A

and limitations of modelling. /4

7

Outcomes

i
'/
By the end of this module you will be able to: /
+ design and evaluate investigations in order to obtain primary and secondary
data and information PH11-2
select and process appropriate qualitative and quantitative data and

information using a range of appropriate media PH11-4

solve scientific problems using primary and secondary data, critical thinking
skills and scientific processes PH11-6

describe and explain events in terms of Newton’s Laws of Motion, the law of
conservation of momentum and the law of conservation of energy PH11-9

Physics Stage 6 Syllabus © NSW Education Standards Authority for and on
behalf of the Crown in right of the State of NSW, 2017.
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CHAPTER

4 Forces

In the seventeenth century Sir Isaac Newton published three laws that explain why
objects in our universe move as they do. These laws became the foundation of a
branch of physics called mechanics: the science of how and why objects move. They
have become commonly known as Newton’s three laws of motion.

Using Newton’s laws, this chapter will describe the relationship between the forces
acting on an object and its motion.

Content

NQURY QUESION

How are forces produced between objects and what effects do
forces produce?
By the end of this chapter you will be able to:

+ using Newton’s Laws of Motion, describe static and dynamic interactions between
two or more objects and the changes that result from:
- a contact force
- a force mediated by fields

+ explore the concept of net force and equilibrium in one-dimensional and simple "%
two-dimensional contexts using: (ACSPHO50) ﬁ, »
- algebraic addition “»
- vector addition ‘ *
- vector addition by resolution into components r

« solve problems or make quantitative predictions about resultant and component
forces by applying the following relationships:

- Fag =—Fea

- Fx =FcosH, Fy =Fsing ‘
» conduct a practical investigation to explain and predict the motion of objects on '
inclined planes (ACSPH0O98)

Physics Stage 6 Syllabus © NSW Education Standards Authority
for and on behalf of the Crown in right of the State of NSW, 2017.




Balanced forces

How are forces produced between objects and what effects do forces produce?
COLLECTTHIS...

3 spring balances

steel ring

piece of paper

large piece of cardboard

¢ thumb tack

e protractor

DO THS...

1 Draw x and y axes on the centre of the papr. Use the thumb tack to hold the paper to a large piece of cardboard and to
mark the centr.

2 Place the ring over the tack with the spring balances hooked on the rin.

3 Arrange the 3 spring balances so they are equally spacd.

4 With two other people apply a pulling force to the ring so that it does not mov. Record the force on each of the spring
balances

5 Using a protractor and trigonomety, determine the x and y components of the force.

6 Now try starting with one force and predict the magnitude and direction of the other two forces required to keep the
ring from movin.

7 Apply the three forces to check if you were correct.

RECORD HIS...

Describe the relationship between the force components that resulted in the ring staying stll.
Present a table of your resuls.

REFLECT ON HIS...

How are forces produced betweenobjects and what effects do forces produce?
How did the ring move when all the forces were balanced?
How did the ring move when all the forces were unbalanced?

120

The previous chapter developed the concepts and ideas needed to describe the motion
of a moving object. In this chapter you will investigate the forces that cause the motion.

FORCE

In simple terms, a force can be thought of as a push or a pull. You experience
forces all the time; they are fundamental to the nature of matter and the structure

of the universe.

In each of the situations depicted in Figure 4.1.1, forces are acting. Some are
applied directly to an object and some act on an object without touching it. A
force that acts directly on an object is called a contact force, because the object
experiences the force only while contact is maintained. A force that acts on an
object at a distance is called a non-contact force, or a force mediated by a field.

MODULE 2 | DYNAMICS



(a)

(d)

FIGURE 4.1.1 (a) At the moment of impact, both the tennis ball and the racquet strings are distorted
by the forces acting at this instant. (b) The rock climber is relying on the frictional force between the
rock face and his hands and shoes. (c) A continual force causes the clay to deform into the required
shape. (d) The gravitational force between the Earth and the Moon is responsible for two high tides

each day. (e) The magnet is suspended in mid-air because of magnetic forces.

Contact forces are the easiest to understand. They include the simple pushes and
pulls you experience every day, such as the forces that act between you and your
chair when you are sitting, or the forces that act between your hand and a ball when
you throw it. Friction and drag forces are also contact forces.

Forces mediated by a field occur when the object causing the push or pull is
physically separated from the object that experiences the force. These forces are
said to ‘act at a distance’. Gravitational, magnetic and electric forces are examples
of non-contact forces.

Force is measured using the SI unit called the newton, which has the symbol N.
This unit, which will be defined later in the chapter, honours Sir Isaac Newton
(1643-1727), who is one of the most important physicists in history and whose first
law is the subject of this section.

0 A force is a push or a pull and is measured in newtons (N). It is a vector, so it
requires a magnitude and a direction to describe it fully.

A force of one newton, 1N, is approximately the force you have to exert when
holding a 100 g mass against the downwards pull of gravity. In everyday life this is
about the same as holding a small apple. If more than one force acts on an object at
the same time, the object behaves as if only one force—the vector sum of all the
forces—is acting. The vector sum of the forces is called the resultant or net force,
FE.... (Vectors are covered in detail in Chapter 2.)

NEWTON'’S FIRST LAW

Many people mistakenly think that an object that is moving with a constant velocity
must have a force causing it to move. This section addresses this misunderstanding
and will enable you to understand how Newton’s first law applies to any situation
in which an object moves.

0 The net force acting on an
object experiencing a number of
forces acting simultaneously is
given by the vector sum of all the
individual forces:
Fu=F+F+ +F,

net
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6 Newton’s first law of motion is

122

commonly stated as follows:

Every object will remain in a
state of rest or uniform motion

in a straight line unless that state
is changed by the action of an
external force.

This law can be stated more
simply as:

An object will maintain a constant
velocity unless an unbalanced
external force acts on it.

Newton'’s first law could be
rephrased to remove the term
‘unless’:

An object will not maintain a
constant velocity if an unbalanced
external force acts on it.

MODULE 2 | DYNAMICS

The simplified version of Newton’s first law in the box on the left needs to be
analysed in more detail by first examining some of the key terms used. The term
‘maintain a constant velocity’ implies that, if an object is moving and no external force
is acting on it, it will continue to move with a velocity that has the same magnitude and
direction. For example, if a car is moving at 12.0ms™! south, then some time later it
will still be moving at 12.0ms™! south (Figure 4.1.2). Similarly, if a car has a velocity
of 0ms™ (that is, it is not moving), then some time later it will still have a velocity

of Oms™.

12.0 m s™! south

FIGURE 4.1.2 A car maintaining a constant velocity.

Newton’s first law is closely related to the concept of inertia; in fact it is sometimes
called the law of inertia. Inertia is the tendency of an object to maintain a constant
velocity. This tendency is related to the mass of an object: the greater the mass, the
harder it is to get it moving or to stop it from moving.

The term ‘unless’ is particularly important in Newton’s first law. Instead of
saying what must happen for the motion to be constant, it tells you what must
not happen.

In the rephrased version of the law shown on the left, ‘will not maintain a constant
velocity’ implies that the velocity will change. And a change in velocity means that
the object will accelerate.

The term ‘unbalanced’ implies that there must be a net force acting on the object.
If more than one force acts on an object but the forces are balanced, the object’s
velocity will remain constant. If the forces are unbalanced the velocity will change.
This is illustrated in Figure 4.1.3.

¢

200 N south 7=~ 200 N north
o OO

<

400 N south ,r* 200 N north
L @@ :

FIGURE 4.1.3 The forces on the top car are balanced, so it will maintain a constant velocity. The
forces on the bottom car are unbalanced: it has a net force in the forwards direction, so its velocity
will change.

The term ‘external’ in relation to a force implies that the force is not internal.
When forces are internal they have no effect on the motion of the object. For
example, if you are sitting in a car and push forwards on the steering wheel then the
car will not move forwards because of this force. In order for you to push forwards
on the steering wheel, you must push backwards on the seat. Both the steering wheel
and the seat are attached to the car, so there are two forces acting on the car that are
equal and in the opposite direction to each other, as shown in Figure 4.1.4. Because
internal forces must result in balanced forces on the object, they cannot change the
velocity of the object.

force of person
on seat/car

force of person
on wheel/car

FIGURE 4.1.4 This driver is applying internal forces on a car. These internal forces will balance and
cancel each other.
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The effects of forces

Applying a force can cause an object to speed up, slow down, start moving, stop
moving, or change direction. The effect depends on the direction of the force in
relation to the direction of the velocity vector of the object experiencing the force.
The effect of external forces is summarised in Table 4.1.1.

TABLE 4.1.1 The effect of the application of a force, depending on the relationship between the
direction of the force and the velocity.

Relationship between velocity and Effect of force
force

Force applied to object at rest. Object starts moving.

Force applied in same direction Magnitude of velocity increases (object
as velocity. speeds up).

Force applied in opposite direction Magnitude of velocity decreases (object
to velocity. slows down).

Force applied perpendicular to velocity. Direction of velocity changes (object
changes direction).

An unbalanced force applied to an object always changes the velocity of the object,
whether it is the magnitude of the velocity, the direction of the velocity, or both that
changes (as shown in Figure 4.1.3).

EQUILIBRIUM

Newton’s first law states that an object will continue with its motion unless acted
upon by an external unbalanced force. An object’s velocity will not change when the
forces acting on it are balanced. When the forces are balanced, the forces are said to
be in equilibrium.

An example of equilibrium occurs at the beginning of a game of tug-of-war
(Figure 4.1.5). Both teams apply a force in opposite directions but neither team
moves. Winning a tug-of-war game involves one team applying a greater force so
that there is a net force on the rope, causing the rope and teams to accelerate in the
winning team’s direction. When the rope and the teams are moving at a constant
velocity, then an equilibrium of forces exists once again.

The sum of all the forces acting on an object is commonly referred to as the
resultant force or net force, F, ... An equilibrium occurs when the net force is zero.
A net force causes acceleration in one direction, but a zero net force causes no
acceleration of the object. This condition is the defining aspect of an equilibrium of

forces. It can be expressed mathematically as I, = 0.

6 Equilibrium exists when the sum of all forces acting on an object result in a zero
net force acting on the object. Mathematically, this can be expressed as:

XF=0
The symbol X (sigma) represents the sum. The equation £F = 0 means the sum

of all individual forces acting on an object. If there were four individual forces all
simultaneously acting on the same object, this equation would be rewritten as:

e

FIGURE 4.1.5 When a tug-of-war starts there is

an equilibrium of forces.
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____________________________________________________________

SKILLBUILDER

UNDERSTANDING MATHEMATICAL SYMBOLS

Part of the language of science is using symbols to represent quantities
or to give meanings. For example, the symbols <, >, < and > are known as
inequalities. Table 4.1.2 gives some examples of common mathematical

symbols used in science.

TABLE 4.1.2 Some mathematical symbols commonly used in science.

less than
> greater than
< less than or equal to
> greater than or equal to
J square root
A change in, or difference
between
=~ approximately equal to
z sum
oc is proportional to

2<3
6>1
2x< 10
3y>12
Ja=2

At

n=3.14

2 is less than 3

6 is greater than 1

2x is less than or equal to 10
3y is greater than or equal to 12

The square root of 4 is 2

change in t (time)

7 is approximately equal to 3.14

The sum of consecutive integers
from 1 to 4, i.e.
1+2+3+4=10

Force is proportional to
acceleration

____________________________________________________________

Worked example 4.1.1
CALCULATING NET FORCE AND EQUILIBRIUM IN ONE DIMENSION

Consider two forces acting on an object. A 10N force acts on the object towards
the right, and a 5N force acts on the object towards the left.

Calculate the net force acting on the object, and determine what additional force
is required for the object to be in equilibrium. That is, F = 0.

Thinking

Working

Determine the individual forces acting
on the object.

F, = 10N towards the right
,52 = 5N towards the left

Apply a sign convention to replace =+10N
directions. £, =-5N
Determine the net force acting on the Frt =F +F
object.

=10+ (-5)

= 5N towards the right

Determine what additional force
is required for the object to be in
equilibrium

Equilibrium exists when =F = 0
F..: = 5N towards the right

For equilibrium to exist, a force of 5N
towards the left would be required to
act on the object.




Worked example: Try yourself 4.1.1
CALCULATING NET FORCE AND EQUILIBRIUM IN ONE DIMENSION

Consider two forces acting on an object. A 20N force acts on the object towards
the left, and a 23 N force acts on the object towards the right.

Calculate the net force acting on the object, and determine what additional force
is required for the object to be in equilibrium.

When you are working with vectors in two dimensions, you can describe the
vectors using their x and y components. For example, if a 10N force is acting at a
45° angle, that vector could be represented as the sum of its x and y components, as
shown in Figure 4.1.6.

In Figure 4.1.6, if F = 10N then the x and 3y components of the force are:

F.=10c0s45°

&l

F = Fsin 45°

FX = Fcos 45°

£, =7.07N FIGURE 4.1.6 A two-dimensional vector can be
F =10sin45° dpscribed byitsxandy components: In this

ﬂy figure, the x component of the force is f cos45°,
Fy =7.07 N the y component of the force is F sin45°,

Worked example 4.1.2
CALCULATING NET FORCE AND EQUILIBRIUM IN TWO DIMENSIONS

Consider three forces acting on an object: a 20N upwards force, a 10N downwards
force, and a 10N force from left to right.

a Calculate the net force acting on the object

Thinking Working
Determine the individual | £ = 20N upwards

forces acting on the ,;2 — 10N downwards

object. a )
F;=10N right
Apply a sign convention Choose up and right to be positive directions. This
to replace directions. means down and left are negative.
Create a vector diagram -
describing the net force R F, ~
acting on the object. F, F, I
Fnet ’/ ol
. R t F
Fl Fl R /’/
L
_— N F
F3 Fnet g

Calculate the magnitude ,Enet =F+ ,E2 4 ,E3
of the net force using F '
Pythagoras’ theorem. net = 20N (up) — 10N (down) + 10N (right)

= 10N (up) + 10N (right)
Foe” =107 +107

Foet =200
Foe=141N
Determine the angle of tang=10 =1
the net force. 1
6=tan""1
= 45°
State the net force. F..=14.1N at an angle of 45° in the right direction

from the horizontal
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b Determine what additional force is required for the object to be in equilibrium.

Thinking Working

Dg(tjerminlefwhat Equilibrium exists when £ F = 0:

additional force is = .
required for the object to F.et=10N .u.pvsllards and. 10N towa.rgls the right
be in equilibrium. So for equilibrium to exist, an additional force of

10N downwards and 10N towards the left must act
on the object.

This vector is equal to the negative value of F,
calculated in part a.

F

3

o

et

-

equilibrium

Worked example: Try yourself 4.1.2
CALCULATING NET FORCE AND EQUILIBRIUM IN TWO DIMENSIONS

Consider three forces acting on a single object: a 10N downwards force, a 2N
downwards force and a 5N force from right to left.

a Calculate the net force acting on the object.

b Determine what additional force is required for the object to be in equilibrium.

Stating Newton’s first law in different ways
Ludwig Wittgenstein, an Austrian—British philosopher, suggested that ‘under-
standing means seeing that the same thing said in different ways is the same thing’.
To truly understand Newton’s first law, you should be able to state it in different ways
yet still recognise it as being consistent with Newton’s first law.
All of the following statements are consistent with Newton’s first law:
* An object will maintain a constant velocity unless an unbalanced, external force
acts on it.
* An object will continue with its motion unless an unbalanced, external force is
applied.
* An object will maintain a constant velocity when the forces acting on it are in
equilibrium.
» If the forces acting on an object are in equilibrium, the object will maintain a
constant velocity.
* An object will either remain at rest or continue with constant speed in a straight
line unless it is acted on by a net force.
« If an unbalanced external force is applied, then an object’s velocity will change.
e If a net force is applied (the forces are not in equilibrium), then the object’s
velocity will change.
¢ Constant velocity means net force is equal to zero.
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Terminal velocity

You saw in Chapter 2 that without air resistance all objects velocity. Terminal velocity is different for different objects,
would accelerate towards the surface of Earth at a constant because air resistance depends on the object’s shape
rate of 9.8ms . But air resistance exists on Earth, and it and other factors. For example, terminal velocity for a
increases as the speed of an object increases. Newton’s sheet of paper is much less than for a skydiver.

first law can be used to explain how air resistance causes
a skydiver to reach a maximum vertical velocity, called the
terminal velocity.

As the skydiver begins falling, the only external force is
the weight force. The weight force causes the skydiver to
accelerate at 9.8ms™2. But as their velocity increases, air
resistance pushes upwards. This reduces the magnitude of
the net force, which decreases the skydiver’s acceleration.

Eventually the air resistance becomes so great that it exactly r.m’"’_ i S, : p
balances the weight force. According to Newton’s first law, — T T T
the skydiver will maintain a constant velocity when all the FIGURE 4.1.7 When a skydiver reaches terminal velocity, their

external forces are balanced: this velocity is the terminal weight force is in balance with air resistance.

INERTIA

Inertia can be thought of as the resistance of an object to a change in motion. It
is related to the mass of the object. As the mass of the object increases, its inertia
increases, and therefore:

e it becomes harder to start it moving if it is stationary

e it becomes harder to stop it moving

e it becomes harder to change its direction of motion.

You can experience the effect of inertia when you push a trolley in a supermarket. If
the trolley is empty it is easy to start pushing it, and to pull it to a stop when it is already
moving. It is also easy to change its direction of motion. But when the trolley is filled
with heavy groceries it becomes more difficult—that is, it requires more force—to make
the trolley start moving when it is at rest, and it becomes more difficult to pull it to a
stop if it is already moving. It also requires more force to change the trolley’s direction.

It is important to note that the effects of inertia are independent of gravity.
Because inertia depends on mass, and weight force due to gravity also depends on
mass, it is a common misunderstanding to think that the effects of inertia only occur
in the presence of gravity. So even if your supermarket was in deep space, it would
be just as difficult to change the state of motion of the trolley.

Newton’s first law and inertia

The connection between Newton’s first law and inertia is very close. Because of
inertia, an object will continue with a constant motion unless a net force acts on it.

You experience the connection between Newton’s first law and inertia when you
are standing in a train that is initially at rest but then starts moving forwards. If you
are not holding on to anything, you may stumble backwards as though you have
been pushed backwards. What has happened?

You have not been pushed backwards. Because you have inertia, your mass
resists the change in motion when the train starts moving. According to Newton’s
first law, your body is simply maintaining its original state of being motionless until
an unbalanced force acts to accelerate it. When the train later comes to a sudden
stop, your body again resists the change by continuing to move forwards until an
unbalanced force acts to bring it to a stop.
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4.1 Review

+ Aforce is a push or a pull. Some forces act by

contact, while others can act at a distance.

Force is a vector quantity, and its Sl unit is the
newton (N).

When an object experiences more than one force
acting simultaneously, the net force is given by the
vector sum of the individual forces.

Equilibrium exists when the sum of all forces
acting on an object results in a zero net force.

KEY QUESTIONS

1

A student observes a box sliding across a surface and
slowing down to a stop. From this observation, what
can the student conclude about the forces acting on
the box?

A car changes its direction as it turns a bend in the
road while maintaining its speed of 80kmh™. From
this, what can you conclude?

A bowling ball rolls forwards along a smooth wooden

floor at a constant velocity. Ignoring the effects of friction

and air resistance, which of the following statements,

relating to the force acting on the ball, is correct?

A There is a net force acting forwards to maintain the
velocity of the ball.

B There is not an unbalanced force acting on the ball.

C The forwards force acting on the ball is balanced by
the friction that opposes the motion.

D It is not possible to conclude anything about the
forces on the ball.

If a person is standing up in a moving bus that stops
suddenly, the person will tend to fall forwards. Has a
force acted to push them forwards? Use Newton’s first
law to explain what is happening.

Newton'’s first law can be written in many ways;
for example:

- An object will continue with a constant
velocity unless an unbalanced force causes its
velocity to change.

- Non-zero net forces cause acceleration.

Inertia is the tendency of an object to resist a
change in motion.

Inertia is related to mass; an object with a larger
mass will have a larger inertia.

Passengers on commercial flights must be seated and
have their seatbelts done up when the aeroplane is
coming in to land. What would happen to a person
who was standing in the aisle as the aeroplane
travelled along the runway during landing?

A magician performs a trick in which a cloth is pulled

quickly from under a glass filled with water without

causing the glass to fall over or the water to spill out.

a Explain the physics underlying this trick.

b Does using a full glass make the trick easier or
more difficult? Explain.

When flying at constant speed at a constant altitude,
a light aircraft has a weight of 50kN down, and the
thrust produced by its engines is 12kN to the east.
What is the lift force acting on the wings of the plane?
And what is the magnitude and direction of the drag
force?

If an object experiences a force of 20N towards the
right and a force of 15N towards the left, what is
the net force acting on the object? Determine what
additional force is required for the object to be in
equilibrium.
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4.2 Newton’s second law

Many people mistakenly believe that heavy objects will fall faster than lighter objects.
This is because air resistance has a significant effect on larger, lighter objects.
However, even when air resistance is taken into account, the misconception that
larger masses should fall faster than lighter masses persists.

Newton’s second law makes the quantitative connection between force, mass
and acceleration. It helps to resolve the misconception about the time taken for
objects with different masses to fall to the ground.

Figure 4.2.1 depicts a famous experiment showing that objects fall together
when the effect of air resistance is removed. An internet search for ‘hammer and
feather on the Moon’ will enable you to view a video of Apollo astronaut David
Scott’s 1971 experiment (see the PhysicsFile at the end of Chapter 2). Although
the video is fuzzy, you can see that both objects accelerate at the same rate and
hit the ground at the same time. You can also find a video of Professor Brian Cox
performing the same experiment in a huge vacuum chamber used by NASA for
testing spacecraft, using feathers and a bowling ball.

NEWTON’S SECOND LAW

0 Newton’s second law of motion states:

The acceleration of an object is directly proportional to the net force on the
object and inversely proportional to the mass of the object:

F=ma

where: a is the acceleration of an object (in ms‘z)
F is the force applied to the object (in N)
m is the mass of the object (in kg)

By definition, 1N is the force needed to accelerate a mass of 1kg at 1ms 2 Itis
therefore equal to 1 kgms_z.

One of the implications of Newton’s second law is that, for a given mass,
a greater acceleration is achieved by applying a greater force. This is shown in
Figure 4.2.2. Doubling the applied force will double the acceleration of the object.

In other words, acceleration is proportional to the net force applied.

Fl
mass
-
a
1
FZ
mass
-
a2

FIGURE 4.2.2 Given the same mass, a larger force will result in a larger acceleration. If the force is
doubled, then the acceleration is also doubled.

Notice also in Figure 4.2.2 that the acceleration of the object is in the same
direction as the net force applied to it.

Newton’s second law also explains how acceleration is affected by the mass of an
object. For a given force, the acceleration of an object will decrease with increased
mass. In other words, acceleration is inversely proportional to the mass of an object.
This is shown in Figure 4.2.3.

Applying Newton’s second law

In many practical situations, such as designing lifts for skyscrapers or seatbelts for
cars, it is important to calculate the force acting on a mass that is accelerating (or
decelerating) at a certain rate. The equation F =ma enables us to do this easily.

o

FIGURE 4.2.1 An artist’s image of the famous
hammer and feather experiment conducted on
the Moon.

GO TO » | PhysicsFile, page 85
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FIGURE 4.2.3 Given the same force, a larger
mass will result in a lower acceleration. If the
mass is doubled, then the acceleration is halved.
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Worked example 4.2.1
CALCULATING THE FORCE THAT CAUSES AN ACCELERATION

Calculate the net force on a 5.50kg mass that is accelerating at 3.75m s west.

Thinking Working
m = 5.50kg
3=3.75ms™? west

Ensure that the variables are in their
standard units.

Apply the equation for force from F=m3

Newton’s second law. ~550x%3.75
=20.6N

Give the direction of the net force, F =20.6N west

which is always the same as the
direction of the acceleration.

Worked example: Try yourself 4.2.1
CALCULATING THE FORCE THAT CAUSES AN ACCELERATION

Calculate the net force on a 75.8kg runner who is accelerating at 4.05ms2 south.

Often more than one force will act on an object at a particular time. The overall
effect of the forces depends on the direction of each of the forces. For example,
some forces may reinforce each other, but others may oppose each other. When
using Newton’s second law it is important to use the net, or resultant, force in the
calculation. Because forces are vectors, they can be added or combined using the
techniques discussed in Chapter 2. Consider the following worked examples.

