
100101001101001101101111001010001100101100

HSC Course

h
SSooffttwwaarree

DDeessiiggnn aanndd
DDeevveellooppmmeenntt

Allan Fowler

H e i n e m a n n

9

ISBN 0-86462-513-8

780864 625137

Heinemann Software Design and Development: HSC Course

is the second in a series written to provide comprehensive

coverage of the new Stage 6 Software Design and

Development syllabus in NSW. Experienced author, Allan

Fowler, and a team of leading secondary and tertiary

contributors, have combined their expertise in this

systematic guide for students. The book covers the main

aspects of software design and development. This includes

analysing the problem, planning, creating, testing and

documenting the solution as well as the associated social

and ethical considerations. It uses a wide range of

computer languages so that students learn to use the most

appropriate to develop each solution.

Key features

• matched exactly to the new Stage 6 HSC Course

• list of outcomes at beginning of each chapter

• end-of-chapter summary to reinforce learning

• chapter review exercises

• team exercises where appropriate

• skills development through graded activities

• questions to stimulate discussion on issues

• extensive glossary

• detailed index

• online support at hi.com.au/softwaredesign

About the author

Allan Fowler is an experienced Computing Studies teacher

with particular expertise in programming languages and

program development. He has many years’ experience in

teaching Computing Studies and is the author of the highly

successful, Heinemann Senior Computing Studies 3 Unit

HSC Course and Heinemann Software Design and

Development: Preliminary Course.

Also available from Heinemann

Heinemann Software Design and

Development: Preliminary Course

ISBN 0 86462 438 7
H

einem
ann Softw

are D
esign and D

evelopm
ent:H

SC
 C

ourse
A

llan
 Fow

ler

You can visit the Heinemann World

Wide Web site at hi.com.au or send

email to info@hi.com.au

100101001101001101101111001010001100101100010

Heinemann
A division of Reed International Books Australia Pty Ltd
22 Salmon Street, Port Melbourne, Victoria 3207
World Wide Web hi.com.au
Email info@hi.com.au

Offices in Sydney, Brisbane, Adelaide and Perth.
Associated companies, branches and representatives throughout the world.
© Allan Fowler 2000
First published 2000
2003 2002 2001 2000
10 9 8 7 6 5 4 3 2 1 0

Copying for educational purposes
The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10%
of this book, whichever is the greater, to be copied by any educational institution for its
educational purposes provided that that educational institution (or the body that
administers it) has given a remuneration notice to Copyright Agency Limited (CAL)
under the Act.

For details of the CAL licence for educational institutions contact CAL, Level 19,
157 Liverpool Street, Sydney, NSW, 2000, tel (02) 9394 7600, fax (02) 9394 7601,
email info@copyright.com.au.

Copying for other purposes
Except as permitted under the Act, for example any fair dealing for the purposes of
study, research, criticism or review, no part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means without prior written
permission. All enquiries should be made to the publisher at the address above.

Publisher: Rosie Adams
Editor: Felicity Shea
Designer: Gerry Theoharis
Design development: Giulia De Vincentis
Cover designer: Relish Design
Illustrations: Idczak Enterprises
Photograph researcher: Gwenda McGough

Typeset in 10/11.5 Berling by Idczak Enterprises
Film supplied by Typescan, Adelaide
Printed in Hong Kong by H&Y Printing

National Library of Australia
cataloguing-in-publication data:

Fowler, Allan, 1949–
Heinemann software design and development:
HSC course.
Includes index.
ISBN 0 86462 513 8 (HSC course).
1. Computer science. 2. Computer software—Development.
I. Title

005.3

Disclaimer
All the Internet addresses (URLs) given in this book were valid at the time of
printing. However, due to the dynamic nature of the Internet, some addresses may
have changed, or sites may have ceased to exist since publication. While the authors
and publisher regret any inconvenience this may cause readers, no responsibility
for any such changes can be accepted by either the authors or the publisher.

Introduction v
Heinemann Software Design and Development and

the HSC Course Outcomes vi

1 Social and ethical issues 1
Preliminary review 3
Rights and responsibilities of software developers 3
Software piracy and copyright 7
The software market 10
Significant social and ethical issues 12
Review exercises 15
Chapter summary 16

2 Application of software development approaches 17
Preliminary review 19
Software development approaches 21
Methods of implementation 30
Current trends in software development 33
Use of CASE tools and their application in

large systems development 36
Review exercises 41
Chapter summary 42

3 Defining and understanding the problem 43
Defining the problem 45
Design specifications 51
Modelling 57
Communication issues 69
Review exercises 71
Chapter summary 72

4 Planning and design of software solutions 73
Developing a problem-solving strategy 75
Design concepts 80
Modules and functions 87
Arrays: basic concepts 94
Advanced sorting and searching techniques 100
Binary search 100
String processing 108
Records and collections 114
Review exercises 124
Chapter summary 125

5 Implementation of software solutions 127
Interface design in software solutions 130
Language syntax for software solutions 133
The role of the CPU in the operation of software 142

Contents

iviv

Translation methods in software solutions 151
Program development techniques in software solutions 162
Documentation of a software solution 173
Hardware environment to enable implementation of

the software solution 184
Emerging technologies 185
Review exercises 188
Chapter summary 189

6 Testing and evaluation of software solutions 191
Testing the software solution 193
Reporting on the testing process 207
Review exercises 211
Chapter summary 212

7 Maintenance of software solutions 213
Modification of code to meet changed requirements 215
Documentation of changes 220
Review exercises 223
Chapter summary 224

8 Developing a solution package 225
Developing a solution package 227
Case study 227
Defining the problem and its solution 229
Understanding the problem 233
Planning and design 237
Systems implementation 243
Review exercises 247
Chapter summary 248

9 Evolution of programming languages 249
Introduction 251
Generations of programming languages 251
Characteristics of each language type 253
Paradigm specific concepts 261
Inheritance 263
Description and history of languages 265
Logic paradigm 268
Expert system shells 270
Functional programming 273
Review exercises 276
Chapter summary 277

10 The software developer’s view of the hardware 279
Representation of computer data 281
Data representation—coding methods 286
Integer binary arithmetic 289
Electronic circuits to perform standard software operations 296
Programming of hardware devices 304
Review exercises 311
Chapter summary 312

Appendix: ASCII code 313

Glossary 316

Index 320

Acknowledgments 313

v

Introduction
This book has been written to support students and teachers in implementing the NSW
Software Design and Development HSC Course. The course has been introduced by the Board
of Studies to give students who are interested in the field of software design and development
an opportunity to study the subject and create appropriate software solutions.

The development of software involves careful planning, clear documentation and an
appreciation of the effects that the product may have on members of society. To this end, the
book covers aspects of development, including analysing the problem, planning a solution,
creating and testing the solution, documenting the solution as well as the associated social and
ethical considerations.

Since different problems will need different approaches, a number of methods of software
development are examined. These vary from the formal, structured approach through to the
informal approaches such as end-user development. The nature of the problem to be solved
will also dictate which computer language is most suitable to develop the solution. To cater for
this need, examples have been drawn from a wide range of languages.

Each chapter begins with a statement of the chapter outcomes, student knowledge and
student experiences. This allows both the teacher and the student to ensure that the syllabus
content has been met. The chapters end with a summary, a set of review exercises and a team
project.

Teamwork is an important part of software development as many projects are too large and
complex for a single individual to tackle. The team projects have been designed to enable
students to experience working members of a team. Each of the team projects covers one or
more of the aspects of software design and development that have been covered in the chapter.
Thus, the projects will also give students the opportunity to review and discuss the material
presented in the chapter.

Additional support for teachers and students using Heinemann Software Design and Develop-
ment is available on the Internet.

Visit http:/www.hi.com.au/softwaredesign.

About the authors
Allan Fowler has taught Computing Studies to senior students at Gosford High School since
the beginning of 1978. The first courses were school-based programming courses as Other
Approved Studies. He then taught the 2 Unit course, first examined in 1990, and was a partici-
pant in the support-material writing workshop held in Port Macquarie that year. He has
contributed computing related articles to professional journals in both computing and
mathematics and has given many workshops and presentations to teachers, parents and
students in computing.

Allan wrote the very successful Heinemann Senior Computing Studies 3 Unit (Additional)
HSC and contributed to the Heinemann Senior Computing Studies 2/3 Unit Common HSC
Course. He wrote the solution manuals for both texts. . He is the author of the companion
volume to this book—Heinemann Software Design and Development: Preliminary Course.

Dieter Opfer is a Computer Co-ordinator and Network Administrator at Sefton High
School, and is also the Vice-President of the NSW Computer Education Group. He is currently
undertaking a PhD investigating the use of the Internet in Distance Education.

Errol Chopping is a Lecturer in Computer Science at Charles Sturt University—Mitchell
Campus, specialising in Software Development.

Paul Jenner is Head Teacher at Kanahooka High School. He has been active in the develop-
ment of computer education for many years, having held several positions as a state and
regional Computer and Technology Education Consultant.

Rick Walker is Head of Information Technology at Hunter Valley Grammar School and has
taught Computer Studies for 15 years.

vivi

Acknowledgments
I am indebted to my wife Kaye and my children Katharine and Stephanie for their patience
and understanding throughout the writing of this text. I also thank my parents Hilda and Roy
for the encouragement they have given me throughout my life.

Comments and suggestions made by Cathy Webber, Anthony Connolly and Dieter Opfer
have significantly assisted me in the task of producing this text. I would particularly like to
thank the authors who contributed to this text, and Glenda Horner for her criticisms and
suggestions for improvements to the early drafts.

Finally I would like to thank Rosie Adams and the team at Heinemann for the very
professional help and encouragement that they have willingly given.
Allan Fowler

Heinemann Software Design and Development and the
HSC Course Outcomes
The grid shows how the chapters in Heinemann Software Design and Development: HSC Course
link with the HSC Course Outcomes.

HSC Course Outcomes Chapter(s)
A student needs to:

H 1.1 explains the interrelationship between hardware and software 5, 8, 9, 10

H 1.2 differentiates between various methods used to construct software
solutions 2, 3, 5, 7, 8, 9

H 1.3 describes how the major components of a computer system store and
manipulate data 5, 7, 8, 10

H 2.1 describes the historical developments of different language types 9

H 2.2 explains the relationship between emerging technologies and
software development 1, 2, 5, 9

H 3.1 identifies and evaluates legal, social and ethical issues in a number 1, 2, 3, 5, 6,
of contexts 7, 8, 9, 10

H 3.2 constructs software solutions that address legal, social and ethical issues 3, 5, 6, 7, 8, 10

H 4.1 identifies needs to which software solutions are appropriate 3, 4, 8, 9, 10

H 4.2 applies appropriate development methods to solve software problems 2, 3, 4, 5, 6, 7, 8, 9

H 4.3 applies a modular approach to implement well-structured software
solutions and evaluates their effectiveness 3, 4, 5, 6, 7, 8

H 5.1 applies project management techniques to maximise the productivity
of the software development 2, 3, 5, 6, 7, 8

H 5.2 creates and justifies the need for the various types of documentation
required for a software solution 2, 3, 5, 6, 7, 8

H 5.3 selects and applies appropriate software to facilitate the design and
development of software solutions 2, 3, 5, 6, 7, 8

H 6.1 assesses the relationship between the roles of people involved in the
software development cycle 2, 3, 6, 7, 8

H 6.2 communicates the processes involved in a software solution to an
inexperienced user 2, 3, 5, 6, 7, 8

H 6.3 uses a collaborative approach during the software development cycle 3, 5, 6, 7, 8

H 6.4 develops effective user interfaces, in consultation with appropriate
people 3, 6, 7, 8

11Social and ethical issues

cchhaapptteerr

Rights and responsibilities of software developers
• authorship
• reliability
• quality
• response to problems
• code of conduct
• viruses
Software piracy and copyright
• concepts associated with piracy and copyright, including:

– intellectual property
– plagiarism
– shareware
– public domain
– ownership versus licensing
– copyright laws
– reverse/backwards engineering

Outcomes
A student:
• explains the relationship between emerging technologies and

software development (H 2.2)
• identifies and evaluates legal, social and ethical issues in a

number of contexts (H 3.1)

Students learn about:

2 Heinemann Software Design and Development: HSC Course

– decompilation
– licence conditions
– network use

• various national perspectives to software piracy and copyright laws
• the relationship between copyright laws and software licence agreements
The software market
• maintaining market position
• the effect on the marketplace
Significant social and ethical issues
• national and international legal action resulting from software development
• public issues, including:

– the year 2000 problem
– computer viruses
– reliance on software

• identify sound ergonomic practices when using computers

• identify the impact on consumers of inappropriately developed software

• interpret copyright agreements and develop personal practices that reflect current laws

• acknowledge all sources in recognition of the intellectual contribution of authors

• debate current issues relevant to software development

Students learn to:

3Social and ethical issues

Preliminary review
In the Preliminary Course it was noted that the results of a creative process could be
classified as intellectual property. Copyright allows the creator of such items to be
acknowledged and compensated for the time and effort involved. Software is the result of
such a creative process and is therefore subject to the laws of copyright.

The acquisition of software, whether it is purchased, freeware or custom developed,
brings with it a responsibility to ensure that users adhere to the conditions of any licence.
Licences generally give the purchaser the right to use the software, but they do not give the
purchaser ownership of the code. Since the purchaser does not own the code it may not be
used in any way other than that specified in the licence. This means that the code cannot
be modified or backward engineered.

A software licence is a legal document. By accepting the conditions of a licence, an
individual or organisation has entered into a contract. The licence contract specifies the
number of computers that can be installed with the software as well as the way in which
backups can be managed. The licence agreement is binding to the same extent whether the
software has been acquired commercially, is shareware or is in the public domain (freeware).

Rights and responsibilities of software
developers
Development of software solutions carries with it a number of rights and responsibilities.
Software developers have the right to be acknowledged as the author of an application in
the same way that a composer has the right to acknowledgment for a tune. Software authors
also have responsibilities towards the users of their software. These responsibilities include:
• claiming authorship only of what they have written themselves
• creating reliable software
• creating quality software
• responding to problems
• following an ethical code of conduct
• preventing the spread of viruses.

Authorship
As noted, the creative process brings with it the right of an author to be acknowledged for
a work. The developer has two responsibilities: the first is to protect his or her interests in

Prevention of
spread of viruses

Reliability Quality

Code of
Conduct

Response to
problems

Responsibilities

Figure 1.1 A software developer has a number
of responsibilities.

the system being developed; the second is to
protect the rights of other authors whose
modules are incorporated into the final solution.

When a software solution is created, the
developer needs to ensure that the sources of
any previously written code are acknowledged.
It is the developer’s responsibility to clear the
use of that code with the copyright holder. If for
any reason this clearance cannot take place, the
module cannot be used and one must be
developed from the start. Even then, care needs
to be taken in the development process to
ensure that the module developed is not
plagiarised from the one for which permission
has not been given. At times this is very difficult
and many legal battles have been fought over
the similarity of software titles.

4 Heinemann Software Design and Development: HSC Course

Figure 1.2 The Windows operating system (left) and the Macintosh operating system (right) look
similar in many respects. This has been the cause of a long court battle in the United States.

Reliability
A software developer has a responsibility to make sure that the program being developed is
able to perform its task effectively and reliably.

Reliability refers to the ability of the software to perform without failure. Software
failure occurs when the software performs in an unpredictable way.

Figure 1.3 A single failure of software may have a
disastrous effect.

A software failure may occur as a result of a
fault in the software. However, faults are not the
only possible source of failure. Anything that
causes an unpredictable result in the software
contributes to failure. For example, the intro-
duction of a new operating system or hardware
driver may cause a conflict with a program.

In some cases software failure in itself may not
greatly affect the reliability of a program.
However, in other cases a failure will have a great
effect on the reliability. It cannot safely be stated
that if a failure occurs in a rare set of
circumstances it will not greatly affect the
reliability of the software. The rare failure may
have a disastrous effect on the system, whereas a
frequent failure may be predictable, have a
minimal effect on the system and produce a result
that is easily corrected. For example, a fault in a
program may, when a file reaches a certain size,
overwrite other files on a hard drive. Just one

occurrence of this fault is sufficient to cause concern, as it produces a disastrous result. If a
program sorted lists in the wrong way (for example, if a descending sort was requested and
it sorted in an ascending order and vice versa), this fault could be easily overcome.

The issue of reliability is a complex one. The software author can improve the reliability
of the coded solution by including code to thoroughly check input data and operational
aspects of the code, such as the size of files produced. However, this approach does have a
couple of disadvantages as it will decrease the execution speed of the program and will also
increase the cost of development. One of the ways in which software developers can
increase the reliability of their products is by keeping to a well-defined and standard process
for software development.

5Social and ethical issues

Quality
The quality of software is measured by a number of criteria. These criteria include factors
such as reliability, ease of use, consistency of the user interface, documentation and the
adherence to software standards. Since software is a product, the principles of quality
assurance (QA) are often applied to ensure the quality of the product.

The importance of reliability and how it may be increased has already been discussed.
Ease of use is a general term used to describe the comfort of the user with the software.

Easy-to-use software will exhibit a consistent interface that is intuitive to the user. The
interface will often mimic a non-computer system that is familiar to the user. A program
that is easy to use is, by implication, easy to learn.

A consistent user interface is predictable from screen to screen. As discussed in the
Preliminary Course, consistency involves the placement of similar items in the same place
from screen to screen. Consistency also involves the use of the same screen element in each
of the screens to represent the same task. Using the same typeface for the same or similar
menu items also contributes to consistent screen design.

The quality of the documentation produced during the development cycle contributes to
the overall quality of the product. It is important that both the process documentation
created as part of the development cycle and the product documentation created for the
end user are of high quality. Process documentation has to be used during any maintenance
of the software and should therefore be written to a predetermined standard. Product
documentation is often the only source of information for a user and so it must be written
in a manner that encourages the user to refer to it.

Software standards have been created by many organisations. The standards cover
aspects such as the form of documentation, algorithm description, coding and the user
interface. By using a set of predetermined standards, it is easier for a developer to produce
modules that fit in with the overall product. The strict adherence to standards will also help
in the development stage as it assists new members of a team to quickly understand their
role in the development process.

Figure 1.4 An easy-to-use
program will have an intuitive
interface.

Response to problems
In all but the simplest of programs a developer will find that all does not proceed simply.
Programmers have a continual battle with problems of varying sizes. For many programmers
this is the most exciting aspect of the job. However, whether excited or frustrated, the
programmer’s task is to overcome the problem. If the program is to succeed, the problem
must be overcome in an orderly fashion.

6 Heinemann Software Design and Development: HSC Course

It is tempting to identify the solution and proceed to solve it without
regard to the formal steps of problem solving. Taking this path can be
dangerous or, at least, inefficient. By proper documentation of the solution the
programmer can analyse what happened and either avoid the problem or
anticipate a similar problem and manage the solution in the future.The formal
steps are virtually the same as the steps taken in the development of software:
• Identify the development problem.
• Understand the development problem.
• Design and test a solution to the development problem.
• Implement the solution to the development problem.

Code of conduct
As already seen, there are a number of ethical and social issues that confront
a software developer. It is the responsibility of the developer to ensure that all
these issues are addressed throughout the development process. Some of the
areas, such as the respect for copyright and the abidance to software licences,
are legal requirements, whereas others rely on the ethics of the developer.
Each software author should uphold the written laws and rules as well as
exhibiting a high standard of ethics.

The ethical behaviour required of a developer should at least cover the
following areas:
• acknowledgment of the contributions made by all those who have assisted

in the development process
• clearance to use copyrighted modules or those written by others
• privacy of personal details, security of data and the maintenance of busi-

ness secrets
• the use of appropriate prompts within the program so that it is non-

threatening, non-racial and inclusive.

Identify the
problem

Begin

Understand
the problem

Design and test
a solution

End

Implement the
solution

Figure 1.5 When
development problems
occur, the normal
problem-solving
process is used.

In many software development agencies, a company code of conduct is maintained.
Where this is the case, the employee may be held accountable for any breaches of the code.

Viruses
Viruses pose a serious threat to many computer systems. They can be introduced by a
number of different means. The software developer has a great responsibility to ensure that

Figure 1.6 By not using pirated
software, developers respect the
rights of others as well as
preventing the spread of viruses.

viruses are not spread by means of the development
process. This means that the developer needs to have
the capability to detect and eradicate the most recent
viruses as well as procedures to ensure that they do not
receive or transmit them.

Precautions that should be taken to avoid the
problem of viruses include:
• scanning of any removable media for viruses before

use (removable media include floppy disks, disk cart-
ridges and storage devices such as external hard
disks.)

• careful vetting of email so that malicious emails are
identified and removed before they cause problems

• not mixing home and work applications on the same
computer (for example not using work computers
for game playing or Internet surfing)

• keeping up to date with the latest viruses by up-
dating the definitions for the virus software regularly.

7Social and ethical issues

Software piracy and copyright
As discussed in the Preliminary Course, the author of a software title has the right to be
acknowledged and rewarded for the thought and effort expended during its creation. The
laws of copyright are designed to protect that right. The illegal copying of software, com-
monly known as piracy, violates these laws and also deprives the copyright owners of their
financial reward.

Concepts associated with piracy and copyright
A number of terms are used when discussing the twin issues of copyright and piracy.

Intellectual property
Intellectual property is a work resulting from some creative activity. The creative process
automatically assigns ownership to the creator. If the object is not presented in a physical
form, for example a tune or a poem, its ownership is harder to establish. The concept of
intellectual property is designed to give a creator ownership of the result of that creative
process. The term ‘intellectual property’ really states that the created object is the result of
a thought (or intellectual) process.

Plagiarism
Plagiarism refers to the process of claiming authorship of an intellectual property owned by
another person. For example, if you download an article from the Internet, hand it in as an
assignment and claim that you have written it, you would be guilty of plagiarism. An article
is considered to be plagiarised if it is substantially the same as one that already exists.

Shareware
Shareware is software that is distributed free of charge, but after a trial period of use the
user is expected to make a payment to the author. The reasoning behind shareware is that
it allows small developers to create a software title and distribute it without the need to use

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

A software has a right to be acknowledged as the of an
application only if it has been by . This right of the author is

by the laws of . Software is an example of an
property in the same way that a is. property is the result of a

process.

2 List and briefly describe the rights and responsibilities of a software developer.

3 Create a checklist of criteria that you think are important in quality software. Save this
checklist for use when you develop your project.

4 Discuss the ethics of the student involved in the following fictitious case.

A student researches an assignment on the Internet and happens to find a school site
where another student has posted an essay that exactly answers the question. The student
downloads the essay and passes it off as an original work.

5 Investigate a number of standards that may apply to the documentation of a software
application. Create a document that outlines the standards that you will follow when you
write the documentation for your software project.

Exercise 1.1

ATTORNEY-
GENERAL’S
DEPARTMENT

Copyright Act 1968
Act No. 63 of 1968 as amended

Consolidated as in force on 8 October 1999
(includes amendments up to Act No. 105 of 1999)

This Act has uncommenced amendments
For uncommenced amendments, see the endnotes

Prepared by the Office of Legislative Drafting,
Attorney-General’s Department, Canberra

8 Heinemann Software Design and Development: HSC Course

commercial distribution channels such as stores. By creating a direct link between the
author and the user, the cost of shareware is usually a lot less than that of an equivalent com-
mercial title. Shareware can usually be copied and distributed by anyone as long as all the
electronic documentation and copyright notices are also distributed.

Public domain
Public domain software is also freely distributable. However, unlike shareware, the author is
not paid for the right of an individual to use the software. Even though there is no payment
for public domain software, the copyright still remains with the author. Some public domain
software is freely distributable for individual use, but may need to be licensed in the usual
way if used in a commercial situation. The licence agreement that accompanies a public
domain title will list the conditions under which the licence is granted.

Ownership versus licensing
A common misconception among computer users is that when they purchase software they
own it. This is not the case: a licence accompanies software. The terms of the licence grant
the purchaser the right to use the software but not ownership of it. The only time that
ownership of software will be purchased is when customised software is written for an
organisation. In this case the purchaser then owns the software. Even in the case of
customised software, there may be parts of the application that are licensed from an
external source. For example, a database may be created from an application program such
as Access or Filemaker. In this case the application program will be licensed in the normal
way, with the file or files created for the solution being owned by the purchaser.

Figure 1.7 Copyright in Australia is governed by the
Copyright Act 1968.

Copyright laws
Copyright laws protect the rights of an
author. The Copyright Act 1968 (Cwlth) (Act
No. 63 of 1968 as amended) governs
copyright in Australia. The Act has been
amended on a number of occasions to include
new technologies such as computer programs.
The Act defines what is subject to copyright,
the length of time that copyright in a work
exists, what is and is not an infringement of
copyright, the duties and responsibilities of
the Copyright Tribunal and the penalties that
can be imposed for breaches of copyright.
The full text of the Copyright Law is
available to download from the Internet (at
the time of writing, the Act was available
from the federal parliament by using the
search site at http://scaleplus.law.gov.au/
home/ mainpage.html). As copyright is a very
complex field, the law is a very large docu-
ment. A majority of other countries also have
strong copyright laws. In most cases, the
granting of a copyright in one country means
that the copyright automatically applies in
other countries.

9Social and ethical issues

Reverse/backward engineering
The process of reverse (or backward) engineering involves examining an existing system to
understand its components and using that understanding to create a similar system. For
example, if one car company develops a new type of engine, a second company may buy
one or more cars containing the new engine and use reverse engineering to develop their
own version.

Decompilation
Decompilation is the process of translating executable machine code into assembler
language so that the structure of the program can be more easily understood. Decompila-
tion may be useful when the original coding of a solution has been lost; however, its use to
reverse engineer a copyrighted application is definitely a breach of both the licence agree-
ment and the laws of copyright.

Licence conditions
The conditions of a software licence spell out exactly how the software may be used by the
licence purchaser. The licence will state the number of computers that can have the
software installed on them, what is meant by terms such as ‘backup copies’ and, in the case
of shareware and public domain software, the rules for free distribution. The licence is a
legally binding contract and it is up to the purchaser to ensure that this contract is obeyed.

Network use
The licence will state how the software may be used on a network. The term network refers
to a number of connected computers. A network licence may be purchased for a particular
number of users or it may apply to a site. Licensing of network software also includes the
network and computer operating systems. It is up to the network administrators to ensure
that all network software is properly licensed. When updating network software, again
administrators must ensure that sufficient licences have been purchased to cover the use of
the software.

Software piracy and copyright laws
The Copyright Act 1968 is a federal law that grants creators their rights at a national level.
This ensures that unscrupulous people do not exploit differences in state copyright
legislation. The federal legislation also makes provision for an Australian copyright to be
recognised internationally.The legislation also describes the composition and function of the
Copyright Tribunal.

As well as protecting the individual rights of a creator, the Copyright Act also helps to
ensure that the publishing industries within Australia are financially viable. Development of
creative works, including computer software, is an expensive process, and unless appropriate
rewards are available, investment in this process will not be made. The long-term effect of
this on the Australian economy would be disastrous, as those Australians with the creative
skills and temperament would leave the country, forcing us to import what we previously
made ourselves. This effect can already be seen in areas such as the clothing industry.

Software theft, commonly known as piracy, is the most prevalent form of copyright
breach. Unlike the products of other creative processes, computer software is easily copied
and distributed. Many people don’t see software piracy as theft since software is not a visible
article such as a book, a painting or sheet music. However, the penalties imposed on soft-
ware pirates are very heavy, especially for the advertising and/or sale of infringing software.
The main effect that piracy has is on the further development of software, since it deprives
the legitimate copyright owners of money for further development. Piracy also causes an
increase in the price of legitimate software, because of the need to spread the cost of
development over a smaller number of purchasers.

10 Heinemann Software Design and Development: HSC Course

Relationship between copyright laws and software licence agreements
Installation of a computer program will generally be accompanied by an agreement to abide
by the terms of the software licence. The licence is a contract between the licence purchaser
and the software developer to use the software in the manner specified in the licence. Since
the licence is a legal document, a law (the Copyright Act) must back it up. The Business
Software Association of Australia (BSAA) has been set up by software developers and
distributors to help businesses comply with licensing and the copyright laws. The BSAA has
a three-fold purpose: to educate management and employees, to assist with software
management, and to help in the prosecution of those who breach their licence agreements.
A more detailed description of the BSAA and its function can be found on the Internet.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

A software describes the placed on a user. When a licence is
bought it allows the to use the software, but the remains the

of the developer. The licence will state the of different
that can have the installed on them as well as the rules for

keeping a copy.

2 Examine a number of software licences and list their common features. Using the features
you have discovered, write a licence for a program you have written.

3 Explain the differences between reverse engineering and decompilation. Explain why most
user licences forbid both decompilation and reverse engineering of the licensed software.

4 A small business buys a single-user copy of a word-processor program. A short time later,
the business obtains a second computer. The owner decides to install the word processor
on the second computer. Discuss the legal and ethical aspects of the owner’s actions. What
should the owner have done when the new computer arrived?

5 Explain why it is important for Australia to have a strong and well-enforced copyright law.
Describe three possible effects of repealing (removing) the law of copyright.

Exercise 1.2

The software market
Government, business and private individuals make up the software market. Some software
types are common to all sectors of the market, for example operating systems, word
processors and spreadsheets; others, such as games, are aimed more towards a particular
sector. Government and business are more likely than individuals to require custom-written
software, although many general-purpose applications can cater for the needs of businesses,
especially smaller ones.

The software market is not driven just by the needs of the user. Many of today’s common
applications were the result of forward thinking by individual developers. We are fortunate
that these people devised applications such as spreadsheets, desktop publishing software
and integrated packages. The personal computer has become more widely used because of
the development of these general-purpose software solutions.

The software market is also driven by the emergence of more sophisticated hardware and
peripherals. As the capabilities of hardware increase, so does the sophistication of software
applications. For example, early word processors had a limited number of formatting
features available, because of the limited processing speed and capabilities of the CPU and
relatively small primary storage. As the power of processors increased and more primary

11Social and ethical issues

storage became available, the developers of word processors were able to incorporate more
and more features into their products.

Maintaining market position
As with any business, the primary aim of a software development company is to make a
profit. In order to remain competitive, a software manufacturer must maintain or improve
its market position. In this respect, a software title is no different from a product such as a
can of baked beans or a car.

There are two ways in which software developers can maintain their market position,
first by improving the current applications and second by introducing new and innovative
software applications.

Maintenance of and support for an existing product is very important for the survival of
a software company. Some of the maintenance will involve the identification and correction
of program faults. Some will involve improving the product by making the interface more
intuitive or by adding new features.

Figure 1.8 Software developers have to support existing software and develop new programs to keep
their position in the market.

Most major software developers employ an active research and development program.
The aim of research and development is to investigate new ways in which to use existing
technology.

The effect on the marketplace
Software production is a multi-billion-dollar industry fuelled by consumer demands for the
latest in technology. As developers bring out new applications or enhancements to existing
software, consumers are enticed to update their applications. An upgrade to the new version
is offered to existing users and often a crossgrade is offered to registered users of competing
products. Software owners can often be persuaded to buy a licence for a new version of an
application even though the new version offers no real benefits.

A side effect of the increasing complexity of software is the need for an increase in
computer power to run the application, as well as a need for larger primary storage, larger
secondary storage and more powerful output devices. Thus the sophistication of software
can be thought of as driving the need for more powerful computers. This trend is probably
most evident in game playing.

12 Heinemann Software Design and Development: HSC Course

Significant social and ethical issues
Software is used in a large number of differing situations, each of which impacts upon
people. The software developer has a social and ethical responsibility to ensure that people
benefit from a new system without forgoing any rights they have held up until its intro-
duction. We can gain some insight into the issues faced by individuals, organisations or
governments by looking at some scenarios.

National and international legal action resulting from software
development
As with all other areas of human endeavour, software development may result in conflict.
These conflicts are often resolved in the courts. As previously seen, copyright is one area in
which conflict may occur, for example with two competing software producers creating
applications with a similar look and feel. However, copyright is not the only area in which
there is the potential for conflict. We will briefly look at two cases, one involving copyright
and the other a perceived attempt at creating a monopoly.

The case of Trumpet Software Pty Ltd & Anor v OzEmail Pty Ltd & Ors [1996] 560
FCA 1 (10 July 1996) involved the distribution of a shareware program called Trumpet
Winsock. OzEmail placed the installation program for Trumpet Winsock on an Internet
setup disk that was distributed on the cover of a magazine. However, the need for users to
register Trumpet Winsock separately from registering for the OzEmail service was not stated
as part of the installation process. Some of the documentation that was supposed to be part
of the shareware distribution was also omitted or changed, thus breaking the licence agree-
ment. The judgment was in favour of Trumpet Software Pty Ltd with costs also awarded
against OzEmail.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

Both purpose and written software are available. Individual users
are more likely to buy software for their needs. Government and other

may need to commission software for their specialised needs.
Innovative software such as spreadsheets and were the result of

by individual developers. Other factors that drive the software market are
and .

2 Explain, using an example, how a software developer can maintain market position over a
long period of time.

3 Describe, in your own words, the factors that drive the software market. What is the role
of the software developer in meeting these demands?

4 Explain how the emergence of new technology gives rise to new software and how new
software demands may drive the need for new technology. Give examples to illustrate
your answer.

5 Examine two different versions of the same software package. List the major features of
each. What features of the newer package are not present in the older one? Which of
these new features, if any, do you think are essential to the operation of the program?
Which features of the newer program, if any, do you think were not really necessary for
the normal user of the program?

Exercise 1.3

13Social and ethical issues

The United States government has spent a
long time and a large amount of money in
pursuing Microsoft in the courts over its
attempts to monopolise the personal com-
puter market with the Windows operating
system and its Internet Explorer web browser.
One of the main thrusts of the case is that, by
including Internet Explorer with the Windows
operating system, Microsoft is closing off the
market to rival web browsers. The legal action
has taken the form of an anti-trust case. At
the time of writing, the judgment has gone
against Microsoft, but the company is
appealing the decision.

Current cases can be found by using one of
the many legal search engines on the Internet.

Figure 1.9 Many software disputes are resolved in
the courts.

Public issues
Decisions made by software developers can often have a widespread effect on individuals,
either directly or indirectly. The following examples look at both indirect and direct impacts
on the individual.

The year 2000 problem
Probably the most costly programming decision ever made was the one to represent the year
by only two digits. The decision was made in the early years of commercial computer use
when storage was expensive.The decision to reduce the representation of the year from four
to two digits certainly saved a great deal of money when it was done. At the time it was
thought that it would not matter very much as the software being developed was not
anticipated to last until the year 2000. During the mid to late 1990s, the effects of this
decision were realised, and money and effort were increasingly spent to overcome the

Figure 1.10 The beginning of the year 2000 was a
worrying time for many people.

problems that a misreading of 00 for 1900
instead of 2000 would cause. In Australia
alone, it has been estimated that $12 000 000
000 was spent on overcoming the problem.
Organisations felt the greatest effect from
this problem, but individuals too had to face
the possibility of disruption, which fortu-
nately did not occur.

Computer viruses
Computer viruses are a malicious attempt to
disrupt or destroy computer systems. What-
ever the reasoning behind the writing of
viruses, they cause a great deal of expense
and effort either in prevention or in fixing the
problems that they have caused. Preventative
measures include the use of virus detection
software, care in the transfer of files and the
avoidance of the use of illegal software.
Individuals and organisations need to ensure
that they take the appropriate measures to
avoid infection and the spread of viruses.

14 Heinemann Software Design and Development: HSC Course

Reliance on software
Computer technology has invaded most
aspects of life in the developed world. People
are becoming more reliant on computer
solutions to problems. Whether washing the
dishes or enjoying a day out, we often use
computer technology without knowing. The
use of such technology brings with it a great
responsibility for developers, as reliability
may be critical. Software failure may cause
only minor discomfort, as, for example, when
an air-conditioning system fails, or it may be
disastrous, such as in cases where human life
is endangered.

Figure 1.11 Common household appliances such as the
microwave oven rely on software for their operation.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

The year 2000 problem occurred because chose to use digits to
represent each year instead of . This was all right until the year changed from

to 2000. If left untouched, many computer would have read the
year 2000 as 1900. Calculations which the year would have resulted in

. The problem was caused by storage in the days of
computers, when the decision was made to represent the by only
digits to reduce the amount of needed. Programmers thought that the

they were writing would be before the year 2000.

2 What is meant by the term computer virus? In what ways can a software developer help
in avoiding the spread of viruses?

3 Explain the steps a software development company could take to avoid legal action if it
wanted to incorporate a shareware application in one of its software releases.

4 Keep a scrapbook, or other record, of social and ethical issues that appear in the media or
on the Internet. The newspaper websites can be used to help compile your record.

Exercise 1.4

Team Activity

Develop an appropriate code of conduct
that you can use. The code should address
acknowledgment of authorship, ethical

behaviour and an appropriate response to
problems that may occur during the
development cycle.

15Social and ethical issues

1 Copy the following passage and complete
it by filling in the blanks with the
appropriate terms or phrases.

A virus is a small that is spread
by e-mail, or
software. Software have a
responsibility to the spread of
viruses. Methods used include the

of antiviral and
not using the computer for
_________ use or it to the
Internet. Other sources of infection are

copies of programs and
storage media.

2 Choose the alternative, A, B, C or D, that
best answers the question.

a Ownership of intellectual property in
Australia is governed by
A the laws of theft
B copyright
C the Copyright Act 1968
D the International Copyright Law

b A software developer has a
responsibility to
A create reliable software
B claim ownership of the software
C quickly solve problems
D follow the Software Development

Code of Conduct

c A software developer took some work
home to finish it on the children’s
computer. This should not have taken
place because
A the hard disk on the children’s

computer may fail, losing all the
changes

B there is a risk of picking up a virus
from the home computer

C the developer may spend all the
evening playing games

D the developer might not be able to
use the computer, as the children
may need it

d A software company will upgrade a
software application when
A the users want more functions
B a rival company produces a similar

program
C all new computers use speech

recognition for input
D problems are found in the existing

application
e A single-user software licence will allow

the purchaser to
A make copies of the program for

friends
B use the program at home and at

work
C make a backup copy of the program

that is kept but not used
D load the program on a small home

network
3 Explain what is meant by the term

‘decompilation’. Explain when decom-
pilation of a program is legal, using an
example.

4 Describe, in your own words, the rights
and responsibilities of software developers.

5 ‘Decisions that are made by software
developers can have a wide-ranging effect
on the community.’ Discuss this statement,
using examples to help with your
explanations.

Review exercises

Chapter summary

Heinemann Software Design and Development: HSC Course16

• Copyright allows the creator of an intellectual property to be acknowledged and compensated
for it.

• A software licence is a legal contract that specifies how the software may be used.
• Software developers, as well as having the right of acknowledgment, have a responsibility to

ensure that they produce quality software in an ethical manner that avoids the spread of
viruses.

• Sources of previously written code need to be acknowledged and permission to use it must be
given by its author.

• Software should be reliable, that is, perform without failure.
• A developer should ensure that the software produced, together with its documentation, is of

the highest quality.
• Problems that occur in the development process should be overcome in an orderly and

structured manner.
• Software developers should develop a code of ethical conduct and follow it.
• Developers must take all the precautions necessary to prevent the spread of viruses.
• Software theft, commonly known as piracy, deprives the copyright owner of income and

violates the laws of copyright.
• Intellectual property is the result of a creative process.
• Plagiarism is the false claiming of ownership of an intellectual property.
• Software distributed free of charge is known as shareware if a payment is required after an

initial trial period of use.
• Software that is distributed freely and which can be used without further payment is known

as public domain software (also known as freeware).
• Copyright of public domain software still resides with the author.
• When software is purchased, it is a licence to use only the software that is being bought.
• The Copyright Act 1968 governs copyright within Australia.
• The process of reverse engineering involves examining an existing system and using the

understanding gained to create a similar system.
• Decompilation is the process of turning executable code into assembler language so that its

structure can be more easily understood.
• The conditions in a software licence explain exactly how the software may be used.
• A licence will explain whether or not software can be used on a network.
• Enforcement of copyright helps to ensure the support and enhancement of existing software

as well as the development of new software.
• A software licence is a legal contract between the purchaser and the software company.
• The software market consists of all those who want or need to use software.
• The developments in the software market are driven by improvements to existing software, the

need for new software and the results of research and improvements in technology.
• From time to time, software issues can end up in a court of law. These issues may be as diverse

as breaches of copyright through to anti-monopoly cases.
• Issues that result from software use affect individuals both directly and indirectly. Viruses and

the Year 2000 problem have affected large numbers of people, and there is an increasing
dependence on computers for everyday living.

22Application of software
development approaches

cchhaapptteerr

Software development approaches
• approaches used in commercial systems, including:

– the structured approach
– prototyping
– rapid applications development

Outcomes
A student:
• differentiates between various methods used to construct

software solutions (H 1.2)
• explains the relationship between emerging technologies and

software development (H 2.2)
• identifies and evaluates legal, social and ethical issues in a

number of contexts (H 3.1)
• applies appropriate development methods to solve software

problems (H 4.2)
• applies project management techniques to maximise the

productivity of the software development (H 5.1)
• creates and justifies the need for the various types of

documentation required for a software solution (H 5.2)
• selects and applies appropriate software to facilitate the design

and development of software solutions (H 5.3)
• assesses the relationship between the roles of people involved

in the software development cycle (H 6.1)
• communicates the processes involved in a software solution to

an inexperienced user (H 6.2)

Students learn about:

18 Heinemann Software Design and Development: HSC Course

– end-user development
– combinations of any of the above

• methods of implementation
– direct cut over
– parallel
– phased
– pilot

• current trends in software development, for example:
– outsourcing
– popular approaches
– popular languages
– employment trends
– networked software
– customised off-the-shelf packages

• use of CASE tools and their application in large systems development
– software versions
– data dictionary
– test data
– production of documentation

• determine the most appropriate software development approach for a given scenario
• communicate their understanding of a commercial system studied, using a case study

approach, by:
– describing how the skills of the various personnel contribute to the overall development

of a computer-based system
– critically evaluating the effectiveness of the response to the social and ethical issues

raised by this system

• make informed comment on current trends in software development

Students learn to:

19Application of software development approaches

Preliminary review
No single correct software development approach is suitable for all problems. A number of
different factors will influence the way in which a software package is developed. Time,
budget and resources, the nature of the problem and the expertise of the developer will all
influence the approach taken. The four main approaches are the structured approach,
prototyping, rapid application development and end-user development. A combination of
two or more of the approaches may also be employed, again dependent on the nature of the
problem or problems to be solved.

Initial
requirements

Create
prototype

User uses
prototype

Modify the
prototype

Prototype used
for solution

No further
suggestions

User has
suggestions for
improvement

Figure 2.1 The four common approaches to software
development may be used individually or in combinations.

The structured development approach is based on a tried and tested design method. It is
divided into five stages: defining the problem, planning the solution, building the solution,
checking the solution and modifying the solution. The structured approach is generally used
for large projects that are being undertaken by a team of developers. The structured
approach is not necessarily the best option, even for large projects, especially when time is
critical, as each step must be completed before the next is undertaken.

Prototyping involves the creation of a working model of the system. The model may be
used simply to gather information that can be used for another development approach, but
it may also be developed into the final solution. Prototypes are created, then tested and
evaluated, modified and tested again. This development approach is particularly appropriate
for interactive software. It is not suitable for complex systems or those requiring complex
mathematical manipulations. Although it is tempting to develop prototypes without ap-
propriate documentation, this practice should be avoided, as maintenance of the solution
will need the process documentation created.

Solution to problem

Rapid
application

development

Structured
approach

Prototyping
approach

End-user
development

Choice of method

Figure 2.2 Prototyping involves a cycle of steps that are followed until
the prototype performs all the required tasks in the appropriate manner.

20 Heinemann Software Design and Development: HSC Course

Rapid application development (RAD) is a generic term used to describe any approach
that leads to faster application development. Some of the RAD approaches available are the
re-use of code, the use of computer-aided software engineering (CASE) tools and the use of
templates. Development environments such as Visual Basic, Hypercard, Hyperstudio,
Microsoft Access, Filemaker Pro and REAL Basic are examples of CASE software tools. The
RAD approach usually lacks formal stages and is more suited to small, low-cost projects
with small development teams. The user is often directly involved with the programmer
when an RAD approach is taken.

End-user development generally involves the adaptation of software tools by the user. End-
user development takes a very informal approach to the development process. It is used for
very small solutions that can be created at a fraction of the cost of a custom-built software
package. Most end-user development occurs in a fourth-generation programming environ-
ment such as a spreadsheet or a database management system.

Figure 2.3 A database management system will often be used to create an end-
user software solution.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

The four main approaches to development are , ,
and . The choice of a development method will depend on a

number of including the of the problem, the of the
, time, and resources available.

2 Name and briefly describe the five stages in the structured approach to software
development.

3 When is the structured approach to software development most suited to a project? Give
reasons for your answer.

4 What is a prototype? Briefly describe the process of prototyping.

Exercise 2.1

21Application of software development approaches

Software development approaches
As discussed, there is no one approach that can be taken for all software development
projects. Each project has its own needs; some require a large team of developers; others can
be undertaken by an individual. In all projects, however, it is important to carefully docu-
ment the approach taken, as this will help with maintenance of the project and with future
development of similar projects.

The software approach that is taken to complete a project will depend on a number of
criteria. The most obvious criterion is the size of the project. A big project taking a large
team a long time to develop will need a far more structured approach than a small project
being undertaken by the end user. However, modules of a large project may be created using
one or more of the alternative approaches. A small end-user project may, rightly or not, be
an ad-hoc affair with very little documentation. Projects that involve a great deal of user
interaction, with very little complex processing, are likely to be suited to a prototyping
approach, using feedback from users to refine the final model. Common small, but
specialised business tasks can often be completed using an RAD approach.

5 Explain why documentation is important in the prototyping process.

6 Explain the meaning of the term ‘rapid application development’. Describe the types of
application development that are suited to this approach.

7 What types of project are suited to end-user development? Explain why this approach
would be used in these projects.

8 An airline is installing touch screens for passenger entertainment in its aircraft. Which of
the software development approaches do you think is most suited for this project? Justify
your answer.

9 Use an appropriate computer application to create a table that lists the features of each
of the software development approaches. Save your file for future reference.

10 Investigate the features of one application that can be used by an end-user developer.
Describe, in general terms, the types of project that this application is suited to.

Figure 2.4 Small businesses can often customise
application software to perform the required tasks.

Other factors that will affect the develop-
ment approach taken are the time available
for implementation and the skills of the
development team. Development projects
that have to be completed within a particular
time frame can force the development team
into “shortcuts”, such as the use of CASE
tools to assist the process. The skills of the
development team may prompt them to use
a particular development approach; this is
especially true for small teams of developers
whose total experience will probably not
cover all development approaches.

22 Heinemann Software Design and Development: HSC Course

Approaches used in commercial systems

The structured approach
The structured approach to software development, as its name suggests, is the most formal
and structured of the four approaches. Each of the phases of the development process is
thoroughly documented so that a complete record can serve as a reference for the sub-
sequent stages in the development process. The structured approach can involve a number
of specialists. These specialists are usually categorised as systems analysts and programmers.

Define the
problem

Plan the
solution

Build the
solution

Check the
solution

Modify the
solution

Figure 2.5 The structured approach to software development is often represented as
a waterfall.

The first two phases are generally the responsibility of a systems analyst. A systems
analyst is a person who develops a system to meet a new need or to solve an existing
problem. This may involve investigating the current system and modifying it, or developing
a new system. A systems analyst could be involved in the planning, implementation and
maintenance of the computer-based system. As well as technical computing skills, the
systems analyst must have good management and personal skills, in order to be able to
interview users of the system, determine their hardware and software requirements and
develop plans and schedules. Most systems analysts have university degrees in either
computer science or business. They must have a broad knowledge of computers and keep
up to date with recent developments in hardware and software. They are often required to
test new products. Systems analysts are given a variety of titles, such as computer analyst,
systems consultant or systems officer.

Programmers perform a large amount of the work carried out in the other stages of the
structured approach. The programmer depends on the systems analyst to provide the
detailed specifications of the required program. There are two types of programmer, the
system programmer and the application programmer. A system programmer writes the
instructions for the computer’s operating system, whereas an application programmer
writes the instructions for a computer to perform a particular task. Programmers usually
need to complete a computer course at a tertiary institution. They are required to know
several different programming languages and types of hardware.

23Application of software development approaches

Management and users are also involved in the development process, as they have the
detailed knowledge about the existing system. It would be a very hard task indeed to create
an effective program if management and the users did not have input into the development
process.

The first step taken in the structured approach is to define the problem that is to be
solved by the software. This may seem to be a fairly trivial stage, since if a software solution
is needed then a problem has been identified. However, problem definition looks not just at
the problems that are being experienced by users of the current system but at all aspects of
the system. During the problem-definition stage of development, the team of systems
analysts interviews management and the users, and collects data about the existing system
by observation, collection of documents, questionnaires and surveys. Once the data has been
collected and analysed, a set of specific requirements is drawn up. The requirements are
used to design the software and as a measure of the performance of the final product. The
problem definition will also state any restrictions that may be placed on the software solution.

A further important aspect of the problem definition is to determine the feasibility of
a software solution. There are many factors that need to be taken into consideration when
determining if it is feasible to proceed with the development of a new software solution.
Factors that affect the feasibility of a software development include: whether the problem
is worth solving, constraints on the development, financial feasibility, operational feasibility,
technical feasibility, scheduling, possible alternatives, and the social and ethical considerations.

Constraints on the development are factors that limit the development in any way, such as
the amount of change needed to implement the new system.

Financial feasibility is concerned with the ability of the organisation to profit from the
implementation of the proposed system. The financial feasibility of a new system is often
presented as a cost–benefit analysis in which the cost of the new system is compared with
the benefits.

Operational feasibility is centred on the capability of the organisation to handle the
manual processing involved with the system.

Technical feasibility is concerned with matching the organisation’s technical resources
with those needed for the new system. It also involves an assessment of the required hard-
ware and software to ensure that the tasks can be carried out by the proposed system.

Scheduling feasibility examines whether the proposed system can be implemented within
a deadline. The deadline is often inflexible because of some external influence; for example,
the Year 2000 problem had a deadline of 1 January 2000 which could not be postponed to
allow for a longer development time.

Any new system needs to be developed with social and ethical considerations. For
example, if the new system involves amassing a large database of personal information, the
safeguards for the individual need to be fully investigated.

Case study ‘Bikes To Go’

‘Bikes To Go’ is a bicycle hire business with six
outlets in various suburbs of Sydney. Hirers of
bicycles can return the bicycle to any of the
outlets around the city. The present system
consists of individual computer systems in
each of the shops. This means that, when a
bicycle is returned to a shop other than the
one from which it was hired, a telephone call
has to be made to determine the hire details

before a refund of the deposit can be made.
Management wants to speed up the return
of the bicycles as well as to be able to
monitor the demand at each branch so that
bicycles can be transferred by truck to those
branches where the supply is running low.
Management also has the idea that visitors
would be better served if they were able to
make inquiries and bookings via the Internet.

24 Heinemann Software Design and Development: HSC Course

With these requirements in mind, manage-
ment contracted a development team to update
the computer software system. After a prelimi-
nary meeting the team decided to employ a
structured approach for the development pro-
cess, as the required system is quite complex.
However, they have left open the possibility of
using different development approaches for
each of the major software components.

The first phase of the development process,
defining the problem, involves the systems
analysts, management and the users of the sys-
tem. An overall set of requirements is gathered
in initial meetings with management and the
users in order to gather information about
exactly what the system is going to do. The
result of this activity is a report detailing the
requirements, together with a feasibility study.

Figure 2.6 Cyclists can hire a bike at one store and
return it at another.

Customer
receipt

Transaction
details

Update
master

transaction
file

Transaction
details

Credit card details,
charge for service

Hirer details, credit
card details, bike

wanted

Hirer details,
hire period,
hire charges,
date due back

Bicycle type,
bicycle ID number

Bike ID number,
hirer, date due back

Credit card
payment
voucher

Hirer

Bicycle database
file

Master transaction
file

Daily transaction
file

Hiring
module

Bike ID
number,

hirer

Bike ID
number,

hirer, date
due back

Transaction details Bike ID
number,

hirer, date
due back

Return
module

Current rentals
file

Customer

Figure 2.7 A dataflow diagram representing the ‘Bikes To Go’ system.

In order for the system to work effectively, its operation needs to be fully understood.
The next phase in the process is for the analysts to gather information about the present
workings of the system.The information is gathered in a number of different ways, including
interviews with staff and customers, observation of the processes that are carried out and an
examination of the documents that form part of the system. The results of this phase are
presented as a report. Aspects of the system are often represented diagrammatically in the
form of a dataflow diagram, or in a summary form such as an IPO chart.

25Application of software development approaches

The second stage of this development approach involves planning the solution. Planning
involves choosing the appropriate data structures and program structure, planning the
characteristics of the user interface and designing the algorithms. During the planning stage,
decisions will be made as to the most appropriate language or languages for the construction
of the solutions. The planning stage may also involve scheduling the project so that it can
be completed within a reasonable time-span.

In the case of ‘Bikes To Go’ it was decided to break the main program down into three
modules: one to process the hiring, one to process the returns and the third to look after the
administration of the shops. The third module needed to be able to maintain the master
transaction file, maintain the bicycle database and perform the necessary accounting duties.
Two other modules were also deemed necessary for the solution of the problem, an
initialisation module and a closing module.

The systems analysts, together with the programming team, met to plan the overall design
of the program. At this stage, it was decided to concentrate on a solution to the problems,
leaving the Internet facility for a later date. The development team was divided into five
teams, each with responsibility for one of the modules. A set of test data items was created
for use in the later stages. Before the teams began work on their individual projects, the form
of common data items was determined, as were the standards that were going to be used in
the interface design. Each then concentrated on the design of the assigned module. At this
stage, this mostly involved the design and checking of the algorithms and interface.

The building stage of the development process is the one most often thought of as
‘programming’, the coding and testing phase. In this process, the algorithms are converted
into machine executable form and tested. Depending on the development environment that
has been chosen, the machine executable code may be an object file or it may be a file
such as a spreadsheet. The program may be built in a ‘top down’ fashion where the driver
module is first constructed and the sub-modules written first as stubs, or in a ‘bottom up’
fashion, where the sub-modules are written first and then gradually combined to form the
whole application.

Hirer name Input customer details, hire Customer receipt with hirer

Hirer address period required and credit details, bicycle type and BIN,

Bicycle type card details (if applicable). the hire period, date or time the

Bicycle identification Input bicycle type. bicycle is due back, hire rate,

 number (BIN) Allocate available BIN from the total charge and the amount

Hire period bicycle file. of deposit.

Hire rate Calculate the date and/or Credit card debit form with the

Deposit taken time the bicycle is due back. card details and amount.

Credit card type Look up the hire rate in the Transaction details to a daily

Credit card number rate file. transaction file.

Calculate the total charge for

bicycle hire.

Generate customer receipt.

Generate a credit card debit

form if required.

Write the transaction details

 to the daily transaction file.

Input Process Output

Figure 2.8 An IPO chart representing the hiring system.

26 Heinemann Software Design and Development: HSC Course

In the case of ‘Bikes To Go’ the programming team decided to
use a top-down approach to the development of the program.
The driver module first constructed for the system was basically
a sequence that called upon three sub-modules: an initialisation
module, a menu module and a closing module. Each of the five
teams was assigned responsibility for one of the modules. The
senior programmer took the overall responsibility for co-
ordination of the project. During this stage of development,
regular meetings were called to gauge the progress of develop-
ment and to discuss any problems that occurred. Towards the end
of this phase, a number of peer checking and structured walk-
through activities were also undertaken. Once the full program
had been assembled, it was ready for the next stage of
development, the checking stage.

Once the full program has been assembled and tested, it is
time for it to be checked. In this stage, performance is measured
against the original specifications. This process is known as ac-
ceptance testing if employed on custom software or beta testing

Figure 2.9 One of the major
parts of the planning stage in
the structured approach is the
design of the algorithms.

Figure 2.10 The programmer’s task in the building
stage is to code the algorithms.

when used during application software development. At this stage, real data is used, with
the outputs being compared to the real outputs from the previous system. Users are also
involved in this process to ensure that their expectations of the system are fulfilled. In
addition to the feedback that the development team receives, users also benefit by being
able to use the system. In addition to checking that the program can process the data
correctly, the user interface is evaluated for ease of use and intuitive design. The manner in
which the program responds in various situations, for example the manner in which errors

BIKES TO GO

Click on the menu item of your choice, or press the number

1 Bike Hire
2 Bike Return
3 Enquiry
4 End of Day
5 Exit

Figure 2.11 ‘Bikes To Go’ now has a fully operational
program.

BEGIN
set counter to one
set sum to one
set number to user input
REPEAT

add counter to sum
increase counter by one

UNTIL counter equals number
print sum

END

Case study

27Application of software development approaches

are handled, is also evaluated. Specifications for any necessary
modifications are created during this phase of development. Once
modifications have been made and tested, the program is either
accepted or modified further. This process of testing and modifica-
tion continues until the program is accepted for use.

‘Bikes To Go’ involved one employee from each of the stores in
the checking process. In this way, not only does testing take place
but also staff training. The data used by ‘Bikes To Go’ and the
development team consisted of one month’s actual rental figures.
Apart from a few suggestions in regard to the user interface, the
testing process found no problems with the processing of the real
data. Once the modifications to the user interface were made, the
program was accepted for use by management.

Prototyping
Prototypes can be used in two different ways during the develop-
ment process. The first is to use a prototype as an information-
gathering tool only; the second is to develop the prototype into a
fully working program. Prototyping as a development approach is
especially useful for applications involving a lot of human–
computer interaction, such as multimedia and Internet applica-
tions. The process involves the construction of an initial model of
the program based on the specifications furnished by the client.
Once the initial prototype is constructed, it is passed on to the user
for evaluation. Based on the results of the evaluation, the proto-
type is refined. This process of evaluation and refinement
continues until the prototype performs the required tasks within
the bounds of the specifications.

‘Bikes To Go’ website development

In the previous section we saw how ‘Bikes To
Go’ developed its management program.
After a few months of operation, manage-
ment of ‘Bikes To Go’ decided to implement
the second phase of their program update by
commissioning the design of the Internet site
to link in with their main program. The site is
to be integrated with their hire database to
allow potential customers to look at bicycle
availability and charges. Regular customers
are to be given password-protected access to
pre-booking and pre-payment for hire. The
web page is also to be provided with a
number of suggested tours, each of them ac-
companied by a map and points of interest.

The development team that originally
designed and implemented the hire program

was engaged to develop the website. They
decided to employ an evolutionary proto-
typing approach to development. After con-
sultation with management about the
requirements of the webpage, they set about
designing a prototype. The prototype was set
up on a single personal computer and then
used in simulated situations, first with
management and the development staff
acting as users, then with a number of
regular customers of ‘Bikes To Go’. At each
stage of the prototyping process, document-
ation was kept that showed the problems
encountered and the solutions found.

Within a relatively short period of time,
‘Bikes To Go’ was able to make the site
available for use.

No

Yes

Are changes to
be made?

Evaluate
prototype

Begin

Modify
prototype

End

Create
prototype

Figure 2.12 Evolutionary prototyping involves
a cycle of constructions and evaluation until all
the specifications and user requirements are met.

28 Heinemann Software Design and Development: HSC Course

Rapid application development
Rapid application development (RAD) is used to speed up the development process. It is
especially useful in cases where the requirements of the system are well understood and the
project scope is well constrained. The RAD approach relies on the reuse of existing
modules. Often these modules are supplied as part of a fourth-generation language. By using
pre-existing modules, the need to test their working is avoided, thus reducing development
time. If modules have to be written, they are constructed as reusable components. RAD
relies on the use of automated tools to help in this construction.

Figure 2.13 ‘Bikes to Go’ was able to greatly improve its exposure by the use of an Internet site.

Case study Neumann’s Nurseries

Neumann’s Nurseries is a commercial nursery
that grows plants for the wholesale market.
The company has a number of greenhouses
that are used to raise seedlings. At present
the environment in these greenhouses is
being controlled manually. Because of the
difficulty of keeping the temperature,
humidity and soil water content within
acceptable bounds, management has de-
cided to install a computer system to monitor
and control the environment. A small soft-
ware development company has been
contracted to write the computer program
that will oversee the system.

Since the program is to interact with
sensors to control the environments, it was
decided that an object-oriented program-
ming environment was the most suitable to
develop this software. The choice of object-
oriented design aided by an RAD approach
meant that the system could be introduced
during a period of low demand. A further
advantage of the object-oriented approach
was that it allowed the nursery to change
either the sensors or the actuators without
needing to reprogram for the new hardware.

During development of the software, a
number of pre-existing modules were used as
a basis for the program. Modules already
exist that can be used to gather data from

temperature and moisture sensors and to
send messages to the actuators that would
turn on the heating, water, cooling and
misting hardware when necessary. The devel-
opers were able to use this basis to quickly
create a working program that fully met the
requirements of the nursery.

Figure 2.14 The use of computer technology
in commercial greenhouses can improve the
quality of plants produced.

29Application of software development approaches

End-user development
End-user development is probably the most popular of all development methods since most
computer users have, at one time or another, created a solution for a problem.The problems
solved are usually small and personal ones. Small business operators will also often use an
end-user approach. Most of these solutions have been created using an integrated package,
a spreadsheet application or a database management system. Development usually follows
a fairly informal approach with little, if any, documentation.

Case study Carol’s Computer Repairs

Carol is a computer technician. After a
number of years working for someone else,
she decided to start a computer repair
business herself. While working through her
business plan, she realised that she would
need a reliable system to manage the repair
documentation.

All she needed was a system that could
record the details of items brought into the
shop for repair, then produce an invoice for

payment. As she already had a computer that
was loaded with an integrated package, she
decided to create a system that she could use
for the business. She used the database
management system of the package to create
a book-in sheet that could also be used as an
invoice. Within a very short time she had a
workable system. As her first few weeks in
business progressed, she gradually refined
the system to overcome some shortcomings.

Figure 2.15 A database management system is able to help end-users find a solution to a problem.

30 Heinemann Software Design and Development: HSC Course

Methods of implementation
Once all the components of the system have been properly installed, the implementation of
the new system can proceed. This involves the conversion from any existing system to the
new system. This conversion needs to be carried out in such a way as to allow a smooth
change, without any loss of data, time or money, but also allowing for possible errors or
problems that have not been identified and corrected to this stage. There are four methods
generally used when converting to new systems. These are direct conversion, pilot con-
version, parallel conversion and phased conversion.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

A is a person who develops a system to meet a or solve an existing
. The is generally responsible for the first phases of

the approach. A large amount of the work carried out in the other stages is
performed by . There are two types of the system
and the programmer. Also involved in the structured approach are

and who provide information about the system.

2 Describe the role of the user in the first stage of the structured approach to development.
Name the other stages of the development cycle that involve the user. What role does the
user take in these stages?

3 A programmer needs a number of different skills. Describe these skills and state, for each
skill, why you think that a programmer requires that skill.

4 Describe the benefits that the new Bikes To Go system will have for the customer. What
benefits will the business have when the new system has been implemented?

5 Describe the differences between an information-gathering prototype and an evolution-
ary prototype. Explain why an evolutionary prototype was used for the ‘Bikes To Go’
website construction rather than an information-gathering prototype.

6 Explain the advantages that the RAD approach to software development provided for
Neumann’s Nurseries. Give reasons why a structured approach to software development
was not taken in this case.

7 What are Carol’s reasons for choosing an end-user approach when designing her soft-
ware solution.

8 Explain, using an example, why it may be necessary to use a combination of approaches to
develop a software solution. Your example should state the problem being solved and the
approaches you would choose for the various modules.

9 Employ an end-user development approach for the following problem: You want to keep
a record of your progress in each of your school subjects. For each subject you want to
track your results in each of the assessment tasks. Your solution should be saved as a file
with the name TASKTRAK. Explain why an end-user approach is suitable for this project.

Exercise 2.2

Combinations of approaches
As seen in the case of ‘Bikes To Go’, it may be necessary to use a combination of
development approaches to solve a problem. Certain aspects of a solution may lend
themselves more to one development approach than to another. The ultimate goal of the
development is to produce a properly documented solution to a problem.

31Application of software development approaches

Direct cut-over
A direct cut-over (or direct conversion) involves the complete and immediate conversion to
the new system. The old system is not used from the time the new system is first used. All
data stored in the old system would need to be converted for use with the new system. If
the new system involves compatible hardware and new software, this conversion may be a
minor job. But if computers are being installed for the first time, this becomes a major
problem. In this case, old data may be entered with the help of extra staff, through the use
of scanners and OCR software, or not entered at all. If the new system fails or problems
become evident, under this type of conversion the old system is not available as a backup
and so this method is not often used.

Use of old system

Use of new system

D
at

a
pr

oc
es

se
d

Time

Figure 2.16 A direct cut-over is an immediate and complete conversion to the new
system.

Parallel conversion
Parallel conversion involves the old and new systems both being used fully for a period of
time. In this way, all operations of the new system duplicate similar operations in the old
system, which allows the new system to be tested with a full set of data under realistic
conditions, and also allows the two systems to be compared. If the new system fails, the old
system can be used with minimum loss of data as it is kept up-to-date. A drawback of this
method is that it creates additional workloads for those using both the new and the old
systems. It also requires all staff to be trained before the implementation of the new system.

Use of old system

Use of new system

D
at

a
pr

oc
es

se
d

Figure 2.17 Parallel conversion involves the complete use of both systems together for
a period of time.

Phased conversion
Phased conversion involves the gradual implementation of the new system to carry out
certain operations while the old system is used for other operations. The operating modules
of the new system can be used to test the system and to train staff. As modules are tested
and operating and the staff become more confident, the new modules can be implemented
until the whole system is operating. This allows each new module to be tested individually,

32 Heinemann Software Design and Development: HSC Course

without the threat to data stored in other modules or in the old system. If the new system
experiences problems or fails, only that module is affected.

Figure 2.18 Phased conversion involves the gradual introduction of parts of the
new system over a period of time.

Use of old system

Use of new system

D
at

a
pr

oc
es

se
d

Time

Pilot conversion
In a pilot conversion the new system is fully installed but is used for only some operations
as the old system is still being used. For example, in an office some of the staff may use a
new word-processing system, while the rest of the staff use the old system. In this way the
old system is still available if the new system fails or experiences problems. If the new
system fails, only a small amount of data is lost as the old system is still maintained. It also
allows the users to evaluate the new system as a complete system and to train others in its
use, without the problems associated with direct conversion.

Use of old system

Use of new system

D
at

a
pr

oc
es

se
d

Time

Figure 2.19 Pilot conversion involves the use of parts of the fully installed new
system while the old one is still in use.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

There are four different methods of conversion: , conversion,
conversion and conversion. A involves the complete

and immediate conversion to the . conversion involves the
gradual of the new system to carry out certain while the

system is used for others. Full installation of the system which is
used for some of the operations, while the rest are performed by the old one, is known as

conversion. conversion involves the full use of both the
system and the system for all operations.

2 What are the disadvantages of direct conversion?

Exercise 2.3

33Application of software development approaches

Current trends in software development
Software development itself is continually going through a process of evolution. The first
development approaches devised were very formal, being based on the need to program
computers in a way that was easy to convert into machine code. As the cost of computing
power decreased, programming environments became more sophisticated, allowing
programmers to employ different ways of programming. The decrease in the cost of
computer power also made it possible for the general population to have access to the
technology. Greater access also brought with it an increase in the number of non-computer
professionals who were able to create programs for their own use.

The emphasis in industry and commerce has changed from a use of mainframe com-
puters and terminals to networked personal computers.This change in direction has brought
about a change in the way that software is obtained. In the early days of commercial
computing, in-house specialists who formed a ‘Data Processing Department’ generally
wrote software for a specific application. Two businesses with exactly the same needs
and computer system would each write their own application. With the increase in the
number of business computers, a greater standardisation of operating systems and the
identification of common tasks, off-the-shelf applications have become a popular option to
custom-designed software. For those applications that are more specific to a particular user,
software is often obtained by contracting outside software development specialists or by
end-user development.

Outsourcing
Many large organisations have decided to disband, or at least reduce the size of, permanent
information technology staff. Where an information technology department does exist, it
will often consist of those whose task it is to maintain the system. If new software is
required, its development will often be contracted to outside developers. This is known as
outsourcing. Outsourcing allows a business to have quality software developed by experts
without the expense of maintaining a full Information Technology department.

3 What would happen if the new computer system broke down under direct conversion? Is
there any backup method?

4 What are the advantages of parallel conversion to the new system?

5 What are the disadvantages of parallel conversion?

6 What would happen if the new computer system broke down under parallel conversion?
Is there any backup method?

7 What are the advantages of phased conversion to the new system?

8 What are the disadvantages of phased conversion?

9 What would happen if the new computer system broke down under phased conversion?
Is there any backup method?

10 What are the advantages of pilot conversion to the new computer system?

11 What are the disadvantages of pilot conversion?

12 What would happen if the new computer system broke down under pilot conversion? Is
there any backup method?

13 In the previous section you examined the ‘Bikes To Go’ program development. Which
method of implementation would you recommend for the solution? Give reasons for
your choice.

34 Heinemann Software Design and Development: HSC Course

Popular approaches
As discussed, there are a number of approaches to software development. These range from
the very formal structured approach to the almost ad-hoc approach taken by many end-user
developers. Software tools such as webpage editors encourage an evolutionary prototyping
approach, especially from end-users. Commerce and industry often need to develop
software that is accessible to a large number of employees. Employing a client/server
approach to software engineering caters for this need. Small end-users often approach their
software problems by customising off-the-shelf applications to provide the solution.

Popular languages
Languages used range from the formally structured software development environments of
C++, Visual Basic and Java through to informal languages such as spreadsheets, webpage
editors and macro recording tools. People with little or no formal training in computer
programming can create quite sophisticated software solutions using the latter tools. As
computer technology becomes more and more powerful and accessible, variations to these
languages will become increasingly popular.

Figure 2.20 Software development tools such as these are popular for end-user developers.

Employment trends
The move by business to outsource software development means that the employment of
development staff is less likely to be permanent. The trend is for software developers to be
contracted to either the business requiring the software or a software development
company. Thus those in employment in the area of information technology are most likely
to be working either under a contract that lasts until the end of development or for a fixed-
term contract with a development team.

Networked software
As noted above, the trend for business is to move away from time-sharing a mainframe
computer to a network of personal computers linked to a server. This trend in computer
management also impacts on the development of software. The development of client/
server software involves four parts: the interface, the application, database management and
the network software. The interface governs the interaction between the user and the
system; it must communicate not only the state of the application but also network
messages. The application is responsible for meeting the software requirements of the end-
user. The database management section is responsible for the manipulation and manage-
ment of data. For example, the database management part will be responsible for processing
inquiries. The network software provides the means by which communication takes place

35Application of software development approaches

on the network. The developer not only has to create the software to meet the requirements
of the user, but also may have to provide for the demands of multiple users, for example
giving them access to the same file.

Application
software

Database
management

software

Network
software

User
interface

Network software

Figure 2.21 A client/server software solution involves four parts.

Customised off-the-shelf packages
The rapid increase in the use of personal computers has been accompanied by a similar
increase in the range and type of off-the-shelf software packages. These packages have been
designed to perform general tasks such as word processing and database management. Some
of these applications, such as word processors, will perform the most common tasks without
the need for modification. Other applications will need to be modified on installation in
order to be able to perform their tasks. For example, a bookkeeping program will need to be
set up to reflect the way in which a business manages its affairs.

A large number of current applications allow the user some form of choice in the
manner in which the program operates. This choice may be as simple as a game player being
able to choose the keys used for control through to the customisation of the complete user
interface.

Figure 2.22 A small business, such as a video store, will
often use customised software in preference to purpose-
built software.

Developers can benefit from this type of
software as it provides a quick solution to a
large number of problems. Tasks performed
in implementing one of these solutions will
include a customisation of the interface, pro-
duction of appropriate reports and conver-
sion of data from the old system. This type of
software generally lends itself to a proto-
typing approach or an end-user development
approach.

The popularity of customisable software
is due to a number of factors. The cost of
development is reduced, as the manufacturer
has done a large amount of the process
development. Development time is also
reduced by the use of customisable software.
The producer of the application package
often provides technical support to purchasers.

36 Heinemann Software Design and Development: HSC Course

Use of CASE tools and their application
in large systems development
Computer-assisted-software-engineering (CASE) tools have been developed to help soft-
ware developers in the tasks of software development and maintenance. Some of these tools
have been designed to assist with a particular activity or function in software development.
Other tools are combined to form an integrated development environment. An integrated
set of tools is often referred to by the acronym ICASE.

Individual CASE tools will be geared to support activities such as problem definition,
planning, building, testing and modification. In this case the tool will perform a number of
tasks that contribute to the completion of a particular stage in software development. Other
tools will be oriented towards particular functions within the software development cycle.
In this case tools will perform a particular task; for example, tools are available for text
editing, test-data generation and document preparation. Commercial software such as word
processors and drawing applications may also be used to assist in the development of
software. For example, a number of application programs contain flowchart construction
modules that can be used in the development process.

Software versions
As software is progressively revised, it becomes harder to keep track of the versions in use.
This is especially true for large systems, which have a number of different software instal-
lations. A number of CASE tools are available to help with this task.

A problem with continually evolving software is the management of the different
versions. In order to help with this process, each version is given a release name or number.
The most common method is to use a numbering system similar to the following. The first
version is labelled as version 1.0. Using this numbering system, major version changes are

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

Developers can obtain a quick to a large problem by using
packages that can be to reflect the way the business operates. This software
is used by the user interface, producing appropriate and

the data from the . Both the and of
development are reduced as the has developed a lot of the . A
further advantage is often the provided by the producer of the package.

2 Name the four sections of client/server software. Describe the responsibilities of each of
these sections.

3 Explain how the evolution of computer technology has helped change the way in which
software is developed.

4 As the technology has changed, so have the programming environments that developers
work with. Explain why languages such as Visual Basic and Java would not have been
possible in the 1960s and 1970s.

5 Explain the meaning of the term ‘outsourcing’. In what ways has the move to outsourcing
software development affected the employment of computer professionals?

6 In this section, we have investigated a number of trends in software development. Investi-
gate other trends that have not been mentioned. Present your findings as a fully edited
report on both disk and paper.

Exercise 2.4

37Application of software development approaches

given numbers 2.0, 3.0 and so on, with updates being given version numbers such as 1.1,
1.2, 1.3. This numbering implies that version 1.2 has been derived from version 1.1 and 1.3
has been derived from 1.2, but this is not necessarily the case. Version 1.2 may have been
derived from version 1.0, but with a different set of modifications than those applied to
create version 1.1. For example, version 1.2 may have been developed to test a modified
interface, with no intention to release it for use. Thus the release versions might be 1.0, 1.1
and 1.3, then version 2. Bug fixes and other small changes may be numbered by adding a
further digit. For example, a bug fix on version 1.1 may be numbered 1.1.1 as it presents no
apparent change to the user of version 1.1.

v 2.0v 2.0v 1.4v 1.4v 1.3v 1.3v 1.1.1v 1.1.1v 1.1v 1.1v 1.0

v 1.2

v 1.0 v 2.0

Future developmentMajor update

Minor update

Bugs fixed

Non-release version

v 1.3 v 1.4v 1.1.1

v 1.2

v 1.1

Figure 2.23 Versions are numbered to keep track of the changes.

The management of the changes to a software product is known as software configur-
ation management (SCM). To avoid conflicting changes being made by different parts of
the development team, all proposed changes need to pass through a central body so they
can be evaluated and tracked. It is also very important for the changes to be properly docu-
mented for the user, as they may involve some change to operating procedure.

A number of CASE tools are available to track the changes made to a software solution.
Some of these, for example AIX CMVC, CMF, Continuus and PVCS are specific manage-
ment solutions. Some integrated CASE tools, such as AIX SDE WorkBench and SPARCworks
Toolset, contain version management components.

Data dictionary

Figure 2.24 CASE tools help in the management of
collaborative programming.

As discussed in the Preliminary Course, a data
dictionary is essential to the software develop-
ment process. This is especially true for
projects that are being created by a large
development team. The use of an appropriate
networked CASE tool to manage the data
dictionary will enable all developers to have an
up-to-date data dictionary. The use of a CASE
data dictionary tool also assists in the manage-
ment of large projects where the data
dictionary is complex and therefore almost im-
possible to manage manually. Sophisticated
integrated CASE tools are also able to create a
data dictionary from a dataflow diagram that
was produced within the CASE environment.

Data dictionaries produced in this manner will contain a number of entries for each data
item. Common entries for each data item will generally include:
• identifier: the main name of the control or data item, for example cost
• alias: alternative names for the same data item; for example, if swapping is to take place,

a temporary data item, such as cost_temp, will be required
• processes: the processes that use the data item together with the way in which the data

item is used; in our example cost may be calculated as being quantity multiplied by
unit_price

• other information: a generalised category which includes data type information,
restrictions or limitations on the data item and any pre-set values.

Test data
Test-data sets fall into two categories: data to test the correct workings of modules, and test
data to evaluate the performance of the system under simulated working conditions. There
are test-data generators whose purpose it is to create large sets of test data. These test-data
generators can be given the data specifications and syntax for a particular data set and they
will then generate large amounts of data that can be used to evaluate the performance of
the system.The outputs from the system still need to be checked, but some of this checking,
for example checking for particular error messages associated with certain data, can be per-
formed automatically.

A program known as a file comparator can be used to compare the outputs of two
different versions of the same program. The same input data is entered into the two
versions, the output being saved. The file comparator can then scan the output files and
indicate where and what the differences are.

38 Heinemann Software Design and Development: HSC Course

Production of documentation
Throughout the software development cycle the production of documentation is a
continuous process. Programmers often make use of existing applications to assist with this
process. For example, dataflow diagrams may be easily produced using a draw program. It
makes sense, therefore, to incorporate the production of documentation within a CASE
environment. Allowing the developer to produce documentation at the same time as the
development process is taking place may also avoid the delay in its production. A developer
who has access to the documentation tool from the same workstation as development is
taking place will be more likely to use it. A number of different CASE tools are available to
assist with the documentation process.

A graphical application can be used to create systems representations such as dataflow
diagrams, system flowcharts and structure charts. These different representations use
graphical symbols to represent different aspects of the system. Many of these symbols are
common to two or more of these representations. By giving the programmer access to
symbol templates, the graphics program can speed up the process of creation. A further

Output from v 1.0

Output from v 2.0

File
comparator

DifDifferencesferences
in outputin output
Differences
in output

Figure 2.25 A file comparator compares two files for differences.

39Application of software development approaches

benefit from this approach is that it enables changes to be made to the representation
without the need to completely redraw the diagram.

CashCash
till

BarcodeBarcode
readerreader

Till
printerprinter

StockStock
systemsystem

Transactionransaction
file

SuperSupervisingvising
systemsystem

Barcode

Barcode

Total sale
Total sale

false

Begin

end

largest <
number (index)

set index to 1

set largest to
number (index)

display
largest

Total sale

Item cost

Barcode

Item cost

Structure diagram Flowchart

false

true

true

Till printerBarcode
reader

Cash
till

Stock
system

Transaction
file

Supervising
system

set largest to 0

index >
array size

set index to
index + 1

Figure 2.26 Different representations of
systems often use the same symbols.