Worked example 4.2.2

CALCULATING THE ACCELERATION OF AN OBJECT WITH MORE THAN ONE
FORCE ACTING ON IT

A swimmer whose mass is 75 kg applies a forwards force of 50N to the water
as he starts a lap. The water opposes his efforts to accelerate with a backwards
drag force of 20N.

What is the swimmer’s initial horizontal acceleration?

Thinking Working
F, = 50N forwards

Determine the individual forces
acting on the swimmer, and apply

: ) =+50N
the vector sign convention. ~
F, = 20N backwards
=-20N
Determine the net force acting on Fo=F+ ,Ez
the swimmer. ne
=50 + (-20)

=+ 30N or 30N forwards

Gy D

-

F_. <
applied
+ 50N
F
“& 20N
F <«

30N




|

Use Newton’s second law to
determine acceleration.

o))
Il
3
D
2

I
S 3|

A0ms™ forwards

o

Worked example: Try yourself 4.2.2

CALCULATING THE ACCELERATION OF AN OBJECT WITH MORE THAN ONE
FORCE ACTING ON IT

A car with a mass of 900 kg applies a driving force of 3000N forwards as it
starts moving. Friction and air resistance oppose the motion of the car with a
force of 750N backwards.

What is the car’s initial acceleration?

Worked example 4.2.3

CALCULATING THE ACCELERATION OF AN OBJECT WITH A TWO-DIMENSIONAL

FORCE ACTING ON IT

A 200N force acts at an angle of 45° to the x direction on an object with a mass
of 100kg. A second force of 100N acts on the same object at an angle of 30° to
the x direction.

What is the net force and initial acceleration acting on the object in the x
direction?

Thinking Working
Determine the horizontal (x) F, = 200N at 45°
components of the forces acting on

F,= 100N at 30°
Pl = 200cos 45°
=+141.4N in the x direction
Fag = 100cos 30°
=+86.6N in the x direction

the object.

Determine the net force actingonthe | £ - F o+ /?Z(X)

object in the x direction.
=141.4 + 86.6

=+228N in the x direction

|

Use Newton’s second law to determine | -
3= et

n
acceleration. m
28

N

=16
=+2.28 s in the x direction

O

PHYSICSFILE

The weight force

The mass of an object is different to its
weight. Mass is a scalar quantity and is
measured in kilograms (kg). Weight is
’Ehe force on an object due to gravity,
Fg. Like all forces, weight is a vector
quantity and is measured in newtons
(N). The equation for I?g has a similar
form to Newton's second law, F = ma.
F=mg

where:  m is the mass of the
object (kg)
g is the gravitational field
strength (N kg‘l)
The gravitational field strength is
equivalent to the acceleration of an
object due to gravity, so its unit can
also be written as ms 2.
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Worked example: Try yourself 4.2.3

CALCULATING THE ACCELERATION OF AN OBJECT WITH A TWO-DIMENSIONAL
FORCE ACTING ON IT

A 150N force acts at an angle of 60° to the x direction on an object with a mass
of 75kg. A second force of 80N acts on the same object at an angle of 15° to
the x direction.

What is the net force and initial acceleration acting on the object in the y
direction?

PHYSICSFILE

Maximising acceleration

Dragster race cars are designed to achieve the maximum possible acceleration in order
to win a race in a straight line over a short distance. According to Newton’s second law,
acceleration is increased by increasing the applied force and by reducing the mass of
the object. For this reason, dragster race cars are designed with very powerful engines
that produce an enormous forwards force and an aerodynamic shape to minimise air
resistance. There is not much else to the car, so this helps to minimise the mass.

Newton’s second law also helps you understand why a motorcycle can accelerate
from the lights at a greater rate than a car or a truck. While the engines in a car or
truck are usually more powerful than a motorcycle engine, the motorcycle has much
less mass, which allows for greater acceleration.

FIGURE 4.2.4 The lower mass of motorcycles enables
them to accelerate faster than cars and trucks, even
though their engines are relatively small.

THE FEATHER AND HAMMER EXPERIMENT
The experiment on the Moon

When two objects with different masses fall under the influence of a gravitational

" m, field, in the absence of any other force such as air resistance, they will both fall at
! 7 the same rate. That is, their accelerations will be the same. They will cover the same
ﬁll lc’z’g l[ig distance in the same time and will hit the ground at the same time if dropped from
ﬁz the same height. This happens on the Moon because there is no atmosphere, and

therefore no air resistance.
Many people think that a gravitational field applies the same force to all objects.

FIGURE 4.2.5 Both objects experience the same
acceleration, so the larger mass must have a
larger force acting on it. If the mass is doubled,
then the force is doubled.
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In fact, the gravitational force is larger on objects with more mass, and smaller on
objects with less mass. A larger mass also has more inertia, so it requires a greater
force to achieve the same acceleration (Figure 4.2.5).

The experiment on the Earth

When a feather falls through the air on Earth, its acceleration is far less than the
acceleration of a hammer falling from the same height. From the previous section
you will know that the hammer and the feather have gravitational forces acting on
them that are proportional to their mass, so they should accelerate at the same rate.



They do not do this because of the force of air resistance. Recall that Newton’s
second law says the acceleration is proportional to the net force acting on an object,
which means you must consider all the forces acting on an object to determine
the acceleration.

Air resistance is a force that results from air molecules colliding with the object.
The faster an object moves, the greater the air resistance. Air resistance also
increases with increasing surface area perpendicular to the direction of motion, and
with the roughness of the surface (represented by the drag coefficient). This force,
which acts in the opposite direction to the motion of the object, is significant when
compared with the weight of the feather, but insignificant when compared with the
weight of the hammer (Figure 4.2.6).

Because an average feather has a very small mass (less than 0.5 g), the gravitational
force acting on it is very small. It also has a relatively large surface area and a large
drag coefficient, so the air resistance when it starts falling is large relative to the
gravitational force acting on it. As soon as the feather is released its acceleration
decreases quickly, and it reaches its terminal velocity after falling only about a metre.
This velocity is typically about 1ms™.

On the other hand, a hammer has a large mass (about 700g), a small surface
area (because it falls with the heavy end down), and a small coefficient of drag. As
a result the air resistance when it starts falling is small compared to the gravitational
force acting on it, and it does not reach its terminal velocity until it has fallen

hundreds of metres. This velocity is about 50ms™".

Fa d

L

FIGURE 4.2.6 The net force on a falling object on Earth is a result of the gravitational force acting
downwards and air resistance acting upwards. For an object with a small mass (m;), air resistance
has a large effect on the initial acceleration because the gravitational force acting on the object is
relatively small. For a heavy object (m,), air resistance has little effect on the initial acceleration
because the gravitational force acting on the object is relatively large.
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4.2 Review

Newton's second law states:

The acceleration of an object is directly
proportional to the net force on the object and
inversely proportional to the mass of the object.
'[his relationship can be described by the formula
F =ma.

KEY QUESTIONS

Use g = 9.8ms™ when answering the following questions.

Calculate the acceleration of a 23.9kg mass when a
net force of 158N north acts on it.

Calculate the acceleration of a 45.0kg mass that has a
net force of 441 N downwards acting on it.

Calculate the acceleration of a 90.0kg mass that has a
net force of 882N downwards acting on it.

Calculate the mass of a train if it accelerates at
7.20ms™ north when a net force of 565000N north

acts on it. Give your answer to three significant figures.

A model yacht with a mass of 15kg is sailing north

across a lake. A southerly breeze provides a constant

driving force of 10N north, and the drag forces total

8.5N south.

a Calculate the weight of the model.

b Find the net force acting on the model when it is
sailing.

MODULE 2 | DYNAMICS

Different magnitudes of forces due to gravity
act on different masses to cause the same
acceleration.

Air resistance is a force that acts to decrease the
acceleration of objects moving through air.

¢ Calculate the magnitude of the acceleration of the
model.

d The breeze drops and the yacht now travels at a
constant speed north, with total drag forces of 7.2N
south. What is the force of the breeze on the model
now?

An empty truck of mass 2000kg has a maximum

acceleration of 2.0ms™. How many 300kg boxes of

goods would the truck be carrying if its maximum
acceleration was 1.25ms2?



4.3 Newton’s third law

Newton’s first two laws of motion describe the motion of an object resulting from the
forces that act on that object. Newton’s third law, concerning ‘action and reaction’,
is easily stated and is well known, but it is often misunderstood and misused. It is a
very important law in physics because it helps us understand the origin and nature
of forces. Newton’s third law is explored in detail in this section.

NEWTON'’S THIRD LAW

Newton realised that all forces exist in pairs, and that each force in the pair acts
on a different object. Consider a hammer hitting a nail on the head, as shown in
Figure 4.3.1. Both the hammer and the nail experience forces during this interaction.
The nail experiences a downwards force as the hammer hits it. When the nail is
hit it moves a distance into the wood. As it hits the nail, the hammer experiences
an upwards force that causes the hammer to stop. These forces are known as an
action—reaction pair, and are shown in Figure 4.3.2.

(a) (b)

force that force that

gﬁ”hg)ﬁrewgsér force that gﬁlﬁ;(r?wrfr?er force that
hammer exerts hammer exerts
on nail on nail

FIGURE 4.3.2 (a) As the hammer gently taps the nail, both the hammer and the nail experience small
forces. (b) When the hammer hits the nail harder, both the hammer and the nail experience larger

forces. In both cases these forces can be designated by £ o i @0d Fiy i on hammer

Regardless of whether the hammer exerts a small or a large force on the nalil,
the nail will exert exactly the same magnitude of force on the hammer, but in the
opposite direction.

0 Newton'’s third law of motion states:
For every action (force), there is an equal and opposite reaction (force).

Newton’s third law means that when object A exerts a force on object B, object
B will exert an equal and opposite force on objec A. It is important to recognise that
the action force and the reaction force in Newto’s third law act on different objects
and so should never be added together; their effect will only be on the object on
which they ac. Newtn’s third law applies not only to forces between objects which
are in direct contact, but also to non-contact forces such as gravitational force.

The main misunderstanding that arises when considering Newton’s third law is
the belief that, if a large mass collides with a smaller mass, then the larger object exerts
a larger force and the smaller object exerts a smaller force. This is not true. If you
witnessed the collision between the car and the bus in Figure 4.3.3b, you would see the
car undergoing a large deceleration while the bus undergoes only a small acceleration.

From Newton’s second law, you know that the same force acting on a larger
mass will result in a smaller acceleration. This is the effect seen in the situation of the
car colliding with the bus. Because of the car’s small mass, the force acting on the car
will cause the car to undergo a large deceleration. The occupants may be seriously
injured as a result of this. The force acting on the bus is equal in size, but is acting
on a much larger mass. As a result, the bus will have a relatively small acceleration
and the occupants will not be as seriously affected.

FIGURE 4.3.1 A hammer hitting a nail is a
good example of an action—reaction pair and
Newton’s third law.

(@ force that foot
exerts on ball

force that ball
exerts on foot

(b)

force that bus
exerts on car

force that car
exerts on bus

(© gravitational force
that Earth exerts
on brick (F;)

gravitational force
that brick exerts
on Earth

FIGURE 4.3.3 Some action—reaction pairs.
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Combining Newton’s second
and third laws

You can easily observe the effect of
Newton’s second and third laws in the
classroom if you have two dynamics
carts with wheels that are free to roll
on a smooth surface such as a bench
or desk. If the two carts are placed

in contact with each other and the
plunger is activated on one of the
carts, the carts will roll away from each
other. This is because of the action
and reaction force pair described by
Newton’s third law.

If the two carts have similar masses,
they will accelerate apart at a similar
rate. If one cart is heavier than the
other, the lighter cart will accelerate

at a greater rate. This is because the
forces acting on both carts are equal

in magnitude and so, according to
Newton’s second law, the smaller mass
will experience a greater acceleration.
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Identifying the action and reaction forces

When analysing a situation to determine the action and reaction forces according to
Newton’s third law, it is helpful to be able to label the force vectors systematically. A
good strategy for labelling force vectors is to use a subscript consisting of the word
‘by’ and the object applying the force, and then the word ‘on’ and the object that is
acted on by the force. Once you are familiar with this system, you can just use letters
or numbers to represent each object.

The equal and opposite force is then labelled with a subscript that has the
objects in reverse. For example, the action and reaction force vector arrows shown
in Figure 4.3.3 can be labelled as shown in Table 4.3.1.

TABLE 4.3.1 Labels of action and reaction force vectors in Figure 4.3.3.

Foy toot on bl OF Frg Foy bal on foot O FaF

Fby car on bus OF FCB Fby bus on car OF FBC

Foy brick on Earth O Fae Foy Earth on brick OF Fes

It does not matter which force is considered the action force and which is considered
the reaction force. They are always equal in magnitude and opposite in direction.

0 Newton’s third law can be expressed mathematically as:
Fag =—Fga
where —fg, is the action force applied by object A on object B, and is the equal

and opposite reaction force applied by object B on object A.

This is similar to the vector rule described in Chapter 3.

Worked example 4.3.1
APPLYING NEWTON’S THIRD LAW

In the diagram below, a table tennis bat is in contact with a ball, and the action
force vector is shown.

a ldentify the action and reaction forces using the system ,Eby Con.

Thinking

Working

Identify the two objects involved in the action- | The bat and the ball.
reaction pair.

The action force vector shown
is a force by the bat on the ball.

Identify which object is applying the force and
which object is experiencing the force, for the
force vector shown.

Use the system of labelling action and

Action force: F,
. . + "'by bat on ball
reaction forces to label the action and

) Reaction force: F,
reaction forces. by ball on bat




b Draw the reaction force on the diagram, showing its size and location, and
label both forces.

Thinking Working

Copy the diagram into your

workbook.

Use a ruler to measure the length forcepy pall on bat forcepy bat on ball

of the action force and construct

a vector arrow in the opposite
direction with its tail on the point of
application of the reaction force.

Label the forces.

Worked example: Try yourself 4.3.1
APPLYING NEWTON’S THIRD LAW

In the diagram below, a bowling ball is resting on the floor, and the action force
vector is shown.

a Ildentify the action and reaction forces using the system ﬁby Con .

b Draw the reaction force on the diagram, showing its size and location, and
label both forces.

NEWTON’S THIRD LAW AND MOTION

Newton’s third law explains how you are able to move around. In fact, Newton’s third
law is needed to explain all motion. Consider walking. Your leg pushes backwards on
the ground with each step. An action force is applied by your shoe on the ground.
As shown in Figure 4.3.4, one component of the force acts downwards and another
component pushes backwards horizontally along the surface of the ground.

The force is transmitted because there is friction between your shoe and the
ground. In response, the ground then pushes forwards on your foot. This forwards
component of the reaction force enables you to move forwards. In other words, it
is the ground pushing forwards on you that moves you forwards. It is important to
remember that in the equation for Newton’s second law, ﬁnet =ma, the net force
Fnet is the sum of the forces acting on the object. This does not include forces that
are exerted by the object on other objects. When you push back on the ground, this
force is acting on the ground and may affect the ground’s motion. If the ground is
firm this effect is usually not noticed, but if you run along a sandy beach, the sand
is pushed back by your shoes.

The act of walking relies on there being some friction between your shoe and
the ground. Without it there is no grip and it is impossible to supply the action
force to the ground. Consequently, the ground cannot supply the reaction force
needed to enable forwards motion. Walking on smooth ice is a good example of this.
Mountaineers attach crampons (metal plates with spikes) to the soles of their boots
to gain more grip on ice. The effects of friction on Newton's laws is discussed in
more detail in Chapter 5.

ol

(reacton) _

owads

F (acton) /| F,
0 : p F (reacton)

FIGURE 4.3.4 Walking relies on an action—

reaction pair in which the shoe pushes down

and backwards with an action force. In
response, the ground pushes upwards and
forwards on the shoe.
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FIGURE 4.3.5 When the bin is in mid-air there is
an unbalanced gravitational force acting on it, so

it accelerates downwards.

FIGURE 4.3.7 The effect of the two forces acting
on the bin. These are not an action—reaction
force pair, even though they are equal in

magnitude and opposite in direction.
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All motion can be explained in terms of action and reaction force pairs. Table 4.3.2
gives some examples of the action and reaction pairs in familiar motions.

TABLE 4.3.2 Action and reaction force pairs are responsible for all types of motion.

Cen——Lcton e petonires

swimming hand pushes back on water water pushes forwards on hand
jumping legs push down on Earth Earth pushes up on legs
cycling tyre pushes back on ground ground pushes forwards on tyre

launching a rocket rocket pushes gases downwards gases push upwards on rocket

typing finger pushes down on key key pushes up on finger

THE NORMAL FORCE

When an object such as a bin is allowed to fall under the influence of gravity, it is
easy to see the effect of the gravitational force due to gravity. The action force is the
gravitational force of the Earth on the bin, so the net force on the bin in Figure 4.3.5
(ignoring air resistance) is equal to the gravitational force, and the bin therefore
accelerates at 9.8 ms 2.

When the bin is at rest on a table, as shown in Figure 4.3.6a, the gravitational
force F ¢ = mg is still acting on it. But the bin is at rest, so there must be another force
acting upwards to balance the gravitational force. This upwards force is provided
by the table. Because gravity pulls down on the mass of the bin, the bottom of the
bin pushes down on the surface of the table, and the table provides a reaction force
on the bin that is equal and opposite, so it pushes upwards on the bin as shown in
Figure 4.3.6b.

(a) (b)

F= gravitational force
¢~ Earth exerts on bin

_ force on bin
N by table

1!

[ Z _ gravitational force - _ force ontable
G~ bin exerts on Earth T~ by bin

FIGURE 4.3.6 (a) Action—reaction gravitational forces between the bin and the Earth. (b) Action—
reaction contact forces between the bin and the table.

The magnitude and direction of the gravitational force on the bin is equivalent
to the magnitude and direction of the force applied by the bin to the table. Therefore
the gravitational force on the bin is balanced by the upwards contact reaction force
applied by the table on the bin.

It is important to note that these two forces are not the pair of forces described in
Newton’s third law (Figure 4.3.7).This is because the two forces are both acting on
the bin, and no pair of Newton’s third law force pairs acts on the same object. The
contact force applied by a surface that is perpendicular to another surface is called
the normal reaction force. It is often abbreviated to normal force and is usually
represented by the symbol F‘N.

When you consider only the forces acting on the bin, you are left with the
gravitational force on the bin and the normal force on the bin by the table. These
two forces come from two separate pairs of action-reaction forces.

0 The weight force and the normal force do not make up an action—reaction pair
under Newton'’s third law, because they both act on the same object.



THE INCLINED PLANE

In the example of the bin and the table, the table’s surface is horizontal. An object
could be placed on a surface that is tilted at an angle 6 to the horizontal, as shown in
Figure 4.3.8. In this case the weight force remains the same: FN =mg downwards.
However, the normal force continues to act at right angles to the surface and will
change in magnitude, getting smaller as the angle increases. The magnitude of the
normal force is equal in size but opposite in direction to the component of the weight
force that acts at right angles to the surface. So the normal force is FN = mg cosf.

The component of the weight force that acts parallel to the surface will cause
the mass to slide down the incline. The motion of the object will then be affected
by friction, if it is present. The component of the weight force that acts along the
surface is given by F =mgsiné.

(a) (b)

SF=F +F, SF=F +F,
VB =0
i E |F,

body remains
atrest

-

F

g
FIGURE 4.3.8 (a) Where the surface is perpendicular to the gravitational force, the normal force acts
directly upwards. (b) On an inclined plane, £ is at an angle to ,Eg and is given by f = mg cos@. If no
friction acts, the force that causes the object to accelerate down the plane is £, = mgsin.

|PHYICS IN ACTION|

Newton’s laws in space

On Earth we are used to the effects of Newton'’s three laws and usually
do not notice them. But astronauts at the International Space Station
(ISS) feel like they are weightless, so the effects of Newton'’s three laws
can be more obvious.

Newton'’s first law is apparent when the ISS needs to change its orbit. If
an astronaut is not holding onto something, they will stay floating in the
same position while the ISS moves around them.

If an astronaut throws an object to a crewmate, they need to take care
about how much force they put behind it because of Newton’s second
law. On Earth we're used to allowing for the effect of gravity when we
throw things, but for astronauts in the ISS the direction of motion of an
object does not change once they have thrown it. The object might miss
the crewmate altogether and hit something important.

And each time an astronaut needs to push or press down on something,
such as pushing closed a locker door or pressing keys on their computer,
Newton'’s third law means that there is an equal and opposite force

pushing back. Astronauts often need to strap themselves into their desk ~ FIGURE 4.3.9 Astronaut Karen Nyberg aboard the International

so they don’t float away while they are working. Space Station.
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4.3 Review

Newton’s third law states:

- For every action (force), there is an equal and
opposite reaction (force).

If the action force is labelled systematically, the

reaction force can be described by reversing the

label of the action force.

The action and reaction forces are equal and

opposite even when the masses of the colliding

objects are very different.

The individual forces making up an action-reaction

pair act on different masses to cause different

accelerations according to Newton’s second law.

KEY QUESTIONS

1

What forces act on a hammer and a nail when a heavy
hammer hits a small nail?

In the figure below, an astronaut is orbiting the Earth,

and one of the forces acting on him is shown by the
red arrow.

a Name the given force using the system /3by on s

b Name the reaction force using the system ,Eby on s
A swimmer completes a training drill in which she
doesn’t use her legs to kick, but uses only her arms to
move down the pool. What force causes her to move
forwards down the pool?

4

7

When an object exerts a downwards force on a
surface, an equal and opposite reaction force is
exerted upwards by the surface on the object. This
is called the normal force.

If an object is on an inclined plane, the normal
force acting on the object from the plane
decreases as the angle of the plane increases.

A 70kg angler is fishing in a 40kg dinghy at rest on a
still lake when suddenly he is attacked by a swarm of
wasps. To escape, he leaps into the water and exerts a
horizontal force of 140N north on the boat.
a What force does the boat exert on the fisherman?
b With what acceleration will the boat move initially?
c If the force on the fisherman lasted for 0.50s,
determine the initial speed attained by both the
man and the boat.

An astronaut becomes untethered during a space-walk
and drifts away from the spacecraft. To get back to the
ship, she decides to throw her tool kit away. In which
direction should she throw the tool kit?

Two students, James and Tania, are discussing the
forces acting on a lunchbox that is sitting on the
laboratory bench. James states that the weight force
and the normal force are acting on the lunchbox and
that since these forces are equal in magnitude but
opposite in direction, they comprise a Newton'’s third
law action-reaction pair. Tania disagrees, saying that
these forces are not an action-reaction pair. Who is
correct and why?

A 10kg object is resting on an inclined plane at an
angle of 60° to the horizontal. What is the force on the
object_due to gravity ,Eg, and the perpendicular normal
force Ry from the inclined plane on the object?
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Chapter review

KEY TERMS

contact force mass
equilibrium net force
force newton
force mediated by a field Newton'’s first law
inertia Newton’s second law
KEY QUESTIONS
1 Which of the following are examples of contact forces?

A two billiard balls colliding

B the electrostatic force between two charged
particles

C a bus colliding with a car

D the magnetic force between two fridge magnets

A student is travelling to school on a train. When

the train starts moving, she notices that passengers
tend to lurch towards the back of the train before
regaining their balance. Has a force acted to push the
passengers backwards? Explain your answer.

A bowling ball rolls along a smooth wooden floor at
constant velocity. Which of the following diagrams
correctly indicates the horizontal forces acting on
the ball as it rolls towards the right? (The weight and
normal force can been ignored.)

A
g ‘
C

B
' g
D
F 9 F
A force of 10N acts from left to right on an object, and
a force of 5N simultaneously acts from right to left on
the same object.

a What is the net force acting on the object?
b Are the forces in equilibrium?

Newton'’s first law states that an object will maintain a
constant velocity unless an unbalanced, external force
acts on it. What distinguishes an external force from an
internal force?

What are the horizontal and vertical components
of a force of 50N acting on an object at an angle of
45° upwards from the positive x direction?

Newton’s third law
normal reaction force
terminal velocity
weight

10

11

12

Consider three forces acting on a single object: a 20N

upwards force, a 10N downwards force, and a 10N

force from left to right. Sketch:

a the vector diagram of the three forces and the
resultant force

b the force required for the object to be in
equilibrium.

If two equal masses experience the same force, which

of the following describes their accelerations?