Graphics based CASE tools include:
• Adobe Illustrator: can be used as a general drawing and text-handling tool
• Create: a visual software development program that creates flowcharts
• Gsharp: a graphics tool for SUN, DEC, IBM and other mainframes and minicomputers
• Rose/C++: a graphical tool that can be used for analysis, design and implementation

in C++
• Smart chart: a tool used to automatically generate structure charts.

A number of different text-based documentation tools are available within different
CASE environments. The tasks performed by these tools vary from project management
through to the production of code in a supported language. As already mentioned, the
humble word processor can be used to produce various forms of documentation. A word
processor can also be used to create an ASCII text file that can be compiled.

40 Heinemann Software Design and Development: HSC Course

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

CASE tools have been developed to software developers. These tools will
either help with a or perform a which is a part of the
development process. In a large development a CASE tool may be used to
create a which lists all the data together with various details.
CASE tools are also used to the changes in software. This is important as
several different of a program may be in use at the time.

2 Examine the application software you have loaded on your school computers and list the
software development tasks that you can perform with each of the applications.

3 Explain why CASE tools may be used in the development of a large system.

4 Explain why it is important to be able to identify the different versions of a computer
program. Use an example to illustrate your answer.

5 Use a graphics program to create templates for all the symbols that you use in your course.
Keep this template file and update it each time you meet a new graphical technique. To
start with, your template should contain all the flowchart symbols and the railroad
diagram symbols. You might also like to include common modules such as pre-test and
post-test loops.

6 Use an appropriate application to create a template document that you can use for a data
dictionary in all your programming activities.

7 Investigate the availability of CASE tools on the Internet. At the time of writing, a good
site to start at is http//www.cern.ch/PTTOOL/SoftKnow.html. You can then use this informa-
tion to follow up on particular tools through the vendor’s sites. Report on your findings,
including as references any Internet sites you used.

A number of document-oriented CASE tools exist. Their purposes vary from templates
through to automatic document producers. Some of the tools available at the time of
writing are:
• ALDA: a tool that is used to create and use advanced technical documentation
• DocBuilder: a tool that automatically produces various types of documentation including

specification documents, design documents, and quality and test coverage reports
• LifeCDM: a document management system that covers publishing, management and

distribution of documentation.

Exercise 2.5

Team Activity

Create an appropriate website for ‘Bikes To
Go’ by using a prototyping approach.
Evaluate the prototype and make sugges-
tions for its improvement. Do not forget to
provide the proper documentation. Each

member of the team should evaluate the
prototype, one member as management, one
member as an employee and at least one
member as a customer.

41Application of software development approaches

1 Copy the following passage and complete
it by filling in the blanks with the
appropriate terms or phrases.

A large program is most likely to be
created using a approach. The
advantage of this approach is that a

of this size is created by a
. Members of the

need to be kept up to with
changes. The formal nature of the

encourages the production of
at each stage of .

CASE can also be used to help
with the as each member of
the team can access the latest
to the program.

2 Choose the alternative, A, B, C or D, that
best answers the question.

a A publisher wants to put its textbooks
on CD with links to the Internet. The
best development method for this
project would be:
A end-user development
B a prototyping approach
C rapid application development
D a structured approach

b A library installs and implements the
catalogue module of its new
management program while the other
functions are being performed by the
old program. This is an example of:
A direct cut-over
B parallel conversion
C phased conversion
D pilot conversion

c The interface of a client/server
application must:
A be responsible for processing inquiries
B meet the software requirements of

the user
C communicate the state of the

application and network messages
D provide the means for network

communication to take place

d A word processor can be used as a CASE
tool. Which one of the following tasks
cannot be undertaken by a word
processor?
A checking the syntax of a coded

algorithm
B coding an algorithm in a language
C creation of the user manual
D production of a data dictionary

e The issue of access to data in a new
system is an example of:
A constraints on the development
B operational feasibility
C social and ethical considerations
D technical feasibility

3 Describe the roles that the systems
analysts, programmers, management and
users play in each of the stages of the
structured approach.

4 A new computer program has been
developed to manage an aircraft in flight.
Which of the four implementation
methods would you use for this
application? Give reasons for your choice.

5 Use the classified advertisements in a
newspaper to investigate the types of
employment being offered in computers
and information technology. Report on the
conditions of employment (for example
whether the job is full-time).

6 What problems do developers of network
software have to overcome that
developers of single-user software do not?

7 A sheep stud keeps its breeding records in
a number of books. The owners are now
finding it difficult to keep track of the
data and have decided to develop a
program to perform this task. Choose an
appropriate development approach and
justify your choice. What CASE tools, if any,
would you use to help with this task?

Review exercises

Chapter summary

42 Heinemann Software Design and Development: HSC Course

• The four main approaches to software development are the structured approach, prototyping,
rapid application development and end-user development.

• The approach taken depends on the needs of the project and skills of the development team.
• The structured approach is the most formal and consists of five stages: defining the problem,

planning the solution, building the solution, checking the solution and modifying the solution.
• The problem-definition stage involves the systems analyst who examines the existing system

and determines the requirements of the new one.
• Management and users are also involved in the problem-definition stage.
• The feasibility of a solution is also examined at the problem-definition stage.
• The planning stage involves choosing the data structures and program structure, designing the

algorithms, planning the user interface, scheduling the project and choosing a programming
language.

• The planning stage involves the systems analysts and the programmers.
• The building stage involves the programmers who code the algorithms and test the solution.
• The checking stage involves testing the program with real data to ensure it works properly.
• The checking stage often involves the users and is called acceptance testing if employed on

custom software and beta testing if employed on application software development.
• Prototyping involves building a working model that the users evaluate. The prototype is then

modified and evaluated further.
• There are two types of prototyping: the first is used to gather information; the second is used

to evolve a fully working solution.
• Rapid application development (RAD) involves the use of existing modules to create a

solution.
• RAD uses automated tools to help with construction.
• End-user development is usually for small, personal solutions. They are usually created with

the help of an application program.
• A combination of approaches may be needed to solve a problem.
• There are four methods of conversion from the old system to the new: direct cut-over, parallel

conversion, phased conversion and pilot conversion.
• A direct cut-over involves a complete and immediate change to the new system.
• Parallel conversion involves the old and the new systems being fully used together.
• Phased conversion involves the gradual implementation of the new system.
• In a pilot conversion the new system is fully installed but only some of the functions are used,

the old system still being used for the other functions.
• The change in the availability of technology has changed the way software is obtained.
• The contracting of an outside company to develop software is known as outsourcing.
• Big businesses often use a client/server approach to software development as they employ

networks of personal computers.
• Individuals often customise off-the-shelf software to solve their problems.
• Popular languages are easy to use for people with little or no formal computer training.
• Computer personnel are employed more often on a contract basis than a full-time basis.
• Off-the-shelf software packages can be customised to provide a quick solution to a problem.
• Computer-assisted-software-engineering (CASE) tools can help with the development of a large

system.
• CASE tools help in tasks such as tracking software versions, creating and maintaining data

dictionaries, the creation of test data and the production of documentation.

33Defining and
understanding the problem

cchhaapptteerr

Outcomes
A student:
• differentiates between various methods used to construct

software solutions (H 1.2)
• identifies and evaluates legal, social and ethical issues in a

number of contexts (H 3.1)
• constructs software solutions that address legal, social and

ethical issues (H 3.2)
• identifies needs to which software solutions are appropriate (H

4.1)
• applies appropriate development methods to solve software

problems (H 4.2)
• applies a modular approach to implement well-structured

software solutions and evaluates the effectiveness of the
solutions (H 4.3)

• applies project management techniques to maximise the
productivity of the software development (H 5.1)

• creates and justifies the need for the various types of
documentation required for a software solution (H 5.2)

• selects and applies appropriate software to facilitate the design
and development of software solutions (H 5.3)

• assesses the relationship between the roles of people involved
in the software development cycle (H 6.1)

• communicates the processes involved in a software solution to
an inexperienced user (H 6.2)

• uses a collaborative approach during the software development
cycle (H 6.3)

• develops effective user interfaces, in consultation with
appropriate people (H 6.4)

44 Heinemann Software Design and Development: HSC Course

Defining the problem
• identifying the problem

– needs
– objectives
– boundaries

• determining the feasibility of the solution
– is the problem worth solving?
– constraints
– budgetary
– operational
– technical
– scheduling
– possible alternatives
– social and ethical considerations

Design specifications
• the developer’s perspective in consideration of:

– data types
– algorithms
– variables

• the user’s perspective

Modelling
• representing a system using diagrams, including:

– input, process, output (IPO) diagrams
– storyboards
– data flow diagrams
– systems flowcharts
– screen designs
– consideration of use of a limited prototype

Communication issues, including:
• the need to empower the user
• the need to acknowledge the user’s perspective
• enabling and accepting feedback

Students learn to:

Students learn about:

• develop and interpret design specifications from a user’s perspective, considering:
– screen design
– appropriate messages
– appropriate icons
– relevant data formats for display
– ergonomic issues
– relevance to the user’s environment and computer configuration
– social and ethical issues

• evaluate the extent to which a proposed system will meet a user’s needs
• differentiate between the different forms of systems documentation and the purposes for

which each is intended
• interpret a system presented in a diagrammatic form
• create a diagrammatic representation for a system using an appropriate method
• effectively communicate with users regarding a proposed software solution

45Defining and understanding the problem

Defining the problem
In the Preliminary Course we examined the three stages in problem solving: understanding
the problem, working out the solution and checking the solution. There are a number of
aspects involved in understanding a problem.

Identifying the problem
Problem definition involves examining a number of factors, including the needs of users, the
objectives that the solution is to meet and the boundaries within which the solution has to
operate. A further consideration, known as feasibility, is whether it is actually possible to
implement a proposed solution.

A number of different techniques are needed to ensure that all the factors that con-
tribute to the problem are identified. The use of these techniques will guarantee that all
contributing factors have been identified, and will ensure that the solution meets the
requirements of the end user.

Objectives

Problem
definition

Needs

Boundaries

Figure 3.1 The needs, objectives and boundaries of a system contribute to the
definition of a problem.

Needs
When defining the needs of a system, we need to focus on more than the needs of the user.
The user’s needs are an important factor, but there are other considerations. The needs of
the system will also involve the need to represent various data items, the need to store
certain facts, the need to perform certain processes and the need to output data in a
particular manner. For example, the needs of a system to handle the bookings of an airline
are entirely different from the needs of a system designed to help navigate an aircraft. One
of the needs of the booking system is to be able to store large amounts of data that can be
accessed from any one of a large number of terminals; the navigation system will be accessed

Figure 3.2 The needs of all types of user should be
established.

primarily from one location. There can be a
delay of some seconds between making an
enquiry and obtaining the answer from a
booking system; a similar delay in using a
navigation system could prove disastrous.

Human needs are probably the easiest for
systems analysts to identify since they can
mentally put themselves in the position of the
user. Activities such as surveys, interviews
and observation identify how people interact
with the current system and highlight the
problems they face. It is important to deter-
mine the needs of all classes of user, whether
direct or indirect, so that the new system can
perform properly.

46 Heinemann Software Design and Development: HSC Course

Other system needs are determined by the
type and amount of processing required. For
example, graphics systems to process full-
motion video images in real time need a very
fast processor and large amounts of primary
storage. Systems such as personal organisers
can be created with much slower processors
and smaller primary storage since the data
being processed is much less complex. The
manner in which processed data is to be
presented will also determine the needs of
the system. A system that is to output
dictated text to paper would have differing
needs from one that reads handwriting and
outputs it as speech.

Figure 3.3 The desire to manipulate sounds using
a computer brings with it a number of special needs.

Objectives
The needs of a system can be analysed to determine the way in which that system must
perform. The criteria that the performance is measured against are known as the objectives
of that system. For example, an aircraft navigation system will need to supply the various
outputs in real time (that is, as a value changes, the change must be reported immediately).
So one of the objectives of this system may be to calculate the altitude every fiftieth of a
second and display it. Expressing the objectives in a measurable way provides a means by
which the program can be evaluated.

The objectives of a system can be placed into categories. Some objectives will relate to
the interaction with the user, such as a maximum response time. Other objectives might
describe a minimum number of transactions that can take place within a particular period.
Other objectives might specify how the output is to be presented; for example, an objective
of a real time video image processing system would be that the vision and sound will be
output simultaneously.

In determining the objectives, the needs of the system are examined and converted into
a number of statements. These statements are written in such a way that they provide a

Figure 3.4 An automated production line has to meet
a number of objectives to be successful.

means of evaluating the performance of the
new system. For example, a manufacturing
company may wish to automate the pro-
duction line. The need of the company is to
perform several of the manufacturing tasks
using robots. This need is then translated into
certain objectives, such as the production line
being able to produce a certain number of
articles within a particular time.

Boundaries
A system performs a certain function within a
wider environment. For example, your nervous
system carries messages between the various
parts of your body. Your body is the environ-
ment within which the nervous system works.

47Defining and understanding the problem

Each system interacts with one or more other systems that exist within the same
environment. The outputs of one system become the inputs of the next one in the chain.
For example, the railway network can be seen as an environment that consists of three
systems: one to accept passengers into the network, one to transport the passengers and one
to send passengers out of the network. Within an environment, the places where outputs
leave one system and pass to the next are called boundaries.

Determining the feasibility of the solution
There is a great difference between wanting something and actually achieving that goal. For
example, Janine needs to go to London. She would really like to fly in her own aeroplane,
but she knows that there is no way she can afford it. So her problem cannot be solved by
this means. In other words, that solution to her problem is not feasible. However, other
solutions, such as flying with an airline, can be implemented.

The feasibility of a solution will depend on a number of factors. The factors range from
the obvious ones, such as whether the problem is worth solving. through to those that are
less obvious, such as whether the solution can be implemented within a reasonable time
frame. When a system is developed, these factors are examined and reported on in a
feasibility study.

Although it might appear to be trivial, it is
important to identify where the boundaries of
a system are to be. Different people will have
different ideas as to where a boundary
between two systems is. In the railway
example, the boundary between the transport
system and the system that passes passengers
out of the network could be seen as being the
platform edge or it could be seen as being the
ticket collector. When we develop a system, we
need to ensure that the boundaries are clearly
identified. In a team approach to software
development, each team member might have a
different idea as to the boundaries of the
system. If this were allowed to continue
through development, it is possible that the
program would not function properly. The
chosen boundaries can also influence the way
in which the system outputs will be presented.

Figure 3.5 We can think of the platform as the
boundary between two systems of the railway network.

Alternatives

Financial
feasibility

Technical
feasibility

Is the problem
worth solving?

Operational
feasibility

Scheduling
feasibility

Social and ethical
considerations

Constraints

Figure 3.6 A number of different
factors will determine whether a
solution is feasible.

Some criteria that contribute towards the
feasibility of a project can be thought of in terms of
more than one factor. For example, if a particular
hardware item needs to be developed and the
development will be expensive and time-
consuming, the need for the item will contribute to
the technical feasibility, financial feasibility and
schedule feasibility.

Is it worth solving?
The most obvious of the factors that need to be
considered when determining the feasibility of a
solution is whether the problem is really worth
solving. If the problem is a trivial one, it is probably
not worth spending the time and effort on devising
a solution. For example, if you don’t like the colour

48 Heinemann Software Design and Development: HSC Course

of the car that your parents have just bought you, paying for a complete re-spray of the car
is not really a sensible solution. Changing the colour of the car would not affect the way in
which the car performs its task. However, if the brakes on the car needed attention, you
would have no hesitation in having them repaired, as not solving that problem would be
very dangerous.

Constraints
A constraint is a limitation that is placed on something. Constraints are many and varied,
but all will have some effect on a project. A constraint may be as obvious as a limited
budget, or it may be the inability of staff members to accept a change. The nature of all the
constraints must be fully investigated, as the design of the new system will have to take
place within these constraints

As the design process progresses, some of the original constraints may be eased and
others may appear. For example, if we were going to design a new television set, we might
like to incorporate a satellite-receiving dish within the set. At the moment this technology
is not available, so the design is constrained by this fact. If, however, a new technology
appears that allows the dish to be incorporated within the television, the constraint has been
removed. As computer technology is advancing very rapidly, what begins as a technical
constraint for a software development project may not be one by the time the project has
been completed.

Budgetary considerations
Budgetary considerations will come from a number of sources. The development cost of a
system is only one of the costs that has to be met. Other costs will include the initial cost
of implementation and the ongoing running costs. A business must be able to afford to
implement a system in order to benefit from its implementation. However, the additional
income and/or the projected savings need to be more than the cost of implementing the
solution.

The cost–benefit analysis is an important part of the budgetary component of a feasi-
bility study. The purpose of a cost–benefit analysis is to weigh up all the costs involved in
implementing and operating the new system. The costs of the system, together with the
running costs, are calculated as accurately as possible over an estimated lifetime of the
system. These costs are then weighed up against the increases in income and decreases in
costs that will flow from the new system. The calculations are incorporated in a detailed
report that also provides an opinion as to whether the project is financially worthwhile.

Operational considerations
The purpose of a new computer system is to meet the needs of the organisation. In meeting
these needs, the new system will have some form of impact on the members of the organisa-
tion, from management through to the direct users.

The main way in which the new system will impact on these people is in the area of
manual processing. In order to be successful, the computer system must be complemented
by an efficient manual system. If the requirements for manual processing are too difficult to
implement, the overall performance of the system will suffer. A number of factors affect the
ability of an organisation to implement new manual processes.

Tasks carried out by personnel within the organisation are usually very clearly defined.
If the implementation of a new system changes the nature of this work, the issue of
redefining the worker’s role becomes important. In some cases this can be done simply by
negotiation with the individual. In other cases negotiation with union personnel may be
required. Further problems in defining new roles may be caused by government regulation.

When tasks within an organisation are redefined, some job descriptions might cross old
boundaries. For example, the introduction of garbage trucks with bin-lifting mechanisms
meant that the driver became responsible for emptying the bins as well as driving the truck.

49Defining and understanding the problem

The crossing of boundaries can often redefine
the jobs of those workers who are not directly in-
volved with the system; for example, middle
managers might find that their department has
been incorporated into one or more other
departments. This effect can force the organis-
ation into a complete restructure.

All of these factors need thorough investig-
ation before the creation of the new system, as
some operational factors may prevent the
successful implementation of the system.

Technical considerations
The technical feasibility of a proposed solution is
concerned with establishing whether the
hardware and software needs of that solution can
be realistically met. Users who are unfamiliar
with the technical aspects of computers can have
totally unrealistic concepts of the tasks that can
be performed by them. For example, English
teachers might like to have a program that marked English essays. The computer technology
exists that can input handwritten text for processing, but software that can accurately mark
a student’s essay would be extremely difficult, if not impossible, to create.

Since the success of the project depends on hardware and software being available to
perform the required tasks, the systems analyst needs to have a sound knowledge of the
latest developments in the field as well as extensive programming knowledge.

As with the other areas of a feasibility study, the technical feasibility study must be
thorough and accurate. If this area is not properly investigated, a technical hitch could occur
halfway through the project which could lead to the project being abandoned.

Scheduling
There is often a need to implement a new system within a fixed time limit. The best
example of this was the need to overcome the ‘Y2K’ problem before the year 2000 began.
The limited time for implementation also places pressure on the development team to
complete all activities before the deadline. Thus scheduling feasibility will not only
investigate the feasibility of a project completion date but will also report on the most
desirable development approach. When there is limited time before implementation, the
best option for implementation may be a modification of the existing system rather than the
development of a completely new one.

Possible alternatives
Once all the factors have been investigated, a number of alternative solutions, including
leaving the system unchanged, are proposed. Included in each proposal is a rough estimate
of the cost of the solution. The advantages and disadvantages of each of the proposals are
documented. Finally, a recommendation is made by the analyst and passed on to manage-
ment for a decision.

Social and ethical considerations
The introduction of a new system will always have an impact on people. Some of the
impact will be felt by management, some by direct users such as employees and some by
indirect users such as customers. These impacts can be thought of as social impacts and
ethical impacts.

Figure 3.7 Changes in work practices may cause
resentment or prevent the implementation of a new
system.

50 Heinemann Software Design and Development: HSC Course

Previously it was noted that there is often a change in the work practices that accompany
the introduction of a new system. This is an example of one of the ways in which the system
will impact socially. The change in work practices may mean that some employees lose their
jobs, while others are required to perform new tasks. Some of these effects may spread out-
side the organisation. For example, employees who lose their jobs will need to find
other jobs.

Sometimes the introduction of a new system
will impact on the general population in quite a
significant way. The introduction of automatic
ticketing machines on Melbourne’s public trans-
port system affected not only the employees but
the public who used the system. A number of
social problems emerged, ranging from trouble
with access for the disabled through to an
increase in fare evasion and vandalism.

Ethical considerations also need to be taken
into account when introducing a new system.
This is especially important when private or sen-
sitive personal information is involved. Each
individual has a right to privacy and steps should
be taken to ensure that, with the introduction of
the new system, this right is respected. Also, if
any code or programs from outside sources are to
be used, copyright issues need to be addressed.

Figure 3.8 The introduction of ticketing machines in
Melbourne had a wide-ranging effect on the population.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

The three stages of problem solving are the problem, the
solution, and the solution. Defining the problem involves examining the

of the users, the that the solution has to meet and the
within which the solution has to operate. The other consideration is

, that is, whether it is actually to implement a proposed solution.
All that contribute to the problem must be so that the solution
meets the of the end .

2 Apart from the needs of the user, other needs must be met when designing a new system.
Name and describe these needs in your own words.

3 As well as needs, each system must meet certain objectives. What is meant by the term
‘objectives’? Describe, using examples, the types of objective that have to be met by the
new system.

4 Explain what is meant by the term ‘boundary’ when applied to a system. Use an example
to illustrate your answer.

5 What is a feasibility study? What is the purpose of a feasibility study in developing a new
system? Use an example to illustrate your answer.

6 Describe the different factors that need to be taken into account when investigating the
feasibility of a solution.

7 A school wants to improve its school report system. Briefly describe the needs of such
a system.

8 For the school report system, describe some of the objectives that it will have to meet.
Include some performance objectives and some objectives relating to the user interface.

Exercise 3.1

51Defining and understanding the problem

Design specifications
Once a system has been chosen from the
options, the design process has to be con-
sidered. This process should not be rushed.
Careful planning of the development of the
system will ensure that development resources
are used efficiently. The design specifications
will lay down the guidelines for development
and give a yardstick that can be used to measure
the success of the project. The specifications
cover a number of different aspects of the
design process: the scope of the project, data
design, overall program design, interface design,
process design, a cross-reference with the
requirements definition and implementation
and testing of the final project.

The scope of the software project provides
detail about how the software fits in with the
whole project. The scope also defines the
boundaries within which the software will
operate. Also included are the forms of the
input and output data, together with a description of the processing needed to convert the
inputs to outputs. Special processing needs are also included within the scope statement.

The data design section of the design specification will identify the data objects required
for processing and the resulting data types required for both internal and external use. File
structure and access are also covered in this section. The final task of the section is to cross-
reference the data items to their appropriate files.

In the overall design of the program, the system is represented by a series of structure
charts (see p. 66 for a full description) which represent program modules and the inter-
actions between them. These are used to illustrate how the program will be constructed.

The interface design specifications are concerned with the human–machine interface and
the interface between modules. This involves specifying how the user will interact with the
program, together with a set of design rules for the interface. Equally important to the
design of the program are the specifications that describe the interfaces between modules
and between the program and external devices.

Each module within the program is then described in detail. For each of the modules, a
description of the processing is written. Also included within this section is a description of
the interface, the algorithm or algorithms that describe the module, the local data
structures used within the module, and any restrictions or limitations that may be placed on
the processing.

Cross-referencing the requirements definition to the software design process ensures that
all the user’s requirements will be met by the software. The cross-referencing also indicates
which of the modules are important in meeting each of the particular requirements.

The processes of implementation and testing need to be designed in the same way as any
other process. It is not just a matter of testing each module, combining the modules and

9 Describe some of the factors that should be taken into consideration when determining
the feasibility of the school reporting system.

10 What are the social and ethical considerations that have to be taken into account when
designing the school reporting system?

Implementation
and testing

Design
specification

Interface
design

Cross-reference
with the

requirements
definition

Process
design

Overall program
design

Data
design

Scope of
the project

Figure 3.9 A design specification covers a number
of different aspects of the development process

52 Heinemann Software Design and Development: HSC Course

testing further, then putting the system into place and hoping for the best. As with any
process, implementation and testing procedures need to be specified before they are used.
In this section of the design process the general processes for testing are outlined. As each
module is developed, it will be tested within the general guidelines, although special testing
methods may also be required. If special methods are needed, they will again be designed
before the construction of the module takes place. It is also important that the installation
onto the customer’s site is carefully planned, as the installation of the system will disrupt
normal working practices.

The developer’s perspective
A developer views the solution of the customer’s problem differently from the way the
customer views it. The customer wants the problem solved, and has little interest in how
the solution is arrived at. The developer is faced with the task of converting the customer’s
wishes into a computer program. Thus, the developer must look at the problem in terms of
data types, variables and processes.

Data types
The choice of suitable data types for use within a program is one of the most important
decisions a programmer has to make. Without appropriate data types, algorithms can be
difficult, or even impossible, to design. A well-chosen type can make an algorithm much
simpler to design and implement.

Three factors influence whether a particular data type is appropriate for the task. The
first is whether the type is able to cater for the storage of all possible data items. The second
is whether the type can be visualised by the programmer and expressed as a model on paper.
Finally, a data type has to reflect the data and be able to allow the sort of processing required
by the problem. These examples illustrate how to decide on an appropriate data type.

the maximum integer size is usually 32767 (216 − 1), the program may not be able
to cope with some days’ takings (as 32767 cents is only $327.67). The more obvious
reason for choosing a real number data type is that an amount of money is normally
expressed as a floating point number. This means that we would use real variables for
the amounts.

Example 1
PROBLEM
A program is to be written to monitor the
takings of a cash register. The program will
only output the total day’s takings at the
close of business.

DATA TYPE
The data is quite clearly numerical, so the
use of character, Boolean or string data types
is not appropriate. Since the transactions do
not have to be stored individually, an array is
not required. (If the problem specification
had required that each transaction needed to
be stored, an array would have been needed.)
This leaves us with a choice between the
integer and real number types. Some may
consider using an integer data type with all
amounts being expressed in cents, but since

Figure 3.10 The takings of a cash
register can be monitored by a program.

53Defining and understanding the problem

Example 2
PROBLEM
When an item’s barcode is scanned at a
supermarket checkout, the product code is
checked to determine whether the scan-
ning process is successful. The check
involves adding the sum of the digits in the
odd positions to three times the sum of the
digits in the even positions. If the result of
the addition is divisible by ten, the object
is deemed to have been successfully
scanned. A data type has to be designed for
a barcode verification module. For example,
in the barcode 9 7 8 0 8 5 8 5 9 6 3 7 5 the
digits in the odd positions (that is 9, 8, 8,
8, 9, 3 and 5) add up to 50 and the digits
in the even positions (7, 0, 5, 5, 6 and 7)
add up to 30. When the values 50 and 3 ×
30 are added, it produces a sum of 140
which is exactly divisible by 10, so the
barcode is valid.

DATA TYPE
An initial look at the problem suggests that a numerical data type may be suitable.
However, this is not the case, as extracting each of the digits from an integer or a real
number requires a complex algorithm and may take excessive processing time. This
is not the only reason for rejecting these data types. There is also a problem with the
internal representation of both integers and real numbers when applied to this
problem. Most barcodes have 13 digits, which means that the normal two-byte
integer data type is not capable of handling values that size (remember that the range
is –32768 to +32767). In fact, six bytes would be needed to give the required range
in twos complement form. As discussed in the Preliminary Course, the use of floating
point representation involves approximating values, so the barcodes may not be
exactly representable in binary. A more suitable data type would be an array of
characters. By choosing an array of characters, each digit becomes individually
accessible, thus simplifying the algorithm. The storage required (13 bytes plus one or
two extra bytes to store the array size) is only twice that of integer representation but
has the added advantage of easier processing.

Figure 3.11 A scanned barcode needs to
be verified before it is used.

Variables
Variables are used by programmers to represent storage locations within the computer. A
programmer will look at the entities (data items) that need processing and determine how
they are going to be accessed. Part of this process is to determine the data type that is to be
used to represent the data item; the other part is to choose an appropriate identifier (name)
for the data item.

54 Heinemann Software Design and Development: HSC Course

Example 3
PROBLEM
Shape recognition is used in many computer
applications, one of them being OCR (optical
character recognition). An algorithm is required
for a computer program that reads a special set of
printed characters from a cheque, turning them
into numerical data for further processing. The
‘character scanner’ contains a lens that projects
the image of the character being ‘read’ onto a grid
of light-sensitive cells. An algorithm is required
which matches a pattern of light on the grid to a
particular character.

DATA TYPE
Each of the cells in the grid responds to light by
creating an electrical impulse which is digitised by

Figure 3.12 A shadow pattern
on a sensing grid can be
represented by an array.

a computer interface. In this way the information being interpreted by the computer
program is a series of 0s (corresponding to dark patches) and 1s (corresponding to
light patches). On paper the detector can be represented by a two-dimensional grid,
and this representation can also be used for the data type. As data enters the
recognition system as a series of 0s and 1s, we only need a data type that can represent
two states; this leads to the choice of the Boolean data type. Consequently, the most
suitable data type for this application is a two-dimensional array of Boolean data,
with its dimensions equal to the number of rows and columns of the sensing grid (see
Figure 3.12).

Example 4
PROBLEM
A second module is required for the barcode scanning and pricing process mentioned
in Example 2. The purpose of this module is to match the scanned barcode to the
items in a database and return the item’s description and price.

DATA TYPE
The data required to be stored for each item in the supermarket is of varying types.
The description of each item is a string of characters, the price is a real number and,
as decided above, the barcode is to be stored as a one-dimensional array of characters.
Since each of these data elements needs to be stored under the one broad description,
a record is needed for each item stocked by the supermarket. However, the super-
market stocks more than one item, each needing the same elements, so an array of
records is required.

55Defining and understanding the problem

sible to the modules that need them. This means that the programmer has to look at the use
of global variables to represent these items. Other variables will only be needed within a
module, so they can be created as local variables for that module. The distinction between
these types of variable is made so that unpredictable changes are not made to the values
of variables.

Module 1 Module 2

Module 3 Module 4

Local
variables

Local
variables

Local
variables

Local
variables

Global
variables

Figure 3.13 Global variables are accessible to all
modules. Local variables are accessible only to the
modules for which they are defined.

The choice of an appropriate identifier is
very important in the process of program-
ming. If identifiers are not given names that
represent the item being processed, then it
becomes difficult to follow the logic of the
program without making notes. (These notes
are usually included as comments or
remarks.) This choice of names is known as
internal documentation.

For example, if the variable identifier X
was chosen to represent the amount of GST
charged on a service, another member of the
development team who had to read the
algorithm would have no indication of what
was being processed. It is much better to use
a name such as GST_value. (Note that the
underscore has to be used since spaces are
used to separate words.)

The use of variables within the program is
also of importance. The programmer must
make sure that data values are made acces-

false

true

Set count to
start

Begin

Process
array item (count)

Increase count
by 1

Count is
greater than

last

End

Figure 3.14 An algorithm that
processes each of the elements of
an array can be modified for any
number of purposes.

Algorithms
In order to construct a successful solution to the
problem, the programmer has to understand the
processes that need to be carried out by the program.
This understanding then has to be translated into the
algorithms that will form the program. The program-
mer’s experience, together with various systems des-
criptions, will be used to design the algorithms required
by the solution.

As seen earlier in the course, few programs consist of
a single simple algorithm. This means that the program-
mer has to break down the problem into smaller
modules until each of the modules can be expressed as
a simple algorithm. The process is known as top-down
decomposition. While decomposing the problem into
these smaller units, the programmer must continually
ensure that the client’s problems are being addressed
rather than trying to make the program elaborate.

Once each of the algorithms has been identified, the
programmer will look for familiar modules. The familiar
modules can often be drawn from the programmer’s
library, modified for the new application and inserted
with minimal testing. For example, most programmers
have a regular module for accessing each of the elements
of an array. This module can be modified for any process
that requires each of the array elements to be accessed
in turn.

56 Heinemann Software Design and Development: HSC Course

MAIN MENU

MENU 1 MENU 2 MENU 3

Item 1.1 Item 1.2 Item 1.3 Item 2.1 Item 2.2 Item 3.1 Item 3.2

Figure 3.15 A hierarchical menu system allows users to know exactly where in the
program they are.

For algorithms that have to be written from the start, programmers will often first work
through the processing manually in order to identify the individual processes involved.
These can then be translated into an algorithm. It is important that, for this stage of the
development process, the programmer has a clear understanding of the data items that have
to be manipulated. If the data items are not clearly defined in the programmer’s mind, the
processes chosen may not perform the required task or they may become too complex.

The user’s perspective
Software applications are often written for a number of different users. The users perform
their own distinct tasks, having individual requirements within the one application. The
programmer has to provide the means for these needs to be met.

One of the user’s basic needs is for the program to provide the processing necessary to
complete the job. One of the most effective ways of achieving this goal is to have the user
navigate through a number of levels to reach the required module of the program. This
approach is a hierarchical one. In this arrangement, choices are given at a number of levels
within the program. In using this approach, programmers force the user to exit through the
same menus in the opposite direction in order to ensure that he or she does not become
lost. In this way, the user’s paths through the program are structured and predictable.
Predictability brings comfort to the user.

Particular processes may require the user to interact using special peripheral devices. The
manner in which these devices operate can also have a bearing on the way that the user
perceives the software. For example, devices such as EFTPOS terminals have a very limited
screen, so messages and prompts must be brief and to the point. Many users of these devices
are also not computer literate, so the design of the interface needs to be carried out with
this in mind.

57Defining and understanding the problem

Modelling
A programmer must fully understand a problem before attempting to create a solution.
Many tools can help with this process. Some of these tools are used to gain an overall picture
of the system; others are used to help understand the processing; others are used to explain
the interaction between parts of the system. No one tool can perform all these tasks. This
section examines some of these tools and their uses.

Representing a system using diagrams
The old adage ‘a picture is worth a thousand words’ is certainly true in software develop-
ment. A diagram on a single sheet of paper can fully describe a system, whereas a written
description of the same system may take a number of pages. For example, the diagram in
Figure 3.16 represents the way in which an address book program with password protection
works. It is an example of a data flow diagram. Data flow diagrams show the relationship
between the various modules and the data items that pass between them.

Input, process, output (IPO) diagrams
An IPO (input, processing, output) chart is used to describe the data elements that will
enter the system (or subsystem), the processes that will occur and the data elements that
will leave the system. Although the formats of IPO charts may differ, they will contain a
heading, a list of inputs, a description of the processes and a list of outputs.

IPO diagrams provide a quick and easy method of investigating a system. Since they
indicate the inputs, outputs and processing, they can be used to understand how data is
being manipulated by the system.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.
The design specifications cover the of the project, design, overall

design, design, design, a cross-reference with the
together with and of the final project. This

specification lays down the for the development as well as providing a
yardstick that can be used to the success of the .

2 Describe the purpose of the design specifications.

3 Explain with examples why it is important for the developer to carefully choose the data
types to be used in the program. What happens if the wrong data types are chosen?

4 Why do programmers choose a special name for each of the identifiers in a program? Use
examples to illustrate your answer.

5 Describe the process of top-down decomposition. Explain why this process is widely used
as a software development approach.

6 Explain how a software developer can cater for the needs of the user. Use an example to
help illustrate your answer.

7 In Exercise 3.1 you examined a school report system. For this system, identify the data items
and data types that will be needed.

8 Choose appropriate variable names for each of the data items you identified in question 7.

9 Describe the main processes that have to be carried out in the operation of the school
report system. Some of these processes will be manual ones.

10 Describe the user requirements for the school report program. What special peripherals, if
any, can be used as part of this system?

Exercise 3.2

58 Heinemann Software Design and Development: HSC Course

User

User

ADDRESS MASTER
FILE

SORTED
LIST

SORTED
LIST

PASSWORD

Security
check

Search
list

Display
address

WANTED
NAME

NAME, ADDRESS,
PHONE NUMBER

Check
validity

User

User

Sort
alpha on
surname

NAME, ADDRESS,
PHONE NUMBER

NAME, ADDRESS,
PHONE NUMBER

NAME, ADDRESS,
PHONE NUMBER

SORTED
LIST

Figure 3.16 This diagram illustrates the interaction between the modules of an address
book program.

Water Heat Growing plants

Sunlight Light Food

Electricity Moisture

Plants Growth

Sensor readings

Soil

Fertiliser

Input Process Output

Figure 3.17 An IPO chart describing an automated greenhouse.

IPO charts can also be drawn for any subsystem to show more detail, such as how each
component manipulates the data. For example, Figure 3.17 shows the IPO chart for an
automated greenhouse using a computer system to control temperature, light and water.
This system can be broken further into three separate parts: there is one subsystem for
temperature control (shown in Figure 3.18), one for the watering system (shown in Figure
3.19) and one for the light control.

IPO charts can help us determine how data is manipulated by the computer system, and
when developed for subsystems of the main system can show how each component of a
system manipulates the data.

A different IPO chart format is shown in Figure 3.20. This chart describes the processing
of an employee’s wages to determine the amount of tax to be deducted, the outputting of
the net wage (after-tax wage), and the amount of tax payable. The form that the processing
takes is shown in more detail than in the previous type of chart.

59Defining and understanding the problem

Figure 3.18 An IPO chart describing the temperature-control subsystem.

Storyboards
Storyboards are generally used for giving an overview of a program. They are particularly
useful in multimedia productions and interactive programs where there are a large number
of screens with complex patterns of navigation. They may, however, be used in simpler
navigation systems as well.

Storyboards are useful for giving an idea of screen layout and of how groups or clusters
of screens relate to each other. They also indicate the options available on each screen
for navigation. Storyboard arrangements can be categorised as linear, hierarchical, network
or hybrid.

Temperature Reading sensors Warmth

Electricity

Input Process Output

IPO chart
System: WAGES
Function: TAX, NET PAY CALCULATION

Input:

GROSS_WAGES

Process:

1. TAX_SCALE found from TAX_FILE

2. TAX_AMOUNT = GROSS_WAGES x TAX_SCALE

3. NET_WAGES = GROSS_WAGES – TAX_AMOUNT

Output:

NET_WAGES
TAX_AMOUNT

Figure 3.19 An IPO chart representing the watering subsystem.

Figure 3.20 An alternative form of IPO chart, describing a module that
calculates the net wage and tax payable.

Moisture reading Reading sensors Water to plants

Electricity

Water

Input Process Output

60 Heinemann Software Design and Development: HSC Course

A hierarchical storyboard arrangement could apply to a school administration system
(Figure 3.24). The top level of the system is the main menu, each of the system’s modules
being accessed from this menu or menus at a lower level.

Figure 3.22 Representation of a railway ticketing system as a linear storyboard.

Module 1

Module 4 Module 5 Module 6 Module 7

Module 8

Module 2 Module 3

Figure 3.23 A hierarchical arrangement of storyboards.

60

Linear
In a linear arrangement, control passes from one subsystem to the next in a single sequence
(see Figure 3.21).

A system such as a railway ticketing system may be represented by a linear storyboard
arrangement if the system is viewed as the processes of ticket sales, ticket checking on
admittance to the platform and collection of the ticket at the destination. It can be
represented by the arrangement in Figure 3.22.

Module 1 Module 2 Module 3 Module 4

Figure 3.21 A linear storyboard arrangement.

Hierarchical
In a hierarchical arrangement the subsystems are arranged as a tree. To reach a particular
subsystem requires moving through each of the subsystems which are at a higher level in
the tree (see Figure 3.23).

Ticket
selling
system

Ticket
checking
system

Ticket
collection

system

61Defining and understanding the problem

An online library catalogue shown in Figure 3.26 is an example of a system that can be
represented as a network. The user may wish to search for an item using a keyword (or
keywords), an author’s name or a subject. The search module will be basically the same, and
then the book details and availability modules will become available.The user can trace back
through the search to either refine the search criteria or review progress. This system leads
to a small interconnected system.

Network
In the network arrangement the subsystems are arranged as a web, in which modules may
be directly accessed from other modules (see Figure 3.25).

Module 1

Module 2 Module 3

Module 4 Module 5 Module 6 Module 7

Module 8

Figure 3.24 A representation of a school administration system arranged as a
hierarchy of storyboards.

Main menu

Family
details

Student
subject

information

Teacher
information

Class lists

Student
classes

Student
details

Class
details

Figure 3.25 A network arrangement of storyboards.

62 Heinemann Software Design and Development: HSC Course

Hybrid
A hybrid arrangement is a combination of two or more of the above types (Figure 3.27). A
teaching and learning system can be represented by a hybrid arrangement of storyboards
(see Figure 3.28). A linear system moves from topic to topic, and an interconnected system
is used to assist with the correction of problems in any topic. If a student performs well in
the pre-test, it is possible to pass on to the next topic without instruction. The lessons are
placed in a sequence that is followed by the student. When a student has completed the
post-test (following instruction), the results of the test are used to send the student either
back to the lesson (if poorly understood) or on to the next topic in the sequence.

Main menu

Keyword
search

Summary of
book contents

Availability
of book

Author
search

Display of
found items

Single book
details display

Title
search

Figure 3.26 A representation of a library catalogue system using a network
arrangement of storyboards.

Figure 3.27 A hybrid arrangement of storyboards.

Module 1 Module 2 Module 3

Module 4 Module 5

Module 6 Module 7 Module 8

63Defining and understanding the problem

Data flow diagrams
IPO charts show only the inputs, processes and
outputs of a system, without showing relationships
between them. Storyboards show the relationship
between the screens within an application. Data
flow diagrams show the flow or path of data
throughout the system. They indicate how and
where data is entered, stored, processed and output.
Data flow diagrams are very useful for indicating
where tasks overlap or where unnecessary storage or
transmission of data occurs. Figure 3.29 shows the
main symbols in data flow diagrams.

Introduction Pre-test Next topic

Lesson 1 Post-test

Lesson 2 Lesson 3 Lesson 4

Figure 3.29 The symbols used in data
flow diagrams.

A source or
destination of
data—a sink

A process

Data flow

A file or data
storage

Figure 3.30 A data flow diagram for a supermarket barcode reader.

A box is used to represent a source (the input of data into the system) or a sink (the
output of data from the system). A circle represents the processing of data. An open
rectangle represents storage of data within the system. Arrows are used to indicate the flow
of data between parts of the system. Figure 3.30 shows the data flow diagram for a
supermarket barcode scanner and checkout system. Note that data must always flow either
to or from a process.

Figure 3.28 A representation of part of a teaching system.

User

Cash
register

PRODUCT NAME
AND PRICE

User

Check
validity

Read
barcode

Obtain
product

name and
price

PRODUCT MASTER
FILE

PRODUCT NAME, PRICES
AND BARCODES

REGISTER
DOCKET

VALID BARCODE

BARCODE

PRODUCT

64 Heinemann Software Design and Development: HSC Course

System flowcharts
The previous tools provide an understanding of only the data flow and the processes
involved. To further understand an existing computer system and be able to identify possible
improvements, it is necessary to have an understanding of the hardware being used and how
it all interrelates. System flowcharts enable a graphical model of the physical system to be
developed, indicating hardware devices, the storage medium and processing units.

Software developers need to understand the overall workings of the system that will use
the software, in order to know where the software fits into the whole system. The standard
symbols used in a system flowchart are shown in Figure 3.31. The system flowchart in
Figure 3.32 shows the relationship between the components of an automated greenhouse.

Environment
control

Storage

Monitor

Moisture
sensor

Temperature
sensor

Temperature
control

Sprinkler
control

Figure 3.31 The standard symbols used in a system flowchart.

Processing
Manual

operation Disk
storage

Tape
storage

On-line
storage

Communications link

Connector

Document
(e.g. a form

or report)

Display device
(e.g. VDU,

printer)
Manual input

(e.g. keyboard)

Figure 3.32 The system flowchart
for an automated greenhouse.

Screen designs
The interface between the computer and the user cannot be treated as an afterthought.
Before program construction begins, the screens need to be designed. This allows the
programmer to integrate the screen design into the program right from the start, rather than
having to integrate the design into an already-written module.

Screen design sheets will vary in layout. All sheets will contain an area for the actual
screen design. Other areas of the design template will specify the links between that screen
and other screens. The screen sheet will also contain a heading area that provides the details
of the program, programmers, date of design and any other important aspects of the screen.
CASE tools may also be used very effectively in the screen design process; integrated tools
allow the design to be automatically introduced into the final application.

Screen layouts will also be included in the sections of the program documentation
known as the input and output catalogues. These catalogue entries describe the purpose of
each of the inputs and outputs as well as the form that it takes.These catalogues also include
any report designs that are required by the program.

65Defining and understanding the problem

Consideration of the use of a limited prototype
A developer can use a prototype as an effective development tool. As seen, a prototype can
be developed into a full working solution. A prototype can also be used to gather further
information about the way in which the system works.

When a prototype is used as a development tool it is designed rapidly using one or more
CASE tools, often without regard to data validation or verification.The aim of the prototype
is to determine how the system works, especially in the area of the human interface. The
prototype fulfils this aim well. Since the user is presented with a working solution, valuable
information is gained by the developer. This is especially true for interactive applications in
which the contact between the user and the program is important. Prototypes of this kind
are not suitable for applications that involve complex mathematical calculations, in part
because input data is not verified or validated.

Other systems representations
A number of other methods of systems description methods are available to help with the
design of a software application. Decision tables and decision trees help the programmer to
understand the decisions that have to be made by a program. Structure diagrams are used
to show the relationships between the various modules of a program.

Figure 3.33 A screen
design sheet will
include the screen
layout, together with
other details important
to its use.

XYZ Computing Pty Ltd
SCREEN DESIGN FORM

Project: Teacher’s Friend Markbook Date: 27/10/2009
Programmer: K M Fowler Screen: Student Data Entry Screen

Load Save Print Statistics Help Exit
Name Header Test Headings

Student Name Score Score Score Score Score Score Score Score

Student Name Score Score Score Score Score Score Score Score

Student Name Score Score Score Score Score Score Score Score

Student Name Score Score Score Score Score Score Score Score

Student Name Score Score Score Score Score Score Score Score

Student Name Score Score Score Score Score Score Score Score

Student Name Score Score Score Score Score Score Score Score

Student Name Score Score Score Score Score Score Score Score

Scroll Bar
Prompt Bar

LINKS:
Load button: Link to “Open File Screen”
Save button: Link to “Save File Screen”
Print button: Link to “Printer Dialogue Screen”
Statistics button: Links to “Class/Individual Statistics Choice Screen”
Help button: Link to “On-line Help Screen”
Exit button: Link to “Confirm Exit Screen”

NOTES:

S
c
r
o
l
l

B
a
r

66 Heinemann Software Design and Development: HSC Course

Decision tables and decision trees
The processes that operate on data in most information systems are determined by
decisions. These decisions can take place in the computer, such as selection criteria or the
scoring in a computer game, or they can take place outside the computer system, such as an
operator accepting or rejecting applications. These decisions are made based on the data
entered into the system according to a set of rules or conditions. Two tools used to display
and analyse decisions are decision tables and decision trees.

A decision table indicates the alternatives for different circumstances based on the rules
provided in the form of a table. They can be used to provide an understanding of the factors
that affect data flow or processes in the system. For example, Figure 3.35 shows the decision
table for the temperature-control subsystem for an automated greenhouse.

Figure 3.35 Decision table for a temperature-control subsystem.

Figure 3.34 Interactive
games, such as Half life,
may be developed with the
aid of a limited prototype.

Temperature-control subsystem Rules

1 2 3

Temperature is < 20 Y Y N

Temperature is < 10 N Y –

Turn one heater on Y N N

Turn two heaters on N Y N

Decision trees indicate the decisions made within a system as the branches of a tree.
They can be used in a similar way to a decision table, but they are easier to follow where
decisions are based on results of previous decisions. Figure 3.36 shows the decision tree for
the greenhouse temperature-control subsystem.

Structure diagram
A structure diagram is used to show the precise relationships between the various modules
of a system. The chart employs rectangles to represent the modules, lines to represent con-
nections and labelled arrows to represent the data items being passed between the modules.
The use of a structure diagram allows program modules to be developed independently, as
the exact forms of the input and output from these modules is known.

Symbol Meaning

Module 1

Module 1

Module 1

Module 2

Module 5

A rectangle represents a module.

The arrow shows the passing of a parameter.

A filled arrow indicates a control parameter.

A diamond indicates that a decision has to be made
as to which module is executed.

A circular arrow indicates repetition.

An optional module is indicated by a diamond at
the calling module. In this case, module 5 is optionally
called by module 2.

67Defining and understanding the problem

Structure diagrams are drawn to conform to a set of rules or conventions. Modules are
represented by rectangles and are arranged from top to bottom with the controlling
modules at the top. The order of execution of modules is from left to right. The symbols
used and their meanings appear in Figure 3.37.

Figure 3.37 Structure diagram symbols.

5

3

4

1

2

Temperature < 20

Temperature > 20

Temperature < 10

Temperature > 10

No heating units

Turn two
heaters on

Turn one
heater on

Figure 3.36 The decision tree for the temperature-control subsystem.

68 Heinemann Software Design and Development: HSC Course

In the example in Figure 3.38, data item A is passed from module 1 to module 3, data
item G is passed back to module 1, and data item B passes from module 3 to module 7.
Module 8 passes data item H to module 5 which, in turn, passes the item on to module 2.
Module 2 illustrates the use of a decision; it will either call module 5 and pass data item D
to it or call module 6 in which case it passes data item E as a parameter. Module 1
repetitively calls upon module 4, passing data item C to it.

The structure diagram in Figure 3.39 represents a supermarket scanning system at a
checkout. The scanned barcode is compared with the barcodes database in the supervising
system, and the item’s price is then sent to the till. At the same time, the item is deducted
from the stock-in-hand database in the stock system. This process is repeated until all items
have been scanned. After scanning, a total is calculated and printed on the customer’s
docket. When the total has been paid at the checkout, the amount is added to the day’s
takings transaction file for that checkout and the store.

Figure 3.38 A structure diagram shows the relationship between modules, together with the
flow of data between them.

Figure 3.39 A structure diagram representing a supermarket checkout system.

Supervising
system

Till
printer

Cash
till

Transaction
file

Stock
system

Barcode
reader

Barcode

Total sale

Barcode
Total sale

Item cost

Barcode
Item cost

Total sale

Module 8

Module 6Module 5 Module 7

Module 4Module 2

Module 1

Module 3

F
C

AG

D
H

E B

H

69Defining and understanding the problem

Communication issues
Implementation of a new system is always a great deal easier if those involved with the
system feel that they have contributed to the changes. Many conflicts can be avoided if
genuine communication is carried out between the developers and the users.

Developers are familiar with the technical aspects of a new system; the users are familiar
with the operation of the current system. If these two perspectives can be joined in a har-
monious way, the developers will benefit by creating a successful working system that is also
accepted by the end users. Users will also benefit from this approach, since their experiences
and concerns can be used to steer the development process to a successful conclusion.

The need to empower the user
Changing work practices are often cause for discomfort, resentment and fear. People who
are going to be affected by these types of change will more readily accept them if they feel
that they have had input into the process. People feel comfortable when they have some
control of the situation and have a sense of ownership of the product.

Users will claim ownership of a software application that has been developed with their
input. Ownership is especially important after installation, as users are more likely to
describe problems or suggest enhancements if they feel that the software belongs to them.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

A number of tools can help the understand a problem before attempting to
create a . Some of these tools give an overall of the system; others
are used to help understand the ; others help explain the
between of the system. Many of these tools use to explain the
workings of the . Some of these tools are charts,
diagrams, boards, flowcharts and designs.

2 Describe how IPO charts can be used to help understand the working of a system. Use an
example to illustrate your answer.

3 Storyboards can be used to give an overview of the system. Describe an application where
a storyboard would be useful. Give reasons why you would use a storyboard in this
application.

4 Describe the different arrangements of storyboards in your own words. Give an example
of an application of each type.

5 Explain, with an example, how data flow diagrams are used to understand the workings
of a system.

6 Read the diagram in Figure 3.30 and describe in words how the supermarket barcode
reader works.

7 Create a screen design sheet for the school report system discussed in earlier exercises.

8 Explain how a limited prototype can be used to gather information about a system.

9 Information is needed about the teacher-input module of the school report system
discussed in earlier exercises. Use a simple database system, such as one found in an
integrated application package, to create a limited prototype for the problem.

10 Create an IPO chart that describes the working of the teacher-input module of the school
report system.

Exercise 3.3

70 Heinemann Software Design and Development: HSC Course

Empowering the user also means giving them the ability to make decisions that affect
their work. People need the mental stimulation that decision making provides. For example,
workers in a fully automated factory are very easily bored by the task of supervising the
machinery. They usually need to step in only when a machine has not performed
satisfactorily and may have very little pride in what they do. On the other hand, people
working in factories where the tasks are varied and decisions have to be made generally
enjoy their work and take pride in what they do.

Software developers have a responsibility to ensure that the users of the software have
input into its design and development and are given tasks that allow them to take full
control of their activity.

The need to acknowledge the user’s perspective
The software developer has the technical knowledge about how to translate the wishes of
the user into properly functioning code. The user is the source of knowledge about the
functioning of the system. The developer and the user are equally important to the success
of the software project, and the developer must accept the expertise of the user and use it
to better understand the system.

Also, the users will be managing the software and its interface long after implementation,
so their perspective should be taken into consideration when designing both the processes
and the interfaces.

Enabling and accepting feedback
For an effective system of communication, channels must kept be open. Developers need to
establish both formal and informal channels of communication. Formal channels will
include documents such as memos and regular meetings to keep the users up-to-date with
the development process. Informal discussions should also be possible at any time during
the development process, as quite often matters will arise that cannot be kept until the next
formal meeting. The users should feel free to contact the developer with any concerns and
the developer should have easy access to the users.

The development process will proceed more smoothly if people can receive constructive
criticism without being offended. The software developer and the customer need to be able
to trust each other not to take constructive criticism personally. In this way, an effective
communication channel can be established and maintained throughout the whole of the
development process.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

Developers need to establish both and channels of
communication. Formal channels will include regular to keep the users up-to-
date with the process and such as memos. If concerns arise
between formal meetings, then communication can take place.

2 What is meant by the term ‘empowering the user’? Use one or more examples to illustrate
your answer.

3 Why is the user’s perspective important to the software developer? How can the developer
make sure that the user’s perspective is taken into consideration?

4 Explain why feedback is important to the software development process. Use examples to
illustrate your answer.

5 What steps could be taken to address the communication issues during development of
the school report system discussed in earlier exercises?

Exercise 3.4

71Defining and understanding the problem

Review exercises
1 Copy the following passage and complete

it by filling in the blanks with the
appropriate terms or phrases.

In order to solve a problem, we need to
it. A study, known as a
study, will examine a number

of solutions and determine
which can be . Software
developers also use such as
data flow to help understand
the problem. Communication between the

and is also
important to the of the
project. Both and
communication needs to take place.

2 Choose the alternative, A, B, C or D, that
best answers the question.

a A DNA recognition system is proposed
for students to sign in at schools. The
school investigated the possible systems
and found that the equipment needed
was going to take 5 minutes to process
each student. They decided not to go
ahead with the system. This is an
example of
A financial feasibility
B operational feasibility
C schedule feasibility
D technical feasibility

b The data type most suitable for storing
the daily takings of each of the six cash
registers in a store over a period of a
month is
A an array of characters
B an array of integers
C an array of real numbers
D an array of strings

c A data flow diagram is used to show
the
A relationship between physical

elements of the system

B inputs, processes and outputs of the
system

C processes and movement of data
D an overview of the program design

d A limited prototype is used to
A solve the problem
B gain information
C examine how the user interacts with

the program
D test user interfaces

e The end-user should be consulted on
program design because
A the user knows the operation of the

current system
B the user may resent the new system
C to provide the user with a sense of

ownership
D all of the above

3 Describe the constraints that may affect
the development of the school reporting
system described in earlier exercises of this
chapter.

4 Explain how you could involve each of
these users in the development of a school
report system: teachers, school clerical
staff, school executive, students and
parents.

5 Construct a data flow diagram that shows
the workings of a school report system.

6 Design a storyboard arrangement that
describes a system for gaining a driver’s
licence.

7 Describe the operation of your school
library’s catalogue and borrowing system
by means of one or more of the systems
description methods discussed in this
chapter.

8 Examine a system of your own choice and
show its operation by means of
appropriate systems description methods.

Team Activity

Your school wishes to implement the school
report system described in exercises earlier in
this chapter. Your team has to prepare a
feasibility study for this project. You will have

to examine all aspects of feasibility in the
report. You will also need to suggest the most
feasible solution and justify your choice. The
report should be presented in a suitable form.

72 Heinemann Software Design and Development: HSC Course

• The three stages of software development are understanding the problem, working out the
solution and checking the solution.

• Defining the problem involves examining the needs of the users, the objectives of the solution
and the boundaries within which the solution has to operate.

• Needs include those of the user, data, storage, processes and output.
• The feasibility of the solution has to be investigated.
• Feasibility involves whether the problem is worth solving, constraints on the project, financial

feasibility, operational feasibility, technical feasibility, scheduling feasibility, feasibility of
alternatives and the social and ethical considerations.

• The design specification sets the guidelines for development and provides a yardstick for
evaluation.

• The design specification covers the scope of the project, data design, overall program design,
interface design, cross-referencing with the requirements definition, and testing of the final
product.

• The developer’s perspective of the program is in terms of data and processes.
• The programmer has to choose the data type and design the variables and algorithms.
• Users look at the program as a solution to their problem. This means that it has to provide the

processing necessary to perform the job.
• Systems can be represented using diagrams such as IPO charts, storyboards, data flow diagrams,

system flowcharts, screen designs, prototypes, structure diagrams, decision tables and decision
trees.

• Empowering users provides them with a sense of control over their situation.
• Involving the user in the software development process gives the user a sense of ownership of

the software.
• The developer should acknowledge the user’s perspective by looking for, and accepting, input

into the development process.
• Developers and users can both benefit from open communication during the development

process.

Chapter summary

44Planning and design of
software solutions

cchhaapptteerr

Standard algorithms for searching and sorting
• finding maximum and minimum values in arrays
• processing strings (extracting, inserting, deleting)
• linear search
• binary search
• bubble sort
• selection sort

Custom-designed logic used in software solutions
• identification of inputs, processes and outputs
• representation as an algorithm
• definition of required data structures
• use of data structures, arrays of records
• thorough testing

Outcomes
A student:
• identifies needs to which software solutions are appropriate

(H 4.1)
• applies appropriate development methods to solve software

problems (H 4.2)
• applies a modular approach to implement well-structured

software solutions and evaluates their effectiveness (H 4.3)

Students learn about:

74 Heinemann Software Design and Development: HSC Course

Standard modules (library routines) used in software solutions
• identification of appropriate modules
• consideration of local and global variables
• appropriate use of parameters (arguments)
• appropriate testing using drivers

Students learn to:
• recognise the logic in a standard approach (such as a sort or search)
• apply standard approaches as part of the solution to complex problems
• document the logic required to solve problems
• develop a suitable set of test data and desk check algorithms that include complex logic
• select an appropriate data structure to solve a given problem
• develop a standard module and document its use
• correctly incorporate a standard module into a more complex solution, passing

parameters effectively

75Planning and design of software solutions

Developing a problem-solving strategy
How best to learn programming
Many subjects are ‘read and recite’ in nature. You read and study the material, summarise
it, internalise it and eventually regurgitate it in an examination or an assessment task.
Programming is different. Programming, and algorithm design, can only be learnt by lots of
practice. It is only understood when you actually devise a solution to a problem using your
own skills and experience. Also, a correct solution to an algorithm design problem is rarely
created in one attempt. You have to create a trial algorithm, test it with some sample data
and compare the results against some known or expected outcomes. The algorithm usually
has to be modified and tested again, often many times, before the solution is really correct.
With this in mind, you are encouraged to attempt to solve as many problems as possible.
You need to internalise the processes of trialling, testing and modifying your algorithms until
they are working properly.

This chapter contains examples and exercises which will help you to practise and gain
this experience. The chapter also emphasises design patterns which you should understand.
It is a good idea to keep a separate notebook into which you can record these design
patterns. Each recording will consist of a fragment of an algorithm that describes the design
pattern, a brief summary of how it works and the kind of problems in which it is useful. The
recording could also include an example algorithm that employs the design pattern. As your
experience grows, and the notebook contains more patterns, you will begin to formalise
your skills. Of course, the ultimate situation is when the patterns become completely
internalised in your mind. You can start your notebook now by recording the ‘sentinel-
controlled, pre-test loop’ design pattern shown later in this section.

Design patterns
Expert programmers achieve their success by using design patterns. A design pattern is a
way of combining programming structures into an easily identified and highly reusable
group. These patterns, once learned, can be used again and again in the solutions to problems.

Experienced programmers find that any problem they are given is made up of many
familiar design patterns. That is, every problem will contain parts that are similar to tasks
the programmer has done before, so applying known design patterns solves most of the
problem. Any new concepts or unfamiliar aspects of the problem need to be analysed and
new structures created to solve them.

An example of a simple design pattern is presented here. Consider the task of processing
information as it arrives from an input stream. Often such input streams contain a special
value that signifies the end of the data. These situations are common and a design pattern
called a ‘sentinel-controlled, pre-test loop’ can be applied to them. For example, when you
are paying for groceries at a supermarket you usually place a length of wood across the
conveyor belt to separate your goods from the following customer. The block of wood is a
sentinel. It is seen by the checkout operator as a signal that the processing of your shopping
can stop. Below is a pseudocode version of an algorithm that could be used by a checkout
operator in this situation.
BEGIN process shopping items

get the first grocery item // priming read
WHILE (the item is not the separator)

process the next item
get the next grocery item // follow-up read

ENDWHILE
END process shopping items

76 Heinemann Software Design and Development: HSC Course

Note here that the algorithm fetches a new item immediately before testing the
condition on the loop, first with the priming read before the loop starts and subsequently as
the last instruction in the body of the loop just before control returns to the loop test.

The above algorithm just processes shopping items. What is really important is the
design pattern being used. In general and reusable form, the design pattern can be described
as shown in the algorithm below:
// Design Pattern: Sentinel-controlled, pre-test loop
// Usage: to process a stream of data with a sentinel value

read the first datum
WHILE (the datum is NOT the sentinel)

process the datum
read the next datum

ENDWHILE

This is worth recording so you can apply it whenever the need arises. At the end of this
section some strategies for recording design patterns are presented. The one above could be
the first entry in your personal design pattern collection. In the rest of this chapter you will
be presented with many useful design patterns. If you learn them and get plenty of practice
applying them they will become part of your programming repertoire. You will then start to
become an experienced program designer.

Structured programming and functional decomposition
It is possible to write an algorithm from start to finish as one continuous flow of
instructions. Writing an algorithm this way has several disadvantages:
• The algorithm is usually long and takes a long time to read, understand and debug.
• There is no easy way to get an overall view of what the algorithm does.
• There is little opportunity to take sections out of the algorithm and use them in other

solutions.
• Instructions that occur several times at different places in the algorithm need to be re-

written each time they occur.
• The whole solution usually becomes less robust as it is modified.

Algorithms written as one long sequence of instructions are sometimes called ‘spaghetti
code’. They often look like tangled cooked spaghetti. It is impossible to see any real purpose
in them and they have no identifiable structure. What is worse, when they are implemented
in a programming language and put into service, the entire program tends to become brittle,
fragile and prone to failure as it is continually modified.

In contrast, structured programming is the technique of writing programs or algorithms
that have a recognisable structure. The structure is provided by having a general or overall
solution to the problem presented first, called a main module, followed by a collection of
sub-modules which are activated by the main module to perform a well-defined part of the
work. The main module removes the first two disadvantages listed above. It is short and easy
to read, and it gives an overall summary of the solution.

At the heart of structured programming is the use of sub-modules or ‘functions’ that are
activated by the main module. The technique of breaking a large or complex problem down
into functions is called ‘functional decomposition’. The functions can be designed and
written separately, can be tested separately and should be independent of each other. Useful
functions can encapsulate whole design patterns and thus be used again and again in the
solutions to many different problems. This removes the third disadvantage from the list. A
function written only once can be activated, or ‘invoked’ many times, thus saving writing
time and unnecessary repetition of code, which removes the fourth disadvantage. During
program maintenance, modifications can be made to some functions without having to
modify the whole algorithm—helping to remove the fifth disadvantage. Functions are dis-
cussed in detail later in the chapter.

77Planning and design of software solutions

A worked example of structured programming
This example demonstrates the difference between a ‘spaghetti’ algorithm and a
structured one. The problem is small and simple. Although the spaghetti version is
readable, you should concentrate on the structural differences between the versions.

PROBLEM STATEMENT
A rail ticket pricing machine displays the cost of a rail ticket when a person enters two
values—a destination and an age category. The machine can calculate the costs of
many tickets. When a railway officer enters a destination of ‘Close’, the machine
displays the total cost of all the tickets priced and then shuts down.

There are four destination values that can be entered—‘City’, ‘Interstate’,
‘Suburban’ and ‘Close’. There are two age codes—‘adult’ and ‘Child’.

The ticket costs are based on the values in Table 4.1.

Write a pseudocode description of an algorithm that the machine could use.

SOLUTION 1 (NOT STRUCTURED)
This solution flows from start to finish in one module. The two loop keywords ‘while’
and ‘endwhile’ are a long way apart in this algorithm and so it is quite difficult to see
at a glance where the loop starts and ends.
BEGIN rail ticket costing

set variable totalCost to zero
create variable cost
get the destination value into variable dest
WHILE(dest is NOT ’Close’)

get age code into variable ageCode
IF(dest = ’City’)

IF(ageCode = ’Adult’)
set cost to 6.40

ELSE
set cost to 4.00

ENDIF
ELSE

IF(dest = ’Interstate’)
IF(ageCode = ’Adult’)

set cost to 35.00
ELSE

set cost to 12.00
ENDIF

ELSE // must be suburban destination
IF(ageCode = ’Adult’)

set cost to 4.10
ELSE

set cost to 1.00
ENDIF

ENDIF
ENDIF

Table 4.1

City Interstate Suburban
Adult 6.40 35.00 4.10

Child 4.00 12.00 1.00

78 Heinemann Software Design and Development: HSC Course

add cost to totalCost
get the destination value into variable dest

ENDWHILE
print totalCost

END OF ALGORITHM
The next version employs functional decomposition to do the same work.

SOLUTION 1 (STRUCTURED)
Since the pricing machine processes an arbitrary number of tickets, it needs to
employ a loop. Since there is a special destination that signals the end of the input
data, the loop will be sentinel controlled. The design pattern introduced above is thus
quite appropriate for this problem.

The overall work of the algorithm is to price many tickets, so we can make this
our main module.
BEGIN main module: ticket pricing

set variable totalCost to zero
create variable cost
get destination into variable dest
WHILE(dest is NOT ’Close’)

get ageCode
set cost to calculateCost with dest and ageCode
add cost to totalCost
get destination into dest

ENDWHILE
print totalCost

END
The start and end of the loop are close together here. They are easily seen in the

one glance. This makes the module easier to understand. The actual calculations of
the cost of each ticket are not included in the main module but have been written as
a separate sub-module or function. The underlined instruction
calculateCost with dest and ageCode
indicates where the sub-module is activated. Note that the values of dest and
ageCode are sent to the sub-module so it can calculate the correct price. Here is the
sub-module in pseudocode.
BEGIN sub-module: calculateCost with dest and ageCode

IF(dest = ’City’)
set cost to cityPrice with ageCode

ELSE
IF(dest = ’Interstate’)

set cost to statePrice with ageCode
ELSE

set cost to suburbCost with ageCode
ENDIF

ENDIF
return cost // value is sent back to the code which

// called this module
END sub-module

This module contains two nested selections. It avoids the complication of dealing
with the actual ageCode calculations by passing that task off to other modules. This
has been exaggerated in this example to emphasise the functional decomposition
technique, but it does have the benefit of allowing the module to concentrate on just
one well-defined task.

79Planning and design of software solutions

The other sub-modules are given below without comment.
BEGIN sub-module: cityPrice with ageCode

IF(ageCode = ’Adult’)
return 6.40

ELSE
return 4.00

ENDIF
END sub-module

BEGIN sub-module: statePrice with ageCode
IF(ageCode = ’Adult’)

return 35.00
ELSE

return 12.00
ENDIF

END sub-module

BEGIN sub-module: suburbPrice with ageCode
IF(ageCode = ’Adult’)

return 4.10
ELSE

return 1.00
ENDIF

END sub-module

DISCUSSION
The style and structure used in the second algorithm is what will be used in this
chapter. You may be thinking that the first algorithm is preferable, as it does appear
to be shorter and the second one does appear to be much more complex.

As problems get bigger and more complex, and as they require more sophisticated
solution algorithms, so the need for the structured approach will increase. You are
strongly advised to study the techniques of structured programming carefully and to
practise the technique in your own algorithms.

To complete your study of this example, look at the structure chart below. It
shows in graphical form how the modules relate to each other.

Main Module

calculateCost

statePrice suburbPricecityPrice

Figure 4.1

80 Heinemann Software Design and Development: HSC Course

Design concepts
Identification of appropriate modules
The structured algorithm shown in the example on p. 78 is best understood by reading its
main module first, which gives the overall view of the purpose of the algorithm. Once the
main module is understood, the reader can then view the sub-modules to get further and
more detailed information about what the algorithm does and how it does it.

Algorithms are also usually written by designing the main module first, then designing
the sub-modules. Such a design process is called a ‘top-down’ method and is the most
popular way to solve problems with structured programs.

It is equally valid, although less common, to work the other way around. That is, the
minor parts of an algorithm are designed first, then when these are written and tested they
can be combined to form the overall solution.

Think about how you solve a large jigsaw picture puzzle, one with many pieces. First you
might find the corner pieces and all the other pieces that have straight edges. By fitting these
together you can form the rectangular boundary of the whole puzzle. Then you can start to
fit in all the other pieces by finding those that mesh with the boundary. The puzzle is solved
from the outside inwards and, as each piece is added, the picture is formed.

It is equally likely that some complete sections of the jigsaw puzzle will be completed
separately. All the light-blue pieces making up the sky might be joined in one section, or a
large tree or a house might be developed on its own. This technique is regularly used when
several people are working together on a really large jigsaw puzzle; each group works on a
separate section. When some of the sections are complete, or almost complete, they can be
fitted together to make more of the picture visible.

Designing and writing algorithms can be done in the same way as the jigsaw puzzle: by
defining the main module first, followed by the smaller parts (the ‘top-down’ approach), or
by completing several well-defined sub-modules separately first and then combining them
(the ‘bottom-up’ approach). You will choose the approach that suits you best. You will
probably use the top-down method for modest to large problems and may adopt the
bottom-up approach when working as a member of a team or when faced with a huge and
complex problem. Whichever approach you take, the final algorithm will still be structured
and employ functional decomposition. Also, anyone who reads your algorithm will start
by reading the main module then look at the sub-modules, even if it was not constructed
that way.

1 What are some of the keys to learning to write algorithms and programs?

2 What is a ‘design pattern’?

3 Successful programmers have a large and well-tested personal repertoire of design
patterns. How does this collection of design patterns help to make a programmer successful?

4 What is functional decomposition and how does it relate to structured programming?

5 List some of the disadvantages of writing a program as one long sequence of instructions
(that is, without any functional decomposition).

6 For small problems, a single sequential algorithm is often easier to write and understand
than a structured solution that contains several modules. Why does this situation change
when large problems are solved?

Exercise 4.1

Entity Description Details

Input a gross salary a real number (dollars and cents)

Output tax payable a real number (dollars and cents)
net salary a real number (dollars and cents)

Process Calculate the tax payable. Multiply the gross salary by the tax
rate to calculate the tax payable.

Calculate the net salary. Subtract the tax payable from the
gross salary to calculate the net salary.

81Planning and design of software solutions

Identification of inputs, processes and outputs
The discussion so far has dealt only with the processing or ‘doing’ side of algorithm design.
We must also be concerned with the information our algorithms process—the data. We
need to know how to manage this data, where it comes from, how and where to hold it,
where it is allowed to be used and how to format it for output.

In the Preliminary Course you saw that for any problem there should be a clear
statement of what the input data is and what the output data is. A given problem will also
specify what processing needs to be done, although not necessarily ‘how’ to do it. You may
have actually listed some input and output specifications during the analysis phase of your
algorithm development, as shown in the following example.

Example
PROBLEM STATEMENT
Write an algorithm that accepts a gross salary and calculates the tax payable on it and
the net salary.

INPUT, OUTPUT AND PROCESS
These can be listed in a table.

Table 4.2

Consideration of local and global variables
In an algorithm description data values are held in variables. Variables are just short names
for the quantities they represent. Values can be stored in variables in several ways, such as:
// simple assignment within an algorithm
set grossSalary to 23900

// calculation and assignment
set netSalary to grossSalary × 0.48

// value is obtained interactively from a user
get grossSalary

// value is read from an input file
read grossSalary

The scope of variables
Although you are probably already familiar with the use of variables as shown above, it is
also important to know where variables can be created and used. The preferred rule is that
variables can only be used in the module in which they are created. This is certainly the case
in most modern programming languages, and although you may not be coding actual
programs it is best to adhere to that same policy in your algorithms.

82 Heinemann Software Design and Development: HSC Course

The policy means that, if you create a variable in your main module, you cannot expect
any of the sub-modules to be able to access its value; its use is restricted to that main
module. The same applies to variables created in sub-modules. The official term used to
describe where a variable can be used is ‘scope’. We say that the ‘scope’ of a variable is the
part of an algorithm where it can be used. The idea of restricting the scope of variables to
their own modules may seem a little strange at first. You might be asking yourself how sub-
modules can do useful work if they cannot access data elsewhere. This idea will be discussed
in detail later in the chapter, ‘Modules and functions’.

Example showing variable scope
The sample problem given above, asking for a tax and net salary calculation, can be
used to show how data is passed from one module to another and how the scope of
variables is restricted. Below is a main module for the algorithm.
BEGIN Salary calculations (main module)

get the value of grossSalary // (1)
set taxValue to calculateTax with grossSalary // (2)
set netSalary to calculateNet with grossSalary and taxValue
print ’Tax is ’ taxValue
print ’Net is ’ netSalary

END Salary calculations
Notice in the main module above that we have created a variable called

‘grossSalary’ on line (1) and assigned some input value to it from a user. This variable
belongs to the main module; none of the other modules know about it.

Obviously the calculateTax sub-module needs to have a gross salary to do its
work, but how can the sub-module get this information if it is restricted to the main
module? The answer is seen by looking carefully at how the sub-module is called on
the line marked (2):
calculateTax with grossSalary

We use the special word ‘with’ to show that when the calculateTax module is
called, the value in the grossSalary variable is passed to it. On the line marked (2) we
have created a variable called ‘taxValue’. This variable is assigned a value that the sub-
module ‘calculateTax’ returns. In summary, we can say that the sub-module
‘calculateTax’ accepts a gross salary as its input, and returns a tax value as its output.
Here is the algorithm for the calculateTax sub-module, it should make the explan-
ations above clearer.
BEGIN with grossSalary

set tempValue to grossSalary × 0.45 // (1)
return tempValue //(2)

END
On line (1) in this module we have created a local variable tempValue. This

variable is useable only inside the module; no other module knows about it. It is
called a ‘local variable’ and has ‘local’ scope. The answer to the tax calculation is
stored in this local variable on line (1) and then, on line (2), the value is sent back to
the main module.

The algorithm for the calculation of the net salary is similar. Its input is a gross
salary and a tax value. It subtracts the tax from the gross salary and returns the answer
as its output.
BEGIN calculateNet with grossSalary and taxValue

set tempValue to grossSalary − taxValue
return tempValue

END

83Planning and design of software solutions

The ‘Modules and functions’ section of this chapter contains further details about how
modules are called, how data is passed to them and how data is returned from them.

Global variables
Some programming languages allow us to create variables that can be accessed by all
modules at the same time without the need to pass their values around. For these variables
the scope is the entire algorithm. These variables are called ‘global variables’. Allowing all
modules to access the same global variable can be quite efficient in programming, as less
data needs to be passed around from module to module. However, it often results in errors.
If a global variable has its value changed and becomes inaccurate, it is very difficult to tell
which module is at fault since they all have access to it. The sample algorithms in this
chapter do not use global variables.

Thorough testing
You can never be sure that an algorithm is correct until you test it, and proper testing cannot
be done by just reading the algorithm. To test an algorithm properly you must provide some
sample input data values, run your algorithm using this data and check that the output is
correct. The only way of knowing that an output value is correct is to have calculated it
manually beforehand.

Desk checking
Desk checking is done by following your algorithm line by line and doing what its
instructions say. When desk checking, pretend you are a computer (a high-speed moron)
and do exactly what the instructions say—no more and no less. Correct desk checking
requires that you keep track of the values of all variables, writing down their names and
values and adjusting the values as the algorithm progresses.

You need to do several, perhaps many, desk checks on most algorithms. Each desk check
uses different sample data. The sample data must be such that all branches in the algorithm
are exercised and the conditions of all loops are tested.

The following fragment contains a simple nested selection.
IF cost > 20
THEN

print ’too expensive’
ELSE

IF cost <= 5
THEN

print ’too cheap’
ELSE

print ’just right’
ENDIF

ENDIF

Local variables are those created within modules. They are usually created to help
with some calculation or to temporarily hold some information during the running of
the module. The calculateNet module above is so simple that we could write it
without needing the local variable tempValue, like this:

BEGIN calculateNet with grossSalary and taxValue
return grossSalary − taxValue

END

Variable Value Comments

grossSalary 20000 from user

taxValue 9000 returned to main

netSalary 11000 returned to main

tempValue 9000 in sub-module calcTax 20000 × 0.45
11000 in sub-module calcNet 20000 − 9000

Printed output Tax is 9000
Net is 11000

Variable Value Comments

grossSalary

taxValue

netSalary

tempValue

Printed output

Cost Output

40 too expensive

15 just right

3 too cheap

5 ???

20 ???

If we take $20 000 as a sample input data value, we can write this into the cell next to
the grossSalary variable. As we trace the algorithm, the values of the other variables are
filled in. Table 4.5 shows a completed table with a $20 000 gross salary.

84 Heinemann Software Design and Development: HSC Course

To test this fragment thoroughly there should be at least five sample values chosen for
the cost variable. One value should be greater than 20, one should be less than 5 and one

Table 4.3

Table 4.5

Table 4.4

Trace tables
A good way to keep track of the values of your variables is to use a trace table. A trace table
has at least two columns. The first column contains a list of the variable names, one variable
name per row. In the second column the values of the variables are written next to their
names. A third column can be used for optional comments. As you desk check your
algorithm, you update the value of the variables in the trace table according to the instruc-
tions given in the algorithm. Remember to do this without any guesswork and only make
changes that the algorithm dictates. A trace table can also include a row for final output,
such as material printed or written to files by the algorithm.

A simple trace table can be constructed for the tax calculation example. There are four
variables to trace plus final output, so the table has five rows.

should be between 5 and 20. The other two values
should be exactly 5 and exactly 20, the boundary
values for the selection.

These sample data and the results obtained for
them can be set out in a short table, as in Table 4.3.
Verify these results yourself by actually desk
checking the above algorithm. The last two sample
values are the boundary conditions and finding their
output is left as an exercise for you.