A equal and opposite

B equal and in the same direction

C different and opposite

D different and in the same direction

Calculate the mass of an object if it accelerates at

9.20ms™ east when a force of 352N east acts on it.

Calculate the acceleration of a 60.9g golf ball when a

net force of 95.0N south acts on it.

Calculate the acceleration of a 657 kg motorbike when

a net force of 3550N north acts on it.

A 150N force acts at a 45° angle to the x direction on
an object with a mass of 10kg. A second force of 15N
acts on the same object at an angle of 30° to the x
direction. Using the diagram below, calculate the net
force and initial acceleration acting on the object in the
x direction.
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13

14

15

16

142

A 10N force acts at a 60° angle to the x direction on
an object with a mass of 75kg. A second force of 40N
acts on the same object at an angle of 15° to the x
direction. What is the net force and initial acceleration
acting on the object in the y direction?

Compare the acceleration of a motorcycle to the
acceleration of a bus. Which of the two vehicles will
accelerate at a greater rate, and why?

An object of mass 7.0kg rests on an inclined plane at
an angle of 65°. Calculate the magnitude of the normal
force applied by the inclined plane to the object.

The thrust force of a rocket with a mass of 50000kg is
1000kN. Calculate the magnitude of its acceleration.

MODULE 2 | DYNAMICS
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18

19

20

21

Which of the following is a correct version of Newton’s

third law?

A If a swimmer’s hand pushes back on the water, the
water does not push back on the swimmer’s hand.

B If a bicycle tyre pushes backwards on the ground,
the person riding the bike also pushes backwards
on the ground.

C If a person jumps upwards, their legs push down on
the Earth and the Earth pushes up on their legs.

When an inflated balloon is released it will fly around
the room. What is the force that causes the balloon
to move?

Determine the reaction force involved when a ball is hit
with a racquet with a force of 100N west.

A 65.0kg skateboarder is standing on a 3.50kg
skateboard at rest when he steps off the board and
exerts a horizontal force of 75.0N south on the board.
What force does the board exert on the skateboarder?
After completing the activity on page 120, reflect on
the inquiry question:

How are forces produced between objects and what
effects do forces produce? In your response, discuss
the concepts of equilibrium and net force.



Forces, acceleration
and energy

Energy conversion is a common thread in many daily activities, as well as some
more extreme activities. Your body’s energy stores are used constantly, especially
when you are very active such as climbing steps or running to catch a bus. In more
adventurous activities such as bungee jumping, gravitational potential energy is
converted into other types of energy. Even jumping from an aeroplane, the laws of
physics cannot be switched off.

n this chapter you will learn about work energy and power, and use force—
displacement graphs to determine the amount of work done.

Content

NQURY QUESION

How can the motion of objects be explained and analysed?
By the end of this chapter you will be able to:

+ apply Newton’s first two laws of motion to a variety of everyday situations,
including both static and dynamic examples, and include the role played by
friction (friction = u/-:N) (ACSPHO063)
investigate, describe and analyse the acceleration of a single object subjected to a
constant net force and relate the motion of the object to Newton’s second law of
motion through the use of: (ACSPH062, ACSPHO063)

- qualitative descriptions

- graphs and vectors

- deriving relationships from graphical representations including F=m3and
relationships of uniformly accelerated motion

apply the special case of conservation of mechanical energy to the quantitative

analysis of motion involving:

- work done and change in the kinetic energy of an object undergoing accelerated
rectilinear motion in one dimension W = F,s; §)

- changes in gravitational potential energy of an object in a uniform field
(AU = mgAh)

conduct investigations over a range of mechanical processes to analyse

qualitatively and quantitatively the concept of average power (P = %, P= ,5\7),

including but not limited to:

- uniformly accelerated rectilinear motion

- objects raised against the force of gravity

- work done against air resistance, rolling resistance and friction

Physics Stage 6 Syllabus © NSW Education Standards Authority
for and on behalf of the Crown in right of the State of NSW, 2017.




5.1 Forces and friction

The force of friction dominates our lives. Along with the force of gravity, it effects
almost every interaction we have with the physical universe. Friction is often
discussed in negative terms, such as a source of heat, inefficiency or energy loss, but
without it we would not be able to perform even simple tasks like eating, walking, or
holding objects in our hands.

FRICTION

Friction is a force that opposes movement. There are times in everyday life when
having friction is essential. Water, snow or ice on the road reduces friction between

. the tyres and the road, which can create dangerous situations where the driver
FIGURE 5.1.1 This magnetic levitation train in cannot steer properly or stop. In the snowfields, drivers fit chains to the wheels of
China rides 1cm above the track, so the frictional  their cars to increase friction. The chains break through the snow and ice, and the
forces are negligible. The train is propelled by car is able to grip the road. Similarly, friction is required in the car’s brakes when
a magnetic force to a cruising speed of about . . .. ..
430kmh the driver wants to slow down. Brake pads are designed to maximise the friction

between them and the brake drum or disc.

Conversely, there are many situations in which friction is a problem. Consider
the moving parts in the engine of a car. Friction can reduce an engine’s efficiency
and fuel economy, and cause parts such as bearings and pistons to wear out quickly.
Special oils and other lubricants are used to prevent moving metal surfaces from
touching. Similarly, the very high speeds achieved by mag-lev trains like the one
shown in Figure 5.1.1 are possible only because they use magnetic fields to levitate
above the track, which almost eliminates friction.

Static and kinetic friction

When two surfaces are in contact with one another, there are two different types of
friction to consider. For example, suppose you want to push your textbook along the
table. As you start to push the book, you find that the book does not move at first.
You then increase the force that you apply. Suddenly, at a certain critical value, the
book starts to move. The maximum frictional force that must be overcome before

the book starts to slide is called static friction, .

Once the book begins to slide, a much lower force than static force is needed
to keep the book moving at a constant speed. This force is called kinetic friction
and is represented by Fk. The graph in Figure 5.1.2 shows how the force required
to move an object changes as static friction is overcome.

Applied force

maximum
static friction f----------
F

s

kinetic friction - -----/---
F

k

Time

motion

overcoming friction constant velocity

FIGURE 5.1.2 To start an object moving over a surface, the static friction between the object and the
surface must be overcome. This requires a larger force than is needed to maintain a constant velocity
once the object is moving.
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The difference between static and kinetic friction can be understood when
you consider that even very smooth surfaces are jagged at the microscopic
level. When the book is resting on the table, the jagged points of its bottom
surface have settled into the valleys of the surface of the table, and this helps
to resist attempts to slide the book. Once the book is moving, the surfaces do
not have any time to settle into each other, so less force is required to keep the
book moving.

Even when surfaces are microscopically smooth, friction arises from the forces
of attraction between the atoms and molecules of the two different surfaces that
are in contact. When the surfaces are stationary, the particles of one surface bond
weakly to the particles on the other surface. Before one surface can move across the
other, these bonds must be broken. This extra effort adds to the static friction force.
However, these bonds cannot form again once there is relative motion between the
surface, so the kinetic friction is lower than static friction.

Coefficient of friction

The amount of friction between two surfaces depends on two factors:
» the nature of the surfaces
* the normal force I, which pushes the surfaces together.

0 friction = ul?N
where
L is the coefficient of friction
I?N is the normal force (in N)
Friction is a vector. Its direction is always in the opposite direction to the

motion of a moving object or the force applied to a stationary object.

The coefficient of friction is represented by the symbol u (Greek mu). It is a
dimensionless constant that depends on the nature of the surfaces and whether
the situation involves static friction (U) or kinetic friction (W,). Table 5.1.1 lists
some typical values for the coefficient of friction between different combinations of
dry surfaces.

TABLE 5.1.1 Coefficients of static friction (1) and kinetic friction (w,) for different surfaces.

EE N O P

rubber on dry bitumen 1.0 0.8
glass on glass 0.9 0.4
rubber on wet bitumen 0.8 0.5
steel on steel 0.7 0.6
smooth wood on wood 0.5 0.2
ice on ice 0.1 0.03
steel on ice 0.02 0.01
human joints 0.01 0.01

PHYSICSFILE

Calculating the coefficient

It is possible to calculate the coefficient
of friction experimentally by first
rearranging the formula for friction:

__ friction
===
If you push an object at a constant

speed across a surface, you can use
Newton’s second law to calculate the
force applied. If you know the weight
force of the object you can then derive
the coefficient of kinetic friction.

The same experiment can be conducted
to find the coefficient of static friction
by finding the maximum force that

can be applied to an object without
moving it.
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Worked example 5.1.1
CALCULATING FRICTION

A person pushes a wooden box weighing 150N across a wooden floor.

150 N

!

Calculate the force of friction acting on the box if the coefficient of kinetic friction
between the box and the floor is 0.2.

Thinking Working

Recall the definition of friction. friction = pfy

The normal force will be equal and Fy = 150N upwards

opposite to the weight of the box.

Substitute in the values for this F.=0.2x 150

situation to find the kinetic friction.

Solve the problem, giving an answer /Ek =30N in the opposite direction to
with appropriate units and direction. the motion of the box

Worked example: Try yourself 5.1.1
CALCULATING FRICTION

A person pushes a wardrobe weighing 100N from one room to another.

Calculate the force of friction acting on the wardrobe if the coefficient of kinetic
friction between the wardrobe and the floor is 0.5.

FRICTION AND NEWTON'S FIRST LAW

Friction is so much a part of our everyday experience that it is sometimes hard to
recognise where it is acting. The ancient Greek philosophers had no understanding
of friction; they believed that it was simply the natural tendency of every object to
come to rest. [saac Newton challenged this assumption with his first law of motion
and the idea of inertia. Newton proposed that the natural tendency of objects is to
continue to move. This means if an object is slowing down or coming to a stop, there
must be an unbalanced force at work. In many cases this unbalanced force is friction.

Since we are so accustomed to seeing objects affected by friction, it can be useful to
study low-friction situations to get an idea of how objects act in the absence of friction.
An example is an air hockey table such as the one shown in Figure 5.1.3. In this game,
jets of air blow up from the table to hold the puck slightly above the surface of the
table, creating a nearly frictionless environment. If you hit the puck hard enough, it will
bounce back and forth across the table many times before it comes to a stop.

FIGURE 5.1.3 An air hockey table creates a nearly frictionless playing surface for the puck.




Worked example 5.1.2
DETERMINING THE EFFECT OF FRICTION

An ice skater is skating straight across a

smooth ice rink at 3ms™ with very little ﬁ
friction between their skates and "
the ice.

If their skates suddenly hit a rough

patch of ice that produces a large amount
of friction, how does this affect the motion
of the skater?

Thinking Working

Recall Newton'’s first law of motion and | An object will maintain a constant
the concept of inertia. velocity unless an unbalanced external
force acts on it.

Identify the motion of the skater. The skater is travelling in a straight
line at 3ms™L.

Identify the effect of friction when the Friction will cause the skates to

skates hit the rough ice. decelerate.
Determine the effect on the skater’s With the addition of friction, the skates
motion. would suddenly slow down. This

might cause the skater to fall over,
since inertia would cause the upper
part of their body to continue at a
constant speed.

Worked example: Try yourself 5.1.2
DETERMINING THE EFFECT OF FRICTION

An air hockey puck slides in a straight line across an air hockey table with
negligible friction.

If the air stopped blowing so that the puck was in contact with the table, what
would happen to the motion of the puck?

FRICTION AND NEWTON’S SECOND LAW

You will recall from Chapter 4 that Newton’s second law of motion describes
the relationship between the force applied to an object, the mass of the object,

and its acceleration. Because friction always opposes the motion of an object, it GOTO » )
causes objects to decelerate rather than accelerate. However, Newton’s second law Section 4.2 on page 129

still applies.
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Relationship between
coefficient of friction and
deceleration

For an object sliding across a flat
surface, there is a predictable
relationship between the coefficient
of kinetic friction and the object’s
deceleration.

Friction is given by uFN, and the
normal force is equal and opposite

to the weight of the object, i.e.
Fy=—F; =—mg.

Therefore, for an object of mass

m sliding on a flat surface with a
coefficient of kinetic jriction Wy,

the force of friction F, is given by

F'k =—,mg. The negative sign indicates
that kinetic friction acts in the opposite
direction to the motion.

To calculate the deceleration (negative
acceleration) caused by this force, we
can use Newton’s second law: F =ma
The deceleration force is friction, so
ma = —{,mg

Cancelling the mass from both sides
gives @ =—, 8.

This means that the rate of deceleration
of an object sliding on a flat surface
can be found simply by multiplying

the acceleration due to gravity by the
coefficient of friction.
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Worked example 5.1.3
CALCULATING DECELERATION DUE TO FRICTION

A skater with a mass of 50kg is skating south on smooth ice when she crosses a
rough patch of ice that produces a coefficient of kinetic friction of 0.2 between the
skates and the ice.

a Calculate the force of friction between the skates and the rough patch of ice.

Thinking Working
Recall the definition of friction. friction = }’L’EN
Calculate the normal force, which is E = mg
equal and opposite to the weight of &

the skater. =50x938

= 490N downwards
. fy = 490N upwards

Substitute in the values for this
situation into the definition of friction
to find the kinetic friction.

F.=0.2 x 490

Solve the problem, giving an answer

F. =98N north
with appropriate units and direction.

b Calculate the deceleration of the skater caused by friction.

Thinking Working
Recall Newton's second law F=m3
Transpose the formula to make 5=F
acceleration the subject and solve m
for 3. =2

Determine the deceleration. 5 =1.96ms7? north

Worked example: Try yourself 5.1.3
CALCULATING DECELERATION DUE TO FRICTION

An air hockey puck with a mass of 100g slides across an air hockey table. The
coefficient of kinetic friction is 0.5.

a Calculate the force of friction between the puck and the table.

b Calculate the deceleration of the puck caused by friction.

Friction affecting acceleration

In many situations the effect of friction is to reduce the acceleration of an object that
is being acted on by other forces.

Worked example 5.1.4

CALCULATING THE ACCELERATION OF A CONNECTED BODY WITH AND
WITHOUT FRICTION

A 1.5kg trolley cart is connected by a cord to a 2.5kg mass. The cord is placed over
a pulley and the mass is allowed to fall under the influence of gravity.



a Assuming that there is no friction between the cart and the table, and the
pulley is frictionless, determine the acceleration of the cart.

Thinking

Working

Recognise that the cart and the falling
mass are connected, and determine a
sign convention for the motion.

As the mass falls, the cart will move to
the right. Therefore both downwards
movement of the mass and rightwards
movement of the cart will be
considered positive motion.

Write down the data that are given.
Apply the sign convention to vectors.

m; =2.5kg
m, =1.5kg
g =9.8ms 2 downwards
=+9.8ms™

Determine the forces acting on the
system.

The only force acting on the combined
system of the cart and mass is the
weight of the falling mass.
'Enet = ’Eg =mg

=25x%x98

=+24.5N

Calculate the total mass being
accelerated.

This net force has to accelerate both
the cart and the falling mass.

my+my,=25+15

Use Newton’s second law to determine
the acceleration of the cart.

=4.0kg
i=7=4p
=+6.1

=6.1ms2 to the right

b If a frictional force of 8.5N acts against the cart, what is the acceleration now?

Thinking Working
Write down the data that is given. m; =2.5kg
Apply the sign convention to vectors. m,=1.5kg
g =9.8ms2 down
=+9.8ms™
friction = 85N left
=-85N
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the system.

Determine the forces acting on

There are now two forces acting on
the combined system of the cart and
mass: the weight of the falling mass

and friction.

Fret = Fg + friction
=245 + (-8.5)
=16.0N

= 16.0N in the positive direction

acceleration.

Use Newton’s second law to determine

Worked example: Try yourself 5.1.4
CALCULATING THE ACCELERATION OF A CONNECTED BODY WITH AND

WITHOUT FRICTION

A 0.6kg trolley cart is connected by a cord to a 1.5kg mass. The cord is placed over
a pulley and allowed to fall under the influence of gravity.

a Assuming that there is no friction between the cart and the table, and the
pulley is frictionless, determine the acceleration of the cart.

b If a frictional force of 4.2 N acts against the cart, what is the acceleration now?

__________________________________________________________________________________________

SKILLBUILDER

Identifying systematic error

In everyday language, ‘error’ can mean any kind of mistake
or misjudgement, However, in science ‘error’ has a special
meaning. It refers to a situation where an experimental
result does not match an expected result because of a
deficiency in the experimental set-up. For example, if you
were conducting an experiment to calculate the acceleration
of a falling object (where the expected value is 9.8ms™>)
and your experiment gave a result of 7.1 ms2, then your
experiment had an error of 2.7ms™ (the difference between
the expected value and the measured value).

Experiments can be affected by two types of error:
random error and systematic error. Random error is
caused by random variations in the conditions of the
experiment, and cannot be predicted. On the other
hand, systematic error is caused by a problem in the
experimental design or equipment that affects every
measurement in the same way and has a predictable
effect on the results.

Wherever possible, scientists try to identify systematic
errors so that they can eliminate them and improve their
experiments. Common causes of systematic error are:

* incorrect calibration of instruments

» zero error (where the instrument does not read zero
when it is not measuring any value)

« friction or air resistance

+ repeated errors in experimental method, e.g. repeatedly
failing to adjust for parallax error.

To identify systematic errors, scientists ask the following
questions about their experiments:

« Is there a pattern of error in the experiment, i.e. are all
or most of the experimental results higher or lower than
expected?

*  Would any of the common causes of systematic error
affect this experiment?

« If yes to the question above, would the effect of these
explain the pattern of error?

__________________________________________________________________________________________
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Worked example 5.1.5
IDENTIFYING SYSTEMATIC ERROR

The apparatus shown in the figure below was used as an experiment to
demonstrate Newton’s second law by placing different masses in the trolley and
using an accelerometer to measure the acceleration of the trolley.

The data from the experiment are shown in the table below.

Accelerating Mass of trolley | Mass in trolley | Total mass of Acceleration
mass (kg) (kg) (kg) system (kg) (ms™@)
25 1.5 0.0 4.0 3.6

25 1.5 0.5 4.5 3.2
25 1.5 1.0 5.0 29
25 1.5 1.5 5.5 2.6
2.5 1.5 2.0 6.0 24
2.5 1.5 2.5 6.5 2.2
25 1.5 3.0 7.0 2.1

a Construct a graph of the data to show that Newton’s second law applies in this

situation.
Thinking Working
Recall Newton’s second law /.:net =m3
Construct a graph of the Newton’s second law experiment
acceleration versus the total
mass of the system. 4.0
3.5+ o
[
3.0+ (]
2.5+ ® .
°
2.0 ¢
1.5
1.0+
0.5
T T I I
2.0 4.0 6.0 8.0
total mass (kg)
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Inspect the shape of the
graph and compare it to a
prediction based on Newton’s
second law.

The accelerating force (the weight of the
accelerating mass) is constant, so according
to Newton’s second law the total mass of the
system should be inversely proportional to its
acceleration. So the graph should have the
shape of a hyperbola.

This matches the shape of the graph observed.

Work out what you would
have to graph to get a
straight line. Recall how to
find a mathematical model
from a linear relationship
(Section 1.5).

Newton’s second law predicts that £, = ma.

cgi:ﬁnet%
Therefore, T T 7T
y=m x

Make a new table of the
manipulated data.

0.25 3.6
0.22 3.2
0.20 2.9
0.18 2.6
0.17 24
0.15 2.2
0.14 2.1

Plot the graph of
manipulated data and
draw a line of best fit.

Newton's second law experiment

4.0+
3.54
3.0
2.54
2.0
1.5+
1.0+
0.5

005 010 015 020 025 030
1/total mass (kg™)

Interpret the graph.

The graph is a straight line, which shows the
acceleration is inversely proportional to the
total mass.

This agrees with Newton’s second law, so the
law applies in this situation.

b Use the data to calculate the magnitude of the net force acting on the trolley
and determine if there is a systematic error in this experiment.

Thinking

Working

Calculate the equation of the line

of best fit.

The equation of the line of best fit was
calculated using a spreadsheet:

y=14x

Find the equation relating @ and m. | The regression line has the equation

y = 14x, so the equation is 4 = 1%




Relate this to Newton’s second According to Newton’s second law,
law. = Fu
d="1t
s Fet = 14N
Compare the measured value to The weight of the acceleration mass is
the expected value. given by:
’Enet = 'Eg =mg
=25x%x9.8
= 25N (to two significant figures)
Since the measured value is only 15N,
there is a systematic error of
25-14=11N.
Identify the likely cause of the The systematic error is probably caused by
systematic error. friction in the wheels of the trolley, between
the wheels and the table, and between the
cord and the pulley.

Worked example: Try yourself 5.1.5
IDENTIFYING SYSTEMATIC ERROR

The apparatus shown in the figure below was used as an experiment to
demonstrate a Newton’s second law by placing different masses in the trolley and
using an accelerometer to measure the acceleration of the trolley.

The data from the experiment are shown in the table below.

Accelerating Mass of trolley | Mass in trolley Total mass of Acceleration
mass (kg) (kg) (kg) system (kg) (ms™)
5.0 1.5 0.0 6.5 5.2

5.0 1.5 0.5 7.0 4.9
5.0 15 1.0 7.5 4.5
5.0 1.5 1.5 8.0 43
5.0 1.5 20 85 4.0
5.0 1.5 25 9.0 3.8

a Construct a graph of the data to show that Newton’s second law applies in
this situation.

b Use the data to calculate the net force acting on the trolley and determine
whether there is a systematic error in this experiment.

CHAPTER 5 | FORCES, ACCELERATION AND ENERGY 153



1

3

154

5.1 Review

» Friction is a force that opposes movemen.

» The frictional force between stationary surfaces is
called static friction The frictional force between
sliding surfaces is called kinetic frictio. Static
friction is greater than kinetic frictio.

KEY QUESTIONS

In each of the following scenarios identify whether it

would be better to increase or decrease the friction

between the surface:

a pushing a heavy wardrobe from one room to
another

b speed skating

¢ driving a car around a corner

d walking on a wet floo.

In each of the following scenarios identify whether the

friction between the surfaces is static friction or kinetic

friction

a a person skis down a slope

b a sailor gets friction burns when a rope slides
through his hands

¢ acarsparkedona.

A car is driving around a corner at 35kmh™! f the

car drives over a puddle of oil that reduces the friction

between the cars tyres and the road to almost zeo,

how would this affect the cars motion?

v=35kmh"

v,

MODULE 2 | DYNAMICS

4

The amount of friction between two surfaces can
be calculated using friction = pfy

Friction can cause moving obects to decelerat.
The amount of deceleration can be calculated
using Newtons second law.

Identify three different ways that systematic error can
be introduced to an investigatio.

What horizontal force has to be applied to a wheelie
bin to wheel it to the street on a horizontal path
against a frictional force of 20N at a constant speed of
15 ms1?

A 050 kg metal block is attached by a piece of string
to a dynamics cart as shown below. The block is
allowed to fall from rst, dragging the cart aong.

The mass of the cart is 25 kg.

050 kg

a ffriction is ignore, what is the acceleration of the
block as it falls?

b f a frictional force of .3 N acts on the cart what
is its acceleration?



PHYICS NQURY

Forces and motion
How can the motion of objects be explained and analysed?

COLLECTTHIS ...

« CD

e pop-top lid from disposable drink container
e Blu Tack

¢ balloon

DO THS ...

1 Place a bead of Blu Tack around the bottom of the pop-top Id.

Press this onto the C, ensuring the centre hole is under the Id.

Blow up the balloon and twist the mouth to hold the air in

Place the balloon over the closed pop-top lid Let the balloon untwist

g b~ WDN

Pop the lid open The balloon will start deflating as the air is pushed out
through the centre of the D.

6 Apply a force to the CD by pushing it for 5cm Measure how far the CD travls.
7 Repeat adusting the distance the CD is pushed to 10 cm 20 cm and 40cm
RECORD HIS ...

Describe the motion of the CD in the four sections

Present your results in a tabe.

REFLECT ON HIS ...

How can the motion of obects be explained and analysed?
How has the energy transformed through the different sections of motion?

The words ‘energy’ and ‘work’ are commonly used when describing everyday
situations. But these words have very specific meanings when used in a scientific
context, and they are two of the most important concepts in physics. They allow
physicists to explain phenomena on a range of scales, from collisions of subatomic
particles to the interactions of galaxies.