The value of 9000 is crossed out in the tempValue row because this variable was created
and used in both modules. When the calculateNet module used it, its old value was
changed, as shown in the comments column. A neatly printed trace table like the one in

85Planning and design of software solutions

Table 4.5 is not really an accurate representation of a trace table. Trace tables are completed
by hand with a lot of crossing out and editing as the values of the variables are amended
during the desk checking of the algorithm.

Field testing
Before the actual computer software is delivered to its end users it too must be tested
thoroughly. The testing includes desk checking by the programmers (as seen above), in-
house testing by the development team, and field testing which involves giving the
completed software to a representative group of users so they can try it out under real
working conditions. Any problems or errors identified in the testing phase are then
remedied by making modifications to the software before it is finally delivered.

This testing is expensive, both in time and money. Sometimes software is found to
contain bugs after it is released. When end users or customers find such problems they
report the problems to the vendor. After modifications are made to remove the errors, a new
release of the software is made using a higher version number. This is field testing in the
extreme. Releasing software too soon forces paying users to put up with bugs. It is frowned
upon in the software development field but has become a fact of life as vendors rush to be
first to the market with their latest software products.

Prototyping
A prototype is a partially complete software product which is presented to a small group of
users so that feedback can be provided to the developers. A prototype does not contain all
of the functionality intended for the finished product, but it often contains a user-interface
and some of the fundamental routines that are important in the finished software. A
prototype with a user-interface provides the ‘look and feel’ of the product. Users can try it
out and comment on what they like or don’t like about the way it looks and how it appears
to work.

One benefit of prototyping for a development team is being able to make changes to the
finished product that incorporate the client’s feedback. There is also a cost benefit, as
producing a prototype is cheaper than producing the whole product.

It may not be possible with an algorithm design to actually show a formal prototype to
clients. However, it is worth following the principle of developing a partial solution for a
problem and then testing it before further refinements are made. You should not be reticent
to make a ‘first pass’ attempt at a problem solution, knowing that some essential elements
are not yet done. The ‘prototype’ algorithm will help to clarify some of the requirements
and also allow the development of sections of the algorithm that can be usefully deployed
in the final solution.

Thorough documentation
External documentation
Commercial software products are accompanied by documentation so that users can learn
what the product does and what they need to do before using it. Users can also refer to the
documentation whenever they need to clear up misunderstandings about the operation of
the software. Such documentation is provided in print form separately to the software and
is called ‘external documentation’. Your algorithms will probably not need external
documentation unless your teacher asks for it explicitly for assessment purposes.

Internal documentation
Internal documentation is written within the algorithm itself and is provided in two forms.
First, a written block of comments can appear before the actual algorithm. This is used to
introduce the reader to the algorithm and includes a brief description of its purpose, the
author’s name, the date of modification and any important assumptions that the writer has
made. It is really a short technical and factual list of comments about the algorithm. The

86 Heinemann Software Design and Development: HSC Course

comments don’t make the algorithm itself work any better; they just provide some details
about it for the writer and others who might need to use it. Placing a comment block at the
top of an algorithm is part of the culture of programming.

The second form of internal documentation consists of single lines of comments that are
embedded in the algorithm at appropriate places. Such comments are used to add value and
readability to complex instructions or to break up a long sequence of instructions into
paragraphs. You should use these ‘one-liners’ whenever you feel they are needed. Don’t use
too many; if you do, your algorithm will become harder to read. These embedded one-line
comments should not be used to describe instructions that are already easy to follow. In the
sample algorithms in this chapter the double-slash notation has been used to indicate
comments, like this:

// this is a comment!
You can adopt this notation if you wish. It comes from the C language and is also used

in C++ and Java. If you don’t like the notation, you can make up your own or use any of
the other common styles, such as
this is a shell script comment
; this is an Omnimark comment
REM this is a BASIC comment
{this is a Pascal comment }
[this is someone else’s form of comment]

Listing assumptions
One crucial inclusion in the block of introductory comments at the top of a complete
algorithm is a list of assumptions. You will need to decide on these so that readers of your
algorithm can see what features it supports and what it purposely omits.

For example, you may have an algorithm that accepts input data values from a user. Your
algorithm may not include checks that the user’s data is legal or valid. This is an appropriate
reason to include an assumption. You would state in your comments that the algorithm
assumes that the user’s input will be valid. If you are reading data from a file (dealt with
later in the chapter), you may say that you assume that the file exists and/or that you
assume that the file is not empty.

Stating assumptions allows you to set aside some difficult or unpredictable events and
thus to avoid dealing with these in your design, but be careful not to assume away any
fundamental requirements given in a problem.

1 What strategy would you use to complete a small jigsaw puzzle? Would you use the same
strategy to solve a large jigsaw puzzle? Why? Why not?

2 What does ‘the scope of a variable’ mean?

3 If a variable is created in a main module, it is also known in all of the sub-modules that the
main module calls. True or false?

4 If a variable can be used only in the module that creates it, how can the value of a variable
be made available in other modules?

5 A sub-module (or function) is made up of a name, arguments (or parameters), a set of
instructions and a return value. How do these match the inputs, outputs and processes of
a module?

6 What kind of variables are known to all of the modules in an algorithm?

7 Explain (or discuss) the benefits and disadvantages of having variables that are available
to all modules in an algorithm.

8 What kinds of values should be chosen as sample data when testing an algorithm?

Exercise 4.2

87Planning and design of software solutions

Modules and functions
A function or module is a separate block of instructions that performs a well-defined task.
A well-written function has clear input and output specifications.

Functions are the building blocks of algorithms and functional decomposition is the
heart of structured programming. Of all the issues within algorithm design, decomposition
is the most important. So you must be clear on how functions work and why they ought to
be used. This section deals with these issues. It is modestly technical in nature. Concen-
tration and practice are required if you want to become fully aware of the details.

General issues
Decomposition and reusability
You already know that functions are used to break an algorithm into separate parts so that
the work done by the algorithm is distributed into smaller chunks. The other benefit is that
once they are developed and tested, and if written the correct way and with a clear purpose,
functions can be ‘plugged into’ any algorithm that requires their tasks. Reusability is
important to software developers who want to be able to create robust products with a
minimum of coding and in a minimum of time.

Function libraries
In the software development industry, large collections of well-tested and reusable functions
are stored in ‘function libraries’. Suitable function libraries can be included, or ‘imported’,
into any new project. This means that the project can be built by designing the overall
structure and then activating functions in the library to do much of the processing. Most
programming languages are supported by ‘standard function libraries’. These are fully
refined and tested collections of functions that have been standardised by either the vendor
of the language or an international body of experts.

The call and return mechanism
In all programming languages and algorithm designs, functions are activated by ‘calling’
them; the algorithm that activates a function is known as the ‘calling code’ or sometimes the
‘client code’. When a function is called from somewhere in an algorithm, the current pro-
cessing of that algorithm is postponed. The called function then starts working and takes

9 The following fragment contains a simple binary selection. How many different values for
the variable ‘speed’ should be chosen in order to correctly test the fragment?
IF speed <= 100
THEN

print ’Within the speed limit’
ELSE

print ’Outside the speed limit’
ENDIF

10 Which values are appropriate for testing the above fragment, and which values are not
appropriate?

11 What is a trace table? How can it aid the testing of an algorithm?

12 List two kinds of testing that can be used for a new software product.

13 What is a prototype?

14 How does developing a prototype help in the software development process?

15 List two kinds of documentation that should be employed in software development.
Identify the separate uses of the two types of documentation.

88 Heinemann Software Design and Development: HSC Course

control of all processing.When the function has performed its task and eventually terminates,
control reverts to the algorithm that called it, which then continues on with any of its
remaining instructions. So, in general terms, the principle of call and return is that, whenever
a function terminates, control is always returned to the place from which it was called.

An analogy from ordinary life can be used to clarify this important principle. Suppose
you are mowing your lawn. When you are about halfway through the mowing job, you feel
the need for a cool drink, so you stop mowing, switch off the mower temporarily and go
into your home to get a drink. You pour your drink into a glass and start to sip it. The
telephone rings, so you put down the glass of drink and answer the telephone. Figure 4.2
represents the event up to this stage.

Mowing the Lawn
mow
mow
mow

stop mowing
go to get a cool drink Having a cool drink

...
get a glass
get drink

pour drink
sip
sip

answer telephone

Use telephone
...

answer call
talk
talk

The situation at this instant is that you are involved in a telephone conversation—this is
your current task. The drinking of the cool drink has been stopped or postponed and you
have not yet finished the drink, but you do intend to finish it when you get the chance. Of
course, the mowing task was also stopped and is only about half done. You intend to finish
that job too when you get a chance.

Getting the cool drink is like a sub-module or function that has been called halfway
through the mowing process. The mowing is the calling code. The telephone task is like a
function that has been called halfway through the drinking module, so the drinking module
is the caller of the telephone module.

To make this situation a simulation of an algorithm, you need to think about what will
happen when the telephone call ends. When the call ends, you should go back and continue
the task you were doing before the phone call started, that is, drinking. When you finish the
cool drink, that function will be terminated. What will you do then? You should return to
and complete the task you were doing before the drinking function, that is, mowing the
lawn. Notice that, if you behave logically, when you finish any function you will always
return to processing the code that activated the called function. This is what an algorithm
or a computer program does. Figure 4.3 shows the return routes for the mowing, drinking
and talking analogy.You should start looking at it from the beginning of the mowing activity.

Function anatomy
A correctly written function can have up to four parts: its name, its input, its output and a
block of instructions. Of these, the name and the block of instructions are compulsory for
all functions. The following sample pseudocode shows all four parts, the complete anatomy,
of a typical function. It will be referred to in the following topics.

Figure 4.2

89Planning and design of software solutions

Mowing the Lawn
mow
mow
mow

stop mowing
go to get a cool drink

resume mowing
mow
mow
mow

finish mowing

Having a cool drink
...

get a glass
get drink

pour drink
sip
sip

answer telephone
resume sipping

sip
finish drink

Use telephone
...

answer call
talk
talk
talk
talk

finish call

Figure 4.3

BEGIN findBiggest with firstNum and secondNum and thirdNum
set bigNum to firstNum
IF secondNum > bigNum
THEN

set bigNum to secondNum
ENDIF
IF thirdNum > bigNum
THEN

set bigNum to thirdNum
ENDIF
return bigNum

END

Function names
All functions must have names. The name of the function should be reasonably short and
be readable and meaningful. The role of the name is to indicate what the function does. The
name ‘findBiggest’ used in the sample above is an acceptable name and tells the reader that
its purpose is to find or calculate the biggest value of some given values.

You already know about variable names, and function names follow similar guidelines.
Function names are often made up of two or three words joined together to form a single
name. There is no formal rule that tells you what is a good name and what is not. You just
make up the names of your own functions so that they are readable and meaningful.

Function input
Input to a function is the data that is passed to it by the calling code. You saw earlier that
values can be passed to a function when it is called. You will recall that this is the way that
one module or function sends information to another.

Here is a fragment of an algorithm that calls the findBiggest function.
get score1 from the user
get score2 from the user
read highScore from the best player file
set winner to findBiggest with score1 and score2 and highScore
...

90 Heinemann Software Design and Development: HSC Course

In this fragment the user might enter 456 into score1 and 234 into score2. Then 345
might be read from a file into the variable highScore. When the function is called, the
values 456, 234 and 345 are passed to the findBiggest function, just as if the call in the
fragment above was really
findBiggest with 234 and 456 and 345

The three numbers are considered to be input to the function. In programming languages
the values that are sent to functions are called ‘arguments’ or ‘parameters’. You can use these
names if you wish when referring to the values that any function accepts as input.

Function output
If functions can accept input via arguments, they must have some way to deliver output
back to the calling code. In algorithms, as in most programming languages, we output
information from a function by ‘returning’ it.

In the sample function above, the line
return bigNum

shows what is being returned to the calling code. If we use the three values given in the last
topic, 456, 234 and 345, as the sample input for this function, we can follow the logic of
the function’s instructions and see what value is returned. This can be done with a simple
trace table, and you should verify yourself that the value returned is indeed 456, the largest
of the three input values. You should desk check the function with other input values to
make sure that you understand how it works.

It is natural in most cases for functions to have their return command as their very last
instruction (as seen in the sample ‘findBiggest’ function). Some programmers actually
design all their functions so that this is the case. However, it is not wrong to use the return
command before the end of the instructions in a function as long as you realise that,
whenever a return command is activated, the function is terminated at that instant and any
instructions following the return command are ignored.

This is a subtle and technical aspect of module design and is a somewhat advanced
concept. The example below shows a function whose purpose is to accept a month number,
from 1 to 12 inclusive, and to send back the number of days in that month. For example, if
we call the function with the month number 6, we expect to get back 30, since there are
30 days in the month of June.
BEGIN daysInMonth with monthNumber

IF monthNumber < 1 OR monthNumber > 12 // (1)
THEN

return 0 // (2)
ENDIF
CASEWHERE monthNumber IS // (3)

1, return 31
// etc for other months

ENDCASE
END function

This example function first checks that its input, the monthNumber, is valid (that is, that
it is between 1 and 12 inclusive). If this is not the case, it is impossible to calculate the
number of days. The technique the function uses to deal with this situation is to check for
month numbers that are not valid, using the selection test on line (1) above. If this test is
true, the function returns the value zero indicating that no days can be given for that month.
What is subtle here is that, if the return command on line (2) is activated, the whole
function terminates at that instant—at line (2). In this case, the multiple selection that
begins on line (3) is never executed. Conversely, if the error test on line (1) is false, the
function does not activate the return command on line (2); instead it continues with its
processing from line (3) onwards.

91Planning and design of software solutions

The technique of using an early return command to terminate a function is called ‘short
circuiting’ the function. The short-circuit technique is often used when error checking, as
shown in the daysInMonth example above.

Function processing
It is reasonable to say that any function or module should do something. What it does is
embedded between the keywords ‘BEGIN’ and ‘END’ and is often called the ‘body’ of
the function.

Local variables
You will recall that variables can be created inside functions. These ‘local’ variables are
created as they are needed, to assist with any calculations or other processing. There is no
conflict between local variables of one function and those of any other function. The values
are not shared across functions and a designer can create local variables in many functions
using the same variable name for all of them.

In the ‘findBiggest’ function above, the variable ‘bigNum’ is a local variable. It is used to
keep track of which of the input values is the biggest while the processing is taking place.

Example using function input and output
The aim of this example is to reinforce the principles explained above: that functions
can accept input from the algorithm that calls them, that they can return information
back to the calling algorithm, and that they can create and use local variables to make
the local processing easier.

PROBLEM STATEMENT
The problem solved by this example concerns the conversion of temperatures from
the old Fahrenheit scale (still used in the United States) to the new Celsius scale (as
used in Australia and Europe). The main module of the algorithm is a simple user
interface that requests the user to enter a temperature and also to indicate if it is
Fahrenheit or Celsius. When the temperature is entered, the algorithm calls the
appropriate sub-module (function) to convert the value to the other scale.

SAMPLE SOLUTION
Here is the main module of a solution algorithm.
BEGIN temperature conversion (main-module)

print ’Please enter a temperature value’
get degrees from user
print ’Is this value in Fahrenheit (F) or Celsius (C)?’
get scaleCode from user
IF scaleCode = F
THEN

set resultDegrees to convertFtoC with degrees
print ’the Celsius equivalent is’ resultDegrees

ELSE
IF scaleCode = C
THEN

set resultDegrees to convertCtoF with degrees
print ’the Fahrenheit equivalent is’ resultDegrees

ELSE
print ’Error, can’t decide which conversion to do’

ENDIF
ENDIF

END

92 Heinemann Software Design and Development: HSC Course

CALLING A FUNCTION AND PASSING A VALUE
In a preliminary desk test of this algorithm we could assume that the user enters the
number 110 into the variable ‘degrees’ and that the user specifies the scale to be
Fahrenheit by entering the letter F into the scaleCode variable. With this sample data
the algorithm above activates or ‘calls’ the function convertFtoC and passes the value
110 to it, as shown in Figure 4.4.

converconvertFtoCtFtoC

Mowing the Lawowing the Lawn
degrees is 110degrees is 110
scaleCode is FscaleCode is F

......
covercovertFtoC with 110tFtoC with 110

Main module
degrees is 110
scaleCode is F

...
covertFtoC with 110 convertFtoC

110

Figure 4.4

PROCESSING IN THE FUNCTION
The function convertFtoC accepts the value 110 as input, converts that value to its
equivalent Celsius value and then returns the result back to the main module. Here
is the pseudocode for the convertFtoC function. Note that its input is available to it
in the argument or parameter ‘degrees’.
BEGIN convertFtoC with degrees

set answer to (degrees − 32) × 5 / 9
return answer

END
If the argument ‘degrees’ comes into this function with the value 110, the

arithmetic on the first instruction calculates the local variable ‘answer’ as (110 − 32),
which is 78, multiplied by 5, which is 390, divided by 9, which gives 43.3.

FUNCTION OUTPUT
The value 43.3 is currently in the local variable ‘result’. The return command sends
this value back to the main module, as shown in Figure 4.5.

converconvertFtoCtFtoC

Mowing the LawnMowing the Lawn
degrees is 110degrees is 110
scaleCode is FscaleCode is F

......
covercovertFtoC with 110tFtoC with 110

Main module
degrees is 110
scaleCode is F

...
covertFtoC with 110

43.3

convertFtoC

110

Figure 4.5

ACCEPTING DATA FROM A FUNCTION
Note again how the convertFtoC module was called in from the main module:
set resultDegrees to convertFtoC with degrees
print ’the Celsius equivalent is ’ resultDegrees

93Planning and design of software solutions

So the value 43.3 which comes back from the function is captured into the
variable ‘resultDegrees’ and is then, on the next line, printed onto some output
device.

FOR YOU TO DO
The techniques used above are typical of how functions are used; data is passed to
them, some processing takes place, and then data is returned from them to the calling
algorithm. The other module convertCtoF can be written and traced in exactly the
same way. Complete it, desk check it, and draw diagrams similar to those above
showing how it works. The formula for converting from Celsius to Fahrenheit is
Fahrenheit = 9 × Celsius / 5 + 32

Boolean functions
A Boolean value is either true or false. A function that returns either true or false is called
a ‘Boolean function’. Boolean functions are very popular in all programming languages and
so are relevant to a study of algorithms. These functions are sometimes called ‘query
functions’ because they usually perform a test on the value of their input. They also often
have a name starting with the word ‘is’, as seen in the example below.
BEGIN isVoter with age

IF age < 18 OR age > 80
THEN

return false
ELSE

return true
ENDIF

END
This function accepts a single argument, a value that represents a person’s age; if that is

not a legal voting age, the function outputs false, otherwise it outputs true. To see why
Boolean functions are often named with an ‘is’ prefix, look at the following fragment of an
algorithm that calls the isVoter function.
BEGIN

read name and age
IF isVoter with age // (1)
THEN

print name ’can vote’
ELSE

print ’Sorry’ name ’, you can’t vote.’
ENDIF

END
The instruction on line (1), where the function is called, reads almost like part of an

English sentence: ‘If a person of this age is a voter …’

Exercise 4.3
1 What is the difference between an arbitrary collection of functions and a function library?

2 Why is the code that calls a function sometimes called ‘client code’?

3 When a function returns, where does it return to?

4 A function (or module) can be considered as a small independent algorithm. How is the
input, the output and the processing of an algorithm applied to a function within an
algorithm?

94 Heinemann Software Design and Development: HSC Course

5 The instruction ‘return’, used in a function, has two purposes. One is to send a value back
to the function’s calling code. What is the other purpose?

6 Does a return instruction have to be the last instruction in a function?

7 What is the meaning of the term 'short circuit' with respect to functions?

8 Complete the function 'convertFtoC' which was described in this section.

9 Study the following algorithm and draw a diagram to describe it. The diagram should
indicate with arrows how values are passed to the ‘yearsToDays’ function and how values
are returned from it.
BEGIN

get ageInYears from the user
set days to yearsToDays with ageInYears
print days

END
BEGIN yearsToDays with age

set result to age × 365.25
return result

END

10 What is a Boolean function?

11 Why do Boolean functions often have names starting with the word ‘is’?

12 Why are Boolean functions popular in all programming languages?

13 Why are Boolean functions so called? You may have to do some research to answer this
question. Start your research by looking for references to George Boole.

Programming problem

14 A sports club has a membership policy that favours young people. Any person who is under
21 years of age is allowed to join the club. Only 10 members over 21 are allowed and they
are called senior members. If more than 10 applications are received from people over 21,
the extra people are placed on a waiting list.

Write an algorithm that allows the user to enter the age of as many people as the user
wishes, with each entry of an age being an application to join the club. As each age is
entered, the algorithm is to print a message that indicates whether the application is
accepted as an ordinary member, is accepted as a senior member, or is put on the waiting
list.

When the user enters a special age of 0, the algorithm is to terminate after displaying the
number of ordinary members, the number of senior members and the number of people
on the waiting list.

Write your algorithm with a single main module supported by several separate functions.

Arrays: basic concepts
This section deals with the array data structure. It reviews the fundamental concept of an
array and outlines some standard techniques for using arrays.

The array concept
An array consists of a collection of data and is officially called a ‘data structure’. The array
data structure holds several individual values, each in a separate ‘array cell’. The cells in an
array are arranged in a linear structure in a similar way to rooms in a hotel corridor. Just as
rooms in a hotel are numbered, so the cells in an array are numbered or ‘indexed’, each cell
having its own index.

95Planning and design of software solutions

Naming and creating arrays
When algorithms are written, variables are used to store information, with each variable
referring to just one data value. An array variable can be used to name a collection of
different values. In an algorithm that deals with just one person’s name, a variable might be
created to hold the name, like this:
set personName to ’Susan’

If the algorithm needs to work with several people’s names, one variable can be created
for each, like this:
set name1 to ’Susan’
set name2 to ’Lee’
set name3 to ’Kerry’
set name4 to ’Stephen’

Creating a separate variable for each of many names means that an algorithm becomes
long and working with all the separate variables becomes tedious. This is where an array
structure can be very convenient. To store the four names above in a single variable, an array
structure can be created in an algorithm as follows:
nameList is an array of names indexed from 1 to 4

This creates an array called ‘nameList’. It specifies explicitly what kind of data the array
will hold, how many values it will hold, and how the values will be indexed or numbered.
It is useful to visualise this array. Figure 4.6 shows the basic structure.

Susan Lee Kerry Stephen

nameList

1 2 3 4

Figure 4.6

What is important to realise here is that the variable ‘nameList’ refers to all of the
people’s names and each individual name is located in a separate cell (or ‘element’) of the
nameList array. Each cell is numbered or indexed and in this example the simple numbers
1 to 4 have been used as the indices. It is easy to access an individual person’s name by using
the index of their particular cell. The following algorithm fragment displays one of the
names—the one in cell number 2.
print nameList[2]

Arrays hold a single data type
Arrays can hold many values but all of the values must be of the same type. This means that
you must be clear about what kind of information you wish to use before you create an
array to hold it. If you want to keep track of the share price of 20 different companies, a
suitable array might be:
sharePrice is an array of real numbers indexed from 1 to 20 // (1)

Once created, it would be easy to store a price into this array. Suppose that the company
‘Magic Corp’ has a share price of $2.89. The price could be stored into the fifth cell, like
this:
set sharePrice[5] to 2.89

It would be impossible to store the name of the company in this array:
set sharePrice[5] to ’Magic Corp’ // WRONG and ILLEGAL!

The sharePrice array has been defined, in line (1) above, to explicitly hold real numbers,
not company names. To hold the names of the companies a different array variable would
need to be created.

96 Heinemann Software Design and Development: HSC Course

Arrays are of fixed length
The size or length of an array, the number of cells in it, must be specified when the array is
created. The important implication of this rule is that a writer needs to know or to estimate
how many cells are needed at the time the algorithm is written. The algorithm cannot add
extra cells dynamically while it is being executed; nor can it make an array shorter by
removing cells.

It is not necessary to use all the cells of an array.You can store data into an array and legally
have some cells with nothing in them. Of course it is pointless to create arrays which are so
long that the majority of their cells are unused; so you usually need to make a reasonable guess
when deciding on an array length, often with a few extra cells allocated for safety.

Indexing arrays
The cells in every array are numbered or indexed. Any sequence of whole numbers can be
used to index an array and it is sometimes convenient to use indices that have some
meaningful value. If an algorithm needs to deal with the total rainfall values for all the years
of the last decade, an array could be created as follows:
rainfall is an array of whole numbers indexed from 1 to 10

If there were 670 mm of rainfall in 1991, this value could be stored in the array like this:
set rainfall[1] to 670

In this case it might be better to index the array with the actual year numbers, as:
rainfall is an array of whole numbers indexed from 1991 to 2000

Thus 1991’s rainfall could be stored as:
set rainfall[1991] to 670

Indexing the rainfall array in this way adds semantic value to your algorithm.
Several currently popular programming languages, such as C, C++ and Java, do not allow

such indexing. In these languages every array must be indexed so the first cell is number 0
(zero). So, for the rainfall example above, these languages would need an array similar to our
pseudocode
rainfall is an array of whole numbers indexed from 0 to 9
and 1991’s rainfall of 670 mm would be stored as
set rainfall[0] to 670

Traversing arrays
Arrays are used to hold and manage many values. For many problems algorithms require
every value in an array to be processed; this can be done by using a loop to ‘iterate over’ the
entire array, processing each value as its cell is visited. This is called ‘traversing the array’.
The sample module below accepts an array that holds whole numbers.The module traverses
the array and adds all the values together into a total; it assumes that the array ‘numberList’
has been created in the calling code and is already full of numbers. A counter-controlled
‘while’ loop is used.
BEGIN sumArray with numberList

set total to zero // (1)
set counter to 1 // (2)
WHILE counter <= last index of numberList // (3)

add numberList[counter] to total // (4)
increment counter

ENDWHILE
return total

END
This module could be called from an algorithm fragment as follows:

set result to sumArray with numberList
print result

97Planning and design of software solutions

If the array numberList is as shown in Figure 4.7, then the fragment would print 150.
The sumArray function accepts the array numberList as an argument. It creates a local

variable ‘total’ which is initially set to zero (line 1), and then creates another local variable
‘counter’ which is initially set to 1 (line 2).The condition on the ‘while’ loop at line 3 checks
that the value of the counter is less than or equal to the last index of the array. This is
certainly true initially as the counter is 1 and the last index of the array is 9. Since the
condition is true, the ‘while’ loop performs its actions which add the current value in the
array onto the total (line 4) and bump the counter up to its next value.

The ‘while’ loop will continue to iterate and thus traverse the whole array adding the
value of each array cell into the total. When the counter reaches 10, the loop’s condition
will fail (you should definitely check this yourself) and the loop will terminate. The final
line in the function sends the total back to the calling algorithm where it gets printed.

Alternatively, this array traversal can be completed with a fixed loop, as shown in the
version of the sumArray function below.A fixed loop, using the pseudocode keyword ‘FOR’,
is often used in array traversals.
BEGIN sumArray with numberList

set total to zero
FOR counter goes from 1 to last index of numberList

add numberList[counter] to total
ENDFOR
return total

END

Sample functions
The following sample functions show some other traversals of arrays. All the samples work
on the array numberList shown in Figure 4.7.

It is recommended that you study each function closely and that you use a desk check
and a trace table to check that each function works correctly. Use the diagram in Figure 4.7
as the input array.
Finding the largest value in an array
This function traverses the array and returns the largest value in it. The function initially
stores the first value in the array into a local variable ‘largest’ and then iterates over all the
other cells, adjusting the value of the variable ‘largest’ whenever necessary. An inspection of
Figure 4.7 reveals that the value returned by this function is 40. Your desk check should
confirm this.
BEGIN findLargest with numberList

set largest to numberList[1]
FOR counter goes from 2 to last index of numberList

IF numberList[counter] > largest
THEN

set largest to numberList[counter]
ENDIF

ENDFOR
return largest

END

23 12 6 40 5 10 32 9 13

nameList

1 2 3 4 5 6 7 8 9

Figure 4.7

98 Heinemann Software Design and Development: HSC Course

Finding the position of the largest value in an array
This is similar to the previous findLargest function. However, instead of returning the
largest value in the array, it returns the index of the largest value. An inspection of Figure
4.7 reveals that the value returned by this function is 4. You should be able to confirm this
with your desk checking.
BEGIN findLargestPosition with numberList

set bigPosition to 1
set largest to numberList[bigPosition]
FOR counter goes from 2 to last index of numberList

IF numberList[counter] > largest
THEN

set largest to numberList[counter]
set bigPosition to counter

ENDIF
ENDFOR
return bigPosition

END

Simple linear search of an array
Advanced array processing, including searching and sorting, is dealt with later in the chapter.
The following function provides a simple linear search only and you should be able to follow
it using similar desk-checking techniques to those you have used in the previous examples.

This function accepts the array and a value to search for. It traverses the array, checking
each cell’s value against the search value. As soon as it locates the first cell value that is equal
to the search value, it returns the index of the cell. In cases where the search value cannot
be found anywhere in the array, the function returns −1.
BEGIN linearSearch with numberList and searchValue

set counter to 1
WHILE counter <= last index of numberList

IF numberList[counter] = searchValue
THEN

return counter // (1)
ENDIF
increment counter

ENDWHILE
return −1

END
Note carefully that this function will return the index of the searchValue as soon as it

is found. The return instruction (on line 1) will terminate the function immediately when
this happens. This is an example of the ‘short-circuit’ technique discussed earlier.

If the above function is called as given in the fragment
set position to linearSearch with numberList and 10
print position

it will print 5 since this is the index of the cell containing the value 10.
If it is called with the fragment

set position to linearSearch with numberList and 17
print position

it will print −1 since the number 17 cannot be found in the array.
You are advised to check both results with your own desk check. You should also do the

exercises to gain experience with other similar array traversals.

99Planning and design of software solutions

1 Is it possible to store people’s names and also their ages in the same array?

2 An array is declared as follows:
someList is an array of whole numbers indexed from 1 to 10

Which of the following statements are legal?
a someList = 45

b someList[11] = 45

c someList[10] = 3.2

d someList[1..10] = 0

e someList[−1] = 34

3 Using the declared array above, what is printed by these statements?
a print length of someList

b print last index of someList

c print first index of someList

4 You have to store all the marks of the students in your class and you choose to use an array
as the data structure. How big should the array be?

5 Your array from question 4 is used in an algorithm, and while the algorithm is running it
is found that there are more students in the class than cells in the array. What can be done
about this within the algorithm?

6 What does it mean to ‘traverse’ an array?

7 Write a function that returns the smallest value in an array of whole numbers.

8 Without modifying your function from question 7, desk check it using the values below as
the values of the cells of the array:
23 56 12 56 22 1 45 67 77

9 A common mistake in writing a function to find the smallest value in an array is to wrongly
assume that all the values are positive. Perform the same desk check using these values:
−3 −5 −78 −99 −33 −12 −2 0
If your solution does not work correctly, modify it.

10 Write a different version of your function from question 7 so that instead of returning the
smallest value in the array it returns the index of the smallest value.

11 Write a function that accepts an array of real numbers as an argument and returns the
average of the values in the array.

12 Write a function that accepts an array of real numbers and returns the number of cells that
contain values that are bigger than the average cell value. Use your solution to question
11 as part of your solution.

13 Write a function that prints the values of all the cells in an array from the last cell to the
first cell.

14 Write a function that prints all the values of the cells in an array with a comma between
them; for example:
12, 45, 67, ..., 3, 21
Make sure that a comma is not printed after the last cell value nor before the first cell
value.

15 Write a Boolean function that accepts an array of real numbers in one argument and a
single real number in another argument. The function should return ‘true’ if any cell value
is equal to the given number and ‘false’ otherwise. Name your function appropriately.

16 Write a function that accepts an array of real numbers in one argument and a single real
number in another argument. The function should perform a linear search of the array and
return the cell value that is closest in value to the given number.

Exercise 4.4

100 Heinemann Software Design and Development: HSC Course

17 Write a function that accepts an array of real numbers in one argument and a single real
number in another argument. The function should perform a linear search of the array and
return the cell index of the cell whose value is closest in value to the given number.

18 How efficient is a linear search? To answer this question, consider an array containing 100
cells when the correct search value is in the second cell. Now consider the situation in
which the correct search value is in the 98th cell.

Advanced sorting and searching
techniques
This section deals with some standard ways to search and sort collections of data in arrays.
Although the techniques are well known in the software development field, they can be
considered as advanced work in the context of any Higher School Certificate course.
Searching is dealt with first, and follows on from the simple linear search covered in the
previous section.

Searching arrays
Linear search
An example of a linear search of an array has been given in the previous section. You should
note the logic of the linear search, which is to simply start at the beginning of the array and
proceed along the array, checking each cell’s value against some search value. As soon as the
search value is found in one of the cells, that cell’s index is output, indicating that the search
value has been found and where it is in the array. If the search value cannot be found some
special value must be output to indicate this. In the example function on p. 98, −1 is
returned if the search is unsuccessful.

A linear search is easy to understand, but its efficiency is completely dependent on
where the search value is in the array. If the value being searched for is near the beginning
of the array, the linear search will locate it quickly. If the search value is near the end of the
array, the linear search will need to traverse almost all the cells. This is obviously inefficient
if the array is long.

Binary search
Searching an array can be done much more efficiently using a binary search, but this can
only be done if the values in the array are already sorted in order. Later in this section you
will be presented with several standard sorting techniques, but for now you should assume
that there is an array of values that is already in sorted order. Such an array can be created
with the algorithm instruction
numberList is an array of whole numbers indexed from 1 to 9

A diagram of this array, with sample values already assigned to the cells, is given in
Figure 4.8.

Figure 4.8

5 6 9 10 12 13 23 32 40

1 2 3 4 5 6 7 8 9

101Planning and design of software solutions

The binary search takes advantage of the sorted nature of the array and does not simply
start searching at the start of the array like the linear search does. The binary search applies
the same logic to the searching process that you would use if you were searching for
someone’s name in a telephone directory. For example, you know that a telephone directory
is already sorted, so if you were looking for ‘Jackson’ you would start in the first half of the
book, since the name ‘Jackson’ occurs in the first half of the alphabet. You might open the
directory at some arbitrary place in the first half of the book and then check the name of
the people on that page. If the page contained the name ‘Greer’, you would flick forward
looking for ‘Jackson’. If one of the names on the page was ‘Patrius’, you would flick
backwards, because you know that ‘Jackson’ will occur before ‘Patrius’.

The binary search algorithm employs similar logic, although it is not quite as clever as
you would be at finding the correct search value. It always starts by checking the middle
value of an array to see if that value matches the search value. If that middle value is not
correct, the binary search then determines if the search value is in the section of the array
before the middle value (the first half of the array) or after the middle value (the second
half of the array). Once this is known, the binary search then applies the same logic to that
particular half of the array that it used for the whole array. That is, it selects the new middle
value, checks it against the search value and again divides the search area in half if the value
if incorrect.

Before dealing with the actual algorithm in pseudocode, the logic of the binary search
technique is presented here using diagrams.

Suppose that we have the array given in Figure 4.9 and we are searching for the value
10. That is, we want to know the index of the cell that contains 10. The first step, as outlined
above, is to find the middle value of the array and check it. The end indices of the array are
1 and 9, so the middle cell will be number 5 (note that 5 is the average of 1 and 9). We
check cell 5. Does it contain the search value? No, it contains the value 12. At this point,
we can visualise the situation as shown in Figure 4.9.

The binary search must now decide which half of the array to use for further searching.
Since the value 12 which was found is greater than the search value, it is clear that the lower
half of the array must contain the 10. The upper boundary of the search region is moved
down to cell 4, the middle of the new region is calculated as cell 3 (the average of 1 and 4
rounded up), and this value is then checked. This situation is shown in Figure 4.10.

Once again the search fails to locate the correct value, as the cell being checked contains
9, not 10. However, this time the value 9 is less than the search value, so the lower boundary
is moved up to cell 4.The situation is now that the upper boundary is at cell 4 and the lower
boundary is also at cell 4. The middle of this range is obviously 4 (the average of 4 and 4)
and the binary search now looks like Figure 4.11.

The search value has now been found, in cell 4, and the binary search routine stops and
outputs the value 4.

Figure 4.9

5 6 9 10 12 13 23 32 40

1 2 3 4 5 6 7 8 9

Lower boundary Middle index Upper boundary

Does this cell contain the
search value 10?

102 Heinemann Software Design and Development: HSC Course

Figure 4.10

5 6 9 10 12 13 23 32 40

1 2 3 4 5 6 7 8 9

Lower boundary

Middle index

Upper boundary

Does this cell contain the
search value 10?

Figure 4.11

5 6 9 10 12 13 23 32 40

1 2 3 4 5 6 7 8 9

Lower boundary

Middle index

Upper boundary

Does this cell contain the
search value 10?

In situations where the search value is nowhere in the array, the binary search will finish
with the upper boundary being less than the lower boundary. In this case, the routine needs
to output some special value, such as −1, to indicate that the search has failed.

The algorithm for the binary search is given here as a function in pseudocode. It is quite
complex compared with the linear search algorithm but exactly matches the logic used in
the diagrams and discussion above.
BEGIN binarySearch with numberList and searchValue

set lowBoundary to first index of numberList
set highBoundary to last index of numberList
WHILE highBoundary >= lowBoundary

set middleIndex to (highBoundary + lowBoundary) / 2
IF numberList[middleIndex] = searchValue
THEN

return middleIndex // EUREKA, short circuit
ENDIF
IF numberList[middleIndex] > searchValue
THEN

set highBoundary to middleIndex − 1
ELSE

set lowBoundary to middleIndex + 1
ENDIF

ENDWHILE
return −1

END
This function can now be plugged into any algorithm that requires it.

103Planning and design of software solutions

Example of binary search
This situation could be part of a larger application which a share trader might use to
record and manage a portfolio of five different stocks. We set up the problem with
two arrays, one of which contains the names of several companies in which the trader
holds stock. This array would be created as
companyList is an array of names indexed from 1 to 5

and is represented in Figure 4.12. This array is sorted into alphabetical order and so
a binary search on it is possible.

Figure 4.12

An array of share prices in parallel to the companyList array is shown in Figure
4.13. A parallel array is one where the indices used for the cells of one array match
those used in another array. So if the company name ‘Davnet’ is in cell 2 of the first
array, its price is in cell 2 of the second array.

Figure 4.13

Coles Myer Davnet Reckon Secureld Woolworths

1 2 3 4 5

7.99 1.89 2.03 10.67 12.56

1 2 3 4 5

The following algorithm allows the user to enter the name of any company and, in
response, prints the share price of that company. If the entered company name is not
one of those in the portfolio, the algorithm prints a suitable message.
BEGIN find share price (main module)

companyList is an array of names indexed from 1 to 5
priceList is an array of real numbers indexed from 1 to 5
get companyName from the user //(1)
set foundIndex to binarySearch with companyList and companyName
IF foundIndex = −1
THEN

print ’No such company in portfolio’
ELSE

print ’For the company ’ companyName ’
print ’the share price is ’ priceList[foundIndex]

ENDIF
END

A desk check of this algorithm can be done by making up a company name for
input on line 1. If you use ‘Davnet’ as sample data, the variable ‘foundIndex’ should
capture the value 2 when the binarySearch function is called. In this case the output
from the algorithm will be:
For the company Davnet
the share price is 1.89

If the company name ‘Telstra’ is input, since that name cannot be found in the array
the ‘foundIndex’ variable will capture −1, and the output will be:
No such company in portfolio

You should perform several more desk checks of this algorithm, each time using a
different company name. Make sure you trace the binary search function itself as well
as the main module above. By doing this you will gain valuable practice at following
the binary search logic.

104 Heinemann Software Design and Development: HSC Course

The bubble sort starts at the beginning of the array and compares the first two cell
values. These are cell 1 containing 23 and cell 2 containing 12. These are not in sorted order
so the values are swapped, as shown in Figure 4.15.

Figure 4.14

23 12 6 40 5 10 32 9 13

1 2 3 4 5 6 7 8 9

The next two cells (cell 2 and cell 3) are then similarly compared and, if necessary, their
values swapped. Since 23 is larger than 6, the values do need swapping, and the result is
shown in Figure 4.16.

Sorting arrays
There are several standard sorting techniques that can be applied to arrays. They are not
simple. You will need to study the functions closely and desk check each one several times
to ensure you understand it.

Bubble sort
This routine is popular among novice programmers and is reasonably efficient. Its main
logical structure is based on traversing an array and switching adjacent pairs of values that
are not in the correct order. After one traversal, the largest value will have ‘bubbled’ to the
end of the array. This is repeated until all the values are in their correct cells, with the array
completely sorted.

Figure 4.14 is an unsorted array of whole numbers, identical to the one used for the
linear search earlier.

Figure 4.15

12 23 6 40 5 10 32 9 13

1 2 3 4 5 6 7 8 9

swapped

Figure 4.16

12 6 23 40 5 10 32 9 13

1 2 3 4 5 6 7 8 9

swapped

Next, the values in cell 3 and cell 4 are compared. These are already in the right order
and so do not need swapping.

Continuing this activity, swapping adjacent values as necessary as the array is traversed,
results in the largest number, 40, being moved into the last cell. Figure 4.17 shows this and
also shows the changed positions of the other values after the traversal. Use a pencil and
paper diagram yourself to fill in the swapping steps between Figure 4.16 and Figure 4.17,
and then verify that the diagrams are correct.

105Planning and design of software solutions

The swapping can easily be done in a function like this
BEGIN swap with value1 and value2

set temp to value1
set value1 to value2
set value2 to temp

END
The complete traversal and its swapping can also be written as a function. The function

accepts the array as an argument. The local variable ‘cellNumber’ is initially set to the
second index of the array and the comparisons are done between the value at position
cellNumber and the value before it. The function is called ‘bubbleUp’ because it has the
effect of making the largest value in the array bubble up to the last cell.
BEGIN bubbleUp with someArray

set cellNumber to first index of someArray + 1
WHILE cellNumber <= last index of someArray

IF someArray[cellNumber − 1] > someArray[cellNumber]
THEN

swap someArray[cellNumber − 1] and someArray[cell Number]
ENDIF
increment cellNumber

ENDWHILE
END

So far we have only seen how to move one cell value, the largest one, into its correct
position. To completely sort the array, this routine must be repeated once for each cell in
the array. The following function, ‘bubbleSort’, does this.
BEGIN bubbleSort with someArray

FOR counter goes from first index to last index of someArray
bubbleUp with someArray

ENDFOR
END

Using our sample array, given initially in Figure 4.14, the above function would call the
sub-module ‘bubbleUp’ nine times, after which the entire array would be sorted. You
definitely need to desk check this using pencil and paper diagrams and with close attention
to tracing the values of the variables.

The bubble-sort routine presented here is effective but not completely optimised. The
entire array can be sorted with fewer repeats of the ‘bubbleUp’ routine provided we can
check each time that at least one value has been swapped. Try to develop such an
optimisation. A possible strategy is to turn ‘bubbleUp’ into a boolean function, so it returns
‘true’ whenever a swap is done. The ‘bubbleSort’ function can then be modified as follows:
BEGIN optimisedBubbleSort with someArray

REPEAT
set aSwapWasDone to bubbleUp with someArray

UNTIL NOT aSwapWasDone
END

In this form the bubble sort is quite efficient. It is particularly quick when the values in
the array are only slightly out of order.

Figure 4.17

12 6 23 5 10 32 9 13 40

1 2 3 4 5 6 7 8 9

106 Heinemann Software Design and Development: HSC Course

Start by marking the first cell and then look for the smallest value from that position on.
Figure 4.19 shows this activity.

Figure 4.18

23 12 6 40 5 10 32 9 13

1 2 3 4 5 6 7 8 9

Selection sort
The logic of the selection sort is easy to follow, which makes it ideal for beginning
programmers. The essential idea is that we place a marker at the first cell in the array and
then search through the array from that position onwards looking for the smallest value.
When the smallest value is found, it is swapped with the marked cell’s value. This naturally
places the smallest value at the front of the array. The next step is to move the marker to
the next cell and repeat the process.When the marker reaches the last cell, the array is sorted.

The diagrams below help to explain this process. Figure 4.18 shows the unsorted array.

These two values are swapped to produce Figure 4.20.

Figure 4.19

23 12 6 40 5 10 32 9 13

1 2 3 4 5 6 7 8 9

Mark this cell

Search for smallest

Smallest value
found here

Now the first cell contains 5, the smallest value in the entire array. Mark the next cell,
then find the smallest from that position onwards, as shown in Figure 4.21.

These two values are then swapped and the first two cells are in sorted order.
Draw the diagram for yourself and adjust it by repeating the ‘mark next cell, then find

smallest, then swap’ routine. If you do this, you can verify that the selection sort works
correctly.

The algorithm function below locates the smallest cell in an array by searching from a
given position in the array. It will be used later in the complete selection-sort algorithm.

Figure 4.20

5 12 6 40 23 10 32 9 13

1 2 3 4 5 6 7 8 9

Swapped values

107Planning and design of software solutions

Notice that when this function is called, the index of the starting point (markedCell) and
the name of the array (numberList) must be passed to it.
BEGIN getSmallest with markedCell and numberList
set smallIndex to markedCell // (1)

set smallValue to numberList[smallIndex] // (2)
FOR counter goes from markedCell to last index of numberList

IF numberList[counter] < smallValue // (3)
THEN

set smallIndex to counter
set smallValue to numberList[counter]

ENDIF
ENDFOR
return smallIndex

END

Figure 4.21

5 12 6 40 23 10 32 9 13

1 2 3 4 5 6 7 8 9

Mark this cell
Smallest value

found here

1 A binary search of an array can be done correctly only when the cells are in sorted order.
Why is this so?

2 How efficient is a binary search? In answering the question consider a sorted array
containing 100 cells with the correct search value located in cell 2. Also consider the
situation when the correct search value is in cell 98.

3 A simple guessing game can be played by two people. One person (the owner) makes up
a secret whole number in the range 1 to 1000 (inclusive). The other person (the guesser)
attempts to guess the number. Each time a guess is made, the owner says ‘Too big’ if the
guess is larger than the secret number, ‘Too small’ if the guess is smaller than the secret
number or ‘Correct’ if the guess is right. Play the game several times with a friend, taking
turns as the guesser and the owner.

4 Using the game in question 3 as a guide, what is the minimum number of guesses that are
needed to identify the secret number? What is the maximum number of guesses?

5 If the game in question 3 is played with a secret number in the range 1 to 100 inclusive,
what is the minimum number of guesses required to ensure that the number is guessed
correctly?

6 What is the minimum number of guesses required to ensure a correct identification of the
secret number if the range 1 to 10 000 is used?

7 Study the bubble sort presented in this section. Desk check the bubble sort on an array of
whole numbers containing the four values 23, 56, 12 and 6.

8 Desk check the bubble sort on an array containing the four values 5, 19, 45 and 78. Note
that the values are already in sorted order

9 Desk check the bubble sort on an array containing the values 78, 45, 19 and 5. Note that
the values are in reverse sorted order.

10 For questions 7, 8 and 9, count how many swaps were done during the bubble sort.

Exercise 4.5

108 Heinemann Software Design and Development: HSC Course

String processing
The word ‘string’ means ‘a string of characters’, one character after the other, forming a
sequence. The word is used in the same sense as ‘a string of pearls’. It refers to a sequence
of characters that form a word, a sentence, a name or a message. Computer programs need
to be able to deal with strings because they are used very often in most applications. A quick
look at the user-interface of any software package will verify this: screens are full of words
and messages, in menus, help systems, error messages and so on. There are also many
programs that must deal directly with strings because their core purpose is processing
words; word-processing packages, email clients, publishing systems and so on all require fast
and sophisticated routines to process strings efficiently. Some of these routines are examined
in this section.

String concepts
In traditional systems strings were not defined directly in a programming language. Instead,
a programmer had to work with the individual characters that made up a message or word.
To do this efficiently, the programmer used techniques which were very similar to those
seen in the previous two sections. That is, a string was represented as an array of characters.

It is a tedious job for programmers to write all their own character array processing
routines from scratch. Some standardised functions are required, and once these are written
and well tested they can be stored in a function library and used over and over again in
future applications.

Let us assume at this stage that no such library is available. One often-used, low-level,
string-processing function is written to verify that strings are indeed just a sequence of
characters. A number of similar functions are then discussed which are considered as ‘given’
or ‘standard’. The section concludes by looking at several useful and interesting routines that
extend the standard ones.

A low-level string function: concatenation of two strings
‘Concatenate’ is a fancy word that just means ‘to join together’. A common task in
programming is to join two words together to form a single result. A typical example occurs
with people’s names. If we have someone’s first name, such as ‘Homer’, in one array of
characters and their second name, ‘Simpson’, in another, we may wish to join these to form
a single string containing ‘Homer Simpson’.

The following function does the work of concatenating two such arrays of characters.
BEGIN concatenate with string1 and string2

set len1 to length of string1
set len2 to length of string2
bigString is an array of characters indexed from 1 to len1+len2

FOR counter goes from 1 to len1
bigString[counter] = string1[counter]

ENDFOR
FOR counter goes from 1 to len2

bigString[len1+ counter] = string1[counter]
ENDFOR
return bigString

END

11 Desk check the selection-sort algorithm shown in this section on the value sets in questions
7, 8 and 9.

12 For each of the desk checks done on the value sets in question 11 count how many times
the values in the array were swapped.

109Planning and design of software solutions

The first three lines of this function find out the length of the two strings and create a
single string big enough to accommodate all the characters (bigString). The first loop
copies each of the characters from the first string into the bigString using the loop counter
for indexing.

The second loop is similar, but the loop counter is used for indexing in a slightly different
way. In this case, the position in bigString where each character goes is after the existing
characters. The strings containing the separate parts of a name are shown in Figure 4.22.

Figure 4.22

H o m e r

S i m p s o n

These have been defined as characters arrays as:
firstName is an array of characters indexed from 1 to 5
secondName is an array of characters indexed from 1 to 7
We could join them together with a call to the concatenation function like this:
set fullName to concatenate with firstName and secondName
print fullName
Of course, the output will be:
HomerSimpson
which is technically correct, even though it might not be exactly what we want when
displaying a full name.

The fact that there is no space between the two original strings in the concatenated
version is not a fault with the function. If we modified the function so that a space was in-
cluded we would, in fact, be making a grave mistake. A well-defined, technically correct and
general-purpose function that does exactly as it is supposed to is more useful than a special-
ised one. It is a building block on which specialised functions can be based if necessary.

To extend our concatenation function, consider a situation where several separate words
have to be joined to become a sentence. Assume that we have four words, defined in strings
as word1, word2, word3 and word4. To join them into a sentence we need to concatenate
them, with a space between each but no space at the end. The following simple algorithm
does this.
BEGIN make a sentence

space is an array of characters indexed from 1 to 1
set space[1] to ’ ’
set sentence to concatenate with word1 and space
set sentence to concatenate with sentence and word2
set sentence to concatenate with sentence and space
set sentence to concatenate with sentence and word3
set sentence to concatenate with sentence and space
set sentence to concatenate with sentence and word4
display sentence

END

A more general solution can be applied to a list of words that are held in an array (an
array of strings). A function that accepts an array of words and delivers a single string
containing all of them concatenated, with a space between each, is as follows. It uses exactly
the same logic as the algorithm above but in a more generalised way.

BEGIN makeParagraph with wordList
space is an array of characters indexed from 1 to 1
set space[1] to ’ ’

set paragraph to wordList[1]
FOR counter goes from 2 to last index of wordList

set paragraph to concatenate with paragraph and space
set paragraph to concatenate with paragraph and wordList[counter]

ENDFOR
return paragraph

END
Notice that there is no dangling space at the end of a paragraph created with the above

function. Can you see why?
We can consider the concatenate function above as a low-level function because it deals

directly with the underlying array which contains the characters of a string. Given this low-
level function we have seen how several useful routines can be built that use it. Most
relatively modern programming languages contain a built-in library containing a collection
of such low-level functions which make it unnecessary for the programmer to deal directly
with the arrays themselves. (Some of these are discussed below.) In very modern program-
ming languages, especially object-oriented languages such as C++, Java and SmallTalk, the
programmer can use ‘string objects’ that encapsulate both the underlying array
implementation and all the useful routines that form the associated function library. The
material presented here will not deal with objects but with library functions.

Standard string processing functions
A function library devoted to string processing would contain many functions. We will
assume that the ones discussed below are available to us in our algorithm design work.

trimString
A function ‘trimString’ is used to remove all the spaces from the front and the rear of a
string. It is useful in user-interface applications because research shows that when human
users enter text into a computer program they often inadvertently type some spaces before
they start the actual text and also at the end of the text.

The ‘trimString’ function does not remove spaces that are embedded inside a string; it
removes only leading and trailing spaces. So if we have a string called ‘myMessage’ which
holds the characters shown in Figure 4.23, then ‘trimString’ will remove the two spaces
before the ‘H’ and the three spaces after the ‘e’, but it will not remove the space between
the ‘p’ and the ‘m’.

110 Heinemann Software Design and Development: HSC Course

The ‘trimString’ function accepts a string as an argument, trims it, and returns the
resulting string. Here is a sample algorithm that shows its use.
BEGIN trim experiment

msg is an array of characters indexed from 1 to 100
print ’Please enter a message’
read msg from the user
set msg to trimString with msg
print msg

END

Figure 4.23

H e l p m e

111Planning and design of software solutions

When this algorithm executes, the user enters a message that is trimmed of leading and
trailing spaces and simply displayed.

compareStrings
A function called ‘compareStrings’ is useful to test the alphabetical order of two strings.This
function accepts two strings and compares them to see which one would come first in an
alphabetical listing. It returns a number that is 1, −1 or 0, indicating that the first string
comes after the second, the second comes after the first, or that the two strings are identical.
This is quite hard to understand at first so some examples are given below.

Suppose that we have two strings, “Freda” and “Anne”.
To simulate the way the ‘compareStrings’ function works, we need to ask which one of these
would be farthest down in an alphabetical listing. The answer would be ‘Freda’ because
‘Anne’ would be near the top of such a listing and ‘Freda’ would be lower down. If we use
the compareStrings function like this:
set result to compareStrings with ’Freda’ and ’Anne’
print result
then the printed result would be 1 (the first string is lower than the second in alphabetical
order). However, if we were to write
set result to compareStrings with ’Anne’ and ’Freda’
print result
the printed result would be −1 because the first string (‘Anne’) is higher in alphabetical
order. Finally, if we were to write
set result to compareStrings with ’Freda’ and ’Freda’
print result
the printed result would be 0 because the two strings are identical.

toLowerCase, toUpperCase
These two functions convert all the characters of any string into lower case or upper case.
They return a string that contains the new version of the argument. They are very
straightforward and can be used like this:
BEGIN case experiment

set sampleWord to ’My homework was stolen’
set upword to toUpperCase with sampleWord
set loword to toLowerCase with sampleWord
print sampleWord
print upword
print loword

END
The output from this algorithm would be:

My homework was stolen
MY HOMEWORK WAS STOLEN
my homework was stolen

stringContains
This is a useful function to have in a library. It takes two strings as arguments and checks if
the first string contains the second. If the first string does contain the second, the function
returns ‘true’; otherwise it returns ‘false’.

This function can be used effectively in some searching algorithms. The user enters a
word or phrase and the algorithm then searches through a collection of text checking to see
if the user’s word appears.

As a preliminary example, imagine that we have a string containing the word ‘rectangle’.
If we call the ‘stringContains’ function with this string as its first argument and ‘angle’ as its
second argument, the function will return ‘true’, because ‘angle’ is contained within
‘rectangle’. The following sample algorithm shows how this would be done.

112 Heinemann Software Design and Development: HSC Course

BEGIN contains experiment
set foundIt to stringContains with ’rectangle’ and ’angle’
IF foundIt is true
THEN

print ’rectangle contains angle’
ELSE

print ’rectangle does not contain angle’
ENDIF

END

An algorithm that uses the string library
This section looks at an algorithm that uses the assumed string library to do some useful
work. It concerns a miniature thesaurus application.

In all the pseudocode shown below, whenever a string is being created the word ‘string’
has been used as a type; for example:
myName is a string
This is instead of the longer version used with arrays, such as:
myName is an array of characters indexed from 1 to 100
This shorthand notation helps to reinforce the idea that we can now leave the low-level
details behind when we have a function library ready to use.

The thesaurus application
A thesaurus is a collection of words and their synonyms. To use a printed thesaurus, we look
for a particular word in the index, go to the page indicated and read the word’s synonyms.
For example, if we look up the word ‘computer’, we might find several words that mean the
same thing or have meanings that are related, such as ‘machine’, ‘calculator’, ‘PC’,
‘mainframe’, ‘processor’, and so on. A printed thesaurus is useful when completing
crossword puzzles.

Often a word-processing package will have an electronic thesaurus built into it. An
author writing something using a word processor might use a word that he or she feels is
not quite right for the piece. The built-in thesaurus can be used to look for a more
appropriate word.

Our application will be a simplified version of an electronic thesaurus. Suppose we have
a file called ‘synonyms’ stored on our system in which each line contains a set of synonyms.
The first few lines of the file might look like this:

computer machine PC mainframe processor
doctor physician specialist PhD quack academic
house abode shelter home address bungalow flat unit

Notice that each line is a collection of words and that every word on a particular line is
a synonym for the other words on that line. Also, the number of words on each line is not
fixed.

In our simplified thesaurus application we will allow the user to enter a word, then we
will read through the file searching for that word. If we find the word, we will display all
the synonyms. Here is the algorithm.
BEGIN thesaurus

searchWord is a string // 1
upSearchWord is a string // 2
aLine is a string // 3
upALine is a string // 4
theFile is a file // 5
open theFile as file ’synonyms’ // 6
print ’Please enter a word’ // 7

113Planning and design of software solutions

get searchWord from user // 8
set upSearchWord to toUpperCase with searchWord // 9
REPEAT

read aLine from theFile // 10
set upALine to toUpperCase with aLine // 11
IF stringContains with upALine and upSearchWord // 12
THEN

print aLine // 13
ENDIF

UNTIL end-of-file theFile // 14
END

This thesaurus algorithm is reasonably modest in size. This is because much of the hard
work is actually done by the string library functions used on lines 9, 11 and 12.

The algorithm starts by creating several string variables. On line 1 the variable
‘searchWord’ is created. It is used to hold the word the user enters. On line 2 the variable
‘upSearchWord’ is created and is used to hold an upper-case version of it. Similar work is
done for strings that hold the data read from the file, on lines 3 and 4.

The preliminary work of this algorithm is to open the file ready to start reading data and
to fetch the user’s word (lines 6, 7 and 8). Let us assume that the user has entered the word
Specialist

On line 9 we call the standard string library function ‘toUpperCase’ which converts this
word to all upper-case characters. The result is stored in the variable ‘upSearchWord’, which
would contain
SPECIALIST

Following this (line 10 in the algorithm), we read the next string of words from the file.
This is an entire line of the file containing one complete set of synonyms. The first time this
is done, the variable ‘aLine’ would contain
computer machine PC mainframe processor

Next we use the ‘toUpperCase’ function again so that the variable ‘upALine’ contains
COMPUTER MACHINE PC MAINFRAME PROCESSOR

The next line, line 12, is really the heart of the algorithm. It calls the standard string
function ‘stringContains’ and passes the data from the file and the user’s word to it. You
should recall that this function checks to see if the second string is contained in the first, so
in this case it checks to see if
SPECIALIST
is contained in
COMPUTER MACHINE PC MAINFRAME PROCESSOR

Of course ‘SPECIALIST’ is not found, and so the ‘stringContains’ function returns
‘false’. This means that the print statement on line 13 is not executed.

The REPEAT-UNTIL loop condition is also ‘false’ at this stage because there is still more
data in the file to be read. So the lines 10 to 14 in the algorithm are repeated. When the
second set of synonyms in the file is read, the ‘stringContains’ function call on line 12 will
return ‘true’ (you should verify this for yourself), and the algorithm will print the words
doctor physician specialist PhD quack academic
which are the synonyms the user is looking for.

1 Why is a library of string functions preferable to writing the low-level functions from
scratch?

2 What is the underlying data structure that supports string type variables?

3 The complete algorithm for the low-level ‘concatenate’ function was given in this section.
Write your own version of a similar low-level function called ‘indexOf’ which accepts two

Exercise 4.6

114 Heinemann Software Design and Development: HSC Course

Records and collections
This section introduces records, which are units of information that can be stored, searched
and retrieved by computer software. The work on records takes us closer to modern
computing in at least two ways: it involves concepts that are similar to those found in
database management systems, and it involves concepts that are found in object-oriented
programming.

We will first look at the fundamental structure of records and an algorithm syntax for
defining them. They will then be combined with what we already know about arrays to
form applications that hold and manage collections of records—‘containers’.

Records
In the algorithm design seen so far, each simple variable we declare can hold only one value
and that value can be of only one type. If we wanted to store a person’s age, we could declare
a variable like this:
age is a whole number

We could assign a value to the age variable, like this:
set age to 17

It is obvious that with this variable we can store only one person’s age and the age must
be a whole number. If we want to store a person’s name, which is a string, we could declare
and assign another variable:
name is a string
set name to ’Jim Morrison’

The variable ‘age’ and the variable ‘name’ are two completely separate variables. A
computer program would maintain absolutely no connection or relationship between them.

arguments. One argument is a string and the other is a single character. The function
should return the index of the first cell in the string which contains the given character. If
the character is not found in the string, the function should return −1.

4 A simple function that is useful in programs that deal with strings is one called
‘stringLength’. It simply returns the number of characters stored in a string. Write this
function taking care to note that the number of characters in a string is not always equal
to the number of cells in the underlying array.

5 Write an algorithm in which the user is allowed to enter two messages (strings). The
algorithm should then print the two strings in uppercase letters.

6 Write an algorithm (or extend the one from 5) that allows the user to enter two strings.
The algorithm should then print both strings, with the longest string appearing first in the
output.

7 Write an algorithm in which the user enters two messages and they are printed in
alphabetical order. Use the ‘compareString’ library function in your solution.

8 Write an algorithm in which the user enters two strings. The algorithm should determine
whether the second string is part of the first, and output a suitable message. Use the
‘stringContains’ library function in your solution.

9 Does your solution to exercise 8 work correctly if the first entered string contains all lower-
case characters and the second all upper-case letters? If it does not, modify your solution
so that the case of the characters in the strings does not affect the outcome.

10 Write a bubble sort routine that sorts an array of strings. You should attempt to write the
routine from scratch, and if you cannot complete it, refer to the bubble sort given in the
previous section. The bubble sort given earlier compares numerical cell values with the
operator ‘<’ (less than). The string version will have to use the ‘stringCompare’ library
function instead.

115Planning and design of software solutions

However, human beings might see things differently. We might see the age and the name as
connected because they refer to two pieces of information about the same person. To allow
a relationship between separate variables in computer algorithms, we can declare a ‘record’
that contains both variables, like this:
Person is a record containing

name, a string
age, a whole number

END
A person’s age and name have been gathered together and declared inside a record.

Programmers often say that the record ‘encapsulates’ the two variables, because the Person
record is like a capsule. The separate variables inside the record are called ‘fields’ or
‘members’ or ‘attributes’. So, a reasonable definition of a record is that it is the encapsulation
of several variables as fields in the one structure.

Database terminology
The terms ‘record’ and ‘field’ used above are taken directly from database terminology. A
database management system would maintain ‘tables’; each table would consist of ‘records’,
and each record would contain several fields.

A library that wanted to use a database to hold information about its books would first
decide on what data to hold about each book. Each piece of data would be a field, such as
‘title’, ‘author’, ‘number of pages’ and so on. Each book’s data would be encapsulated in a
database ‘record’. To do the same kind of work in our algorithm description language, we
would write:
Book is a record containing

title, a string
author, a string
numPages, a whole number

END
A collection of database records is usually called a ‘table’. The algorithms in this book

will be restricted to using an array to hold a collection of records.

Object-oriented programming (OOP) terminology
Similar concepts are used in OOP. The various separate pieces of data are collected into an
‘object’ and are called ‘members’ or ‘attributes’. In OOP, functions as well as data can be
encapsulated inside objects, so each object is a collection of some data, representing
information, and some functions, representing certain behaviour. Whereas we use the word
‘record’ in our algorithm description syntax, OOP uses the term ‘object’. In OOP a ‘class’
is used as a template or definition of what data and behaviour a particular type of object
can hold.

The term used to describe a collection of objects in OOP is a ‘container’. A container
class defines a host object that holds as its data an array of some other kind of objects and
has encapsulated in it functions that allow the collection to be managed.

Using records
There is a simple way of specifying a record; for example:
Date is a record containing

day, a whole number
month, a whole number
year, a whole number

END
It is important to realise that this is a definition of what all Date records will look like.

It is not the declaration of any particular date. In this sense, when we define a record we are
doing what OOP does with a class—defining a ‘template’ that simply shows how a
particular type of record is structured.

116 Heinemann Software Design and Development: HSC Course

To create a particular Date record to hold some specific values, we can write:
anzac is a Date record

which means that the single word ‘anzac’ is a variable holding one complete Date record.
We can access the fields (or attributes) of this record where the three attributes are set to
suitable values:
set anzac.day to 25
set anzac.month to 4
set anzac.year to 2001

Note that a single dot is placed between the name of the record variable (anzac) and the
name of one of its fields. This kind of dot syntax has been used in languages such as C and
C++ for many years. The syntax is also used in many more recent languages such as Java,
JavaScript and XML Schema.

Nested records
Records are a neat way of holding a set of values together. The Date record holds together
all three values for a given date. The Person record defined earlier held together two values
for a particular person—the person’s name and age.

It makes sense when defining a Person record to include the person’s date of birth
instead of their age, because any age value would need changing each year; a date of birth
could remain constant. The Person record could encapsulate a name (another simple
variable) and a date (itself a record type). We say that the Date record is ‘nested inside’ the
Person record, or more simply that the Person record has a Date record as one of its fields.
The definitions of the Date and Person records are as follows:
Date is a record containing

day, a whole number
month, a whole number
year, a whole number

END
Person is a record containing

name, a string
dob, a Date

END
A Person variable can be declared as:

tom is a Person record
Values for some of the attributes can be set as:
set tom.name to ’Tom Tank’

This person’s date of birth can be accessed as:
tom.dob

So, to set values for the day, month and year for this date of birth, we could write:
set tom.dob.day to 12
set tom.dob.month to 6
set tom.dob.year to 1988

Examples using single records
To see how individual records can be used in algorithms, consider a record type that holds
the name of a company, the current price of its shares and the number of shares a person
owns in that company.
Stock is a record containing

coName, a string
sharePrice, a real number
numShares, a whole number

END
We can create one of these records for 100 shares in the company ‘ABC Bank’, with a

share price of $18.50.

117Planning and design of software solutions

stock1 is a Stock record
set stock1.coName to ’ABC Bank’
set stock1.sharePrice to 18.50
set stock1.numShares to 100

For a company called ‘Pata Mining’ the record might look like this:
stock2 is a Stock record
set stock2.coName to ’Pata Mining’
set stock2.sharePrice to 23.50
set stock2.numShares to 1200

A function that calculates the value of some shares for a company can be written to
accept a Stock record and a quantity and return a dollar value.
BEGIN stockValue with someStock

value is a real number
set value to someStock.price × someStock.numShares
return value

END
A function could also be written to calculate the brokerage when some shares are traded.

The term ‘brokerage’ refers to a fee that is charged whenever shares are bought or sold. In
our example, the brokerage fee will be 0.3% of the value of the shares traded (for values
over $10 000) or a flat fee of $30 for values less than $10 000. Note that this function calls
the previous one to find the value of the trade.
BEGIN getBrokerage with someStock

fee is a real number
value is a real number
set value to stockValue with someStock
IF value < 10000
THEN

set fee to 30
ELSE

set fee to value × 0.003
ENDIF
return fee

END
These two functions can be used together in an algorithm that estimates the total cost

of buying some shares. This algorithm requests that the user enter the company name and
the price of the shares and also how many shares are required. It then displays the value of
the shares, the brokerage fee and the total amount to be paid.
BEGIN share trading algorithm

print ’What is the company name?’
get name from the user
print ’What is the current price?’
get price from the user
print ’How many shares do you want to buy?’
get size from the user
Trade is a Stock record
set Trade.coName to name
set Trade.sharePrice to price
set Trade.numShares to size
set value to stockValue with Trade
set fee to getBrokerage with Trade
set total to value + fee
print ’Estimate of costs when buying’ Trade.coName
print ’The shares will cost ’ value
print ’The brokerage will be ’ fee
print ’The total to be paid is ’ total

END

118 Heinemann Software Design and Development: HSC Course

If this algorithm was a computer program and we were to execute it, the results would
look something like this. (The bold text indicates the user’s input.)
What is the company name? Norick Engineering
What is the current price? 15.60
How many shares do you want to buy? 800
Estimate of costs when buying Norick Engineering
The shares will cost 12480.00
The brokerage will be 37.44
The total to be paid is 12517.44

Collections
A ‘collection’ is a general term that refers to the storage and management of several or many
records. As stated earlier, a database management system holds a collection of records in a
table and provides several standard routines for managing the records (such as adding new
records, searching and retrieving records, and changing the values stored in records). In
object-oriented programming, specific objects defined in ‘container classes’ do the same
kind of work.

In this section collection storage is simulated by creating an array of records, and the
management of the collection is simulated with several functions. The example used is a
collection of Stock records which can be thought of as a ‘share portfolio’. The example is
relatively simple and could be used as part of a personal share investment package.

Defining the storage
To create an array of 20 Stock records in our algorithms, we write:
portfolio is an array of Stock records indexed from 1 to 20

We will start with no Stock records in the collection and allow users to add new Stock
records one at a time, so we will need to keep track of how many records are stored at any
time. We can do this with a simple variable:
numRecords is a whole number

Any application must start with an empty collection, so this variable will have to be
initialised to zero:
set numRecords to 0

Defining the functions
To add a new record to the collection, we need to know the name of the company, the
number of shares held and the price of each share. The following function takes this data as
arguments, creates a new Stock record with it and inserts the record into the next available
cell in the array. The next available cell can be determined by the value of the ‘numRecords’
variable:
BEGIN addStock with name and size and price

IF numRecords = length of portfolio
return false

ENDIF
someStock is a Stock record
set someStock.coName to name
set someStock.numShares to size
set someStock.sharePrice to price
set portfolio[numRecords+ 1] to someStock
increment numRecords
return true

END
You should verify that this function works correctly. The first time it is called, the

variable ‘numRecords’ will be zero. Can you see that the new Stock record will be inserted
into cell 1 of the array and that the value of ‘numRecords’ will be incremented to 1? Also

119Planning and design of software solutions

notice that this function returns either ‘true’ or ‘false’ (it’s a boolean function). It will return
‘true’ only if the new Stock record has been successfully added into the array. It will return
‘false’ if the array is already full and the new record cannot be added.

A function that searches for a given record will accept a company name as an argument.
It will then loop through the array, comparing this name with the company name of each
stored record. When a match is found, the appropriate record will be returned to the
function’s caller. If no match can be found, a dummy record will be returned.
BEGIN findRecord with name

set counter to 1
WHILE counter < length of portfolio

IF portfolio[counter].coName = name // (1)
THEN

return portfolio[counter] // (2)
ENDIF
increment counter // (3)

ENDWHILE
dummy is a Stock record
set dummy.coName to ’No Name’
set dummy.sharePrice to 0
set dummy.numShares to 0
return dummy

END
To test this function, assume that there are exactly three records stored in the array:

Telstra, Coles and Qantas. The function is called like this:
set someStock to findStock with ’Coles’
What Stock record will be returned from the function and captured into ‘someStock’?

The function will start with its counter being 1. It will then compare the name ‘Coles’
with the company name of the first record (‘Telstra’). Of course, these names do not match
and so the function increments the counter (at line 3) and loops again. The second time
through the loop, it compares the name ‘Coles’ with the company name in the second
record (‘Coles’) and does find a match. So the whole Stock record in the second cell of the
array will be returned.

There are two basic changes that an investor might want to make to a parcel of shares:
to buy some more of them or to sell some of them. The following two functions provide
these services for any individual Stock record. In both cases the functions accept a Stock
record and a number of shares.
BEGIN buyShares with someStock and quantity

IF quantity > 0
THEN

increment someStock.numShares by quantity
ENDIF

END
BEGIN sellShares with someStock and quantity

IF quantity > 0 AND quantity < someStock.numShares
THEN

decrease someStock.numShares by quantity
ENDIF

END

Share investment algorithm
The small but complete algorithm presented below interacts with the user to provide a
share portfolio management application.

Note that the array and the number of records variable are created first and are outside
of all modules. This means that they are directly available to all modules; they have global
scope in our algorithm.

120 Heinemann Software Design and Development: HSC Course

The main module appears first. Its role is to present a menu to the user, to fetch the
user’s menu choice and to direct the work out to other, smaller modules that do more
specific tasks.
portfolio is an array of Stock records indexed from 1 to 20
numRecords is a whole number
set numRecords to 0
BEGIN Share Investment Application

option is a whole number
REPEAT

print ’1. Add a new stock’
print ’2. Find a stock’
print ’3. Sell some shares’
print ’4. Buy some extra shares’
print ’5. Show total portfolio value’
print ’6. Quit’
get option from the user
CASEWHERE option is

1: addNewStock
2: findAndShow
3: findAndSell
4: findAndBuy
5: showTotal
6: print ’Application terminated’
OTHER: print ’An illegal menu option was entered’

ENDCASEWHERE
UNTIL option = 6

END
Adding a new stock is done in the ‘addNewStock’ sub-module (function), like this:

BEGIN addNewStock
print ’Enter the company name’
get name from the user
print ’Enter the share price’
get price from the user
print ’How many shares?’
get size from the user
set itWorked to addStock with name and size and price
IF itWorked = true
THEN

print ’Stock successfully added’
ELSE

print ’Can’t add stock, portfolio is full’
END

We already have a ‘findStock’ function, shown earlier. This ‘findAndShow’ module
provides some user interaction and calls the ‘findStock’ function as necessary.
BEGIN findAndShow

print ’Which stock name?’
get name from the user
set someStock to findStock with name
IF someStock.coName = ’No Name’
THEN

print ’Sorry, can’t find a match’
ELSE

print ’Company name is ’ someStock.coName

121Planning and design of software solutions

print ’The price is ’ someStock.sharePrice
print ’You have ’ someStock.numShares ’shares’

ENDIF
END

In order to sell shares, we must first find the correct record, so our ‘findAndSell’ module
also calls ‘findStock’. It then calls ‘sellShares’, developed earlier, to process the selling
transaction.
BEGIN findAndSell

print ’Which stock name?’
get name from the user
set someStock to findStock with name
IF someStock.coName = ’No Name’
THEN

print ’Sorry, can’t find a match’
ELSE

print ’How many shares to sell?’
get amount from the user
IF sellShares with amount = true
THEN

print ’Transaction confirmed’
ELSE

print ’Can’t sell that many shares’
ENDIF

ENDIF
END

A module for buying shares is almost identical.
BEGIN findAndBuy

print ’Which stock name?’
get name from the user
set someStock to findStock with name
IF someStock.coName = ’No Name’
THEN

print ’Sorry, can’t find a match’
ELSE

print ’How many shares to buy?’
get amount from the user
IF buyShares with amount = true
THEN

print ’Transaction confirmed’
ELSE

print ’Can’t buy that many shares’
ENDIF

ENDIF
END

Finally, to complete the algorithm, there is a module that prints out the total value of all
the shares in the collection. It loops over all the stock records in the array and calls the
‘stockValue’ function on each one to retrieve its value. This is accumulated into a total.
BEGIN showTotal

set total to 0
FOR counter goes from 1 to numRecords

increment total by stockValue with portfolio[counter]
ENDFOR
print ’Your portfolio is worth ’ total

END

122 Heinemann Software Design and Development: HSC Course

1 How does the word ‘encapsulate’ relate to a record data type?

2 In database terminology a record contains ‘fields’. What is the equivalent terminology in
object-oriented programming for the data values stored in an object?

3 In object-oriented programming an object (or record) can hold other things as well as data.
What are these other things?

Exercises 4, 5 and 6 refer to the following record definition:
BankAccount is a record containing

ownersName, a string
balance, a real number

END

4 Write the declaration of two ‘BankAccount’ records, one for a savings account and one for
an investment account.

5 Set the name of the owner of the savings bank account to ‘Wally Wallpaper’ and the
owner’s name of the investment account to ‘Bill Gates’.

6 Write an algorithm fragment that compares the balance of one account with the other
and prints a message containing the name of the owner of the account that contains the
highest balance.

7 What term is used to describe the situation when one of the fields of a record is itself a
record type?

Exercises 8, 9 and 10 refer to the following record declarations:
Date is a record containing

day, a whole number
month, a whole number
year, a whole number

END
DiaryEvent is a record containing
theDate, a Date record
message, a string

END

8 Declare a variable of the record type ‘DiaryEvent’.

9 Into the record variable declared in question 8, store suitable values to stand for the event
‘Sydney Olympics’ which occurred on the date 15/9/2000.

10 Write an algorithm fragment that adds 10 days to the ‘Date’ variable in the ‘DiaryEvent’
variable.

11 Write a function that accepts a DiaryEvent record as an argument. The function is to test
the month stored in the date record within the DiaryEvent and print the DiaryEvent
message if the month is after June (that is, value 6). If the month is not after June, the
function is to print ‘This event is out of date’.

12 Declare an array of 10 DiaryEvents and store an event with the date 1/1/2001, and the
message ‘First day of the new century’, into the first cell of the array.

13 Using the portfolio application as a guide, create several functions that manage an array
of DiaryEvents.

14 Write an algorithm that allows the user to interact with the array of DiaryEvents in the
same way as was done with the portfolio algorithm. In your algorithm the user will be
interacting with a computerised diary, adding events, finding events, listing events and so on.

Exercise 4.7

123Planning and design of software solutions

Team Activity

Your team has been contracted to add some
functionality to an existing software product
ready for implementation in a new version
for the next release. The existing product is
similar to a word-processing package, but
instead of saving its files in a proprietary
format it outputs files with HTML markup.
These files are intended to become
webpages. The product already contains
basic word-processing features such as text
entry and formatting styles. But it lacks some
other features that are useful to authors,
such as sorting a table of contents,
prompting with synonyms from a thesaurus
and auto-text lookup.

The existing product interface allows an
author to highlight any word in a document
and then to choose a command from a menu.
Your team is asked to write several separate
modules each of which accepts the
highlighted word as input and performs
some useful functions with it. The required
modules are listed below.

1 A module to convert the case of the
author’s highlighted word. Given a word
as input, design and write the algorithm
for a module that outputs the word in all
uppercase letters. Hint: Use functions
from the assumed string library in your
solution.

2 A module to allow the author to add any
highlighted word to a collection of often-
used words. Given a word as input, design
and write the algorithm for a module that
appends it onto any array of words for
later use. You need to allow for a
maximum of 100 words in total for this
collection. Hint: Use the principles
discussed in the section of this chapter on
collections.

3 A module to allow an author to get a list
of synonyms for any highlighted word.
Given a word as input, design and write
an algorithm for a module that locates
the word in a large collection of words
and outputs all its synonyms. Hint: Create
a record structure that contains several
words that are synonyms for each other
and store several of these records in a
collection. When the input word is
known, search the collection for the first
record containing the word and output
all the other words in the current record.

As a team activity, you should approach
the above with due discussion and thought.
Plan to have all your modules implemented
as reusable functions in the style shown in
this chapter.

Review exercises

Heinemann Software Design and Development: HSC Course124

1 Write a description in your own words of
the fundamental principles involved in
reusable functions. Include in your
description some indication of how
functions are called, how they get their
input data, where their output goes and
what happens when one function is called
and then it calls another function.