ENERGY

Energy is the capacity to cause change. A moving car has the capacity to cause a
change if it collides with something else. Similarly, a heavy weight lifted by a crane
has the capacity to cause a change if it is dropped. Energy is a scalar quantity; it has
magnitude but not direction.

The many different forms of energy can be broadly classified into two groups:
kinetic energy and potential energy.

Kinetic energy is energy associated with motion. Any moving object, like the
moving car in Figure 5.2.1, has kinetic energy.

FIGURE 5.2.1 A moving car has kinetic energy.
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In some forms of kinetic energy, the moving objects are not easily visible. An
example of this is thermal energy, which is a type of kinetic energy related to the
movement of particles. Table 5.2.1 lists some different types of kinetic energy.

TABLE 5.2.1 Types of kinetic energy and their associated moving objects.

Type of kinetic energy Type of motion

rotational kinetic rotating objects

sound air molecules

thermal movement of atoms, ions or molecules due to temperature
translational kinetic objects moving in a straight line

The potential energy of an object is associated with its position relative to
another object or within a field. For example, an object suspended by a crane has
gravitational potential energy because of its position in the Earth’s gravitational
field. Some examples of potential energy are listed in Table 5.2.2.

TABLE 5.2.2 Types of potential energy and their causes.

chemical relative positions of atoms

elastic attractive forces between atoms
gravitational gravitational fields

magnetic magnetic fields

nuclear forces within the nucleus of an atom

The Sl unit for energy

The SI unit for energy, the joule (J), is named after the English scientist James
Prescott Joule. He was the first person to show that kinetic energy could be converted
into heat energy. The energy represented by 1] is approximately equivalent to the
energy needed to lift a 1kg mass (e.g. 1L of water) through a height of 0.1 m or
10cm. More commonly, scientists work in units of kilojoules (1k] = 1000]) or even
megajoules (1 M]J =1000000]).

WORK

When a force acts on an object and causes energy to be transferred or transformed,
work is being done on the object. For example, if a weightlifter applies a force to a
barbell to lift it, then work has been done on the barbell; chemical energy within the
weightlifter’s body has been transformed into the gravitational potential energy of
the barbell (Figure 5.2.2).

FIGURE 5.2.2 As a weightlifter lifts a barbell, chemical energy is transformed into gravitational
potential energy.




Quantifying work
Work is a change in energy; that is, W = AE. More specifically, work is defined as

the product of the net force causing the energy change and the displacement of the
object in the direction of the force during the energy change.

Since work corresponds to a change in energy, the SI unit of work is also the
joule. The definition of work allows us to find a value for a joule in terms of other
ST units.

Since W=F,,5,1]J=1Nx1m=1Nm.
A joule is equal to a newton-metre. That is, a force of 1 N acting over a distance
of 1 m does 1] of work.
Using the definition of a newton:
1J=1Nx1m=1lkgms?x 1m=1kgm’s"
This defines a joule in terms of fundamental units.

2

Although both force and displacement are vectors, work is a scalar unit. So like
energy, work has no direction.

PHYSICSFILE

Units of energy
A number of non-SlI units for energy are

still in use. When talking about the energy N Utl’ltl O n FaCtS
content of food, sometimes a unit called Serving Size 5 oz. (1449)
a Calorie (Cal) (Figure 5.2.3) is used. One Servings Per Container 4
Calorie is defined as the amount of heat I —

. - Amount Per Serving
required to increase the temperature

of 1 kg of water by 1°C, and is equal to Calories 310 Calories from Fat 100
4200J. Another unit called the calorie % Daily Value*
(without a capital C) is one thousandth of Total Fat 15g 21%
a Calorie, and is sometimes called ‘small Saturated Fat 2.6g 17%
cal’. Neither of these units are used in

physics. Trans Fat 1g

Electrical energy in the home is often Cholesterol 118mg 39%
measured in kilowatt-hours (kW h). A Sodium 560mg 28%
kilowatt-hour is a very large unit of energy: | Total Carbohydrate 12g 4%
1kWh =3600000J or 3.6 MJ. Dietary Fiber 1g 4%
In atomic and nuclear physics, medical Sugars 1g

physics and electronics, the electron volt -

(eV) is often used. An electron volt is the Protein 249

i |
energy gained or lost when an electron Vitamin A 1% . Vitamin C 2%

moves across a potential of one volt. It is - > I 59,
equal to about 1.6 x 1072, Calcium 2% ron o’

i . *Percent Daily Values are based on a 2,000 calorie
An old unit of energy that you might see diet. Your daily values may be higher or lower

sometimes is the erg (from the Greek word | depending on your calorie needs:
. Calories 2,000 2,500
ergon for energy). An erg is a very small

. _7 . o Total Fat Less Than 65g 80g
unit of energy: 1erg=10""J. This unit is Saturated Fat Less Than 20g 259
i i Cholesterol Less Than 300mg 300mg
0 VBEE LG () S2IR0s. Sodium Less Than 2,400mg  2,400mg
Total Carbohydrate 3009 3759
Dietary Fiber 259 30g

Calories per gram:
Fat9 e Carbohydrate 4 e Protein 4

FIGURE 5.2.3 The amount of energy in a serving
of food is often measured in calories.

i J F oS

where
W is work (inJ)

F.et is net force acting on the
object (inN)

S is the displacement in the
direction of the force (inm).
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Worked example 5.2.1
CALCULATING WORK

A person pushes a heavy box along the ground for 10 m with a net force of 30N.
Calculate the amount of work done.
F=30N

| |

! 10m !
Thinking Working
Recall the definition of work. W=F.s
Substitute in the values for this situation. W=30x10
Solve the problem, giving an answer with appropriate units | W =300J

Worked example: Try yourself 5.2.1
CALCULATING WORK

A person pushes a heavy wardrobe from one room to another by applying a
force of 50N for a distance of 5m. Calculate the amount of work done by the
person.

Work and friction

The energy change produced by work is not always obvious. Consider Worked
example 5.2.1, where 300] of work was done on a box when it was pushed 10m. A
number of energy outcomes are possible for this scenario.

e In an ideal situation, where there is no friction, all of this work would be
transformed into kinetic energy and the box would end up with a higher velocity
than before it was pushed.

* In most real situations, where there is friction between the box and the ground,
some of the work done would be converted into heat and sound because of the
friction, and the rest would become kinetic energy.

e In the limiting situation, where the force applied is exactly equal to the friction,
the box would slide at a constant speed. This means that its kinetic energy would
not change, so all of the work done would be converted into heat and sound.

A force with no work

The mathematical definition of work has some unusual implications. One is that if
a force is applied to an object but the object does not move, then no work is done.
This seems counterintuitive; that is, it is not what you would expect. An example of
this is shown in Figure 5.2.4. While picking up a heavy box requires work, holding
the box at a constant height does no work on the box.

Assuming the box has a weight of 100N and that it is lifted from the ground to
a height of 1.2m, the work done lifting it would be: W = F,_,§ = 100 x 1.2 = 120].
In this case, energy is being transformed from chemical energy inside the person’s
body into the gravitational potential energy of the box.

FIGURE 5.2.4 According to the definition of . . .
work, no work is done when a person holds a However, when the box is held at a constant height, the net force is ON (because the

box at a constant height. force applied by the lifter exactly balances gravity) and the displacemegt is Om (because
the box does not move). Therefore, the definition of work gives: W = F, ,§=0x 0=0].
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So no work is being done on the box. Although there would be energy transformations
going on inside the person’s body to keep their muscles working, the energy of the box
does not change, so no work has been done on the box.

WORK AND DISPLACEMENT AT AN ANGLE

Sometimes, when a force is applied, the object does not move in the same direction as
the force. For example, in Figure 5.2.5, when a person pushes a pram, the direction of
the force is at an angle downwards, although the pram moves horizontally forwards.

Fsin6

FIGURE 5.2.5 When a person pushes a pram, the force applied by the person can be resolved into a
horizontal force and a vertical force.

In this case, only the horizontal component of the push contributes to the work
being done on the pram. The vertical component of this force pushes the pram
downwards and is balanced by the normal reaction force from the ground.

In the situation of a person pushing a pram, the person’s push can be resolved into
a vertical component, Fsin6, and a horizontal component, F cos8 (Figure 5.2.5).
Substituting the horizontal component into the general definition for work gives:

W = Fcos@x5s
= F§cos6

FORCE-DISPLACEMENT GRAPHS

As its name suggests, a force—displacement graph illustrates the way a force changes
with displacement. For a situation where the force is constant, this graph is simple.
For example, in Figure 5.2.6 the force—displacement graph for a person lifting a box
at constant speed is a flat horizontal line, showing that the force applied to the box
is constant throughout the lit.

T T T T T T
02 04 06 08 1.0 1.2
Displacement (m)

FIGURE 5.2.6 The force—displacement graph for this person lifting a box is a straight, horizontal line,
indicating that the force applied to the box is constant throughout the process.

o W =FScos 0

where 6 is the angle between
the force vector F and the
displacement vector s.
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In contrast, the more you stretch a spring, the greater the force required to
keep stretching it. The force—displacement graph for a spring is also a straight line,
but this line shows a direct relationship between the force and the displacement
(Figure 5.2.7).

250
200
150
100

50

@,

T T T T T T T T
0.002 0.006 0.01 0.014
Displacement (m)

FIGURE 5.2.7 As a spring stretches, more force is required to keep stretching it. The force is
proportional to the extension.

When a force changes with displacement, the amount of work done by the force
can be calculated from the area under its force—displacement graph.

For a constant force this is very simple. In the example of a person lifting a
box in Figure 5.2.6, the area can be found by counting the number of ‘force times
distance’ squares under the line. Similar strategies, either counting grid squares or
calculating the area of the shape under the graph, can also be used if the force varies
with the displacement in a spring.



5.2 Review

» Energy is the capacity to cause a change + Work is done when energy is transferred or
» Energy is conserved It can be transferred or transforme.
transforme, but not created or destroed. » Work is done when a force causes an bject to
« There are many different forms of enegy. be displaced
These can be broadly classified as either » Work is the product of net force and
kinetic (associated with movement) or potential displacement W =F, s.
(associated with the relative positions of + If a force produces no displacemet, no work is
obects) done

1 Contrast the meanings of the words energy and 5 A cyclist does 2700J of work when she rides her bike
work at a constant speed for 150 m Calculate the average

2 Classify the type of energy that the following obects force the cyclist applies over this distanc.
possess as either kinetic or potential energy. 6 Two people push in opposite directions on a heavy bx.
a the blades of a rotating fan One person applies 50N of forc, the other applies 40 N
b a pile of bricks sitting in a wheel barrow of forc. There is 10 N of friction between the box and
¢ hot water in a kettle the floor, which means that the box does not moe. What

d the sound of music coming from a set of is the work done by the person applying 50N of force?

headphones
e a car battery
3 When accelerating at the beginning of a rid, a cyclist
applies a force of 500N for a distance of 20m What is
the work done by the cyclist on the bike?
4 nthe case of a person pushing against a solid brick
wal, explain why no work is being doe.

7 If a weightlifter does 735J of work against gravity when
lifting a 50kg weight how high off the ground would
the weight be lifted? (Remember F, = mg)

KEY QUESTIONS

CHAPTER 5 | FORCES, ACCELERATION AND ENERGY 161




5.3 Energy changes

Any object that moves, such as those shown in Figure 5.3.1, has kinetic energy. Many
real-life energy interactions, such as throwing a ball, involve objects with kinetic
energy. Some of these, such as car collisions, have life-threatening implications. So
it is important to be able to quantify the kinetic energy of an object.

S 2

FIGURE 5.3.1 Any moving object, regardless of its size, has kinetic energy.

162

MODULE 2

| DYNAMICS

THE KINETIC ENERGY EQUATION

Kinetic energy is the energy of motion. It can be quantified by calculating the
amount of work needed to give an object its velocity.

Consider the dynamics cart in Figure 5.3.2 of mass, m, starting at rest (i.e. # = 0).
It is pushed with force, I, which acts while the cart undergoes a displacement, 5, and
gains a final velocity, 9.

FIGURE 5.3.2 The kinetic energy of a dynamics cart can be calculated by considering the force (/-:)
acting on it over a given displacement (S).

The work W done by the force causes a change in kinetic energy from its initial
value 1mii” to a new value of Lm3°.

0 The relationship between the work done and the change in kinetic energy can
be written mathematically as:

e | 2
W=smv®—Zmu

where:
W is work (inJ)
m is mass (in kg)
i is initial velocity (inms™)
v is final velocity (inm s‘l).

This equation is known as the ‘work—energy theorem’ because it shows the
theoretical relationship between work and energy.



In this situation, the cart was originally at rest (i.e. # = 0), so:
W =1mz?

Assuming that no energy was lost as heat or noise and that all of the work is
converted into kinetic energy, this equation gives us a mathematical definition for
the kinetic energy of the cart in terms of its mass and velocity:

0 K:%mv2

where K is kinetic energy (inJ)

Because kinetic energy is a scalar quantity, the direction of the velocity is
unimportant, so it is possible to write the kinetic energy equation as:

K= %mvz
where v is the speed.

Worked example 5.3.1
CALCULATING KINETIC ENERGY

A car with a mass of 1200kg is travelling at 90 kmh™.
Calculate its kinetic energy at this speed.

Thinking Working
Convert the car’s speed toms™.. _1 _ 90k 90000
90kmh™ = =3 = Sr5e
=25ms™

Recall the equation for kinetic energy. =2

9 gy K=21my
Substitute the values for this situation K = 1%1200 % 252
into the equation. 2
State the answer with appropriate units. | K=375000J

=375kJ

Worked example: Try yourself 5.3.1
CALCULATING KINETIC ENERGY

An 80kg person is crossing the street, walking at 5.0kmh™.

Calculate the person’s kinetic energy, giving your answer correct to two
significant figures.

APPLYING THE WORK-ENERGY THEOREM

The work—energy theorem can be seen as a definition for the change in kinetic
energy produced by a force:

o W =1mi? -1 mi® =K, — K AK

initial —
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SKILLBUILDER

Multiplying
vectors

. When two vectors are multiplied

. together (known as the dot

: product of two vectors), the result
E is a scalar variable. For instance, in
! the equation for work, W = ,Enet§,

' the force vector is multiplied by the
' displacement vector to produce

1 the scalar quantity of work.

: Similarly, in the equation for

E kinetic energy, K = 1 mv?, the two

1 velocity vectors are squared to

E create the scalar value for energy.

_____________________________
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Worked example 5.3.2

CALCULATING KINETIC ENERGY CHANGES

A 2 tonne truck travelling at 100kmh™ slows to 80kmh™ before turning a corner.

a Calculate the work done by the brakes to make this change.

Thinking

Convert the values into Sl units.

Working
_ _1 _ 100km _ 100000m
u=100kmh™ = == = =550
=28ms!
_ _1_ 80km _ 80000m
v =80kmh™ = == = S755s
=22ms!

m = 2 tonne = 2000 kg

Recall the work—energy theorem.

Wz%mvz—%mu2

Substitute the values for this situation
into the equation.

W = 1x2000x22% - 1 x 2000 x 28°
=484000-784000
=-300000

State the answer with appropriate
units.

The work done by the brakes was
—-300000J, or —300kJ.

Note: The negative value indicates that
the work has caused kinetic energy to
decrease.

applied by the truck’s brakes.

b If it takes 50m for this deceleration to take place, calculate the average force

Thinking

Working

Recall the definition of work.

W = 'Enet§

Substitute the values for this situation
into the equation.

300000J = Fret x 50m

Note: The negative has been ignored
because work is a scalar.

Transpose the equation to find the
answer.

Fret = % = 295992 — 6000 N

Worked example: Try yourself 5.3.2

CALCULATING KINETIC ENERGY CHANGES

As a bus with a mass of 10 tonnes approaches a school, it slows from 60kmh™ to

40kmhL.

a Use the work-energy theorem to calculate the work done by the brakes of the
bus. Give your answer to two significant figures.

the truck’s brakes.

b The bus travels 40 m as it decelerates. Calculate the average force applied by




Notice that the definitions for kinetic energy and change in kinetic energy can
be derived entirely from known concepts: the definition of work, Newton’s second
law and the equations of motion. This might make kinetic energy seem a redundant
concept. However, using kinetic energy calculations can often make the analysis of
physical interactions quicker and easier, particularly in situations where acceleration
is not constant.

Worked example 5.3.3
CALCULATING SPEED FROM KINETIC ENERGY

A 1400kg car, initially stationary, accelerates for 10s. During this time its engine
does 900kJ of work.

Assuming that all of the work is converted into kinetic energy, calculate the
speed of the car in km h™! after 10s. Give your answer correct to two significant
figures.

Thinking Working

Assume that all of the engine’s work K =1 my2

has become kinetic energy. Recall the 2

equation for kinetic energy.

Transpose the equation to make v the \/*

subject.

Substitute the values for this situation 27900103

into the equation. V=25 =36ms

State the answer in the required units. | v=36 x 3.6 = 130km h

Worked example: Try yourself 5.3.3
CALCULATING SPEED FROM KINETIC ENERGY

A 300 kg motorbike has 150kJ of kinetic energy.

Calculate the speed of the motorbike inkmh™. Give your answer correct to two
significant figures.

DEFINING GRAVITATIONAL POTENTIAL ENERGY

One of the easiest forms of potential energy to study is gravitational potential
energy. Any object that is lifted above Earth’s surface has the capacity to cause
change due to its position in the Earth’s gravitational field. An understanding
of gravitational potential energy is essential to understanding common energy
transformations.

Gravitational potential is a measure of the amount of energy available to an
object due to its position in a gravitational field. The gravitational potential energy
of an object can be calculated from the amount of work that must be done against
gravity to get the object into its position.

Consider the weightlifter lifting a barbell in Figure 5.3.3. Assuming that the F = weight
barbell is lifted at a constant speed, then the weightlifter must apply a lifting ¢
force equal to the force due to gravity on the barbell, F The lifting force F, FIGURE 5.3.3 A weightlifter applies a constant

is applied over a displacement A/, corresponding to the change in height of ~ force overafixed distance to give the barbell
the barbell. gravitational potential energy.
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0 Because gravitational potential
energy is a scalar quantity, you
can remove the direction of
gravity and height in the equation
U=mgh.
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The work done against gravity by the weightlifter is:
W = F,s=F,Ah

Because the force due to gravity is given by the equation ﬁ'g = mg , the work done

can be written as:
W =mgAh

The work carried out in this example has resulted in the transformation of
chemical energy within the weightlifter into gravitational potential energy. Therefore
the change in gravitational potential energy of the barbell is:

AU = mgAh
O The change in gravitational potential energy of an object, due to the work done
against a gravitational field, is given by:
AU =mgAh
where:
AU is the change in gravitational potential energy (inJ)
m is the mass of the object (inkg)

g is the gravitational field strength (9.8 N kg’1 or 9.8 m s2 downwards on Earth)
Ah is the change in height of the object (inm).

Worked example 5.3.4
CALCULATING GRAVITATIONAL POTENTIAL ENERGY

A weightlifter lifts a barbell which has a total mass of 80kg from the floor to a
height of 1.8 m above the ground.

Calculate the change in gravitational potential energy of the barbell during this
lift. Give your answer correct to two significant figures.

Thinking Working

Recall the formula for change in AU = mgAah
gravitational potential energy.

Substitute the values for this situation AU=80x98x1.8
into the equation.

State the answer with appropriate AU=1411.2)=1.4kJ
units and significant figures.

Worked example: Try yourself 5.3.4
CALCULATING GRAVITATIONAL POTENTIAL ENERGY

A grocery shelf-stacker lifts a 5 kg bag of dog food onto a shelf 30cm above
the floor.

Calculate the gravitational potential energy of the bag when it is on the shelf.
Give your answer correct to two significant figures.

GRAVITATIONAL POTENTIAL ENERGY
AND REFERENCE LEVEL

When calculating gravitational potential energy, it is important to carefully define
the level that corresponds to U = 0. Often this can be taken to be the ground or sea
level, but the zero potential energy reference level is not always obvious.



It does not really matter which point is taken as the zero potential energy
reference level, as long as the chosen point is used consistently throughout a
particular problem (Figure 5.3.4). If objects move below the reference level, then
their energies will become negative and should be interpreted accordingly.

—

AU = mgAh

=

= mg X (height above table)

AU = mgAl
=mg X (height | h

above floor)

FIGURE 5.3.4 In this situation, the zero potential energy reference point could be taken as either the

level of the table or the floor.

Worked example 5.3.5

CALCULATING GRAVITATIONAL POTENTIAL ENERGY RELATIVE TO A

REFERENCE LEVEL

to 90 cm above the floor.

A 60 kg weightlifter holds a 50 kg barbell 50 cm from the floor.
Calculate the increase in gravitational potential energy of the barbell after raising it

Use g = 9.8Nkg ™! and state your answer correct to three significant figures.

Only the mass of the bar is being lifted
(the weightlifter’'s mass is a distractor).

Take the starting point of the barbell
as the zero potential energy level.

Thinking Working
Recall the formula for gravitational AU = mgAh
potential energy.

Identify the relevant values for this m =50kg
situation. g=98Nkg™!

Ah=40cm=04m

Substitute the values for this situation
into the equation.

AU=50x9.8x0.4

State the answer with appropriate
units and significant figures.

AU=196J

o The direction of the vector Ah is

from the object to the reference
level.

0 By including the direction of

both gravity and height when
calculating the gravitational
potential energy, you can tell
whether the object moved above
or below the reference level.
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Newton’s universal law of
gravitation

The equation AU = mgAh is based

on the assumption that the Earth’s
gravitational field is constant.
However, Newton’s universal law of
gravitation predicts that the Earth’s
gravitational field decreases with
altitude (Figure 5.3.5). This decrease
only becomes significant far above the

Earth’s surface. Close to the surface the

assumption of a constant gravitational
field is valid.

Earth's gravitational field
strength with altitude

T 1 T T T 1
5 10 15 20 25 30 35
Altitude (x 1000 km)

FIGURE 5.3.5 The Earth’s gravitational field
strength decreases with altitude.
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Worked example: Try yourself 5.3.5

CALCULATING GRAVITATIONAL POTENTIAL ENERGY RELATIVE TO A
REFERENCE LEVEL

A father picks up his baby from its bed. The baby has a mass of 6.0kg and the
mattress of the bed is 70cm above the ground. When the father holds the baby
in his arms, it is 125cm off the ground.

Calculate the increase in gravitational potential energy of the baby.
Use g = 9.8Nkg™ and give your answer correct to two significant figures.

Elastic potential energy

Another important form of potential energy is elastic potential energy. Elastic
potential energy can be stored in many ways; for example, when a spring is
stretched, a rubber ball is squeezed, air is compressed in a tyre, or a bungee
rope is extended during a jump.

Materials that have the ability to store elastic potential energy when work is
done on them, and then release this energy, are called elastic materials. Metal
springs and bouncing balls are common examples; however, many other
materials are at least partially elastic. If their shape is manipulated, items such
as our skin, metal hair clips and wooden rulers all have the ability to restore
themselves to their original shape once released.

Materials that do not return to their original shape and release their stored
potential energy are referred to as plastic materials. Plasticine is an example
of a very plastic material.

The elastic potential energy of an object, U, is given by the formula:

_ 12
Ug =5 kx
where:

k is a property of the elastic material called the spring constant
x is the amount of extension or compression of the material.



5.3 Review

1

B KEY QUESTIONS

All moving obects have kinetic energy.

The kinetic energy of an obect is equal to the
work required to accelerate theobject from rest to
its final velocity.

The kinetic energy of an obect is given by the
equation

K=21mv?

The work—energy theorem defines work as change
in kinetic energy

W=1mv?-1Imu®=aK

The mass of a motorbike and its rider is 230kg If they
are travelling at 80kmh™! calculate their combined
kinetic energy.

A 1500kg car is travelling at 17ms™ How much work
would its engine need to do to accelerate it to 28ms™'?

A cyclist has a mass of 72kg and is riding a bicycle

which has a mass of 9kg When riding at top speed

their total kinetic energy is 5kJ Calculate the top

speed to two significant figure.

By how much is kinetic energy increased when the

mass of an obect is doubled?

A 57 g tennis ball is thrown .2 m into the air. Use

g=.8 ms=?

a Calculate the gravitational potential energy of the
ball at the top of its flight

b Calculate the gravitational potential energy of the
ball when it has fallen halfway back to the grond.

Gravitational potential energy is the energy an
obect has because of its position in a gravitational
field

The gravitational potential energy of an ojec,
is given by the equation AU = mgAh.
Gravitational potential energy is calculated relative
to a zero potential energy reference leel, usually
the ground or sea leve.

Because kinetic and potential energy are scalar
quantities it is possible to calculate them without
using the direction of the velocit, acceleration or
heightie K= %mv2 and U= mgh

AU

When climbing Mount Everest (h = 8848 m) a
mountain climber stops to rest at North Base Camp
(h=5150m) f the climber has a mass of 650 kg

how much gravitational potential energy will she gain

in the final section of her climb from the camp to

the summit? For simplicit, assume that g remains at

9.8Nkg™.
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5.4 Mechanical energy and power

Mechanical energy is the energy that a body possesses because of its position or
motion. It is the sum of its kinetic energy and the potential energies available to it.
Gravitational potential energy, elastic potential energy and Kinetic energy are all
forms of mechanical energy.

In many situations energy is transformed from kinetic energy to gravitational
potential energy, or vice versa. For example, when a tennis ball bounces, as shown
in Figure 5.4.1, much of its kinetic energy is converted into gravitational potential
energy and then back into kinetic energy again.

In situations where mechanical energy is conserved, this fact can be used to
analyse the position and motion of objects. If mechanical energy is not conserved,
this fact can be used to identify other important energy transformations that occur.

When considering energy changes, the rate at which work is done is often
important. For example, if two cars have the same mass, then the amount of work
required to accelerate each car from a standing start to 100kmh™ will be the same.
However, the fact that one car can do this more quickly than another may be an

FIGURE 5.4.1 A time-lapse photograph of a important consideration for some drivers when choosing which car to buy.

bouncing tennis ball. Physicists describe the rate at which work is done using the concept of power.
Like work and energy, this is a word that has a very specific meaning in physics.
MECHANICAL ENERGY

For a falling object, the mechanical energy is the sum of its kinetic and gravitational
potential energies:

E, :K+U:5mvz+mgh

This is a useful concept in situations where gravitational potential energy is
converted into kinetic energy or vice versa. For example, consider a tennis ball with
a mass of 60.0g that falls from a height of 1.00m. Initially its total mechanical
energy would consist of its kinetic energy, which would be 0], and the gravitational
potential energy at this height. Assuming g = 9.80ms 2, then:

AU =mgAh = 0.0600 x 9.80 x 1.00 = 0.588]

0 In a system of bodies where
only mechanical energy (the
energy resulting from position and
motion) is considered, the total
mechanical energy of the system
is constant. That is,

(Erdinitial = (Emdfinar

where E is the mechanical h=1m
energy of the system.

Em=K+U=0+mgh' \

Th|$|scallfadthelawof _ E —K+U=ltm?+0 h=0.50U=0
conservation of mechanical m 2
energy. FIGURE 5.4.2 A falling tennis ball provides an example of conservation of mechanical energy.
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At the instant the ball hits the ground, the total mechanical energy would consist
of the gravitational potential energy available to it and its kinetic energy just prior
to hitting the ground. The gravitational potential energy is 0] because the ball is
at ground level. To calculate kinetic energy, the ball’s velocity just before it hits the
ground can be calculated using one of the equations of motion:

2 =i’ +2as5

)

§=-1.00m,d=-9.80ms 2 and & = 0ms ™., so:
7% = 0% + 2(=9.80 x —1.00)

2=+/19.6

=4.43ms ! downwards
Therefore the kinetic energy of the tennis ball just before it hits the ground is:

K =1mv’=1x0.06x4.43° = 0.588]

Notice that the mechanical energy at the top of the 1.00m fall is the same as the

mechanical energy at the bottom of the ball. At the top:
E =K+U=0+0.588=0.588]

At the bottom:

E =K+ U=0.588+0=0.588]

In fact, mechanical energy is constant throughout the fall. Consider the tennis
ball when it has fallen halfway to the ground. At this point, z = 0.500m and
v=3.13ms™ "

E =K+U
= (1x00600 %3.13%)+(00600 x9.80x0.500)

=0.294 + 0.294
=0.588]

Notice that, at this halfway point, the mechanical energy is evenly split between
kinetic energy (0.294]) and gravitational potential energy (0.294]).
Throughout the drop, mechanical energy has been conserved.

Worked example 5.4.1
MECHANICAL ENERGY OF A FALLING OBJECT

A basketball with a mass of 600g is dropped from a height of 1.2m.
Calculate the kinetic energy of the basketball at the instant it hits the ground.

Thinking Working
Since the ball is dropped, its initial Kinitial = 0J
kinetic energy is zero.
Calculate the initial gravitational Uinitial = mgh
potential energy of the ball. —0600%x9.8x%x1.2
=7.1J
Calculate the initial mechanical (Edinitial = Kinitiat T Uinitial
energy. =0+7.1
=7.1J
At the instant the ball hits the ground, | Ujj,, =0J
its gravitational potential energy is
zero.
situation. 7.1 = Ky + O
Kfinal = 71 J

PHYSICSFILE

Mechanical energy of a ball
falling through the air

In reality, as the tennis ball in

Figure 5.4.2 drops through the air,

a very small amount of its energy

is transformed into heat and sound,
and the ball will not quite reach a speed
of 4.43ms™" before it hits the ground.
This means that mechanical energy

is not entirely conserved. However,

this small effect can be considered
negligible for many falling objects.
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Worked example: Try yourself 5.4.1
MECHANICAL ENERGY OF A FALLING OBJECT

A 6.8kg bowling ball is dropped from a height of 0.75m.
Calculate the kinetic energy of the bowling ball at the instant it hits the ground.

USING MECHANICAL ENERGY TO CALCULATE VELOCITY

The speed of a falling object does not depend on its mass. This can be demonstrated
using mechanical energy.

Consider an object with mass m dropped from height 4. At the moment
it is dropped, its initial kinetic energy is zero. At the moment it hits the ground,
its gravitational potential energy is zero. Using the law of conservation of
mechanical energy:

(Eninitial = (Ein)final
Kinitial + Unnitiar = Keinat + Usinal
0+ mgh =%mvz +0

mgh=%mv2
gh=%712
v® =2gh

v=12gh

The formula v = \/@ can be used to find the velocity of a falling object as it hits
the ground. Note that the formula does not contain the mass of the falling object,
so if air resistance is negligible any object with any mass will have the same final
velocity when it is dropped from the same height.

Worked example 5.4.2
FINAL VELOCITY OF A FALLING OBJECT

A basketball with a mass of 600g is dropped from a height of 1.2m.
Calculate the speed of the basketball at the instant before it hits the ground.

Thinking Working

Recall the formula for the velocity of a - [2oh
falling object. VENes

Substitute the relevant values intothe | | _ 539872 -48ms"!
formula and solve.

Interpret the answer. The basketball is falling at 48ms!
just before it hits the ground.

Worked example: Try yourself 5.4.2
FINAL VELOCITY OF A FALLING OBJECT

A 6.8 kg bowling ball is dropped from a height of 0.75m.
Calculate the speed of the bowling ball at the instant before it hits the ground.




USING CONSERVATION OF MECHANICAL ENERGY IN
COMPLEX SITUATIONS

The concept of mechanical energy allows physicists to determine outcomes in
situations where the equations of linear motion cannot be used. For example,
consider a pendulum with a bob of mass 400 g displaced from its mean position so
that its height has increased by 20 cm, as shown in Figure 5.4.3.

Because a falling pendulum converts gravitational potential energy into Kkinetic
energy, the conservation of mechanical energy applies to this situation. Therefore
the formula developed earlier for the velocity of a falling object can be used to find
the velocity of the pendulum bob at its lowest point.

v=\2gh =/2x9.8x0.2=2ms""

The speed of the pendulum bob will be 2ms™ at its lowest point. However, .- 0.4kg
unlike the falling tennis ball, the direction of the bob’s motion will be horizontal 0.2m /,/”
instead of vertical at its lowest point. The equations of motion relate to linear motion P S el
and cannot be applied to this situation because the bob swings in a curved path. :' . L,, ST

Conservation of energy can also be used to analyse projectile motion; that is, N 4

when an object is thrown or fired into the air with some initial velocity. Since energy
is not a vector, no vector analysis is required, even if the initial velocity is at an angle
to the ground.

Worked example 5.4.3
USING MECHANICAL ENERGY TO ANALYSE PROJECTILE MOTION

FIGURE 5.4.3 A falling pendulum provides an
example of conservation of mechanical energy.

A cricket ball with a mass of 140g is thrown upwards into the air from a height
of 1.5m at a speed of 15ms™. Calculate the speed of the ball when it has
reached a height of 8.0m.

Thinking Working
Recall the formula for E.=K+U= %m\,? +mgh
mechanical energy.
Substitute in the values for the (Einitial = %(0,14><152)+(o_14>< 9.8x1.5)
ball as it is thrown. ~1781J
Use the law of conservation of Evdinitial = Erinal
mechanical energy to find an @ L2 @
equation for the final speed. =5 mve+mgh

Lmv? = (€ initial —mgh

2 _ 2 [(Em initia 7mgh]

Solve the equation algebraically /2 = 2(1781-014x98x80)
to find the final speed. - 014

=97.63

v=99ms™
Interpret the answer. The cricket ball will be moving at 9.9ms™!
when it reaches a height of 8.0m.

Worked example: Try yourself 5.4.3
USING MECHANICAL ENERGY TO ANALYSE PROJECTILE MOTION

An arrow with a mass of 35g is fired into the air at 80ms™ from a height of 1.4m.
Calculate the speed of the arrow when it has reached a height of 30m.
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Energy transformations

The world record for the men’s pole vault is 6.16 metres
— about as high as a single-storey house. The women’s
record is 5.06 metres. During a pole vault, a number

of energy transformations take place. The vaulter has
kinetic energy as they run in. This kinetic energy is used

to bend the pole and carry them forwards over the bar.

As the pole bends, energy is stored as elastic potential
energy. The athlete uses this stored energy to increase
their gravitational potential energy and raise their centre

of mass over the bar. Once the pole has been released and
the bar has been cleared, the gravitational potential energy
of the athlete is transformed into kinetic energy as they

fall towards the mat. The energy changes are analysed by
making some assumptions about the athlete and the jump.

Consider a pole vaulter who has a mass of 60kg and
runs in at 7.0ms™. Treat her as a point mass located at
her centre of mass, 1.2 m above the ground. She raises
her centre of mass to a height of 5.0m as she clears the
bar, and her speed at this point is 1.0ms™.

As she plants the pole in the stop, the pole has not yet
been bent, so it has no elastic potential energy. Using
E,=K+U-= %mv2 +mgh, the vaulter’s total energy at this
point is 2180J (Figure 5.4.4).

When the vaulter passes over the bar the pole is straight
again, so it has no elastic potential energy. Taking the
ground as zero height, and using the same relationship
as above, the vaulter’s total energy is now 2970J. This
does not seem consistent with the conservation of energy
as there is an extra 790J. The extra energy is from the
muscles in her body. Just before the athlete plants the
pole, she raises it over her head.

After the pole is planted but before she leaves the
ground, the athlete uses her arms to bend the pole
(Figure 5.4.5). She pulls downwards on the pole with one
arm while the other arm pushes upwards. The effect of
these forces is to do work on the pole and store some extra
elastic potential energy in it. This work will be converted
into gravitational potential energy later in the jump.

Energy has also been put into the system by the muscles
of the athlete as they do work after she has left the ground.
Throughout the jump, she uses her arm muscles to raise
her body higher.

At the end of the jump, she is actually ahead of the pole
and pushing herself up off it. In effect, she has been using
the pole to push up off the ground.
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K
U,

g

U, = 0

E
JE = 21801]J

FIGURE 5.4.4 These diagrams, drawn at equal time intervals, indicate
that the vaulter slowed down as she neared the bar. Her initial kinetic
energy was stored as elastic potential energy in the bent pole, and was
finally transformed into gravitational potential energy and kinetic energy,
enabling her to clear the bar.

FIGURE 5.4.5 As the pole is planted, the vaulter uses her arms to
bend the bar. The forces are shown by the vectors. By bending the
bar, the athlete has stored energy which will later be transformed into
gravitational potential energy.




Loss of mechanical energy

Mechanical energy is not conserved in every situation. For example, when a tennis
ball bounces a number of times, each bounce is lower than the one before it, as
shown in Figure 5.4.6.

While mechanical energy is largely conserved as the ball moves through the
air, a significant amount of kinetic energy is transformed into heat and sound
when the ball compresses and expands as it bounces. The ball will not have as
much kinetic energy when it leaves the ground as it did when it landed. This
means that the gravitational potential energy it can achieve on the second bounce
will be less than the gravitational potential energy it had initially, so the second
bounce is lower.

DEFINING POWER

Power is a measure of the rate at which work is done. Mathematically:

p=¥

Recall that when work is done, energy is transferred or transformed. So the
equation can also be written as:

i R

where
P is the power (in W)
AE is the energy transferred or transformed (in J)
t is the time taken (in s).

For example, a person running up a set of stairs does exactly the same amount of
work as if they had walked up the stairs (i.e. W= AU = mgAh). However, the rate of
energy change is faster for running up the stairs. Therefore, the runner is applying
more power than the walker (Figure 5.4.7).

staircase staircase

I I

v running *

walking

FIGURE 5.4.7 The runner and the walker do the same amount of work, but the power output of the
runner is higher than that of the walker.

Unit of power

The unit of power is named after the Scottish engineer James Watt, who is most
famous for inventing the steam engine. A watt (W) is defined as a rate of work of
one joule per second; in other words:

_ ljoule __ -1
1 watt = 1 second _IJS

FIGURE 5.4.6 Mechanical energy is lost with
each bounce of a tennis ball.

PHYSICSFILE

Efficiency of energy
transformations

In the real world, energy
transformations are never perfect —
there is always some energy ‘lost’.
The percentage of energy that is
effectively transformed by a device

is called the efficiency of that device.
A device operating at 45% efficiency

is converting 45% of its supplied
energy into the useful new form. The
other 55% is ‘lost’ or transferred to
the surroundings, usually as heat and
sound. This ‘lost” energy is not truly
lost since energy cannot be created or
destroyed; rather, it becomes a form of
energy (e.g. heat and/or sound) that is
not useful.
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Horsepower

James Watt was a Scottish inventor and
engineer. He developed the concept
of horsepower as a way to compare
the output of steam engines with

that of horses, which were the other
major source of mechanical energy
available at the time. Although the
unit of one horsepower (1 hp) has

had various definitions over time, the
most commonly accepted value today
is around 750 W. This is actually a
significantly higher amount than an
average horse can sustain over an
extended period of time.
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Worked example 5.4.4
CALCULATING POWER

A box with a mass of 2kg is carried up a 5mstaircase in 20s.

F =196N

£ S5m

\

Calculate the power required for this task. (Assume g = 9.8ms™2)

Thinking Working
Calculate the force applied. ,Eg =mg
=2x98
=19.6N
Calculate the work done (i.e. the W=Fs
energy transformed).
=19.6x5
=98J=AE
Recall the formula for power. P= ATE
Substitute the appropriate values into P= %
the formula.
Solve. P=49W

Worked example: Try yourself 5.4.4
CALCULATING POWER

A weightlifter lifts a 50 kg barbell from the floor to a height of 2.0m above the
ground in 1.4s.

Calculate the power required for this lift. (Assume g = 9.8ms™2.)

POWER AND UNIFORM ACCELERATION

Power is often of interest when comparing different machines because it gives a
measure of the rate at which energy transformations take place. Because power is
inversely proportional to the time taken for the energy transformation (i.e. P o< %), a
more powerful machine does work more quickly than a less powerful one.

Worked example 5.4.5
UNIFORM ACCELERATION AND POWER

A car with a mass of 1200kg accelerates uniformly from O to 60kmh™ in 4.6s.

What is the power being exerted by the engine of the car? Ignore rolling resistance
and air resistance, and state your answer correct to three significant figures.




Thinking Working

h ’s final d -1 _1_ 60km _ 60000
Convert the car’s final speed toms 60kmh! = 894m _ 60000m
=16.67ms™

Calculate the change in kinetic energy | AK = 1 mv2 —1my?
of the car. 2 2
=1x1200x1667% -1 x1200x0

=166.7kJ

Substitute the appropriate values into p = AE

the power formula. t

— 166.7 x 10°
46

Solve. P =36kW

Worked example: Try yourself 5.4.5
UNIFORM ACCELERATION AND POWER

A car with a mass of 2080 kg accelerates uniformly from 0 to 100kmh™ in 3.7s.

What is the power exerted by the engine of the car? Ignore rolling resistance and
air resistance, and state your answer correct to three significant figures.

POWER, FORCE AND AVERAGE SPEED

In many everyday situations where friction is significant, a force is applied to an object
to keep it moving at a constant speed, e.g. pushing a wardrobe across a carpeted floor
or driving a car at a constant speed. In these situations, the power being applied can
be calculated directly from the force applied and the speed of the object.

Since P =4E and W = F,5, then:

_EsS _p s
p=ful_F x3

Since % is the definition of average velocity 9, the power equation can be written
as P=F7,
Worked example 5.4.6
FORCE-VELOCITY FORMULATION OF POWER

A person pushes a heavy box along the ground at an average speed of 1.5ms™*
by applying a force of 40N.

\j
<l
I
o
=

What amount of power does the person exert on the box?
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Thinking Working

Recall the force-velocity formulation of p_Fi
the power equation. =rv

Substitute the appropriate values into P=40x1.5
the formula.

Solve. P=60W

Worked example: Try yourself 5.4.6
FORCE-VELOCITY FORMULATION OF POWER

A heavy wardrobe is pushed along the floor at an average speed of 2.2 msL.
The force of kinetic friction is 1200 N.

What amount of power is required for this task? Give your answer correct to two
significant figures.

Air resistance and rolling resistance

In section 5.1 you learned about the difference between static friction and kinetic
friction. Both these types of friction occur when two surfaces are sliding or
about to slide across each other. However, other types of resistance to motion
can occur. For example, when an object rolls it experiences a retarding force
known as rolling resistance. Similarly, an object moving through air is
constantly colliding with air particles. This creates a retarding force known as
air resistance.

A car moving along a road experiences both air resistance and rolling
resistance. Rolling resistance comes from the interaction between the wheels
of the car and the road and from the various components such as cogs and
bearings that turn inside the car’s engine. Air resistance comes as the car
moves through the air in front of it. Modern cars have aerodynamic shapes
that allow the air to flow smoothly over the car, which reduces air resistance
(Figure 5.4.8).

FIGURE 5.4.8 Modern cars have aerodynamic shapes.

The factors that affect the amount of rolling resistance or air resistance
experienced by an object are complex. However, it is usually reasonable to assume
a constant value for these resistances at a particular speed.



Worked example 5.4.7

FORCE-VELOCITY FORMULATION OF POWER WITH AIR RESISTANCE/ROLLING
RESISTANCE

A car with a mass of 1500kg is travelling at a constant speed of 20ms™. The
combination of air resistance and rolling resistance produces a retarding force
of 500N.

Calculate the power required from the car’s engine to maintain this speed.

Thinking Working
Remember that the forces on the car E_FE E
F=F + Farag = C
must be in equilibrium if it is travelling % forwards " drag
at a constant speed. Forwards = —Farag

Recall the force-velocity formulation of | p - Fy
the power equation.

Substitute the appropriate values into | P =500 x 20
the formula.

Solve. P=10000W

Worked example: Try yourself 5.4.7

FORCE-VELOCITY FORMULATION OF POWER WITH AIR RESISTANCE/ROLLING
RESISTANCE

A car with a mass of 900kg is travelling at a constant speed of 15ms™. Rolling
resistance and air resistance combine to oppose the motion of the car with a
force of 750N.

What is the power output of the car’s engine at this speed?

|+ ADDITIONAL |
Drag

Air resistance is a special example of a force known as drag or fluid resistance.
This force slows the motion of any object that moves through a liquid or

gas. The amount of drag experienced by an object depends on a humber of
factors, including the speed, the shape and cross-sectional area of the object,
and the density and viscosity of the fluid.

The following formula is used to calculate the drag force, ﬁD:
Fo =3 pvPCoA
where:
p is the density of the fluid
v is the speed of the object relative to the fluid
A is the cross-sectional area of the object
Cp is the drag coefficient

The drag coefficient Cy is a dimensionless constant that is related to the
shape of the object and the way the fluid flows around it.
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5.4 Review

Mechanical energy is the sum of the potential and
kinetic energies of an obect
Considering kinetic energy and gravitational

potential energy E,=K+U=3mv?+mgh

Mechanical energy is conserved in a falling ojec.
Conservation of mechanical energy can be used to
predict outcomes in a range of situations involving
gravity and motio.

The final speed of an obect falling from height h
can be found using the equation v = \/2gh

When a ball bounces some mechanical energy is
transformed into heat and soun.

KEY QUESTIONS

A piano with a mass of 180kg is pushed off the roof of
a five-storey apartment bloc, 15 m above the groun.

a Calculate the pianos kinetic energy as it hits
the groun.

b Calculate the pianos kinetic energy as it passes the

windows on the second floor, having fallen 10m

A branch falls from a tree and hits the ground with
a speed of 54 ms™' From what height did the
branch fall?
A avelin with a mass of 800 g is thrown at an angle
of 40° to the horizontal t is released at a height of
145 m with a speed of 285 ms™.
a Calculate the avelins initial mechanical energy.
b Calculate the speed of the javelin as it hits

the groun.

4

Power is a measure of the rate at which work is
done P=AE

The power required to keep anobject moving

at a constant speed can be calculated from the
product of the force applied and its average
speed P=Fv

Rolling resistance is a force that opposes the
motion of rolling oject.

Air resistance is a force that opposes the motion
of obects moving through the ai.

A 1610kg car accelerates from zero to 100kmh™
in 550 s Calculate its average power output over
this time

A crane lifts a 500 kg concrete slab at a constant speed

of 5ms™! Calculate the power of the cran’s engin.

A 1700kg cars engine uses 40 kW of power to
maintain a constant speed of 80kmh™ Calculate
the total force due to air resistance and rolling
resistance acting on the ca.

180
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Chapter review

KEY TERMS

air resistance friction
conservation of mechanical  gravitational potential
energy energy
elastic kinetic energy
energy kinetic friction
KEY QUESTIONS
1 A boy is using a horizontal rope to pull his billycart at a

constant velocity. A frictional force of 25N also acts on
the billycart. What force must the boy apply to the rope?

A car is driving at 60kmh~! towards an intersection.
The lights change to red, so the driver applies the
brakes and starts to decelerate. After slowing for a

few metres, the car reaches a section of road which is
covered with gravel; this reduces the amount of friction
between the car’s tyres and the road to almost zero.
Use Newton’s first law to describe the motion of the
car as it moves across the gravel.

The following information relates to questions 3-6.
While riding his bike, Lachie produces a forwards force of
150N. The combined mass of Lachie and the bike is 100 kg.

3

4

10

11

If there is no friction or air resistance, what is the
magnitude of the acceleration of Lachie and the bike?

If friction opposes the bike's motion with a force of
45.0N, what is the magnitude of the acceleration of
the bike?

What must be the magnitude of the force of friction if
Lachie’s acceleration is 0.600 ms2?

Lachie adds a 25.0kg bag to his bike. What must

be the new forward force he produces in order to
accelerate at 0.800ms™ if friction opposes the motion
with a force of 30.0N?

A car drives at a constant speed for 80 m. In order to
overcome friction, its engine applies a force of 2000 N.
Calculate the work done by the engine.

A crane lifts a 200 kg load from the ground to a height
of 30m. What is the work done by the crane?

A person walks up a flight of 12 stairs. Each step is
240mm long and 165 mm high. If the person has

a mass of 60kg and g = 9.8ms2, what is the total
amount of work done against gravity?

If 4000J is used to lift a 50.0 kg object vertically at a
constant velocity, what is the theoretical maximum
height to which the object can be raised?

A cricket ball with a mass of 156g is bowled with a
speed of 150kmh~. What is the kinetic energy of the
cricket ball?

mechanical energy
pendulum

potential energy
power

static friction
work

rolling resistance
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If a 1200kg car has 70kJ of kinetic energy, what is

its speed?

The speed of an object is doubled. By how much does
its kinetic energy increase?

An 88kg plumber digs a ditch 40cm deep. By how
much does the plumber’s gravitational potential
energy change when he steps from the ground down
into the ditch?

How high does a brick with a mass of 2.0kg need to
be lifted to have 100J of gravitational potential energy?