2 Collect the names of the students in your
class or group. Write these names, in the
order they are collected, onto a large
white-board. With an eraser and a white-
board marker rearrange the names so that
they are in alphabetical order. Use
whatever strategy you like to do this and
involve the whole group in suggestions
about which names should be erased and
rewritten in different positions.

3 Do the activity in exercise 2 again, this
time following the logic of a bubble sort.

4 Do the activity in exercise 2 again using
selection sort logic.

5 Write a function that accepts four whole
numbers as arguments and returns the
number that is smallest.

6 Convert your solution to exercise 5 to a
function that accepts four strings and
returns the one that is shortest.

7 Write a function that accepts an array of
whole numbers and returns the difference
between the biggest number and the
smallest.

8 In a diving competition there are ten
judges who each scores a particular dive
with a number from 0 to 10. To avoid bias,
the smallest score and the largest score are
ignored and the diver’s final score is the
average of the remaining eight scores.
Write an algorithm to perform this work.
Make sure you employ separate functions
to do any separate parts of the work so
your algorithm has a modular structure.

You can use the array traversal work from
this chapter as a guide.

9 In a game similar to lotto, a player chooses
six unique numbers in the range 1...44.
Another six unique numbers in the same
range are chosen by drawing numbered
marbles from a barrel—these become the
six winning numbers. Write an algorithm
that calculates how many of the players’
numbers match the winning numbers. You
can use an array to hold each group of six
numbers and write a function that accepts
the two arrays and returns the number of
matches.

10 Design and implement an algorithm to
hold and manage a collection of music
CDs. The relevant information on each CD
can be held in a record with a field for the
title, a field for the artist, a field for the
type of music and so on. Your algorithm
should allow information about a new CD
to be added to the collection, the
information on any CD to be located and
displayed given an artist’s name, and a list
of all CDs matching a given style of music
to be produced. If you wish, you can
model your algorithm on the portfolio
algorithm given in the last section of this
chapter.

11 An insertion sort is a third method of
sorting. It divides the array to be sorted
into two parts: the unsorted part and the
sorted part. At the start, the first element
of the array is assumed to be the sorted
list. The second element is then put into its
place in the sorted list that then consists of
the first two elements in order. The third
element is then put in its place in the
sorted list. In this way the sorted list grows
and the unsorted part shrinks.

Using some of the templates presented in
this chapter, write an algorithm to perform
an insertion sort.

125Planning and design of software solutions

• Programming and algorithm design can only be learnt by a significant amount of practice.
Reading about programming, watching people do it or listening to people talk about it is not
enough.

• Accomplished programmers keep a stock of design patterns. A design pattern is a reuseable
fragment of logic.

• Structured algorithms are based on a single top-level controlling module which farms out
various activities to small, separate module or functions.

• Structured algorithms can be devised by planning the main controlling module first and then
creating the sub-modules (top-down design) or by defining the sub-modules first and then
writing a controlling main module later (bottom-up design).

• Data can be held in variables that are available to all modules (global data) or in variables that
are restricted in use to separate modules (local variables).

• Global data has some efficiency benefits in algorithms, but sometimes it is difficult to debug
programs in which global data is changed. This is because it is not always easy to find which
module changed the global data incorrectly.

• Local variables are generally considered a safer way to hold data.
• Algorithms should be thoroughly tested using carefully chosen sample data. Desk checks and

trace tables are useful for testing algorithms.
• Selection control structures should be tested with sample data that makes their true branch

fire, data that makes their false branch fire and data that meets the boundary condition.
• Testing can be carried out by the programmer and also by users in the field.
• All algorithms should contain a reasonable level of internal documentation (comments) which

help other programmers who might have to modify the code.
• Software products require external documentation for users.
• Assumptions should be listed as part of internal documentation, especially when a problem

description is ambiguous.
• Functions can define their own local variables and should always accept their input data via

arguments (or parameters).
• Functions should deliver their output by returning it to whichever code calls on them.
• When a function is called, the calling code is suspended until the called function returns.
• Functions always return control to the code that calls them.
• A function should attempt to perform just one well-defined process.
• A function should not share data with other functions, except for data that is explicitly passed

to it via arguments.
• When a function’s ‘return’ statement is executed, that function terminates immediately.
• An array is a data structure that contains a sequence of values and all the values must be of the

same type.
• It is impossible to extend the length of an array once it has been created. It is not necessary to

fill all cells in an array with values.
• Many useful activities with arrays involve traversing the array, visiting every cell from the first

to the last. A FOR loop structure is most appropriate for traversing arrays.
• A linear search of an array involves a simple traversal and a test of each cell’s value to see if it

matches the value being searched for.

Chapter summary

126 Heinemann Software Design and Development: HSC Course

• A binary search is much more efficient than a linear search but it can only be done if the values
in the array are in sorted order.

• A binary search involves repeatedly checking the middle value of a range of cells and adjusting
the range after each check is done.

• A bubble sort involves swapping adjacent pairs of cell values in an array until the largest (or
smallest) value ‘bubbles’ to one end of the array.

• A selection sort starts by finding the smallest value (or the largest) in an array and swapping it
with the first cell.

• Strings are actually implemented as arrays of characters.
• Modern languages usually allow the programmer to access a standard collection of functions

that do many of the useful string processing routines.
• A record is a structure in which several variables, each of different types, can be held together.
• An array of records is a suitable data structure for holding a collection of information similar

to a database.

Chapter summary

55Implementation of
software solutions

cchhaapptteerr

Outcomes
A student:
• explains the interrelationship between hardware and software

(H 1.1)
• differentiates between various methods used to construct

software solutions (H 1.2)
• describes how the major components of a computer system

store and manipulate data (H 1.3)
• explains the relationship between emerging technologies and

software development (H 2.2)
• identifies and evaluates legal, social and ethical issues in a

number of contexts (H 3.1)
• constructs software solutions that address legal, social and

ethical issues (H 3.2)
• applies appropriate development methods to solve software

problems (H 4.2)
• applies a modular approach to implement well-structured

software solutions and evaluates their effectiveness (H 4.3)
• applies project management techniques to maximise the

productivity of the software development (H 5.1)
• creates and justifies the need for the various types of

documentation required for a software solution (H 5.2)
• selects and applies appropriate software to facilitate the design

and development of software solutions (H 5.3)
• communicates the processes involved in a software solution to

an inexperienced user (H 6.2)
• uses a collaborative approach during the software

development cycle (H 6.3)

128 Heinemann Software Design and Development: HSC Course

Interface design in software solutions
• the design of individual screens, including:

– identification of data required
– current popular approaches
– design of help screens
– audience identification
– consistency in approach

Language syntax required for software solutions
• use of BNF, EBNF and railroad diagrams to describe the syntax of new statements in the

chosen language
• commands incorporating the definition and use of:

– multi-dimensional arrays
– arrays of records
– files (sequential and relative/random)
– random number generators

The role of the CPU in the operation of software
• machine code and CPU operation

– instruction format
– use of registers and accumulators
– use of program counter and fetch–execute cycle
– addresses of called routines
– linking, including use of DLLs

Translation methods in software solutions
• different methods include:

– compilation
– incremental compilation
– interpretation

• the translation process
• advantages and disadvantages of each method
Program development techniques in software solutions
• structured approach to a complex solution, including:

– one logical task per subroutine
– stubs
– flags
– isolation of errors
– debugging output statements
– elegance of solution
– writing for subsequent maintenance

• the process of detecting and correcting errors, including:
– syntax errors
– logic errors
– peer checking
– desk checking
– use of expected output
– run time errors, including:

arithmetic overflow, division by zero and accessing inappropriate memory locations
• the use of software debugging tools, including:

– use of breakpoints
– resetting variable contents
– program traces
– single line stepping

Students learn about:

129Implementation of software solutions

• select either a sequential or an event-driven approach and an appropriate language to
effectively solve the problem

• design and evaluate effective screens for software solutions
• utilise the correct syntax for new commands using the metalanguage specification
• produce syntactically correct statements
• implement a solution utilising a complex algorithm
• recognise and interpret machine code instructions
• choose the most appropriate translation method for a given situation
• utilise the features of both a compiler and an interpreter in the implementation of a

software solution
• justify the use of a clear modular structure with separate routines to ease the design and

debugging process
• use drivers to test specific modules, before the rest of the code is developed
• differentiate between the different types of errors encountered during the testing phase
• recognise the cause of a specific error and determine how to correct it
• effectively use a variety of appropriate error correction techniques to locate the cause of a

logic error and then correct it
• produce user documentation (utilising screen dumps) that includes:

– a user manual (topics presented in order of difficulty)
– a reference manual (all commands in alphabetic order)
– an installation guide
– a tutorial to introduce new users to the software

• identify the personnel who would be likely to use the different types of documentation
• recognise the need for additional hardware
• assess the effect of an emerging technology on society

Students learn to:

Documentation of a software solution
• forms of documentation, including:

– process diary
– user documentation
– self-documentation of the code
– technical documentation including source code, algorithms, data dictionary and systems

documentation
– documentation for subsequent maintenance of the code

• use of application software to assist in the documentation process
– use of CASE tools

Hardware environment to enable implementation of the software solution
• hardware requirements

– minimum configuration
– possible additional hardware
– appropriate drivers or extensions

Emerging technologies
• hardware
• software
• their effect on:

– human environment
– development process

130 Heinemann Software Design and Development: HSC Course

Interface design in software solutions
A software solution can only be as good as the interface that it presents to the user. There
is no point in spending a great deal of time and effort in developing a computer solution to
a problem if the user does not want to use it or cannot use it.

There are a number of factors that contribute to an effective user interface and we will
investigate some of these in the next sections. Some of the factors are those that relate to
the way in which the user interacts with the program, for example user screens. Other
factors may be determined by the types of data that have to be processed; for example, the
processing of sound will mean that the program may need to be able to input from
microphones or output to speakers.

The design of the human interface will also need to take into consideration human
factors such as ergonomics and equity. The program’s target audience can also have an effect
on the interface. For example, an audience of preschool children will not be able to use a
highly text-based interface since their reading skills are not developed sufficiently for them
to use it.

The design of individual screens
The screen is still the most common method of communication between the user and a
program. It is therefore essential that the design of the screen be given a high priority in the
development process.

The Preliminary Course examined the elements of good screen design. Here those
elements will be put to work.

A number of factors will determine the overall design. These factors include the type of
data to be presented, the type of audience the program is aimed at, assistance required by
the user and consistency between screens.

Identification of data required
Screens are designed to present data, either input data or output data. It is important for the
developer to have a clear understanding of how data items need to be presented to the user.
The context in which data is displayed, if carefully chosen, can help the user relate to the
process being carried out.

For example, as part of a library program a screen is required to display the results of a
search. The data elements required by this screen will include the search criteria, a list of
the matches to the search item and a means of gaining more detail about each of the
matches to the search.

The type of data that is input will also have an effect on the programming model chosen.
A sequential programming environment is usually chosen when the data items to be
processed come from sources outside the system. Event-driven languages are generally used
when the data to be processed is generated within the system, for example by sensors.

Figure 5.1 The identification of data
items that form the basis for a screen
is an important factor in the success of
the screen and the whole program.

131Implementation of software solutions

Current popular approaches
A number of tools are currently available that assist with the process of screen design. These
tools range from simple graphics programs that can be used solely for the design process
through to the use of programming languages, such as Visual Basic, that provide an
integrated system of designing and implementing the design of the screen.

Other development environments, especially database management systems, also
provide an integrated report and screen design system.

Design of help screens
Design of help screens plays an important part
in the overall process of software development.
The help system should be designed to en-
courage the user to seek assistance immediately
a problem is encountered.

Help screens may need to be designed to
occupy a whole window, or they may occupy
only a part of the window. A number of factors
will determine which type is appropriate. A full
screen will not, for example, be appropriate if a
short explanation of the purpose of a button is
to be presented. However, if a detailed explan-
ation of a process is to be presented, a full
screen may be more appropriate. In some cases
it is helpful if the work window is available by
the help window, as the user can refer to the
help to identify the various screen elements
needed to solve the problem.

Figure 5.2 Database management systems, such as those found in integrated
packages, provide a screen and report design environment.

Figure 5.3 Help screens do not have to occupy the
whole of a window in order to be useful.

Heinemann Software Design and Development: HSC Course

Audience identification
Each screen in a program will have a target audience. If the screen is to be effective, the
needs of that audience must be met. These needs will cover areas such as the organisation
of the screen elements, the manner in which these elements are presented, the way in which
the user interacts with the interface and the way in which help is provided.

The screen designer has to look at the audience needs in terms of the tasks that will be
performed, the capabilities of the user, the needs of the system and any limitations that are
imposed by the technology to be used. Some of the information about these factors can be
gained by examining the systems’ descriptions. Further information will come from observa-
tion, surveys and interviews with members of the expected audience. Additional infor-
mation may also be gleaned from prototypes of the proposed interface.

Consistency in approach
As seen in the Preliminary Course, there must be consistency between screens within an
application. Consistency is important as it allows the user to anticipate actions and
placement. For example, if the printer menu is always placed in the top right of the screen,
the user will automatically move to that spot when one of the printer functions is required.

The design rules should be created before the development process is undertaken. If the
rules are followed when the screens are designed, they will be consistent. This is especially
important when a team of programmers is employed.

132

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

The main link between a and the user is the user interface. This means that
the user has to be designed carefully if the program is to be .
Some of the factors that contribute to an effective user interface are the
screens, type of that are processed, the target , assistance for the

and between screens.

2 Explain the special features that an interface would need for a text reading program for a
visually impaired student.

3 Choose an application and examine its interface. Describe the target audience for the
application. Comment on the suitability of this interface for the target audience. Describe
the ways in which this interface could be improved.

4 Use a graphics program to design a drawing screen for a children’s program that is aimed
at preschool children. Describe any peripheral devices you would use with this interface.
Give reasons for your choices in terms of the target audience.

5 A program is being designed for an interactive gift selection centre in a shop. This
selection centre will use a touch screen to allow customers to choose from a range of items
selected for various occasions. There will be a main navigation screen with other screens
for birthdays, engagements, weddings, Mother’s Day, Father’s Day, Christmas, Easter and
baby gifts. Write a set of design rules to be followed by the screen design team.

6 Create one of the screens from question 5, using your screen design rules.

Exercise 5.1

133Implementation of software solutions

Language syntax for software solutions
In order for a programmer to correctly code an algorithm in a particular language, the rules
of that language must be followed. The most concise way of providing this information is
by means of metalanguages. These are languages that describe the structure of other
languages. The most common of the metalanguages in use for the description of
programming languages are the syntax structure diagrams, BNF and EBNF. These descrip-
tions also serve to provide the rules that the translator uses when converting the program
from source code (the high-level language you use) to object code (the code
that can be understood by the processor). You will learn more about this process later in
the chapter.

Use of BNF, EBNF and railroad diagrams to describe the syntax of
new statements in the chosen language
In the Preliminary Course you learned how the syntax (rules) of a language can be described
by means of a metalanguage. The metalanguages you are required to use are BNF (Backus
Naur Form), EBNF (Extended Backus Naur Form) and syntax structure diagrams (railroad
charts). Before starting this section of work, we will revise the use of these methods.

Syntax structure diagrams are a graphical method of showing the structure of a language.
Rectangles and circles are used to represent the elements of the language and lines join the
elements. Rectangles are used to represent non-terminal symbols, that is, the language
elements that are defined elsewhere in the description. Circles or rounded rectangles en-
close terminal symbols.Terminal symbols are those language elements that appear as written.

Figure 5.4 Three symbols are used to represent language elements in syntax structure diagrams.

Assignment
statement Identifier := Expression

Figure 5.5 Syntax structure charts represent language structure as a diagram.

Syntax structure diagrams show the allowable structure of a language element by tracing
a path from left to right; the allowable elements correspond to the ‘stations’ along the line.
Branches are shown as railway ‘points’, and the path can move onto a branch only by
travelling onto the points as if it were a train (see Figure 5.6). Once on a branch, that line
must be followed until it reaches the main line again. There will be only one beginning to a
diagram and only one ending.

The two text-based metalanguages BNF and EBNF use particular groupings of characters
to show the structure of the language.

Symbol Meaning

Terminal symbols—these symbols are part of the language.

Terminal symbols—these symbols are part of the language.

Non-terminal symbols—these symbols represent a language element
defined elsewhere.

In the Figure 5.5, which represents the syntax of an assignment statement, a terminal
symbol is the pair of characters ‘:=’; the elements ‘identifier’ and ‘expression’ represent non-
terminal symbols as they would have been defined elsewhere in the description.

134 Heinemann Software Design and Development: HSC Course

Figure 5.6 Reading branches on a syntax structure diagram.

Language elements in BNF are referred to either by their names (if they have been pre-
defined) or as individual characters. Those elements that are defined elsewhere (non-
terminal symbols) are enclosed by less than and greater than symbols: ‘<language element>’.
Individual characters or strings of characters (terminal symbols) are not enclosed. For
example, in BNF …for… means that the word ‘for’ in a definition is a string of characters.
(Note that each of the characters in the word is a terminal symbol.) If it appears in a
definition as …<for>…, the word ‘for’ represents something defined elsewhere. (The word
for is, therefore, a non-terminal symbol.)

Alternative elements are indicated by placing a vertical bar in the spaces between each
of the alternatives: ‘ | ’. The symbol set ‘ : : =’ is used to represent the statement ‘is defined
as’. Note that, for clarity, in this text extra spaces have been placed between language
elements in both BNF and EBNF; this may not always be the case.

EBNF overcomes a number of problems in BNF, the main one being the inability of BNF
to show repetition in a simple manner. In EBNF repetition of elements is indicated by
enclosing those elements to be repeated in braces: {these are repeated elements}. EBNF also
allows for the inclusion of optional language elements (for example an optional + sign in a
positive number). Optional elements are enclosed in square brackets: [this is optional].
EBNF also allows groups of elements to be indicated.When elements are to be grouped they
are placed inside parentheses (these are grouped elements). It is interesting to note that, in the
case of repetition, a repetition of zero times is also allowed, which makes these elements
also optional. The only other difference between EBNF and BNF is the use of the equals
sign alone to represent the phrase ‘is defined as’.

For basic exercises in the use of these methods of syntax description, refer to Chapter 5
of the Preliminary text.

Commands and their uses
When you code an algorithm in the language you have chosen, you will use a number of
features and structures that cannot be easily represented in the algorithm. Each of the
languages has its own way of representing these items and the appropriate syntax can be
found from the language syntax description. We will look at the ways in which some of
these structures can be implemented in a language.

Multi-dimensional arrays
In the Preliminary Course we saw how using a one-dimensional array allows us to store and
access a number of data items of the same type by using the one identifier. In practice,
however, a single-dimensional array is of limited use. For example, if a business wishes to
track the value of each month’s sales over a number of years, it is not sensible to use a
separate array for each year’s results. The best solution to this problem is to create a two-
dimensional array that uses two indices. Thus all the sales results can be accessed from the
same array, rather than having a separate variable for each of the years’ results.

When implementing such an array in our programs, we are faced with the problem of
making sure that the right array element is accessed. If more dimensions are needed, such

Direction the diagram is read

allowable
path

path not
allowed

The path follows the ‘points’ This path moves against the ‘points’ when
travelling left to right. This type of junction
shows a rejoining of the ‘main line’ after a
branching.

135Implementation of software solutions

as the monthly sales results from a number of different stores over a period of years, the
problem becomes harder. In order to ensure that the right array element is reached, it is best
to name each of the indices with a different identifier. So, for example, we could think of an
element in the sales figures array discussed above as being represented by the identifier
sales(store_number, month_number, year_number). A physical representation such as that in
Figure 5.7 makes this representation clearer.

Figure 5.7 A three-dimensional array can be pictured as a number of cards, each containing a grid of
cells, each one holding a data item.

When implementing an array such as the sales figures array in a language, the number of
dimensions and the size of the array will usually have to be declared.The choice of program-
ming language will determine exactly how this is done. Dimensioning an array allows the
translator to set aside enough memory to store that array. In BASIC, using the DIM
statement does this. In Pascal, an array is declared in the TYPE section of the declarations,
then the variable is declared as a variable of that type.

The BASIC declaration is:
DIM SALES(5,4,12)

This declares a variable called SALES which consists of 5 ‘cards’, each with
4 ‘columns’and 12 ‘rows’. The terms ‘cards’, ‘columns’ and ‘rows’ have been chosen so that
they correspond to Figure 5.7.

The Pascal declaration is:
type

quantity = array[. 1..5, 1..4, 1..12 .] of real;
var

sales : quantity;

The size of the array is set in the TYPE statement, as is the data type to be stored in the
array. The variable that we will use is declared as being of the type previously declared. The
variable is accessed in the program by using the name declared in the VAR statement.

When a multi-dimensional array is accessed to perform some form of processing, it is
important to use the indices in the correct order; otherwise, an incorrect data item will be

Store 1
Store 2

Store 3
Store 4

Store 5

Each card represents a store

Each column represents a year

Each cell contains
a single value that

represents one
month’s sales

Each row
represents
a month

136 Heinemann Software Design and Development: HSC Course

accessed or an error will occur due to one of the indices being out of the declared range. The
following examples, based on the sales array described above, will illustrate how the order
in which the indices are changed affects the outcome of the program. These algorithms can
be coded as part of a program. The basic algorithm can be modified to suit a wide variety
of problems involving arrays needing more than one dimension.

Algorithm 1
The purpose of this algorithm is to process the array elements so that each shop’s results for
a particular year are dealt with in the order of the months. The array sales(shop, year, month)
has already been defined and the data items have all been entered.The array is indexed from
1 to 5 for shop, from 1 to 4 for year and from 1 to 12 for month.
BEGIN process_each_shop

set shop to 1
set year to 1
set month to 1
WHILE shop <=5

WHILE year <= 4
WHILE month <= 12

process sales(shop, year, month)
set month to month + 1

ENDWHILE
set month to 1
set year to year + 1

ENDWHILE
set year to 1
set shop to shop + 1

ENDWHILE
END process_each_shop

An application of algorithm 1 may be to enter the data into the array by using the
appropriate input statement as the subprogram process sales(shop, year, month).

Algorithm 2
The purpose of this algorithm is to process the data first by year, then by month, then by
shop. This algorithm could be used to calculate the average sales for each store month by
month over the four-year period.
BEGIN process_each_month

set shop to 1
set year to 1
set month to 1
WHILE year <= 4

WHILE month <= 12
WHILE shop <=5

process sales(shop, year, month)
set shop to shop + 1

ENDWHILE
set shop to 1
set month to month + 1

ENDWHILE
set month to 1
set year to year + 1

ENDWHILE
END process_each_month

Note how similar the two algorithms are in their structure. This similarity can cause
problems when programmers do not put the loops in the right place.

137Implementation of software solutions

The sample algorithms can be coded in a language such as BASIC or Pascal and tested.
When using a programming language to implement your algorithm, you should ensure that
the structure of the coded algorithm matches that of the design as closely as possible. If
necessary, you should design the algorithm using those commands and structures that are
available in the language. For example, early versions of BASIC did not have a
CASEWHERE command, so algorithms designed for implementation in these versions were
based on a number of nested IF statements that performed the same task.

Arrays of records
A record by itself is not a very useful data structure. This is because the record structure can
hold related data items about only one thing. Usually we need the same data identifier for
a number of different things. Rather than use a different identifier for each of the records,
it is more efficient to use a single identifier name and to store these records as an array.
Remember that records can be stored as an array since they are all of the same data type.

When defining a record structure in a programming language, we need to specify the
data type of each of the fields that go to make up the record as well as their names. This
information is again needed by the translation system so that the appropriate amount of
memory can be set aside for the data.

The example below, although in Pascal, illustrates the declaration of an array of records.
TYPE

article =
RECORD

colour : char;
code, quantity : integer;
price : real

END;
VAR

stock_list : array[. 1..250 .] of article;

In this declaration, four fields are defined as making up the record data type called
article. These are colour, code, quantity and price. The variable to be used within the
program is then defined as being an array containing records of type article. This array is
indexed from 1 to 250, allowing up to 250 records to be stored in the array.

Figure 5.8 A data item within an array of records is indexed using the record’s index together
with the field name.

Code Colour Quantity Price

1
2 stock_list(2).quantity

3

4 stock_list(4).price

5
6 stock_list(6).colour

7

8

9 stock_list(9).code

10

11

12

Field names

Array
index

138 Heinemann Software Design and Development: HSC Course

When accessing a field of a particular record for processing, both the index and the field
name have to be specified. The structure varies little between languages, so the Pascal array
defined above will be used as an example. The data item stock_list(.49.).price would access
the price of the item whose details are stored in record number 49 of the array.

The following Pascal code sample, again based on the array of the example, illustrates
how each of the stock numbers and the quantity of each item in stock can be displayed. This
is not a full Pascal program.
index :=1;
REPEAT

writeln(stock_list[.index.].code,stock_list[.index.].quantity);
index:=index+1

UNTIL index > 250;

Files (sequential and relative/random)
Processing of a file may involve each of the records in turn or it may involve only those
records that meet certain criteria. If all records of a file have to be processed, it is most
sensible to start from the first in the file and process each one, in turn, to the last. This is
called sequential processing. If records that meet one or more criteria have to be accessed,
it makes more sense to go straight to the record or records that meet the requirements and
just process them. This type of processing is known as random processing. When processing
the weekly payroll, a company must ensure that every employee is paid; thus the program
would access the employee records sequentially. On the other hand, when a bank’s

END

BEGIN

Set count to 1

false

true

Count
<= last

Display
mark[count]

Set count to
count +1

Figure 5.9 Algorithm 3 expressed as
a flowchart.

customer uses a card to access their account at an
ATM, the computer program needs to access just the
customer’s account details without accessing anyone
else’s details first. So the ATM program uses random
processing when accessing the customer’s details.

It is possible for both types of processing to be
carried out with the one file and for the one task. For
example, if you have an address book program that
orders the records by name, in order to find the
person whose birthday is 1 April, the program would
have to search through the records from the start to
find a birthday that matches. This is an example of
sequential processing as the records are accessed in
order. Once the records containing the birthday
1 April had been found, the other details of the
records can be accessed directly that is, by means of
random processing.

Algorithm 3
Sequential access will always employ a counting loop
to access each record in turn. The counter is also used
as the record index. For example, the following
algorithm displays each of the marks of a one-
dimensional array of marks in turn. The array is
already available to this algorithm and contains
elements indexed from 1 to last.
BEGIN display_marks

set counter to 1
WHILE counter < = last

display mark[counter]
set counter to counter + 1

ENDWHILE
END display_marks

139Implementation of software solutions

Algorithm 4
Direct access may not involve a loop. In the following example
the teacher requires a single mark. In this case the index of the
mark is input by the teacher (it may be a student number, for
example), the appropriate mark being accessed directly from
the array.
BEGIN find_student_mark

set student_number to user input
display mark[student_number]

END find_student_mark

Random number generator
Computer technology is widely used to simulate situations. It is not uncommon for these
situations to have an element of chance. Computer languages allow us to bring chance into
a program by using a random number generator. A random number generator is a small
function that provides a different value each time it is run. Most random number generators
will return (that is, ‘make’) a decimal value between 0 and 1. Some random number
functions will allow you to generate values in other ranges. For the purpose of this section,
it will be assumed that the value returned is between 0 and 1.

The following sample algorithms illustrate how a random number generator can be used
to simulate real situations. In the first example a coin toss is simulated. The output of the
program will be either ‘heads’ or ‘tails’. In the second example, the weather in the month of
September when the probability of a fine day is 70% is simulated. In this case it will be
output each day whether it is ‘fine’ or ‘wet’. The September weather algorithm will also be
implemented as a spreadsheet.

BEGIN

END

Display
mark[student_number]

Input
student number

Figure 5.10 Algorithm 4
expressed as a flowchart.

END

BEGIN

Set coin to
random number

Display ‘heads’ Display ‘tails’

coin
<= 0.5

falsetrue

Figure 5.11 Algorithm 5 as a flowchart

Algorithm 5: Tossing a coin simulation
BEGIN coin_toss

set coin to random number
IF coin <= 0.5
THEN

display ’heads’
ELSE

display ’tails’
ENDIF

END coin_toss

140 Heinemann Software Design and Development: HSC Course

Algorithm 6: September weather
simulation
BEGIN september_weather

set day to 1
WHILE day <= 30

set weather to random
number

IF weather <= 0.7
THEN

display ’September ’,
day, ’ fine ’

ELSE
display ’September ’,

day, ’ wet ’
ENDIF
set day to day + 1

ENDWHILE
END september_weather

Most spreadsheet applications contain a random number function. It can be used to
create simulations quite quickly. Using the September weather simulation as an example,
we can see how this is done.

The first step is to place labels at the top of columns A and B. The first label is the word
‘day’, and the second the word ‘weather’. See Figure 5.13.

Figure 5.12 Algorithm 6 as a flowchart

END

BEGIN

false

false

Display day,
‘fine’

Display day,
‘wet’

Weather
<= 0.7

true

true

Set weather to
random number

Set day to
day +1

Set day to 1

Day <= 30

Figure 5.13 The column headings are placed in the
spreadsheet first

141Implementation of software solutions

The second step in creating the spreadsheet
is to place the value ‘1’ in the first cell below
the ‘day’ heading and type the formula ‘=A2+1’
in the cell below that. Copy the formula down
from cell A3, using the ‘Fill down’ command.
You should see the numbers 1 through to 30
appear in column A, as in Figure 5.14.

Finally the formula ‘=IF(RAND(0)<=0.7,
“Fine”,“Wet”)’ is typed into cell B2. (The exact
formula may be different for your spreadsheet.)
This formula needs to be copied down to cell
B31. You will now have a spreadsheet that looks
similar to Figure 5.15. Each time you force the
spreadsheet to recalculate, the weather pattern
will change, as the random numbers generated
each time will be different.

Figure 5.14 The days are filled in like this
down to cell A31.

Figure 5.15 The completed weather simulation spreadsheet.

Exercise 5.2
1 Copy the following passage and complete it by filling in the blanks with the appropriate

terms or phrases.

The rules of a language are called the of that language. Three different
methods are used to show these rules. The two text-based methods are and

. The rules can also be shown in a graphical form, using structure
charts (also known as railroad charts). A programmer can check the

of a statement against the description to ensure that it can be by
the computer.

142 Heinemann Software Design and Development: HSC Course

Figure 5.16

Line numberVariableOn goto ON

,

GOTO ENDGO

Create a legal multiway selection that branches to statements 100, 200, 300 or 400 when
the value of t is 1, 2, 3 or 4 (this will require the 4 line numbers in the order given).

4 Write an algorithm that finds the longest side of a right-angled triangle using Pythagoras’
Theorem. Code this algorithm in Pascal using the syntax structure diagrams in the
Appendix of the Preliminary text.

5 A language implements a pre-test repetition using the following definition:

The loop starts with the keyword ‘WHILE’ followed by a comparison (defined elsewhere).
After the comparison is the keyword ‘LOOP’ followed by a list of statements (defined
elsewhere) separated by colons (:). The keyword ‘WEND’ must finish the repetition. There
must be at least one statement after the keyword ‘LOOP’. The last statement in the list is
not followed by a colon.

6 Using the algorithms in Chapter 4 as a guide, design, code and test a program that inputs
ten characters into an array (letters should be used for the test data). This array is then
sorted using a bubble sort. Once the array has been sorted, the user can search for a
particular character in the sorted list using a binary search, the result of the search being
displayed as either the position of the wanted item or the message that the item is not in
the list. The process of searching is to continue until the character ‘@’ is entered.

2 A language uses the following EBNF definition of a variable and an array element. Write
a legal two-dimensional array element in this language.

character = l | m | n | t
variable =V <character> {<character>}
array element = A <variable> INDEX! <variable> { , <variable> }!

3 A multiway selection in the language of question 2 has the following structure.

The role of the CPU in the operation
of software
The aim of software development is to produce a set of instructions that can be executed
by the CPU. Although it is unusual these days to produce a program written in machine
code, a knowledge of the manner in which these instructions are expressed helps us to
understand how programs actually work.

In the Preliminary Course the fetch–execute cycle was discussed. This cycle describes
the manner in which the processor works. That is, it fetches the instruction from primary
storage, decodes the instruction, executes the instruction and stores the result. This section
looks at the way in which a CPU is arranged and then discusses the way in which the
CPU operates.

Since CPUs have different architectures (different designs), we will look at a generic
CPU. Also, to simplify the explanation, the sample CPU will not be as complex as those
found in modern computers.

All processors contain a number of different parts, each with its particular purpose.
The following description is of a CPU with the minimum number of parts. The control
unit coordinates the actions of the processor. The arithmetic and logical unit (ALU) is

Implementation of software solutions 143

Figure 5.17 Processors are composed of a number of interconnected parts,
each with its own purpose.

External data bus

Internal data bus

External address bus

Stack
point

Program
C

ounter

Registers

Control
unit

Arithmetic
and

logical
unit

Accumulator

responsible for all the arithmetic and logical operations carried out by the processor. A
number of registers (memories) are provided to store results, locations of instructions and
flags (bits that indicate the result of an operation). These parts of the processor are joined
by means of an internal data bus (a ‘roadway’ for data to pass along). The processor is itself
joined to the primary storage by an external data bus. The address bus that carries the
address of the memory location to be accessed by the CPU provides a further link to
primary storage. The processor also contains one or more special registers known as
accumulators. These features are discussed in more detail in the next section.

Machine code and CPU operation
This section looks briefly at the manner in which machine code is structured and operates.
This will give us a better understanding of how processes are carried out and their
limitations. It will also help should the need arise to write machine code or assembly code.
Since there is no single machine code for all processors, generic examples are used.

The sample code used is based on an 8-bit processor, that is, one that can process a single
byte at a time. This will allow us to concentrate on the principles of machine code. Current
processors can deal with upwards of 4 bytes at a time, with some being able to process 16
bytes. The amount of data that can be processed at one time is described by the size of the
word. Thus, our sample processor has a word size of 8 bits.

Instruction format
Machine instructions need to convey a number of pieces of information to the processor.
This means that the way in which the bits of the instruction are arranged is important. The
first few bits are used to ‘tell’ the CPU the type of instruction to be carried out. These first
bits are represented by the most significant bits of the first instruction byte.

Figure 5.18 An instruction will contain one or more bytes. The most significant
bits of the first byte identify the instruction to be performed.

most significant bits

Instruction byte 1 Instruction byte 2

b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0

144 Heinemann Software Design and Development: HSC Course

copy the value into the accumulator value to be copied

Instruction byte 1 Instruction byte 2

0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1

The remainder of the instruction’s bits are used to ‘tell’ the processor the registers to use
and the way in which data is to be obtained. For example, the machine code instruction
0111 0011 0000 1101 may represent the instruction ‘copy the value 0000 1101 into the
accumulator’. The first four bits (0111) represent ‘copy’. The second four bits represent ‘the
value that follows into the accumulator’ and the last eight bits are the value to be loaded.
All instructions that represent copying a value will start with the four bits ‘0111’.

Figure 5.19 The instruction represents ‘copy the value into the accumulator’.

Some instructions in this example instruction set will take more than two bytes. For
example, if the processor is to access a value in primary storage, the location of the data item
needs to be specified. The instruction 0111 0001 0000 1010 1110 0110 represents ‘copy
into the accumulator the value stored in memory location 0000 1010 1110 0110’. In this
case, the first 4 bits still represent ‘copy’. However, the next four bits represents ‘into the
accumulator the value stored in the location that follows’, with the last two bytes
representing the memory location that supplies the data. This type of instruction is an
example of direct addressing of a memory location. (Direct addressing modes ‘tell’ the
processor to go directly to a memory location to read or write data.)

Processor instructions can be grouped into sets that contain similar types. Certain
instruction sets are necessary for all processors to function. These instructions include
arithmetic instructions such as adding values, subtraction, incrementing (adding one to a

copy the value

into the
accumulator from
memory location memory address of the data item

Instruction byte 1 Instruction byte 2 Instruction byte 3

0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 0

Figure 5.20 This instruction ‘tells’ the processor to obtain a value from a memory location that follows.

Arithmetic

Processor
Instructions

Branching Comparison

Subprograms

Figure 5.21 All processor instructions
can be grouped into sets of similar
instructions.

value) and decrementing (subtracting one from a value). In
addition to arithmetic functions, others are needed for
branching (decision making). Branching instructions include
unconditional and conditional branches. Comparison instruc-
tions are also required. These instructions will output a flag
according to the result of the comparison; for example, a flag
may be set if two data values are equal. A further set of
instructions that handles the use of subprograms is also
necessary. The types of instruction mentioned in this section
are generally available to all processors. Many processors,
especially the more complex ones used in personal
computers, will have further instruction sets available for
specific purposes.

One of the more successful early microprocessors was the
Motorola 6502, used in the Apple II and Commodore 64
range of computers. Figure 5.22 shows the types of
instruction available for this processor. These instructions are

145Implementation of software solutions

tabulated according to their assembler mnemonics to make the structure clear. Figure 5.23
shows the different addressing modes and operands (the data being processed) available to
the programmer using this processor. Combining the instructions with the addressing modes
and operands provides a large number of combinations. Current processors may have well
over 1000 individual instructions.

Figure 5.22 The Motorola 6502 instruction set is typical of an 8-bit processor.

Mnemonic Meaning
ADC Add with carry, i.e. add a byte, plus the carry flag, to the accumulator

BCC Branch if carry clear

BCS Branch if carry set

BEQ Branch if equal

BMI Branch if minus

BNE Branch if not equal

BPL Branch if plus

BVC Branch if overflow clear

BVS Branch if overflow set

CLC Clear carry flag

CMP Compare with the accumulator

CPX Compare with register X

CPY Compare with register Y

DEC Decrement (subtract 1 from) memory location

DEX Decrement (subtract 1 from) X register

DEY Decrement (subtract 1 from) Y register

INC Increment (add 1 to) memory location

INX Increment (add 1 to) X register

INY Increment (add 1 to) Y register

JMP Jump to address specified in operand

JSR Jump to subroutine starting at address specified in operand

LDA Load accumulator

LDX Load X register

LDY Load Y register

RTS Return from subroutine

SBC Subtract with carry Subtract from the accumulator and borrow from the carry flag

SEC Set carry flag

STA Store accumulator at a certain address

STX Store X register at a certain address

STY Store Y register at a certain address

TAX Transfer accumulator to X register

TAY Transfer accumulator to Y register

TXA Transfer X register to accumulator

TYA Transfer Y register to accumulator

146 Heinemann Software Design and Development: HSC Course

Figure 5.23 The 6502 instruction set is used with various addressing modes and operands to provide an
extensive set of individual instructions.

Addressing Immediate Absolute Zero page X indexed Y indexed Implied Relative
mode

Operand Data Any Page zero Address + Address + None Offset
type address address X register Y register
ADC ✔ ✔ ✔ ✔ ✔

BCC ✔

BCS ✔

BEQ ✔

BMI ✔

BNE ✔

BPL ✔

BVC ✔

BVS ✔

CLC ✔

CMP ✔ ✔ ✔ ✔ ✔

CPX ✔ ✔ ✔

CPY ✔ ✔ ✔

DEC ✔ ✔ ✔

DEX ✔

DEY ✔

INC ✔ ✔ ✔

INX ✔

INY ✔

JMP ✔

JSR ✔

LDA ✔ ✔ ✔ ✔ ✔

LDX ✔ ✔ ✔ ✔

LDY ✔ ✔ ✔ ✔

RTS ✔

SBC ✔ ✔ ✔ ✔ ✔

SEC ✔

STA ✔ ✔ ✔ ✔

STX ✔ ✔

STY ✔ ✔

TAX ✔

TAY ✔

TXA ✔

TYA ✔

147Implementation of software solutions

Use of registers and accumulators
As already seen, there are a number of storage locations within the CPU called registers.
Registers are like the memories on a calculator; they are used to store intermediate results
of calculations. Processors will have a number of general-purpose registers and one or more
‘working registers’, sometimes known as accumulators. The data items that are currently
being processed are held in the accumulator. The accumulator is a little like the display of
a calculator. (Strictly speaking the calculator display shows the contents of a special memory
within the calculator.)

Data that has been requested by the CPU for processing will be stored in the registers
and the results passed from a register back to main memory. We will follow the progress of
a small machine language program that takes two numbers from two different memory
locations, adds them and passes the new value to the first memory location. This is equiva-
lent to the algorithm process ‘set sum to sum + value’.

The machine code instructions would represent the following steps:
load the accumulator with the value from memory location 469
add the value stored in memory location 490 to the accumulator
load memory location 469 with the contents of the accumulator.

Binary strings representing these instructions would be stored within the main memory.
The program can be followed a little better by looking at the values stored in the processor’s
registers as the program is executed.

In addition to the general registers, the CPU contains a number of special-purpose
registers. One of these registers will be used to store special bits known as flags. The flags
will be set from zero to one if a particular result has occurred. For example, a bit in the flag
register might be set to one if the result of a subtraction is negative. The flag bit can then be
tested and a decision made. The next section looks at the use of some of the other special
registers in the next section.

External data bus

Internal data bus

Accumulator

External address bus

Stack
point

Program
C

ounter

Registers

Control
unit

Arithmetic
and

logical
unit

Data from memory location 469

Figure 5.24 The value from memory location 469 is copied to the accumulator.

148 Heinemann Software Design and Development: HSC Course

Figure 5.27 The value in the accumulator is copied to memory location 469.

External data bus

Internal data bus

Accumulator

External address bus

Stack
point

Program
C

ounter

Registers

Control
unit

Arithmetic
and

logical
unit

Data to memory location 469

External data bus

Internal data bus

Accumulator

External address bus

Stack
point

Program
C

ounter

Registers

Control
unit

Arithmetic
and

logical
unit Figure 5.26 The total is

copied back to the
accumulator.

External data bus

Internal data bus

Accumulator

External address bus

Stack
point

Program
C

ounter

Registers

Control
unit

Arithmetic
and

logical
unit

Data from memory location 490

Figure 5.25 The value from
memory location 490 is
copied to the ALU and the
value in the accumulator is
copied to the ALU where
they are added.

149Implementation of software solutions

Use of the program counter and the fetch–execute cycle
A register called a program counter stores the memory location of the next instruction to
be processed. As the ‘fetch’ stage of the machine cycle is reached, the memory location
stored in the program counter is used to locate the next instruction. Once the current
instruction is fetched from main memory, the program counter is increased to point to the
next instruction. If the program instruction requires control to pass somewhere other than
the next instruction, the program counter is adjusted to point to the required instruction.

Addresses of called routines
A further register, known as a stack pointer, is used to keep track of the location of the
beginning of a special part of main memory known as the stack. The stack is used by the
CPU to hold the address of the next instruction when a subprogram is run. This allows the
CPU to return to the correct place in the main program after the subprogram has finished.

The stack is a special set of locations in the main memory that have been set aside for
the use of the CPU. These locations are used to keep track of the places where a program

get instruction
location

get instruction increase program
counter

Execute
(Carry out
instruction)

Decode
(Work out
what to do)

Fetch
(Get

instruction)

Store
(Copy result
to memory)

Figure 5.28 The fetch stage of the
fetch–execute cycle uses the program
counter to locate the instruction to be
performed.

Figure 5.29 The status of the program counter,
stack pointer and stack before the instruction ‘call the
subroutine at memory location 200’ is executed.

Central processing
unit registers

Program
counter

Stack
pointer

154 702

705

704

703

702

701

700

102

57

23

Memory
address Contents

Stack area of
main memory

jumps to a subprogram. This allows the program
to resume at the right place when the sub-
program has been executed.The stack is a special
type of list, known as a LIFO (Last In First Out)
list.This means that the first value to be removed
from the list will be the last one that was placed
there. The last location in the stack to have an
item placed in it is known as the top of the stack.
This data structure is rather like a stack of plates
where the last plate put on the stack will be the
first one taken off when they are used. The
structure obtains its name from this analogy. A
clearer understanding of the working of the stack
can be obtained if the operation of a subroutine
is examined.

In this example the program will branch to
the subroutine that begins at memory location
200, execute that routine, and then transfer
control back to the main program.

150 Heinemann Software Design and Development: HSC Course

Figure 5.30 The contents of the program counter are
first copied to the location at the top of the stack.

Figure 5.31 The stack pointer is changed to point to
the new top of the stack.

Figure 5.32 The program counter is set to the
address of the first instruction in the subprogram.

Figure 5.33 At the end of the subroutine this is the
status of the program counter, stack register and stack.

Figure 5.34 The value at the top of the stack is
copied back to the program counter.

Figure 5.35 The stack pointer is changed to point to
the top of the stack one place lower. This effectively
removes the address from the stack.

Central processing
unit registers

Program
counter

Stack
pointer

154 702

705

704

703

702

701

700

154

102

57

23

Memory
address Contents

Stack area of
main memory

Central processing
unit registers

Program
counter

Stack
pointer

200 703

705

704

703

702

701

700

154

102

57

23

Memory
address Contents

Stack area of
main memory

Central processing
unit registers

Program
counter

Stack
pointer

247 703

705

704

703

702

701

700

154

102

57

23

Memory
address Contents

Stack area of
main memory

Central processing
unit registers

Program
counter

Stack
pointer

154 703

705

704

703

702

701

700

154

102

57

23

Memory
address Contents

Stack area of
main memory

Central processing
unit registers

Program
counter

Stack
pointer

154 702

705

704

703

702

701

700

154

102

57

23

Memory
address Contents

Stack area of
main memory

Central processing
unit registers

Program
counter

Stack
pointer

154 703

705

704

703

702

701

700

154

102

57

23

Memory
address Contents

Stack area of
main memory

151Implementation of software solutions

Linking, including use of DLLs
Subprograms used by a main program can come from a number of sources. One of the
sources is the programmer who creates a subprogram to perform a task that is specific to
the program. A second source of subprograms is the library that comes with the develop-
ment system, for example the subprogram that calculates the square root of a number. A
third source is the set of subprograms that form part of the operating system, for example
a subprogram that copies a file from main memory to an external storage device such as a
hard disk.

When a program requires a particular subprogram, its address is incorporated into the
program by a part of the translation system called a linker. The linker places a call to the
subroutine into the program. When the program reaches that point in its execution, the
subprogram is run and control is then passed back to the program at the end of the
subprogram.

A special type of subprogram library, known as a DLL (Dynamic Link Library) is in
common use these days. A DLL is used in the same way as any other library, however, the
library can be updated with a new one, all programs that use the DLL automatically linking
to the new version. This allows for modifications to be made to the library after a program
has been written, the changed subprograms are, however, automatically incorporated into
the program when it is run.

1 Copy the following passage and complete by filling in the blanks with the appropriate
terms or phrases.

A CPU contains a number of sections. These sections are the and logical unit
(), the unit and the which are used for
storage. The is responsible for carrying out all the instructions. The

coordinates the actions of the . The processor is joined to
storage by means of an data bus.

2 Describe the steps in the fetch–execute cycle.

3 Explain the steps that a processor will carry out when it copies a value from memory
location 548 to memory location 376. Illustrate your answer with a diagram.

4 Investigate the Internet site of a microprocessor manufacturer such as Intel, IBM or
Motorola and download a data sheet for developers that contains the instructions for a
particular processor. Choose one of the instructions and write this instruction as a binary
string. Identify each of the sections of the instruction. Describe the purpose of the
instruction.

5 Using the data sheet you have from question 4, identify and describe the types of register
that your processor contains and the purpose of the specialised registers.

6 Describe the way that a processor executes a subprogram and then returns to
the appropriate place in the main flow of the program. Use an example to illustrate
your answer.

Exercise 5.3

Translation methods in software solutions
Programs written in any of the high-level languages (second-generation and above) cannot
be directly understood by a processor. The instructions contained within the program have
to be converted from the human readable form in that high-level language (called the
source code) into a machine-readable form (the object code). Source code is usually created

152 Heinemann Software Design and Development: HSC Course

using a text editor that forms part of a program development system. However, a text file
that has been created by other means, for example in a word processor, may also be
translated. The process of translation from the source code to the object code is accom-
plished by using one of three translation methods: compilation, incremental compilation
or interpretation.

Different methods of translation
Compilation
Compilation, using a compiler, involves translating the whole of the source code into object
code and storing the object code to be executed later. Compilation is similar to the
translation of a book from one language to another, in which the whole book is translated
before being read. A compiled program will be executed quickly, since the computer can
understand the instructions directly.

Interpretation
In interpretation the source code is translated line by line into object code which is im-
mediately executed. Interpretation can be likened to an interpreter who stands beside a
foreign dignitary and translates the sentences into the known language as they are spoken.
Interpreters produce code that is immediately executed and therefore have the advantage
of being able to identify errors within a statement at the time of execution. A second
advantage of the interpreter over the compiler is that the program can be tested for both
syntax and run-time errors. Interpreters were commonly used in the early personal
computers such as the Commodore 64 and Apple II, which had a BASIC interpreter in
ROM. An interpreted program will be executed more slowly than compiled object code
since the translation process has to be carried out each time a program is executed. This is
most evident where there are a number of loops within the program. A compromise is to
use an interpreter during the development stage of a program and compile the resulting
source file when all errors have been identified and corrected.

Figure 5.36 The process of translation.

Object code

Syntactic
analysis &

type checking

Optimised code

Characters

Tokens

Statement blocks
Machine

code

Machine code

Lexical
analysis

Code
generation Optimisation

Source
program

Incremental compilation
When a program is run using incremental
compilation the commonly executed
routines are translated into machine code
and stored. The program itself is translated
using an interpreter, but when these
compiled routines are needed they are run
from the stored code rather than being re-
translated each time the code is reached.
This speeds up the process of running the
interpreted program while keeping the
advantages of an interpreter.

The translation process
The language translator is itself a computer
program. Input for this program is the source
code that consists of high-level language that
has been entered as text. Output from the
translation system is the executable object
code. The language structure expressed in a
form such as a structure diagram or BNF
determines the algorithms that are used
within the translator.

153Implementation of software solutions

The three methods use similar processes to translate the source code, differing only in
what occurs after a line of code is converted. Interpretation, compilation and incremental
compilation all involve the processes of lexical analysis (also called scanning), syntactic
analysis (also known as parsing), semantic analysis (or type checking) and code generation.
A compiler may also optimise a program in order to make it run more efficiently (see
Figure 5.36).

When programs are written in modules, it is quite likely that each module (or segment)
will be compiled and tested independently of the others. A linker is used as a means of
joining these modules into a single object file. The primary purpose of the linker is to add
routines from the operating system and user libraries (such as printing modules and
mathematical functions) and also place the appropriate call and return instructions so the
program segments are properly joined. The linker also ensures that all blocks of data
declared to be common to more than one segment are able to be accessed by all those
segments that need them.

We will follow the progress of the following TUSIL program (see the Preliminary text
for a description of the language) which has been written to calculate the length of the
hypotenuse of a right-angled triangle using Pythagoras’ theorem:
program PYTHAGORAS:

declaration!
SIDE_A is a real number!
SIDE_B is a real number!
HYPOTENUSE is a real number!

end declaration:
readin(’What is the length of the first side ’ ! SIDE_A):
readin(’What is the length of the second side ’ ! SIDE_B):
HYPOTENUSE RB √(SIDE_A ^ 2 + SIDE_B ^ 2):
typeout(’The hypotenuse is’ ! HYPOTENUSE):

end program%

Lexical analysis (scanning)
The first stage in the translation process is that of lexical analysis, in which the source code
is read one character at a time. The lexical analyser uses the rules set down by the syntax of
the language to create recognisable language elements from the characters of the source
code. Characters that form programmer documentation, such as spaces, indentations and
comments, are removed during this process as they are of no use to the translator. Once a
language element has been identified, it is assigned a code called a token.

The scanner creates two categories of token:
• Tokens representing elements defined as part of the language syntax. The most common

of these are reserved words (for example program, declaration, readin and typeout from
the sample program), constant values (such as the numbers 2 and 3.14159) and
operators (for example +, –, * and /).

• Tokens representing elements created by the programmer, usually called identifiers, to
represent containers (variables), procedures and the like (for example SIDE_A , SIDE_B
and HYPOTENUSE from the example).
The identifier tokens, or labels, are stored in a symbol table or token dictionary, which

also lists the names, thus allowing the translator to keep track of them. The symbol table
lists other attributes of identifiers, such as its data type if it refers to a variable.The translator
uses attributes listed in the symbol table to allocate memory to variables, check for type
mismatches and make calls to subprograms. An interpreter, for example, can store the
memory location of each variable in this dictionary, allowing it to refer to that location when
the variable is encountered later during execution; a compiler will store an address relative
to the start of the program. In the previous example the variable declaration provides the
translator with the attributes of each variable. The definitions of functions and subprograms

154 Heinemann Software Design and Development: HSC Course

also provide information that is kept in the symbol table. In languages such as BASIC this
table is added to each time a new variable is encountered during scanning. Some variable
types may not be resolved until parsing.

Figure 5.37 A representation of the symbol table for the TUSIL program.

The tokens are then passed on to
the syntactic analyser that arranges
them in a way that can be understood
by the computer. Figures 5.39 to 5.41
show an example of code passing
through the scanner and being con-
verted to a series of tokens that pass in
sequence to the syntactic analyser.
Figure 5.38 gives the key to the
symbols that are used for the tokens in
the example.

Token identification Name Kind Type
PRO PYTHAGORAS Program ID

VARI SIDE-A Variable Real number

VAR2 SIDE-B Variable Real number

VAR3 HYPOTENUSE Variable Real number

Figure 5.38 Key to the symbols used for the tokens
used in Figures 5.41 to 5.43.

Figure 5.39 The 9th line of high-level code enters the scanner as text.

Figure 5.40 As the code passes through the scanner it is converted to a series of
tokens which are passed in sequence to the syntactic analyser.

HYPOTENUSE RB √(SIDE_A ^ 2 + SIDE_B ^ 2):

Scanner

High-level language text

from a text editor

SIDE_A ^ 2 + SIDE_B ^ 2):

Scanner

High-level language text

from a text editor

Language tokens

to the syntactic analyser
VAR

3
RB√(

Symbol Meaning

Punctuation token

Constant token

Operation token

Identifier token

Reserved word token

155Implementation of software solutions

Figure 5.41 The whole line has now been tokenised and passes on to the next stage of translation. The next
program line is prepared for conversion.

typeout (’the hypotenuse is’ ! HYPOTENUSE):

Scanner Language tokens

to the syntactic analyser

VAR
2

A2(A2+ RB√(VAR
1

VAR
3

Syntactic analysis (parsing)
As the tokens pass from the scanner, they move to the syntactic analyser which arranges
them in a way that allows the computer to understand the logic of the program. This
arrangement is best viewed as a hierarchical structure called a parse tree.

It was seen in the Preliminary Course and earlier in this chapter that the syntax of a
language can be represented by defining various language elements and the relationships
between them. Parsing is an implementation of these rules so that the meaning of the
program can be determined. The rules are those expressed in the syntax description, and
they form the basis for the algorithms that govern the operation of the translator.

The process of parsing to discover the meaning of a sentence can be illustrated by taking
a simple English sentence that can be interpreted in two different ways. The sentence ‘The
boy hit the girl with the ball’ has two different meanings. The first is that the boy threw
a ball that hit the girl; the second is that the boy hit the girl who was holding the ball.
The two different parse trees of Figures 5.42 and 5.43 illustrate these interpretations.
Computer languages must be designed so that there is only one parsing, and therefore only
one meaning, for each ‘sentence’. This is necessary since an instruction given to a computer
must have exactly the same meaning, and therefore produce the same actions, each time it
is executed.

Sentence

Noun
phrase

Determinant Noun

The boy hit the girl with the ball

Verb
prepositional

phrase
Verb

phrase

Verb
Noun
phrase

Determinant Noun Prepositon

Prepositional
phrase

Noun
phrase

Determinant Noun

Figure 5.42 Interpretation of the sentence as the boy throwing the ball at the girl and
hitting her with it.

The structure of the whole TUSIL sample program is too complex to represent as a
single parse tree. From Figures 5.44 and 5.45 the structure of this program can be examined
and it can be seen how it conforms to the TUSIL syntax rules in the Preliminary Course.

If a group of tokens does not conform to the rules of the language, the syntactic analyser
cannot place them on the parse tree and so assumes that there is an error in the program.

156 Heinemann Software Design and Development: HSC Course

Sentence

Noun
phrase

Determinant Noun
Verb

Verb
phrase

Noun
prepositional

phrase

Noun
phrase

Prepositional
phrase

Determinant Noun Preposition Noun
phrase

Determinant Noun

The boy hit the girl with the ball

Program

Program ID Declaration

‘program’ PRO declaration!
Variable

list end declaration!

Statement
list

End
program%

VAR1 ‘is a real
number’

VAR2 ‘is a real
number’

VAR3 ‘is a real
number’

This statement is expanded in
Figure 5.46 as an example of line 9

Figure 5.43 Interpretation as the boy hitting the girl who was holding the ball.

Figure 5.44 A tree representing the structure of the TUSIL program

When an error occurs, the translating program reports a message back to the programmer.
These error messages may consist of only a numerical code or they may present a more
detailed report indicating the location of the error, its type and perhaps a suggestion for
its correction.

The syntactic analyser in an interpreter and an incremental compiler will process only a
single high-level language instruction before sending the tokens on to the next stage of
translation. A compiler will parse the whole program before sending the tokens along to the
next stage.

157Implementation of software solutions

Type checking
The parsed tokens are sent on to the type checker.This part of the translator has two purposes:
• detecting data types within the tokens and passing that information on to the translator
• detecting incompatible operations between differing data types and creating error

messages.
As seen earlier in the course, data can have different types, for example real and integer

number types. Variable declaration at the beginning of a program or module will indicate to
the interpreter the number of memory locations required to store each data item. Following
the allocation of storage locations, the interpreter can refer to these locations during
translation each time one of the variable names is used within the program. The type-
checker provides the interpreter with information necessary for this task to be carried out.
If the language does not employ variable declaration, the type checker examines those
variables within each block of tokens using the syntax rules to determine the variable types
within that statement.

Another consideration is that operations may be defined differently for different data
types. For example, the operation of addition (usually shown by using the + symbol) may
be defined differently for string data than for numerical data. If a programmer accidentally
tries to add a string to an integer, the interpreter needs a mechanism for detecting it. Further,
the result of an operation needs to be stored, but how does one store the sum of a string and
an integer? What data type is it? These errors are also detected by the type checker and
signalled by means of an error message.

Assignment

Identifier

VAR3

RB Expression

√ Expression

(Expression)

+
Expression

VAR1 2 VAR2 2

Expression

V V

Figure 5.45 A tree representing the structure of line 9 in the TUSIL program.

Expression

Real variable

VAR2

Operation

+

Integer

2

Expression

Real variable

VAR2

Operation

+

Character

T

Figure 5.46 Representation of type matching a legal instruction (on the left) and an
illegal instruction (on the right) in a parse tree.

158 Heinemann Software Design and Development: HSC Course

Figure 5.47 Traversing the parse tree for the TUSIL code example used in this section.

Assignment

Identifier

VAR3

RB Expression

√ Expression

(Expression)

+
Expression

VAR1 2 VAR2 2

Expression

V V

The type checker uses the information stored in the symbol table to determine the data
type represented by each of the tokens within the operation. These are compared to a list
of legal combinations. If the combination is legal, the type checker determines the output
type and passes on to the next branch of the tree; if it is not legal, it issues an error message.

Code generation
The code generator performs the task of conversion from tokens to object code, the code
that is executable by the computer. The generator traverses the parse tree according to a set
of strict rules, creating appropriate machine code whenever it gathers sufficient tokens to
form a machine command. It continues through the tree in this manner until all instructions
have been coded.

The code generator is also governed by the syntax rules used to write the source code.
The code generator used for this example starts at the top left of the tree and moves
downwards and to the right around the tree. As it moves around the tree, it chooses tokens
from the ends of the branches, moving left to right around the tree. This process is known
as traversing the tree.

The translated code, called object code, may then be used. This code is stored in main
memory by a compiler from where it may be stored externally, executed or manipulated.
An incremental compiler will add the code generated from each expression in the program
to the code that already exists in memory. Interpreters execute the code from one parsed
expression before starting the translation process on the next expression.

The linker
Machine code produced by the code generator will often not be in a form that allows it to
be executed by the system. Even the simplest programs will require calls to the operating
system, for example for input and output. In addition, the modular approach of top-down
programming will often produce smaller programs which need to be joined together to
make the final solution. This is the task of the linker.

High-level language systems have to be able to provide the programmer with ways of
implementing the features of the language. This is accomplished by incorporating a number

159Implementation of software solutions

of pre-written subprograms and functions into the various libraries. These library routines
are then made available to the translation system.

A linker will make links to the operating system by putting the address of the required
subroutine in the appropriate position in the object code. During execution, when the link
is reached, control passes from the user’s program to the appropriate subroutine in the
operating system, passing back to the user program after execution. Library routines are
placed in the object code by the linker and executed as if they had been written by the
programmer as part of the program.

The loader
Programs do not necessarily occupy the same memory locations each time they are
executed. This is especially true when two or more programs are in main memory at the
same time. If the programs were compiled using absolute addressing (that is, each reference
to memory specified a particular location), it is very likely that they would both modify, or
read, the same memory location, with possibly disastrous results. To overcome this problem,
programs are compiled using relative addressing (each referral to a memory location being
specified as a number of locations from a reference location) or a loader is added into
the code.

When a program is run, the loader places a small utility program, called a load module,
in main memory before execution takes place. The purpose of the load module is to adjust
all memory location references so they do not interfere with other parts of the system.

The optimiser
A translator, as described above, can work only with the code that is being processed at that
time. It cannot review code that has already been translated and it cannot anticipate what
code may occur later. This can lead to code that is badly organised or unnecessary
(redundant). There is no solution for this problem when an interpreter is used, as the code
is immediately executed; however, a compiler may be able to improve the object code by
means of an optimiser, as the machine code is all in memory. The aims of an optimiser are
to reduce the amount of code so that the object code occupies less memory and to organise
the code so that the program runs faster.

Some optimisation methods are very complex and may greatly increase the compilation
time. To overcome this problem, some compilers target certain portions of the object code
which are likely to be used a large number of times, such as submodules (procedures) and
repetitions (loops).

Advantages and disadvantages of each method
Each of the translation methods discussed above has its strengths and weaknesses.

Advantages of a compiler
• Compiled programs will run faster than those that have been interpreted as they are

already in a form that the processor understands.
• Compiled programs hide the code from view so that it is more difficult to determine the

algorithms used.
• A compiled program is often a lot smaller that the high-level code that generated it.
• A compiled program cannot be easily modified by an inexperienced user.

Disadvantages of a compiler
• Run-time errors are not apparent until the program has been completely compiled.
• When a compiled program is modified, the whole of the program has to be re-compiled,

regardless of the nature of the modification. Even if a minor modification is made, the
whole program has to be re-compiled. This can make the testing process tedious.

160 Heinemann Software Design and Development: HSC Course

Advantages of an interpreter
• During testing, both run-time and translation errors become apparent as the code is

being executed. These errors may then be corrected as they are found. This allows the
programmer to more quickly debug a program, as the code does not need to be
completely translated after the changes have been made.

• The process of interpretation also allows the programmer to quickly add and remove
debugging aids such as flags and debugging output statements.

Disadvantages of an interpreter
• Programs that are interpreted will run far more slowly than those that have been

compiled, as each line of code has to be translated before it is executed.
• The code of an interpreted program is easily accessible to any user or other programmer.

This means that the illegal use of modules is easier.
• Programs that are interpreted will generally take up more storage than a similar program

that has been compiled.

Advantage of an incremental compiler
• Programs will run faster than those of an interpreter; however, the incremental compiler

retains the advantage for a programmer that both run-time and syntax errors can be
identified as they are reached.

Disadvantages of an incremental compiler
• Programs are not executed as quickly as for a compiled program.
• Code is still accessible to users and others.

1 Complete each of the following statements with the most appropriate word from the list:

blocks, compiler, interpreter, linker, object code, optimiser, syntactic analyser, source code,
symbol table, type checker

a A program written in a high-level language is called the .

b As a result of compilation, is saved in memory from which it can be run or
saved to secondary storage.

c A(n) is often used in a compiler to make the machine code more efficient.

d The will report an error if an attempt to add an integer to a string is
encountered during translation.

e A is a group of tokens that represents elements of the program that serve
a common purpose.

f A provides information about identifiers to the interpreter.

g Tokens are organised by the into a hierarchical structure according to the
language’s syntax rules.

h A changes all the source code into machine code before execution can
take place.

i Using a(n) is the slowest method of executing a program since statements
are translated only as they are needed.

j Programs are often written in modules; a is used to join these pieces
together to form a program.

Exercise 5.4

161Implementation of software solutions

2 Describe the three methods of translating a high-level language into machine code. What
are the advantages of each of the methods?

3 What are the four steps that are common to all translation methods? Describe their actions
in your own words.

4 Explain, in your own words, the purpose of a linker.

5 In a high-level language of your own choice, write the statement that corresponds to the
mathematical expression:

Amount = Principal × (1 + Rate/100)

Draw a diagram to illustrate how the parse tree may be constructed for this statement.

6 Construct a symbol table for the following Pascal program. (Remember that all identifiers
should appear in the table.)

program numberscales (input,output); {Program declaration}
const {Start constant declaration}

maxradix = 10;
maxlen = 32;
minus = ’-’;
zero = ’0’; {End constant declaration}

type {Start type declaration}
radix = 2 .. maxradix; {End type declaration}

var {Start global variable declaration}
datum : integer;
scale : radix; {End global variable declaration}

procedure writenumber (num : integer; rad : radix);
{Procedure declaration}

var {Start local variable declaration}
jp , kp : 0..maxlen;
buffer : array [1..maxlen] of char;

{End local variable declaration}
begin {Begin procedure}

if num < 0
then

begin
write(minus);
num := abs(num)

end;
kp := 0;
repeat
kp := kp + 1;
buffer[kp] := chr(num mod rad + ord(zero));
num := num div rad
until num = 0;
for jp := kp downto 1 do

write(buffer[jp])
end; {writenumber procedure} {End procedure}
begin {Begin main program}

writeln(’Which number, in the range -32767 to +32767, would you ’);
write(’like to convert from base 10? ’);
readln (datum);
for scale := 2 to maxradix do
begin

write(’Your number in base ’,scale,’ is.. ’);
writenumber(datum,scale);

162 Heinemann Software Design and Development: HSC Course

Program development techniques in
software solutions
As seen, there are a number of different software development approaches. However, a
number of techniques can be identified in the structured approach that may also be applied
to the other methods. These techniques will be looked at in terms of the structured
approach, but keep in mind that they may also be applied to those other methods.

Structured approach to a complex solution
A number of different techniques can be used to aid in the development process. These
techniques will make the logic of the program more visible as well as allowing a number of
different people to effectively work together on the project. These techniques will also
make it easier to maintain the program at a later date.

One logical task per subroutine
Each subroutine within a program should perform only one logical task. This ensures that,
if the task is not performed properly, the part of the program in which the error occurred
can be quickly identified. This approach also makes maintenance easier as a change in
processing that involves the subroutine’s task can be quickly implemented. One of the aims
in creating a modular program is to allow for re-useability. Restricting each subroutine to a
single task means that the module can be incorporated into another program more easily.

writeln
end; {for loop}

write(’Please type in any whole number and press the RETURN key to finish’);
readln(datum)

end. {End main program}

7 Traverse the parse tree in Figure 5.48 and write down the TUSIL statement from which
it came.

8 A spreadsheet is an example of a fourth-generation language. What type of language
translator do you think a simple spreadsheet employs? Justify your answer.

Figure 5.48

Question statement

Variable

VAR5

RB

Expression

Operation

Expression + Expression

Variable

VAR1

Operation

*

Constant

2

Variable

VAR2

Operation

*

Constant

2

163Implementation of software solutions

A further benefit of this approach to modules is its adaptability to the team approach to
software development. If each subprogram is responsible for one logical task, then an
individual team member can be assigned the responsibility for that module’s development.

Stubs
Stubs are used to represent parts of the program that have yet to be written. Stubs can be
used to test the main flow of the program or a module before all parts have been written.
This technique allows a programming team to decide whether the main logic is correct.
Stubs can also be used to input test data sets, such as elements of an array. This allows a
programmer to test the program or its modules without the need to create the modules that
retrieve and save data. For example, if a program is being written to process an array of
students’ marks, the test data items could be put into the array by means of a stub.This saves
the developers from having to enter the marks manually or create the module to read the
data from disk.

Flags
Flags are variables that indicate whether a process has been carried out or not. They are
generally a Boolean variable that is initialised to ‘False’. When the flagged action has
been carried out, the status of the flag is changed to ‘True’. It is possible to use flags that are
not Boolean. For example, a flag can be used in a search routine to hold the index of the
found item.

Flags are used within a program to indicate whether or not a process has been carried
out. Decisions can then be made on the state of the flag. For example, if a flag is used to
indicate whether an employee has worked during the week, the flag can then be tested to
determine whether the wages calculation module is used or not.

Flags are also useful tools during the testing phase of program development. They can be
used to determine whether a particular program section has been executed or not. If a
section is suspected of causing a problem, a flag is set to ‘false’ before that section is to be
executed. A statement that sets the flag to ‘true’ is placed within the section of code. Thus,
if the code is executed, the flag becomes true; if it is not executed the flag will remain false.
The flag can then be tested to see whether the code segment was executed.

Isolation of errors
The use of flags is one way in which errors in a program can be detected. However, there is
still the problem of determining exactly where the cause of the error is. Software develop-
ment systems generally include some form of help in tracing the flow of the program. In
some systems we are able to manually step through the program, the contents of each of
the variables being displayed in a window. Other development systems will display the line
that is being executed at the time, allowing the flow of the program to be followed.

Once the cause of the problem has been identified, a remedy can be found. This may be
as simple as changing the form of a condition, or it may mean a complete rewrite of the
troublesome module.

As well as using these methods of detection, we may need to use one or more debugging
output statements to help us to identify the cause of the error.

Debugging output statements
Temporary output statements may be placed within the code to assist with the process of
debugging. These statements may be simple output statements such as one that displays the
message like ‘Processing of the file has been started’. Other statements may be used to display
or print the values of critical variables within a module so that the values can be examined.
These statements are removed from the program once the problem has been fixed.

164 Heinemann Software Design and Development: HSC Course

Elegance of solution
Programmers should always be on the lookout for algorithms that are simple and clear in
purpose. For example, if a flag is a Boolean variable, there is no need to code an ‘IF’ state-
ment with ‘IF flag is true THEN…’. A more elegant solution is to remember that the result
of a condition must be either true or false. This means that the ‘IF’ statement can be written
as ‘IF flag THEN…’.

Elegant solutions to a problem are simpler algorithms and therefore easier to understand
and, due to the simplicity, will form smaller and therefore faster code.

Writing for subsequent maintenance
This course has already discussed the need for coded solutions to contain internal
documentation (notes or remarks) and to use intrinsic documentation (appropriate choice
of identifiers). Other aspects that can help maintain a solution include the structure of the
algorithm and code and the use of identifiers to represent constants as well as variables.

When we write an algorithm or code it in a language, a conscious effort should be made
to create a structure that is easily read and understood. For example, subprograms should
be defined together. Coded repetitions should be identifiable by the use of indentation, so
that the processes that are carried out within included loops are visible. The consistent use
of structures also aids in maintenance.

It is tempting to include the values of constants only in the lines of code where they
appear. For example, if the rate of tax is 20%, we might write a line of code such as ‘tax :=
pay * 0.2’. However, assigning a constant the value 0.2 at the beginning of the module has
the distinct advantage that, if the value has to be changed at a later date, it has to be changed
only at the beginning of the module. This eliminates the need to search through the code to
try and find the values.

The process of detecting and correcting errors
It is very unlikely that a significant program will be developed without any errors. Since
these errors will either stop the program from working at all or stop it from performing all
its required tasks, they must be detected and corrected. Some of the errors will be detected
during the design phase, when the algorithms are checked; others will not appear until the
program is translated; others will appear when the program is executed. A developer needs
to develop the patience and skill necessary to detect and correct these errors. This section
examines the types of error that can occur and the methods employed to correct them.

Syntax errors
Program errors will fall into one of two categories: errors in syntax or execution errors.
Frequently, logical errors will have been removed by this stage by following the sequence of
the program development cycle. However, some logical errors may only surface when the
program is running and able to be tested using the appropriate test data.

The manner in which the structure of a language is shown was examined in the
Preliminary Course and earlier in this chapter. The syntax, which governs the use of the
language, is used during the translation process, as explained earlier in this chapter. During
syntactic analysis the tokens are placed in a parse tree. If a token cannot be placed in
position in the tree according to the rules of the language, an error message is generated.
These errors are known as syntax errors. Syntax errors are identified by the programmer as
written statements that do not conform to the rules of the language. This type of error is,
therefore, dependent on the language used. Variations in the implementation of languages
may render a legal statement on one computer platform illegal on another. Most syntax
errors, however, occur through typographical mistakes when the code is being prepared on
the text editor. Care with typing can assist in reducing the number of errors. A further aid
in error detection, both with syntax and run-time errors, is to have one or more people desk

165Implementation of software solutions

check the program steps as if they were the
computer compiling and running the
program. As far as possible, the author of the
program should not participate in this check.

Early compilers were very curt in
providing information about the problem in
the source code. Statements such as ERROR
002 IN LINE 23 or ERROR 35 gave little
indication of the form of the error; this had
to be determined by the programmer from
the compiler documentation. Early personal
computers, such as the Apple II and
Commodore 64, often came with a BASIC
interpreter in ROM. These interpreters,
again, were very curt in their error indication,
issuing the message SYNTAX ERROR IN
LINE... but giving no indication as to the
form of the error. The main reason for the
brevity of the message was the need to create
the compiler or interpreter so that it would
occupy minimal memory. As computing
technology has advanced and memory has
become available in larger quantities, the

Figure 5.49 Missing punctuation is a common cause of
a syntax error.

assistance that can be provided by the interpreter has increased. Current generation
compilers and interpreters assist the programmer by providing not only a message
stating the error but also an indication as to where the error might occur and how it may
be corrected.

Common causes of syntax errors include:
• missing or wrong statement punctuation, for example failure to close parentheses, missing

commas, missing semicolons or the wrong type of parentheses for the statement type.

• typographical errors in reserved words, for example the word REPEAT being entered
as REPET

• failure to complete groupings such as following a REPEAT with UNTIL at the end of
a loop

• incomplete program statements, for example starting an IF statement but omitting a
condition statement such as WAGE > 40000.
Compile-time errors may be caused by factors other than a badly constructed program

statement. In languages that require identifiers to be declared before use, a syntax error will
be generated by the use of an undeclared identifier. The cause of an undeclared identifier
may be either a typing mistake or the inadvertent omission of the identifier from the
declaration section of the program.

Other syntax errors include:
• the use of an undeclared identifier
• a mismatch in the types of variable within an assignment statement, for example trying

to assign a numerical value to a variable of type character
• the use of a reserved word as a variable identifier or, in some languages, within an

identifier. (For example, the compiler may reject the use in Pascal of the variable
end_value as end is a reserved word.)

• The use of strings of characters over a certain length (for example in displayed messages)
or too great a complexity in calculation. In both cases, splitting the text or calculation
into two or more parts, each occupying its own statement, will eliminate the errors.

166 Heinemann Software Design and Development: HSC Course

Logic errors
Errors in logic are usually detected at the algorithm checking stage, but it is still possible for
these errors to appear after the program has been coded. A desk check of the coded module
should bring these errors to light. However, logic errors can remain in a program after the
desk check has been performed, if test data items are poorly chosen.

Other errors in logic may occur during the coding process, when a structure used in the
algorithm description is not available in the programming language. For example, in early

Figure 5.50 An undeclared identifier is one form of
syntax error.

versions of BASIC, the multiple selection
(CASEWHERE) was not available. When
coding programs in this language, a number of
nested IF statements had to be used. The
order of the nesting affects the outcome of
the program. Other causes of logic errors may
come from changes that have been made to
correct other errors.

Once the program has been coded, the
detection of logic errors needs to be done in a
logical and structured manner. First the
module in which causes the error has to be
found, then the cause of the error needs to
be identified and corrected. A number of
techniques can be used to detect the source
of errors. These techniques include desk
checking and peer checking of the code as
well as placing breakpoints in the code and
using debugging output statements. Some of
these techniques have already been discussed,
the others will be explained further in the
next section.

Peer check
The author of a particular work, whether it is a book, music or a computer program, is too
close to the project to be able to critically evaluate it. In order to overcome this problem,
programmers who are of equal status to those who wrote the code perform the checking.
This process is known as peer checking. The purpose of peer checking is to objectively
identify any errors.

Because the programmer is ‘on the same level’ as the checker the comments made about
the operation of the module can be acknowledged without having to consider the relative
position of the reviewer.

Desk checking
As already seen, desk checking is the process whereby an algorithm is manually worked
through with the test data items. The results of operations on variables are tabulated on
paper together with the outputs that occur. By comparing these results with the expected
outputs, the algorithm can be checked. A similar desk check should also be performed on
the coded module before it is translated. In this way a number of errors can be eliminated
before the computer is used.

Use of expected output
When test data items are created, the expected output of processing is included. This allows
the programmer to determine whether the algorithm performs its task correctly. The
outputs should be tested both after the algorithm has been designed and when the program

167Implementation of software solutions

has been coded. If the outputs from the checking process match, then, provided the test
data has been carefully selected to test all parts of the module, the module should work
correctly or all the errors in the module should have been identified.

Run-time errors
Once a program has been successfully compiled, it is still untested. It now has to be
executed with the test data. This phase is crucial to the success of the final solution. Each
of the test data elements is used, the resulting output being matched to the expected values.
Modifications to the code may be required at this stage if the program does not perform
as expected.

Other errors that affect the running of the program will also become evident at this stage
of development. These run-time errors will be treated in more detail in the next section of
this chapter.

Once tested with the test data, the program should be given to other users to try to cause
the program to fail or crash. The first version of a program is often referred to as the alpha
version and a more stable version, which is closer to the final product, is known as the beta
version. Independent operators, whose task is to uncover as many execution errors as
possible, often perform the alpha testing and beta testing.

Program testing at this stage may also involve testing with different operating systems,
different versions of operating systems and different hardware combinations in order to
provide information for the user documentation and installation guides.

Syntax errors are relatively easy to locate and correct, but run-time errors can be difficult
to locate. A run-time error in a program may not be evident at the point at which it occurs,
but may surface later, causing all kinds of trouble in the program.

The first kind of error involves one or more data values that cause the computer to
attempt a calculation for which there is no result or for which the result is not as antici-
pated. For example, a division by zero is unable to be evaluated and so the operating system
will cause an error to be generated. This type of error will be signalled at the point in the
program where it occurs, usually halting execution, so it is easy to locate and correct. Other
errors falling into this category are those in which the tangent ratio of 90° is to be used and
some results of integer arithmetic.

Example
Integer arithmetic can cause problems if the result of an operation is outside the
range allowed for that machine (typically between −32768 and 32767). If, for
example, 32766 and 32760 are added using integer arithmetic, a result of −10 occurs,
which is clearly not the correct result. This problem may be overcome by reordering
the operations in the statement or choosing a different data type for the variable(s).

Calculations performed by a computer using real numbers are subject to errors
caused by the inability of the computer to exactly store decimal values. A small part
of the value may be ‘lost’. This process is called ‘truncation’. In many cases these
errors are insignificant and will not cause problems for the programmer; however,
if there are a large number of calculations to perform, the order of operations
may make a difference. In this case a reordering of the calculations may improve
the accuracy.

A further problem, caused by the manner in which real numbers are stored, is that
of equality. If a decision is to be made on whether a value is equal to another or not,
a wrong result may be obtained if the tested value is close. The reason for this is again
the manner in which calculation results are stored in main memory.

168 Heinemann Software Design and Development: HSC Course

A second type of error involves control not following the paths as designed in the
algorithm description. This kind of error is much harder to rectify and involves using
techniques such as setting breakpoints and tracing the flow of control. Breakpoints are
places in the program where execution is temporarily suspended so that the programmer
can determine whether the program flow reaches that point. A breakpoint is often placed
after a printout of values of variables. This allows the programmer to examine the values
before resuming the program. ‘Tracing’ refers to a display on the screen of the path taken
during execution of a program. Some languages support a trace function (for example many
versions of the BASIC language), but statements can be placed in the code of a subprogram
to achieve the same result. These statements may be simple messages such as ‘This is the
barcode search module’. Other aids that may be incorporated into a program development
system include the ability to step through a program one instruction at a time and the ability
to display the values of each of the variables at each stage of execution.

A further problem may be caused by the program trying to access inappropriate memory
locations. For example, a loop may pass through the elements of an array in sequence. If the
loop has not been properly terminated, it may try to access an array element that does not
exist. This will cause a problem. For example, an array has been indexed from 1 to 20. If
during the execution of a loop the counter is incremented, the array element is accessed
before the termination test has been made and it is possible for the array element number
21 to be requested. In this case, an inappropriate memory location has been requested and
will thus cause an error. This type of error will usually result in a run-time error message.
However, if a first- or second-generation language is being used and an inappropriate
memory location is accessed, the program will continue causing an error in output further
along in the processing.

Once the run-time errors have been located, they need to be corrected. The process of
correction may be as simple as changing a line of code or adding a new line, or it may require
a rewriting of an algorithm and coding a completely new module.

The use of software debugging tools
Many modern software development environments do not consist of just a text editor and
a translation system. They are often integrated with a number of tools that have been
designed to help the programmer with the process of error detection and correction. One

Example
The following BASIC program illustrates this problem:
10 INPUT NUMBER
20 ANSWER = NUMBER / 9999999999
30 ANSWER = ANSWER * 9999999999
40 IF ANSWER = NUMBER THEN PRINT ’equal’ ELSE PRINT ’not equal’
50 END

The above program does not perform the expected match as the stored value of
ANSWER is truncated in line 20. When the multiplication in line 30 takes place, a
slightly different value is obtained, so the message ‘not equal’ is displayed. By
rewriting the program in the following manner, a correct result is obtained each time
the program is run:
10 INPUT NUMBER
20 ANSWER = NUMBER / 9999999999 * 9999999999
40 IF ANSWER = NUMBER THEN PRINT ’equal’ ELSE PRINT ’not equal’
50 END

169Implementation of software solutions

of these tools that we have already met is the syntax error message that gives an indication
of the probable cause of the problem, where that cause is and a suggested solution to the
problem. Other tools can be used to assist in determining the problems that occur within a
running program.

Use of breakpoints
Breakpoints are places where the program is made to stop during execution. After the break
in execution, the program can be made to resume operation or halted. Breakpoints are
usually placed in the code by the programmer inserting a ‘break’ command within the
source code. Some programming environments may include ways of creating breakpoints at
critical points within the code.

The main purpose of a breakpoint is to allow the programmer to examine the contents
of memory locations during program execution. Some programming environments allow
the programmer to list the variables that are to be examined in a separate window. If the
variable values are left unchanged at the break, execution of the program may be resumed.
Some programming environments allow for the variables to be changed at a break, with
execution able to be continued after the change. Other environments will not allow the
resumption of execution after a break.

By the careful use of breakpoints, it is possible for a programmer to quickly home in on
the source of a problem in the code.

Resetting variable contents
The values of variables can also be reset within a running program by either taking
advantage of breakpoints or placing statements within the code that change the values of
those variables to known values. In this way the effect of processing within one section of
code on known data values can be seen. When the section of code has been debugged, these
extra lines can be removed. This can be especially useful when we have data that is
supposed to have been read in from a file. By using this technique, we can be sure that the
data values being processed are exactly those for which we know the outputs.

Figure 5.51 THINK Pascal provides a number of different methods to detect errors.

170 Heinemann Software Design and Development: HSC Course

Program traces
A programmer can learn a great deal about the working of a program if the order in which
the statements are executed is known. In many software development systems a program-
mer can follow the order of execution by printing or displaying the line number or
identification of each statement as it is executed. This process is known as tracing.

Tracing provides the programmer with a means of comparison. The actual flow of
execution can be compared with the expected flow from the source code and from the
original algorithm. Armed with this information, the programmer can often pinpoint the
cause of problems within the module.

Single line stepping
When trying to find the cause of a problem, a programmer will often need to follow the
values of variables from line to line as the program is being executed. Many program
development systems allow the programmer to ‘step’ the program. In this process the
program is executed one line at a time.After the line has been executed, the computer halts,
waiting for the programmer to tell it to execute the next line. It is also quite common for
this process to be accompanied by an indication of the line that is being processed together
with a display of programmer-chosen variable values. A programmer can use this technique
to identify the line or lines of code responsible for a problem. This technique is usually only
used when a small section of code has been identified as containing an error. It would be
physically impossible for a programmer to step through a very large program line by line.
When a program development system allows for stepping, it will also allow a programmer
to jump through sections of code such as loops.

Figure 5.52 Stepping through a part of a program can help the programmer find the cause of errors.

171Implementation of software solutions

Exercise 5.5
1 Copy the following passage and complete it by filling in the blanks with the appropriate

terms or phrases.

Each in a program should perform only one task. This makes the
______ of the program easier to follow in the and stages of the
development cycle. Another aid in the testing is the use of to
represent parts of the code that have not yet been . We can also use

, debugging statements and the program flow to
help locate the source of an error.

2 Explain the terms ‘syntax error’ and ‘run-time error’ in your own words. Give examples of
syntax errors to illustrate your answer.

3 There is an error in each of the following segments of code. Identify the most likely error
and correct it.

a COST PRICE—DISCOUNT
b (SETQ (PLUS (A B))

(This is a small LISP program)
c while counter < 10 do begin
time := 0
repeat

time := time + 1;
write(time);

end;

(Use the Pascal syntax diagrams in the appendix of the Preliminary textbook to help
with the following questions.)

d write(‘This message will appear on the screen to help you);
e if then index:= index + 1

4 Examine the following program in Pascal and identify as many syntax errors as you can.
Correct each error and compile the program to discover the errors you may have missed.
(Use the Pascal syntax diagrams in the appendix of the Preliminary textbook to help with
this question.)

program question_3
var

answer, counter : integer;
begin

counter := 0;
while counter <= 10 do
begin

write(counter);
start := counter;
counter := counter + 1
answer := start * counter;
writeln(’ multiplied by one more is , answer)

end.

5 Examine the following program using LOGO turtle graphics and identify as many syntax
errors as you can. Correct each error and RUN the program to discover the errors you may
have missed.

TO SQUARE
REPEAT 4[FORARD 100 RIGHT 90]

END

172 Heinemann Software Design and Development: HSC Course

TO CIRCLE
REPEAT 360[FORWARD 1 RIGHT 1

TO HOUSE
SQUARE
TRIANGLE

END
TO TREE

FORWARD 100
RIGHT 90
CRCLE
LEFT 90
BACKWARD 100

END

6 Examine the following BASIC code and identify as many syntax errors as you can. Correct
each error and run the code to discover the errors you may have missed. (You may have to
modify some of the code to run on your system.)

10 COUNT = 0
20 WHILE COUNT < =
30 PRINT COUNT;
40 START COUNT
50 COUNT = COUNT + 1
60 ANSWER = COUNT START
70 PRINT ’ multiplied by one more is ;ANSWER
80 WEND
90 END

7 Examine the following code in Hypertalk and identify as many syntax errors as you can.
Correct each error and execute the code to discover the errors you may have missed. You
will need to create two card fields called Fahrenheit and Celsius.

on mouseUp
st numberFormat to 00.00
get card ’Fahrenheit’
subtract 32 from it
multiply it by 5
divide it by 9
put it into card field ’Celsius’

end

8 Describe in your own words the meaning of the term ‘run-time error’. Give examples to
illustrate your answer.

9 Describe the tools that can be used to help the software developer locate errors in a coded
program. Explain how these tools may be used to locate the source of a run time error in
a program.

10 Choose a public domain or shareware program and test it, documenting any problems
you find.

11 Create a small program that asks for the entry of two numbers and outputs their product.
Write the code in two different ways, the first way treating both numbers as integers, the
second way treating the numbers as floating point values. What effects do each of these
methods have on the stored result?

12 Explain how you could trace the path through a program while it is being executed. What
purpose would a trace serve in the debugging process?

13 Explain why the process of desk checking may not detect errors. Illustrate your answer
with examples.

173Implementation of software solutions

Documentation of a software solution
Software documentation performs three tasks: it tells what the software is to do, how it is
to do it and what a user needs to do in order to run the program. Documents such as the
program specifications, algorithm description and code listing are used to describe the aims
of the program and its methods of solution of the problem. These documents are useful for
the programmer in both the development and maintenance stages of the programming
development cycle. User manuals, installation guides, tutorials and online help are provided
for the operator.

Documentation should be created during each stage in the development cycle and not
left as an afterthought to be done at the end of the process.

Forms of documentation
During the system development cycle a large amount of documentation is produced. Some
of these documents will form the basis of the product documentation, while the rest, known
as the process documentation, will become largely outdated. Product documents fall into
two categories: those that become the system manuals and those that form the user’s guides.
System documentation is provided to assist with the maintenance of the system and will
contain many of the documents produced during the system development cycle. User
documentation incorporates documents that describe the purposes of the system and how
the end user can use the software. A second type of user document is provided for system
administrators whose task it is to keep the system running.

Process documentation is documentation produced as a by-product of the system
development cycle, and which will have served its purpose by the time the cycle reaches the
implementation stage. Documents falling into this category include test schedules, memos,
working papers and reports.

Product documentation produced at various stages during the system development cycle
includes the program specifications, dataflow diagrams, data dictionary, output specific-
ations report and data files specifications.

As can be seen from the above descriptions, final documentation of the product is not
created as an afterthought but forms an integral part of each stage of the development cycle.
It is extremely important that the documentation is kept current, by being updated each
time changes are made.

The design process itself is an important aspect of documentation. The original design
plan, together with subsequent modifications, can be useful in planning further design
activities. Such a design history can be extremely useful in later projects. Design processes
learnt during the development of one system can lead to greater success when new projects
are attempted.

The purpose of product documentation is twofold: to provide a detailed description of
the system and to provide information that will assist with the maintenance of the system.
System documentation consists of a number of documents produced during the develop-
ment cycle: the system requirements, system descriptions, algorithm descriptions, program
source code and a system maintenance guide.

Process diary
A detailed record of the process that has been followed during the development of a software
project is an important tool for a developer. The information provided by the diary is useful
in a number of ways. First, it allows a new member of the team to quickly become familiar
with the processes that have already taken place. A process diary also documents the mile-
stones and pitfalls that have been met along the way. This record can be an important
reference when a similar project is undertaken in the future. Maintenance programmers can
use the diaries to understand the processes that were originally undertaken. Armed with this
information, they can avoid problems met by the original developers.

174 Heinemann Software Design and Development: HSC Course

User documentation
Documentation required by the end user will consist of a number of documents: a
functional description, an introductory manual, a system reference manual, a system instal-
lation guide and a system administrator’s manual. In addition, support documents such as
reference cards and on-line help are often provided to assist the user.

A functional description contains a brief outline of the system requirements and the
purpose of the system.

An installation guide may be the first contact that a user has with the program docu-
mentation, and the programmer should bear this in mind when designing the installation
documents. The guide needs to specify the minimum hardware and operating system
requirements as well as the manner in which the software is to be installed. The guide must
be clearly written in simple, non-technical language and should describe all steps taken to
install the software. It should also be written in a manner that is neither condescending nor
overly technical. Illustrating the process by means of screen dumps or screen instructions
will further assist the user to successfully load the application on to the system. A descrip-
tion of problems that may be encountered should be included in the guide.

Special considerations such as the deactivation of virus detection software should be
identified in the installation manual and made as simple as possible for the user. By creating
an installation guide that is accurate, friendly and clear, the programmer will give the user
confidence in using the application. It does not matter how good a program is, if difficulty
is encountered in the installation stage the user immediately loses faith in the product.

As with all other forms of documentation, the installation guide needs to be updated if
there are any changes made during system maintenance.

An introductory manual describes the manner in which the system is started and the use
of common system functions. The introductory manual should contain a series of tutorials
that illustrate these common functions as well as methods of recovering from common
errors. It is important that the introductory manual is written in an informal and non-
technical manner so that a beginner will find it easy to follow.

The actual layout of a process diary varies greatly, but they do need some common
features.The diary should at least contain some reference to the time of the occurrence.This
reference could be as broad as a reference to a week or narrowed down to a particular time.
This will allow the diary’s reader to follow the sequence of events. Descriptions of the
events that took place within the development process are also needed. Other aspects that
may be covered by the diary, especially if all members of a team are using a single diary, are
details such as the team member making the note and the team description.

Figure 5.53 A process diary may take many forms. Here is one example.

Process Diary

Project title: Date:

Team member:

Stage activity:

Notes

175Implementation of software solutions

A more comprehensive system reference manual will accompany the introductory
manual. The system reference manual will contain a complete listing of all the functions of
the system, arranged in a logical manner (for example listing the functions alphabetically or
by family). Each of the functions should be described in detail, with a description of the
inputs it requires, the outputs it produces and any special features it has. As well as these
basic descriptions, the manual may contain samples of screen displays that the user might
encounter while using the functions, and a graphical representation of the way in which the
functions relate to each other. A second purpose of the manual is to provide a complete
description of all known operational errors and how to recover from them.

The system reference manual should be written in a more formal style than the intro-
ductory manual and provide a comprehensive description, as its purpose is for reference.
Readability is not as important as accuracy and clarity. Language used in this manual will
tend to be more technical than in the introductory manual, although the use of technical
terms should be kept to a minimum.

A system administrator’s manual is designed to provide the system administrator with a
comprehensive description of the program’s interaction with other elements of the system
and other systems to which it is connected. It will document all messages created when the
system interacts with other systems and how to respond to those messages. Language used
in this manual will tend to be more technical than in the other documentation; however,
technical terms should not be used unless absolutely necessary.

A user manual is the main point of reference for a program’s user. It needs to be clearly
and logically set out, and needs to contain both technical and tutorial information. It should
be fully indexed so that the user can access any item quickly. The manual should contain a
description of each of the program’s functions, examples of the function’s uses and the
methods of navigation to each function.

The language used in the user manual, as with the installation manual, should be clear,
concise, non-threatening and non-condescending. The purpose of the manual is to instruct
the user as to how a particular action may be undertaken and to assist the user in becoming
more confident in using the program.

The layout of the manual depends on the program, but the following are the most
popular presentations:
• The information in the manual is arranged in the order in which a user is most likely to

encounter or need it. This type of manual will often be written as both a technical
manual and a tutorial.

• The items are arranged in the order in which they appear in a menu. The major menu
headings provide the chapter breaks and the menu options are described within those
chapters.

• The items are ordered alphabetically. This approach is useful if there is a large number
of items to be covered. A disadvantage of this system is that, unlike the previous two
methods, the relationship between the elements is not immediately apparent and may
take an amount of cross-referencing to sort out.

• An option that is gaining popularity is to provide the manual as some form of online
help. The advantages of this method are that the manual is available to the user at the
time it is required, and the computer’s ability to search and store can be used to find
information as well as to keep track of the search paths followed.
The user manual should contain a series of tutorials that cover all aspects of the

program’s use. These tutorials may form part of the user reference or they may be issued as
a separate document. Regardless of the method of issue, the tutorials should be
supplemented by a number of prepared files that can be used to produce the desired results.
The prepared files can contain some of the test data where appropriate. By using these
tutorial files, screen displays can be captured and presented to the user in order to confirm
that the approaches taken are, indeed, correct. A good tutorial can do much to improve the
user’s confidence with both the software and the hardware.

176 Heinemann Software Design and Development: HSC Course

Example
ClarisImpact is a business graphics package that offers the user a way of producing
multi-page drawings, reports and presentations. The Getting Started manual (Figure
5.54) is divided into six chapters.The first is an installation guide, the second provides
a general overview of the application, and the other four deal with the major features
of the program. Each of the operational chapters uses a series of tutorials to take a
new user through the basic functions of the program. At the end of each chapter is a
reference table that directs the user to the appropriate chapter in the User’s Guide
(Figure 5.55) where more information can be obtained.

Reference cards, which contain a brief list of common system functions and how to use
them, can provide support to both experienced and first-time users. A reference card is
usually one sheet containing a minimal description of common functions. It is designed for
ease of use, its purpose being to provide information without reference to the main set of
manuals. Colour coding of functions and key combinations will provide the user with visual
clues to help in the use of the card.

The Quick Reference card supplied with ClarisImpact (see Figure 5.56) provides a
summary of the program’s shortcuts and functions available in each of the modules. The
card has a picture of each of the icons used in the program, with the name of the function
it represents beside it.

Online help is becoming a more common method of providing the user with assistance.
This form of documentation has a great advantage over paper-based manuals in that it is

Figure 5.54 The ClarisImpact
Getting Started manual allows the
user to have the program installed
and running quickly.

Figure 5.55 The ClarisImpact
User’s Guide is a more detailed
document that explains the
working of the program.

177Implementation of software solutions

available to the user without leaving the computer. This is especially important for network
users who may be in different locations. Online help can also be linked to the menu items,
for example providing a description of the function of a button by means of a pointer.

Two common forms of online help are ‘balloons’, which contain a description of the
menu or screen item that is pointed to, and help screens, which describe each function on-
screen. A particular benefit of the help screen is that it can make use of a computer’s ability
to rapidly search through a database of items for a wanted function.

ClarisImpact provides two forms of online help: balloons and a topic-based help
program. Balloon help gives the user information about the various screen elements. The
topic-based help program describes the steps taken to perform various tasks. Both forms of
assistance are available from the menu bar.

Murphy’s Law of ‘What can go wrong usually will’ applies to all software. A computer
solution to a problem has so many different variables that there will be times when all does
not go well. It is at this time that the user turns to the trouble-shooting guide for
reassurance and guidance.

178 Heinemann Software Design and Development: HSC Course

A good trouble-shooting reference will cover all the common problems that may occur,
whether it is the fault of the software or some other system element. The reference should
also, as far as possible, deal with the more obscure problems, such as possible conflicts with
operating system modules.

Error messages on a screen, by their nature, must be brief and to the point. In most cases
it is not possible for the screen message to pinpoint the exact cause of a problem, and this
is where the trouble-shooting guide takes on its major role. The layout of the manual should
provide for easy location of the solution to the problem. Thus the guide should contain a
thorough index that is cross-referenced to both the nature of the problem and the screen
message. It should deal with similar problems in the same sections of the manual and should
provide a clear explanation as to how the problem can be overcome. Sample screens and
messages should be used to assist the user to identify the problem and illustrate its solution.

The language used within the guide should be chosen with care, as the user can lose
confidence when there is an error. As with the other user documents, the use of
condescending, excessively technical or humorous language should be avoided. What the
users need at this stage is assistance in solving the problem and reassurance about their
ability to use the hardware and software.

A reduction in the cost and an increase in the power of computer hardware have given
programmers the opportunity to use the computer to provide some of the documentation
required. Several methods of providing online documentation have been devised; the most
common used are balloon text, user instructions and tutorial links.

Balloon text is usually associated with a graphical user environment such as Windows
and the Macintosh operating system. When enabled, balloon text will describe the action of
a display element whenever the screen pointer points to that element.

The placement of a set of user instructions on the screen is the easiest of the screen aids
to implement, as it requires only the addition of a line or two of output text. However, it is
often difficult to phrase the instructions so that they are clear to the user. The instructions
should be placed in such a position that they leave a majority of the working screen for the
application display. The most common positioning of user instructions is at the bottom of
the screen; this is especially true in a text-based display.

A documentation method that is gaining popularity is the use of a tutorial-type assistant
that helps the user complete a task. This kind of help presents options to the user at various
stages of the process, assisting with the steps. These online assistants have been designed to
provide the user with the necessary information to complete a task, often offering the most
common choice as a default.

Self-documentation of the code
The program listing is probably the most obvious documentation associated with a
computer-based solution to a problem. However, the manner of presentation of a program
can affect both its legibility and its ability to be followed and/or modified. For example,
compare the legibility of the following two samples of identical Pascal code.The first sample
has not been formatted to any standards; the second has been coded with one instruction
per line and indentation has been used to show the statement levels.

Sample 1
program menu_test (input, output); var choice: char;
procedure Add_record; begin writeln(’Add record stub’) end;
procedure Delete_record; begin writeln(’Delete record stub’) end;
procedure Sort_records; begin writeln(’Sort records stub’) end;
procedure Invalid_input; begin writeln(’Invalid choice stub’) end;
begin writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’); writeln(’D to DELETE a record’);
writeln(’S to SORT the records’); writeln(’E to END this session’);
readln(choice); while (choice <> ‘E’) and (choice <> ‘e’)

179Implementation of software solutions

do begin if choice in [’A’, ’a’, ’D’, ’d’, ’S’, ’s’] then
{this statement ensures that other characters are excluded … otherwise}
case choice of ’A’, ’a’: Add_record; ’D’, ’d’: Delete_record;
’S’, ’s’: Sort_records end {end of case statement} else Invalid_input;
writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’); writeln(’D to DELETE a record’);
writeln(’S to SORT the records’); writeln(’E to END this session’);
readln(choice); end end.

Sample 2
PROGRAM menu_test (input , output);
VAR

choice : char;
PROCEDURE Add_record;

BEGIN
writeln(’Add record stub’)

END;
PROCEDURE Delete_record;

BEGIN
writeln(’Delete record stub’)

END;
PROCEDURE Sort_records;

BEGIN
writeln(’Sort records stub’)

END;
PROCEDURE Invalid_input;

BEGIN
writeln(’Invalid choice stub’)

END;
BEGIN

writeln (’Please press the letter key corresponding to your choice’);
writeln (’A to ADD a record’);
writeln (’D to DELETE a record’);
writeln (’S to SORT the records’);
writeln (’E to END this session’);
readln (choice);
WHILE (choice <> ’E’) AND (choice <> ’e’) DO
BEGIN
IF choice IN [’A’,’a’,’D’,’d’,’S’,’s’] {this statement

ensures that other characters are excluded … otherwise}
THEN CASE choice OF

’A’,’a’ : Add_record;
’D’,’d’ : Delete_record;
’S’,’s’ : Sort_records

END {end of case statement}
ELSE Invalid_input;

writeln (’Please press the letter key corresponding to your choice’);
writeln (’A to ADD a record’);
writeln (’D to DELETE a record’);
writeln (‘S to SORT the records’);
writeln (‘E to END this session’);
readln (choice);

END {end of while statement}
END.

The second sample program is easier to follow not only because of the placement of a

180 Heinemann Software Design and Development: HSC Course

single instruction as separate entries and the use of indentation to show the logical blocks
such as loops and decisions, but because the use of upper-case letters for the Pascal reserved
words together with the separation, wherever possible, of the comments allows the
structure of the program to be immediately visible. Thus any modification of the code can
be accomplished efficiently.

Technical documentation, including source code, algorithms, data
dictionary and systems documentation
The creation of an algorithm is an interpretation of the problem specifications as a series of
actions. The method used to describe the algorithm has to be clear and concise. Docu-
mentation created during this phase will be used by the coding programmer to implement
the solution. (The coding programmer is not necessarily the algorithm designer as the
systems analyst may provide the initial algorithms.) Algorithm documentation produced by
the programming team will also be required during any maintenance stages after program
implementation. The most common algorithm descriptions used at present are the two
HSC-approved methods — pseudocode and flowcharting — together with structured
English and Nassi-Schneiderman diagrams.

As seen, it is important that the source code contains as much information as possible
about the processes being carried out. When maintenance programmers are employed to
modify the program, the task is made much easier with this information. The source code
can also be incorporated into a library of code for reuse. The use of libraries can reduce the
development time for later projects.

Data dictionaries are also a natural product of the program development cycle. A data
dictionary lists all data identifiers and their type and attributes. The attributes of a data item
refer to features such as the way in which the item is displayed, the maximum size of an
individual element, the range of values and default values (if any). The purpose of a data
dictionary is to clearly specify the nature of all data items present in the processing stage. A
further benefit of the data dictionary is that it allows the programmer to calculate the
amounts of data storage required for the application. There are many different methods of
presentation of a data dictionary. Some will present sample data items to further clarify the
form taken by each of the different data elements. Some may also contain reference to data
verification procedures.

The data dictionary is also a very useful tool for a maintenance team. It gives the team
all the information required about how the data is stored and the structures that have been
used. This will assist them in the task of modifying the program.

A number of other systems documents are produced during the development process.
These include the requirements definition, an analysis of the working system, the original
software specifications, screen and report designs and any other documents covering special
features such as security of data and performance. The requirements definition sets down
the needs of the user. The systems analysis report details the workings of the system and
often incorporates diagrams to assist developers with an understanding of the workings of

Figure 5.57 Data dictionary example.

Field Type Size Range Example
Barcode String 13 characters 0000000000000 to 4891576813271

9999999999999

Product String Up to 25 alphabetic a to ZZZZZZZZZZZ Reimas Butter
characters and spaces

Price Floating Up to 10 digits 0.00 to 99999999.99 0.95
point showing two
number decimal places

181Implementation of software solutions

the system. The software specifications are very important as they set out the criteria that
the software needs to meet. These criteria are used in the design process as a guide in the
testing stage to ensure that the software produces the appropriate outputs, and in the
evaluation stage where they are used as a measure of the success of the product.

Documentation for subsequent maintenance of the code
The documentation mentioned in the previous sections is needed for product maintenance.
The maintenance team has to have a clear understanding of the manner in which the soft-
ware is designed and operates in order to successfully modify it.

Documents such as the algorithms and source code expose the workings of the program
and provide the maintenance team with a backbone on which to build the modifications.
These documents also give the maintainers a clear description of the processes that take
place within the program.

Screen and report designs are used to provide the maintenance team with a basis for
designing new screens that are consistent with the current ones.

Process diaries and logs provide the maintainers with an insight into the development
process. Of major interest to the maintenance team are the pitfalls that occurred along the
development path. This knowledge allows them to avoid similar problems when modifying
the program.

Use of application software to assist in the documentation process
The documentation that accompanies a program forms the basis of human interaction with
the system. There needs to be as much design effort expended on program documentation
as has been spent on program development. A well-designed set of documents will have
more appeal and appear more useful than a set that has been created ‘because it is
necessary’. Documents should invite the reader to use them.

Documentation should follow a set of simple rules for structure and presentation.
• All documents should have a cover page that identifies the project, the document, the

date of production, its author and document type.
• A document should be broken up into chapters, unless it is brief, so that it can be

updated easily. It is easier to replace a chapter than a whole document once it has been
revised. Pages are often numbered according to the chapter in which they occur to assist
with this type of maintenance (for example 2-11, B-13).

• Detailed documents should have an index, especially those that are reference
documents, for example user’s guides and administrator’s manuals.

• Glossaries of technical terms will aid the reader to understand descriptions provided in
the documentation.

• Documents should, if possible, be uniform in their presentation. Features such as page
layout, page numbering, placement of indexes and glossaries and formatting should be
used in a consistent manner.
Software applications such as word processors, graphics programs and databases can

assist the software developer by enabling a library of templates to be created and kept. This
will ensure that there is a high degree of consistency between different documents.

Word processors can be used for a number of tasks within the software development
cycle. These will range from the creation of reports through to the development of user
documents. Simple flat file database management systems can be used to develop data
dictionaries and for process diaries. Project management software can be used to manage the
whole of the development process, including the allocation of resources and time. Graphic
systems can be used to prepare screens and desktop publishing systems to create report
designs. Almost any productivity software can be used at some place within the software
development process.

182 Heinemann Software Design and Development: HSC Course

Use of CASE tools
CASE tools provide a purpose-built support for software developers. The available tools
range from those designed for a particular purpose, such as the development of test data,
through to integrated applications that can be used for one or more of the phases of the
development process.

CASE tools can offer the developer a number of benefits both during the development
phase and after implementation. As seen, the use of CASE tools allows the developer to
produce a more uniform end product. Developers who use templates to produce elements
such as screens and reports find that it takes less effort to conform to the design rules that
have been incorporated into the template than to create their own design. Software that has
been designed with the aid of CASE tools will generally be easier to maintain as the
documentation will again be more consistent. When a number of developers use the same
CASE tools on a project, these tools can enhance the communication between team
members, as all members can have access to all relevant documentation as they need it.
These advantages will also lead to a decrease in development time. Some CASE tools them-
selves can save time by automating a number of tasks. A final benefit of CASE tools is their
contribution to improving system quality.

Exercise 5.6
1 Copy the following passage and complete it by filling in the blanks with the appropriate

terms or phrases.

Software development is always accompanied by the production of . These
may be classed as documents and documents. Documents such as
_______ , and are produced during development, so they are
called documentation. Manuals for the user such as ,
and are produced for use with the as it is being used. These
documents are called documentation. The first document a user is most likely
to use is a(n) manual.

2 Define the term ‘product documentation’. Name three documents that fall into this
category. Use your examples to illustrate your answer.

3 Describe the purpose of user documentation. Explain the differences between the two
types of user documentation.

4 Two of the algorithm description methods mentioned in this section are graphical
(flowcharts and Nassi-Schneiderman diagrams) and two are text-based (pseudocode and
structured English). What advantages does a graphical algorithm description have over a
text-based system and what are the disadvantages?

5 An algorithm description is independent of both the implementation language and
the computer system used for the implementation. What advantages does this have for
the programmer?

6 Give reasons why a program’s code listing would be useful after its implementation.

7 Explain the role that formatting plays in the understanding of a program listing.

8 Reformat the following program so that its structure becomes clear:
on askQuestion ask ’Please enter X, Y or Z.’ if it is not
emptythen if it is ’X’ then do Xmenuitem else if it is ’Y’
then do Ymenuitem else if it is ’Z’ do Zmenuitem else answer
’Please enter only X,Y or Z’ do askQuestion endif end
askQuestion

9 Explain the differences between internal and external documentation. Give an example of
each type of documentation.

183Implementation of software solutions

10 Define the term ‘intrinsic documentation’ when applied to a program listing. What are the
advantages of using intrinsic documentation?

11 Most high-level languages allow the programmer to insert comments or remarks that are
ignored by the compiler. What is the purpose of these statements?

12 Write down the features that should be present in an installation guide, giving reasons for
their inclusion.

13 Explain why a well-presented installation guide is important to the user.

14 Examine the installation guide for an application of your choice. Name the application and
list the features you like about the guide and those features you think could be improved,
giving reasons.

15 Install a software application onto a computer system using the installation guide. What
improvements, if any, would you make to the guide? Justify your answer.

16 Using the appropriate computer applications, design an installation guide for a fictitious
software application. Have a non-computer user evaluate your guide for ease of reading
and clarity of language. What improvements could you make to the guide?

17 Explain the main purposes for providing a user manual with a software application.

18 Examine and compare two different software user manuals. Describe their similarities and
their differences.

19 Obtain a user manual for a software application that you use. Comment on its ease of use,
the language used and the manner in which it is presented. What changes would you
make to the manual in order to improve it?

20 A programmer has created a program for small children to practise their multiplication
tables. Design a ‘user manual’ for this fictitious program. Use the appropriate software
applications to produce your manual. Use a word processor for the task.

21 Explain the importance of a trouble-shooting guide.

22 Describe the features contained in a good trouble-shooting guide.

23 A trouble-shooting guide may illustrate the steps to solving a problem as a flowchart.
Draw a flowchart that describes the steps to be taken if a file does not load successfully
from a disk. Use an appropriate CASE tool or application to help in this task.

24 For a software application of your choice, examine the trouble-shooting guide. Describe
the features of the guide that you like and those that you dislike. Give reasons for
your answer.

25 A simple word processor can open a disk file, save a file to disk and allows the user to type
text into a document. List the possible problems a user could encounter when using this
program. From your list of problems, construct a trouble-shooting guide for this program.
Use the appropriate computer software to produce your guide.

26 What is the purpose of keeping documents such as data dictionaries, algorithm
descriptions and program source codes?

27 Examine the user documentation for a particular software application. Name each docu-
ment in the set, commenting on ease of use. What improvements would you recommend?

28 Choose a commercial software application and create a tutorial that explains one function
of that application. Use appropriate computer software to help you create the tutorial.

29 Compare the user manuals from a number of commercial applications from different
software publishers. Comment on the layout of each of the manuals and the style of
language. What are the similarities of, and differences between, the manuals?

30 Explain how CASE tools and application software can help the developer with the process
of documenting a program.

184 Heinemann Software Design and Development: HSC Course

Hardware environment to enable
implementation of the software solution
Software forms only a part of the whole computer system. Hardware, personnel, data,
procedures and other software have to be integrated with the designed solution in order for
it to function effectively. During the system design process, the needs of the system are
identified and the various elements required for that system to function are identified. Thus,
when a custom software component is designed, the hardware and operating system
requirements are known. Application software design is slightly different in this respect, as
the hardware components do not form a part of the design brief. However, application
software will have a number of performance criteria to meet, which provide a basis for a
minimum hardware requirement and a minimum operating system requirement.

Hardware requirements
Software solutions are always developed with some form of hardware configuration in
mind. Hardware needs are often dictated by the nature of the problem to be solved or by
the speed with which processing must take place. For example, a program that has to
process a great deal of graphical information, such as real-time video, will require a
sophisticated computer with a large memory, mass storage device and a fast processor. A
program that has to process text that has been input by a user will not require the same
degree of power.

Since the purpose of all programs is to take some form of data as input, process it and
output a result, suitable peripherals will also appear in a list of hardware requirements. For
example, a word-processing program is all but useless unless its result is output to a hard
copy device such as a printer. Thus a printer would form part of the hardware requirements
of a word processor.

Minimum configuration
Each software title, whether custom-built or off-the-shelf, will require a minimum hardware
configuration for correct operation. Some of these requirements will come from the
purpose of the software, others from the system being used to convert the source code into
executable code. The minimum hardware needs of an application may come from a
performance requirement, for example the ability of a game to process graphical data in real
time. Other hardware needs come from the requirement that the software perform a
specialised task, such as controlling a manufacturing robot. Further hardware needs emanate
from the processor required to execute the object code; for example, a program compiled
for a Widget Processor IV may not run on a Widget Processor III, as their instruction sets
are slightly different. Software also requires a certain amount of primary storage for it to
function; this will add factors such as a minimum memory size for the hardware.

The minimum hardware required for a software application to successfully operate
relates to the following factors:
• processor type and speed
• primary storage (RAM) available
• specific input and output devices
• secondary storage size and type
• word size of the processor (the number of bits able to be processed in one machine cycle)
• a minimum operating system (this may be a version of the operating system or it may be

a particular operating system with certain utilities, extensions or drivers added).

185Implementation of software solutions

Possible additional hardware
In addition to the minimum hardware requirements, many software titles will function
more efficiently or in a greater variety of ways if optional hardware items are added to the
minimum required. The additional hardware may consist of increases in the minimum
requirements, for example a faster processor, or it may be an optional peripheral. For
example, a scanner is not an essential part of a word-processing program. However, the
capabilities of a word processor are enhanced if a scanner and optical character recognition
software are added to the basic system.

Appropriate drivers or extensions
In order for a software application to function correctly, it must be able to communicate
with the rest of the system. In many cases the application programmer does not write the
subprograms that provide this communication channel, as they come from the operating
system or additions to that operating system. The subprograms that manage communication
with peripheral devices such as printers, mice, keyboards and scanners are called drivers. If
a program is to communicate correctly with a particular device, the driver for that device
must be available for use.

The operating system may also contain other subprograms that do not manage
communication with a device, but provide an enhanced function to the operating system.
These subprograms are known as extensions, as they extend the capabilities of the operating
system. For example, networking capabilities may not be built into the operating system, but
extensions can be produced that allow the computer to work on a network and to share files
across the network.

Application or custom software may need to access extensions or drivers. In this case, the
subprograms necessary for the software to function may need to be included as an optional
part of the installation process. This gives the installer an opportunity to load these
extensions if necessary.

Emerging technologies
Software developers are always faced with the challenge of new and evolving technologies.
A software engineer has to be up-to-date with the developments in both hardware and
software, as each can have an effect on the development process.

Hardware
Hardware developments can be viewed in a number of different contexts. The first concerns
increases in performance, which may be achieved by an increase in the speed of the
processor or the size of the word that can be processed or by adjustment of the processor
instruction set. Increases in the speed and capacity of primary storage will also have an effect
on the software developer, as will the availability of primary storage as a part of the
processor. Developments in the area of peripheral devices can assist the developer to
produce a more intuitive interface for the user or to automate part of the interface. Min-
iaturisation of components and a decrease in power requirements of hardware items make
them more suitable for portable use.

It is impossible to predict even the short-term developments in hardware that will
impact on software developers. However, developers must be willing and able to use those
hardware items that are appropriate for a solution or that can add extra functionality to a
pre-existing solution.

186 Heinemann Software Design and Development: HSC Course

Software
Developments in the area of software also encompass a number of issues, ranging from
improvements in operating systems and utilities through to new applications brought about
by increases in the speed and processing power of the hardware.

Developments in operating systems and utilities are based on improving the user
interface to make it more intuitive, adding extra useful functions and improving
communication between people, hardware and the environment. These developments will
also bring problems of compatibility of existing software with new technologies. Developers
often find that a small change in an operating system, or some other software component
that is essential for the running of a program, will cause problems with an existing or
developing solution.

As technology improves, the programming environments that the developer has to work
with also improve. Thus a programmer learning a particular language today may find that,
in a short period of time, that language will cease to be useful. Thus we, as software
developers, need to develop those principles and attitudes that can be applied to
technologies that have not yet been developed. Twenty to thirty years ago programming
languages accessible to the general computer user were fairly simple by today’s standards.
What languages will be like in twenty to thirty years time is anyone’s guess. However, the
design processes that developers employ—defining the problem and designing,
implementing, testing and evaluating the solution—will still be relevant regardless of the
direction that software development takes.

The effect of emerging technologies
Software will, quite naturally, be designed to take the greatest advantage of the new
possibilities generated by developments in hardware and software. However, developers
have a responsibility to ensure that these advantages are available to the greatest number of
people possible. Thus developers have to use their social conscience when undertaking a
development project to make sure that the software produced provides the greatest benefit
to the greatest number of people.

New technology impacts in a number of ways. The most evident for software developers
are the effects on the environment and the effects the new technology has on the software
development process.

The effect on the human environment
The effect on the environment of any new or emerging technology can be viewed from a
number of perspectives, ranging from an individual perspective through to a global one.

For the individual, new technology can lead to advantages such as a better standard of
living, access to new forms of entertainment and information, and the ability to perform
tasks that were previously impossible. On the other side of the coin, factors such as a change
in employment or services can impact greatly on an individual.

The new and emerging technologies will also impact on a local, national and global scale.
These impacts will vary from economic effects through to environmental effects.

The effect on the development process
As already seen, the development process itself is subject to changes brought about by the
improvement of existing technologies or the introduction of new ones. In the past, the move
from transistor technology to integrated circuit technology allowed software developers to
use cheaper and more powerful computers in their work.This change in technology brought
with it a new generation of languages that allowed people with little or no formal training
in programming to create very sophisticated solutions to problems. As integrated circuit
technology developed further, the computer became more intuitive and is gaining
acceptance as a normal part of life.

187Implementation of software solutions

As developers use the power of the new technologies, the manner in which software is
created evolves. The same basic framework of problem solution still exists, but the tech-
nology allows some of the tasks to be performed in a very different way now from the one
that was used earlier. For example, the cheapening of computing power has made it almost
mandatory to provide online assistance rather than printed manuals. Even the printed
manuals are now being distributed in electronic form rather than on paper.

As the technology steadily moves forward, the tools and skills developers use will be
continually updated to use the new features offered by it.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

All software needs hardware and so that it can operate
effectively. The hardware requirements will specify the type of processor, its
minimum amount of required and any necessary
devices. The software will also require a minimum standard of system and will
specify any or that are needed. This list of
specifications is often included in the manual supplied with the software.

2 Examine the minimum hardware and software requirements for an application package.
Explain, in terms of the purpose of the software, why these requirements have
been chosen.

3 Describe the optional peripheral devices that could be used with the application you
described in question 2. Explain how these devices can improve or extend the functions of
the software.

4 Explain how the creation of Web browsers such as Mosaic, Internet Explorer and Netscape
has had an effect on individual students as well as the whole population of your school.

5 Explain the effect that the wider availability of increasingly more powerful computers has
had on the development of software. Give some examples to illustrate your answer.

Exercise 5.7

Team Activity

Choose a simple game, such as two-up, and
develop a working program to play the
game. The program must be fully docu-
mented, with CASE tools and/or application

software being used where appropriate.
Particular attention must be paid to the
design of the user interface, testing and
documentation.

Review exercises

Heinemann Software Design and Development: HSC Course188

1 Copy the following passage and complete
it by filling in the blanks with the
appropriate terms or phrases.

The design of a screen has to incorporate
the needs of the data and
the data as well as providing

for the user. A programmer
can assist the user by providing
that can be employed if the user needs it.
These days most applications provide

help as it can be easily
, especially if a number of

use the software over a
network. The user documentation is also
known as documentation as it
is referred to as the program is being used.
Maintainers, however, are usually more
interested in the docu-
mentation that is produced while the
program is being .

2 Choose the alternative, A, B, C or D, that
best answers the question:
a A metalanguage is used to

A write a computer program
B find errors in a program
C describe the syntax of a language
D describe an algorithm

b When a program uses sequential access
to process data
A an index is used to access the data
item
B each data item is accessed during a
loop
C the data items are read from disk in
sequence
D the data items are processed
randomly

c All processing of data is carried out by
using
A special registers in the CPU
B special locations in main memory
C the control unit
D the external data bus

d The step in the translation process in
which the structure of the statement is
examined is
A scanning
B parsing
C type checking
D compiling

e A running program stops execution
without warning. This is an example of
A a syntax error
B a run time error
C a logic error
D a arithmetic error

3 A school is designing a swimming carnival
program that uses a digital video camera
to determine the places of the
competitors. Describe the screen elements
that should be present for this program to
work properly.

4 Examine the syntax for a binary selection
in two different programming languages.
Describe the syntax for each using either
BNF or a railroad diagram. Using your
diagram, describe the similarities in, and
the differences between, the way in which
the selection has been defined in each
language.

5 Explain the purpose of process
documentation in the maintenance of
a software solution. Explain why it is
necessary for developers to create process
documentation that is easy to read and
follow at a later date.

6 Describe the steps a processor may use to
exchange the values stored in memory
locations 254 and 709. Illustrate your
answer with a diagram.

7 Even though a coded program’s algorithm
has been checked, errors in logic may still
occur. Describe one cause of a logic error
in a coded program and give an example
to illustrate your answer.

8 Design and create a reference card for the
word-processing program you use at
school. The card should occupy only one
side of an A4 sheet and contain screen
shots of the function buttons described on
the card. The card should be created using
an appropriate application or CASE tool.

9 Investigate the developments that have
occurred in hardware during the past year.
How have these developments affected
the development of software?

10 Describe the ways in which the develop-
ment of Internet banking software has
affected the individual, the banks and
the community.

189Implementation of software solutions

• An effective user interface is important to the success of a software solution.
• Screen design must take into account the types of data to be displayed, the target audience,

user assistance and consistency between screens.
• Popular approaches that help with screen design include simple graphics programs, object-

oriented programming languages and other development systems that include an integrated
report and screen design systems.

• Help screens should be designed meet the needs of the target audience.
• Consistency in screen design allows users to anticipate actions and the placement of items.
• Metalanguages are used to describe the syntax of programming languages.
• Syntax structure diagrams show syntax graphically. BNF and EBNF are text-based metalanguages.
• Choice of a language may require a change to the way in which the algorithm is structured.
• A processor consists of an arithmetic and logical unit (ALU), registers and a control unit.
• The ALU is responsible for carrying out the processes.
• The registers are used to store instruction locations and the results of calculations.
• The control unit coordinates the processes, ensuring they are carried out in the correct order.
• Machine code instructions contain bits that represent the type of instruction to be carried out,

the registers to use for the calculation and the location of the data items to be processed.
• Processor instruction sets cover arithmetic, logic, branching, movement of data, comparison

and the use of subprograms. Some instruction sets will contain further specialised instructions.
• Registers are memory locations built into the processor.
• During the fetch–execute cycle, a register, known as the program counter, is used to hold the

location of the next instruction to be fetched from main memory.
• The stack pointer is used to keep track of the instruction to return to after a subprogram has

been executed.
• Some of the subprograms used by a program will come from outside the written code.
• The source code, the human understandable form of a program, has to be converted into object

code, the machine understandable form of the program, by a translation system.
• A compiler converts all the source code to object code which is then stored for later execution.
• An interpreter translates each line and executes it before the next line is translated.
• An incremental compiler translates the commonly executed routines and stores them. The

program is then interpreted, but when these common routines are needed they are executed
from the stored code rather than being re-translated.

• The steps of the translation process common to all methods are lexical analysis (scanning),
syntactic analysis (parsing), semantic analysis (type checking) and code generation. A compiler
may use an optimiser to help make the program run more efficiently.

• The scanner reads the source code one character at a time, using the rules of the language to
create recognisable language elements that are then represented as a code called a token.

• The tokens are then passed on to the syntactic analyser (parser) that arranges the tokens in a
way that allows the compiler to understand the logic of the program.

• If tokens cannot be placed on a parse tree, the translator flags an error.
• After parsing, the tokens are sent to the type checker which detects the data types within the

tokens and incompatible operations between different data types.
• The code generator converts the tokens into the object code by working through the parse

trees.
• A linker is used by a compiler to join the translated code to code from other sources such as

the operating system.

Chapter summary

Chapter summary

190 Heinemann Software Design and Development: HSC Course

• A compiler adds a special program known as a loader to the object code. The loader’s task is
to enable the program to run in a different location each time it is executed.

• Compiled code is often optimised so that it works more efficiently.
• Compiled code runs faster than code translated by the other methods, is harder to modify,

occupies less memory and hides the original algorithms. The main disadvantage of compiled
code is that run-time errors are not apparent until the code is executed.

• Interpreters allow all errors to become apparent as the program is being run. However, the
code is visible to the user and may be easily modified or illegally used.

• Incremental compilation retains for developers the advantage of an interpreter that all errors
become apparent without complete translation of the code. The program runs faster than for
an interpreter, but slower than for a compiler.

• A number of different techniques will help in the development process. These include
restricting each subroutine to one logical task and the use of stubs during development.

• Flags, the isolation of errors and debugging output statements can also assist during the testing
stage.

• Programs should be written to aid future maintenance.
• Errors in programs fall into one of three categories: syntax errors, logic errors and run-time

errors.
• Syntax errors occur where a program structure in a language does not follow the rules of the

language.
• Logic errors are errors in processing where the program flow does not follow the correct

sequence of instructions to solve the problem.
• Run-time errors are errors that occur during the execution of a program.
• Errors in the program are detected by using a number of tools..
• Once an error has been detected, it is corrected and the program is again tested for correct

working.
• Some of the more common debugging tools and techniques are the use of breakpoints,

program traces and single line stepping. Resetting variables can also help with debugging.
• Software documentation tells us what the software is to do, how it performs its tasks and what

a user needs to do to run a program.
• Documentation falls into two categories: process documentation and product documentation.
• Process documentation is all documentation that relates to the development process.
• The coded solution should be self-documenting to make the maintenance process easier.
• Product documentation relates to the use of the software.
• Product documentation includes installation manuals, user manuals, trouble-shooting guides,

reference cards, help manuals and tutorials.
• Some product documentation can be provided online.
• Documentation required for maintenance includes the algorithms and source code, data

dictionaries, and screen and report designs.
• CASE tools or application programs can accomplish many of the documentation tasks

associated with software development.
• A software solution will require a minimum hardware and software combination to function

correctly.
• Emerging and new technologies can provide the software developer with expanded

opportunities in both development and the final product.

66Testing and evaluation of
software solutions

cchhaapptteerr

Outcomes
A student:
• identifies and evaluates legal, social and ethical issues in a

number of contexts (H 3.1)
• constructs software solutions that address legal, social and

ethical issues (H 3.2)
• applies appropriate development methods to solve software

problems (H 4.2)
• applies a modular approach to implement well-structured

software solutions and evaluates their effectiveness (H 4.3)
• applies project management techniques to maximise the

productivity of the software development (H 5.1)
• creates and justifies the need for the various types of

documentation required for a software solution (H 5.2)
• selects and applies appropriate software to facilitate the design

and development of software solutions (H 5.3)
• assesses the relationship between the roles of people involved

in the software development cycle (H 6.1)
• communicates the processes involved in a software solution to

an inexperienced user (H 6.2)
• uses a collaborative approach during the software development

cycle (H 6.3)
• develops effective user interfaces, in consultation with

appropriate people (H 6.4)

192 Heinemann Software Design and Development: HSC Course

Testing the software solution
• comparison of the solution with the original design specifications
• generating relevant test data for complex solutions
• levels of testing

– unit or module
– program
– system

• The use of live test data to test the complete solution:
– larger file sizes
– mix of transaction types
– response times
– volume data
– interfaces between modules
– comparison with program test data

• benchmarking
• quality assurance
Reporting on the testing process
• documentation of the test data and output produced

– use of CASE tools
• communication with those for whom the solution has been developed, including:

– test results
– comparison with the original design specifications

Students learn to:
• differentiate between systems and program test data
• test their solution with the test data created at the design stage, comparing actual output

with that expected
• demonstrate the features of a new system to users, facilitating open discussion and

evaluation

Students learn about:

193Testing and evaluation of software solutions

Testing the software solution
In the Preliminary Course it was noted that there are two aspects to testing a software
solution: validation and verification.Validation is the process of comparing the solution with
the design specifications; verification is the process of ensuring that the software performs
its functions correctly. If the software solution is to be successful, it must pass both types
of test.

Figure 6.1 Software testing can be a long and frustrating experience.

Figure 6.2 We test drive a car to make sure that it
performs as expected. We must do the same with
software.

Comparison of the solution with the original design specifications
Design specifications should be written for a software solution in a form that provides a set
of performance criteria. In this respect a set of software specifications is no different from
the set of features you would have in mind when contemplating the purchase of an
expensive item such as a house or car. When you go looking for the item, you evaluate each
of those on offer, choosing the one that fits all or most of your criteria. Part of the process
of choosing a car is to ‘test drive’ it to ensure that it performs in the way you expect it to.
The same is true for software. There is no gain for either the client or the developer in
producing software that does not perform the tasks the client requires.

When the software specifications are written
in a form that provides criteria for the measure-
ment of performance, they help both the soft-
ware team and client evaluate the performance
of the end product. It pays to review specifica-
tions before software construction takes place so
that they are as clear as they can possibly be. The
following guidelines can be used to review the
detailed specifications:
• Ensure that the specifications are written in

terms of measurable outcomes.
• Clarify any vague terms (e.g. terms such as

‘most’, ‘some’, ‘sometimes’ and ‘usually’).
• Avoid the use of vague verbs such as ‘pro-

cessed’, ‘eliminated’ and ‘handled’, as they
may be interpreted in more than one way.

• Look for and clarify any ambiguous state-
ments (e.g. ‘The data input module sends the
parameter to the backup and recovery
module and its flag is set’).

194 Heinemann Software Design and Development: HSC Course

If guidelines such as these are followed in
the specification document, they ensure that
evaluation of the product can be made in an
objective way. For example, each of the
requirements could be represented on a grid
and ticked off as to whether the requirement
was fulfilled in full, in part or not fulfilled. The
grid can then be used as a basis for any
modifications that may be needed.

The process of validation involves the use of
the software in a ‘real’ situation with live data
(real data items) so that its performance can be
compared with the set of specifications under
conditions that are as close as possible to those
that will be encountered once it has been fully
implemented. This process needs to be
properly documented, as recommendations
made at this stage have to be incorporated into
the final product.

Figure 6.3 Validation takes place under conditions
that are as close as possible to those of the final
implementation.

• Incomplete lists of items should be avoided. If this is not possible, then all list items
should be clearly understood. Terms such as ‘etc’, ‘and so on’ and ‘such as’ are used as
indicators of incomplete lists and should be avoided.

• Question the use of persuasive terms such as ‘certainly’, ‘clearly’ and ‘obviously’. Deter-
mine why these terms are used, and if there is no real reason for them, the specification
should be rewritten.

• Calculations should be accompanied by examples.
• Pictures and diagrams should be used to clarify structure, rather than relying on descriptions.

Generating relevant test data for complex solutions
In discussing testing, the emphasis so far has been on checking that the program or algorithm
performs to the required specifications. There has been no discussion of how to create test
data that can locate all possible operational faults. Unfortunately there are often so many
variables that complete testing is an expensive and/or time-consuming impossibility.

Many operational factors may be outside the control of the programmer, or unable to be
foreseen. These factors include inappropriate inputs, variations in hardware, changes or
differences in operating systems and changing technologies. It is not possible to foresee
inappropriate inputs by the user; for example, the use of a particular key combination may
be intercepted by the operating system or data of the wrong type may be entered. Variations
in hardware items because of different manufacturers, modified chips or other reasons can
mean that machines, which on first inspection appear identical, may function slightly
differently. As operating systems are updated or changed, the problem of compatibility with
existing software also becomes evident.

Changing technology also poses a problem, as newer systems containing processors or
operating systems, which are backward compatible in most respects, may contain minor
differences that cause errors during program execution.

All of these factors can limit the reliability of testing. The programmer can test the
program only within the bounds that are set during the analysis stage of development.

A further hurdle in program development occurs with the increasing size of applications.
As more and more features are required from a program, its complexity increases greatly. It
may be almost impossible to create test data to check every path through the program,
because of the multiplying effect of each decision. Modularisation of programs means that
data can be created to test each of the modules; however, it is also likely that an unforeseen
output from one module will cause problems in other modules in the program.

195Testing and evaluation of software solutions

There are various techniques that can be used to create test data that will detect most
of the operational errors while ensuring that the time and effort expended on testing is not
out of proportion to the other aspects of development.

Changes or
differences in

operating systems

Variations
in hardwareChanging

technologies

Inappropriate inputs

Figure 6.4 Many operational factors are outside the control of the programmer.

Figure 6.5 White box testing
examines the workings of a module.

r :=0;
counter

When a small module is designed, it may be possible to
generate test data cases that cover all the possible paths
through the algorithm. However, as modules become more
complex or are combined to form a more complex module,
testing of every path is not a viable option. In these cases, the
program development team choose test data items to uncover
anticipated problems.

Programmers use a number of different techniques to test
the internal workings of a module or program. These testing
procedures are known as white box testing, as they con-
centrate on the internal working of the module. The most
common white box testing procedures in use are statement
coverage testing, decision–condition coverage testing, multiple
decision–condition coverage testing and exhaustive condition
decision–condition coverage testing.

The following algorithm structure will be used to illustrate
the application of each method for creating test data elements.
BEGIN sample_algorithm

WHILE (condition 1)
code section A
IF (condition 2)
THEN

WHILE (condition 3) AND (condition 4)
code section B

ENDWHILE
ELSE

IF (condition 5)
THEN

code section C
ELSE

code section D
ENDIF

ENDIF
ENDWHILE

END sample_algorithm

196 Heinemann Software Design and Development: HSC Course

Statement coverage testing involves the execution of every statement in the module.
When choosing test data items for statement coverage testing, developers choose the data
items so that each statement in the module will have been executed at least once by the
time all data elements have been processed.

To perform a statement coverage test for the sample algorithm, three sets of test data
elements would be created. The sets would contain values that make:
• Set 1—all conditions true to pass control through code sections A and B.
• Set 2—condition 1 true, condition 2 false and conditions 3, 4 and 5 true to pass control

through code sections A and C.
• Set 3—condition 1 true, condition 2 false, conditions 3 and 4 true, with condition 5 false

in order to pass control through code sections A and D.
When all test data elements have been used, each of the code sections will have been

executed at least once. (Notice that code section A will have been executed three times.)
Decision–condition coverage testing involves full statement coverage as in the previous

method, but also tests the execution of each decision in control structures with its ‘true’ and
‘false’ at least once. Thus the test data elements can be grouped in sets that contain elements
that fulfil the following conditions:
• Set 1—all conditions true to pass control through code sections A and B.
• Set 2—condition 1 true, condition 2 false and conditions 3, 4 and 5 true to pass control

through code sections A and C.
• Set 3—condition 1 true, condition 2 false, conditions 3 and 4 true, with condition 5 false

in order to pass control through code sections A and D.
• Set 4—all conditions true except condition 1 which is false will pass control to the end

without executing any sections of code. This tests termination of the first WHILE loop.
(This set is only one of a number that tests this part, as the values of conditions 2 to 5
are irrelevant to the path taken.)

• Set 5—conditions 1, 2 and 5 are true, with 3 and 4 false to test the second WHILE loop.
Adding the two extra sets of data increases the testing to a check of all the decisions, but

this does not test all possible paths. For example, what happens when condition 3 is true
and condition 4 is false has not been checked.

Multiple decision–condition coverage testing extends the process of decision–condition
coverage testing to all possible combinations within multiple decisions. In the example, we
have not yet tested what happens when condition 3 is true, condition 4 is false and the other
three conditions (conditions 1, 2 and 5) are true. Neither have we tested that decision when
condition 3 is false and condition 4 is true (again while conditions 1, 2 and 5 are true). Thus
the following seven sets of data are created to test the algorithm:
• Set 1—all conditions true to pass control through code sections A and B.
• Set 2—condition 1 true, condition 2 false and conditions 3, 4 and 5 true to pass control

through code sections A and C.
• Set 3—condition 1 true, condition 2 false, conditions 3 and 4 true, with condition 5 false

in order to pass control through code sections A and D.
• Set 4—all conditions true except condition 1 which is false will pass control to the end

without executing any sections of code. This tests termination of the first WHILE loop.
(This set is only one of a number that tests this part, as the values of conditions 2 to 5
are irrelevant to the path taken.)

• Set 5—conditions 1, 2 and 5 are true, with 3 and 4 false to test the second WHILE loop.
• Set 6—conditions 1, 2 and 5 are true, with condition 3 being true and condition 4 being

false to test the second WHILE loop with one of the two combinations in the test that
have not yet been tried.

197Testing and evaluation of software solutions

• Set 7—conditions 1, 2 and 5 are true, with condition 3 being false and condition 4 being
true to test the second WHILE loop with the other of the two combinations in the test
that have not yet been tried.
Exhaustive condition decision–condition coverage testing involves creating sets of test

data that examine what happens with all possible combinations of true and false for each
condition. In the example, since there are five different conditions, each with two
possibilities, there are 32 (25) different combinations. These are listed in Table 6.1.

The greatest advantage in creating and using a set of test data that exhaustively tests an
algorithm is that it will bring out any unexpected errors that may occur with unusual data
combinations. It must be remembered at all times that the aim of testing is to uncover errors
rather than to show that the program works.

Exhaustive testing is the most thorough of the testing processes; however, it is most
effective with algorithms and programs that have a small number of decisions. This again
highlights the need to create modular programs in which each of the modules contains a
relatively small number of decisions; that is, they perform one logical step of the whole
process. This is listed in Table 6.1 on the the next page.

The second form of testing concentrates on the inputs of a module and the resulting
outputs, without tracing the execution of any of the statements within the module. This

Black Box

Output

Input

Figure 6.6 Black box testing treats the module as a
‘magic box’ that performs some kind of process to turn
inputs into outputs.

10 items, a 10% discount off the total bill is given for 11 to 100 items and a 15% discount
off the bill is given for orders above 100 items.’ The boundaries in this program are for 10
and 100 items.Thus the test data set for this program would include values that are less than
10, between 10 and 100 and over 100. The output from each of these inputs would be
compared with the expected outputs that have been calculated manually.

Equivalence partitioning involves breaking up the input data into groups that have the
same properties. For example, we might have a database field that is to store a family name.
Only combinations of a limited set of characters are allowed as family names. (The character
set for this data type would consist of upper- and lower-case letters, the hyphen and the
apostrophe.) Thus we would have one partition of input data that can be processed as a
family name, that is, any combination of characters from the limited set. Input data items
for this field that contained any characters not in our allowed set would form a second
partition that would be processed as containing illegal characters.

When sets of data are created to test a module, representative combinations of characters
are chosen from each of the partitions. For our example, some combinations that contained
only the allowable characters described in the previous paragraph and others that contained
one or more illegal characters would be chosen. It would be expected that the data items

form of testing is known as black box testing.
It is given this name as the module is treated
like a ‘black box’ that has a ‘magical’ property
of transforming one thing (the input) into
another (the output). The internal workings of
the ‘black box’ are irrelevant as long as the
‘box’ does the job. Test data elements that
could be responsible for a failure have to be
chosen for this type of testing.

There are two forms of black box testing:
boundary analysis and equivalence partitioning.

Boundary analysis involves choosing test
data elements that are representative of either
side of a boundary where the effects of pro-
cessing are different.

For example, a program used to calculate a
discount from a store has to work as follows.
‘There is no discount for an order of less than

Data set Condition 1 Condition 2 Condition 3 Condition 4 Condition 5
1 True True True True True

2 True True True True False

3 True True True False True

4 True True True False False

5 True True False True True

6 True True False True False

7 True True False False True

8 True True False False False

9 True False True True True

10 True False True True False

11 True False True False True

12 True False True False False

13 True False False True True

14 True False False True False

15 True False False False True

16 True False False False False

17 False True True True True

18 False True True True False

19 False True True False True

20 False True True False False

21 False True False True True

22 False True False True False

23 False True False False True

24 False True False False False

25 False False True True True

26 False False True True False

27 False False True False True

28 False False True False False

29 False False False True True

30 False False False True False

31 False False False False True

32 False False False False False

198 Heinemann Software Design and Development: HSC Course

Table 6.1 The five conditions within the module mean that there are 25 combinations of true and
false for them.

that consist of all legal characters would be processed as legal family names and those that
contained the other characters would be rejected. Any deviation by the module from this
anticipated course of action would signal that there was an error in the processing.

It should be noted that ‘legal’ family names need not necessarily be ones that make sense,
or are even pronounceable. For example, the ‘names’ ZSAWER-TRYWQ, sewmna’Warsk or
even -’--’- are legitimate data items for this set of test data. Examples of data items that could

199Testing and evaluation of software solutions

be used to represent the partition of illegal family
names would be strings such as Der3ginty, jon*s and
^&$%#@((). It is also interesting to note that the most
likely of these data items to pick up an error is the one
that contains the least predictable set of input
characters.

Levels of testing
Two different testing procedures can be employed to
test a modular program; these are black box testing
and white box testing.

The concept of black box testing treats each of the
modules as a black box that takes certain inputs,

Figure 6.7 Equivalence partitioning
divides data into groups that have
the same properties.

creating the wanted outputs. The manner in which the black box achieves its results is
irrelevant, as long as the desired outputs are obtained. Black box testing is applied in order
to test whether inputs are acceptable and whether the desired outputs are achieved.

White box testing exposes the details of the module and is concerned with the correct
functioning of that module. Test data for this type of testing needs to check all paths
through the system. White box testing is usually applied to each of the individual modules.

By combining the two testing methods, complex programs can be well tested, the white
box testing being used to check each of the modules and the black box testing being used
to test their interaction.

Unit or module testing
Unit testing (or module testing) treats each of the modules as a stand-alone application that
does not require any of the other components of the program to function. The module is
tested with an appropriate test data set in order to uncover processing faults. The test data
elements have been constructed prior to the testing procedure to highlight any problems
with processing.

There are a number of different types of error that might occur within a module or unit.
These can be broadly classified in the following manner.
• Arithmetic errors are those in which calculations are not performed correctly, or illegal

operations such as divisions by zero occur.
• Comparison errors are those in which comparisons are attempted on different data types

or the choice of multiple comparisons is incorrect. For example, an ‘AND’ has been used
in a comparison where ‘OR’ should have been used.

• Control logic errors are those in which looping or branching is not performed correctly.
These errors will most likely be due to a wrong choice of comparison, boundary values
or, in the case of loops, incorrect initialisation or termination.

• Data structure errors are those that occur in the use of data structures that are internal
to the module. These would include the use of flags, counters and accumulators
(variables used within the module to total amounts).

• Input and output errors are those that may occur when reading and writing files. Testing
of this aspect of a module ensures that the data items received from a file and/or output
to a file are those that are expected.

• Interface error detection focuses on the parameters that are passed from one module to
the next. The parameters tested would include data items that are passed between the
modules and those that are used for control, such as flags.
Modules are generally tested as white boxes, with the emphasis being on the logic, and

as black boxes, with the emphasis being on the function of the module. The one set of test
data may be sufficient for both forms of testing; however, it may be necessary to use two
different sets of test data for the two types of test.

Data
group 1

Data
group 5

Data
group 4

Data
group 2

Data
group 3

The bottom-up approach involves testing the lower-level modules first, then adding
them together, one by one, and testing, modifying and re-testing the larger module until it
functions correctly. Thus the program is built up from the smaller modules to a fully working
program, with the driver module being the last to be added.

Once the modules have been assembled into the final product, the process of testing is
still not finished. The program now has to be tested against the specifications of the user.
This stage of testing is known as function testing. Users become actively involved at this
time. During this process test cases developed in the analysis and design stages are used to
measure the degree to which the program measures up to the requirements of the user. The
emphasis at this stage of testing is on input and output formats, file organisation and access
and the human/machine interfaces.

200 Heinemann Software Design and Development: HSC Course

Program
Exhaustive tests performed on all modules of a program will not guarantee that the program
will work as desired. Interaction between modules is an important aspect of program design
and is often a cause of problems within the program. The process of combining the modules
is known as integration and the testing that is carried out as part of this process is known as
integration testing.

Once modules have been passed as being able to function correctly, they can then be
assembled into a working program. It is tempting to put all the modules together to create
a fully working solution as soon as possible after they have been tested. The danger with this
approach is that the causes of errors brought about by the interaction between modules are
hard to detect and rectify. Two approaches are taken in the assembly of a program from its
component module: the top-down approach and the bottom-up approach.

In the top-down approach, the program driver module is first tested with stubs
representing each of the lower modules. Once the driver works properly, the modules are
gradually added, the program is tested at that stage, any corrections are made and tested,
and then a further module is added. This process of adding modules and testing continues
until the program is complete. The advantage of this approach is that any errors that are
detected will be due to the most recently added module. This same approach can be taken
to build large modules from a number of smaller sub-modules.

Top-dow
n testing

Driver module

Level 1
module

Level 2
module

Level 2
module

Level 2
module

Level 3
module

Level 3
module

Level 2
module

Level 1
module

Level 1
module

A

C B

E D

G F

Figure 6.8 Top-down testing starts at the driver module and works
down the module levels.

201Testing and evaluation of software solutions

Figure 6.9 Bottom-up testing starts at the lowest-level modules,
working up the levels to the driver module.

Driver module

Level 1
module

Level 2
module

Level 2
module

Level 2
module

Level 3
module

Level 3
module

Level 2
module

Level 1
module

Level 1
module

Bottom
-up testing

A

C B

E D

G F

Testing does not finish once the program has been assembled. It is now time for the
program to undergo acceptance testing (if it is a custom-built solution) or alpha and beta
testing (if the software is a commercial off-the-shelf application).

Acceptance testing is a testing procedure carried out by the software users in order to
determine whether the software is capable of being used in the fully operational system.
Real data are used in this phase of the development process. The main purpose of accept-
ance testing is to ensure that the program fits into the processes and procedures of the
system for which it was designed. Other aims are to gauge how the human/computer
interface works with users and to detect any errors that may have been missed during the
previous testing stages. Acceptance testing can also serve to train some of the users in the
operation of the system.

When an off-the-shelf software title has been assembled, it would be an impossible task
for all users to test the program. In this case, a two-stage equivalent of acceptance testing is
used. Alpha testing is carried out in a controlled environment, with the developers watching
a sample of users operating the program. Developers document any errors or usage
problems as they occur. These errors and problems form the basis for further modifications
to the program.

At the conclusion of alpha testing the program is passed on to a number of beta testers.
These testers are given the task of trying to make the program fail under simulated real
situations similar to those of the alpha testers; however, the beta testers document the
problems that they find. The main difference between alpha and beta testing is the absence
of developers during the process of beta testing. This allows the beta tester to use some
imagination in creating situations that may cause the program to fail. Any failures in the
working of the program are investigated and corrected.

System
Once the software has been tested, it can be installed onto the hardware. A further round
of tests is performed to uncover any problems.

System testing can be thought of as the combination of a number of different test
sequences that have been designed to fully extend the system. These tests focus on
performance, recovery, security and stress.

202 Heinemann Software Design and Development: HSC Course

Performance testing is used to test the quality of the performance of the software. One
of the tests performed is to gradually increase the transaction load of the system until it fails.
This test gauges the transaction volume that can be handled. A second set of tests is
concerned with the system’s ability to recover from a fault. Recovery testing, as it is called,
consists of a number of tests that force the system to fail and then measures the ability of
the system to recover itself or the average time taken for humans to recover it. Security
testing involves attempting to breach the security of the system. These tests will not just
involve the computer aspect of security but also security within the manual procedures.
Stress testing attempts to create situations in which the system may fail. In this process,
stressful situations such as rapid reading and writing to disk or maximum main memory
usage are created to determine whether the system can cope or whether it will fail. Some
of these tests may overlap the performance tests.

The use of live test data to test the complete solution
During the development process, modules are tested with data that has been created by the
development team. These data elements have been designed to test the operation of
program modules and may have little in common with the actual data that has to be
processed. It is rather like testing a car on a test track. The tests will determine how the car
performs on the test track and whether modules such as the engine and brakes work.
However, they will not determine how the car will perform its task in city traffic or on
hundreds of kilometres of country roads. These results can be gained only by driving on
ordinary roads. In the same way, a computer program or system will not reveal how it
handles situations that occur in normal operation until it is subjected to the same conditions
it will encounter during normal operation. The most evident of these conditions is in
relation to data.

Larger file sizes
The use of real data, commonly called live data, will allow a number of factors to be tested
under simulated operational conditions. One of the hardest conditions to simulate with
manufactured data is the processing of large amounts of data or large files. The time taken
to manufacture such a set of artificial test data is often out of proportion to the time that
the data items will be used. Since this aspect of the program’s performance has to be tested,

Figure 6.10 Installation of the software on the required hardware must take
place before system testing can proceed.

203Testing and evaluation of software solutions

input. It is difficult to estimate the response time while the program is undergoing testing
with manufactured test data items, as the purpose of these items is to uncover faults in the
program. Live data items are representative of real processing situations and will, therefore,
be subject to the same processing as is expected during program use. The software
development team can accurately gauge the expected response times from these data items.

Volume data
The sheer volume of data that has to be processed by a program can also lead to problems.
It is pointless to expect the software development team to create large sets of test data when
a ready source exists. It is much more economical in both time and money to use pre-
existing data from the current system for these tests. In this way, how the system will
respond to a large amount of data can be measured.

Interfaces between modules
Live data provides a good test of the interfaces between the various modules of the
program. The reason for this is that the live data elements are genuine representations of the
kinds of data elements that will be processed in the future. If any of these data elements
cause interface problems, it is reasonable to assume that these problems will also exist
during use of the program.

Comparison with program test data
A comparison between test data elements and live data can highlight any shortcomings
that the test data or the live data set may have had. The outputs of live data can be
compared with those of the developer-created test data items to gauge the effectiveness of
the test data cases.

Benchmarking
Benchmarking involves creating a set of tests that can be used to measure the speed with
which a computer system will perform a particular task. The way in which the tests are
structured will allow a comparison between different combinations of hardware and
software. Thus the set of tests may be performed with both the old and the new systems
and a comparison made between their performance. Benchmarking is a purely objective
process and so subjective measurements of aspects such as user friendliness and ergonomic
factors are not included in the process. The results obtained from benchmarking are often
unexpected and open to different interpretations. Thus interpreting the results is just as
important as obtaining them in the first place.

Figure 6.11 Use of live data for testing will
produce a mix of typical transactions.

Testing

the most sensible choice for such data comes
from pre-existing system data. The outputs
of such data are known already as they have
been processed with the old system.

Mix of transaction types
The software design team, although familiar
with the workings of the system, often
cannot fabricate data sets that provide the
mix of transactions that the operational
system will encounter. Live data can provide
such a mix, as the data items are a sample of
real transactions.

Response times
The response time of an application is the
time that it takes to provide a reply to data

204 Heinemann Software Design and Development: HSC Course

It is important that the measurements taken are accurate and reflect a true measure of
the speed of the operation and so the process is very detailed and time-consuming.

Quality assurance
One of the goals of a software development team is to produce a product that is of the
highest possible quality. Quality cannot be ‘added’ to an existing product; it must be built
into it. The process of ensuring that the end product meets the standards set for a ‘quality
product’ is known as quality assurance.

It is difficult to state exactly what the properties of ‘quality software’ are. However, a
number of attributes contribute to software quality, including:
• clarity—the meeting of a set of standards for the user interface, for example precise and

unambiguous instructions.
• correctness—the consistent production of the correct output for a given set of inputs.
• documentation—consistent documentation and of a high standard.
• economy—software that is economical both of processing needs (such as main storage

needs) and external resources (such as user time).
• efficiency—efficient production of the output.
• flexibility—the ability to cope with all the situations found during processing.
• generality—the need for software to present itself as performing a set of generalised tasks.

(This means, for example, that the user interface may be set up to simulate a non-
computer situation, for example a word-processor interface that is set up to resemble
typing on a sheet of paper.)

• integrity—the ability of a system to withstand any attacks on its security, whether or not
these attacks are intentional.

• interoperability—the ability of the software product to communicate with pre-existing
software. (For example, the new software being installed on the system must be able to
work with the pre-existing operating system.)

• maintainability—the ease with which an error in the software can be corrected.

Figure 6.12 A benchmark serves as a reference point when surveyors want to find the elevations of
points in an area.

205Testing and evaluation of software solutions

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.
Two aspects of software testing are and . is the
process of comparing the solution to the specification. is the
process that ensures that the software performs its correctly. data
items need to be created to test whether modules function correctly. These items are listed
in a data dictionary that also lists the outputs and reasons for

each data item. data items come from the existing system and are
used to test whether the can handle real processing situations.

2 Describe the processes of verification and validation. What is the purpose of each of these
testing procedures?

3 Write a set of design specifications for a birthday book program. This program is to be able
to store people’s birthdays and their contact details.

4 A module for a program has to be able to determine and output whether two input
numbers are equal, or output the larger one. Create a set of test data that could be used
to check the workings of this module. Don’t forget to show the reason for choosing the
values and the expected output for each of your test data sets.

5 Describe the processes of black box testing and white box testing. Which of these testing
methods would be used with the test data you created in question 4 to test the module?

Exercise 6.1

• modifiability—the ease with which the software can be changed to meet new needs
or circumstances.

• modularity—being able to replace one part without creating a completely new product.
(Thus, the replacement of a peripheral, such as a manufacturing robot, will not make it
necessary to completely rewrite the software. Perhaps only the robot-controlling module
may need replacement.)

• portability—the ability of software to be executed with different hardware and software
combinations. (For example, a simple Pascal program can be executed on any hardware
and software combination that has the ability to translate the Pascal program and
execute it.)

• reliability—a measure of the failure rate of software. (Thus software that rarely fails is
reliable and software that continually fails is unreliable. Failure here is taken in its
broadest sense to mean that the software has not performed its required task.)

• resilience—a measure of the software’s ability to recover from an abnormal situation. (For
example, how does the software recover from an unexpected finish to reading a file?)

• reusability—a quality built into the software at design time when an effort is made to
ensure that the components being assembled for the current task can be used in future
development activities.

• testability—how easily the software can be tested.
• understandability—how well the design of the software is understood. (The

understandability of a program can be gauged from the quality of the technical
documentation that accompanies it. For example, the interrelationships between the
various components needs to be well understood.)

• useability—a measure of a number of aspects of importance to the user. (These are the
skill and time needed to learn the program, the time required to become efficient in its
use, the increase in productivity achieved through the use of the software and the
attitude of the user towards the system.)

• validity—a measure of how the software product meets the specifications of the user.

10 Create a set of boundary analysis test data items that can be used to test a module for the
following description of an egg-sorting process. Your set of test data should contain the
test data item, the expected output and the reason for choosing the data item. You need
not worry about creating test data items to test the data validation processes within
the module.

206 Heinemann Software Design and Development: HSC Course

Figure 6.14

Fee <Fee <
100100

True FalseFee >
1000

True FalseDis = T
AND

Pc = T

B C D E

True False

A

Fee <
100

True FalseGrad
>5

Figure 6.13

A

D E

B C

No YesTax
concession

Wage is

< $20 000 < $40 000 Otherwise

6 Statement coverage testing is to be used to
test the module of a program represented
by Figure 6.13. Create test data sets that
could be used for this test. Describe the
paths that would be taken when each of
your sets is processed by the module. For
example, a wage of $15 000 and a tax
concession would use the path through A
and E.

7 Create a set of test data for the module
described in Figure 6.13 if the module is to
be tested using the decision coverage
method. Again describe the paths that
would be taken when each of the test data
sets is processed.

8 Use the algorithm in Figure 6.14 to create
sets of test data that can be used to
perform multiple decision–condition cover-
age testing on the module.

9 Use the algorithm in Figure 6.14 to create
sets of test data that can be used to per-
form exhaustive decision–condition cover-
age testing on the module.

207Testing and evaluation of software solutions

Reporting on the testing process
Testing needs to be a carefully controlled and executed process if it is to provide the
maximum amount of information about the software. The results of the process have to be
analysed with care so that nothing is overlooked. The only way that this can be achieved is
if the test process is properly documented.

Documentation of the test data and output produced

Software
test plan

Software test
description

Software
test report

TEST
DOCUMENTATION

Figure 6.15 Test documentation comprises three
reports: the software test plan, the software test
description and the software test report.

Documentation of the test process involves three
basic forms. The first is a software test description
that describes the preparations for the tests, the test
cases and the procedures followed. These details
allow the client to determine the adequacy of the
testing process. The second report is a software test
plan that describes the test environment and the
tests to be performed and provides a time frame for
conducting the tests. This allows the client to
review the test process. The final document is the
software test report that provides information
about the conduct of the tests and the results.

The first section of the software test description
is a description of the scope of the tests. It will also
briefly state the purpose of the system and the
nature of the system. The procedures necessary to
prepare the hardware systems, software systems
and personnel for the tests follow. A description of
each of the tests makes up the third part of the
report. In this part are a list of the prerequisite

Eggs are to be graded as ‘SMALL’ if their weight is less than 50 grams, ‘MEDIUM’ if their
weight is from 50 grams to less than 60 grams, ‘LARGE’ if their weight is from 60 grams to
less than 70 grams and ‘EXTRA LARGE’ if their weight is 70 grams or more.