A pencil is dropped from a table 76 cm above the
ground. What is the speed of the pencil as it hits the
ground?

A tennis ball is thrown straight upwards at 9.0ms™.
What is the maximum height it will reach?

A football with a mass of 0.43 kg is kicked off the
ground with a speed of 16 ms™. Assuming there is no
air resistance, how fast will it be going when it hits the
crossbar, which is 2.44 m above the ground?

A bullet of mass 5g strikes a ballistics pendulum of
mass 75 kg with speed v and becomes embedded in
the pendulum. When the pendulum swings back, its
height increases by 11cm. For the following questions,
assume that the initial gravitational potential energy of
the pendulum was zero.

a What was the gravitational potential energy of the
pendulum at the top of its swing?

b What was the kinetic energy of the pendulum when
the bullet first became embedded in it?

¢ What was the speed of the bullet just before it hit
the pendulum? (Assume that the bullet transferred
all of its kinetic energy to the pendulum.)
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A crane can lift a load of 5 tonnes vertically through a
distance of 20m in 5s. What is the power of the crane?

A car with a mass of 720kg (including driver)
accelerates from 0 to 100kmh™ in 18.0s. What is the
average power output of the car over this time?

If the engine of a 1400kg car uses 25kW to maintain
an average speed of 17 ms, calculate the force acting
on the car due to air and rolling resistance.

At the start of a 100m race, a runner with a mass of

60kg accelerates from a standing start to 8.0ms' ina

distance of 20 m.

a Calculate the work done by the runner’s legs.

b Calculate the average force that the runner’s legs
apply over this distance.

When moving around on the Moon, astronauts find it

easier to use a series of small jumps rather than to

walk. If an astronaut with a mass of 120 kg (including

their space suit) jumps to a height of 10cm on

the Moon, where the gravitational field strength is

1.6ms2, by roughly how much does his potential

energy increase?

A steel sphere is dropped from the roof of a five-storey

apartment block, 15m above the ground.

a Calculate the sphere’s speed as it hits the ground.

b Calculate the sphere’s speed as it passes the
windows on the second floor, having fallen 10m.

MODULE 2 | DYNAMICS
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What power would be required to slide an object with
a mass of 5kg at a constant speed of 3ms™ across
a rough surface with a coefficient of kinetic friction

of 0.5?

After completing the activity on page 155, reflect on
the inquiry question: How can the motion of objects be
explained and analysed?

In your response, discuss how you can predict

the motion of the CD hovercraft through energy
transformations, and what role is played by friction.
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CHAPTER

Momentum, energy and
simple systems

Newton'’s first law of motion describes the concept of inertia, which explains how a
mass resists changes to its motion unless an external force acts upon it.

A related concept is momentum, which defines the motion of an object in terms of
its mass and velocity. Objects with a larger momentum require a greater external
force to slow them down.

In this chapter you will see how the law of conservation of momentum can be used
to predict and explain motion. You will also look at the concept of impulse, which
relates force and the time over which it is applied to the change in momentum that
it produces.

Content

NQURY QUESION

How is the motion of objects in a simple system dependent on
the interaction between the objects?
By the end of this chapter you will be able to:

» conduct an investigation to describe and analyse one-dimensional (collinear)
and two-dimensional interactions of objects in simple closed systems
(ACSPHO064)
analyse qualitatively and predict, using the law of conservation of momentum

(zmvbefore = vabefore) and, where appropriate, conservation of kinetic energy

(Z%mvﬁefore = Z%mvgﬂer), the results of interactions in elastic collisions

(ACSPH066)

investigate the relationship and analyse information obtained from graphical
representations of force as a function of time

evaluate the effects of forces involved in collisions and other interactions,
and analyse quantitatively the interactions using the concept of impulse

(ap = Fat)
analyse and compare the momentum and kinetic energy of elastic and inelastic
collisions (ACSPH066)

Physics Stage 6 Syllabus © NSW Education Standards Authority
for and on behalf of the Crown in right of the State of NSW, 2017.




PHYICS NQURY

Momentum and
velocity

How is the motion of
objects in a simple
system dependent on
the interaction between
the objects?

COLLECTTHIS...

¢ medicine ball or other heavy
item

e measuring tape

e chalk

DO THS...

E 1 Mark a line on the ground

! with the chalk This will be

: the stopping line Place the

. measuring tape past the

. stopping line to measure the
. stopping distance

i 2 Run fast towards the stopping
line

' 3 Once you cross the lin, stop as
! quickly as possible Record the
. stopping distance

. 4 Repeat at medium and slow

. speeds

E 5 Repeat again at fas, medium

! and slow speeds this time

. carrying the heavy item

RECORD HIS...

Describe how your stopping
distance changed with a change in
mass and velocity.

Present a table of your resuls.

REFLECT ON HIS...

How is the motion of objects in a
simple system dependent on the
interaction between the ojects?
What were the variables of this
investigation?
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6.1 Conservation of momentum

It is possible to understand some physics concepts without knowing the physics
terms or the equations that describe them. For example, you may know that once a
heavy object gets moving it is difficult to stop it, whereas a lighter object moving at
the same speed is easier to stop.

In Chapters 4 and 5 you saw how Newton’s laws of motion can be used to
explain these observations. In this section you will explore how these observations
can be related to the concept called momentum.

MOMENTUM

The momentum of an object relates to both its mass and its velocity. The elephant
running in Figure 6.1.1 has a large momentum because of its large mass, and the
faster it runs the more momentum it will have. An animal with a larger mass will
have more momentum than a smaller, lighter animal travelling at the same speed.
And the more momentum an object has, the more momentum it has to lose before
it stops.

FIGURE 6.1.1 Momentum is related to mass and velocity. The greater the mass or velocity, the harder
it is to stop or start moving.

The equation for momentum, p, is the product of the object’s mass m and its
velocity 2.

O v-mv
where:
p is momentum (in kgms™1)
m is the mass of the object (in kg)
V is the velocity of the object (in ms™)

The greater an object’s mass or velocity, the larger that object’s momentum will
be. Because velocity is a vector quantity, momentum is also a vector, so it must have
a magnitude, unit and direction. The direction of a momentum vector is the same
as the direction of the velocity vector. For calculations of change in momentum in a
single dimension, we can use the sign conventions of positive and negative.



The following derivation uses Newton’s second law to relate force to momentum.

0 I?net =ma

(v—u)
At
— mvV —mi

At

=m

&l

This shows that a change in momentum is caused by the action of a net force.
It also shows that the net force is equal to the change in momentum Ap divided by
the time taken Az for the change to occur, which is the rate of change of momentum.

Worked example 6.1.1
CALCULATING MOMENTUM

Calculate the momentum of a 60.0 kg student walking east at 3.5ms™1.

Thinking Working

m = 60.0kg
vV =3.50ms! east

Ensure that the variables are in their
standard units.

Apply the equation for momentum. B=mv

=60.0 x 3.50
=210kgms! east

Worked example: Try yourself 6.1.1
CALCULATING MOMENTUM

Calculate the momentum of a 1230kg car travelling north at 16.7ms-1.

CONSERVATION OF MOMENTUM

The most important feature of momentum is that it is conserved in any interaction
between objects, such as a collision or an action—reaction. This means that the total
momentum in any system before the interaction will be equal to the total momentum
in the system after the collision. This is known as the law of conservation of
momentum and can be represented by the following relationship:

0 z Pbefore = z Pa ter

where 213 is the sum of the momentum of objects in a system.

To find the total momentum of objects in a system (whether before or after an
interaction) you can find the momentum of each object from its mass and velocity
and then sum the momentums of all the objects.

For collisions in one dimension, apply the sign convention of positive and
negative directions to the velocities and then use algebra to determine the answer
to the problem. For collisions in two dimensions you must resolve the momentum
of each object into perpendicular components, then sum the momentums in each
dimension, and finally combine the sums for each dimension into a single vector.

PHYSICSFILE

The discovery of the neutron

In the early 1930s several physicists
observed that very high energy
radiation was emitted when beryllium
was bombarded with alpha particles
(Figure 6.1.2). They knew that this
radiation was not electrons, because it
did not carry an electric charge. They
assumed that it consisted of gamma
rays produced when the alpha rays
collided with beryllium nuclei.

But another physicist, James Chadwick,
thought that this radiation might be an
unknown particle with a mass similar
to the proton. The existence of this
particle had been predicted by Ernest
Rutherford, director of the Cavendish
Laboratory in England where Chadwick
was working. In 1932 Chadwick
conducted his own experiments to
measure the energy produced by

this radiation, and realised that the
conservation of momentum calculations
did not add up: gamma rays could

not produce the amount of energy

he observed.

He then bombarded boron with
alpha particles and used the law of
conservation of momentum to calculate
the mass of the unknown particle. He
found that it was 1.0067 times the
mass of a proton, which confirmed
that it was a new particle close in
mass to a proton but with no charge.
Other physicists quickly confirmed
his experiments, and the particle was
named the neutron.

beryllium atom

alpha particle

\i\
FIGURE 6.1.2 Experiments involving

bombarding beryllium with alpha particles
led to the discovery of the neutron.

CHAPTER 6 | MOMENTUM, ENERGY AND SIMPLE SYSTEMS 185



Momentum in one-dimensional collisions
If two objects are colliding in one dimension, then the following equation applies:

0 z Poefore = 2 Pa ter

where:
my is the mass of object 1 (in kg)

d, is the initial velocity of object 1 (in ms™)
v, is the final velocity of object 1 (in ms™)
m, is the mass of object 2 (in kg)

i, is the initial velocity of object 2 (in ms™)

v, is the final velocity of object 2 (in ms™).

Worked example 6.1.2
CONSERVATION OF MOMENTUM

A 2.50kg mass moving west at 4.50ms™! collides with a 1.50kg mass moving
east at 3.00msL.

Calculate the velocity of the 2.50 kg mass after the collision, if the 1.50kg mass
rebounds at 5.00ms-1 west.

Thinking Working

Identify the variables using subscripts. | m; = 2.50kg
Ensure that the variables are in their 0, = 4.50ms! west

standard units. =,
Vl =

m, = 1.50kg
U,=3.00ms! east
V, =5.00ms! west

Apply the sign convention to the my = 2.50kg
variables. U, =-4.50ms!
v =7
my, = 1.50kg
U, =+3.00ms1
v, =-5.00ms!

Apply the equation for conservation of | myu; + myl, = myv; + myv,

momentum involving two objects. (2.50 x —4.50) + (150 x 3.00) =
2.50v; + (1.50 x -5.00)

2.50v; =-11.25 + 4.50 — (-7.50)

Apply the sign convention to describe
the direction of the final velocity.
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Worked example: Try yourself 6.1.2
CONSERVATION OF MOMENTUM

A 1200kg wrecking ball moving north at 2.50ms™1 collides with a 1500 kg
wrecking ball moving south at 4.00ms1,

Calculate the velocity of the 1500 kg ball after the collision, if the 1200 kg ball
rebounds at 3.50ms! south.

|PHYICS IN ACTION|

Conservation of momentum in sports

The law of conservation of momentum has applications in many spheres of
human endeavour, including sports. This is most obvious in sports involving
collisions between objects, such as baseball, cricket, curling, lawn bowls, ten
pin bowling, bocce, pool, snooker, squash, table tennis and tennis.

FIGURE 6.1.3 Conservation of momentum is an important aspect of the sport of curling.

All of these sports require the athlete to cause one object to collide with
the other. The best players are able to control the momentum of the striking
object so that the magnitude and direction of momentum for both the
striking object and the target object after the collision result in a good score
or a positional advantage.

FIGURE 6.1.4 Controlling the momentum of this bowling ball will enable the player to pick up
a three-pin spare.
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Momentum when masses combine

In the situations described so far, the two objects remain separate from each other.
However, it is possible for two objects to stick together when they collide. If two
objects combine when they collide, then the equation is modified to:

0 z Poefore = z Pa ter

where:

my is the mass of object 1 (in kg)

d, is the initial velocity of object 1 (in ms™)

m, is the mass of object 2 (in kg)

U, is the initial velocity of object 2 (in ms™)

my,» is the combined mass of object m; and m, (in kg)

v is the final velocity of combined mass of m; and m, (in ms™)

Worked example 6.1.3

CONSERVATION OF MOMENTUM WHEN MASSES COMBINE

A 5.00kg lump of clay moving west at 2.00ms-! west collides with a 7.50kg mass of
clay moving east at 3.00msL. They collide to form a single, combined mass of clay.

Calculate the final velocity of the combined mass of clay.

Add m; and m, to get my4».

Thinking Working
Identify the variables using my = 5.00kg
subscripts and ensure that the G, = 2.00ms! west
variables are in their standard units.

m, = 7.50kg

U, =3.00ms! east
mi+o = 12.50kg

v=1?
Apply the sign convention to the my = 5.00kg
variables. 4, =-2.00ms!
my = 7.50 kg

U, =+3.00ms™!
my,o = 12.50kg
V=17

Apply the equation for conservation
of momentum.

Z Poefore = z Pafter

mlal + m202 = m1+2‘7

(5.00 x —2.00) + (7.50 x 3.00) = 12.507

= _ -10.0+ 2250
- 1250

=+1.00ms!

Apply the sign convention to describe
the direction of the final velocity.

v =1.00ms! east

Worked example: Try yourself 6.1.3
CONSERVATION OF MOMENTUM WHEN MASSES COMBINE

together after the tackle.

A 90.0kg rugby player running north at 1.50ms-! tackles an opponent with
a mass of 80.0kg who is running south at 5.00ms-1. The players are locked

Calculate the velocity of the two players immediately after the tackle.




Momentum in explosive collisions

It is also possible for one object to break apart into two objects in what is known
as an ‘explosive collision’. If one object breaks apart into two fragments when an
explosive collision occurs, then the equation becomes:

0 zpbefore = zpa ter

myly = MyV, + M3y

where:
my is the mass of the object before breaking apart, object 1 (in kg)
uy is the initial velocity of object 1 (in ms™)
m, is the mass of one fragment, object 2 (in kg)
v, is the final velocity of object 2 (in ms™)
ms is the mass of the other fragment, object 3 (in kg)
V5 is the final velocity of object 3 (in ms™)

Worked example 6.1.4
CONSERVATION OF MOMENTUM FOR EXPLOSIVE COLLISIONS

A 90.0kg athlete throws a 1000g javelin while running west at 7.75ms-1.
Immediately after throwing the javelin her velocity is 7.25ms™! west.

Calculate the velocity of the javelin immediately after she throws it.

Thinking Working

Identify the variables using subscripts | m; = 91kg
and ensure that the variables are in U,=7.75ms! west
their standard units. Note that m; is

the sum of the bodies, i.e. the athlete ma = 90kg
and the javelin. Vp=7.25ms! west
m3 = 1.00kg
vg="7
Apply the sign convention to the my; =91kg
variables. by =-7.75ms"!
m, =90kg
Vy,=-7.25ms™!
m3 =1.00kg
Vg="?

Apply the equation for conservation Zﬁbefore = Zﬁafter

of momentum for explosive collisions. _ - _
mlul = m2V2 + m3V3

91.0 x-7.75 =(90.0 x -7.25) + 1.00V;
j. = =705:25 - (-652.5)

3 1.00
7. — =52.75
V3 =100
=-528ms!

Apply the sign convention to describe | v;=52.8ms™! west
the direction of the final velocity.

PHYSICSFILE

Conservation of momentum
in rockets and jets

If you hold a balloon filled with air, its
momentum is zero because it is at rest.
But if you release the balloon with its
neck open, air escapes, and this air has
momentum. The law of conservation

of momentum means that the balloon
must move in the opposite direction
with the same momentum. This will
continue until no more air is released
from the balloon.

zbbefore = zﬁafter
0= bballoon + 5air

Phballoon = ~Pair

balloon
—_—

FIGURE 6.1.5 The momentum of the
air flowing out to the left is equal to the
forward momentum of the balloon to
the right.

This is the principle upon which rockets
and jet engines are based. These
engines produce a high-velocity stream
of hot exhaust gases by burning a liquid
or solid fuel and forcing it through a
narrow opening. These gases have

a very large momentum as a result

of the high velocities involved, and

can accelerate rockets and jets to

high speeds as they acquire an equal
momentum in the opposite direction.
Rockets carry their own oxygen supply
for combustion, while jet engines use
the surrounding air supply.
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Worked example: Try yourself 6.1.4
CONSERVATION OF MOMENTUM FOR EXPLOSIVE COLLISIONS

A stationary 2000kg cannon fires a 10.0 kg cannonball. After firing, the cannon
recoils north at 8.15ms1.

Calculate the velocity of the cannonball immediately after it is fired.

ELASTIC AND INELASTIC COLLISIONS

Momentum and total energy are always conserved in a closed system. Collisions
can either be elastic or inelastic. In elastic collisions, the total kinetic energy before
a collision is equal to the total kinetic energy after a collision. This is known as the
law of conservation of kinetic energy, and can be represented by the following
relationship.

O Yimie. =Ximi,
Lmyi? + 1 myii = 1myf +1m,vs

where:
my is the mass of object 1 (in kg)
Uy is the initial velocity of object 1 (in ms™)
v, is the final velocity of object 1 (in ms™)
m, is the mass of object 2 (in kg)
U, is the initial velocity of object 2 (in ms™)

v, is the final velocity of object 2 (in ms™)

In inelastic collisions, kinetic energy is converted into other types of energy
such as thermal and sound energy. If the collision is 100% inelastic, the final kinetic
energy will be a minimum and the objects will stick together. If the collision is 100%
elastic, then the final velocities will be a maximum.

If only the initial masses and velocities in a collision are known, you cannot
determine the energy lost during the collision. In this case you cannot tell whether
the collision was elastic or inelastic.

However, if both the initial and final masses and velocities of the systems are
known, you can determine how much energy was lost. In this case you can tell
whether the collision was elastic or inelastic.



Worked example 6.1.5
CONSERVATION OF KINETIC ENERGY

A 7.5 kg steel ball moving north at 2.2ms! collided with a 0.5kg rubber ball
moving south at 3.0ms™L. Immediately after the collision, the steel ball had a
velocity of 1.55ms™! north and the rubber ball had a velocity of 6.75ms™! north.

Was this collision elastic, or was it inelastic?

Thinking Working

Identify the variables using my =7.5kg
subscripts. Ensure that the variables | g — 2 2ms-1 north

are in their standard units. 7, = 1.55ms-! north

m, = 0.5kg
U, =3.0ms! south
V,=6.75ms™! north

Apply the sign convention to the my =7.5kg

variables. 0 =+22ms!
V;=+1.55ms!
my = 0.5 kg

U,=-3.0ms!
V,=+6.75ms™1

Apply the equation for conservation T2, =N 1my2
of kinetic energy. Z2 before 22 after

Z%mvt%efore =%m1u12 +%m2022
=1x75x2.2?+1x05x-3.0
=18.15 + 2.25=20.4J

z%mvazfter =%m1v12 +%m2\722

= 1x75x1.55%+1x0.5x6.75°

=90+114
=204J

Determine whether the collision was | No energy was lost, so the collision was
elastic or inelastic. elastic.

Worked example: Try yourself 6.1.5
CONSERVATION OF KINETIC ENERGY

An object with a mass of 2200 kg was travelling at 17.56ms™! north when it hit
a stationary object with a mass of 2150kg. The two objects joined together and
moved away at 8.881 ms-1 north.

Was this collision elastic, or was it inelastic?
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6.1 Review

Momentum is the product of an object’s mass and
velocity: p=mv

Momentum is a vector quantity.

Force is equal to the rate of change of momentum.

The law of conservation of momentum can be
applied to situations in which:
- two objects collide and remain separate:

z Poefore = 2 Patter
MUy + My, = MV + Myvy
- two objects collide and combine together:
2 Poefore = 2 Pater
MUy +myly, = my, oV

- one object breaks apart into two objects in an
explosive collision:

2 Poefore = 2 Patter

mlﬁl = m2\72 ar m3\73

KEY QUESTIONS

Calculate the momentum of a 3.50kg fish swimming
south at 2.50ms™L.

Calculate the momentum of a 433 kg boat travelling
west at 22.2ms1,

Calculate the momentum of a 58.0g tennis ball served
at 61.0ms! towards the south.

Which object has the greater momentum: a medicine
ball of mass 4.5kg travelling at 3.5ms! or one of
mass 2.5 kg travelling at 6.8 ms™1?

A 70.0kg man steps out of a stationary boat with

a velocity of 2.50ms™! forwards onto the nearby
riverbank. The boat has a mass of 400kg and was
initially at rest. With what velocity does the boat begin
to move as the man steps out? Give the answer to
three significant figures.

MODULE 2 | DYNAMICS

The law of conservation of kinetic energy is
written as:

1 2 _\V1 2
ZEmeefore - ZEmvaﬁer

In elastic collisions, no kinetic energy is lost.
In inelastic collisions, kinetic energy is lost.

6 Alawn bowls jack of mass 250g is stationary on the

ground when it is hit by a 1.50kg bowl travelling north
at 1.20ms™ 1. If the jack’s velocity immediately after
the collision is 1.60ms~! north, with what velocity does
the bowl move immediately after hitting the jack? Give
the answer to two significant figures.

A railway wagon of mass 25000 kg moving along a
horizontal track at 2.00ms~! runs into a stationary
locomotive and is coupled to it. After the collision, the
locomotive and wagon move off at a slow 0.300ms1.
What is the mass of the locomotive alone? Give the
answer to three significant figures.

A spacecraft of mass 10000kg, initially at rest, burns
5.0kg of fuel-oxygen mixture in its rockets to produce
exhaust gases ejected at a velocity of 6000ms1,
Calculate the velocity that this exchange will give to
the spacecraft.



6.2 Change in momentum

In Section 6.1 the momentum of an object was defined in terms of its velocity and
mass. For each of the different collisions described in that section, the momentum
of the system was conserved. That is, when all of the objects involved in the collision
were considered, the total momentum before and after the collision was the same.

But for each separate object in those examples, momentum was not conserved
because they experienced a change in velocity because of the collision. When an
object changes its velocity, its momentum must also change, because momentum
is a vector quantity. An increase in velocity means an increase in momentum, and a
decrease in velocity means a decrease in momentum. You can also think of this as a
transfer of momentum from one object to another.

CHANGE IN MOMENTUM IN ONE DIMENSION

It is easy to change the velocity of an object, and therefore its momentum. For
example, you can run faster or run slower; or you can press a little harder on the
pedals of a bike or press a little softer. You can also bounce an object off a surface;
the basketball in Figure 6.2.1 experiences a change in momentum when it changes
direction during a bounce. Change in momentum, Ap, is also called impulse.

Consider an object moving in one dimension; that is, in a straight line. An impulse or
change in momentum in this situation can be calculated using the following equation.

Because momentum is a vector quantity, impulse or change in momentum is
also a vector, so it must have a magnitude, a unit and a direction.

Worked example 6.2.1
IMPULSE OR CHANGE IN MOMENTUM

A cyclist is riding a bike east at 8.20ms™! as they approach a stop sign. The total
mass of the cyclist and bike is 80.0 kg.

Calculate the impulse of the cyclist during the time it takes them to stop at the
stop sign.

Thinking Working

Ensure that the variables are in m = 80kg

standard units. i=820ms-! east
V=0ms1

Apply the sign convention to the m = 80kg

velocity vectors. i=+820ms1
V=0ms

Apply the equation for impulse or

) Ap=mv —mu
change in momentum.

= (80 x 0) — (80 x 8.20)
=0-656
=-656kgms1

impulse = 656 kgms-1 west

Apply the sign convention to describe
the direction of the impulse.

Worked example: Try yourself 6.2.1
IMPULSE OR CHANGE IN MOMENTUM

A student with a mass of 55.0kg hurries to class after lunch, moving at 4.55ms!
north. Suddenly she remembers that she has forgotten her laptop, and runs back
to her locker at 6.15ms1 south.

Calculate the impulse of the student during the time it takes her to turn around.
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0 impulse = Ap
= Pinal — Pinitial
=mv —miu
where:

Ap is the change in momentum
(in kgms)
m is the mass (in kg)

v is the final velocity (in ms™)

ii is the initial velocity (in ms™)

FIGURE 6.2.1 A basketball undergoes a change
in momentum when it bounces, because the
direction of its velocity changes.
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FIGURE 6.2.2 Changing momentum in two
dimensions by changing direction.
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CHANGE IN MOMENTUM IN TWO DIMENSIONS

The momentum of an object moving in two dimensions can change not only by
changing the magnitude of its velocity or by reversing the direction of motion,
but also by changing course in any direction. For example, the momentum of the
boat in Figure 6.2.2 changes because the boat changes direction. As you saw in
Chapter 3, a change in velocity in two dimensions can be calculated using geometry.
The equation for impulse can be manipulated slightly to illustrate where the change
in velocity is applied, as follows.