11 A module of a program processes a telephone number. Telephone numbers are restricted
to strings of eight digits (e.g. 14567890) or an area code of two digits enclosed in brackets
together with an eight-digit number (e.g. (01) 23456987). Create three sets of ten
telephone numbers. The three sets are to be used in testing the module’s acceptance or
rejection of a telephone number. One of the three sets should contain eight-digit numbers,
the second set should contain telephone numbers with area codes, and the third set should
contain ‘numbers’ with some illegal characters. Name the type of test data sets that you
have created.

12 A number of modules need to be tested and integrated into an application. Name and
describe the two possible ways of performing this integration.

13 Describe the purpose of acceptance testing as part of the software development process.
In what ways is acceptance testing different from module and integration testing? Use an
example to illustrate your answer.

14 What is system testing? Why is it necessary to perform system tests after all the other
tests have been completed? Describe the different aspects of the system that are tested at
this time.

15 Choose a public domain program and perform a beta test on this application. Describe in
detail the tests that you performed, the results of your tests and any recommendations you
have for improvement. Present your answer as a word-processed report.

208 Heinemann Software Design and Development: HSC Course

tests themselves, the set-up time for the system prior to testing, the collection and/or
creation of data values needed for the testing process, how the tests are conducted
(including planned retesting) and the preparation and review of the software test report.
The final section identifies the relationship between the tests and the software requirements
identified at the beginning of the development process.

The software test report is the last of the documents produced during the testing
process; this document will again outline the scope of the testing process. It also provides
an overview of the test results that identifies deficiencies in the software, their impact on
the rest of the software and the steps that may be taken to correct them. This section will
also assess the impact of the test environment and make recommendations as to improve-
ments that may be made. The test results section will contain a summary of the overall test
results, a more detailed description of those results that did not match the expectations, and
an outline of any steps that were taken to correct the problem. The test log contains a
chronological listing of the dates, times, personnel and tests that were performed, together
with the hardware and software combinations used and the date and time of each of the
test-related activities.

Use of CASE tools
A number of general-purpose application programs can help in documenting the test data
items or the testing process. Other CASE tools have been specifically developed for the
testing process.

General-purpose software such as word processors can be used to provide templates for
the various documents that are produced during test planning or within the testing period.
For example, a word processor may be used to format a text file that has been output
during a test. This will allow the test team to annotate the results in a quick, clear and
consistent manner.

Figure 6.16 A test data dictionary will list the
test data items, the expected outputs and the
reasons for choosing the specific data item.

XYZ COMPUTING
Project
Programmer

Module

Test Data Dictionary

Variable Value Expected output Comments

conditions, the test inputs (often in the form of a
test data dictionary), the expected test results, the
criteria for evaluating the tests, the steps to be taken
to perform the test, and any assumptions and
constraints. The final section will document the
traceability of each of the test cases to the
requirement(s) it addresses.

The software test plan should contain the
following: a description of the scope of the tests
including identification of the system and software,
an overview of the system, and the relationship
between this software and any other system com-
ponents. This is followed by a description of the
software test environment, which lists the test sites,
the hardware and firmware items, the installation
procedures, the tests to be performed and the
participants in the testing process. The next section
contains a full description of the tests to be
performed. References are made to the levels of
testing, the classes of test to be performed and the
general test conditions. A description of the record-
ing and analysis of the test results is also found in
this part of the report. The section concludes with
a list of the systems and subsystems to be tested and
the tests that are to be performed on each. The
scheduling of each of the tests forms the basis of
the next section. It describes activities such as the

209Testing and evaluation of software solutions

Other CASE tools have been specially designed to provide automated assistance in
aspects as varied as test case design and analysis of output files. The following section will
briefly examine the purpose and operation of some of these tools.

At the beginning of the testing process, test data items and test cases may be required.
In some instances, for example a program that is to process a large number of files, a large
number of data items will be needed, which may be required to conform to a particular set
of rules. In this case the use of a test data generator may be beneficial. This tool can create
a number of test cases that can be tailored to fit requirements, such as that they contain only
a specified set of characters. Thus, if a postcode is to contain only four digits, the test data
generator can be used to create sets of data that conform to this rule. Other data sets
containing illegal characters can be created to test the program’s ability to handle illegal
characters during the input of a large amount of data.

An oracle is a program that can predict the output of a system if there are no defects in
the system. An oracle cannot be completely automatic, as it would then perform the task of
the program, rendering the program’s development unnecessary. Thus there must be some
human intervention in the operation of an oracle. A throwaway prototype may be used as
an oracle since it will perform the required tasks; however, that prototype would not be any
good for predictions that involved data validation (since a throwaway prototype is usually
developed without regard to data validation). Human intervention would be required to
predict the outcomes when test data cases are used to test the validation modules of the
final software solution.

File comparators, as the name suggests, are used to automatically compare two files. This
type of CASE tool is useful when a new software solution is being developed to replace an
existing software solution. Provided that the format of the output files is the same, the file
comparator can be used to compare files created by the existing software solution and the
old one. When the comparator detects a difference in the files, it outputs a listing of the
differences. These can then be analysed by the test team to detect the problems with the
new solution.

CASE tools that are used to coordinate and manage software testing are known as test
management tools. The purpose of these tools varies from conducting batch testing of
programs through to performing comparisons between the expected output and the actual
output of a program. Some test management tools act as generic test drivers, reading test
cases from a file, formatting it for input and operating the software under test. They can also
be used to test an interactive human–computer interface.

Communication with those for whom the solution was developed
Communication is one of the most important aspects of the software development process.
Members of the software development team have to communicate with each other and the
team also has a responsibility to keep the client informed of progress.

The testing phase is no different from any of the other stages in the software develop-
ment cycle. The client has a right to be informed of the progress of the tests and of how the
program measures up to the original specifications.

The reports given to the client need to be presented in a non-technical manner to allow
the client to properly understand the contents. A report that hides problems by the use of
highly technical language is not going to provide the information needed by the client.

The client must also have an opportunity to contribute to the evaluation of the tests that
have been performed. This contribution will generally increase as the testing process
progresses, but the client should be given the opportunity to contribute at all stages of the
testing process.

Test results
The test results will concern the client in a number of ways. The first is that problems
uncovered during testing may cause the project to be delayed. For example, the solution of

210 Heinemann Software Design and Development: HSC Course

a problem in the program may require the complete rewriting of a module. Also of concern
to the client is the efficient use of resources. Thus, if testing shows a 10% increase in the
time for processing, the client will need to be informed so that a decision can be made as to
whether the increase is a problem or not. An overall picture of the actions of the software
can also be gained from the test results, especially when live data has been used. This will
assist management to fine tune the use of the package within the organisation.

Comparison with the original design specifications
If the program meets all of the requirements of the original design specifications, the client
will be happy; if it does not, the client will expect that the program is brought up to
that standard.

In order to make a judgment on whether the software meets those specifications, the
client will need access to the test report or a summary of the report in less technical terms.

Exercise 6.2
1 Copy the following passage and complete it by filling in the blanks with the appropriate

terms or phrases.
Testing has to be carefully and executed if it is to provide the maximum
amount of about the software. Documentation helps with this process. The
three major document types produced are a software test , a software test

and a software test . The software test describes the
of the system and criteria for the tests. The software test
contains, among other things, a description of each of the tests and the

hardware, and installation . The software test
provides information about the of the tests and the of the tests.

2 Explain why it is important to properly document the testing process.

3 A program is being created to manage a school’s software collection. Explain why it is
necessary for the development team to discuss the results of the test with the school’s
management.

4 Explain how a word-processing program can be used during the testing stage of
development. Illustrate your answer with examples.

5 Create a program that will convert temperatures from Celsius to Fahrenheit and vice versa.
Develop and document a set of tests for this program.

Team Activity

Your team has been told to oversee the beta
testers of a new game. You need to design a
form for the testers to fill in with details of
the system being used to test the program
and the problems that they encountered. The
programming team will need the data

collected from these forms so they can
correct the problems. The form must not
occupy more than one A4 sheet and must be
easily understood by both the beta testers
and the programmers.

211Testing and evaluation of software solutions

Review exercises
1 Copy the following passage and complete

it by filling in the blanks with the
appropriate terms or phrases.
Testing and evaluation of a
product involves making sure that it

and meets the
specifications. Verification testing is carried
out to ensure that the program performs
all its properly. These tests are
first performed on the individual

using test data sets. The
modules are gradually into
the program which is tested after each

module is added. Other
testing procedures, often using live

and known as ,
aim to make sure that the program meets
the design .

2 Explain why test data sets are created
thoughtfully rather than being created at
random. Use an example to illustrate
your answer.

3 Design a set of test data, excluding data
validation, for the following module and
present it in an appropriate form.
A refrigerator alarm system is to be
installed in a commercial kitchen. The
alarm is to sound if the door has been left
open for more than 45 seconds or if the
internal temperature rises above 2°C.
Inputs to the system are taken from a
timer which starts when the door is
opened and which stops and resets when
the door is closed and from a temperature
sensor. These values are converted by the
system into numerical values, which
represent the number of seconds and the
temperature in °C, and sent to the
processor.
Your choice of test data items should be
chosen to perform exhaustive condition
decision–condition coverage testing.

4 A computer program is being designed for
the police department to process the
photographs from ‘speed cameras’. Create
a set of test data for the processing
algorithm together with the expected
outputs and reasons for choosing each
item of data. Write an algorithm for this
problem and test it using your test data.

Code the program in one of the approved
languages and use your test data to check
the program. The fines are calculated
according to Table 6.2.

5 Compare and contrast acceptance testing
and alpha testing as used in software
development. Describe, with examples,
when each of them is appropriate.

6 You have been given the task of providing
live data to test a supermarket cash
register system. Explain how you would
choose appropriate sets of data for
the testing.

7 You have volunteered to beta test a
new word-processing program for
Macrohard Software. Describe how you
would approach this testing. Using your
description, perform a test on the word-
processing program you use at school.
Report on your findings.

8 During your course you have written a
number of computer programs. Choose
one of them and produce a software test
plan for that program. Test the program
according to your plan and write a
software test report.

9 Examine the application software available
to you at school and describe how each of
these applications could be used to help
with the software testing process. If you
have applications that are not suitable, list
them as well, together with the reasons
why they are not suitable.

10 Explain how you would communicate the
results of testing to a client who has
employed you as a software designer.
Illustrate your answer with examples.

Speed
Penalty

above limit

1 to 15 km/h Fine $250 plus 4 points

16 to 25 km/h Fine $850 plus 6 points

26 to 35 km/h Fine $1450 plus 8 points

over 35 km/h Fine $2850 plus loss of
licence for 2 years

Table 6.2

212 Heinemann Software Design and Development: HSC Course

• The two aspects of testing are validation and verification.
• Validation ensures that the software meets the design specifications.
• Verification ensures that the software functions correctly.
• Software specifications should be written to enable performance of the solution to be measured.
• There are a number of different ways to generate test data for a software solution.
• Data for statement coverage testing ensures that every statement in the module is executed at

least once.
• Data for decision–condition coverage testing ensures that each decision is tested at least once

in its true and false state.
• Data for multiple decision–condition coverage testing ensures that each decision is tested at

least once for all possible combinations within multiple decisions.
• Data for exhaustive decision–condition coverage testing ensures that all possible combinations

of true and false are tested for every decision.
• White box testing examines the detailed workings of a module by means of the tests.
• Black box testing just examines the outputs for given inputs, ignoring the processing that went

on within the module.
• For black box testing, data items can be chosen for boundary analysis and equivalence

partitioning.
• Boundary analysis involves choosing test data items on each side of a boundary.
• Equivalence partitioning involves choosing test data items that share particular properties.

These items form a partition that is used for testing.
• Unit testing treats each of the modules as a stand-alone unit for testing purposes.
• Integration testing takes place when modules are combined to form a solution.
• Integration testing may be either top-down or bottom-up.
• After integration, the program passes through function testing with users.
• The two forms of function testing are acceptance testing for custom software and alpha and

beta testing for application software.
• System testing involves testing for security, performance and recovery.
• Live test data is also used to test the solution, as it simulates the processing required when the

software is installed and fully operational.
• Quality assurance methods can be used to ensure that the software is constructed to the best

possible standards.
• Software testing is accompanied by documentation: a software test description, a software test

plan and a software test report.
• CASE tools may be used to help in all aspects of the testing phase.
• Test results and evaluation against the original specifications are communicated to the client.

Chapter summary

77Maintenance of software
solutions

cchhaapptteerr

Outcomes
A student:
• differentiates between various methods used to construct

software solutions (H 1.2)
• identifies and evaluates legal, social and ethical issues in a

number of contexts (H 3.1)
• constructs software solutions that address legal, social and

ethical issues (H 3.2)
• applies appropriate development methods to solve software

problems (H 4.2)
• applies a modular approach to implement well-structured

software solutions and evaluates their effectiveness (H 4.3)
• applies project management techniques to maximise the

productivity of the software development (H 5.1)
• creates and justifies the need for the various types of

documentation required for a software solution (H 5.2)
• selects and applies appropriate software to facilitate the design

and development of software solutions (H 5.3)
• assesses the relationship between the roles of people involved

in the software development cycle (H 6.1)
• communicates the processes involved in a software solution to

an inexperienced user (H 6.2)
• uses a collaborative approach during the software development

cycle (H 6.3)
• develops effective user interfaces, in consultation with

appropriate people.(H 6.4)

214 Heinemann Software Design and Development: HSC Course

Modification of code to meet changed requirements
• identification of the reasons for change in code, macros and scripts
• location of section to be altered
• determining changes to be made
• implementing and testing the solution
Documentation of changes
• source code, macro and script documentation
• modification of associated hard copy documentation and online help
• use of CASE tools to monitor changes and versions

Students learn to

Students learn about

• read and interpret others’ code, macros and scripts
• design, implement and test modifications
• recognise the cyclical approach to maintenance
• document modification with dates and reasons for change

215Maintenance of software solutions

Modification of code to meet
changed requirements

D I

F

YM

O

Change
operation

Meet new
requirements

Improve
efficiency

Changes in
input data

Remove a
bug

Hardware/
software
changes

Government
requirements

Figure 7.1 Maintenance may be
required for a number of reasons.

The term maintenance is used to broadly describe any effort
that is put into software after it has been implemented.

As in the Preliminary Course, any number of factors can
lead to the need for maintenance. These factors include a
need to remove a bug, to improve the efficiency of the pro-
gram or to change the manner in which the program
operates, to allow the program to cope with changes in the
input data, to meet new requirements within the organisa-
tion or to comply with new government requirements. Main-
tenance may also be necessary when changes are made to the
hardware or to the software such as the operating system.

Changing user requirements
As a user becomes more familiar with and competent in
using a computer program, shortcomings in its operation may
become evident. These shortcomings may be in the way that
the program works or, more often, because the user wishes or
needs to perform a further task.

Upgrading the user interface
When software is originally developed, the user interface receives a lot of attention.
However, even though this effort is put into development, the user interface often contains
a number of aspects that would benefit from redesign.

Redesign of the user interface may be needed because the user, in becoming more
familiar with the original interface, has discovered design problems. It is quite common for
this to happen as, although the user is involved with the original interface design, its long-
term use may bring to light problems that had not been thought of or have been brought
on by slightly different work practices. This can be especially true in the design of menus
and key combinations used for shortcuts.

Changes in the data to be processed
Changes in the form of data to be processed will often lead to a need to modify software.
The most recent world-wide example of this problem was in the correction of the so-called
‘Millennium bug’ in which the two-digit representation of the year in a date, used in the last
half of the 1900s and identified as a potential source of problems, needed to be changed to
four digits. Date-dependent software had to be modified in order to accommodate the new
representation of the year.

Expansion of the existing system to allow for a greater number of data items than was
originally envisaged when the software was designed may involve revising the rep-
resentation of data items and/or data structures. These revisions then have to be
incorporated into the software if it is to function properly. An example of this in Australia’s
recent history was the conversion of all telephone numbers to eight digits in the late 1990s
in order to increase the number of possible telephone connections.

Another source of change in the data to be processed is brought about by the changing
needs of the organisation. In this case new data items and processes may need to be
incorporated into the software application in order to obtain the required outputs. For
example, when government legislation was introduced requiring all citizens to have a tax
file number, the banks had to modify their software so that it could store and retrieve
customers’ tax file numbers as well as use the tax file numbers in the calculation of interest.

216 Heinemann Software Design and Development: HSC Course

Figure 7.2 Introduction of new technology may force
an organisation to modify its software.

Introduction of new hardware or
software
Custom software generally has a long life within
an organisation as it is initially expensive to
produce. Cases of software lives of ten to fifteen
years are not uncommon. However, during the
life of the software, technology is improving
both the hardware and the operating system
software. For software to last as long as it does,
maintenance will be required to allow it to run
with the new technology and to take advantage
of the benefits that the new technology offers.

Changing organisational focus
An organisation is not static. Its goals and
purpose move through a continual process of
evolution. As the organisation evolves, its focus
changes. For example, P&O, which started as a
shipping company, with its focus on providing a
service to Asia and Australasia. has now evolved
into a company that owns cruise liners and
holiday resorts, provides freight services, runs a
cleaning service and operates wharves.

As the focus of an organisation moves through change, the software needs also change.
Companies will generally move into areas that are related to their original purpose, and so
the new software needs will generally be similar to the previous ones. The current software
will usually be able to perform a majority of the required tasks, so it is obviously more eco-
nomical in both time and cost to modify the current software than to create a completely
new package.

Changes in government requirements
Government regulations and laws are continually changing to reflect social, political and
economic circumstances. As the laws change, it may be necessary for an organisation to
modify its software in order to comply with the new requirements.

Areas in which these changes are most evident to organisations are those that involve the
payment of taxes. However, there are other instances in which software may need
modification. For example, the government might require a company to track the use of
particular chemicals or to furnish details of the purchasers of their products. In these cases
existing software will need modification in order to comply with the government’s wishes.

Poorly implemented code
Software developed many years ago may not have been as structured as it is now. The
emphasis sometimes was on the software being able to perform its task no matter what the
cost. As the software comes up for maintenance, evidence may arise that shows that the
current implementation is not as efficient as it could be, or that a software patch has been
used to work around a problem. Maintenance is a good time to evaluate the code for its
efficiency and to properly overcome earlier problems rather than rely on a software patch.

Identification of the reasons for change in code, macros and scripts
Maintenance is not about creating a ‘quick fix’ for the identified problem but about
creating a lasting solution. To this end, maintenance should follow the same steps as any
other problem-solving activity. That is, define the problem, design a solution, test the
solution and implement it.

217Maintenance of software solutions

The first step in maintenance is to deter-
mine the needs of the user that are not being
currently provided by the software solution.
As the users become more adept at using the
software, they may see the possibility of using
the system in a new way or they may seek
improvements to the manner in which a task
is performed. For example, the users might
find that the human interface of the software
is not as intuitive as the program design team
had anticipated. The users’ suggestions as to
how they would like this interface to work
would be passed along to the maintenance
team for consideration and would be used as a

Organisation

Legislation

Technical

User

NEEDS

basis for the modification design specifications.
Sources external to the user, such as management or government legislation may have

needs that are not being met. In these cases, a set of requirements for the modified software
is necessary, and these are constructed from a comparison between the tasks currently being
performed by the software and those needed to comply with the new needs. The require-
ments may be as simple as complying with a new scale of tax deductions, or they may involve
complex processes such as reorganising the company’s computer program to comply with
new bookkeeping regulations.

The easiest maintenance needs to identify are those associated with faults in the
software. Even though it is tempting just to ‘fix’ the problem, the requirements should also
be documented. Full documentation of a software solution is very important for subsequent
maintenance, as it tells the maintainers exactly what has been achieved up to that moment.

As time passes, technology becomes outdated and is eventually unavailable. A software
solution may not function correctly when used with new hardware or a newer operating
system. Again, it is important to carefully document the requirements for maintenance. As
with the correction of faults, proper documentation is essential for future maintenance.

Location of section to be altered
Once the new requirements have been established, the maintenance team has the task of
changing the software so that it meets the new requirements. Some of the new requirements
can be met by the addition of new modules, whereas other requirements will be fulfilled by
the modification of existing code.

Development of new modules is generally a more straightforward process than modifi-
cation of existing ones. The main reason for this is that the new modules contain no pre-
existing structure, and, provided they interface correctly with the rest of the program and
perform their tasks, the program should work properly. Modification of a module that
already exists requires the team to understand the workings of that module, be able to locate
the section that needs changing, and incorporate the changed section into the module. A
modular approach to software development will assist the team to locate the section to be
changed. If a program has been written as a whole, without a modular structure, location of
a section that has to be changed is a very difficult task.

In some cases a whole module may need replacement. These sections should be fairly
easy to locate in a well-documented solution, as the documentation will lead the mainten-
ance team to the appropriate parts of the program. (The initial use of appropriate names for
modules is a most important aid.) A whole module would need to be replaced, for example,
when a new input device, such as a scanner, did not present data to the program in the same
form as the device it was replacing, perhaps a keypad. A module that accepts the data in the
new form would need to be written to replace the input module of the program.

A harder task is to locate small sections of code that need to be replaced. In well-
documented code, the internal documentation can be used to find the section that needs

Figure 7.3 Needs determine the changes
that are to be made to software.

218 Heinemann Software Design and Development: HSC Course

Example 1
A program has been written to calculate the areas and volumes of a number of figures
and solids that contain circles. Greater accuracy is required after the program has
been written. The program team has been asked to change the value of pi from 3.14
to 3.14159. In the first section of the BASIC program, the value of pi has been used
in each of the formulae; the second code section defines a constant, PI, at the
beginning of the code and this identifier is used throughout the program.

Sample 1
10 PRINT ’SAMPLE PROGRAM USING PI’
20 PRINT ’PLEASE INPUT A RADIUS’
30 INPUT RADIUS
40 CIRCUMFERENCE = 2 * 3.14 * RADIUS
50 AREA = 3.14 * RADIUS * RADIUS
60 SURFACE AREA = 4 * 3.14 * RADIUS * RADIUS
70 VOLUME = 4 * 3.14 * RADIUS * RADIUS * RADIUS
80 PRINT ’THE CIRCUMFERENCE OF THE CIRCLE IS’; CIRCUMFERENCE
90 PRINT ’THE AREA OF THE CIRCLE IS’; AREA
100 PRINT ’THE SURFACE AREA OF THE SPHERE IS’; SURFACE AREA
110 PRINT ’THE VOLUME OF THE SPHERE IS’; VOLUME
120 END

Sample 2
10 PRINT ’SAMPLE PROGRAM USING PI’
15 PI = 3.14
20 PRINT ’PLEASE INPUT A RADIUS’
30 INPUT RADIUS
40 CIRCUMFERENCE = 2 * PI * RADIUS
50 AREA = PI * RADIUS * RADIUS
60 SURFACE AREA = 4 * PI * RADIUS * RADIUS
70 VOLUME = 4 * PI * RADIUS * RADIUS * RADIUS
80 PRINT ’THE CIRCUMFERENCE OF THE CIRCLE IS’; CIRCUMFERENCE
90 PRINT ’THE AREA OF THE CIRCLE IS’; AREA
100 PRINT ’THE SURFACE AREA OF THE SPHERE IS’; SURFACE AREA
110 PRINT ’THE VOLUME OF THE SPHERE IS’; VOLUME
120 END

replacement. The ‘find’ function of a text editor can be used to help with this aspect. If the
program development environment does not contain this function, the text could be
exported to a text processor that does support it.

Sometimes the value of a constant needs to be changed. This can cause problems if the
constant value has not been assigned an identifying name at the beginning of the program
or module. When a constant has been defined at the beginning of a section of code, it is easy
to find and, more importantly, we know that the change in value will be carried right
through the code. If the constant has been used as a numerical value in the code section,
each occurrence needs to be located, with the possibility that one or more will be missed.
The following example uses a simple program to illustrate this point.

In Sample 1 the value will need to be changed four times, whereas only one change is
needed in Sample 2.

219Maintenance of software solutions

Determining changes to be made
The new set of requirements is used to determine the nature of the changes to be made to
the program. As seen, some of these changes will involve the writing of one or more
completely new modules, whereas others will involve changes to the logic or minor
adjustments such as the use of a new value for a constant.

The reasons for the changes need to be considered before attempting to find the section
that has to be changed. If the required change is due to an error in the logic of the program,
the source or sources of the problem have to be identified. These sources can usually be
determined from the test documentation and the original algorithm descriptions and source
code. Changes made under these circumstances will involve rewriting sections of code to
eliminate the problem.

Changes in the user interface often involve minor adjustments to various screen
elements. If one or more screens require major modification, if is often best to start from
scratch and design a completely new layout. If this is necessary, the screen must be designed
within the specifications already used for the other screens.

The addition of new functions to an existing program is by far the most difficult task
faced by a programmer. The new section needs to be added without affecting the operation
of the existing program. Thus the new module(s) have to be able to pass parameters to and
receive parameters from the existing program without interfering with its operation.

Implementing and testing a solution
Once changes have been made to a program, the maintenance team needs to implement
and properly test the changed sections of code and the changed program.

Implementation of the changes will normally be made in the same development
environment as the original application. Thus, if a program has been developed using
TUSIL, the modifications will be made in TUSIL, as changes can be made to the old code
or new code can be added to the old.

The original test data sets can be used to check the operation of modified modules.
However, this practice may lead to errors passing through the test process if slight changes
have been made to the specifications. It is a good practice to check all test data items against
the revised program specifications before allowing their use in the testing process.

The rules of testing and evaluation should not be discarded during modification, as any
lapses in documentation of the test process itself may have serious consequences when the
application comes up for review and modification at a later date.

If changes have been made to the user interface as a result of feedback from the user, it
is appropriate for the users to be involved in the evaluation of the new interface before it
is implemented.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

Maintenance is a broad term used to describe any that is put into software
after . Factors that can lead to maintenance include a need to a
bug, improve the of the program, change the way in which the program

, meet new of the or comply with new
regulations. Changes in or may also lead to a need for

in the software.

2 Describe how you could determine the changes to a software system needed by an
organisation.

3 Explain, in your own words, the factors that may lead to a need to change a software
system.

Exercise 7.1

8 Explain why it is important to properly test software after performing any modifications.

9 Describe the types of test that should be performed after software has been modified.
Explain the purpose of each type of test.

Documentation of changes
As seen, documentation forms a very important part of the software development process.
This is especially important during the maintenance stage when different versions of the
same software may be in use. It is a very difficult task to keep track of the changes that have
been made and the software versions that are in use in an organisation. For example, a new
version of the software may be in use in one department on a trial basis, while the rest of
the organisation is still using the earlier version. The process of keeping track of software
versions and their documentation is part of the management processes associated with a
large software installation. Management of software resources is known as configuration
management or CM.

Configuration management consists of a number of processes: configuration planning,
control and management of system change, system building, and the management of
versions and releases of software.

Configuration planning is the process whereby the documents essential for further
development are identified and placed under configuration control. Documents that fall
into this category include specifications, designs, algorithms and code. A further task
undertaken in configuration planning is to assign a unique name to each of the documents
so that they may be identified later on. It might appear that configuration planning is an
isolated activity that is kept for one point in the development process, but it actually takes
place during the whole of the development activity.

220 Heinemann Software Design and Development: HSC Course

Figure 7.4

4 You are in charge of the software maintenance team of a large organisation. Describe how
you would locate the sections of the program that will need to be changed during
maintenance. Write a memo for the other team members, describing the steps you want
them to take in locating the sections of code to be changed.

5 Examine the operation and user interface of a software application in use at your school,
for example a library enquiry system. For this system, report on the ease of use and make
recommendations for any changes.

6 During this course you have written a number of programs. Choose one of these programs
and have a friend use it. From the comments made by your friend, determine the changes
that can be made to the program. Implement the changes and properly document them.

7 Figure 7.4 shows a screen from an interactive tourist guide. The Tourist Information Board
has asked you to redesign the screen to make it more user friendly. One of the problems
noted by the Tourist Information Board is the lack of any navigation tools on the screen.

Sydney Tourist Guide — Accommodation Booking

427 Quay St Sydney ✰✰✰

Rating

67 Arthur Rd Sydney ✰

1 Opera St Sydney ✰✰✰

326 Cameron St Sydney ✰✰✰✰

Please press the button for your choice

Quay Hotel

Regal Motel

Star Lodge

Sun Hotel

221Maintenance of software solutions

Change control is concerned with ensuring that any changes made to the software are
done in a controlled and predictable way. Without any form of control, conflicting changes
could be made by different maintenance teams.

System building involves acquiring the particular software components and assembling
them into a system that meets the required goals. During maintenance, a large number of
these software components will be provided by the pre-existing software system. Others
will need to be written or obtained from another source. System building may also require
that existing components be modified to meet the needs of the user.

The management of versions and releases requires that a suitable system of naming be
devised to distinguish between the different versions and releases of the software. This is
most important if there are to be a number of different releases of the basic software
package to meet the requirements of users in different situations. One of the responsibilities
of the CM team is to determine when a new release or version is to be created.

Source code, macro and script documentation
An important part of the development documentation is the source code and its associated
documentation. The term ‘source code’ is used in its broadest sense to describe any code
that is modifiable, including macros and scripts.

Documentation of the source code should follow the rules already discussed in this
course. That is, the code should contain as much intrinsic documentation as possible (for
example the choice of appropriate identifiers and the use of modularisation) as well as notes
and comments. The code should be written in such a way as to expose the structure of
the process. Descriptions of the process and any accompanying design documentation will
also assist in the maintenance process.

Modification of associated hard copy documentation and online help
Changes to software cannot be made without making the necessary changes to documen-
tation that accompanies the product. The user is entitled to documentation that refers to the
current version of the software being used.This means that the changes made to the software
during maintenance have to be quickly reflected by changes to the documentation.

Maintenance of hard copy documentation presents a greater problem than online
documentation. Online documentation is generally updated at the same time as the changes
are made to the software and distributed electronically over a network or on a medium such
as a CD. With hard copy documentation, the changes have to be made to the hard copy

Configuration
management

Configuration
planning

Control and
management of
system change

System
building

Management of
versions and

releases of software

Figure 7.5 Configuration management consists of a number of
processes that are used to control the changes in a software system.

222 Heinemann Software Design and Development: HSC Course

Exercise 7.2
1 Copy the following passage and complete it by filling in the blanks with the appropriate

terms or phrases.

Management of software changes is known as management.
management consists of four different processes: planning, control and

of system , system and the of versions
and of software. All these processes rely on documents being
identified and placed under control.

2 Explain how the process of configuration management helps with the documentation of
changes to a software system.

3 List the documents that are needed during maintenance. Briefly explain how each of these
documents is used during program modification.

4 Investigate and report on the differences between a version of a program and a release of
a program.

5 Describe the ways in which a programmer can help the process of maintenance when first
creating a software product. Give some examples to support your answer.

6 Describe the ways in which CASE tools can be used to help with the process of
configuration management.

7 List the software applications installed on your school computers that can be used to help
with configuration management and the tasks that each of the applications will perform
in configuration management.

8 Describe the types of change that have to be made to user documentation associated with
software that has been modified. Describe the ways in which these changes can be passed
on to the user.

which is then printed and distributed to the user. The user then has to ensure that the new
documentation is put in the appropriate place in the pre-existing documentation. This
process also puts the onus on the user to remove any outdated sections of the documentation.

It is more prevalent now for hard copy documents to be published in a portable
document format that allows users to read the hard copy online or print the relevant
sections for their use. This ensures that each user has access to the most recent version of
the document.

Use of CASE tools to monitor changes and versions
A number of configuration management tools exist to assist in the process of configuration
management. These tools provide for the CM team to keep track of version histories,
documentation and change by means of integrated databases combined with a means of
document production. CASE tools can also be used to assist in system building by being
able to combine various components into a software solution. Some CASE tools are even
able to specify what components are needed and how they can be combined to create a
working solution.

Application software can also be used in the management of software. Word processors
are used in documentation, databases are used to help manage versions, management
software is used to create schedules and manage the resources needed for maintenance, and
graphics packages are used to assist in providing support for the user.

223Maintenance of software solutions

Review exercises
1 Copy the following passage and complete

it by filling in the blanks with the
appropriate terms or phrases.

Software maintenance is any process that
software

installation. Maintenance should be
directed by the management
team so that it proceeds in a
manner. The of the
organisation and the
determine the changes that are to be
made to the software. These
are conveyed to the
management team who decide when the

should be made.

2 Describe the types of needs of an
organisation that can lead to software
being modified.

3 Explain how proper documentation can
help with the process of software
modification.

4 Choose a software application you have
written and determine suitable changes to
it. Write a set of specifications for the
modifications.

5 Update the user documentation for the
program you chose for question 4 to
reflect the changes that you would make
to the program.

6 Compare two versions of a commercial
application program such as a word
processor. List the differences between the
versions including enhancements that may
have been made to allow it to operate
more efficiently with updated hardware or
operating systems.

Team Activity

Devise an appropriate naming method for
the documents produced during software
development. Your naming system should
allow documents to be added during

maintenance. Choose a program that you
have written and name the documentation
for that application using your naming
method.

224 Heinemann Software Design and Development: HSC Course

• Maintenance is a term used to describe any effort put into software after it has been
implemented.

• A user may, through experience in using the software, find shortcomings in its
operation.

• The user interface may need upgrading to overcome design problems.
• Software may need to be modified to cope with the changed format of input data.
• Expansion of the system may lead to a need for modification of the software.
• Changing needs of the organisation can lead to a need to modify the software.
• Changes in government legislation can lead to a need to change existing software.
• The introduction of new hardware and/or software can bring about a need to change

the existing software.
• Poorly implemented code often has to be modified if the program is to work efficiently.
• The reasons for change must be clearly identified and documented.
• Before changes can be made, the appropriate section of code has to be identified.
• Some changes are as simple as modifying one or two small sections of code; others

require that new modules be written.
• The changes that are made as a result of new needs should be properly documented,

as in the rest of the software development process.
• Changed software should be thoroughly tested before implementation using the

same testing strategies as are applied to new software.
• The management of software resources is known as configuration management.
• Configuration management consists of the planning of configurations, control and

management of all system changes, management of the building of the system and
management of the versions and releases of the software.

• Configuration planning identifies and catalogues those documents essential for
further development of the software.

• Change control is a process whereby all changes to the software are done in a logical
and controlled manner.

• System building is the process of obtaining the necessary software components and
assembling them into a system that meets the organisation’s requirements.

• Version and release management is concerned with the orderly release of the dif-
ferent variations of the software within the system.

• All source code, macros and scripts should contain and be accompanied by the
appropriate documentation.

• Hard copy and online documentation should be updated to reflect the changes made
to the software system.

• A number of CASE tools have been designed to assist with the process of configura-
tion management.

Chapter summary

88Developing a solution
package

cchhaapptteerr

Outcomes
A student:
• explains the interrelationship between hardware and software

(H 1.1)
• differentiates between various methods used to construct

software solutions (H 1.2)
• describes how the major components of a computer system

store and manipulate data (H 1.3)
• identifies and evaluates legal, social and ethical issues in a

number of contexts (H 3.1)
• constructs software solutions that address legal, social and ethical issues

(H 3.2)
• identifies needs to which software solutions are appropriate (H 4.1)
• applies appropriate development methods to solve software problems (H 4.2)
• applies a modular approach to implement well-structured software solutions

and evaluates their effectiveness (H 4.3)
• applies project management techniques to maximise the productivity of the

software development (H 5.1)
• creates and justifies the need for the various types of documentation required

for a software solution (H 5.2)
• selects and applies appropriate software to facilitate the design and

development of software solutions (H 5.3)
• assesses the relationship between the roles of people involved in the software

development cycle (H 6.1)
• communicates the processes involved in a software solution to an

inexperienced user (H 6.2)
• uses a collaborative approach during the software development cycle (H 6.3)
• develops effective user interfaces, in consultation with appropriate people

(H 6.4)

226 Heinemann Software Design and Development: HSC Course

Defining the problem and its solution
• defining the problem

– identification of the problem – idea generation
– communication with others involved in the proposed system

• understanding
– interface design
– communication with others involved in the proposed system
– representing the system using diagrams – selection of appropriate data structures
– applying project management techniques – consideration of all social and ethical issues

• planning and design
– interface design – selection of software environment
– identification of appropriate hardware – selection of appropriate data structures
– production of data dictionary – definition of required validation processes
– definition of files—record layout and creation
– algorithm design – inclusion of standard or common routines
– use of software to document design – identification of appropriate test data
– enabling and incorporating feedback from users at regular intervals
– consideration of all social and ethical issues
– applying project management techniques

Systems implementation
• implementation

– production and maintenance of data dictionary
– inclusion of standard or common routines
– use of software to document design – translating the solution into code
– creating online help – program testing
– reporting on the status of the system at regular intervals
– applying project management techniques
– enabling and incorporating feedback from users at regular intervals
– completing all user documentation for the project
– consideration of all social and ethical issues

• maintenance
– modifying the project to ensure an improved solution

Students learn to:

Students learn about:

• define the problem and investigate alternative approaches to a software solution
• select an appropriate solution
• produce an initial Gantt chart
• use a logbook to document the progress of their project
• document the software solution
• generate a fully documented design for their project after communication with other potential

users
• implement a fully tested and documented software solution in a methodical manner
• use project management techniques to ensure that the software solution is implemented in

an appropriate time frame
• communicate effectively with potential users at all stages of the project to ensure that it

meets their requirements
• ensure that relevant ethical and social issues are addressed appropriately

227Developing a solution package

Developing a solution package
This chapter examines closely the steps required to develop a solution package. We will
work our way through a case study, defining and understanding a problem, going through
the planning and design stages and, finally, implementing the solution. The chapter builds
on the content dealt with in other chapters of the text. It is suggested that you refer to the
relevant chapters as you work through the case study.

Case study
Your client has recently purchased a stationery/office supplies business. The business has
been thriving and continues to do steady business. However, the previous owner refused to
make use of computing technologies in the running of the business. His sole concession to
technology was the use of an old calculator and a very basic electronic typewriter. He also
refused to stock or sell computer consumables such as floppy disks, recordable CDs,
software, printers and printer consumables such as ink cartridges. All paperwork for the
business has been done by hand and all stock and customer records are kept on cards. An
external accounting firm processes all accounts. Twice a month invoice slips are sent to the
accounting company. The accounting company then compiles all sales for each customer
into a single invoice at the end of each month. These invoices, together with preprinted
mailing labels, are then returned to the shop where they are folded and placed into envelopes
for posting. Orders and invoices are processed by hand. Many customers pay by direct
deposit to the company’s account; however, the previous owner relied on printed statements
from his bank, with a three-week time lag causing customers to receive reminder notices for
payments they had already made. He would not avail himself of Internet banking facilities
offered by his bank and there is no EFTPOS or electronic credit card facility in the shop.

Your client wishes to computerise the business. He wants to transfer all stock and
customer details into a database. He has plans to offer online purchasing and also wishes to
install a small network on the premises that can later be used for training purposes. Your
client also wishes to carry products that have not been carried by the previous owner and
will need to add these to his stock database. He wishes to be able to automate the system
as much as possible so that he can concentrate on establishing himself as an Internet service
provider and the training services area of the business. The previous owner, his son in-law
and two female employees currently run the business. In order to keep overheads low, the
new owner and his wife will run the business with the possibility of retaining the two female
employees and the previous owner’s son in-law for three days a week. The previous owner
and his son in-law will facilitate the handover of the business by working with the new
owner for a period of two weeks.

Applying project management techniques
As seen in the Preliminary Course, a project is a specific goal or objective that needs to be
accomplished in a finite time with finite resources. The case study outlined is just that. Its
goal is that, at the end of a finite amount of time, the client’s new business will be
computerised. This has to be completed within a specified budget.

At first the task seems daunting. A careful reading of the requirements reveals a complex
set of interrelated tasks. One of the initial stages of project management is to identify the
various tasks involved and to break the project up accordingly. These tasks are then assigned
to the appropriate team members.

When developing any system solution, a project team is usually put into place. This team
consists of people who have expertise in a variety of areas and is lead by a project manager
who has responsibility for the project as a whole. When putting together the project team,
people are often hired from outside the company on a contractual basis if existing
employees do not hold the required set of skills. For example, a software solution may

228 Heinemann Software Design and Development: HSC Course

Figure 8.1 Outsourcing needs to be done with great caution.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.
Project management involves the creation of a . This team includes a

and a variety of people with skills in desired areas. The has
responsibility for overseeing the entire project. It is the role of the project team to liaise
with the and to gather as much about the client’s requirements
as possible. Quite often various tasks are ; that is, they are given to contractors
outside the company working on the project. This is often done when the company does
not have any employees with a certain set of required .

2 Consider the nature of software development and project management. Discuss the
importance of having a multidisciplinary project team on any given software development
project. In your discussion address the pros and cons of outsourcing.

3 Form a project team for the given case study. You will need to have a minimum of four
people in your team. Assign a role to each team member, for example project manager
and so on. Hold a preliminary planning session in which tasks and long-term goals are
allocated for each team member. Hint: If you find that your team does not have all of the
required skills to complete the system, use outsourcing.

4 Draw an initial Gantt chart for the case study. You do not need to go into great detail at
this stage. Make sure that the Gantt chart shows the major milestones of the project. Your
timeline for the project will be eight weeks from start to finish. Make sure that your chart
takes into account all aspects of the project.

5 Create a form that will help you to gather preliminary information from your client. This
form will need to have areas for all aspects of the project. Use the case study description
above to help you develop the form.

Exercise 8.1

require expertise in a particular programming language that is not one of the mainstream
languages. Some of the work may even be contracted out to other companies, for example
companies that specialise in creating code. This is called outsourcing. Outsourcing needs to
be handled very carefully (see Figure 8.1).

This chapter examines the steps necessary to produce a solution to the problem outlined
in the case study. The scope of the case study could be the topic of an entire text on its own.
The development of the database part of the solution will be covered here in detail; the
other elements of the solution will be commented on where appropriate in order to
maintain the context of the database solution. We will work through the solution as though
we were one of a group of teams working on this solution. Our responsibility will be to
develop the databases and create a web interface to them. As a team within the project
team, we will need to liaise with other teams, our project manager and at times with the
client directly.

229Developing a solution package

Defining the problem and its solution
Defining the problem and its solution consists of three main tasks: defining the problem,
understanding the problem and planning and designing the solution. Each of these tasks
itself consists of a range of sub-tasks. These tasks will be looked at in relation to the case
study. If the crucial step of defining the problem is missed out, the entire project will suffer.

Figure 8.2 Problem identification is crucial.

Defining the problem
Defining the problem typically consists of three stages: identification of the problem, ideas
generation, and communication with others involved in the proposed system. It is important
to remember that these stages are not always clearly separated from each other and are not
always completed in this order. There is overlap and quite often ideas generation is started
well before the problem is completely defined. Also, identification of the problem is often
done in consultation with the client and this can be seen as being a part of the third stage
(communication with others involved in the proposed system).

Identification of the problem
This first stage involves looking closely at the client requirements and the existing system.

From the case study we see that the current system is completely manual; that is, there
is no use of computers or computer-based technologies to aid in the running and tracking
of accounts and stock levels. All transactions are processed by hand and this creates a variety
of problems. For example, there is the generation of reminder notices to customers who
have already paid their bills by direct deposit to the company’s bank account. The system
also requires manual updating of the stock database. All stocktaking tasks are also done
manually and are therefore quite time consuming.There is no facility for customers to check
the availability of products other than by visiting the shop or phoning in; these are time-
consuming tasks for both the customer and the business. Phone orders are handwritten and
in many cases duplicates are made. One copy is for filing and the second is used to fill and
process the order. Depending on the nature of the order and stock availability, this can lead
to the generation of further paperwork in triplicate.

Your client wishes to streamline the business. He has the following requirements:
• The stock database is to be updated automatically whenever sales are made and new

stock is purchased.

230 Heinemann Software Design and Development: HSC Course

• Stocktake reports are to be generated at regular intervals.
• There needs to be a facility to track customer purchases to identify purchasing trends.

That is, if customer X buys a certain quantity of a product at regular intervals, stock can
be ordered to coincide with these intervals, thus reducing the time stock has to be kept
on hand.

• Products not previously sold by the business are to be added to the database.
• A website with online purchasing facility is to be managed in-house and not by an Inter-

net service provider (ISP).
• The existing card database of stock and customer records is to be computerised.
• Accounts are to be handled in-house; that is, they will no longer be done by the external

accounting firm.
• A small local area network, a server and five workstations are needed.
• A facility is needed to calculate discounts automatically for individual customers based

on a variety of factors such as quantity ordered, type of customer, or historical factors (e.g.
this customer always receives a 10% discount; this one always receives a 5% discount).
You will notice from the list that the client has specified relatively generic wishes. It is

up to you and your project team to analyse these requirements in order to work them into
the most suitable solution for your client. You will need to examine this list carefully to see
where the solution to one requirement can be used to solve a number of the problems
presented. For example, the database that is to be created for the business can be used to
generate orders, invoices, stock reports and so on. It can also be linked to the website, thus
solving a number of problems with a single solution.

Simply stated, the problem presented is to convert the current manual system to a
computerised one, and in the process to add to the system those things that your client has
identified as having been lacking to date.

Ideas generation
The next stage of the development cycle is to analyse the problem more closely and to
generate ideas as to possible solutions. At this stage a number of solutions need to be put
forward for consideration. These are then worked into a feasibility study that is presented
to the client. The feasibility study will outline the current system and at least three possible
solutions. The feasibility study should identify the pros and cons of each solution and,
finally, identify a single solution as the recommended one.

Having examined the client’s list of requirements, it is apparent that the best starting
point for a solution to the problems is the creation of the small local area network (LAN),
as this is where the databases will be housed and this is also the most logical place for the
website to be housed since the client wants it to be done in-house.

The client has experience with Windows/Intel-based computing systems and has
requested that any solutions be based on this platform. There are currently three
alternatives for setting up a LAN. Apart from the many personal networking systems and
other proprietary systems, these are Novell, Windows NT and Linux. There are advantages
and disadvantages in using each of these, which need to be researched in order to give the
client the best chance of making an informed choice.

The LAN is only the beginning of the solution. For the LAN to be of any use, there needs
to be considerable thought put into the inputs, processes and outputs that will be involved
in the system. Careful examination of the client’s requirements reveals a need for some
specialised software. The client will need an accounting package, a database management
system and web-serving software. There is also a need for word-processing software and
perhaps a spreadsheet facility in order to model business strategies and so on. The client has
expressed an interest in the use of MYOB (Mind Your Own Business) for account-keeping
purposes. The product catalogue from the supply company is available on CD-ROM as an
Access database. Word-processing and desktop-publishing software can also be used for
correspondence and for the creation of flyers for advertising.

231Developing a solution package

Communication with others involved in the proposed system
An indispensable element of any solution package development is communication with
others involved in the proposed system. This is a recurring element at many stages of the
development process and is essential if the final product is going to be useful to the client.
In the initial stages of the development process, it is common for the client and the project
team to have regular meetings and conversations. These will occur before even one line of
coding is attempted. It is very costly to rewrite code or to throw out code and start again.
Time spent in consultation with the client and as many users of the new system as possible
will make the later stages much more productive and cost effective.

In an initial meeting with the client, various notes were made, including a rough
diagrammatic representation of the existing system. Information was gathered on how stock
is ordered, how orders are processed and how accounts are organised. The following has
been adapted from the initial handwritten notes.

Stock for shop (this may be to replenish supplies or to fill an order) Note: The
current system uses sales tax but this will need to be changed to accommodate the
changeover to the GST (Goods and Services Tax).

1. Stock arrives
2. Stock is recorded on cards
3. Locate card
4. Record quantity in, quantity out (if stock for specific order), quantity remaining in stock
5. Record cost price
6. Add sales tax (22%)
7. Add mark up (3% to 100% depending on a number of factors)
8. Remove sales tax for ex tax clients
9. Tick item off invoice

10. Price tag each item
11. Locate storage area and store item
12. Re-price old stock with new price if applicable
Cash sale process

1. Customer requests item
2. Check stock
3. If item is at hand sell to customer
4. If item is not in stock:
5. Locate cheapest supplier by checking catalogues and files
6. Phone supplier and place order
7. Item delivered to shop (or direct to customer for large orders)
8. Sell item to customer
9. Process invoice from supplier

10. Pay supplier
Note: The cash register records only whether an item is furniture, printing, photo-
copying or stationery. Details of items sold for stock tracking must be done manually.

These handwritten notes need to be converted into dataflow diagrams, IPO charts and
algorithms.

Through further communication with the client, we discover that he wants to use
Windows NT as his network server. He has had some experience with it in the past and
would like to stay with a system that he is familiar with. In addition, he indicates that he
wants to use Access as the database software, for similar reasons. It is convenient that the
product catalogue is available in Access.

232 Heinemann Software Design and Development: HSC Course

• Back orders etc.

a Self delivery
3 copies kept
together

b courier delivery
only customer copy
sent (NB courier
returns customer
signed copies)

Place order (handwritten order)

Stock available

No

Find cheapest supplier

Place order

Notify customer re delivery

File supplier order
File customer order

Stock arrives

Locate customer order and
supplier order

Confirm delivery of all items*

Create order (physically
locate items, pack, etc.)

Type invoice (triplicate)

Delivery

Yes

Copies filed

ACCOUNT SALE

Calculate
mark-up 100%
if low turnover

Turnover high/low
Availability easy/hard
Discount from supplier

• Twice a month invoice slips go out to external
 accounting company.

• At the end of each month all sales are
 compiled into single invoice.

• Returned to shop to be posted out.

• External accounting company generates
 mailing labels.

In stock Supply to customer

Update stock list

Not currently done

Ring binder books
Manual search for Item,
Code, Name and price

Phone supplier stock?

CASH SALE
Item Inquiry

Check stock

Not in stock

Locate cheapest
supplier

Item delivered to shop or
customer (for large orders)

• Invoice from supplier
NB: Details of cash sales not kept. Low stock is determined by customer enquiry.
• Register shows only furniture, printing, photocopying, stationery.

Cost $10.00 +
Tax $2.20
= $12.20 +
100% m.u.= $24.40
= $19.03

STOCK FOR SHOP
Stock in

Record on card

Price tag each item

Locate storage area

Store items

Retag old stock
with new price

Locate card

Quantity in,
out &leftover

Cash price

Add sales tax 22%

Mark up added (35–70%)

Remove sales tax for
 ex-tax customers

Tick off invoice

Figure 8.3 Dataflow diagram made from handwritten notes.

233Developing a solution package

Understanding the problem
Having defined the problem, it now needs to be examined in greater detail. Preliminary
decisions need to be made about aspects of the software such as interface design, diagram-
matic representation of the system, selection of appropriate data structures, project manage-
ment techniques and consideration of all social and ethical issues.

Interface design
At this stage of the development, it is sufficient to consider only whether the user interface
is to be primarily text oriented or graphical. This will be influenced by the type of software
that is to be used and by the preferences of the client. The client wants to create a web
presence. It would be wise to use the web interface for most of the interaction with the
system. This is achievable for interaction with the databases, and searching, updating and
ordering can all be achieved through a web interface. The accounting package comes with
a pre-defined user interface.

Interface design is covered in more detail later in this chapter when the design of the
actual webpages is discussed.

Communication with others involved in the proposed system
As stated earlier, communication with others involved in the proposed system is crucial. At
this stage it will involve the gathering of detailed information about the current system. This
information will be used in the next stage to diagrammatically represent the systems both
old and new. In order to gather this information, a variety of techniques is used, including
the use of interviews and questionnaires. Where appropriate, a member of the project team
may be assigned to spend some time in the business observing the existing system.

Representing the system using diagrams
Having collected data on the existing system and discussed the client’s requirements of the
new system, it is time to put this information together in a meaningful and useful way. One
way to help understand the existing and new systems is to represent them diagrammatically.

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.
The three stages of defining the problem are , and .
These are broken down into sub-stages including , and

. The separation into these stages is usually artificial and there is often
between the various stages. It is during the problem definition stage that

information is gathered about the . This involves several with the
client and all of the system.

Use the notes in Figure 8.3 to complete the following exercises.

2 From the notes create a data flow diagram for the purchase of items by a customer who
has an existing account with the company.

3 Create a data flow diagram that shows how new stock is purchased and added to the
warehouse.

4 Create a data flow diagram that describes the trading stock system. You will need to
include a facility to alert the owner when certain stock is low and needs replenishing.

5 From the information gathered so far, create a requirements definition for your client.

Exercise 8.2

234 Heinemann Software Design and Development: HSC Course

Table 8.1 An IPO chart

Figure 8.4 Flowchart describing an account sale.

Customer details Order form completed by customer Updated database entry

Order details Customer requirements entered Completed order ready for delivery

Order recorded and passed on
to despatch

Stock database adjusted

Input Process Output

No

No

Yes

Yes

START

END

Stock?

Stock
arrived?

Order placed

Create order
(physically locate items
and put order together)

Type invoice
(triplicate)

Deliver order

File
paperwork

Place order

Notify customer
re: delivery

Wait for
stock

File customer &
supplier orders

Locate customer &
supplier orders

Find cheapest
supplier

This can be achieved in a number of
ways including data flow diagrams, flow-
charts, input/output charts and algo-
rithms. An example of an input/ output
chart for this solution is shown in Table
8.1.

Algorithms are generated from the
handwritten notes. The following simple
algorithm is for a cash sale. The under-
lined parts of the algorithm indicate
subroutines that are described in other
algorithms.
BEGIN Cash sale

Customer enquiry

Check stock

WHILE item not in stock

purchase stock

ENDWHILE

Sell item to customer

Record sale

Update inventory

END Cash sale

235Developing a solution package

As well as gathering information on the workings of the current system, the team has
collected a variety of forms, catalogues and cards.These will be examined closely as they will
influence the decisions regarding the fields required in the database. Figure 8.5 shows a
stock record card for the item Blu-Tack. Notice the markup (+ 70%) written next to the
‘SELL’ heading.

Another of the forms used in the shop is shown in Figure 8.6. This form is used on a
daily basis to keep track of items that are sold as stock is becoming low.

ITEMS TO BE ORDERED FOR STOCK

Item Balance Actioned

Date: Initials:

Figure 8.6 Form used to replenish stock.

Figure 8.7 Example of a customer record card.

Figure 8.5 A sample stock record card.

 SOLICITORS
 LEVEL 1, SUITE 4
 CAMPBELLTOWN

 PH:
 FAX:

Mr. Paul
 Kelly

MEEH 01

* Only Tudor Window Envelopes *
(PO Box)

2/99. 3230 Flat File $1.10 –107

–10%

'Supply Reflex A4 only' $6.95

 7.45 NET

(11/96)

CANON NP 6030
12/97 11/97

129.90 NET

To pay all a/cs
 Narellan.

Blu-Tack
Uhu U-tac 75 g.

 DATE SUPPLIER INV. No. IN OUT COST S/TAX TOTAL
SELL + 70%
EX STI

4/6/98 Rowco 286587 25 1.14 .25 1.39 2.35 2.60

Finally, customer details are kept on cards
in two rolodexes. These cards contain such
information as the customer’s name, address
and phone and fax numbers and the name of
contact people if the customer is a business.
You will notice that the customer record card
in Figure 8.7 has additional information hand-
written on it. These details include the types
of things the customer purchases regularly
and details of special discounts. This card
shows that the customer, a solicitor, uses flat
files, uses only Reflex A4 paper, has a Canon
NP6030 and usually receives a 10% discount.

236 Heinemann Software Design and Development: HSC Course

Selection of appropriate data structures
When writing the algorithms for our solution, we need to consider the data structures that
will be appropriate. Since we are creating two databases for this project, we will need to
consider using structured data types rather than simple data structures. Our databases will
consist of customer records, as well as records relating to stock. A number of files will be
used and they will need to be linked, so a relational database will be used. The product
catalogue is in MS Access form, so in order to minimise compatibility problems and to
follow the principle of reuse of existing code, we will use MS Access to create the database
for this client. The creators of the database management system (DBMS) will have made
the bulk of the decisions about data structures. For our purposes, the decisions to be made
will be the field types and their interrelationships. These decisions will be informed largely
by the nature of the information contained on the examples collected in initial meetings, as
well as through consultation with the client.

Consideration of all social and ethical issues
Software is built for people’s use. Without users, software becomes a meaningless collection of
bits.When embarking on a software development project, consideration needs to be given to the
social and ethical issues that relate to both the project development and the finished product.

The relevant issues here include ease of use, accessibility of technical language, copyright
and ergonomics.

Ease of use
Ease of use involves the ergonomics and intuitiveness of the software interface. It should be
the goal of every user interface designer to make the interface almost disappear, allowing the
users to concentrate on their work. Software has to be easy to use. It doesn’t matter how
fancy the programming is, if the program is difficult to use or doesn’t take into account the
users’ needs it will not fulfil its purpose. When developing software time must be invested
in learning the requirements of the software and designing a user interface that is under-
standable by the potential user. A great deal of effort is required to create an environment
in which tasks are carried out effortlessly and users are ‘in the flow’.

Accessibility of technical language
When designing the user interface, the use of technical language should be avoided as much
as possible. Jargon or language that is too technical is off-putting to the user and can get in
the way of what the software is actually trying to achieve. Where technical language is
required, it should be accompanied by a brief explanation.

Copyright
Piracy or the illegal use of software is one of the most common computer crimes. Copyright
laws cover most software. Every effort must be made to gain the permission of the copyright
holder for any material that is used in your software. This includes all graphics, text and
modules that are used. It is estimated that software piracy costs the Australian computer
industry $400 million per year.

Ergonomics
Since software is the link between the computer and the operator, it should be
ergonomically designed to make the operator feel relaxed and comfortable. In designing the
webpages and screens for this system, every effort should be made to ensure that the text
is easy to read and that navigational elements are in consistent places. Pages and screen
transitions should load quickly in order to minimise the amount of time that the user has
to wait. For example, the choice of text and background colours can mean the difference
between customers persisting and actually placing orders and customers moving away from
your website to other more visually pleasant sites. A trend in webpages for some time was
to have red text on a black background. This combination is actually quite hard on the eyes
and web developers have moved to a more natural white background with black text. Good
use of white space also helps to enhance the legibility of the page. This mimics the printed
text which is easier to read than text on a computer screen.

237Developing a solution package

Planning and design
Having identified and understood the problem, it is now time to begin the planning and
design stage of the development cycle. It is at this stage that ideas are either kept or
discarded. Major decisions have been made and nothing new is added to the specifications
of the solution. (In other words, no major changes are made. It is impossible to carry
through any project without making minor adjustments since it is not possible to anticipate
every contingency.)

Interface design
Interface design decisions for the accounting package will be limited to what is available in
MYOB. Major decisions regarding interface design will be required for the web interface.
The level of interaction with the databases will govern the decisions, in part. The client is
unable, at present, to spend the money required to build the software from scratch.
Typically, this is in the range of $50 000 and upwards depending on the scope of the
development. Some basic guidelines will be adhered to. These include the principle of a
minimum number of mouse clicks to find information, mirroring hard copy forms with
those used in the software and, as part of that, ensuring that the tabbing order of fields

1 Copy the following passage and complete it by filling in the blanks with the appropriate
terms or phrases.

To understand the problem we need to examine it in greater detail. Steps covered at this
stage include design, of the system, selection of
appropriate , project management and consideration of all

and ethical issues. When planning the user interface, of use is
critical. Communication with others involved in the system is done regularly
and includes as many of the users as possible. Diagrammatic representation of the system
includes the generation of , algorithms, charts, data

diagrams and flowcharts. Decisions need to be made regarding the
. These structures need to be appropriate to the solution.

Consideration of all social and ethical issues consists of examining of use,
accessibility of language, , and
Ergonomics considers the between the computer and the operator.

2 Table 8.1 is a simplified IPO chart for the case study. Create a detailed IPO chart for the
solution. You may need to make multiple charts for the various components of the
solution.

3 On p. 231 is an algorithm for a cash sale. Write the algorithms for the subroutines as in-
dicated by the underlined elements in the main algorithm.

4 Modify the algorithm given in figure 8.4 to calculate prices using 10% GST instead of sales
tax.

5 Using the forms given in figures 8.5, 8.6 and 8.7 as your starting point, develop several
possible database entry forms. Do this using pen and paper, not your computer. Discuss
your designs with other class members and select the most appropriate one to be coded
into your database.

6 Create some preliminary screen layouts for the final solution. These should not be too
polished, as they will be modified as you consult with others on their effectiveness in
relation to the solution. If you create these on computer, print them out and encourage
others to comment on them and mark them up with possible alterations. Remember to
consider ease of use in your designs.

Exercise 8.3

238 Heinemann Software Design and Development: HSC Course

follows naturally from the printed form to the screen. This latter principle means that the
operator does not have to look away from the data entry forms to the screens in order to
confirm that information is going into the correct fields on the screen. The operator should
be able to press ‘tab’ at the completion of each field entry confident that the next field on
screen will match exactly the next screen on the data entry form. (In the new system, the
use of data entry forms will be limited since barcode readers will be used to enter stock and
record sales.)

Careful thought must also be given to the consistent usage of navigation elements, fonts
and styles throughout the database and the webpages linked to it, and the consistent
placement of information on the screen.

Selection of software environment
Selection of the software environment depends on a number of factors, including the
particular expertise of the programming team and where and how the finished product will
be used. Programming environments range from a collection of text editors, linkers and
compilers through to a large collection of highly integrated tools, each accessed via a
uniform interface. The latter greatly assists in the development and maintenance of
software. Unix is an example of a collection of tools with disparate interfaces; Microsoft
Visual C++ represents a large and elaborate collection of software development tools with
a seamless interface.

As stated earlier, the client wishes to use Windows NT for his networking and MS Access
for the databases. The programming environment will vary from client to client depending
on a number of factors including customer and system requirements, the availability of
existing software that can be adapted and the particular areas of expertise held by the
programmers and systems developers. The software development environment for our team
will include MS Access, text editors, graphics software, programming software (to create
CGI (common gateway interface) scripts etc.) and WYSIWYG HTML editors.

Identification of appropriate hardware
Identification of appropriate hardware needs to be carried out at a number of levels. For
example, the client’s requirements will mean the purchase of a network server, a web server,
modems, hubs, a router, four to five workstations, a barcode scanner, a scanner, a colour
printer able to print up to poster size, and interfaces for the EFTPOS and electronic credit
card systems.

The team responsible for the creation of the network will identify the bulk of these
requirements. Our team, in charge of the databases and webpages, will need to com-
municate the minimum hardware requirements to the networking team in order for the
database services to run smoothly. These decisions will also be constrained by the budget set
aside for the purchase of the hardware. It is pointless to plan a $200 000 network if only
$30 000 has been set aside.

A diagram of the office and warehouse floor indicating the placement of hardware items
will assist in the decision-making process. It will help to locate where items need to be
located physically and to determine, for example, such things as the number of barcode
readers required. Figure 8.8 shows a possible layout of the shop and warehouse. It is not to
scale and is indicative only.

We would need at least two barcode readers, one at the sales counter and one at the
workstation in the warehouse area. The latter would be used primarily for recording
incoming stock, while the other would be used to process sales and to keep the stock level
up-to-date.

Selection of appropriate data structures
In writing the algorithms for our solution, we need to consider the data structures that will
be appropriate. Since we are creating databases for this project, we will need to consider
using structured data types rather than simple data structures. Our databases will consist of

239

1 The data dictionary in Table 8.2 is quite generic. What fields would need to be added in
order to more closely represent the type of customer details kept by your client? Hint: look
at the customer record cards in Figure 8.6.

2 Create the data dictionaries required for the two databases.

3 From the specified hardware requirements, calculate an approximate costing for the hard-
ware. Use current PC magazines for approximate prices.

4 Using Figure 8.8 as your starting point, draw a plan of the warehouse showing where
the computer terminals and servers will go. Also show items such as telecommunications

Exercise 8.4

Field Type Size Range Example

Surname String Up to 20 characters A to zzzzzzz … Smith

First_name String Up to 15 characters A to zzzzzzz … John

Street_address String Up to 35 characters 0 to zzzzzzz … 1 First Avenue

Suburb String Up to 20 characters A to zzzzzzz … Fairfield

Postcode String 4 numeric characters 0000 to 9999 2165

Phone_no. String 10 numeric characters 0000000000 to 0296574556
9999999999

Table 8.2 Data dictionary—customer details

Stock

Stock

Stock

Stock

Stock

Stock

StockShop floor
display area

Entrance

Doorway

Doorway
Bench

Workstations

Stairs

Server

Office area

Sales terminal

Tearoom,
toilets,

extra exit

D
el

iv
er

ie
s

Figure 8.8 Shop and warehouse layout.

customer records and records relating to stock. We will need to use a number of files that
will need to be linked, so a relational database will be used. As the client wishes to minimise
compatibility issues with the catalogue database supplied by the wholesaler, we will use MS
Access to create the database. The creators of the DBMS will have made the bulk of the
decisions about data structures. For our purposes, the decisions to be made will be the field
types as we create the database files.

Production of a data dictionary
Data dictionaries describing the data used in the program need to be created. Table 8.2 is a
possible data dictionary for customer details. We would also need to create a data dictionary
for the stock database. This would show fields such as item number, item description, cost
price, sales tax, mark-up, quantity in stock and so on.

240 Heinemann Software Design and Development: HSC Course

lines. Take into account such things as workflow and display areas for the shopfront part
of the business. Remember that the owner also wishes to include a training area in the
future. He intends to use the area above the showroom for this.

Definition of required validation processes
In order for our solution to be robust and operate efficiently, we need to include validation
processes. This can include checking that data is entered into cells where there must be data
and that data is of the correct type, meaning that it falls within a predetermined range of
acceptable data. For our solution, the developers of the DBMS and of the accounting
package have done much of this for us. We still need to ensure that data entered into the
forms on our webpages is valid.

We need to validate user input. For example, when placing an order we need to be able
to validate that each field has input entered that falls within a certain range. Data entered
into the telephone number field can only be eight digits long; characters other than numbers
are not allowed.

The server can validate our forms or the user’s computer can carry it out. The former is
called server-side validation, while the latter is called client-side validation. In server-side
validation the form is submitted to the server, checked for errors and then returned to the
user’s computer to be resubmitted if errors are found. Client-side validation processes the
form on the user’s machine, prompting the user to correct any errors before the form is
submitted to the server. This second method is more desirable, as it can give the user
immediate feedback and reduces network traffic. We will use JavaScript to achieve client-
side validation.

Definition of files—record layout and creation
Definition of the files involves looking at the type of data to be stored. We need to
determine what files (often called tables in some DBMS packages) will be needed in the
database. These files will hold unique data and will be linked to each other by the use of
common fields. The database provided by the wholesaler has already done this. Figure 8.8
shows the tables in the product database.

Algorithm design
We need to design the algorithms that will later be converted to code. A number of
algorithms will be required. We will need algorithms for the different types of sales that are

Figure 8.9 Tables in the product database.

241Developing a solution package

processed, for example cash sales, account sales and sales involving back orders. We will also
need algorithms for updating the stock database and for adding new customers to the
customer database. These are relatively high-level algorithms and will consist of smaller
algorithms, such as calculating the total cost of an order (which will depend on the type of
sale and so on). For example, how do we calculate the cost of an order for a tax-exempt
customer who usually receives a 10% discount on paper products and a 20% discount on
other stationery? The following short algorithm determines the taxable status of a customer.
BEGIN Taxable_Customer
READ Customer ID
READ Field Taxable

WHILE Field Taxable = true
ADD 22% sales tax
ENDWHILE
Do not add 22% sales tax

END Taxable_Customer

Inclusion of standard or common routines
One advantage of the structured approach to software development is that problems are
broken down into easily manageable parts. The parts are solved individually and modules
are created that can be reused in future programs. The developers need to identify any
existing code that may be used, thereby saving the customer time and money. This
methodology also lends itself to the use of standard or common routines. For example, an
algorithm for calculating the cost of an order to a customer uses common routines that have
been developed and refined elsewhere. These can be adapted for this solution. As shown in
Figure 8.9, if we are to reuse code then the appropriate modules must be used.

Figure 8.9 Appropriate modules must be selected when reusing code.

Use of software to document design
A vast amount of documentation will be generated throughout the system development
cycle. The documentation will generally be of two types: product documentation and
process documentation. The process documentation will mostly become outdated. The
product documentation will take one of two forms: system documentation and user
documentation. There are various software packages available that allow us to create this
documentation relatively easily. The simplest of these is the integrated packages of word
processor, spreadsheet, database and drawing/painting programs. These can be used to
generate most types of documentation. There are, however, many purpose-built packages
available for various aspects of documenting the design process. Microsoft Project is used to
track the design process, flowcharting software can be used to create flowcharts, and
presentation software can be used to prepare briefing sessions for members of the project
team and other stakeholders such as senior management and the client.

242 Heinemann Software Design and Development: HSC Course

Table 8.3 Sample test data for discounts

Discount Expected output

0% Acceptable

9% Invalid input—not 0%, 10%, 15% or 20%

10% Acceptable

11% Invalid input—not 0%, 10%, 15% or 20%

14% Invalid input—not 0%, 10%, 15% or 20%

15% Acceptable

16% Invalid input—not 0%, 10%, 15% or 20%

19% Invalid input—not 0%, 10%, 15% or 20%

20% Acceptable

21% Invalid input—not 0%, 10%, 15% or 20%

100% Invalid input—not 0%, 10%, 15% or 20%

−50% Invalid input—not 0%, 10%, 15% or 20%

Identification of appropriate test data
In order to create algorithms that actually do what they are designed to do, we need to
identify appropriate test data that can be processed by the algorithms. This stage is referred
to as desk checking, as it is performed using pencil and paper before any code is generated.
We need to identify appropriate test data for each of our algorithms. The test data should
test all parts of the program, testing each of the paths that can be taken during execution
and each side of any boundary value as well as the value itself. For example, our client’s
customers can receive a variety of discount values. Some receive 10%, some 15% and some
20%. There are also customers who receive no discount. Our test data would have to test
these values and their boundaries. We would need to ensure that negative values, −5%, and
high values, >20%, are not accepted as valid inputs. Table 8.3 shows some sample test data.

Enabling and incorporating feedback from users at regular intervals
As algorithms are developed and modules are completed, they should be presented to all
users of the new system in order to gain feedback and to allow appropriate modifications to
be made. This is a most important step and it is crucial that it is done at regular intervals, as
it is easier and cheaper to rewrite a module rather than an entire software package.

Applying project management techniques
Applying project management techniques involves creating a project team and assigning
tasks. Other things that need to be considered are time-lines and resources. We need to
consider the resources we have available to us. This includes physical resources such as
hardware and software as well as non-physical resources such as time. It is the task of the
project manager to ensure that all tasks are completed within specified deadlines, using only
the resources allocated. The project manager will have a variety of project management
resources available. These include Gantt charts, PERT charts and so on. Many of these
resources are available in software packages such as Microsoft Project. Figure 8.10 shows a
Gantt chart created using MS Project.

It is essential that the project manager ensure that all team members keep logs and
document everything they do. This is most important, as over the life of the project team
members will leave, for promotions or career changes, and new team members will come in.
The use of logs and documentation will enable the new team members to quickly familiarise
themselves with the project.

243Developing a solution package

Figure 8.10 Gantt chart.

1 Create the Gantt chart for this case study project. If you have access to project software,
use it; otherwise use pen and graphing paper. Refer back to the Gantt chart that you
created for question 4 in exercise 8.1. The Gantt chart for this exercise should be quite
detailed. You will need to show all milestones, as well as resources required and when they
will be available.

2 Create all of the algorithms required for this project. You may represent these as
pseudocode or as flowcharts.

3 Create sets of test data to thoroughly test all the algorithms.

4 Discuss the use of a variety of software packages to document the development process.

5 Select a software package that will help you to document the development process. Justify
your choice.

Exercise 8.5

Systems implementation
It is at this stage that the actual system is created.This involves the conversion of algorithms
into code, the documentation of the system and the conversion from the existing system to
the new one. The process consists of two main tasks: implementation and maintenance.
These are in turn broken down into sub-tasks. This section looks at each of these as they
relate to our case study.

Implementation
Having completed the analysis and design stages of the software development cycle, we are
now ready to enter the implementation stage. In this stage we turn algorithms into code. We
actually create the modules using our chosen programming language. We then test each
module, create the relevant documentation and, finally, put the system together and get it
running. In this case study the modules that our team is creating are the two databases and
the webpages. Once the system is in place and performing as per the specifications, the only
thing remaining is to perform regular maintenance on the system. This includes testing and
modifying the software as required.

244 Heinemann Software Design and Development: HSC Course

Figure 8.11 Preliminary design for entry page.

Production and maintenance of data dictionary
The data dictionaries are created at this stage and they need to be kept up-to-date with any
changes to the type of data that will be used in the program.

Use of software to document design
As mentioned earlier, there are many software packages available to assist in the docu-
mentation of the design process. Most of the tools that are available to software developers
or project managers belong to one of five categories.
• Project management tools such as Microsoft Project help a team to estimate, plan and

track schedules, resources, effort and costs.
• Analysis and design tools assist in the documentation, analysis and management of

requirements or in the creation of design models.
• Coding tools include code generators and reformatters and code analysis and reverse

engineering tools.
• Quality improvement tools include test planning and execution tools and static and run-

time code analysers.
• Configuration management tools allow you to track changes and defects, to control

access to files and to build a product from its components.
These tools help to save time and reduce errors by automating a part of the development

and management process. An important thing to remember is that these tools only help to
implement processes; they are not a replacement for having established processes.

Other specialised software tools that help with this task and with the task of writing
code are called CASE tools. The acronym ‘CASE’ stands for ‘computer-aided software
engineering’. CASE tools are used predominantly for systems analysis and design. For a
more thorough explanation of CASE tools, see Chapter 2.

Translating the solution into code
Once we have designed the solution fully and all desk checking is complete, it is time to
begin generating code for the implementation of the solution. The coding of the product
catalogue has been completed. It is contained in the database supplied by the wholesaler.
The database contains product names and numbers and needs to have added to it other
information such as price, mark-up, GST and so on. The client database needs to be created
and work needs to begin on creating the webpages.

For the webpages, we need a static
entry page. Figure 8.11 shows a prelimin-
ary design for the entry page. This page
contains general information such as the
company name and address. It will have
links to other pages such as help pages,
search pages and ordering information
pages.

As most of the customer interaction
will involve searching for specific items,
most of the pages will be created
automatically by our database. Templates
only will be required for these pages as
content will be drawn from the database
and inserted in the appropriate sections
of the templates.

245Developing a solution package

Creating online help
In order to make the customers’ experience as pleasant as possible, we will add some online
help to our web pages. This will take a number of forms. One of these will be to have a help
section for our website. The customer can click on ‘help’ and will be taken to a series of
pages that explain in simple terms how the site works, what processes are required to place
an order, and with time a collection of frequently asked questions with their answers.
Another way of incorporating online help in webpages is to create JavaScript rollovers.
When the user’s mouse rolls over a certain element on the screen a small help message will
appear telling the user what that element does. For example, the navigation buttons will
display a short message telling users what they will be taken to if they click on that button.

Program testing
Program testing is one of the most important steps in any software development. If you spend
thousands or hundreds of thousands of dollars developing a piece of software, you want to be
sure that it works according to the original requirements specification. In order to minimise
the amount of recoding required, the software package is broken down into smaller modules.
As each module is completed, it is tested. Stubs, small pieces of code that take the place of
modules yet to be coded, are used to test each completed module. Once we have created the
databases and the webpages, as many people as possible from as many different disciplines as
possible need to test them.

Reporting on the status of the system at regular intervals
An aspect of good project management is to ensure that there is reporting on the status of
the system at regular intervals. This should not be allowed to happen in an ad-hoc fashion.
Regular meeting times should be scheduled at the outset of the project. These meetings
should be organised so as to coincide with imminent milestones in the project. That is, the
meetings should occur at or before a critical time such as before the purchase of major
equipment. There should be a meeting to ensure that the correct hardware has been
specified. It would be pointless to order the hardware and then hold a meeting to determine
whether the appropriate hardware has been ordered. These regular reporting sessions are
designed to ensure that there are no ‘surprises’. The time-line of this project is eight weeks.
Over this period of time, there should be a report at the very least at the end of each week.
This will ensure that the project remains on track and that any potential problems can be
anticipated and acted upon.

Completing all user documentation for the project
Having been coded and tested, the modules need to be combined into the final system. An
important part of this process is the completion of all user documentation for the project.

User documentation can include user manuals, installer manuals and other types of help
manuals and documentation that relate to the software. User manuals are usually written
after the software is complete and the focus is to show the end user how to use the program.
Installer manuals are written chiefly for systems administrators and will guide these people
through the installation process. This may include instructions on how to load the software
onto stand-alone machines, network servers and networked workstations. Other types of
manuals may include the internal documentation in the software itself. This is for use by
programmers who may need to debug or rewrite the software, and is usually in the form of
comments throughout the code of the program. The computer ignores these comments as
they are intended to be read by humans. Special characters that tell the computer to ignore
them usually precede the comments. For example, in Java any such comments are preceded
by the hash symbol (#). In the following two lines of Java code, the first line is the comment
and the second is the code that is executed.
Get the date

chomp ($date = ’$DATE’);

246 Heinemann Software Design and Development: HSC Course

Systems documentation includes documents such as algorithms and data flow diagrams
that show how the overall system works. The purpose of systems documentation is to pro-
vide a detailed description of the system and to provide information that will assist with the
maintenance of the system.

Completing full program and systems testing
On completion of all of the system components, they need to be brought together. Each
module of the system has been tested during its development, and it is now time to bring
all the modules together and test the system in its entirety.

Once the system has been tested, it is time to put it into place. There are a number of
conversion options—converting from the existing system to the new one—available to us.
These are phased conversion, direct conversion, pilot conversion and parallel conversion.

In phased conversion both systems are run simultaneously. All operations are carried out
in both systems. This allows further testing of the new system using a full set of data under
realistic conditions.A disadvantage of this type of conversion is that the workload is doubled
as all processes are carried out in both systems.

In direct cut-over the old system is taken off line and the new system is put in its place.
All data needs to be converted for use with the new system. Staff need to be trained in the
use of the new system. A disadvantage of direct conversion is that if the new system fails
the old system is not available as a backup.

Pilot conversion involves the entire system being installed but only part of the new
system being used. For example, the customer database may be brought online while other
tasks are conducted using the existing system. Only a small amount of data is lost if the new
system fails.

Phased conversion involves the gradual implementation of the new system. Parts of the
new system gradually replace the existing system until the new system takes over com-
pletely. If problems arise, only that module of the system is affected.

In this case study phased conversion will be used. Since the existing card system is quite
extensive and available staff for the switch over is limited, it was decided to bring the new
system online gradually. In the initial implementation of the new system the electronic
catalogue will be used to assist in tracking stock levels. At the same time the customer
records kept on cards will be entered into the customer database. New customer details will
be recorded directly into the database and no new cards will be created.

Maintenance
Once the solution is delivered and put into place, it will need to be constantly monitored
and evaluated. Close comparisons will be made with the computerised system and the
manual system. It is not economically viable, for example, to provide the web service part
of the solution if only a handful of people use it. The owners are hoping that they will gain
a significant amount of business through the web in order for the expense to be justified.

Further evaluation will also tell the owners which areas of the system are working well
and which are not. There will need to be some adjustment to the system in order to
maximise profits.

Modifying the project to ensure an improved solution
Once the solution is in place, it will be monitored closely. The owners will be keen to see if
there is any increase in their business from the new website. In addition to this, as the
owners monitor the ‘final’ solution they may well decide that certain aspects do not look or
work as they had anticipated and there may be a need to make slight modifications. Some
of these modifications may include changing the database over to a purpose-built database,
that is, one that is programmed ‘from the ground up’ specifically for this client.

247Developing a solution package

Review exercises
1 Create the database(s) required for this

solution. Your database should contain at
least 5 customers and at least 20 items of
stock.

2 Create the webpages for the Internet part
of the solution. You can use Figure 8.12 as
a starting point. The webpages for this
exercise can be static catalogue pages that
show the types of stock kept by your
client. Extension: Link these webpages to
your database and incorporate an online
ordering system that keeps track of
customer selections. You can get ideas on
how this type of site works by going to
any of the various e-commerce sites on the
web. For example, try
http://www.dymocks.com.au or
http://www.amazon.com.

3 Create HTML help pages for your client.
These pages should help a variety of users
of the system including employees and
customers. Create at least five webpages.

4 Create a set of instructions that show the
owner of the new system how to add
customers to the customer database.

5 Create a webpage for this solution. In your
source code include documentation that
tells other programmers what the page
does and how it works. For example, if you
choose to use JavaScript you should
include appropriate comments throughout
your code.

6 Create a proposal that explains how the
new system will be maintained and
improved. You should include
recommendations for future
enhancements to the system. Justify your
recommendations.

Chapter summary

248 Heinemann Software Design and Development: HSC Course

• Project management techniques are applied to the development of a solution package.

• Project teams are multi-disciplinary and outsourcing is employed as required.

• Defining the problem consists of identifying the problem, ideas generation and communication
with others involved in the proposed system.

• Understanding the problem consists of interface design, communication with others involved
in the proposed system, representing the system using diagrams, selection of appropriate data
structures and consideration of all social and ethical issues.

• Consideration of all social and ethical issues includes ease of use, accessibility of technical
language, copyright and ergonomics.

• Planning and design consists of interface design, selection of software environment, identifica-
tion of appropriate hardware, selection of appropriate data structures, production of a data
dictionary, definition of required validation processes, definition of files, algorithm design,
inclusion of standard or common routines, use of software to document design, identification
of appropriate test data, enabling and incorporating feedback from users and applying project
management techniques.

• The final stage in developing a solution package is to implement the solution. This is a two-
stage process consisting of implementation and maintenance.

• Implementation consists of production and maintenance of the data dictionary, translating the
solution into code, creating online help, program testing and completing all user documenta-
tion for the project.

• Maintenance consists of modifying the project to ensure an improved solution.

• Project management techniques are applied throughout the development of a solution package.

• Testing of the solution should be carried out at regular intervals—test early and test often.

Chapter summary

99Evolution of programming
languages

cchhaapptteerr

Outcomes
A student:
• differentiates between various methods used to construct software

solutions (H 1.2)
• describes the historical developments of different language types

(H 2.1)
• explains the relationship between emerging technologies and

software development (H 2.2)
• identifies and evaluates legal, social and ethical issues in a

number of contexts (H 3.1)
• identifies needs to which software solutions are appropriate (H 4.1)
• applies appropriate development methods to solve software

problems (H 4.2)

Students learn about:
Historical reasons for the development of the different paradigms
• a need for greater productivity
• recognition of repetitive standard programming tasks
• a desire to solve different types of problems (e.g. AI)
• the recognition of a range of different basic building blocks
• emerging technologies

Basic building blocks
• variables and control structures (imperative)
• functions (functional)
• facts and rules (logic)
• objects, with data and methods or operations (object-oriented)

250 Heinemann Software Design and Development: HSC Course

Effect on programmers’ productivity
• speed of code generation
• approach to testing
• effect on maintenance
• efficiency of solution once coded
• learning curve (training required)

Paradigm specific concepts
• logic paradigm

– Prolog, expert system shells
– heuristics
– goal
– inference engine
– backward/forward chaining

• object-oriented programming
– C++, Delphi, Java
– methods
– classes
– inheritance
– polymorphism
– encapsulation
– abstraction

• functional (e.g. LISP, APL)
– functions

Students learn to:
• recognise representative fragments of code written in a particular paradigm
• differentiate between the different paradigms
• evaluate the effectiveness of each paradigm in meeting its perceived need
• identify an appropriate paradigm relevant for a given situation
• interpret a fragment of code, and identify and correct logic errors
• modify fragments of code written using an example of a particular paradigm to reflect

changed requirements
• for current and emerging languages, identify an appropriate paradigm

251Evolution of programming languages

Introduction
A topic that confuses budding programmers is why there are so many programming
languages and why, when computers have been programmed for so long, software has to be
constantly rewritten, updated and patched. Why is it that, as hardware has become more
powerful and reliable, software has seemingly become more error-ridden?

When studying software development paradigms we need to look at the origins of
programming languages, where and why they were developed, the pressures the developers
were under when they wrote these languages, whether the languages were written for a
specific purpose and the expectations of these languages.

This chapter looks at these questions and also tracks the evolution of the various
paradigms and their associated languages.

Since the advent of computers, the complexity of both the machines and the tasks they
are expected to perform has increased. Modern computers and their applications have
totally changed from what they were 10 years ago, and will have totally changed again in 10
years hence. How do developers who create the software for this new technology work in
the most efficient and productive way possible?

When new technology becomes available, users and developers at first tend to do the
same as they have always done, except now they do it more cheaply and faster. It takes a
while for new applications to be developed for new technology.

New languages can be launched with so much surrounding hype and claims as to their
uses that the general public comes to expect more from their capabilities. Fuelling this
expectation is the increasing use of computers in our society. Is there anything they cannot
do?

In the past 10 years the decreasing cost of memory, the increasing speed of processors
and increasing miniaturisation has led to the development of programs incorporating
features such as voice recognition, mixed text and graphics and an improved human
interface. Each of these applications requires a specific solution.

With the development of more powerful computers the task of software development
should become an error-free and much easier task. The development of tools to take
advantage of these processors could lead to a situation different from today where there is
a lot of white box testing.

The development of hardware and the associated software has led to the emergence of
high-level languages, which are more readable, reusable and portable.

Research is continuing into the best way to cope with the advances in hardware and how
to gain the greatest advantage from them. Are the existing paradigms suitable or should we
develop others that are more able to take advantage of new technologies?

The evolution of programming languages is littered with answers to these and other
questions that have faced programmers using the new technologies.

Each new paradigm, as it has been developed, has attempted to improve the readability,
simplicity, reliability, reusability, cost effectiveness and portability of new applications.

A study of the evolution of programming languages shows how these factors have
developed and may give us some clues on how languages will evolve in the future.

Generations of programming languages
The development of computer programming languages closely follows the development of
computer hardware. As the capabilities of computers increase, so does the need for more
sophisticated programming methods.

Computer languages can be categorised in five generations. The first and second
generations of language are known as low-level languages and are processor dependent; that
is, they are used to develop programs that are specific to a particular type or series of
processor. Third-generation and later languages can resemble either natural languages such

252 Heinemann Software Design and Development: HSC Course

as English or symbolic languages such as mathematics. Languages of the third generation
and later are used to develop programs in terms of the problem being solved rather than the
hardware on which the solution is implemented.

First-generation computer languages were, by necessity, those that could be directly
‘understood’ by computers. They were in binary form. Early computers were programmed
using paper tape with holes punched to represent 0s and 1s or they had their instructions
wired by means of plugboards, wires and switches. Both methods presented problems when
a new program was required and a high level of skill was needed to create the programs.
Since the instructions are in binary form, these languages are known as machine languages
and are specific for the type of computer being programmed.

Second-generation languages, or symbolic assembly languages, replaced the sequences of
binary digits with mnemonic codes (or short code words) to represent instructions. Like
machine languages, assembly languages are specific for the type of processor. However, they
offer great advantages over machine code, as the mnemonics are easier to remember and
read. Their development meant that programming accuracy was improved, since the
instructions could be coded using normal written characters. Furthermore, a program did
not have to be rewritten if the physical location of a variable or instruction needed to be
changed, as the memory locations used to store values are addressed by symbolic names
instead of locations. The assembler provides suitable physical memory locations when the
program is assembled into machine code for execution. Assembly languages were given
names such as AUTOCODER or SAP (symbolic automatic programming).

Third-generation languages provided a great leap forward as they allowed programmers
to write programs that were independent of the machine being used or the arrangement
of registers and the instruction set of the processor. BASIC, COBOL, ALGOL and
FORTRAN are the most widely known third-generation languages. These languages are
distinguished from later generations as their structure consists of a sequence of steps,
branches and loops. Unlike the second-generation language, where one coded step becomes
one machine instruction, third-generation instructions are usually compiled to several
machine instructions.

Fourth-generation languages are more difficult to separate from their third-generation
ancestors as they may contain some of the same structures. However, in addition to these
structures they employ other mechanisms such as screen interaction, form filling and
computer-aided graphics. Many fourth-generation languages depend on a database and its
data dictionary, as well as extensions of the dictionary which contain logic and business
rules. (This extended form of the data dictionary is often known as an encyclopedia.)
Fourth-generation languages are concerned more with what needs to be done rather than
how it is going to be done, often accomplishing this by forming a software application that
can be customised by a user with very little technical expertise. The most common of these
languages are sophisticated spreadsheet packages such as Excel and Lotus 1-2-3, and database
management systems such as Access, FoxPro, Quattro Pro and Dbase.

The fifth-generation languages allow the programmer to code complex knowledge, from
which the computer can draw inferences. The languages of this generation use the
disciplines of knowledge-based systems, expert systems, inference engines and language
processing which have originated in the field of artificial intelligence. Programs written in a
fifth-generation language often appear to be highly intelligent or to possess an expertise
much greater than that of most people. Japan’s fifth-generation project, ICOT, is an attempt
to use artificial intelligence techniques together with new hardware designs, such as massive
parallel processing, to rapidly advance the power of computing technology. This project is
important in the development of the fifth generation as there is a coordination of efforts in
all research areas, so that new hardware development is made available to the software
researchers and vice versa.

253Evolution of programming languages

Characteristics of each language type
First-generation (machine) languages
A processor can immediately decode first-generation languages. As the processor can only
work with binary digits, this is how programs in first-generation languages are coded. Effort
and errors in writing these programs have been reduced by the use of bases other than
binary when coding. The most common bases used are hexadecimal and octal.

Of further assistance to the programmer is the use of mnemonics to represent
instructions.

For example, the instruction ‘Clear the accumulator, add the contents of location 102 to
it’ in binary digits may be coded as:
1 0000000 001 1 0000 00000001 1 1 0001 1 0

or, using hexadecimal values to represent the bytes, as:
80 30 01 C6

or, using mnemonics to represent the instructions together with hexadecimal notation for
the numerical values and memory locations, as:
CLRAC 30 01 C6

(This code can be interpreted, for later comparison, as setting TOTAL to 0, then adding
MARK to TOTAL.)

Many low-level programmers, especially hobbyists who write small programs, may write
their programs in assembly language and enter them manually in hexadecimal. An
advantage of a program written in this form is that it can be run without the need for an
assembler. Hand assembly can be especially tedious for processors with a very large
instruction set because of the number of instructions required to be searched before the
necessary coding is found, as well as the physical size of the coded instruction which may
extend to six or eight bytes. Machine code is also more difficult to use on computers that

Figure 9.1 Early computers had their instructions wired by means of plug
boards, wires and switches.

254 Heinemann Software Design and Development: HSC Course

have a big word size and/or large primary storage, since these words and addresses may take
up to 32 bits to describe.

Table 9.1 gives a summary of the assembler mnemonics of the Motorola 68000
microprocessor instruction set. The instructions presented in the table can be combined
with any one of 14 different addressing modes and five different data types to effectively
create a set of over 1000 different multi-byte instructions.

Each machine instruction can be put into one of five categories covering data transfers,
data processing, testing and branching, input and output, and control.

Data transfer instructions are employed to move data between registers and primary
storage, and between a register and an input or output device. Some specialised instructions
are provided to serve a specific purpose, such as push and pop instructions, which will
operate on the stack.

Table 9.1 Motorola 68000 instruction set summary.

Mnemonic Description
MOVEM Move multiple registers

MOVEP Move peripheral data

MULS Signed multiply

MULU Unsigned multiply

NBCD Negate decimal with extend

NEG Negate

NOP No operation

NOT Ones complement

OR Logical OR

PEA Push effective address

RESET Reset external devices

ROL Rotate left without extend

ROR Rotate right without extend

ROXL Rotate left with extend

ROXR Rotate right with extend

RTE Return from exception

RTR Return and restore

RTS Return from subroutine

SBCD Subtract decimal with extend

Scc Set conditional

STOP Stop

SUB Subtract

SWAP Swap data register halves

TAS Test and set operand

TRAP Trap

TRAPV Trap on overflow

TST Test

UNLK Unlink

Mnemonic Description
ABCD Add decimal with extend

ADD Add

AND Logical AND

ASL Arithmetic shift left

ASR Arithmetic shift right

Bcc Branch conditionally

BCHG Bit test and change

BCLR Bit test and clear

BRA Branch always

BSET Bit test and set

BSR Branch to subroutine

BTST Bit test

CHK Check register against bounds

CLR Clear operand

CMP Compare

DBcc Test condition, decrement and branch

DIVS Signed divide

DIVU Unsigned divide

EOR Exclusive OR

EXG Exchange registers

EXT Sign extend

JMP Jump

JSR Jump to subroutine

LEA Load effective address

LINK Link stack

LSL Logical shift left

LSR Logical shift right

MOVE Move

255Evolution of programming languages

Data processing operations fall into the five categories of arithmetic operations, bit
manipulation (such as setting a flag), increment/decrement (adding or subtracting 1 from a
register), logical operations (such as AND, OR) and shift/skew operations (such as a shift
left or right).

Test instructions are provided to test various bits in one or more registers (for example
the flag register which contains a number of bits each indicating an effect such as the result
of a comparison, whether an operation results in a negative value, etc.). Test instructions
may be combined with different types of jump instruction which will transfer the control
of the program to a different location. (A jump may be conditional on the result of a test or
may be unconditional, in which case control will automatically pass to the given instruction
such as the GOTO statement available in some languages.)

Input and output devices may be directly accessible to the processor, in which case a set
of input/output instructions is needed to send the data to the desired device. This is not the
only manner in which devices can be accessed; they may also be memory mapped, which
means they are assigned one or more addresses and treated in the same manner as any other
memory address, with the data being input or output instead of read or written to. Processor
direct input and output can usually be accomplished by a shorter instruction, which will
take less time to execute. This may be an important consideration in some processor
applications.

Control instructions can be used to supply synchronisation signals and to suspend or
interrupt the execution of a program.

Programmers using machine code may need to rewrite a module in order to make it
execute as quickly as possible; this process is known as optimisation. It takes a great deal of
skill and experience for a programmer to be able to optimise a subprogram, but it is an impor-
tant concept, especially if that sub-module needs to be executed a large number of times.

Machine code is a processor-dependent method of programming, and as such has limited
uses where a program is to be used on different computer platforms. However, this can also
be an advantage, as an application written in machine code executes much more rapidly
than one that needs translation. A second and more serious weakness is that a program
written in machine code is designed to reside in one location only within the computer’s
memory. Thus, if the need arises for the program to be moved within memory (for example
if it is made a submodule of a larger program), the addresses may need to be recalculated.
To overcome this problem, symbolic assembly languages were developed and became the
second generation.

Second-generation (symbolic assembly) languages
Symbolic assembly languages are not too far removed from machine code in that programs
are developed by using the processor’s instruction set; however, instead of using direct refer-
ences to various memory locations, the programmer uses symbolic addresses. For the example
above (adding MARK to TOTAL), the symbolic assembly language instruction may be:
CLA ADD MARK

where MARK represents the location in memory where the value of mark is stored. When
the physical location of variables and instructions needs to be changed, the assembler takes
care of the new memory locations.

The instructions available to an assembly language programmer are basically the same as
those available to the machine code programmer, though some of the tedious work such as
calculating relative addresses for jumps (so that the control passes to the correct instruction
when the program is relocated to a different area in memory) is performed by the assembler.
Many assemblers will allow internal program documentation in the form of comments, thus
allowing the programmer to make notes in the source code of the assembler. This assists in
following the logic in case of modification at a later date.

An assembler may also include a debugger which can be used to set breakpoints within
the program so that, during the testing stage, the contents of various registers and memory

256 Heinemann Software Design and Development: HSC Course

locations can be viewed to see whether they contain predicted results when test data is used
in the program.

Assembly language is much easier to handle than machine code for processors that have
a large word size and vast amounts of primary storage. Some assemblers will attempt to
optimise the code as it is translated into machine code.

Assembly language is preferred by a number of programmers since it is close to machine
language in syntax and concepts, and runs faster if written well. Among this group would be
those developing interfaces to various devices, creating ROM modules or developing
microprocessor-controlled machines such as compact disc players, sewing machines, car
fuel-injection systems and personal computers.

The following Z-80 assembly language code takes two values from two different
addresses, adds them in the accumulator and then places the result in a third location.
LD A (NUM1) LOAD THE VALUE FROM ADDRESS NUM1 INTO THE ACCUMULATOR

LD HL (NUM2) LOAD ADDRESS OF NUM2 INTO THE HL REGISTER PAIR

ADD A (HL) ADD CONTENTS OF MEMORY LOCATION STORED IN HL TC
ACCUMULATOR

LD (NUM3), A PLACE CONTENTS OF ACCUMULATOR IN LOCATION NUM3

This code is equivalent to the BASIC code LET C = A + B or the Pascal code C: = A + B;
Assembly languages are still not easy to learn for the average computer user, as they are

full of mnemonics. The range of commands and operations is limited to those that can be
understood by the processor, and so even the simple processes of input and output can take
a large amount of coding. With these problems in mind, third-generation languages were
developed. (See Figure 5.22 on page 145 and Figure 5.23 on page 146.)

1 Name the two methods by which first-generation computers were programmed.

2 Why do we use binary, hexadecimal and octal in computers? Count to 32 (decimal) in
hexadecimal, binary and octal.

3 Name the five categories of machine instruction.

4 Describe the process of optimisation.

5 Describe one advantage and one disadvantage of first-generation languages.

6 How are programs developed in symbolic assembly languages?

7 What is a debugger used for?

8 Why were second-generation languages found to be inadequate, forcing the
development of third-generation languages.

9 What is a jump in assembly language?

10 Find some uses of assembly languages in today’s society.

EXTENSION ACTIVITIES

11 Research and find a short program written in assembly language. Explain its purpose line
by line.

12 Research the methods by which ROM modules are created and ‘burnt’ onto ROM chips for
microprocessor-controlled machines.

13 Obtain examples of internal documentation from an assembler program.

14 Write a short presentation on the life of Alan Turing and his importance to the progress
of computing.

Exercise 9.1

257Evolution of programming languages

Third-generation languages
The third generation of languages marks a great leap forward in program design, since the
instructions available to the programmer are closer to the types of symbolic languages used
in science (for example FORTRAN) or business (for example COBOL). These languages
were the first to be known as high-level languages. The most significant advantage of third-
generation languages is that they are independent of the computer system. A single
program, written in FORTRAN for example, could be compiled and run on a number of
different computer types provided the compiler could convert the source code into the
appropriate object code. As computer technology improved, it became possible for some
third-generation languages to be interpreted line by line. (Many of the earlier personal
computers such as the Apple II and the Commodore 64 were equipped with BASIC
language interpreters which brought sophisticated programming capabilities to the home-
user for the first time.)

Our simple instruction (adding MARK to TOTAL) in a language such as BASIC would
become:
TOTAL = 0

TOTAL = TOTAL + MARK

The types of application being written influenced the development of third-generation
languages. FORTRAN and ALGOL were aimed at the scientific and mathematical users, so
they were constructed to allow easy translation of formulas into code, input data and output
data in forms that were appropriate to the sciences. They were also equipped with a library
of appropriate modules, which could be called very easily. (For example, a square root
module may be called by the coded line SQRT(X) where X is some value or variable name.)
Business has different needs from those of mathematics and science and so languages were
devised, the best known being COBOL, to include common business notations and
modules. (For example, to calculate the interest on an amount A, at a rate R%, over a period
of time T may be called by the coded line INTEREST(A,R,T), the compiler taking care of
the processes of passing the values to the sub-module and back to the main program, and
the actual calculation involved.)

Third-generation languages were developed for specific purposes, not because it was
desirable but because the technology available for compilation could not handle a true
general-purpose language. Compilation involves the conversion of the high-level language
into low-level language, and may also attempt to optimise the code so that the program runs
more efficiently. Languages were also developed so that each of the reserved words differed
in their combinations of first and third letters. The compiler would look first at these letters,
thus speeding up the compilation of the code.

A genuine attempt to standardise the construction was made with many third-
generation languages, but different manufacturers offered slightly different versions of the
languages that took advantage of features available on their computer. The effect of this was
to make the programs less portable (the ability of a program to be run on more than one
computer platform) than was desired by the original developers of the language. Attempts
were also made to create minimum-standard versions of languages which provided a
common base on which various implementations of the language could be made by
developers.

For example, ANSI (American National Standards Institute) minimal BASIC provides a
base on which many versions of the language have been developed. This means that
common instructions, such as those used for input and output, are implemented in all
versions, but some specialised instructions, for example those involved with graphics display
on a VDU, may be implemented in different ways for different versions. A minimum-
standard version of a language allows programmers to create applications that will execute
properly on computers with many different processors or operating systems.

258 Heinemann Software Design and Development: HSC Course

Fourth-generation languages
Fourth-generation languages are distinguishable from the third generation in that they allow
programs to be expressed more in terms of what the program has to do rather than how it
is to be done. Up to the third generation, computer technology shaped the manner in which
programs were developed, as it was the most expensive part of the system. With the power

Figure 9.2 Major language development time-line.

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990
FORTRAN 90

FORTRAN I

FORTRAN II

FORTRAN IV

FLOW-MATIC

COMTRANLISP

Prolog Pascal

ALGOL 58

ALGOL 60

ALGOL W

ALGOL 68

Ada

SIMULA I

SIMULA 67

Smalltalk 80

BASIC

PL/I

COBOL

C++

ANSI C

C

B

BCPL

CPL

259Evolution of programming languages

of the computer increasing and its cost decreasing, the human aspect has become more
expensive than the computing aspect. Languages developed in the fourth generation have
attempted to make interaction with the human easier. However, the computer system
needed to support these languages has become more complex in order to cope with them.

Fourth-generation languages are characterised by their similarity to human speech or
thought; simple programs in languages such as Logo and Hypertalk are very easy to
understand and construct. Complex procedures such as creating music or animations can be
accomplished easily even by people with very little programming experience.

Using a simple example, a fourth-generation language may appear thus:
USE pupils
SUM markl
TO total

LISP (a list processing language) is a language that sits on the border between the fourth
and fifth generations. It is favoured by those involved with artificial intelligence applications.

A LISP program which finds the percentage change from A to B would be written in the
following manner:
(DEFINE (PC B A) (QUOTIENT (TIMES (DIFFERENCE B A) 100) A))

Notice that the operations (QUOTIENT, TIMES and DIFFERENCE for this example) in
LISP are stated before the operands (B and A above). This notation is called reversed polish
notation, or RPN, and is similar to the one used on many of the early scientific calculators.
In RPN, adding the two numbers 5 and 23 would be keyed in a manner similar to:

+ 5 ENTER 23 ENTER
A program in LISP is really only a list of functions and arguments enclosed in brackets. The
placement of the brackets determines the way in which the list is processed. LISP lends
itself to artificial intelligence applications since variables may be set to non-numerical values
just as easily as numerical ones.

LOGO is a high-level language developed from LISP by Seymour Papert especially to
introduce very young children to computer programming. The most widely used subset of
the LOGO language is Turtle graphics, whereby children create drawings by ‘driving’ a
cursor called a turtle around the computer screen by means of a list of instructions. (In the
original application of Turtle graphics, the turtle was an electronic device, connected to a
mainframe computer, which held a pen and was programmed to draw on sheets of paper;
consequently, some of the instructions in LOGO were directly related to the physical turtle,
for example the PENUP and PENDOWN commands.) An example of a typical LOGO
module would be one to draw a hexagon on the screen:
TO HEXAGON . SIZE
REPEAT 6[FORWARD SIZE RIGHT 60]
END

The first line declares a module called HEXAGON, which takes an input called SIZE.
The second calls on several modules that are built into LOGO (called library routines) to
repeat the steps of drawing the required length interval and a 60° right turn a total of six
times in order to construct a regular hexagon on the screen.

Fifth-generation languages
Fifth-generation languages use artificial intelligence methods to improve the interaction
between the human and the computer for problem solving. These languages use the
declarative programming paradigm, with the emphasis being placed on an approach known
as logic programming. Declarative programming concentrates greatly on the desired
outcome of the process rather than on the manner in which it is to be achieved. Many fifth-
generation languages employ problem-solving algorithms that have been based on the
principles of formal logic.

Languages such as PROLOG employ a series of initial statements which form the basis
for a process called resolution. Resolution involves using the initial statements to deduce the
truth of a further statement. An example of resolution is as follows.

260 Heinemann Software Design and Development: HSC Course

Suppose that we know that Mary is either working or sick. If we are then told that she
is not sick, we can deduce that she is at work. The two initial statements are that ‘Mary is
at work’ and ‘Mary is sick’. The resolvent statement is the deduced one that since Mary is
not sick she is at work.

The process of resolution mirrors the way in which we come to a conclusion when
confronted by a series of statements.

1 Answer the following questions by filling in the space provided.

a The development of software is closely associated with the development of new
.

b Computer languages can be categorised into generations.
c First- and second-generation languages are dependent.
d Second-generation languages replaced the sequences of binary digits with

codes.
e Fourth-generation languages are more concerned with what needs to be done than

it is to be done.
f The last generation of languages allows the programmer to code complex knowledge

which the computer can draw from.
g Data processing operations fall into one of the five categories of arithmetic operations,

bit manipulation, increment/decrement, shift/skew operations and
.

h An example of a third-generation language is .
i involves the conversion of the high-level language into a low-level

language, and may also attempt to optimise the code so that the program runs more
efficiently.

j are characterised by their similarity to human speech or thought.

2 Identify each of the following code fragments as first, second, third, fourth or fifth genera-
tion. Give reasons for your choices.

a =Sum (a9..b21)
b A2 B4 32 45 EF FF 02
c REPEAT 12[PENDOWN FORWARD 10 PENUP FORWARD 5]
d LDA, VALUE
e REPEAT X:= X + 1 UNTIL X > 20

3 Describe the importance of third-generation languages.

4 Explain the meaning of the term ‘compilation’. Describe one method of speeding up
compilation used in third-generation languages.

5 What is portability of programs? Why was portability difficult to implement in third-
generation languages?

6 What is the minimum-standard version of a language? Describe the role of ANSI in the
production of minimum-standard versions.

7 Describe the differences between third- and fourth-generation languages. Give code
samples to help illustrate your answer.

8 What is the meaning of the statement ‘the human aspect has become more expensive than
the computing aspect’ with reference to fourth-generation languages?

9 Design and implement a procedure to draw a street full of houses using a version of Logo.

10 Describe the differences between fourth-generation languages and fifth-generation
languages. Where appropriate, use code samples to illustrate these differences.

11 What does the term ‘resolution’ mean when applied to fifth-generation languages?

Exercise 9.2

261Evolution of programming languages

12 Explain the differences between high-level and low-level languages. Include the terms
‘source code’ and ‘object code’ in your answer.

EXTENSION QUESTIONS
13 Research the development of PLANKALKUL written by Konrad Zuse. Why was this

programming language a major breakthrough? Present your answer as a short article
written as a historical review.

14 Grace Hopper was an important figure in the development of high-level languages.
Investigate and report on the contributions made by Grace to computer programming.

15 Write a short presentation on the development of FORTRAN, ALGOL or COBOL. Include in
this presentation a listing of a program written in your chosen language.

16 Describe the development of the programming language Ada.

17 Explain the purpose behind the development of Pascal as a programming language.
Explain how the structure of the language achieves this purpose.

CPU

Data and
machine code

Data and
instructions

Figure 9.3 A block diagram
of the Von Neumann
architecture.

Paradigm specific concepts
A large number of computer programs are written in a paradigm or
model in which algorithms are expressed as a sequence of commands.
These commands are followed line by line, sequence by sequence until
the instructions have been completed.

This paradigm of a program is based on the Von Neumann
computer architecture model that, in turn, is based on the model of
computation put forward by Alan Turing.

The imperative programming paradigm is easiest to implement on
the Von Neumann computer. The basis of the Von Neumann com-
puter is the separation of the processing components from memory. In
contrast, the human brain operates in a manner that combines
memory and processing. In the Von Neumann computer, the storage
of instructions and data is in the same memory locations, and processes
within the processor govern whether the value stored in a particular
location refers to instructions or data. This architecture lends itself to
imperative languages, which employ variables to model memory loca-
tions and assignments, which model the processes of the transfer of
data from location to location. When branching and iteration (the
process of repetition of a number of steps) are added to the language
structure, a versatile and powerful language is produced.

An introduction to object-oriented languages
Object-oriented or event-driven paradigm programs are constructed from objects and
messages. Objects can be thought of as a ‘black box’ which sends and receives messages. The
object may not be understood by the programmer but can still be used effectively. (See
Figure 9.4.)

Black Box
Input Output Figure 9.4 A ‘black box’ can be used

to represent a process where we have
no interest in the way that it works.

262 Heinemann Software Design and Development: HSC Course

+ 0 1

0 0 1

1 1 0

x 0 1

0 0 0

1 0 1

The statement ‘pick up the inkbottle’ can be used to demonstrate this. In procedural
language the algorithm would involve a step-by-step solution explaining every part of the
program. It could end up being written as follows.
BEGIN

move arm in an arc until it comes to the inkbottle,
open hand keeping fingers apart,
place around inkbottle,
close hand
gently and firmly grasp inkbottle
move arm upwards keeping inkbottle as still as possible.

END

Whereas procedural languages specify a step by step account, object-oriented languages
are concerned with the object. These objects are responsible for responding to the requests
from the clients. The way in which they respond to these requests is up to them. (Thus the
responder to the statement ‘pick up the inkbottle’ could pick it up between their teeth or
even by their toes.)

There is obviously a lot going on behind the scenes, but this is the basic concept of
object-oriented languages—the objects are responsible for their own actions.

Until the advent of object-oriented languages, models were created that kept the code
separate from the data. In object-oriented languages the code or function and the data are
kept together in this object. There is no need to see what is inside the object; it only needs
to be manipulated; hence the reference to the ‘black box’.

A class of numbers called counting numbers (0, 1, 2, 3, 4 …) can be created with the
properties that they are ordered and represent quantities. Associated with this class could
be the operations of addition and multiplication. A subclass can then be created of the
counting numbers consisting of 0 and 1. This subclass automatically inherits the properties
of order and representation of quantities and also the operations of addition and multi-
plication, as they are defined for the larger class. However, binary addition and binary
multiplication may also be defined for the subclass.

Figure 9.5 Binary addition and binary
multiplication defined for the subclass (0, 1)
of the counting numbers.

This shows the way in which objects in an
object-oriented language are divided into
classes and subclasses, with subclasses
inheriting the properties of their parents.
Objects receive messages and the way they
deal with these messages is called ‘methods’.

Object-oriented programming is ideal for
writing the complex programs needed for
computer-controlled systems, as an object can
represent each component of the system.

From the programmer’s point of view,
object-oriented languages have many
advantages. A programmer can lift a piece of
code from an original program and by manipu
lation and by gaining new characteristics is able to carry out new tasks within the program.
Programmers are able to do this by knowing how to manipulate the object—not how the
object works. The programmer is able to save time, money and effort merely by performing
this manipulation. The only disadvantage is that if an object is deleted any connections to the
object are redirected correctly. Remembering this, revision or even rewriting can easily
proceed.

There are two key notions in understanding object-oriented languages: inheritance and
encapsulation. Associated with these two basic concepts are methods, classes, abstraction
and polymorphism.

263Evolution of programming languages

Encapsulation
When programmers embark on a project that has grown in size beyond a few thousand
lines, they face a variety of problems.

If they create a group of subprograms or modules it can be difficult to follow the
project’s structure (similar to a large relational database). How are the sections joined
together? How do the parameters relate to each other and what are the links between the
components? Compilation of such a program can become costly in both time and effort.

One method used to save this effort is encapsulation. The programmer has the ability to
group subprograms and related data either individually or in groups of components that
are related.

These groups of subprograms may then be compiled independently or left alone,
depending on what the programmer wants. Compilation of some sections of the program
for use as general components will save time and effort in later projects.

As programming languages have evolved, the techniques of encapsulation have evolved,
with different languages containing subprograms, providing library routines and simplifying
the interfaces among encapsulated objects.

Polymorphism
Polymorphism is a powerful concept that greatly reduces the effort required to extend an
object-oriented model during the development and maintenance stages.

To understand polymorphism, consider a program to draw six cars. If this were being
done in a traditional program, a case structure would be created and modules drawn for
each car part.

If we wished to expand this program, we would need to change not only the case
structure but the control program as well.

The difference with polymorphism is that the class structure comes into play. The
cars would become a subclass of the general class called ‘vehicle’, which would define the
draw operation. To add a new car to the list, we would simply add a new member to the
subclass ‘cars’.

The subclass inherits all of the properties of the parent class ‘vehicle’, and to draw one
of the original cars, or an additional member of the class, the appropriate command would
be sent to the required object.

The basic concept of polymorphism in object-oriented languages is that for effective
maintenance or extension of a program only the addition of a subclass is required; the
control program does not have to be adapted.

Inheritance
It became increasingly obvious to programmers in the late 1980s that they were rewriting
pieces of code that were similar to previously written code; their previous work was unable
to be utilised effectively. The problem was that the previously written code was only a
partial answer to the required solution rather than being the whole answer.

‘Inheritance’ is a solution to this problem. In addition, it helps with the organisation of
the program. Quite simply, inheritance in a hierarchical structure is the ability of the client
to have all of the characteristics of the parent and to gain new ones.

Inheritance within a class can be via a single parent (referred to as single inheritance) or
via more than one parent (referred to as multiple inheritance). Thus, in inheritance a class
can have inherited characteristics from a parent or multiple parents. The class also has the
ability to gain new characteristics that enable it to be adapted to new requirements.

This simple idea has enabled programmers to effectively reuse previously written code
and to utilise work done at an earlier time.

264 Heinemann Software Design and Development: HSC Course

Object = Jenny's car

Wheels
Engine
Radio
Seats

Object = Basic car

Wheels
Engine
Radio
Seats

The object inherits all the
characteristics of the class

Classes
Abstract data types in object-oriented
languages are called classes, remember-
ing that data abstractions refer to the
attributes or properties of that data item.

A class generally refers to a group or
collection of similar objects. The ele-
ments or class instances are called objects.

A class defined through inheritance
from another class is called a subclass.
The class from which the subclass is
derived is called the parent class or
superclass.

Figure 9.7 An object inherits all the
characteristics of the class to which it belongs.

Basic car

Wheels
Engine
Radio
Seats

Tourer's car

Wheels
Engine
Radio
Seats
Towbar

Deluxe model

Wheels
Engine
Radio
Seats
Air conditioning

Luxury car

Wheels
Engine
Radio
Seats
Air conditioning
CD Player

Taxi model

Wheels
Engine
Radio
Seats
Air conditioning
Two-way radio

Add a towbar Add air conditioning

Add a CD player Add a two-way radio

Figure 9.6 A subclass inherits all the
properties of the class to which it
belongs.

Methods
Subprograms that define the operations on objects of a class are called methods; they may
also be referred to as operations or services. In object-oriented languages an object encapsu-
lates data represented by a collection (or a list) of attributes together with the algorithms
that are used to process them.

In object-oriented programming the term ‘message’ is used to refer to the means by
which objects interact.

265Evolution of programming languages

When an object receives a message from a source object, it responds in the appropriate
manner, passing its response on as a further message. The output message may contain the
result of an operation or it may provide information to the source object that an action has
taken place. For example, a message may be sent to a circle-drawing object to draw a circle
of radius 20 pixels with its centre at the point (100, 150) on the screen. The object will
‘draw’ the circle by making the necessary calculations and place the representation of the
image in the video memory of the computer. A message will then be sent to the source
module ‘saying’ that the circle has been drawn.

parameters operation destinationSOURCE
OBJECT

DESTINATION
OBJECT

Figure 9.8 A message carries three vital pieces of information: its
destination, an operation and the parameters.

Messages must have three specific parts: the destination object, an operation that has to
be performed, and the parameters to be used by the destination object in performing that
operation. In the circle-drawing example, the radius of the circle and the coordinates of its
centre are the parameters that had to be sent and the operation was to ‘draw’ the circle. The
circle object may also contain a method for erasing a circle.

Abstraction
Abstraction is extremely important because it allows the programmer to simplify the
programming process.

Abstraction in a modular solution to a problem can be viewed in levels. The solution is
stated in broad terms using the desired programming language. The language itself allows
the programmer to generalise when creating the solution rather than concentrate on specific
details. By using abstraction, a problem can be viewed in familiar terms. For example, when
we view a screen of word-processed text, it appears to us as words written on a sheet of
paper. We manipulate the text as if it were on paper; this is an abstraction. The actual
processes involved in manipulating these words and the ways in which they work are
completely hidden.

By being able to concentrate on the more essential parts of the program and, to some
extent, ignore the less important, the programmer has an easier path to the problem
solution.

There are two essential forms of abstraction:
• data abstraction, which is looking at data items in familiar terms such as characters and

numbers
• process abstraction, which is a sequence of instructions that have a clearly defined and

limited purpose.

Description and history of languages
C++
C++ was developed from languages that were originally created at Cambridge University
during the early 1960s.

C was the name given to the in-house language called B (BCOL – Basic Combined
Programming Language, which itself was a descendant of ALGOL 60). C was designed and
implemented by Dennis Ritchie at Bell Laboratories in 1972. In 1980 Bjarne Stroustrup,
also of Bell Laboratories, modified C. Further modifications were made through the 1980s
until Release 2.0 was made available in 1989.

266 Heinemann Software Design and Development: HSC Course

C++ is a hybrid language which reflects its origins together with the influences of the
culture in which it was created. C++ is a very popular language for a variety of reasons,
including:
• There are excellent compilers available.
• C++ is seen as the flagship of object-oriented programming methodology.
• C++ is backward compatible with programs written in C; that is, programs written in C

can be compiled in C++.
The influences of previous languages can be seen in the hybrid C++. C was the starting

point, and the influences and improvements that came from the language Smalltalk saw C
evolve to become the ‘flagship’ of object-oriented programming.

C++ is a compiled language, which means that the computer translates the code into an
intermediate form called an object file. The linker is then invoked to link the object file with
any required libraries and convert it into an executable program. A compiled language is in
general more complex, the advantage being that a compiled language is much faster than an
interpreted language.

The negative aspect of C++ is that, as it is a hybrid language, it has inherited many of
the faults of C and it is perceived by many to be too large and complex a language.

Java
Java is a programming language devised at Sun Microsystems in 1990. It was originally
designed for use on small consumer electronic devices.

The experts at Sun reviewed the two major languages of the time, C and C++, and
decided that neither met their requirements for an extremely reliable yet simple language.
None of the devices that Java was designed for made it to the marketplace.

Code downloaded to
client and interpreted on

a specific machine

Java code waiting to
be interpreted locally

Code placed on Web
server for download

Compiled intermediate
Java code

Java source code

Code downloaded to
client and interpreted on

a specific machine

Java code waiting to
be interpreted locally

Code placed on Web
server for download

Compiled intermediate
Java code

Java source code

Figure 9.9 A Java applet
is portable, since its code
is interpreted when
executed on a machine.

Java was originally developed from C++ but with the central
belief that a simpler language that was also dependable was
needed.

The developers at Sun created a system whereby, instead of
compiling a program specific to one operating system, they
developed a programming language that had portability or, as
Sun likes to call it, ‘write once, run anywhere’.

By 1996 the two factors that were making Java popular were
that ‘write once, run anywhere’ had become very popular with
Web developers and Java was seen by many to be an alternative
to Microsoft products.

The issue of portability is very important to Java. This issue
has been solved with the ‘Java virtual machine’ whereby, if an
applet (a small program that runs on the web client) is called,
the applet is downloaded from the web source and interpreted
on the machine. The output is then displayed.

From a programmer’s point of view the code can be written
once without worrying about the specific operating system it is
to operate under.The program can be used on any computer that
is running an appropriate interpreter.

Is there a price to pay for this portability? Yes, and the price
is speed. If an application is going to run anywhere, the
translation work being done by the compiler cannot be done in
advance but rather as the program is being executed.

What does the future hold for Java? Will it be only for the
Web? Sun Microsystems is obviously aiming at expanding the
usage of Java to applications apart from the Web and has claimed
that worldwide there are over 40 000 Java programmers creating
a wide range of applications, ranging from the Web to server and
desktop applications.

267Evolution of programming languages

A sample piece of Java code showing the IF/THEN statement would be:
If (age == 18)

{

System.out.println(’You are just old enough to vote!’)

}

else if (age < 18)

{

System.out.println (’You are too young to vote!’)

}

else

{

System.out.println (’You’re old enough to vote!’)

}

Declaration of a variable is performed by a simple statement such as:
int age = 30;

These examples show how easy Java code is to read.

Delphi
Delphi, like the previous languages, was derived from another language. The influences of
Pascal on Delphi can be clearly seen. The programmers at Borland who created Delphi were
responsible for this influence.

Delphi is seen mainly as a development tool for Microsoft Windows applications, being
used as a tool to create programs with a graphical user interface (GUI).

Delphi is also referred to as object-oriented Pascal, as it contains many of the elegant and
inelegant features of Pascal.

Programming in Delphi involves a combination of objects or components, events, tools
and controls.

Controls are those components that the user can manipulate, for example buttons, edit
boxes, labels and option buttons. All of these objects are standard Windows elements. An
event occurs as a result of a component’s interaction with the user. Windows and tools are
the common parts of the Windows GUI and can be added to the program in a similar way
to adding an object in a drawing program.

Program creation is quite simple. You first create the window the user will see by placing
on the screen the components that the user will manipulate. The next stage is to decide
what will happen when the user interacts with each component. Finally the procedures are
designed. These procedures specify the events that take place once the user has made a
decision.

Borland has developed visual component libraries to enable ease of use for the program-
mer. These libraries include classes of objects such as windows, buttons and custom tools as
well as non-visual lists to help with event procedures. Borland has also developed a means
by which Delphi, with created reports and forms, can access local and network databases.

Delphi is thus a powerful tool which enables the programmer to design the interface and
implement an event by the simple click of a mouse on a specified section of the window.

The sample code below responds to a given event.The message ‘Hello World’ will appear
when the button is pressed.
Procedure Tform.Button3Click(Sender :Tobject);
Begin
Edit1.text := (’Hello World’)
close
end

268 Heinemann Software Design and Development: HSC Course

The first line of the procedure tells Delphi that the button is part of the form and that
it will respond to a mouse click. The action of the mouse click will display ‘Hello World’ on
the screen, then the program will close. The body of the program is held between the
standard constructs ‘Begin’ and ‘end’.

It is interesting to compare the three different ways a print statement is written. The
syntax used is:
Pascal: write (’hello world’);

QBASIC: PRINT ’hello world’

Delphi: edit1.text := (’hello world’);

The purpose of each of the code samples is easily understood; some of the samples can
even be understood by people with little or no programming experience.

1 Fill the blank spaces with the appropriate term from this list:

class, encapsulation, inheritance, polymorphism, process

a is the ability of the client to have all of the characteristics of the parent and
gain new ones.

b A generally refers to a group or collection of similar objects.
c abstraction is a sequence of instructions that have a clearly defined and

limited purpose.
d leads to effective maintenance or extension of a program. You need only

add a subclass rather than having to adapt the control program.
e is when a combination of data and objects is made invisible to other

objects.

2 Describe polymorphism and explain why it is an important feature of object-oriented
languages.

3 Explain why we can use the reference to a ‘black box’ when referring to objects in object-
oriented languages.

4 In your own words write a list of 10 instructions you would expect to see in a program that
tells a robot to pick up a jug of milk and pour some of it into a cup or mug.

5 Why is inheritance important in helping the programmer save time in object-oriented
languages?

6 Describe the term ‘abstraction’ and explain its importance in object-oriented languages.

7 Research and find some code in C++ that will declare a simple variable and print the same
variable to the screen.

8 Investigate the influence of Phillip Kahn on computer technology and programming.
Explain why he would be referred to as a computer entrepreneur.

Exercise 9.3

Logic paradigm
The logic paradigm is a totally different kind of programming paradigm. The languages used
for logic programming have been called non-procedural, declarative or logic. Logic
programming is associated very closely with the artificial intelligence world.The main thrust
of research into this style of programming is to look for ways to make computers do things
that human beings do better at the moment. These include the ability to learn, to process
knowledge, to make inferences and to gain knowledge. From these processes human beings
can provide a solution to a problem.

269Evolution of programming languages

With a conventional programming paradigm a particular set of statements will be
executed in a rapid and precise order to produce a result. In the logic paradigm a detailed
description of a set of statements that describe what is true about a desired result is
provided to the computer, which can then infer a result.

This has been interpreted to mean that the final algorithm reflects the independence of
logic and control. In this paradigm logic specifies what is to be solved and control specifies
how it should be solved.

For a logic programming language to be effective there must be a clear way of supplying
the computer with the pertinent information as well as the methodology to, in some way,
solve the problem.

In logic programming there are only three types of statements: facts, queries and rules.
How does logic programming work in theory?
The programmer writes a ‘database’ of facts, for example:
Wet (rain) which means ‘Rain is wet’
together with ‘rules’ such as
Mortal (x) : - human (x) meaning ‘x is mortal is implied by x is human’.
Facts and rules are together known as ‘clauses’. The concept is based on Horn clauses.

Simply put, clauses are equivalent to facts and Horn clauses can be used to express most
logical facts. Consider the following:

a1 or a2 or a3 … or an → b
The section pertaining to a is called the body of the clause and that pertaining to b is

called the head of the clause, and this implies that if a1 or a2 or a3 or … an is true, so is b.
Another way of looking at this language paradigm is that it is based on the logic of

equations and functions. For example:
If A(g) = B(h) and B(h) = house then A(g) = house.
The interface of a logic program with a user and what goes on behind the scenes would

follow a similar line to the following.
The user supplies a goal, which the system attempts to prove using resolution or

backward chaining. This involves matching the current goal against each fact. If a goal
matches a fact, the goal succeeds and the resolution proceeds; if it matches a rule with all
of the sub-goals, the rule succeeds.

The point at which a possible clause is chosen is known as a branch; if a subsequent
choice fails, control returns to this point—the last point that was true—and it continues
through a different clause set.

The user is then informed of the success or failure of the choi ces made and the
variables that were input to get to that point. A solution is also presented.

To enable this process to occur there are powerful computations going on behind the
scenes, involving heuristics, goals, inference engines and backward and forward chaining.

Heuristics
Heuristics involves finding a set of rules or a procedure that finds satisfactory solutions to a
specific problem.

The heuristic approach enables the generation of many different solutions from which a
decision can be made, each of them being worthy in some way. The optimal solution may
not be found, but a solution of some worth will be.

Goals
When a group of rules or facts from the database are able to be matched, the goal has been
achieved. For example, you may think, through observation, that the Earth is flat. This is
your original proposition, or hypothesis. If you were able to prove, from a number of
different facts, that the Earth was indeed flat, you would have achieved the goal.

270 Heinemann Software Design and Development: HSC Course

Inference engine
An inference engine is the processing portion of an expert system. With information from
the knowledge base, the inference engine provides the reasoning ability that derives
influences or conclusions on which the expert system acts.

Backward chaining
Backward chaining is a problem-solving procedure that starts with a statement and a set of
rules leading to the statement and then works backward, matching the rules with the
information from a database of facts until the statement can be proved either right or
wrong. This method works better with a small set of results.

In backward chaining the result on the right-hand side of the diagram (see Figure 9.10)
is the beginning of the process of assessing the results.

The methodology used is that the program works backward from completion to rule,
collecting facts until able to continue to another rule, until eventually the source of the
material that can be hypothesised is reached. The basis of backward chaining is that a source
can be found without the need to obtain all the data.

Completion

Rule 2

Rule 3

Fact

Fact

Rule 1

Fact

Fact

Figure 9.10 Backward chaining starts with the statements and rules, then works back to a solution.

Forward chaining
Forward chaining is a problem-solving procedure that starts with a set of rules and a
database of facts and works to a conclusion based on facts that match all the premises set
forth in the rules. This methodology works better when there is a large number of correct
results.

Expert system shells
To understand the concept of expert system shells we must first understand what an expert
system is. An expert system is a program that is designed to act like an expert in some
narrow field or application. An expert system has the ability to solve problems that require
expert knowledge, so they have also been called ‘knowledge-based systems’.

Conventional computer programs solve problems and perform their designed functions
by using conventional decision-making logic. The basic algorithm is designed to solve a
specific problem and is designed to deal with any uncertainty such as boundary conditions
and unclear data. If the knowledge or requirements change, then the program has to be
changed and rewritten.

An expert system program is designed to deal with uncertainty within its problem-
solving function. The logic of the expert system has a means to deal with this uncertainty.
The user interface is usually very simple and clear and able to explain its actions to the user.

The expert system consists of three main sections: a knowledge base, an inference engine
and a user interface.

The knowledge base usually consists of a database built up by a knowledge engineer that
is specific to the application being worked with and includes simple facts, rules that describe
relationships and possible methods. This database must also have the ability to grow as it
learns new facts, and is therefore dynamic.

271Evolution of programming languages

An inference engine is the control engine; this applies the knowledge to the data to
arrive at some conclusion. Having the knowledge base alone would be useless; there needs
to be a way of manipulating the knowledge to deduce something from it. As the knowledge
base can be quite large, the inference engine searches through it using means such as
forward and backward chaining.

The user interface provides the means for a smooth and clear communication between
the user and the system. It should give an insight into the problem-solving process carried
out by the inference engine.

The inference engine and the interface are seen as one module, which is usually called
the expert system shell.

As Figure 9.11 shows, the shell is independent of the knowledge base, so it is
theoretically possible to develop a shell that can be used universally and to simply place a
new knowledge base for access to a particular expert. This is a very simple introduction to
expert systems and shells.

As an example, an expert system could be constructed that contains the information
required by a doctor in general practice to diagnose common diseases. The doctor would
provide the expert system with the symptoms and the expert system would match these
with the symptoms of various diseases. The likelihood of the patient suffering from each of
the identified diseases could be conveyed to the doctor by the interface. The expert system
could also suggest a suitable treatment for the disease.

Inference
engine

(interpreter)

Knowledge
base (rules)

Database
(context)

Natural
language
interface

Expert

User

Figure 9.11 An expert system resembles a production system.

Category Action of system Type of system
Interpretation Infers situation descriptions from Speech recognition, image analysis,

sensor data surveillance

Prediction Infers likely consequences of given Crop estimation, weather forecasting
situations

Diagnosis Infers system malfunctions from Electronic, medical
observations

Design Builds objects given their description Circuit layout, financial budgeting

Planning Designs actions Automatic programming, military planning

Monitoring Compares observations in order to plan Nuclear power plant control, fiscal
for failures in procedures or machines management in stockmarkets

Debugging Prescribes solutions to malfunctions Computer software

Repair Executes a plan to administer a Automobile, computer
prescribed solution or remedy

Instruction Diagnoses and corrects student Tutorial, remedial study
behaviour

Control Interprets, predicts, repairs and Air traffic control, war battle management
monitors systems operations

Table 9.2 Typical expert systems applications

272 Heinemann Software Design and Development: HSC Course

Prolog
Prolog stands for programming in logic. It is an example of a language that has grown and
evolved since the early 1970s.The early developers of Prolog included Robert Kowalski at
the University of Edinburgh, Maarten Van Emden at Edinburgh and Alain Colmerauer at
Marseilles.

Colmerauer, with others, developed the first logic programming language, Prolog. The
specialised theorem prover that he developed embodied Kowalski’s procedural
interpretation; that is, languages following this paradigm have their commands executed in
the order necessary to achieve a solution, not necessarily the order placed in the source
code. In other words, the ‘what’ not the ‘how’ of the solution.

The journey that Prolog has travelled began with the two groups in Edinburgh and
Marseilles working together, then drifting apart, and the development in the 1970s of
efficient implementation by David Warren. There was little interest in Prolog and logic
programming until the early 1980s when Japan announced plans to introduce a fifth
generation of computer hardware, with the aim of building parallel knowledge-based
machines that would accept natural language input and process large quantities of
information. The kernel language for this would be Prolog.

Prolog has grown from this to be used for theorem proving, relational database design,
software engineering, natural language processing, knowledge representation in artificial
intelligence and expert systems programming.

Prolog is seen by many as the first step towards non-procedural programming, where the
user and the programmer can concentrate more on what needs to be done than on how to
do it.

Here is an example of Prolog where facts may be expressed in the following manner:
Male (james)
Female (jessica)
Likes (jessica, james)
Film (crocodile dundee, hogan, koslowski)

and rules in this way:
brother (a,b) := male (a), parent (a,z), parent (b,z)

This statement says that a is the brother of b if a is a male and if the parent of a, in this
case z, is the same as the parent of b. Queries can also be expressed in this language in the
following manner:
? – likes (jessica, james)
? – brother (james, jessica)

In order to draw the appropriate conclusions for the problem at hand, a Prolog system
may need to process a number of rules. The programmer does not need to state the
sequence in which those rules are processed, only the rules needed. The software is then
able to determine the rule needed at each stage of processing.

Exercise 9.4
1 Fill in the spaces with the most appropriate word from the following list:

rules, desired result, functions, user, declarative, knowledge, queries, equations, inference
a Another name for the logic paradigm languages is a language.
b In the logic paradigm a detailed description of a set of statements that describe what is

true about a is given.
c In logic programming there are only three types of statements: ,

and .
d The logic paradigm is based on a logic of and .
e The expert system has three main sections: a base, an engine

and a interface.

273Evolution of programming languages

Functional programming
Functional programming is so called because a program consists entirely of functions. There
are many terms that are used when referring to the functional paradigm: functions, side effects,
referential transparency, recursion. A simple explanation of these will suffice at this level.

Functional programs contain no assignment statements, so variables, once given a value,
never change. Functional languages forbid assignment to global variables. Each expression is
a constant. Thus, the result of a function will, under all conditions, be determined solely by
the value of its arguments. This ensures that there are no side effects from these expressions.

A side effect occurs simply when the function changes either one of its parameters or a
global variable such as can be done in a simple assignment statement. Because a functional
language cannot have variables, they do not have loops as is seen in structured programming;
rather, they use recursion where a function or procedure calls itself.

For example, we could define a counting number as being one more than the previous
counting number. However, we need a starting point for this definition to hold, so we define
the first counting number as being 0.This means that the next counting number is one more
than zero, and so all the other counting numbers can be defined. You will notice that the
term ‘counting number’ is used in its own definition. This process of using an item to define
itself is called ‘recursion’. As already seen, a starting point must also be given to a recursion.

The basis of the paradigm is the function. A function from mathematics is a rule of
correspondence that associates to each member of its domain a unique member in the
range. Functions can be either simple assignment statements or joined together to make
more complex ones.

The key to functional programming’s power is that it allows greatly improved modular-
isation. This is also the goal for which functional programmers must strive—smaller and
simpler and more general modules, glued together to make more complex functions and rules.

Functional programming languages are being used more frequently, but they still have two
main drawbacks: efficiency and suitability for applications with a strongly imperative nature.

Until recently, programs written in a functional language ran more slowly than those of
an imperative nature. Functional languages are not suitable for general-purpose
programming since it is often difficult to translate a process into a function.

The functional paradigm is seen by many as the way of the future and these drawbacks
will probably be overcome.

2 Explain how backward chaining is able to achieve a hypothesis.

3 Complete the following line that shows the logic of an equation:
if hose(red) = x(Y) and x(Y) = plane. What is the value of hose(red)?

4 Explain the meaning of the term ‘goal’ when used in logic programming.

5 What does it mean when a database is said to be dynamic?

6 Explain the workings of an expert system shell with the aid of a diagram.

7 Describe the purpose of an inference engine.

EXTENSION EXERCISES

8 Niklaus Wirth and Robert Kowalski were closely associated with the creation of Prolog.
Investigate their lives and the influences they have had on the creation of Prolog.

9 What is the fifth generation of computer hardware?

10 Describe the purpose of a kernel language.

11 Why did the two groups who developed Prolog in Marseilles and Edinburgh drift apart
after the language creation?

12 Explain why Prolog was developed in Europe rather than in America.

274 Heinemann Software Design and Development: HSC Course

LISP
LISP remains the principal programming language for artificial intelligence and ranks as the
second oldest general-purpose language.

List processing and procedures are written quickly and revised frequently.
LISP is an acronym for ‘list processor’ and was first designed and implemented by John

McCarthy and a group at the Massachusetts Institute of Technology in the late 1950s. It is
one of the oldest computer languages still in widespread use.

LISP was developed out of a need predominantly in the area of artificial intelligence.
Because of its age, LISP has had many variants developed, but in the 1980s there was an

attempt to standardise the language. The result of this was common LISP, and this has
developed into the most popular version.

LISP is different from most other languages in a number of aspects. LISP programs run
in an interactive environment and, as a result, a main program does not exist in the usual
form; instead the user enters the main program as a sequence of expressions to be evaluated.

LISP is usually an interpreted language. What this means is that it is unlike other
languages such as C or Pascal which are compiled languages.

A simple valid LISP expression follows:
(member ’x’(w x y z))
returns a value T (true).

The processing could be viewed as a loop, which reads what you have written, evaluates
it (acts upon it) and then prints the result, before providing you with an opportunity to
enter more expressions.

The original version of LISP contained only two types of objects: atoms and lists. Atoms
are represented as sequences of characters. Lists are specified elements with parentheses.
Lists may contain either other lists or atoms as members.

An example of a simple list could be:
(A B C D).

To assign a value to an atom you would use ‘setq’, thus:
(setq shoe_size 11).

In this code you have assigned the value 11 to the atom shoe_size. The interpreter would
respond by assigning the atom the value 11. Thus shoe_size … would now elicit a response
of 11.

Lists are treated as having the name of the function followed by the arguments to the
function, as seen previously. Now (+shoe_size 3) will elicit the response 14.

LISP has always been associated with the early artificial intelligence promoters, who in
the 1960s and 1970s offered artificial intelligence as a solution for all ills. That they were
able to develop so little was at times blamed unfairly on LISP. Their expectations, which
were too high, had nothing to do with the effectiveness and deliverability of expert-system-
based applications.

One of the most important derivatives of LISP was the language LOGO. This language
was invented by Seymour Papert to teach children programming. LOGO is one of the more
accessible functional languages.

APL
APL is an acronym for ‘a programming language’, which was the name given to the book in
which Kenneth Iverson described his language. Operators have the same level of
precedence—left to right.

APL is made up of a set of 95 characters and symbols and flow lines. The intent by
Iverson was not to develop a programming language but rather to develop a notation
adequate to concisely express algorithms in mathematics, which might then be easily
translated into conventional programming languages.

275Evolution of programming languages

1 Fill in the spaces with the most appropriate word from the following list:
LISP, recursion, modularisation, constant, functions, efficiency, loops

a Each expression in a functional program is a .
b A functional language cannot have because of its inability to have

variables.
c is the calling of a function or a procedure by itself.
d can be either simple assignment statements or joined together to make

more complex ones.
e Functional programming allows for greatly improved .
f The two main drawbacks for functional programming are and suitability.
g is the acronym for list processor.

2 Explain the difference between a compiled program and an interpreted program. In your
explanation include why an interpreted program is slower.

3 Explain, in your own words, the meaning of the term ‘artificial intelligence’.

4 Explain how a user enters a program in LISP.

EXTENSION EXERCISES

5 Investigate the roles of John McCarthy and Kenneth Iverson in the development of
functional programming languages.

6 List the languages that have come from the Bell Laboratories. Briefly describe the purpose
of each of these languages.

7 Investigate the language APL, researching the meanings of some of the 95 special
characters.

Exercise 9.5

Because of the 95 special characters and the associated symbols APL can be extremely
difficult to read. But these special characters which can lead to confusion in reading APL
are also seen as its strength. A single line of only a few characters can accomplish an
extremely large amount of computations.

The interactive nature of APL and this conciseness means that the language is
particularly attractive to a programmer who wishes to get on to the computer to test a
computation, obtain the desired results and get off in a minimum of time. The language is
thus less suitable for the construction of large programs that will be used repeatedly.

To enhance the aim of getting onto the computer and getting off as quickly as possible,
there is no notion of main program in APL.

Within APL, expressions have no hierarchy of operations. They all have the same level
of precedence, and are governed only by the laws of associativity, which rather than left to
right, is right to left. For example, in an expression such as X Y + Z, with the values of X=7,
Y=6 and Z=4, the expression would carry out the addition first then the multiplication, thus
giving an answer of 70.

APL is unique in the sense that it is interactive with the programmer creating and
executing the main program line by line during a period of time in front of the terminal.

APL has a dedicated group of followers, but it has never had the large following of other
languages. As well, it has been overshadowed by the offerings from Bell Laboratories.

Review exercises

276 Heinemann Software Design and Development: HSC Course

1 Choose the most appropriate word or
phrase to complete each of the following
sentences.
a The programming paradigm known as

the paradigm employs
variables and assignments.

b A cooking recipe is a form of
programming.

c In the Von Neumann model,
are used to represent

memory locations.
d When an object receives a message, a

processes that message.
e Pascal is an example of a structured

language.
f The data stored within an object is able

to be manipulated by its .
g A language states a number

of facts, allowing the programmer to
use those facts.

h Early s were intended to
create computer programs that were
independent of the processor being
used.

2 The language BASIC was chosen for early
personal computers. What features of the
BASIC language made it suitable for this
purpose.

3 Determine the most appropriate gener-
ation language to use for each of the
following applications and give reasons for
your choice:
a A stock program for a shop.
b The ROM in a home computer.
c A program to choose Lotto numbers.
d A program to diagnose a patient’s

medical condition.
e The electronic controller for an

airconditioner.
f The compiler for a programming

language.

4 Each generation of computer language has
its advantages and disadvantages. Choose
two of the generations and, using an
example from each, compare their
advantages and disadvantages.

5 Outline the features of each of the differ-
ent generations of language. How has the
development of computer technology
influenced the development of each
generation of language?

6 Explain why it is difficult to implement a
fifth-generation language on a Von

Neumann style computer. Which
programming paradigm is most suited for
this type of computer? Give reasons for
your answer.

7 Describe an application for which event-
driven programming methods are most
appropriate. Justify your answer.

8 Research and find an application in which
APL is used and describe how this
application was developed.

9 Find an application in which an expert
system is used. Describe the way in which
it is being used and the way in which it
was developed.

10 Each of the five generations of computers
has a definite difference. Draw up a table
showing the main aspects of each
generation and the developments from
the previous generation.

11 Search the Internet and journals and write
a short report showing the developments
that have occurred in fifth-generation
languages and future directions.

12 What are the differences between logic
and object-oriented paradigms. Draw up a
table showing these differences.

EXTENSION EXERCISES
13 Choose a third-generation language and

investigate the different control structures
for that language. What similarities can
you find between these structures and
those of a first-generation language?

14 Research the changes in hardware
between the first and second generation
of computers and outline the reasons for
the resulting changes in software design.

15 Investigate the life of one of the following
people and present the results of your
investigation in a PowerPoint presentation:
Niklaus Wirth, John Backus or Seymour
Papert. In your answer outline the
languages they were associated with and
the effects they have had on the
programming community.

16 Research emerging technologies in
language development. Report back to
your class explaining what you have
discovered.

17 What do you believe constitutes a good
programming language? Give reasons for
your answer.

277Evolution of programming languages

• Computer languages can be categorised into five generations.
• First-generation languages represent instructions and data in binary form.
• First- and second-generation languages are processor dependent, resulting in programs that are

written for a particular processor.
• First-generation programs are written as numbers, with binary, octal and hexadecimal notations

being the most common. They are immediately executable by the processor, having no need
for translation.

• Machine code is difficult to use on processors with a large word size.
• Machine instructions can be placed in five different categories: data transfer instructions, data

processing instructions, test instructions, input/output instructions and control instructions.
• Second-generation languages, called symbolic assembly languages, use code words called

mnemonics to represent instructions and data.
• Symbolic assembly language programming uses mnemonics to represent processor

instructions; the assembler, however, calculates the addresses of data locations.
• Assemblers often contain aids such as debuggers, which assist the programmer to produce a

program that functions properly.
• Assembly language programming is widely used to create interfaces to various devices such as

compact disc players.
• Assembly language is not easy for the average computer user to learn.
• Third-generation and later languages are based on natural languages or symbolic languages and

are used to write programs in terms of the problem being solved.
• Third-generation and later languages allow algorithms to be coded in a form that is

independent of the machine being used.
• Third-generation languages are the first of the so-called high-level languages and are not bound

by the processor used to execute the program.
• Various third-generation languages were influenced by the types of application they were

intended to produce.
• Third-generation languages were intended to be portable between computers. However, slight

differences in the languages created to take advantage of features available on a particular
computer made the programs less portable.

• Fourth-generation languages may contain some of the same structures as third-generation
languages, plus other mechanisms.

• Fourth-generation languages allow the programmer to concentrate more on what is to be done
than on how it is to be done.

• Fifth-generation languages generally involve artificial intelligence techniques, allowing the
programmer to code knowledge which the computer can draw inferences from.

• Fifth-generation languages are based on an approach known as logic programming.
• In procedural languages the program is written as a sequential set of instructions. Most first-,

second- and third-generation languages are procedural.
• Procedural languages contain three main types of construction: sequences, branching and

repetition.
• Declarative languages state a number of facts, which the programmer can use to state queries

and pose problems. A declarative language is one form of a non-procedural language.

Chapter summary

Chapter summary

278 Heinemann Software Design and Development: HSC Course

• The common view of programming is that it consists of operations being carried out on data.
Object-oriented languages do not follow this model, as they consist of objects and messages.

• An object is a block of information together with a description of the way in which it can be
manipulated.

• A class is a number of objects that share common properties.
• Subprograms that define the operations on objects of a class are called methods.
• Inheritance is the ability of the client to have all of the characteristics of the parent and to gain

new ones.
• Polymorphism is the ability to add a subclass used for the effective maintenance of a

subprogram.
• Messages are the subprograms that define the operations on objects of a class.
• Encapsulation is the process whereby the combination of data and procedures within an object

are made invisible to other objects.
• Sequential programming is used to create a set of steps which it is hoped will solve the

problem.
• Event-driven programming caters for different reactions to external happenings detected by

the system.
• The imperative programming paradigm is a form of sequential programming in which variables

are used to model memory locations and assignments that model data transfer processes.
• Event-driven programming is suited to real-time computer applications such as control

systems and simulations.
• Logic programming is very closely associated with artificial intelligence.
• Backward chaining is a problem-solving procedure working from a statement backwards.
• An inference engine provides the reasoning ability on which an expert system acts.
• A goal is a matching of rules and facts.
• The heuristic approach enables the generation of many different solutions.
• A knowledge base is a database of facts and is dynamic.

1100The software developer’s
view of the hardware

cchhaapptteerr

Outcomes
A student:
• explains the interrelationship between hardware and software (H 1.1)
• describes how the major components of a computer system store

and manipulate data (H 1.3)
• identifies and evaluates legal, social and ethical issues in a number

of contexts (H 3.1)
• constructs software solutions that address legal, social and ethical

issues (H 3.2)
• identifies needs to which software solutions are appropriate (H 4.1)

Representation of data within the computer
• binary numbers
• hexadecimal numbers
• character representation—ASCII
• representation of integers

– sign and modulus
– one’s complement
– two’s complement

• representation of fractions
– floating point and real numbers

• binary arithmetic
• addition
• subtraction using two’s complement
• multiplication using shift and add
• division using shift and subtract

Students learn about:

280 Heinemann Software Design and Development: HSC Course

Electronic circuits to perform standard software operations
• logic gates—AND, OR, NOT, NAND, NOR, XOR
• truth tables
• circuit design steps

– identify inputs and outputs – identify required components
– check solution with truth table – evaluate circuit design

• specialty circuits including:
– half-adder – full-adder
– flip-flops as a memory store

Programming of hardware devices
• the input data stream from sensor and other devices

– header information – data characters
– trailer information – control characters
– hardware specifications – documentation

• processing of the data stream
– the need to recognise and strip control characters
– counting the data characters
– extracting the data

• generating output to an appropriate output device
– required header information – required control characters
– data – required trailer information

• control systems
– responding to sensor information
– specifying motor operations

• printer operation
– control characters for features including page throw, font change, line spacing

• specialist devices with digital input and/or output

• convert integers between binary and decimal representation
• interpret the binary representation of data
• recognise situations in which the data can be misinterpreted by the software
• perform arithmetic operations in binary
• generate truth tables for a given circuit
• describe the purpose of a circuit from its truth table
• design a circuit to solve a given problem and use a truth table to verify the design
• explain how a flip-flop can be used in the storage and shifting of a bit in memory
• build and test a circuit using integrated circuits or use a software package
• simulate the testing of a circuit for both user-designed circuits and the specialty circuits
• recognise the cyclical approach to circuit design
• modify an existing circuit to reflect changed requirements
• interpret a data stream for a which specifications are provided
• generate a data stream to specify particular operations for a hardware device for which

specifications are provided
• modify a stream of data to meet changed requirements, given the hardware specifications
• cause a hardware device to respond in a specified fashion

Students learn to:

281The software developer’s view of the hardware

This chapter looks closely at the interrelationship between hardware and software by
examining the way the data is stored and manipulated in the major components of a
computer system. It looks at the way a simple two-value system can be used to represent
numbers and the ways numbers can be operated on. It shows how simple electronic
components can be combined to carry out some of these operations. And it looks at the way
streams of data flow between computing devices.

Representation of computer data
The purpose of computers and other information-technology devices is to store, process,
transmit and receive data of different kinds. In all current digital computers this data is
represented using a binary system. A binary system is used because there are many different
physical phenomena that can take two values. For example:
• a switch can be on or off
• a light can be on or off
• a magnet can be magnetised in one direction or another
• a voltage can be high or low
• on a compact disc there can be a pit or land.

The two values of a binary system can be interpreted in different ways. For example, you
could think of a high voltage as meaning ‘true’ and a low voltage as meaning ‘false’. The
most common way of writing the two possible values of a binary system is with binary digits.
These can be one of two values: zero (0) or one (1). A binary digit is often referred to by
the abbreviation ‘bit’.

Of course the world would be a fairly boring place if everything could take only two
values. In fact you might say things would be black and white. Data that takes more than
two values can be represented by groups of binary digits or bits. For example, two bits could
be used to represent four colours:

00 white
01 red
10 green
11 black

A group of eight bits is called a ‘byte’. A group of four bits is called a ‘nybble’. Groups
of binary digits can be used to represent any kind of data, including numbers, text, pictures,
sound and computer programs. The next sections look in some detail at how binary digits
can be used to represent numbers and text.

Decimal numbers
Numbers are normally written using a positional decimal system. It is called a decimal
system because it is based on ten (probably because our ancestors had ten fingers) and uses
ten symbols (0 to 9). It is called a positional system because digits in different positions have
different meanings. You can tell that in the number 1023 the digit 3 stands for three units,
the 2 stands for 2 tens and the 1 stands for 1 thousand by the position these digits have in
the number.The zero is important because it holds the hundreds position even though there
are no hundreds in this number. The columns in a decimal number stand for powers of ten.

ten4 ten3 ten2 ten1 ten0

10 000 1000 100 10 1
In a number written in a positional system (for example 654 321), the right-most digit (1)

is called the least significant digit and the left-most digit (6) is called the most significant digit.

Binary numbers
Numbers can be represented by binary digits using the same positional system as decimal
numbers. One difference is that binary numbers are based on powers of two instead of
powers of ten. The other difference is that decimal numbers require 10 symbols (0 to 9)

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

0 0 0 0 0 1 1 1 = decimal 7

1 0 0 0 0 0 0 1 = decimal 129

0 0 0 1 0 0 1 0 = decimal 18

1 1 1 1 1 1 1 1 = decimal 255

whereas binary numbers require only two symbols (0 and 1). Some examples of binary
numbers are shown in Table 10.1.

For decimal numbers, ten is called the base or radix. For binary numbers, the base or radix
is two. To distinguish between numbers with different bases a subscript is used. For example:

11002 = 1210

Converting binary numbers to decimal numbers
To convert a binary number to a decimal number you simply need to add the appropriate
powers of two. For example to convert 1001012 to a decimal number:

1001012 = 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= 32 + 4 + 1
= 3710

Converting decimal numbers to binary numbers
Copy Table 10.3 from the next page, fill it in and keep it by you. Eventually you should be
able to mentally convert decimal numbers up to at least fifteen.

A general algorithm for converting decimal numbers to binary numbers involves
repeated division by two. In the following examples, the second conversion shows the
normal way of setting out the algorithm on paper.

Table 10.1 Some examples of binary numbers

282 Heinemann Software Design and Development: HSC Course

Example 1
Convert decimal 6 to a binary number:

6 divided by 2 gives 3 with remainder 0
3 divided by 2 gives 1 with remainder 1
1 divided by 2 gives 0 with remainder 1

Reading the remainders from the bottom up gives the binary representation of 6 to
be 110.

Convert decimal 173 to a binary number—the
working is shown in the table.

The binary equivalent is found by reading
the remainders from the bottom up. (The most
significant binary digit is the remainder from
the last division.)

17310 = 101011012

2 173 Remainder

2 86 1

2 43 0

2 21 1

2 10 1

2 5 0

2 2 1

2 1 0

2 0 1Table 10.2 Algorithm for converting
decimal numbers to binary

Decimal Binary
8 4 2 1

23 22 21 20

0 0 0 0 0

1 0 0 0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Hexadecimal numbers
Binary numbers might be fine for computers but they are awful for people. They use only
two symbols and the string of digits can be very long, even for small numbers. Decimal
numbers, on the other hand, are okay for people but they are not very useful for working
with computers, because they do not have a very close relationship to a binary system.

283The software developer’s view of the hardware

Table 10.3 Binary numbers from 0 to 15

Decimal Hexadecimal Binary
0 0 0

1 1 1

2 2 10

3 3 11

4 4 100

5 5 101

6 6 110

7 7 111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

16 10 10000

Table 10.4 Comparing number systems

For these reasons, people who work with computers often use number systems based
on powers of two, such as eight (octal numbers) or sixteen (hexadecimal numbers). Octal
and hexadecimal numbers have a very close relationship with binary numbers, but it is
important to realise that computers don’t ‘use’ octal or hexadecimal numbers—
everything at the fundamental level of a computer is done with binary digits. Octal or
hexadecimal numbers are just a convenient way of representing what is going on with
binary numbers inside a computer.

Hexadecimal numbers need sixteen symbols and are based on powers of sixteen. In
hexadecimal numbers 10 means sixteen. The convention is to use the letters A to F for
the numbers ten to fifteen.

Converting hexadecimal numbers to decimal
To convert hexadecimal numbers to decimal numbers, add up the appropriate powers of
sixteen. For example:

1A0316 = 1 × 163 + 10 × 162 + 0 × 161 + 3 × 160

= 1 × 4096 + 10 × 256 + 0 + 3 × 1
= 4096 + 2560 + 3
= 665910

284 Heinemann Software Design and Development: HSC Course

Converting decimal numbers to hexadecimal
Practise converting small numbers (up to 16 at least) mentally. For numbers greater than 16,
you can use the same algorithm given above to convert to binary numbers as it works for
any base. For example: to convert 22310 to a hexadecimal.

16 223 Remainder
16 13 15 = F
16 0 13 = D

Answer: DF

Converting hexadecimal to binary (and vice versa)
This process shows the simple relationship between numbers which have bases that are
powers of two.

To convert hexadecimal numbers to binary numbers, write each hexadecimal digit as
four binary digits:

2A0116 = 0010 1010 0000 00012

To convert a binary to a hexadecimal, write the binary number in groups of four bits and
convert each group of four to a hexadecimal digit (0 to F):

1101011 = 0110 1011
= 6 B as hexadecimal

So if two bytes of computer memory contain these 16 bits (0011 0011 0011 0000), how
do we interpret them? As seen in this section, the 16 bits could be interpreted as:

0011 0011 0011 0000 – a binary number
3330 – a hexadecimal number

or 13104 – decimal
Of course these three forms are just three ways of writing the same number, and those

16 bits could be interpreted in many more ways. They could, for example, be interpreted as
four binary coded decimal (BCD) digits, where each decimal digit is encoded as 4 bits. When
interpreted in this way, those 16 bits would stand for the decimal number 3330. As shown
in the next section, these 16 bits could also be interpreted as two ASCII digits.

Exercise 10.1
1 a A binary digit can take possible values.

b A decimal digit can take possible values.
c A group of eight bits is called a/an .
d A group of four bits is called a/an .
e In the decimal number 27456 the most significant digit is .
f In the decimal number 123456789 the digit that stands for the fourth power of ten is

.
g The radix of binary numbers is .
h In the binary number 10101 the middle digit stands for .
i The third power of two as a binary number is .
j What number is the hexadecimal system based on?

2 An odometer-style display has three decimal digits. The right-most digit represents one unit.
a What is the largest number that can be shown?
b How many different number values can be shown?
c The counter has two buttons labelled + and −. Pressing the + button adds one to the

display and pressing the − subtracts one from the display. If the display is currently
showing 000, what will be shown after the − button is pressed once?

d A calculator user is in the process of entering a decimal number. The display currently
shows the number 705. What will the display show after the user presses the 4 key?

285The software developer’s view of the hardware

An algorithm to convert a decimal number to a binary number
and print out the result.
BEGIN MAIN PROGRAM

Input decimalNumber// the number to be converted
Convert DecimalNumber To Binary
Print decimalNumber ’as a binary number is’
Print Array of Binary Digits Bit[]

END MAIN PROGRAM

BEGIN SUBPROGRAM Convert DecimalNumber To Binary
// Converts a decimal number to an array of binary digits.

INPUTS
decimalNumber //a decimal number to convert

OUTPUTS
Bit[] //an array of binary digits
Index //the number of digits in the array

INITIALISATION
quotient <- decimalNumber
Index <- 0

END INITIALISATION
REPEAT

Bit[Index] <- remainder of quotient ÷ 2
quotient <- integer value of quotient ÷ 2

e A calculator user is in the process of entering a decimal number. The display currently
shows a certain number; call it x. What will the display show after the user presses the
7 key?

3 a A traffic light has three lights (red, amber, green) which in New South Wales are normally
used to give three messages (stop, stop if safe, and go). How many possible messages
could be given if all combinations of the three lights being off and on are used?

b What is the highest possible number that can be represented with three bits? How
many different numbers can be represented with three bits?

c A three-bit binary number is used to represent a colour with the following scheme. The
left-hand bit stands for red (1) or no red (0). The middle bit stands for green and the
right bit stands for blue. So 101 means red, no green, blue—this mixture gives magenta.
How many different colour combinations are there and what are the colours?

4 Convert the following binary numbers to decimal numbers:
a 101 b 110 c 111 d 100 e 1000
f 10000 g 1111 h 101100 i 1010 1010 j 1111 1111

5 Convert these decimal numbers to binary numbers.
a 3 b 4 c 11 d 73 e 193
f 211 g 255 h 924 i 1023

6 Convert the following decimal numbers to hexadecimal.
a 5 b 7 c 8 d 15 e 10
f 23 g 75 h 1000 i 5678

7 Convert the following hexadecimal numbers to decimal numbers.
a F b 13 c 1B d 4C e 7F
f FF g 100 h A01C i FFFF

8 Convert the following binary numbers to hexadecimal.
a 11 b 101 c 1010 d 10000 e 111111
f 101101 g 11001100 h 1110000 i 11101011 j 1100110101101101101

9 a Draw up a table of values used in the following algorithm and check it with test data
of decimalNumber = 23. Try other values for decimalNumber.

b Write an algorithm for the subprogram Print Array of Binary Digits Bit[].