Ap=mv —mii
=m(V — i)

Worked example 6.2.2
CHANGE IN MOMENTUM IN TWO DIMENSIONS

A 65.0kg kangaroo is moving at 3.50ms-1 towards the west, then turns north
and moves at 2.00ms1.

Calculate the change in momentum of the kangaroo during this time.

Thinking Working

Identify the formula for
calculating a change in
velocity AV.

AV = final velocity — initial velocity

Draw the final velocity

vector v and the initial \ $=200ms"north 4= 3.50ms" west
W<—1—>E
S

velocity vector U separately.
Then draw the initial
velocity in the opposite
direction, which represents
the negative of the initial

—1i=3.50m s east

velocity 4.

Construct a vector diagram, 5 =3.50 m s! east
drawing v first and then N

from its head draw the - »

opposite of 4. The change W“I” B V=200ms"north 0 AV

of velocity vector is drawn S

from the tail of the final
velocity to the head of
the opposite of the initial
velocity.

Because the two vectors to

52 _ 2 2
be added are at 90° to each AV®=2.00+3.50

other, apply Pythagoras’ =4.00+12.25
theorem to calculate the Av =4/16.25
magnitude of the change in =4.03ms!
velocity.

Calculate the angle from the | tano = 350
north vector to the change '

in velocity vector. 6=tan"'1.75

=60.3°
State the magnitude and AV = 4.03ms-1 N60.3°E
direction of the change in ' :
velocity.




Identify the variables using
subscripts and ensure that
the variables are in their
standard units.

m = 65.0kg
AV = 4.03ms! N60.3°E

Apply the equation for
impulse or change in
momentum.

Ap=mv —mi
=m(V -0)
= mAvV
=65.0x4.03
=262kgms1

Apply the direction
convention to describe the
direction of the change in
momentum.

AP = 262kgms! N60.3°E

Worked example: Try yourself 6.2.2

IMPULSE OR CHANGE IN MOMENTUM IN TWO DIMENSIONS

A 160g pool ball rolling south at 0.250ms~! bounces off a cushion and rolls east
at 0.200ms1,

Calculate the impulse on the ball during its impact with the cushion.

1

6.2 Review

« Change of momentum, Ap, is also called impulse.

It is a vector quantity.

A change or transfer in momentum occurs when
an object changes its velocity.

KEY QUESTIONS

Calculate the impulse of a 9.50kg dog that changes its
velocity from 2.50ms™! north to 6.25ms™! south.

Calculate the impulse of a 6050kg truck as it changes
from moving west at 22.2ms™! to east at 16.7msL.

The velocity of an 8.00 kg mass changes from
3.00ms! east to 8.00ms™1 east. Calculate the change
in momentum.

Calculate the change in momentum of a 250¢g
grapefruit as it changes from rest to moving
downwards at 9.80 ms™! after falling off a tree.

The equation for impulse is: Ap = mv — mu
Change in momentum in two dimensions can be
calculated using geometry.

The momentum of a ball of mass 0.125kg changes
by 0.075kgms1 south. If its original velocity was
3.00ms™! north, what is the final velocity?

A 45.0kg drone flying west at 45.0ms-! changes
course and flies north at 45.0ms™! at the same
altitude. Calculate the impulse of the drone during the
change in direction.

A marathon runner with a mass of 70.0kg is running
with a velocity of 4.00ms-1 north, and then turns a
corner to start running 3.60 ms-1 west. Calculate their
change in momentum.

CHAPTER 6 | MOMENTUM, ENERGY AND SIMPLE SYSTEMS

195




GO TO » | Section 4.2, page 129

PHYSICSFILE
Momentum units

By using Newton’s second law the unit

newton second (N's) can be shown
to be equivalent to the unit for both
momentum and impulse (kgms™).

Given that IN = 1kgms2
(from F = ma), it follows that

INs=1kgms?xs
so INs=1kgms™

Therefore either N's or kgms™! can be
used as the unit for momentum.
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6.3 Momentum and net force

Chapter 4 on Newton’s second law of motion discussed the quantitative connection
between force, mass, time, and change in velocity. This relationship is explored
further in this section. The relationship between change in momentum Ap , the
period of time At, and net force Fnet helps to explain the effects of collisions and how
to minimise those effects. It is the key to providing safer environments, including in

sporting contexts such as that shown in Figure 6.3.1.

FIGURE 6.3.1 When two rugby players collide, they exert an equal and opposite force on each other.

Think about what it would feel like to fall onto a concrete floor. Even from one
metre high it would hurt. A fall from the same height onto a thick mattress would
not hurt at all. In both situations speed is the same, mass has not changed and
gravity provides the same acceleration. Yet the two would feel very different.

CHANGE IN MOMENTUM (IMPULSE)

According to Newton’s second law, a net force will cause a mass to accelerate. A
larger net force will create a faster change in velocity. The faster the change occurs
— that is, the smaller the period of time At when it occurs — the greater the net
force that produced that change. LLanding on a concrete floor would change your
velocity very quickly. You would be brought to an abrupt stop within a very short
amount of time. But if you land on a thick foam mattress, the change occurs over
a much longer time. Therefore the force needed to produce the change is smaller.

Starting with Newton’s second law, the relationship between change in
momentum Ap (impulse) and the variables of force Fnet (often written just as F )s
and time Az becomes as follows.

FAt = m(v —u)
= Ap
where Ap is the change in momentum (in kgms™)
These equations illustrate that, for a given change in momentum, the product of

force and time is constant. This relationship is the key to understanding the effects
of collisions.



Worked example 6.3.1
CALCULATING THE FORCE AND IMPULSE

A student drops a 160g pool ball onto a concrete floor from a height of 2.00m.
Just before it hits the floor, the velocity of the ball is 6.26 ms~! downwards. Before
it bounces back upwards, there is an instant in time at which the ball’s velocity is
zero. The time it takes for the ball to change its velocity to zero is 5.0 milliseconds.

a Calculate the impulse of the pool ball, giving your answer to three
significant figures.

Thinking Working
Ensure that the variables are in their m = 0.160kg
standard units. i=626ms"! down
Vv=0ms
Apply the sign and direction m = 0.160kg
convention for motion in one i=-626ms!
dimension. Up is positive and down is _ 1
. v=0ms
negative.
Apply the equation for change in Ap=m(v —u)
momentum. =0.160 x (0 — (-6.26))
=1.0016kgms™1
Refer to the sign and direction impulse =Ap = 1.00kgms! upwards
convention to determine the direction
of the change in momentum. This is
equal to the impulse.

b Calculate the average force that acts to cause the impulse.

Thinking Working
Use the answer to part a. Ensure Ap=1.00kgms1
that the variables are in their At=50 x 10-3s
standard units.
Apply the equation for force. FAt = AP
-
F=2£
__ 100
50x1073
=+200N
Refer to the sign and direction F = 200N upwards

convention to determine the direction
of the force.
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Worked example: Try yourself 6.3.1
CALCULATING THE FORCE AND IMPULSE

A student drops a 56.0g egg onto a table from a height of 60cm. Just before it hits
the table, the velocity of the egg is 3.43ms~! down. The egg’s final velocity is zero,
which it reaches in 3.55 milliseconds.

a Calculate the impulse of the egg.

b Calculate the average force that acts to cause the impulse.

Worked example 6.3.2
CALCULATING THE FORCE AND IMPULSE (SOFT LANDING)

A student drops a 105g metal ball onto a foam mattress from a height of 2.00m.
Just before it hits the foam mattress, the velocity of the ball is 6.26 ms~! down.
Before it bounces back up, there is an instant in time at which the ball’s velocity is
zero. The time it takes for the ball to change its velocity to zero is 0.360 seconds.

a Calculate the impulse of the pool ball.

Thinking Working

Ensure that the variables are in their m = 0.105kg

standard units. i=626ms"! down
Vv=0ms!

Apply the sign and direction convention | m =0.105kg
for motion in one dimension. Up is i=-626ms"!
positive and down is negative.

V=0ms!
Apply the equation for change in Ap=m(V — 1)
momentum. = 0.105 x (0 - (-6.26))
=0.657kgms!
Refer to the sign and direction impulse = Ap = 0.657 kgms-! up

convention to determine the direction
of the change in momentum.This is
equal to the impulse.

b Calculate the average force that acts to cause the impulse.

Thinking Working
Using the answer to part a, ensure that AP =0.657kgms!
the variables are in their standard units. At = 0.360s
Apply the equation for force. FAt = AP
= 5
F= A—f
_ 0657
0.360
=+1.83N
Refer to the sign and direction convention | F = 1.83N up
to determine the direction of the force.
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Worked example: Try yourself 6.3.2
CALCULATING THE FORCE AND IMPULSE (SOFT LANDING)

A student drops a 56.0g egg into a mound of flour from a height of 60cm. Just
before it hits the mound of flour, the velocity of the egg is 3.43ms™! down. The egg
comes to rest in the flour in 0.325 seconds.

a Calculate the impulse of the egg.

b Calculate the average force that acts to cause the impulse.

From these worked examples you should notice a number of important things:

¢ The change in momentum and the impulse were always the same.

¢ Regardless of the surface that the object landed on, the impulse or change in
momentum remained the same.

¢ The period of time was the main cause of the difference in the effects of the
different surfaces. Hard surfaces resulted in a short stopping time, and soft
surfaces resulted in a longer stopping time.

¢ The effect of the period of time on the force was significant. A shorter time
meant a greater force, while a longer time meant a smaller force.

DETERMINING IMPULSE FROM A CHANGING FORCE

In the previous examples it was assumed that the force that acted to change the
impulse over a period of time was constant during that time. This is not always the
case in real situations. Often the force varies over the period of the impact, so there
needs to be a way to determine the impulse as the force varies.

An illustration of this is when a tennis player strikes a ball with a racquet. At the
instant the ball comes in contact with the racquet, the applied force is small. As the
strings distort and the ball compresses, the force increases until the ball has been
stopped. The force then decreases as the ball accelerates away from the racquet. A
graph of force against time is shown in Figure 6.3.2.

The impulse affecting the ball during any time interval is the product of applied
force F and time Az. The total impulse during the period of time the ball is in contact
with the racquet will be:

€ impulse = F, At
where:

F,, is the average force applied during the collision (in N)
At is the total period of time the ball is in contact with the racquet (in s)

In a graph of force against time, the area under the curve is a function of the
height (force) and the width (time). So the total area under the curve in a force—
time graph is the total impulse for any collision, even when the force is not constant.

The concept of impulse is useful when dealing with forces during any collision,
because it links force and contact time; for example, when a person’s foot kicks a
soccer ball, or when a ball is hit by a bat or racquet. If the contact occurs over an
extended period of time as one or both objects deform, the average net force is used
because the forces change during the contact time.

The average net applied force can be found directly from the formula for
impulse. The instantaneous applied force at any particular time during the collision
must be read from a graph of force against time.

Impulse = ﬁv X At
= area under graph

0 0.(|)3 0.|06 0.|09 0.|12 0.|15
£(s)

FIGURE 6.3.2 The forces acting on the tennis

ball during its collision with the racquet are not

constant.
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Worked example 6.3.3

CALCULATING THE TOTAL IMPULSE FROM A CHANGING FORCE

A student records the force acting on a rubber ball as it bounces off a hard
concrete floor over a period of time. The graph shows the forces acting on the ball
during its collision with the concrete floor.

80—
70—
60 —

50—
40+
30
20
10—

T T 1
0 1 2 3

1 1T T T T 1T T T 1
4 5 6 7 8 9 10 11 12 13
Time (ms)

a Determine the force acting on the ball at a time of 9.0 milliseconds.

Thinking Working
From the 9.0 millisecond
point on the x-axis go up to 80
the line of the graph, then 70—
across to the y-axis. 60 —
50 /
40 -
30
204
10

The force is estimated by
reading the intercept of the
y-axis.

b Calculate the total impulse of

the ball over the 13 milliseconds of contact time.

Thinking

Working

Break the area under the
graph into sections for which
you can calculate the area.

In this case, the graph can be broken into three
sections: A, B and C.

80 -
70-
60-
50-
40-
30- B
20- C
10




Calculate the area of the area=A+B+C

three sections A, B and C —(1hy xh) 4 (ba xh)+(Lbe x h

using the equations for area (30 xh)+ (B )+ (306 xh)

of a triangle and the area of a =|:%><(2.O><10‘3)><6O]+[(6.O><10‘3)><6O]
rectangle.

{1x(5.0x103)x60]
— 0.060 + 036 +0.15

=0.57
The total impulse is equal to | impulse = area
the area. =+0.57kgms!

Apply the sign and direction impulse = 0.57 kgms~! upwards
convention for motion in one
dimension vertically.

Worked example: Try yourself 6.3.3

CALCULATING THE TOTAL IMPULSE FROM A CHANGING FORCE

A student records the force acting on a tennis ball as it bounces off a hard concrete

floor over a period of time. The graph shows the forces acting on a ball during its

collision with the concrete floor.
80
70—
60—
50
40

30—
20—
10—

1 T T T T T 1
o 1 2 3 4 5 6 7 8 9 10 1

Time (ms)

— 1T 1
1 12 13

a Determine the force acting on the ball at a time of 4.0 milliseconds.

b Calculate the total impulse of the ball over the 13 millisecond contact time.
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|PHYICS IN ACTION|

Car safety

Vehicle safety is mainly about avoiding crashes. Research
shows that potential accidents are avoided 99% of the
time. This is mainly because of accident avoidance
systems such as antilock brakes. When a collision does
happen, passive safety features such as airbags and
crumple zones come into operation. Understanding

the theory behind accidents involves primarily an
understanding of impulse and force.

Airbags

The introduction of seatbelts allowed many more people
to survive car accidents. However, many survivors

still sustained serious injuries because of the rapid
deceleration in high-impact crashes, especially to the neck
because the head is not restrained. A further safety device
was needed to minimise these injuries.

Airbags are designed to inflate within a few milliseconds
of the start of a collision to reduce secondary injuries
during the collision. The airbag is designed to inflate only
when the car experiences an impact with a solid object at
18-20kmh-! or more. This is so that minor bumps such
as parking accidents do not cause the airbags to inflate.

FIGURE 6.3.3 Airbags can prevent injuries by extending the period of
time a person take to stop.

The car’'s computer control makes a decision within a few
milliseconds to detonate the gas cylinders that inflate the
airbags. The propellant in the cylinders inflates the airbags
while, according to Newton'’s first law, the driver continues
to move towards the dashboard. As the passenger’s upper
body continues forwards into the airbag, the bag allows
the body to slow down over a longer time than would
otherwise be possible (Figure 6.3.3). This involves the
direct application of the concept of impulse. A comparison
of the forces applied to the occupant of a car with and
without airbags is shown in Figure 6.3.4.

(b)
\
AL
,: I" _. Noair bag
with air bag
0 20 40 60 80 100 120 140
Time (ms)
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FIGURE 6.3.4 (a) The airbag extends the stopping time
and distributes the force required to decelerate the
mass of the driver or passenger over a larger area than
a seatbelt. (b) The force experienced by the occupant
of the car without an airbag is about double the force
experienced with an airbag.




6.3 Review

Newtons second law describes the relationship
between impulse force and the period of tim:
impulse = Ap = FAt

The same mass changing its velocity by the
same amount will have a constant change in
momentum or impulse

The faster the velocity of a mass change, the
greater the force required to change the velocity in
that period of time

The slower the velocity of a mass changes the
smaller the force required to change the velocity
in that period of time

KEY QUESTIONS

1

A 450 kg mass changes its velocity from .45 ms!

east to 2.5 ms! east in a period of 350 s.

a Calculate the change in momentum of the mass

b Calculate the impulse of the mass

¢ Calculate the force that causes the impulse of the
mass

Using the concept of impulse explain how airbags can

reduce injuries during a collisio.

A student catches a 156g cricket ball with‘hard

hands Just before the student catches the bal,

its velocity is 122 ms-1 west With hard hand, the

velocity of the ball drops to zero in just0.100 s.

a Calculate the change in momentum of the cricket

ball

Calculate the impulse of the cricket bal.

Calculate the average force on the cricket bll.

d The student now catches the same ball with
soft hands If the velocity of the ball drops from
122 ms! west to zero in .300 second, calculate
the average force on the cricket bll.

o T

A stationary 130g tee-ball is struck off the tee by a bat

The ball and bat are in contact for .05 s during which

time the ball is accelerated to a speed of 25ms-1.

a What is the magnitude of the impulse the ball
experiences?

b What is the net average force acting on the ball
during the contact time?

¢ What is the net average force acting on the bat
during the contact time?

Forces can change during a collisin.

The impulse over a period of time can be found
by calculating the area under the line on a force
versus time grap.

The period of time during which an impulse
occurs is the cause of the difference in the forces
produced by different surfaces during a collison.
Harder surfaces result in a shorter stopping tme,
and softer surfaces result in a longer stoppig.
The effect of the period of time on the force is
dramati. A shorter time means a greater force,
while a longer time means a much smaller forc.

The following graph shows the net vertical force

generated as an athlet’s foot strikes an asphalt

running trac.

a Estimate the maximum force acting on the athlet’s
foot during the contact time

b Estimate the total impulse during the contact time

1400 4

1200
1000
800
600
400
200

\j

0 10 20 30 40 50 60 70

Tme (ms)

A 25g arrow buries its head .0 cm into a target on

striking it The arrow was travelling at 50 ms-! just

before impac.

a What change in momentum does the arrow
experience as it comes to rest?

b What is the impulse experienced by the arrow?

¢ What is the average force that acts on the arrow during
the period of deceleration after it hits the target?

Bicycle helmets are designed to reduce the force of

impact on the head during a collision

a Explain how their design reduces the net force on
the head

b Would a rigid‘shel’ be as successful? Explai.
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Chapter review

KEY TERMS

conserved law of conservation of
elastic collision kinetic energy
impulse law of conservation of

inelastic collision

momentum

KEY QUESTIONS

1

204

Calculate the momentum of an elephant of mass
6000kg running at velocity 40kmh-1,

A fly with a mass of 21 mg is travelling east at
1.8ms-L. Calculate the momentum of the housefly.

A chestnut horse of mass 800kg running at 20ms-1
is passed by a grey horse of mass 600kg running at
25msL. Which horse has the greater momentum?

Calculate the change in momentum of a 155kg mass
when its velocity changes from 6.50ms™! east to
3.25ms! east in a period of 8.50s.

Calculate the change in momentum of a 25.5 kg robot
when its velocity changes from 6.40ms-! forwards to
2.25ms! backwards.

Julian is riding a skateboard north-east along a level
footpath, wearing a backpack. His mass is 40kg, the
mass of the skateboard is 5kg and the backpack is
2kg. He is travelling at a constant speed of 5ms!
when he throws his backpack down so that it hits
the ground with zero horizontal velocity. What is his
velocity immediately after this happens?

An astronaut in a protective suit has a total mass of
154 kg. She throws a 40.0 kg toolbox away from the
space station. The astronaut and toolbox are initially
stationary. After being thrown, the toolbox moves at
2.15ms L. Calculate the velocity of the astronaut just
after throwing the toolbox.
A research rocket with a mass 250kg is launched
vertically. It produces 50.0 kg of exhaust gases from
its fuel-oxygen mixture at a velocity of 180ms! in a
2.00s initial acceleration period.
a What is the velocity of the rocket after this initial
acceleration?
b What upwards force does this apply to the rocket?
¢ What is the net upwards acceleration acting on
the rocket? Assume that g = -9.81 ms=2 if required.
A bowling ball of mass 7 kg rolling north at 2ms-!
collides with a pin of mass 0.5kg. The pin flies north
at 5ms-1. What is the velocity of the bowling ball after
the collision?

MODULE 2 | DYNAMICS

momentum

10 A 60g tennis ball approaches a racquet with a velocity
of 50ms-L. After being hit, the ball leaves the racquet
with a velocity of 30ms-1 in the opposite direction.
Calculate the change in momentum of the ball during
the collision.

11 A 75.0kg netball player moving west at 4.00ms-!
changes velocity to 5.00ms™! north. Calculate her
change in momentum.

12 A 50kg cyclist enters a roundabout travelling east at
8.5msL. She leaves the roundabout heading south at
6.0ms-1. Calculate her change in momentum between
entering and leaving the roundabout.

13 A billiard ball is travelling toward the edge of the
pool table at an angle of 30° from the edge. The ball
has a mass of 160g and is travelling with a velocity
of 4.0msL. The ball bounces off the edge with an
angle of 30° from the edge with a velocity of 3.0ms..
Determine the change in momentum of the ball.

14 An athlete catches a 270g volleyball by relaxing her
elbows and wrists and ‘giving’ with the ball. Just before
she catches the ball, its velocity is 5.60ms~! west. The
velocity of the ball then drops to zero in 1.00 second.
Calculate the average force exerted by the athlete on
the volleyball.

The following information relates to questions 15-17.

Jordy is playing softball and hits a ball with her softball
bat. The force versus time graph for this interaction is
shown below. The ball has a mass of 170g.

A
500 4 ------------

—
0.040
Time (s)



15

16

17

18

19

Determine the magnitude of the change in momentum
of the ball.

Determine the magnitude of the change in momentum
of the bat.

Determine the magnitude of the change in velocity of
the ball.

A speed skater with a mass of 80kg is travelling south
at 6.0ms~! when he collides with a second skater, who
has a mass of 70kg and is travelling at 3.0mslin the
same direction. After the collision the velocity of the
first skater is 4.0ms™! south.

a How fast does the second skater leave the collision?
b Is this an elastic or inelastic collision?

A gardener is using a 5kg mallet to hammer in a post.

The mallet is travelling downwards with a velocity of

5ms-! when it strikes the post. It rebounds with a

velocity of 1 ms=! upwards.

a What is the impulse on the mallet?

b If the collision took 0.1s, what is the magnitude and
direction of the force on the mallet?

20

21
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A 50g egg is dropped onto a hard floor. Immediately
before impact the egg is travelling at 5ms=!. Using the
concept of momentum, describe a mechanism that
could prevent the egg from breaking. An eggshell can
withstand a force of up to 2N.

After completing the activity on page 184, reflect on
the inquiry question: How is the motion of objects in a
simple system dependent on the interaction between
the objects?

In your response, discuss the concepts of momentum,
conservation of momentum and conservation of kinetic
energy.
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REVIEW QUESTIONS

Dynamics

Multiple choice

1 Two boats are tied together as shown in the diagram
below. Boat A has twice the mass of boat B.
Boat A exerts a force of F on boat B in the positive
direction.
boat A

s / 7
:_..-- 2m / \ m

What is the force on boat A from boat B?

boat B

+ﬁ newtons l\

(\
>

-05F
B +F

-F

—2F

2 A 60kg student stands on a set of digital scales in an
elevator, as shown in the diagram below.

\

\!

a In which one or more of the following situations will
the digital scales show a reading of 60kg?
A when the lift is travelling upwards at constant
velocity
B when the lift is travelling downwards at constant
velocity
C when the lift is stationary
D all of the above
b The lift travels upwards with an acceleration of a.
Taking upwards as the positive direction, which of
the following is the correct expression for the normal
force (Fy) on the student? m = mass of the student,
g = acceleration due to gravity.
A Fy=mg+ma
B fy=mg-ma
C Fy=ma-mg
D -fy=mg+ma
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3

4

The orbit of the Moon around Earth can be modelled as
circular motion in which the Moon can be considered to
orbit at a fixed height (radius) above the surface of Earth
and at a constant speed. Earth exerts a gravitational
force on the Moon that acts at right angles to the
velocity of the Moon as shown in the diagram belo.

force on Moon

Which of the following statements about the Moon is

correct?

A The Moon experiences no change in kinetic energy
during an orbit.

B The Moon experiences no change in gravitational
potential energy during an orbit.

C Earth’s gravitational force does no work on the Moon.

D All of the above statements are correct.

Two dynamics carts are being used in the physics
laboratory to study momentum. The two carts have the
same mass, mkg, and are travelling towards each other
with a speed vms!, as shown in the diagram.

v —> -~y
What is the magnitude of the total momentum of this
system?
A Okgms™
B mvkgms™

C 2mvkgms!
D —-2mvkgms™

Hooke's law says that the extension x of a spring, can
be related to the force F used to extend it by a spring
constant k by the formula F = k X. A single spring

has a spring constant of 10N m™, What mass must
be suspended from the spring to cause the spring to
stretch (extend) by 20cm? Choose the closest answer.
A 2g B 20g

C 200g D 2000g



6

10

Which one or more of the following are examples of
contact forces?

A a tennis ball hitting the net

B a person pushing a wheelbarrow

C a person sitting in a chair

D a magnet moving iron filings

Which one or more of the following correctly describes
reaction pairs from Newton’s third law?

A Fracquet on ball = _Fball on racquet

B normal force = — weight force

c Fcup on table = _Ftable on cup
D gravitational force a chair exerts on Earth =-mg

Which one or more of the following are Newton’s laws of

motion?

A For every action there is an equal and opposite
reaction.

B An object will maintain a constant velocity unless an
unbalanced external force acts on it.

C The acceleration of an object is directly proportional
to the net force on the object.

D Constant velocity means the net force is not equal to
zero.

Which of the following correctly describes what happens

if an object maintains a constant velocity?

A The direction of the velocity does not change.

B The magnitude of the velocity does not change.

C The speed of the object does not change.

D The magnitude and direction of the velocity does not
change.

The following diagram shows three separate forces
acting on an object. What is the net force?

N
10N W E
S
20N ISN
A 5N west
B 15N north

C 11.2N N26.6°W
D 364N N74.1°W

11

12

13

14

A car travels at a constant speed for 1km. In order to
overcome friction, its engine applies a force of 1800 N.
How much work is done by the engine?

A 1.8kJ

B 18MJ

Cc 1.8MJ

D 1.8GJ

In which of the following situations is work not being
done?

A A diver jumps into a pool.

B A person rock climbs up a cliff face.

C A motorbike accelerates around a corner

D A person pushes against a solid wall.

Samuel carries a basket up to the second floor of his
house. The basket weighs 17.5N and the flight of stairs
are 8.0m long and inclined 35° to the horizontal. What
is the work done by Samuel against gravity?

A 80.3J

B 114.7)

C 140.0J

D 46.8J

A person picks up a box to a height of 1.4 m. Which
graph correctly describes this situation?

A
1.4

1.0+

0.6

0.2+

T T T
1.0 2.0 3.0

Displacement (m)
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B 15 A car with a mass of 1000kg is travelling at 60 kmh™.

1.4+ What is its kinetic energy?

A 139kJ

B 180kJ
1.04+—m— C 139kJ

D 1800kJ

16 A tractor with a mass of 3000 kg is moving at 30kmh™.

0.6 What is the magnitude of its momentum?

A 9000kgms™!
B 2500kgms™*
0.2+ C 90000kgms™
D 25000kgms™

17 Two objects collide and stick together. Which equation

T T T can be used to describe the collision?
1.0 2.0 3.0

= Displacement (m) A mlgl * m2lz2 - m1\7j + MoV
— B myu; = myl, + msvy
= c C myi; + myl, = M3Vs
b4 D myl; = myV, + MyVs
18 A 3.8kg cat is running south at 2.8ms™! before changing
10 direction to 49ms™! north. What is the impulse of the
' cat during this change in direction?
é A 29.3kgms south
/: B 29.3kgms! north
— : 0.6 C 7.9kgms! south
] D 7.9kgms™! north
/-' 0.2 19 Two goats charge towards each other. One is 120kg and
! ' travelling at 2.1 ms™! east, and the other is 100kg and
- = : travelling at 3.5ms™! west. They collide and their horns
e ! lock them together. What is their velocity immediately
: T T T after the collision?
. 1.0 2.0 3.0 )
: Displacement (m) A 0.5ms™ west
/ B 0.5ms! east
; C 2.7ms! west
- b Lad D 2.7ms! east
20 An 80kg javelin thrower is running towards the throw
line at 7.6ms™* north. He throws the javelin and his
10— velocity immediately afterwards is 7.1 ms™ north. If
’ the mass of the javelin is 1000g, what is its velocity
immediately after being thrown?
A 7.1ms ! north
0.6 B 40.0ms™! north
C 47.6ms ! north
D 55.2ms™! north
0.2+
Short answer
21 A 100kg man is standing at rest on the ground. Use
| | | g =-98ms™>.
1.0 2.0 3.0 a Name the forces acting on the man, using the
Displacement (m) description Fyg to describe the force by A on B.

b Indicate the relative magnitudes of these forces.
c Describe the reaction forces that form action-reaction
pairs with the forces on the man.
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23

24

Three wooden blocks, each of weight 100N, are stacked

one above the other on a table. Block C is on the table,

block B is in the middle and block A is on top. Use the

symbols T for table, E for Earth, and A, B and C for the

blocks to answer the following questions.

a Name the forces acting on block A and give the
magnitude and direction of each.

b Name the forces acting on block B and give the
magnitude and direction of each.

c Likewise, name the forces acting on block C and give
the magnitude and direction of each.

d A child quickly knocks the bottom block C out from
under the other two. Calculate the net force on each
of blocks A and B, and describe their motion.

A 100kg trolley is bejng pushed up a rougp 30° incline
by a constant force F. The frictional force f; between the
incline and the trolley is 110N.

2=9.8ms?

/\

a Determine the magnitude of F that would move the
trolley up the incline at a constant velocity of 5.0ms™.

b Determine the magnitude of F that would accelerate
the trolley up the incline at 2.0ms™.

c Calculate the acceleration of the trolley when
F = 1000N.

Two masses, 10kg and 20kg, are attached via a steel cable

to a frictionless pulley, as shown in the following diagram.

] v
£=98ms>
A
ﬁT

A

10 ke Fr
la

20 kg

a Determine the acceleration for each mass.
b What is the magnitude of the tension in the cable?

25

26

27

28

An 800N force is applied as shown to a 20.0kg mass,
initially at rest on a horizontal surface. During its
subsequent motion the mass encounters a constant
frictional force of 100N while moving along a horizontal
distance of 10m.

F=800N

200 ke F=100N
——————————

a Determine the resultant horizontal force acting on the
20.0kg mass.

b Calculate the work done by the frictional force.

¢ Calculate the work done by the resultant horizontal
force.

d Determine the change in kinetic energy of the mass.

e What is the final speed of the mass?

The following diagram shows the trajectory of a 2.0kg
sphere recorded by a physics student during a practical
investigation. The sphere is projected from a height of
2.0 m above the ground with initial speed v=10ms™.
The maximum vertical height of the sphere is 5.0m.
(Ignore friction and assume § =-9.8Nkg™.)

C
@)
B
@) @)
A
o 5.0m o
30m
2.0m

a What is the total energy of the sphere just after it is
released at point A?

b What is the kinetic energy of the sphere at point B?

¢ What is the minimum speed of the sphere during its
flight?

d What is the total energy of the sphere at point C?

A child of mass 34 kg drops from a height of 3.50m

above the surface of a trampoline. When the child lands

on the trampoline, it stretches so that she is 50cm below

the initial level of the trampoline. (Use § = -9.8ms™).

a What is the spring constant of the trampoline?
(Use W =$k2%)

b At what point does the child have maximum kinetic
energy?

¢ Describe the energy transformations that occur as the
child drops, bounces and rebounds.

A swimmer propels herself through the water with her
arms. Explain her motion in terms of Newton’s laws.
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29

30

A spaceship with a mass of 20 tonnes (2.0 x 10%kg)

is launched from the surface of Earth, where g has a
value of 9.8Nkg™! downwards. It lands on the Moon,
where g is 1.6Nkg™ downwards. Assuming its mass
does not change during the voyage, what is the weight
of the spaceship when it is on Earth and when it is on
the Moon?

An 86 kg football player travelling at 7.5ms™ collides

with a goalpost.

a Calculate the impulse of the post on the player.

b Is momentum conserved in this collision? Explain.

¢ The player hits his head on the goalpost during the
collision. Using Newton'’s laws, explain why he might
suffer a concussion.

Extended response

31

32

210

The figure shows the velocity—time graph for a car of
mass 2000 kg. The engine of the car is providing a
constant driving force. During the 5.0s interval the car
encounters a constant frictional force of 400 N.

50

40

30

20 A

10 +

t(s)

a How much kinetic energy does the car have at
t = 5.0s? Give your answer in megajoules.

b What is the net force acting on the car?

¢ What force is provided by the car’s engine during the
5.0s interval?

d How much work is done on the car during the 5.0s
interval?

e Determine the power output of the car’s engine
during the 5.0s interval.

f How much heat energy is produced due to friction
during the 5.0s interval?

A 5.0kg trolley collides with a spring that is fixed
to a wall. During the collision the spring undergoes
a compression Ax, and the trolley is momentarily
brought to rest before bouncing back at 10ms™.

MODULE 2 | DYNAMICS
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The force—compression graph for the spring is shown
below. (In the following questions, ignore friction.)

spring

12.0
10.0
8.0
6.0
4.0

2.0+

10 20 30 40 50 60
Compression (cm)
a Calculate the elastic potential energy stored in the
spring when it has been compressed by 2.0cm.
b What is the elastic potential energy stored in the
spring when the trolley momentarily comes to rest?
c At what compression will the trolley come to rest?
Explain why the trolley starts moving again.
e What property of a spring accounts for the situation
described above?

Q.

A nickel cube of mass 200g is sliding across a horizontal
surface. One section of the surface is frictionless, while
the other is rough. The graph shows the kinetic energy K
of the cube versus distance, x, along the surface.

5.0
4.0
3.0
2.0

1.0+

1!0 250 3!0 4!0 5!0 6!0
x (cm)
a Which section of the surface is rough? Justify your
answer.
b Determine the speed of the cube during the first 2.0cm.
¢ How much kinetic energy is lost by the cube between
x=2.0cm and x=5.0cm?
d What has happened to the kinetic energy that has
been lost by the cube?
e Calculate the value of the average frictional force
acting on the cube as it travels over the rough surface.



34 A naval gun with mass 1.08 x 10%kg fires projectiles

of mass 5.5 x 102kg which leave the barrel at a speed

of 8.0 x 10°ms™L. The barrel of the gun is 20m long,

and it can be assumed that the propellant acts on the
projectile for the time that it is in the barrel.

a Calculate the magnitude of the average acceleration
of the projectile down the barrel.

b Using Newton’s second law, calculate the average
force exerted by the propellant as the projectile
travels down the barrel.

¢ Calculate the momentum of the projectile as it leaves
the barrel.

d Calculate the recoil velocity of the gun.

e Calculate the average force of the propellant from the
change in momentum of the projectile.

f Calculate the average work done by the propellant
on the projectile, and compare this with the kinetic
energy gained by the projectile.

35 A goods train wagon of mass 4.0 x 10*kg travelling at
3.0mstina shunting yard collides with a stationary
wagon of mass 1.5 x 10%*kg, and the two wagons move
on coupled together at a reduced speed.

a
b

Calculate the speed of the coupled wagons.

Calculate the total momentum and kinetic energy of
the wagons before and after the collision.

Is the collision elastic or inelastic? Explain your
answer.

After the collision, the two wagons continue travelling
at a constant speed for 2 minutes. Calculate the
distance travelled.

The wagons begin to decelerate at 1.5ms™. What is —~—
the net force acting on the connected wagons? —
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MODULE

3 Waves and thermodynamics

Wave motion involves the transfer of energy without the transfer of matter.
By exploring the behaviour of wave motion and examining the characteristics
of wavelength, frequency, period, velocity and amplitude, you can further your
understanding of the properties of waves.

This module also examines energy and its transfer, in the form of heat, from
one place to another. Thermodynamics is the study of the relationship between
energy, work, temperature and matter.

Outcomes

By the end of this module you will be able to:

» conduct investigations to collect valid and reliable primary and secondary data
and information PH11-3

« select and process appropriate qualitative and quantitative data and
information using a range of appropriate media PH11-4

* solve scientific problems using primary and secondary data, critical thinking
skills and scientific processes PH11-6

» communicate scientific understanding using suitable language and
terminology for a specific audience or purpose PH11-7

» explain and analyse waves and the transfer of energy by sound, light and
thermodynamic principles PH11-10

4 § / &
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CHAPTER

7 Wave properties

Have you ever watched ocean waves heading toward the shore? For many people
their first thought when encountering a topic called ‘waves’ is to picture waves
moving across the surface of an ocean. These waves are created by a disturbance,
such as the action of wind on water or a boat moving through the water.

Waves are, in fact, everywhere. Sound, light, radio waves, waves in the string of an
instrument, the wave of a hand, the Mexican wave at a stadium, and the recently
discovered gravitational waves are all waves or wave-like phenomena.

Content

NQURY QUESION

What are the properties of all waves and wave motion?
By the end of this chapter you will be able to:

» conduct a practical investigation involving the creation of mechanical waves in

a variety of situations in order to explain:

- the role of the medium in the propagation of mechanical waves

- the transfer of energy involved in the propagation of mechanical waves
(ACSPHO67, ACSPHO70)

+ conduct practical investigations to explain and analyse the differences
between:

- transverse and longitudinal waves (ACSPHO68)
- mechanical and electromagnetic waves (ACSPHO70, ACSPHO74)

« construct and/or interpret graphs of displacement as a function of time and as a
function of position of transverse and longitudinal waves, and relate the features of
those graphs to the following wave characteristics:

- velocity
- frequency

period
- wavelength
- wave number
- displacement and amplitude (ACSPHO069)

* solve problems and/or make predictions by modelling and applying the following
relationships to a variety of situations:

-v=1fi
R fz%
- kzzTn

Physics Stage 6 Syllabus © NSW Education Standards Authority
for and on behalf of the Crown in right of the State of NSW, 2017.
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Water waves

What are the properties of all waves and wave motion?

+ COLLECTTHIS...

.+ large glass container

L. open stand to hold up the container

E e water

¢ white sheet of paper

.+ strong light source

E e camera

»* ruler

.+ tuning forks of different frequencies

E e graph paper

+ DO THS...

. 1 Place the glass container on the stand Fill it with 1 cm of wate.
E 2 Shine a light from above and place the white paper underneat. Place the ruler on the paper running in the direction
'
'
'
'
'
'
'
'
'
'
'
'
'
'

of the longest side Check that you can see the shadows of waves on the paper by dipping your finger in the water and
watching the pape It might help to dim the lights in the rom.

3 Hit the tuning fork with a rubber mallet f there is no rubber malle, hit it on something that is not hard, such as the
sole of your shoe

4 Carefully put one prong in the waer. Do not touch the container with the tuning ork.

5 As you put the tuning fork in the wate, take a photo of the wave shadows on the pper.
6 Using the ruler to create a scal, measure the length of the waes.

7 Repeat with different frequency tuning fors, recording the frequency of each tuningfork.

RECORD HIS...

Describe the difference between the frequency and wavelength of a wave.
Present a graph of the wavelength against the inverse of the frequncy.
REFLECT ON HIS...

What are the properties of all waves and wave motion?
If the frequency of the tuning fork was unknon, how could the frequency be measured?
What does the gradient represent on the graph of the wavelength vs the inverse of the frequency?
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Throw a stone into a pool or lake, and you will see circular waves form and move
outwards from the source as ripples, as shown in Figure 7.1.1. Stretch a cord out
on a table and wriggle one end back and forth across the table surface and another
type of wave can be observed. Sound waves, water waves and waves in strings are all
examples of mechanical waves. Mechanical waves, as opposed to electromagnetic
waves, cannot transmit energy through a vacuum. Mechanical waves are the focus
of this chapter.

MECHANICAL WAVES

Any wave that needs a medium (such as water) in which to travel is called a
mechanical wave. Mechanical waves include sound waves and water waves. They
can move over very large distances, but the particles of the medium have only very
limited movement.

If you watch a floating object such as a piece of driftwood, a surfboard or a boat
as a smooth wave goes past, you will see that the object moves up and down but does
not move forward with the wave. The movement of the object on the water reveals
how the particles in the water move as the wave passes: they move up and down
from an average position.

Mechanical waves transfer energy from one place to another through a medium.
The particles of the matter move up and down or backwards and forwards about an
average position, and this movement transfers the energy from one place to another.
For example, energy is given to an ocean wave by the action of the wind far out at
sea. The energy is transported by waves to the shore but (except in a tsunami) most
of the ocean water itself does not travel onto the shore.

o A wave involves the transfer of energy without the net transfer of matter.

PULSES VERSUS PERIODIC WAVES

A single wave pulse can be formed by giving a slinky spring or rope a single up and
down motion, as shown in Figure 7.1.2a. As the hand pulls upwards, the adjacent
parts of the slinky will also feel an upward force and begin to move upward. The
source of the wave energy is the movement of the hand.

If the up and down motion is repeated, each successive section of the slinky will
move up and down, moving the wave forward along the slinky as shown in Figure
7.1.2b. Connections between each loop of the slinky cause the wave to travel away
from the source, carrying with it the energy from the source.

(b) g

continuous vibration at source

FIGURE 7.1.2 (a) A single wave pulse can be sent along a slinky by a single up and down motion.
(b) A continuous or periodic wave is created by a regular, repeated movement of the hand.

In a continuous wave like the one in Figure 7.1.2b, a continuous vibration of
the source causes the particles within the medium to oscillate about their average
position in a regular, repetitive (periodic) pattern. The source of a mechanical wave
is this repeated motion or vibration. The wave moves the energy from the vibration
through the medium.

FIGURE 7.1.1 The ripples in a pond indicate a
transfer of energy.

PHYSICSFILE

Light waves

Light is also a type of wave known
as an electromagnetic wave. Unlike
mechanical waves, electromagnetic
waves do not require a medium. This
is why light from the Sun is able to
reach Earth through the vacuum

of space.
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Water waves

Water waves are often classified

as transverse waves, but this is an
approximation. In practical situations,
transverse and longitudinal waves don't
always occur in isolation. The breaking
of waves on a beach produces complex
wave forms which are a combination

of transverse and longitudinal waves
(Figure 7.1.5).

If you looked carefully at a cork bobbing
about in gentle water waves, you would
notice that it does not move straight up
and down, but it has a more elliptical
motion. It moves up and down, and
very slightly forwards and backwards

as each wave passes. However, since
this second aspect of the motion is

so subtle, in most circumstances it is
adequate to treat water waves as if they
were purely transverse waves.

FIGURE 7.1.5 Waves breaking on a beach
produce complex wave forms that are a
combination of transverse and longitudinal
waves.

218

Transverse waves

When waves travel in water or through a rope, spring or string, the particles within
the medium vibrate up and down in a direction perpendicular, or transverse, to
the direction of motion of the wave energy, as shown in Figure 7.1.3. For this reason
such a wave is called a transverse wave. When the particles are displaced upwards
from the average position (also called the resting position), they reach a maximum
positive displacement at a point called a crest. Particles below the average position
fall to a maximum negative position at a point called a trough.

wave travels right
—»

I wave source

original
water
level

cork now lower

crest

\ trough

FIGURE 7.1.3 As the continuous water wave moves to the right, the transverse up and down displacement
of the particles can be monitored using a cork. The cork simply moves up and down as the wave passes.

Longitudinal waves

In alongitudinal mechanical wave, the vibration of the particles within the medium
are in the same direction in which the wave is moving. You can demonstrate this type
of wave with a slinky by moving your hand backwards and forwards in a line parallel
to the length of the slinky, as shown in Figure 7.1.4.

rarefactions

compressions
movement of hand
backwards and forwards

wave movement particle movement

FIGURE 7.1.4 When the direction of the vibrations of the medium and the direction of travel of the
wave energy are parallel, a longitudinal wave is created. This can be demonstrated with a slinky.

As you move your hand, a series of compressed and expanded areas form along
the slinky. A compression is an area where the coils of the slinky come together.
Expansions are regions where the coils are spread apart. An area of expansion is
called a rarefaction. The compressions and rarefactions in a longitudinal wave
correspond to the crests and troughs of a transverse wave.

MODULE 3 | WAVES AND THERMODYNAMICS



7.1 Review

Vibrating objects transfer energy through waves,
travelling outwards from the source. Waves on
water, on a string and sound waves in air are
examples of mechanical waves.

A wave may be a single pulse or it may be
continuous or periodic (successive crests and
troughs or compressions and rarefactions).

A wave only transfers energy from one point to
another. There is no net transfer of matter or
material.

KEY QUESTIONS

1 Describe the motion of particles in a medium as a

2

mechanical wave passes through the medium.

Which of the following statements are true and which

are false? For the false statements, rewrite them so

they become true.

a Longitudinal waves occur when particles of the
medium vibrate in the opposite direction to the
direction in which the wave is travelling.

b Transverse waves are created when the direction
of vibration of the particles is at right angles to the
direction in which the wave is travelling.

¢ A longitudinal wave is able to travel through air.

d The vibrating string of a guitar is an example of a
transverse wave.

The diagram below represents a slinky spring held at

point A by a student.

Draw an image of the pulse a short time after that
shown in the diagram and determine the motion
of point B. Is point B moving upwards, moving
downwards, or stationary?

Mechanical waves can be either transverse or
longitudinal.

In a transverse wave, the oscillations are
perpendicular to the direction in which the wave
energy is travelling. A wave in a string is an
example of a transverse wave.

In a longitudinal wave, the oscillations are parallel
to (along) the direction the wave energy is
travelling. Sound is an example of a longitudinal
wave.

The diagram below shows dots representing the
average displacement of air particles at one moment
in time as a sound wave travels to the right.

AB

compression rarefaction

Describe how particles A and B have moved from their
equally spaced, undisturbed positions to form the
compression.

A sound wave is emitted from a speaker and heard by

Lee who is 50m from the speaker. He made several

statements once he heard the sound. Which one or

more of the following statements made by Lee would

be correct? Explain your answer.

A Hearing a sound wave tells me that air particles
have travelled from the speaker to me.

B Air particles carried energy with them as they
travelled from the speaker to me.

C Energy has been transferred from the speaker to
me.

D Energy has been transferred from the speaker to
me by the oscillation of air particles.
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FIGURE 7.2.1 Waves can have different
wavelengths, amplitudes, frequencies, periods
and velocities, which can all be represented on
a graph.

7.2 Measuring mechanical waves

The features of a mechanical wave can be represented using a graph. In this
section you will explore how the displacement of particles within the wave can be
represented using graphs. From these graphs several key features of a wave can be
identified:
e amplitude
¢ wavelength
e frequency
e period
e speed.

Waves of different amplitudes and wavelengths can be seen in Figure 7.2.1.

DISPLACEMENT-DISTANCE GRAPHS

The displacement—distance graph in Figure 7.2.2 shows the displacement of all
particles along the length of a transverse wave at a particular point in time.

one wavelength, 4

] amplitude, A

Distance from source

FIGURE 7.2.2 A sine wave representing the particle displacements along a wave.

Look back at Figure 7.1.2b on page 217, showing a continuous wave in a slinky.
This ‘snapshot’ in time shows the particles as they move up and down sinusoidally
about a central rest position. As a wave passes a given point, the particle at that point
will go through a complete cycle before returning to its starting point. The wave has
the shape of a sine or cosine function, which you will recognise from mathematics.
A displacement—distance graph shows the position (displacement) of the particles
at any moment in time along the slinky about a central position.

From a displacement—distance graph, the amplitude and wavelength of a wave
are easily recognisable.
¢ The amplitude of a wave is the maximum displacement of a particle from the

average or rest position. That is, the amplitude is the distance from the middle

of a wave to the top of a crest or to the bottom of a trough. The total distance a

particle will move through in one cycle is twice the amplitude.
¢ Two particles on a wave are said to be in phase if they have the same

displacements from the average position and are moving in the same transverse
direction. The wavelength of a wave is the distance between any two successive

points in phase (eg points A and B, or X andY, or P and R in Fiue .2.2).

It is denoted by the Greek letter A (lambda), and is measured in metres.
¢ The frequency, f, is the number of complete cycles that pass a given point per

second and is measured in hertz (Hz).

By drawing a series of displacement—distance graphs at various times, you can
see the motion of the wave. By comparing the changes in these graphs, the speed
and direction of the travelling wave can be found, as well as the direction of motion
of the vibrating particles.
¢ The wavenumber, %, is equivalent to the number of waves occurring over a

specified distance. It is calculated with the following formula.
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where: k is the wavenumber (in m_l)
A is the wavelength of th