286 Heinemann Software Design and Development: HSC Course

Data representation—coding methods
Representing text characters
A very common kind of data is text—data written out using the normal letters of the
alphabet, numerals and punctuation marks. Text is sometimes called alphanumeric data. To
store or transmit text using computing technology, there needs to be a way of coding each
alphanumeric character as a pattern of binary digits (bits). There are several different
standard ways of representing text data, but by far the most common is the code commonly
referred to as ASCII.

A familiar example of a code for text data is Morse code. A few examples from the
Morse code are:

A · – E ·
I · · H · · · ·
T – M – –
SOS · · · – – – · · ·
V for victory · · · – (or as Beethoven said, ‘Di Di Di Dah’.)
It can be seen that the Morse code is a variable length code; that is, the codes for the

different characters are not all the same length. The code was designed for operators tapping
it out on a key, so codes for the most common characters are short. Morse code relies on the
operator leaving pauses between characters and words. For computer communications it is
more convenient to have a fixed-length code than to save time by making the common
characters shorter.

ASCII code
The code for text that is used by all personal computers (and most other applications) is
commonly called the ASCII (pronounced ‘ass-key’) code. ASCII stands for American
Standard Code for Information Interchange. As the name suggests, the code was first used
in the United States. It has since been adopted as an international standard and an Australian
standard.

The code set out in the appendix is the Australian Standard Coded Character Set (AS
1776–1980). It is identical to the code specified by the International Standards
Organisation, ISO 646–1973, and the Alphabet V5 defined by the International Telegraph
and Telephone Consultative Committee (CCITT). It is very similar to the ISO 8859 Latin
1 encoding now commonly used, especially on the Internet. Despite all this, most people
still call it ASCII code.

The ASCII code table in the appendix shows how to translate a character into a pattern
of seven bits. For example, the character ‘A’, which is on the second page would be

Index <- Index + 1
UNTIL quotient = 0
Output Bit[] and Index

END SUBPROGRAM Convert DecimalNumber To Binary

Note 1: Integer value means whole number part; that is, the integer value of 3.5 is 3.
Note 2: If you want to implement this algorithm on a computer, some older values of BASIC

do not have a built-in way of working out remainders. Here is a way of doing it:

100 REM Calculate the remainder of QUOTIENT divided by 2
110 X = INT (QUOTIENT /2)
120 REMAINDER = QUOTIENT − X*2

287The software developer’s view of the hardware

represented by the bit pattern 100 0001. The table also shows the corresponding
hexadecimal (base 16) and decimal numbers (base 10) for each character. For example, the
character ‘k’, which is on the third page, would be represented by the following:

110 10112 = 6B16 = 10710

There are some things to note about the design of the code. First, there is a correspond-
ence between alphabetical and numerical order. A common task for a computer is sorting.
This correspondence means that sorting into alphabetical order can be achieved with much
the same algorithms that are used for sorting numbers. (One code being less than the other
means that the corresponding letter comes earlier in the alphabet.)

Second, there is a correspondence between upper-case and lower-case letters. The code
for ‘A’ is 32 less than the code for ‘a’ and the same relationship holds for all the other letters
in the alphabet. If you look at the binary codes for the letters, you will see that the codes
for upper-case and lower-case letters differ by one bit and it is always the same bit.

There are two kinds of character shown in the table: printing (or graphic) characters and
non-printing (or control) characters. Control characters have some function to do with the
control of equipment or the control of transmission of data; they do not result in a visible
character. Graphic characters correspond to the visible characters—the alphabetic
characters, the numerals and various punctuation marks.

The control characters are in the first thirty two positions and the DEL (delete)
character in the last position in the table. All of the other positions in the table hold graphics
characters. The SP (space) character is an interesting one; it results in no visible marks and
has an effect similar to the format effectors (it moves along one character position).
However, it has a very important part to play in providing information and so is usually
thought of as a graphic character rather than a control character. The ASCII control
characters will be discussed further later in the chapter.

Seven or eight bits
It must be stressed that ASCII is a seven-bit code. This means that there are 128 different
codes (decimal 0 to 127) that can be used to stand for characters. The code is most often
used with one code to a byte (that is, one seven-bit code to an eight-bit byte). This means
that there is usually one spare bit in each byte. If all eight bits in each byte were used, there
would be 256 different codes that could be used for characters. The fonts used on modern
computers usually use these extra 128 codes to stand for extra characters, but unfortunately
Microsoft Windows and Apple Mac-OS do so in different ways. The World Wide Web
specifies the ISO-8859-1 ‘Latin 1’ standard which is again somewhat different from both
Mac and Windows. The World Wide Web also uses ‘Unicode’, a 16-bit (double byte)
standard which allows for characters from all of the main languages of the world. You can
read about these character encodings at www.w3.org and www.unicode.org.

Representing numbers using ASCII
At the end of the section on binary and hexadecimal numbers it was seen that the 16-bit
string of bits 0011 0011 0011 0000 could be interpreted as the number 303316 = 1310410.
The string could also be interpreted as a string of ASCII codes, which means it could stand
for the decimal number 30 or even the hexadecimal number 30 (= 4810).

Of course all numbers that are entered into a computer by people (through devices such
as keyboards) and all numbers output from a computer for people to read (on the screen or
on paper) are in the form of text. So numbers can be represented in the memory of a
computer in two fundamentally different ways: as the text representation of the numeral (in
an encoding such as ASCII) or as some representation of the value of the number (perhaps
as a binary number). The next section looks at some variations on binary numbers to
represent the values of integers and fractions.

288 Heinemann Software Design and Development: HSC Course

Exercise 10.2
1 a ASCII stands for .

b ASCII is a/an bit code.
c What is the difference between the ASCII code for an upper-case letter and its lower-

case equivalent?
d How many different character codes (counting control codes) are possible in ASCII?
e Which sequence of bits begins the binary ASCII code for all decimal digits?
f What is the first digit of the hexadecimal ASCII representation of all of the decimal

digits.

2 Write each of the following decimal numbers in:
i binary ii hexadecimal iii decimal ASCII iv hex ASCII

a 27 b 127 c 5

3 Show how the following two lines of text would be encoded in ASCII in memory or a disk
file. There needs to be a line fee (LF) and carriage return (CR) at the end of each line.

It’s great
to be alive!

4 Does your computer system use an extended version of ASCII where all eight bits in each
byte can be used for different characters? Here is a simple BASIC program you can use to
find out. These programs start printing at ASCII 32 (the space) because printing the control
characters can mess up a printout. (Why?)
BASIC
10 FOR code = 32 to 255
20 PRINT code, CHR$(code)
30 NEXT code

5 This algorithm takes an ASCII code and determines whether it represents a lowercase letter.
INPUT
inputCode the input ASCII code

OUTPUT
result is true if inputCode stands for a lowercase

letter, false otherwise
BEGIN PROGRAM
IF inputCode >= the ASCII code for ‘a’ AND

inputCode <= the ASCII code for ‘z’ THEN
result is true
ELSE
result is false
END IF

END PROGRAM
Design an algorithm that takes as input an ASCII code and outputs the same code, unless
the code was for a lower-case letter, in which case it is converted to the corresponding
upper-case letter.

6 Design an algorithm that takes as input an ASCII code and outputs ‘true’ if the code stands
for a hexadecimal digit and ‘false’ otherwise.

289The software developer’s view of the hardware

Integer binary arithmetic
Addition
The algorithm for adding binary numbers together is precisely analogous to the algorithm
you use every day for adding decimal numbers. For decimal numbers a brief version of the
algorithm would go something like this:

For each column of digits, starting at the right-most column:
Add the digits in the column.
If the sum is greater than 9 then carry the excess into the next column.

Example 9 0 3 5 +
1 9 8 3

Carry 1 1 0 −
Sum 1 1 0 1 8

Of course this algorithm relies on you having a look-up table of the result of adding all
pairs of digits (which you have learnt off by heart or stored in the ROM part of your brain).
So for adding binary numbers you will have to learn that 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 10
and 1 + 1 + 1 = 11. (That shouldn’t be hard, should it?) The algorithm for adding binary
numbers is exactly the same as the one above except for one change:

For each column of digits, starting at the right-most column:
Add the digits in the column.
If the sum is greater than 1 then carry the excess into the next column.

Example 1 0 0 1 1 0 10 +
0 1 0 1 1 1 11

Carry 0 0 1 1 1 1 0 −
Sum 1 1 1 1 1 0 01

It is possible to get a sum that carries over past the left-most digit you are using. That is,
if you are using eight bits to store each number it is possible for the sum of two numbers to
be nine bits long. This condition is called ‘overflow’.

Subtraction
So far, the ways of representing numbers using binary digits have been restricted to positive
integers. The following methods are used to represent both positive and negative integers.

Sign and modulus
The most obvious solution to the problem of representing negative numbers (such as −3) is
to use one bit (the sign bit) to stand for the negative sign. For example, using one byte, −3
becomes 1000 0011.

In this method the left-most bit is used for the sign (1 for −, 0 for +) and the modulus
(or size of the number) is represented as a normal binary number using the remaining
(seven) bits. Note that both 1000 0000 and 0000 0000 would be interpreted as zero. A nice
side effect of representing numbers this way is that you can check whether a number is
positive or negative by checking one bit (the sign bit), as long as you are careful about zero.

Using one byte, the biggest positive integer that can be represented this way is
0111 1111, or 12710. The smallest negative integer is 1111 1111, or −12710.

Excess form
This method uses a starting point to stand for zero. The starting point is the number with
the most significant bit equal to 0 and all other bits equal to 1. For eight-bit numbers the
starting point will be 0111 11112 = 12710.

To convert a number from its coded form, we calculate the amount by which the coded
form exceeds the starting point. For example:

1000 0010 stands for 130 − 127 = +3
0111 1110 stands for 126 − 127 = −1

Note that positive numbers have a 1 in the most significant bit, and negative numbers a
zero. The biggest number eight bits is 255 − 127 = 128; the smallest is 0 − 127 = −127.

290 Heinemann Software Design and Development: HSC Course

Ones and twos complements
Another (more useful) way of representing negative numbers uses complements. To
understand complements, it is helpful to work briefly in decimal numbers and to think of
an example of a register such as the odometer in a car.

If the odometer is showing 000000 and it was caused to go backwards by one, it is not
hard to imagine that it will then show 999999. Therefore 999999 can be used to represent
−1, 999998 to represent −2, 999997 to represent −3 and so on.The number 999999 is called
the tens complement of 1.

To calculate the tens complement of a number:
• Calculate the nines complement of the number and then add one. If there is a carry

beyond the number of digits in the register, ignore it.
To calculate the nines complement of a number:

• Subtract each digit from 9.
Example
What are the nines and tens complements of 000237?

9 9 9 9 9 9
0 0 0 2 3 7

Nines complement 9 9 9 7 6 2 +
0 0 0 0 0 1

Tens complement 9 9 9 7 6 3
So −237 can be represented as 999762 using the nines complement, or 999763 using
the tens complement.
If you take the negative of the negative of 237 you get back to 237. So if you take the
tens complement of the tens complement of 237 you should get back to 237. Do you?

Use the same scheme as with the binary number system (imagine an odometer with just
1s and 0s) except now use the twos and ones complements.

To calculate the twos complement of a binary number:
• Calculate the ones complement of the number and add one. If there is a carry

beyond the number of digits in the register, ignore it.
To calculate the ones complement of a binary number:

• Subtract each digit from 1 (shortcut—swap ones and zeros).
Example
Show how to represent the negative of the binary number 0010 1101 using ones
complement and twos complement.

1 1 1 1 1 1 11
0 0 1 0 1 1 01

Ones complement 1 1 0 1 0 0 10 +
0 0 0 0 0 0 01

Twos complement 1 1 0 1 0 0 11
What are the ones and twos complements of 0000 0000?

1 1 1 1 1 1 11
0 0 0 0 0 0 00

Ones complement 1 1 1 1 1 1 11 +
0 0 0 0 0 0 01

1 0 0 0 0 0 0 00 ignore carry
Twos complement 0 0 0 0 0 0 00

291The software developer’s view of the hardware

Just as with the sign and modulus method, you can check whether a number is positive
or negative just by checking the left-most bit. It will be 1 for a negative number and 0 for
a positive number. (Strictly speaking, you should say that if the left-most bit is 0, the
number is non-negative rather than positive, because the number could be zero.)

There are two good reasons for using complements (usually twos complement). First,
they are easy to calculate—most of the process just involves swapping zeroes and ones.
Second, they have a simple algorithm for doing subtractions.

Multiplication
As with addition, the algorithm for multiplying binary numbers is exactly the same as that
for decimal numbers. Before looking at a general algorithm, recall the very simple trick for
multiplying decimal numbers by ten. This is normally stated as, ‘To multiply by ten, add a
zero’. It would be a little more precise to say, ‘To multiply by ten, shift each digit one place
to the left’. For example:

1234 × 10 = 12 340
Similarly, in the binary number system you can multiply by two (the base) by shifting

each digit one place to the left. For example:
110110 × 10 = 1101100

The general algorithm for multiplying decimal numbers relies on knowing the
multiplication tables up to 9. Multiplying binary numbers is much easier because you only
have to know multiplication tables for 0 and 1!

To subtract one binary number from another:
• Take the twos complement of the number being subtracted and add it to the first

number. If there is an overflow, ignore it.
Example
Calculate 0010 1010 − 0001 0011 (that is, 42 − 19 = 23).

1 1 1 1 1 1 11
The second number 0 0 0 1 0 0 11
Ones complement 1 1 1 0 1 1 00 +

0 0 0 0 0 0 01
Twos complement 1 1 1 0 1 1 01 +
The first number 0 0 1 0 1 0 10

1 0 0 0 1 0 1 11 ignore overflow
The difference 0 0 0 1 0 1 11
Note that this method of subtraction assumes that all numbers are represented in the
twos complement form; that is, any number (in the question or the answer) with one
in the left-most column is negative. If you do the above subtraction the other way
round (0001 0011 − 0010 1010), you should get a negative answer. Check it.

Example
Multiply 1011001 by 101.

1 0 1 1 00 1 ×
0 0 0 0 10 1
1 0 1 1 00 1

0 0 0 0 0 00 0
1 0 1 1 0 0 10 0
1 1 0 1 1 1 10 1

292 Heinemann Software Design and Development: HSC Course

Microprocessors have instructions for shifting binary numbers to the left and the right
built into them. You can write an algorithm for multiplying numbers just using shifts and
additions.

Algorithm to multiply two numbers (the Multiplicand and the
Multiplier) with the result in Product.

INITIALISATION
Product <- 0

END INITIALISATION
BEGIN PROGRAM
WHILE the Multiplier is not 0

IF the least significant digit of the Multiplier is 1 THEN
Add the Multiplicand to the Product
END IF
Shift the Multiplier one place to the right
Shift the Multiplicand one place to the left

END WHILE
END PROGRAM

Division
Remember the quick way of dividing decimal numbers by ten by lopping off one digit?
Similarly, with binary integers you can quickly divide by two by shifting all the digits one
place to the right.

The algorithm you were taught to perform long division with base ten numbers uses
shift and subtract operations and works just as well with binary numbers, as illustrated in
the following example.

Example
Divide 1101102 by 1012.

1 0 1 0
1 0 1) 1 1 0 1 1 0

1 0 1
Subtract 1 1 10
Shift 1 0 1
Subtract 1 00
Shift 1 01
Subtraction will give negative
No further shifts are possible
Answer: 1101102 ÷ 1012 = 10102 remainder 1002

(This pencil and paper version of the division algorithm is all students need to know
at this stage. A more complete version of the algorithm in pseudocode is given in
G. Sharkey and E. Chopping, Heinemann Senior Computing Studies 2/3 Unit Common
HSC Course, Heinemann 1995.)

Fractions and fixed point, floating point and real numbers.
You already know that when we write a number such as 1.234 as a decimal fraction (with
a decimal point), we mean one unit plus 2 tenths plus 3 hundredths plus 4 thousandths (or
we can read it as 1234 thousandths). We can apply the same principle to binary numbers,
except, of course, we now use a binary point. So we can write:

1.10101 = 1 + + + + + = 53
32

1
32

0
16

1
8

0
4

1
2

293The software developer’s view of the hardware

The simplest way we can use a fixed number of bits (say 8, 16 or 32) to represent a
binary fraction is to state that a certain number of bits are used for the fractional part (that
is, a certain number of bits come after the binary point). Such a scheme is called a fixed
point representation. For example, with 16 bits we might say that the first 8 bits are the
whole number part and the second 8 bits are the fractional part. The disadvantage of the
fixed point scheme is that we cannot represent very large and very small numbers.

There is another scheme for representing fractional numbers with a fixed number of
digits, which you probably see every day on your pocket calculator. This scheme uses
exponential notation and represents each number with two parts: the mantissa and the
exponent. For example:

Mantissa Exponent
456.12783 09 = 456.12783 × 109 = 456127830000

3.45678 −04 = 3.45678 × 10−4 = 0.000345678
This notation is called floating point, because there are many positions that the decimal

point can occupy, depending on the exponent. There is a special form of this notation, called
scientific or standard notation, where the mantissa is restricted to being greater than or
equal to 1 and less than 10. (That is, the mantissa must have exactly one non-zero digit
before the decimal point.)

There are many ways we could use a fixed number of bits to represent a floating point
number, but most computer systems use a version of the IEEE 754-1985 standard produced
by the Institute of Electrical and Electronics Engineers (IEEE). The single precision version
of this standard uses 32 bits as follows (with the bits numbered from 0 to 31 from left
to right).

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
0 1 8 9 31

• S stands for sign. If S = 0 the number is positive; if S = 1 the number is negative. That is,
the number is in sign plus modulus form.

• E stands for exponent in excess 127 form. That is, the exponent for this number is
E-127. Special meanings are used for E = 255 and E = 0.

• F stands for the fractional part of the mantissa. We form the mantissa by putting 1 and
a binary point before F. Because the leading 1 is just assumed to be there, it is sometimes
called the hidden bit.

So for 0 < E < 255 the value, V, of the number is:

V = + 2(E − 127) × 1.F when S = 0 or
− 2(E − 127) × 1.F when S = 1 (See example below.)

0 10000001 00000000000000000000000
= + 2(129 − 127) × 1.00000000000000000000000
= 22 × 1
= 4

1 01111111 010000000000000000000000
= − 2(127 − 127) × 1.01000000000000000000000
= − 20 × 1.25
= − 1.25

0 01111110 10000000000000000000000
= + 2(126 − 127) × 1.100000000000000000000000
= + 2−1 × 1.5
= + 0.75

294 Heinemann Software Design and Development: HSC Course

Noting that 1.11111111111111111111111 is approximately 2 (think about decimal
9.999999999999 …), the biggest possible positive number is:

= 0 11111110 11111111111111111111111
= + 2(254 − 127) × 1.111111111111111111111111
≈ + 2127 × 2
≈ + 3.40282 × 1038

The smallest positive number is:

= 0 00000001 000000000000000000000000
= + 2(1 − 127) × 1.000000000000000000000000000
≈ 1.17549 × 10−38

You should note that so far there is no way of representing the number zero.
It is now time to look at the special values of E, 0 and 255. (The following is only a
partial explanation.)

• If E = 255, the value is ‘infinity’, or ‘NaN’ which stands for ‘Not a Number’. Arithmetic
systems should give this as an answer when the user attempts to do an illegal calculation
such as 0/0 or finding the square root of a negative number.

• If E = 0, F = 0 and S = 0, the value is 0.
The IEEE standard also provides for double precision numbers using 64 bits, with 1 sign

bit, 11 bits for the exponent and the remaining 52 bits for the mantissa. The double
precision standard follows similar rules to the single precision standard outlined above.
Other precisions are also possible; the Macintosh, for example, provides for 80-bit floating
point numbers.

In several computer programming languages floating point numbers are also known as
real numbers. In fact, in a computing context the terms ‘floating point numbers’ and ‘real
numbers’ usually refer to the same thing. We should keep in mind, though, that the true
mathematical meaning of the term ‘real number’ is any number that can be plotted on the
number line (including π and the square root of 2), and floating point numbers in a
computer can only ever be an approximation dpending on how much precision is used. Just
as in decimal numbers some fractions have infinitely repeating decimal fractions (e.g. 1/3 =
0.3333 …), so some simple fractions in binary arithmetic have repeating forms (1/5 =
0.001100110011001100 …). This means that fractions like one-fifth, one-tenth or one-
hundredth cannot be represented accurately in the standard IEEE form no matter how
many bits are used. Programmers must choose a representation for numbers that will
minimise errors, and they must take care that any errors that do occur do not accumulate
in such a way as to become significant.

Exercise 10.3
1 a To multiply a decimal number by ten, shift each digit to the .

b To divide a decimal number by ten, shift each digit to the .
c To multiply a binary number by two, shift each digit to the .
d To divide a binary digit by two, shift each digit to the .
e To divide a hexadecimal digit by , shift each digit one place to the right.
f To multiply an octal digit by , shift each digit one place to the left.
g What is the ones complement of 0101 1101?
h To multiply a binary number by 8, shift the digits places to the left.
i If the binary number 1000 1010 is in sign plus modulus form, is it positive or negative?
j If the number 1000 0011 is in sign plus modulus form, what is the modulus?

295The software developer’s view of the hardware

2 Perform these additions. Show all working.
a 0101 + 0011
b 0110 1101 + 0101 0101
c 0101 1011 + 0010 1010
d 0011 1011 + 0010 0010 + 0011 0001
e 0011 1100 1010 1111 + 0001 1111 0000 1111

3 Write these negative numbers as eight-bit binary numbers in ones complement, twos
complement and sign plus modulus form.
a −310 b −9910 c −10102

4 Perform these subtractions using the twos complement method. Show all working. Write
answers in twos complement and sign plus modulus form.
a 0001 0011 − 0000 1010 b 0111 0000 − 0001 1100 c 0000 0101 − 0001 1100
d 0000 0110 − 1000 1110 e 1000 1111 − 0101 1011

Example: 0000 0011 − 0000 0101
The second number 0000 0101
Ones complement 1111 1010
Add one 0000 0001
Twos complement 1111 1011
Add first number 0000 0011
Difference 1111 1110 in twos complement form

The sign bit is 1 so the number is negative, therefore you need to take the twos
complement again to get the modulus.

Ones complement 0000 0001
Add one 0000 0001
Twos complement 0000 0010 the modulus

1000 0010 answer in sign plus modulus form.

5 Perform these multiplications. Show all working.
a 0011 1010 × 10 b 0001 1011 × 101 c 0010 1101 × 1101
d 11 × 1011 0011 e 0011 1101 × 0101 1011

6 Perform these divisions by a simple shift. Show all working.
a 0010 1110 ÷ 10 b 0001 0000 ÷ 0000 0100 c 1100 0000 ÷ 0001 0000
Perform these divisions by following through the shift-and-subtract algorithm given
previously. Show all working.
d 0000 1100 ÷ 0000 0011 e 0010 1100 ÷ 0000 0101 f 0111 1111 ÷ 0000 0111

7 a Write –8.010 as an IEEE 32-bit floating point number.
b Write 0.12510 (1/8) as an IEEE 32-bit floating point number.
c Interpret 1 00000100 10000000000000000000000 as an IEEE 32-bit floating point number.
d Interpret 0 00000000 00001000000000000000000 as an IEEE 32-bit floating point number.

8 Examine the pseudocode algorithm for multiplication given previously. Work through the
algorithm with the multiplicand equal to 1011 and the multiplier equal to 0101. Draw up
a table with headings for multiplicand, multiplier and product and show the values each
time the algorithm goes through the WHILE statement.

9 A programmer has a need to perform a very large number of multiplications by 510 (1012),
so she decides to write a special algorithm for the task. How might this algorithm go?

10 What changes would need to be made to the pseudocode algorithm for multiplication if
it is to take account of negative numbers in twos complement form?

296 Heinemann Software Design and Development: HSC Course

A circuit like this is called a logic gate—its inputs and outputs take logical values (true
or false, 0 or 1). This circuit is the simplest kind of logic gate and perhaps is not a very
interesting one since its output is exactly the same as its input. It is sometimes called a
‘buffer’ and its symbol in logic diagrams is as shown in Figure 10.3. With similar simple
transistorised circuits we can make logic gates with more useful functions.

A logic gate is a circuit that takes one or more logical (or binary) values as inputs and
has one or more logical (or binary) values as outputs. A logical value can have two values
that can be represented as true or false, on or off, 1 or 0. In the physical circuits in this
chapter the two values are a ‘high’ voltage (around 5 or 6 volts) for true or 1 and a ‘low’
voltage (around 0 volts) for false or 0.

Figure 10.3 Logic diagram
symbol for a buffer.

Input Output

Electronic circuits to perform standard
software operations
Computing technologies use binary digits to represent data because many physical
phenomena can be present in one of two states which correspond to the binary digits, zero
and one. This section looks at how the binary digits can be represented by two levels of
electrical voltage and how simple electronically controlled switches (made with transistors)
are used to perform computing functions. Very simple circuits are studied first, followed by
complex circuits packaged into integrated circuits.

Consider a simple switch such as you would find in a battery operated torch, as shown in
Figure 10.1. In logical terms, the input to this circuit is the state of the switch (which can be
on or off), and the output is the level or voltage from the switch which is shown by the lamp
(which can be on or off).

Transistors can be used to build simple electronically
controlled switches (see Figure 10.2a). The advantage of
electronically controlled switches, as we will see, is that
the output from one switch can be the input to another.
Often the diagram is simplified by leaving out the details
of the power supply, as shown in Figure 10.2b. The details
of such circuits are beyond the scope of this text, but
many references are available, including a discussion in G.
Sharkey and E. Chopping, Heinemann Senior Computing
Studies 2/3 Unit Common HSC Course, Heinemann 1995.

Figure 10.4 Truth table and symbol for
a NOT gate.

Input Output

 0 1

 1 0
Input Output

NOT gates
Apart from a buffer, the simplest kind of logic gate
is the NOT gate (also called an inverter or inverting
buffer). A NOT gate has one input and one output
and the output is the opposite (or complement) of
the input. If the input is true then the output is
NOT true and if the input is false then the output
is NOT false.

Figure 10.1 Simple circuit with
switch, battery and lamp.

Figure 10.2 Simple electrically controlled switch.

Input Output
Input

LED output

Transistor

ba

297The software developer’s view of the hardware

NAND, NOR and XOR gates
NAND, NOR and XOR gates all have two inputs. From the descriptions below, you should
be able to draw up the truth tables for each gate.

The output of a NAND gate is the opposite of the output of an AND gate. (A NAND
gate is a NOT AND gate.) The output of a NAND gate is true if, and only if, it is not true
that both the inputs are true.

The output of a NOR gate is the opposite of the output of an OR gate. (It is a NOT OR
gate.) The output of a NOR gate is true if, and only if, it is not true that either of the inputs
is true.

Figure 10.5 Truth table and symbol for AND gate.

Inputs Outputs
A B

0 0 0
0 1 0
1 0 0
1 1 1

Input A

Output
Input B

Figure 10.7 Symbols for NAND, NOR and XOR gates.

XORNAND NOR

We can show the relationship between the inputs and the outputs of a logic gate using
a truth table. A truth table lists all possible inputs for the gate and shows the corresponding
output. The truth table and logic symbols for a NOT gate are shown in Figure 10.4. The
buffer (which does not change its input) and the NOT gate are the only possible logic gates
that have only one input.

AND gates
A simple logic gate that has two inputs is the AND gate. The output of an AND gate is true
if, and only if, the first input is true AND the second input is true.

To draw up a truth table for a gate that has two inputs, all of the possible combinations
of values for the two inputs are listed. You will see that these combinations are the same as
binary numbers from zero to three. Figure 10.5 shows the truth table and logic symbols for
AND gates.

Figure 10.6 Truth table and symbol for an OR gate.

Inputs Outputs
A B

0 0 0
0 1 1
1 0 1
1 1 1

Input A

Output
Input B

OR gates
The OR gate is another with two inputs. The output of an OR gate is true if one of the two
inputs is true OR the other input is true OR both inputs are true. The truth table and logic
diagram symbol for an OR gate are shown in Figure 10.6.

298 Heinemann Software Design and Development: HSC Course

The output of an XOR gate is true if either of the inputs is true but not if both inputs
are true. The XOR stands for ‘exclusive or’ and sometimes it is written as EOR.

Combining gates
It is the combination of these simple gates that will give us the functions of a typical
computer. It is an amazing fact that you could build a whole computer using just
combinations of NAND gates—a typical microprocessor would contain millions of them. In
practice, the transistorised circuits for a number of gates are packaged into integrated
circuits (ICs). If you look inside a computer you will see many ICs, mostly in the familiar
form of rectangular black plastic packages with legs.

The logical functions described here could be investigated using just pencil and paper, or
by actually building the circuits using transistors and ICs, or most conveniently by using a
computerised simulation. A very good program for Macintosh computers is called DigSim;
it is available from a number of download sites on the Internet.

The following sections look at ways of analysing and designing logic circuits for familiar
functions such as adding numbers and storing data. First, the method for analysing
combinations of gates is discussed.

Designing circuits
The process of designing logic circuits follows the same general process that is used for
developing computer software. The steps in the process are:
• Identify the inputs and outputs. If possible, describe the desired function in logical terms

(using AND, OR, NOT). Draw up a truth table for the desired function.

Example 2
Draw up the truth table for the logic diagram
shown in Figure 10.8.

The first step is to list all possible
combinations of the three inputs. From your
study of binary numbers you know that there
are 23 = 8 combinations. One way to make sure
you get all the combinations is to list them in
numerical order as binary numbers.

Input C

Input A D

Output
Input B

Figure 10.8 Combined gate with
intermediate output–input labelled.

A B C D = A AND B Output = C OR D
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

Figure 10.9 Truth table for the circuit shown in Figure 10.8.

The second step is to label intermediate points where the output from one
gate becomes the input of the next. Include a column for intermediate points in
your truth table.

299The software developer’s view of the hardware

• Identify the required components. Are there recognisable parts of the function that
correspond to the logic gates we know about, either the standard gates or the integrated
components (adders and flip-flops) that are discussed below. There are mathematical
techniques for calculating circuit diagrams but these are beyond the scope of this course.
In practice, a designer would use a computer-aided design (CAD) package to help design
the circuit.

• Check the solution with a truth table. Make sure that the truth table for the proposed
design matches the truth table for the required function. Again, in practice a designer
would use a computerised package (such as the simulations described above) to check a
design. The computerised simulation will check not only logical function but also other
important factors such as timing. Modern integrated circuits are so complex that they
could not be designed without the use of these CAD and simulation software packages.
It is somewhat ironic that the development of modern computers could not have been
achieved without the development of modern computers to use in the design process.

• Evaluate the design. Does it solve the problem? Is it economical? Can it be improved (by
using fewer components for example)? The proof of the pudding is in the eating and in
practice the designing engineer would make a prototype of the design to check that
it works.

Example 3
Draw up a truth table for a three-input
AND gate. Draw a logic diagram which
shows how to make a three-input AND gate
using gates with two inputs. A three-input
AND gate is where the output is true if, and
only if, the first input is true AND the
second input is true AND the third input is
true.

Input C

Input A

Input B
D

Output

Figure 10.10 Truth table for a three-input AND gate.

Figure 10.11 Three-input AND gate
made from two 2-input AND gates.

A B C D = A AND B Output

= A and B and C

= D AND C

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

If you label the three inputs as A, B, C, you can write:
Output = A AND B AND C

= (A AND B) AND C
The bracket form provides a clue about how to design a logic circuit with gates

with two inputs. Again there are three inputs, giving 23 = 8 combinations.

300 Heinemann Software Design and Development: HSC Course

A B Sum Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 10.12 Truth table for adding
two bits.

A

B Sum

AND

AND
OR

Carry

Figure 10.13 Binary half-adder.

Adding numbers
This section looks at the way logic gates can be used to do arithmetic. Recall the algorithm
you practised earlier for adding two binary numbers together. This was done by adding the
numbers column by column, starting at the right-hand column, and carrying a 1 into the
next column if necessary. Start by designing a logic circuit to add one column of two binary
digits. You can then chain copies of your circuit to add as many columns as you need.

With two binary digits as inputs, the possible sums are:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

You can see that to allow for the case 1 + 1 your circuit will need to have two outputs—
the partial sum and the carry. The truth table required is shown in Figure 10.12.

In logic terms, the sum is true if input A OR input B is true, AND NOT both A AND B
are true (i.e. A XOR B). The carry is true if both A AND B are true. Without looking at
Figure 10.13, try to design a logic diagram with the appropriate outputs.

Sum

A

B
OR

Half-adder
Sum

Carry

Carry

Carry

Carry

Figure 10.14 Binary full-adder.

This circuit is still not what you need to add binary numbers together, as it does not
allow for the fact that there may have been a carry from a previous addition. This circuit is
thus called a half-adder. A full-adder will need three inputs: the two binary digits being
added and the carry.

To design a full-adder you can utilise copies of the circuit you already have for a half-
adder—add the two digits together and then add the carry input. If either of the two carries
is true, the final carry is true (see Figure 10.14). You should draw up a truth table for the
full-adder. (It has three inputs, so the truth table will need eight lines.) You should also make
sure that you understand the purpose of the full-adder sufficiently to be able to do question
7 in Exercise 10.4.

Storage of binary data
Binary data can be stored in logical elements called flip-flops. A flip-flop’s basic
characteristic is that it can be in only one of two possible states at any given time and that
it will remain in that state until commanded to change states. Because flip-flops stay in one
of two states they are called bistable devices.

301The software developer’s view of the hardware

The simplest kind of flip-flop is called a reset-
set flip-flop or an RS flip-flop. An RS flip-flop can
be made using the basic logic gates, using the
circuit in Figure 10.15. Like most flip-flops it has
two outputs, but one is always the complement (or
opposite) of the other. Use one of the simulation
programs to carefully analyse the way this circuit
works. Note that the case of both inputs being 1 is
not allowed.

A slightly more complicated flip-flop is the
gated RS flip-flop. The circuit shown in Figure
10.16 is the same as the plain RS flip-flop with a
few more gates added to the front and an extra
input.

While the ENABLE input is 0, the SET and
RESET inputs will have no effect on the output.
When the circuit is ENABLEd (that is, the
ENABLE input is 1), it will behave just like an RS
flip-flop. Computer circuits are controlled by a

Figure 10.15 RS flip-flop with truth table.

Set

Output
Q1

Output
Q2

clock pulse which synchronises the action of all individual elements of the circuit, so the
ENABLE input is sometimes called the CLOCK input.

One further addition to the circuit for a gated RS flip-flop gives the data or D-type flip-
flop (see Figure 10.17). The SET input is fed through an inverter (a NOT gate) to the
RESET input. The RESET input will now always be the opposite of the SET input (and vice
versa). The circuit now has only one input (not counting the ENABLE). This input is called
the DATA input.

If the ENABLE is on, the output from a D-type flip-flop will follow whatever the DATA
input is doing. If the ENABLE is turned off, the output will stay in its current state until the
ENABLE is turned on again. A D-type flip-flop is sometimes called a ‘latch’.

Output
Q1

Output
Q2

Data

Enable

Figure 10.16 Gated RS flip-flop.

Output
Q1

Output
Q2

Reset

Set

Enable

Figure 10.17 D-type flip-flop.

Set Reset Q1 Q2

0 0 (No change)

1 0 1 0

0 1 0 1

1 1 Not allowed

302 Heinemann Software Design and Development: HSC Course

Integrated circuits
You have seen how to make simple logic gates using electronic components, and how these
simple gates can be combined to perform more complex functions. You have also seen how
subcircuits can be used as building blocks for other circuits (a full-adder made from half-
adders, a memory for a byte made from eight D-type flip-flops, and so on).

The entire circuit for a complex function can be made into a single block. These blocks
are called integrated circuits (ICs) and since the 1960s they have become ever more
complex. If you look inside any electronics device (especially computers), you will see a
circuit board that is mostly made up of integrated circuits. These circuits range in
complexity from a package containing a few AND gates to complete microprocessors and
memory chips containing the equivalent of millions of transistors. Most integrated circuits
are packaged black plastic rectangles with a number of metal ‘legs’. The legs are connectors
for the inputs and outputs of the circuit as well as for power.

A common type of simple integrated circuit is the 74xx series of TTL ICs. The TTL
stands for transistor–transistor logic and refers to the techniques used to design the
integrated circuit. If you look at integrated circuits you will see that one end is marked,
usually with a notch. The pins are numbered anticlockwise starting from the mark. Figure
10.19 shows the functions of some common integrated circuits that you can buy from any
electronics store for less than a dollar each.

Integrated circuits depend for their operation on transistors, which were first developed
in 1947 by John Bardeen, William Shockley and Walter Brattain at Bell Laboratories.
Transistors are manufactured using semiconductor elements such as silicon and germanium.
Silicon is a very attractive element to use to make something useful because next to oxygen
it is the most abundant element on Earth. It is the principal ingredient in sand, quartz and
glass. In the 1960s engineers such as Robert Noyce at Fairchild Semiconductor and Jack
Kilby at Texas Instruments developed ways of building whole electronic circuits of
transistors and other components in a single block. These circuits were made up of layers of
semiconductor doped with various impurities on a base of silicon (the ‘silicon chip’). Robert
Noyce went on to help found Intel Corporation, the company that makes, among other
things, the microprocessor chips used in most of the PCs in the world.

The development of integrated circuits has been very rapid. With improved manu-
facturing techniques, the complexity of the circuit that can be built onto one chip
has increased many-fold. The 7408 chip with AND gates, shown in Figure 10.19, has
the equivalent of about 16 transistors; the 80486 microprocessor has over 4 million
transistors. Memory chips that store 4 megabits are becoming commonplace and chips
storing 16 megabytes are available.

The D-type flip-flop can be used to
store one bit of data. If more than one bit
of data is to be stored, extra flip-flops
must be used. To store one byte eight
flip-flops would be needed. Figure 10.18
shows how eight D-type flip-flops can be
combined to store one byte.

Enable
Input bit [0]

Output bit [0]D

Input bit [1]
Output bit [1]D

Input bit [2]
Output bit [2]D

Input bit [3]
Output bit [3]D

Input bit [4]
Output bit [4]D

Input bit [5]
Output bit [5]D

Input bit [6]
Output bit [6]D

Input bit [7]
Output bit [7]D

Figure 10.18 Storing one byte with eight flip-flops.

303The software developer’s view of the hardware

Figure 10.19 Some common integrated circuits.

1 a If the input to a NOT gate is true, the output is .
b If both inputs to an AND gate are true, the output is .
c If both inputs to an OR gate are true, the output is .
d If only one input to an AND gate is true, the output is .
e A bistable device can be in one of states.
f How many half-adders are needed to make a full-adder?
g How many flip-flops are needed to store a byte of data?
h CAD stands for .
i IC stands for .
j Which pair of binary digits, when added together, produce a carry?

2 Give definitions in words and with truth tables for NOT gates, AND gates and OR gates.

3 Draw up truth tables for the circuits shown in Figure 10.20.

Exercise 10.4

VCC
14 813 12 11 10 9

1 72 3 4 5 6

GND

7432: four OR gates

VCC
14 813 12 11 10 9

1 72 3 4 5 6

GND
7404: six NOT gates

1 72 3 4 5 6

VCC
14 813 12 11 10 9

GND
7408: four AND gates

B4
16 15 14 13 12 11

1 72 3 4 5 6

B2

7483: four-bit full-adder

10 9

8

Σ4 C4 CE GND B1 A1 Σ1

A2Σ2Σ3A4 A3 B3 VCC

1 72 3 4 5 6

R D T S Q Q~

R D T S Q Q~VCC
14 813 12 11 10 9

GND
7474: combined D-type and RS flip-flops

(enable table T for timer)

4 Draw up a truth table and a logic circuit for the following using ONLY NOT, AND and OR
gates.

a A NAND gate.
b A NOR gate.
c An XOR gate.
d A quad input AND gate, which has four inputs and the output is true if, and only if, all

inputs are true.

5 Draw a logic circuit for a D-type flip-flop using NANDand NOR gates.

6 Explain how a half-adder can be made from simple logic gates.

7 Draw a logic diagram showing how full-adders can be combined to add two four-bit
numbers.

8 Show how the logic circuit in question 7 could be packaged into an integrated circuit.
Show how two of the integrated circuits could be combined to add two eight-bit numbers.

9 A challenge
Design a logic diagram that has two inputs and four outputs according to this truth table.
Such a circuit is called a decoder.

Inputs Outputs
A B C D E F

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

10 More challenges
a Design a logic diagram with four inputs and ten outputs. Label the outputs 0 to 9. If the

four bits of input are interpreted as a binary number, the appropriately labelled output
should be true; all others will be false.

b Design a circuit that takes a four-bit binary number as input and has seven outputs that
will control the appropriate parts of a seven-segment digit display (calculator-style
display).

304 Heinemann Software Design and Development: HSC Course

Programming of hardware devices
From your study and your experience of computer hardware you will realise that a
computer system is made up of many different subsystems. The desktop computer system
you use has subsystems that process input from devices such as keyboards and mice, control
storage devices such as disk drives, and control output devices such as VDUs and printers.
Other subsystems communicate with other computing devices through modems and

B

A

Output
AND

C

A

B

Output

AND

AND
AND

D

C

A

B
Output

OR
AND

C

A

B

Output
OR

AND

(a)

(c) (d)

(b)

Figure 10.20

a

c

b

d

305The software developer’s view of the hardware

networks. Most computer users do not need to worry about these subsystems, but software
developers need a good understanding of the way the hardware is programmed.

Your school will probably have many hardware items that you can experiment with (and
maybe develop projects for), including joysticks, science tool kits, old-style dot matrix
printers, Lego control systems, data loggers, graphic calculators, plotters, CNC lathes, MIDI
musical instruments and turtle robots. There are many differences in the way these devices
are used, so it is hard to give specific advice about programming them. You should, of
course, use all of the problem-solving skills and techniques you have learnt in this course,
including making sure you have carefully read any documentation.

Some of the simplest specialised hardware input and output devices have been used to
provide access to computer software for people with disabilities. Paraplegics are capable of
very little physical movement, but they may be able to operate a simple switch, one
operated by the breath, for example, or by a movement of the head. As well as providing
access to computer software, for many these devices have provided for the first time a way
of communicating with others. How would you go about designing software that will allow
typing where the only input is a simple switch? See what you can find out about other kinds
of special input and output devices for people with disabilities. Have a class discussion about
the implications of the rights of people with disabilities to be able to use software in general.
Do software designers have an obligation to design software that does not deny access to
people with the need for special input devices?

Processing the input
The input to a system may come from some other processing system (for example the main
input to a printer is generated by a computer) or from a sensor, a device that measures some
quantity in the environment.

A sensor will measure digital or analog phenomena. The simplest example of a digital
sensor is a simple switch. A keyboard is, of course, an example of a digital sensor. Analog
sensors can measures quantities such as position, temperature, pressure etc. Examples of
analog sensors include joysticks (position) and microphones (sound). Each measurement is
called a sample.

Before a measurement made by an analog sensor can be processed it must be converted
to digital form as a binary number, in a process called digitising, by a device called an analog
to digital converter (ADC). This binary number will probably need to be conditioned or scaled
in order to produce the kind of measurement sought. For example, the hardware specification
for a temperature sensor and its ADC might tell us that the output of the ADC is 1000010
at 20 degrees Celsius and that the output goes down 10 for each degree rise in temperature.
Can you figure out a formula to convert the output of the ADC into degrees Celsius?

The input data stream
Whatever the source of input data, it can be thought of as a stream of binary digits or bits.

… 1011010101010101010101011101000101010110100010101010 …
Often the stream of bits will be divided into some sort of regular chunks such as eight-

bit bytes. Note that the chunks might not be eight-bits. Remember, for example, that ASCII
is a seven-bit code and some old printers work with seven-bit chunks. Teletypewriters once
worked with the five-bit Baudot code.

So a very general algorithm for processing an input data stream would be something like
this:

BEGIN Process data stream
WHILE there is more data to be processed

Get the next chunk of data
Process the chunk of data

END WHILE
END

306 Heinemann Software Design and Development: HSC Course

For example, a system that controls a room heater might operate simply by turning the
heater on and off at predetermined times. This would be an open system. A closed heating
system would include a temperature sensing device (a thermometer) which feeds data
about the temperature of the room back to the system controlling the heater. Devices that
have an effect on the real world, such as heaters and electric motors, are called effectors or
actuators.

Electric motors are a very common device in controlled systems. How many devices
common to homes and schools can you think of that include an electric motor? Some
electric motors are operated as part of closed systems, with sensors that detect the position
or the speed of the motor being fed back to the controlling sytem.

There are kinds of electric motor that can be operated in an open control system. Servo
motors move through a defined angle proportional to the frequency of a controlling pulse;
these are commonly used in model aeroplanes. Stepper motors move through an exact angle
for each controlling pulse they receive; these are used in many computer devices, such as
printers and disk drives. For example, the system that controls the print head of an inkjet
printer can control exactly how far the print head travels, by sending a precise number of
pulses to the stepper motor which drives the head backwards and forwards. This open
control system would normally be used in conjuction with feedback sensors that detect
when the print head is at the extreme left- and right-hand limits of its travel.

PROCESSOR ACTUATOR PROCESSOR
ACTUATOR
SENSOR

Figure 10.21 a An open control system. b A closed control system.

a b

The input data stream can contain several different kinds of data:
• Header information—data at the beginning of a block of data, which might include

information about the kind of data, the device that generated the data, the date and time
the data was generated, error checking data and, commonly, the amount of data
to follow.

• Data body—the actual data to be processed, which might include control code data.
Control code data is meant to control aspects of the hardware (such as carriage returns)
and will need to be separated from the data during processing. Control data is sometimes
included through the use of escape sequences. An escape sequence uses a special control
code that means that a certain number of data chunks that follow contain control data
(see the dot matrix printer case study on p. 307).

• Trailer information—data at the end of a block of data, which could include error
checking data and markers to indicate the end of the block of data.

The output data stream
Just like the input stream, the output stream can be thought of as a stream of bits grouped
into chunks such as eight-bit bytes. As noted previously, the output stream from one system
can become the input stream for another. Again, just like the input stream, the output
stream can consist of a header, body and trailer data, control codes, escape sequences and
data bits.

The output data stream is often designed to control a hardware device (such as a printer
or an industrial robot arm). The processor and the device being controlled form a control
system. A control system can be open or closed. In an open control system data moves only
from the processor to the device being controlled, as in Figure 10.21a. A closed loop control
system has a feedback loop from sensors which detect information about the effect of the
device being controlled, as in Figure 10.21b.

307The software developer’s view of the hardware

Output hardware devices vary in the amount of processing they do. People often talk
loosely about the amount of ‘intelligence’ a device has. For example, a room heater can
simply be on or off; it does not do any processing of its data stream. An old-fashioned
teletypewriter used hardware to detect which input code corresponded to which character
(or control function); again it could not be said to do any real processing of its input stream.
Since the development of microprocessors, it has been possible to design cheap devices that
perform some processing of their input; in fact software to control is often cheaper than the
equivalent hardware. Modern dot matrix printers can be used in flexible ways because of
the processors they contain. PostScript laser printers are fully fledged computer systems
with their own programming language. (If your computer room contains a PostScript
printer, it is probably the most powerful computer in the room.)

It is part of the job of the designer of software for a hardware device to work with
engineers in determining which functions of the device are best done by hardware and
which are best done by software.

Case study ASCII

Earlier in the chapter the ASCII code for
representing text was discussed. The ASCII
codes from 000 0000 to 001 1111 (0 to 3110)
and 111 1111 (12710) are control characters.
The code was designed to be compatible with
punched tape. Where there is a 1, a hole is
punched; for a 0, there is no hole. You would
not want the case where there are no holes
punched (000 0000) to stand for anything, so
000 0000 is said to stand for the NULL
character. Similarly, if you made a mistake on
a tape puncher, you could backspace and
delete the erroneous character by punching
all seven holes (111 1111), so 111 1111 = 127
is a deleted (or DEL) character.

Some of the most interesting control
codes are the so-called format effectors.
These affect the way the carriage on an old
typewriter or teletype moves, or the way the
cursor moves on a screen, as shown below.
• FE0 BS: backspace. Move the print head or

the cursor one space to the left.
• FE1 HT: horizontal tab. Move the print

head or cursor to the next tab position.
This code corresponds to the tab key on
the keyboard (‘tab’ is short for
‘tabulating’). The tab character is often
used to separate items of text, such as the
fields in a database.

• FE2 LF: line feed. Move the cursor down
one line. See the discussion about LF and
CR below.

• FE3 VT: vertical tab. Like HT, only the
cursor moves vertically.

• FE4 FF: form feed. Move to the next page;
that is, feed one form through the printer.

• FE5 CR: carriage return. Move the cursor
or print head back to the start of the line.
See the discussion about LF and CR below.

Line feeds and carriage returns
You can see that there is no single format
effector that causes the print head or cursor
to move down to a new line. You need a
combination of a line feed (move down one
line) and a carriage return (move to the
beginning of the line). Because of this, some
systems (computers, printers, terminals)
interpret CR to mean both CR and LF. This can
get confusing if two (or more) connected
pieces of equipment (say a computer and a
printer) both interpret CR as meaning CR
followed by LF. In this case you end up with
two line feeds and everything ends up
double spaced (or worse). Conversely, if no
part of the system puts in a line feed,
everything gets printed on the same line.

When text is stored using the ASCII code in
a computer’s memory or in a disk file, one
byte is used for each character. There needs to
be some way of marking the ends of lines. Do
you use CR and trust some other part of the
system to put in LF or do you use both CR and
LF? The sad fact is that it depends on what
kind of computer you are using: the con-
vention on the Macintosh is to use just CR and
on IBM compatibles to use both LF and CR.

308 Heinemann Software Design and Development: HSC Course

Example
Design an algorithm to control a device that displays text from ASCII input. The device
responds to the CR and LF control codes. The NULL (0) control code marks the end of the data
input stream. All other control codes should be filtered out.

BEGIN Display ASCII input
Get first character
WHILE character is not NULL

IF character <= 31 or character = DEL THEN
It’s a control character
SELECT CASE character

CASE CR: move cursor to start of line
CASE LF: move cursor down one line
CASE ELSE

Ignore this character
END SELECT
ELSE
Display character
END IF
Get next character

END WHILE
END

Questions

1 a How could this code be modified to
also handle the BS control code?

b How could the code be modified to
count the characters in the input?

c How could the code be modified to
count the characters printed.

d How could the algorithm be changed
if, instead of marking the end of the
input with a NULL, the input included a
header consisting of two bytes con-
taining the number of characters to
follow?

e How could the code be modified so
that a CR or an LF control code is inter-
preted as ‘Make a new line’; that is,
either CR or LF is counted as being both
a CR and an LF?

f How could the code be modified so
that after every 80 characters the
display moves to a new line.

2 Getting harder. How could the code be
modified so that the HT (TAB) control
code will cause some spaces to be printed
so that the cursor moves across to the
next position which is a multiple of 10
characters from the left of the display?

Case study A simple dot matrix printer

This case study describes the Acme rr80, a
fictitious dot matrix printer designed to
illustrate a number of ways that control
characters and escape sequences are used.
The printer’s print head has eight pins
arranged vertically which print onto the
paper by striking through an inked ribbon as
the print head moves across the page. The
printer has an on-board processor that
generates the dot patterns for characters
from a number of fonts stored in ROM.

The input to the Acme rr80 is a stream of
bytes, where all eight bits are significant.
Each byte is printed as a character from the
standard Latin 1 encoding unless the byte is a
control code (hexadecimal 00 to 1F). The
control codes are ignored except for the
following:
• The format effectors have their standard

effects. LF is a true line feed and CR is a
true carriage return; that is, a CR, LF
sequence is required for a new line.

309The software developer’s view of the hardware

• ESC (hexadecimal 1B, decimal 27) begins a
sequence of one or more bytes affecting
the control of the printer. Only a small
selection of these ‘escape’ sequences is
described here.
• ESC F n sets the font to font number n

where 1 = Times, 2 = Helvetica and 3 =
Courier. For example, noting that the
ASCII for the letter F is hexadecimal
46, the hexadecimal sequence 1B 46
03 would set the font to Courier.

• ESC S n sets the print style to a style
determined by n. The parameter n is
calculated by adding values for the
styles required. A value of 0 for n
(decimal) will give plain text.

1 Bold
2 Italic
4 Underline
8 Expanded
16 Condensed
32 Shadowed
64 Outlined

• ESC H n1 n2 n3 … NULL sets horizontal
tab positions across the page. For
example, the hexadecimal sequence
1B 48 08 10 18 20 00 sets tab positions
8, 16, 24 and 32 character positions
from the left margin. (Note the 00
(NULL) at the end.)

• ESC L n sets the number of lines per
inch; that is, the sequence sets the
amount by which each line feed feeds
the paper. Common values for n are 10
(hex 0A) and 12 (hex 0C).

• ESC G n1 n2 d1 d2 d3 … switches to a
bit-mapped graphics mode where
each data value d1, d2, d3 … prints
one vertical column of eight dots, one
dot for each of the eight pins in the
print head, with the least most
significant bit being the top dot. The
parameters n1 and n2 form a 16-bit
number defining the number of data

values to follow, with the most
significant byte first. This allows the
printer to print any bit-mapped image
by scanning successive rows of eight
dots. Note that the printer must first
be set to 12 lines per inch (see ESC L),
or there will be a gap between each
scanned row.

Notes
1 There are three kinds of escape sequence

here: those with a fixed number of
parameters (e.g. ESC F), those with a
variable number of parameters with a
delimiter or guard value to mark the end
(e.g. ESC H), and those with a variable
number of parameters where the number
of data values is defined by the
parameters (e.g. ESC G).

2 Modern GUIs such as Mac-OS and
Microsoft Windows rarely use the text-
printing capabilities of dot matrix
printers. The printer drivers in these
systems render each page to be printed as
a bit map which is sent to the printer
using something like the ESC G sequence.

Questions

1 In hexadecimal, what sequence of bytes
would print these lines, in plain text?

Paris in the spring.

2 What would be printed by the following?
52 75 64 65 20 77 6F 72 64 08 08 08 08 08
08 08 08 08 58 58 58 58 58 58 58 58 58

3 What sequence of bytes would print the
word ‘Title’ in bold, italic, underlined
Helvetica.

4 What sequence of bytes would be
required to set tab stops every 5
characters up to and including the 40th
character position.

5 What sequence of bytes would print a 10
by 20 dot rectangle?.

310 Heinemann Software Design and Development: HSC Course

1 a Name and describe two different kinds of digital sensor.
b Name and describe two different kinds of analog sensor.
c What information might be included in the header of a data stream?
d What kind of information might be contained in the trailer of a data stream?
e Describe the purpose of a control code in a data stream.
f What is the purpose of the carriage return (CR) and line-feed (LF) control codes in an

ASCII data stream?
g Describe the function of a stepper motor.
h What is the difference between an open and a closed control system?
i Describe an escape sequence in a data stream.
j Would a printer be likely to contain any sensors? What would they sense?

2 Investigate the kind of data stream that is available from the keyboard on your computer?
Is it possible to tell whether a key is being held down? Is it possible to tell which keys are
being held down if more than one is being pressed simultaneously? Can you tell if the
control, alt/option, shift keys are being pressed? Is the data code corresponding to a key
the same as the ASCII code for the letter on that key? The place to find answers to these
questions might be the help system for the programming language you use.

3 See if you can find at home or at school the manual for a modem (or search for
documentation for the ‘Hayes AT command set’ on the Internet). What sequence of
characters would be sent to the modem to get it to ‘pick up the phone’ and dial a number?
What sequence of characters would be sent to the modem to get it to ‘hang up’ the
phone?

4 A simple robot has the following commands:
• F n means move forward n steps. F means the ASCII value for F, and n is an eight-bit twos

complement binary number (that is, n can be negative, so the robot can move
backwards).

• R n means turn right (clockwise) through n degrees. Again, R stands for the ASCII for R
and n is an eight-bit twos complement binary number. Negative values of n mean turn
left (anti-clockwise).

a What is the greatest number of steps that the robot can move forwards in one
command?

b What sequence of commands, written as binary numbers, would move the robot
clockwise around a square with sides 20 steps long?

c What sequence of commands, written as binary numbers, would move the robot anti-
clockwise around a square with sides 20 steps long?

d What sequence of commands causes the robot to rotate through one full revolution
(360 degrees) on the spot?

5 As a class exercise, make a list of all the hardware devices you can think of that are in your
school and that can be controlled by a computer or contain their own processor. Select one
of these devices and answer the following questions:
a What is its function?
b What sensors does it have?
c Can it be described as an open or a closed control system?
d Does it have a processor that can be programmed?

Exercise 10.5

Review exercises

311The software developer’s view of the hardware

1 a In a binary system there are
possible values.

b The radix of hexadecimal numbers is
.

c A closed loop control system has
.

d The middle digit in the binary number
1001001 stands for the
power of 2.

e The ASCII for a star is the answer to
everything. What is it?

f What is the ASCII code for the numeral
7?

g What is the twos complement of
11001100?

h Write decimal −7 as a binary number in
sign plus modulus form.

i What is the exact decimal equivalent of
a kilobyte?

j What is the ones complement of
1111 1111?

2 Convert these decimal numbers to binary
and hexadecimal.
a 10 b 22
c 75 d 921

3 Convert these numbers to decimal.
a 11012 b 1101 01102

c 2758 d AB16

4 Perform these calculations (in binary).
Show all your working.
a 1101 1100 + 0011 0101
b 0100 1100 − 0001 0011
c 0001 1010 × 0000 0100 (look for

shortcut)
d 0010 1000 ÷ 0000 0100 (look for

shortcut)
e 0010 1100 × 0000 1101
f 0001 1000 ÷ 0000 0100

5 a A binary logic system has two values,
usually called and

.
b How many flip-flops are needed to store

a byte?
c How many half-adders are needed to

add two binary numbers each with four
digits?

d The common element used in the
manufacture of integrated circuits is

?
e What is the output of an AND gate if

one of its inputs is false?

f What is the output of an OR gate if one
of its inputs is false?

g Why is a flip-flop called a bistable
device?

h How many different combinations of
inputs are there to a gate that has three
inputs?

i If the input to a NOT gate is true, what
is the output?

j If 573 NOT gates are connected in series,
with the output of the first becoming
the input of the second and so on, what
will be the output of the 573rd if the
input to the first is false?

6 Draw the logic circuits that will give the
outputs described by the following truth
tables and description.

a Inputs Output
A B
0 0 0
0 1 0
1 0 0
1 1 1

b Inputs Output
A B
0 0 0
0 1 1
1 0 1
1 1 0

c Inputs Output
A B
0 0 1
0 1 0
1 0 0
1 1 1

d A logic circuit with three inputs where
the output is true if any of the inputs is
false.

7 a Show how logic gates can be used to
build a device that can store one bit of
data.

b Describe a binary half-adder. Show how
half-adders can be combined to
construct a full-adder.

8 Describe the kinds of data that might
make up a data stream (input or output),
including a header, data, trailer
information and control codes.

Chapter summary

312312 Heinemann Software Design and Development: HSC Course312312

• Binary numbers are used to represent data in computer systems because there are many things
that can be in one of two states.

• Binary numbers work in the same way as decimal numbers except that they are based on
powers of two instead of powers of ten.

• Computer programmers use octal or hexadecimal numbers because eight and sixteen are
powers of two.

• In a computer system, numbers can be represented directly as binary numbers or in a character
code such as ASCII.

• The addition of binary numbers can be carried out using an algorithm just like the familiar
algorithm for decimal numbers.The usual way of subtracting a binary number is to add its twos
complement.

• The multiplication of binary numbers can be done on paper using the familiar method. In a
computer an algorithm involving shifting and adding is used. Division uses an algorithm
involving shifting and subtracting.

• Electronic circuits to process binary data can be built up using simple logic gates such as NOT,
AND and OR gates. The inputs and outputs of a logic circuit can be represented using a truth
table.

• A logic circuit to perform addition of two binary digits with carry is called a full-adder. A sub-
circuit of the full-adder is the half-adder which adds two bits without carry.

• Data can be stored in logic circuits called flip-flops or bistable devices.
• Very complex circuits can be built up into single packages called integrated circuits, some of

which contain the equivalent of millions of simple logic gates. Like other design tasks, the
design of logical circuits proceeds in a cycle of steps from identification of the problem through
to evaluation of the design.

• A system processes data from other sources such as another processor or a sensor— a device
that measures some quantity in the environment.

• Sensors may be digital or analog. The signal from an analog sensor must be converted to digital
form by an analog to digital converter (ADC).

• The input may be thought of as a stream of bits. The data stream can include header, body and
trailer information.

• A system can control other hardware through an output data stream that similarly can include
header, body and trailer information. Hardware devices that affect the outside world are called
effectors or actuators.

• Input and output data streams can include data characters that are to be displayed or processed
and control characters that control hardware features (such as carriage returns). Escape
sequences in the data stream can switch between kinds of data.

• When a system controls an output device but data about the effect is not fed back to the
controlling processor, an open control system is formed. When there is a sensor that feeds back
to the controlling processor, a closed control system is formed.

313Appendix

Character Description Decimal Hexadecimal ASCII code

NUL Null 0 0 0000000

SOH Start of heading 1 1 0000001

STX Start of text 2 2 0000010

ETX End of text 3 3 0000011

EOT End of transmission 4 4 0000100

ENQ Enquiry 5 5 0000101

ACK Acknowledge 6 6 0000110

BEL Bell 7 7 0000111

BS Backspace 8 8 0001000

HT Horizontal tab 9 9 0001001

LF Line feed 10 A 0001010

VT Vertical tab 11 B 0001011

FF Form feed 12 C 0001100

CR Carriage return 13 D 0001101

SO Shift out 14 E 0001110

SI Shift in 15 F 0001111

DLE Data link escape 16 10 0010000

DC1 Device control 1 17 11 0010001

DC2 Device control 2 18 12 0010010

DC3 Device control 3 19 13 0010011

DC4 Device control 4 20 14 0010100

NAK Negative acknowledge 21 15 0010101

SYN Synchronous idle 22 16 0010110

ETB End of trans block 23 17 0010111

CAN Cancel 24 18 0011000

EM End of medium 25 19 0011001

SUB Substitute 26 1A 0011010

ESC Escape 27 1B 0011011

FS File separator 28 1C 0011100

GS Group separator 29 1D 0011101

RS Record separator 30 1E 0011110

US Unit separator 31 1F 0011111

Space 32 20 0100000

! Exclamation mark 33 21 0100001

" Double quote 34 22 0100010

Hash 35 23 0100011

$ Dollar 36 24 0100100

% Percent 37 25 0100101

& Ampersand 38 26 0100110

' Quote 39 27 0100111

Appendix:ASCII code

314 Heinemann Software Design and Development: HSC Course

(Open parenthesis 40 28 0101000

) Close parenthesis 41 29 0101001

* Asterisk 42 2A 0101010

+ Plus 43 2B 0101011

, Comma 44 2C 0101100

- Minus 45 2D 0101101

. Full stop 46 2E 0101110

/ Oblique stroke 47 2F 0101111

0 48 30 0110000

1 49 31 0110001

2 50 32 0110010

3 51 33 0110011

4 52 34 0110100

5 53 35 0110101

6 54 36 0110110

7 55 37 0110111

8 56 38 0110000

9 57 39 0111001

: Colon 58 3A 0111010

; Semicolon 59 3B 0111011

< Less than 60 3C 0111100

= Equals 61 3D 0111101

> Greater than 62 3E 0111110

? Question mark 63 3F 0111111

@ Commercial at 64 40 1000000

A 65 41 1000001

B 66 42 1000010

C 67 43 1000011

D 68 44 1000100

E 69 45 1000101

F 70 46 1000110

G 71 47 1000111

H 72 48 1001000

I 73 49 1001001

J 74 4A 1001010

K 75 4B 1001011

L 76 4C 1001100

M 77 4D 1001101

N 78 4E 1001110

O 79 4F 1001111

P 80 50 1010000

Q 81 51 1010001

R 82 52 1010010

S 83 53 1010011

315Appendix

T 84 54 1010100

U 85 55 1010101

V 86 56 1010110

W 87 57 1010111

X 88 58 1011000

Y 89 59 1011001

Z 90 5A 1011010

[Open square bracket 91 5B 1011011

\ Backslash 92 5C 1011100

] Close square bracket 93 5D 1011101

^ Caret 94 5E 1011110

_ Underscore 95 5F 1011111

` Back quote 96 60 1100000

a 97 61 1100001

b 98 62 1100010

c 99 63 1100011

d 100 64 1100100

e 101 65 1100101

f 102 66 1100110

g 103 67 1100111

h 104 68 1101000

i 105 69 1101001

j 106 6A 1101010

k 107 6B 1101011

l 108 6C 1101100

m 109 6D 1101101

n 110 6E 1101110

o 111 6F 1101111

p 112 70 1110000

q 113 71 1110001

r 114 72 1110010

s 115 73 1110011

t 116 74 1110100

u 117 75 1110101

v 118 76 1110110

w 119 77 1110111

x 120 78 1111000

y 121 79 1111001

z 122 7A 1111010

{ Open curly bracket 123 7B 1111011

| Vertical bar 124 7C 1111100

} Close curly bracket 125 7D 1111101

~ Tilde 126 7E 1111110

DEL Delete 127 7F 1111111

316 Heinemann Software Design and Development: HSC Course

actuator (effector) a device under the control of a
signal from a controller (e.g. a motor, a light, a
loudspeaker).

algorithm a series of steps which, when performed
correctly, will solve a problem in a finite time.

alphanumeric data data consisting of letters of the
alphabet and the numbers.

AND gate a logic circuit with two inputs and one
output. The output is true if, and only if, both
inputs are true.

application software software that performs a
specific task.

array a structured data type containing a number of
related data items, each having the same data type.

ASCII stands for American Standard Code for
Information Interchange, which is the common
name for the standard seven-bit code for
representing text. See Australian Standard Coded
Character Set (AS 1776–1980.)

Australian Standard Coded Character Set
(AS 1776–1980) the Australian standard code for
representing text (commonly known as ASCII).

binary digit (bit) a digit that can have one of two
values, zero or one.

binary numbers numbers written in a system based
on two.

binary selection a control structure in which a choice
of two paths is presented. The path executed
depends on the result of a condition.

binary system a system that can be in one of two
states; for example a switch can be on or off.

binary-coded decimal (BCD) numbers numbers
represented using four bits (one nybble) for each
decimal digit.

bistable devices devices that are stable in one of
two possible states.

bit a single binary digit. It is the smallest unit of
storage in a digital computer.

BNF (Backus-Naur form) a text-based method of
stating the rules of a language. See also EBNF and
syntax structure diagram.

Boolean data type a data type in which only two
possibilities, usually either true or false, are
represented by a variable.

breakpoint a place ‘marked’ in a program where
execution of the program is suspended so that the
values of variables can be examined. Breakpoints
are usually used only during debugging of a
program.

buffer a logic gate with one input and one output.
The output is the same as the input.

byte a group of eight bits.

CAD software software that is used as an aid in the
design of a product. There are many different kinds
of CAD software. The development of integrated
circuits (ICs) has only been possible through the
development of suitable CAD programs.

called a subprogram is called when control passes
to that subprogram from the main program.

calling module the module from which a call to
another module is made.

central processing unit (CPU) the CPU retrieves,
decodes, interprets and executes instructions.

character the smallest unit of data normally
handled by people.

character data type a simple data type in which only
one coded character can be represented by the
variable.

command based interface a human–computer
interface in which the person has to type in
commands in order to manipulate data.

command-line interface an alternative term used to
describe a command-based interface.

compilation complete translation of the source
code to object code.

compound statements a statement in a
programming language which combines a number
of instructions, each of which is a simple
statement.

concatenation joining two strings together.
configuration management the management of

software resources.
constant a value which cannot be changed during

the execution of a program.
control one of the logical elements of a computer

system. The control element of a computer system
coordinates the processes that are carried out.

control codes codes as part of a system such as
ASCII, which do not print visible characters but
which control equipment (e.g. carriage return).

control structures a term which describes the three
basic structures of an algorithm (sequence, selection
and repetition).

data validation a check made by the computer that
data is within allowable limits for processing.

data verification the manual process of checking
that data items have been entered correctly by
comparing the entered data with the source data.

database management systems a software system
which allows a database to be created, maintained
and accessed.

dataflow diagram a representation of the paths of
data through the system.

Glossary

317Glossary

decimal numbers numbers written in a system
based on ten.

decompilation conversion of executable machine
code to assembler language.

decrement to decrease the value of a variable by 1.
desk check manually checking the logic of an

algorithm by using test data.
direct access a method of accessing data where a

record can be accessed without having to access
any of the previous records. Also known as random
access.

direct cut over a complete and immediate
conversion to the new system.

double precision the use of a greater than normal
number of bytes to store a numerical value,
allowing a greater degree of accuracy.

EBCDIC (extended binary coded decimal
interchange code) a binary coding for characters
which uses eight bits to represent each character.
See also ASCII.

EBNF (extended Backus-Naur form) a text based
method of stating the rules of a language. See also
BNF and syntax structure diagrams.

effector (actuator) a device under the control of a
signal from a controller (e.g. a motor, a light, a
loudspeaker).

encapsulation hiding of processing details within an
object.

end of file (EOF) mark a pattern of bits which
represents the character used to indicate the end of
a string of text. It is usually used to show the end
of a file stored on an external storage medium such
as a magnetic disk.

evolutionary prototyping a method of prototyping in
which the prototype is developed into the final
software solution to the problem.

feedback the return of some part of output to be
used as input in a closed loop, computer controlled
system.

field one data item within a record data structure.
file a block of data which may have been written to

a storage device.
flip-flop basic characteristic is that it can be in only

one of two possible states at any given time and it
will remain in that state until commanded to
change states. Because flip-flops stay in one of two
states they are called bistable devices.

floating point a way of representing fractional
numbers using a mantissa and an exponent, as in
scientific notation.

full-adder a logic circuit with three inputs and two
outputs. The outputs show the sum of the three
inputs (one of which might be the carry from a
previous sum).

function a predefined set of operations which
returns a value.

graphical user interface (GUI) a human-computer
interface which employs icons and menus to assist
the user to navigate through the choices of a
program.

guarded loop a loop in which the decision is placed
at the start of the loop. In pseudocode, it is the
WHILE......ENDWHILE structure.

half-adder a logic circuit that has two inputs and
two outputs. One output is the sum of the two
inputs and the other is the carry generated by the
sum.

hexadecimal a counting system based on sixteen.
We use the characters 0 to 9 and A to F to
represent the sixteen digits needed for the
hexadecimal system.

identifier a name given to a constant, variable,
function or subroutine of a program.

increment to increase the value of a variable by 1.
incremental compilation interpretation of the

program with common routines being compiled.
index the value which represents the position of a

data item in an array.
input the process of transferring data into a

computer system from outside by means of a
peripheral device.

input/output table a table of test data that lists the
test data items and the expected outputs.

integer data type a data type used to represent
positive and negative whole numbers.

integrated circuit (IC) the entire circuit for a
complex function can be made into a single block.

intellectual property a work resulting from creative
activity.

internal documentation documentation included in
the source code, consisting of intrinsic
documentation and remarks (also called comments).

interpretation translation and execution of a
program line by line.

intrinsic documentation documentation ‘built into’
the source code. The main type of intrinsic
documentation is the appropriate choice of
identifiers, the use of indentation to show program
modules may also count as intrinsic documentation
as it makes the logic of the program more clear.

IPO (Input Processing Output) chart an IPO chart
tabulates the inputs, processes and outputs
required for a system.

iteration looping through a process a number of
times. See also repetition.

least significant bit the bit in a binary string that
has the smallest value. It is usually the bit at the
extreme right of a byte, or group of bytes.

linear search a search which progresses, one
element at a time, from the first indexed element
of an array towards the last.

318 Heinemann Software Design and Development: HSC Course

logic a system in which variables have one of two
values (true or false).

logic gate a circuit that has one or more inputs and
one or more outputs and where the inputs and
outputs can take one of two values. The rule for
converting the inputs to the outputs can be shown
with a truth table.

loop an alternative term for a repetition or iteration.

metalanguage a method of describing the syntax of
a language.

module a part of a program, such as a subprogram
or function, which performs a specific task. A
module will pass data to and/or accept data from
other parts of the program.

most significant bit the bit in a binary string that
has the greatest value. It is usually the leftmost bit
of a byte.

multiway selection a control structure in which a
choice is made from a number of alternatives. The
choice is based on the value of an expression.

NAND gate a logic circuit with two inputs and one
output. The output is true if, and only if, both
inputs are not true (NOT AND).

nibble a four bit binary string.
nonterminal symbols elements of a language that

are defined elsewhere in the language description.
See also terminal symbols.

NOR gate a logic circuit with two inputs and one
output. The output is true if neither of the two
inputs is true (NOT OR).

NOT gate a logic gate with one input and one
output. The output has the opposite value to the
input.

nybble an alternative spelling for nibble.

octal a counting system based on eight only the
digits 0 to 7 are used to represent numbers. See
also binary and hexadecimal.

ones modulus a method of representing integers
(positive and negative numbers) in the binary
number system.

operating system the software that manages the
resources of a computer.

OR gate a logic circuit with two inputs and one
output. The output is true if either of the two
inputs is true.

output the process of transferring data from a
computer system to the outside by means of a
peripheral device.

outsourcing using outside contractors for a
development task.

overflow a condition in which the result of an
operation is too large for the storage allocated.

parallel conversion the full use of both the new and
old systems for a period of time.

phased conversion gradual implementation of the
new system.

pilot conversion complete installation of the new
system with only some of the tasks being
performed by it, the old system performing the
rest.

pixel the smallest element of a screen display that
can be displayed.

post-test repetition an iteration in which the
termination test is after the body of the loop. In
pseudocode a post-test repetition is identified as a
REPEAT.......UNTIL construction.

pre-test repetition an iteration in which the
termination test is before the body of the loop. In
pseudocode a pre-test repetition is identified as a
WHILE.......ENDWHILE construction.

primary storage storage that is directly accessible to
the CPU.

process an action (when the word process is used as
a noun), to perform a set of instructions (when the
word is used as a verb).

prototype a working model of an application which
can be used to gather information. A prototype
may be developed into the final application or it
may be ‘thrown away’.

radix the number on which a number system is
based.

random access a method of accessing data where a
record can be accessed without having to access
any of the previous records. Also known as direct
access.

random access memory (RAM) primary storage
which can be written to as well as read. See also
read only memory.

read only memory (ROM) primary storage which
can only be read. See also random access memory.

record a collection of related facts. A record is
stored as one or more fields.

recursion a definition which incorporates itself.
register a temporary storage location within the CPU.
reliability the ability of software to perform without

failure.
repetition an algorithm structure in which a

sequence of steps may be executed a number of
times.

screen buffer an area of primary storage which is
used to store the data which represents the image
on a screen.

secondary storage storage which is not directly
accessible by the CPU.

selection an algorithm control structure which
presents two or more options, the choice of which
depends upon the result of a test.

319Glossary

sensor a device that measures some aspect of the
world.

sentinel value a value used to ‘mark’ the end of a
data list.

sequence an algorithm control structure which
consists of a number of steps one after the other.

sequential file a file structure in which, to reach
one record, each of the preceding records has to be
passed over.

sign plus modulus a method of representing
integers by using one bit for the sign (positive or
negative).

simple data type a data type that may be applied to
one data element.

single precision the standard representation of a
simple numerical data type within a particular
programming language.

stack a part of main memory used to store the
location of the instruction to return to after a
subprogram has been executed.

standard constructs the general term which
describes the basic elements of an algorithm;
sequence, selection and repetition.

statement a single step as written in a programming
language.

stepwise refinement a process in which a problem is
broken down into smaller parts until it can be
easily solved.

storage a device or medium that can be used to
hold data.

string data type a simple data type consisting of a
number of characters.

structured data type a data type which is used to
represent a number of related data elements as one
data item.

stub a small module representing a part of the
program which is still to be written.

subroutine a part of a program which performs a
specific task.

syntax the set of rules that govern the way in which
the elements of a language can be combined to
form a statement.

syntax graphs a pictorial method of illustrating the
syntax of a language. Also known as a syntax
structure diagram.

syntax structure diagrams a pictorial method of
illustrating the syntax of a language. Also known as
a syntax graph.

system software the files and resources needed by a
computer system in order to allow it to run
properly. System software includes the operating
system and utility software.

terminal symbols individual characters, or strings of
characters, which are used in the definition of a
syntax structure.

test data data elements designed to test the
operation of an algorithm or program.

text data that can be written out using normal
letters of the alphabet, numerals and punctuation
marks.

top-down design a design approach in which a
problem is broken down into a number of smaller
and easier to solve problems.

tracing the process of following the execution path
of a running program in order to identify the
source of an error.

transistor an electronic component that can be used
as the basis of circuits to build logic gates (among
many other applications).

truncation the ‘loss’ of accuracy caused by a limit to
the way that results of operations can be stored.

truth table a table that lists all the possible
combinations of inputs for a logic gate with the
corresponding outputs.

twos complement a method of using a fixed length
binary string of digits to represent both positive
and negative integers.

twos modulus a method of representing integers
(positive and negative numbers) in the binary
number system.

unguarded loop a loop whose body must be
executed at least once each time it is reached. Also
known as a post-test repetition.

user interface the link between the user and the
computer program. The most common user
interfaces use screens, keyboards and mice.

utility software programs that perform management
tasks such as formatting disks, duplicating files,
virus protection, etc.

validation comparison of the solution with the
design specification.

variable a name used within the code of a program
to reference a stored data element

variable declaration a statement in a programming
language that indicates the type of data that a
variable will be used to store.

verification ensuring that the software performs its
functions correctly.

virtual memory a technique which uses secondary
storage in the place of primary storage so that the
computer appears to have more main memory
than it really does.

word length the maximum number of bits that can
be processed at one time by a CPU.

XOR gate a logic circuit with two inputs and one
output. The output is true if either of the two
inputs is true but not if both are true (exclusive
OR—sometimes written EOR).

320 Heinemann Software Design and Development: HSC Course

abstraction 265
acceptance testing, software

development 26
accumulators 143, 147–8
addition

binary arithmetic 289
use of logic gates 300

algorithms 55–6, 134–41
design 240–1
documentation 180
writing 76, 81–5
see also programming

ALU 142–3
American Standard Code for

Information Interchange
see ASCII

AND gates 297
APL computer language 274–5
arithmetic and logical unit

142–3
arrays 94–9, 137–8
ASCII code 286–7, 313–15

case study 307–8
authorship, of software 3–4

Backus Naur Form see BNF
backward chaining 269, 270
backward engineering 9
balloon text 178
benchmarking 203–4
beta testing, software

development 26
Bikes to Go

case study 23–7
website development,

case study 27
binary data, storage 300–2
binary numbers 281–2

arithmetic 289–94
conversion to hexadecimal

284
binary searching 100–3
black box testing 197–9
BNF 133, 134, 152
Boolean functions 93
boundaries 46–7
boundary analysis 197
breakpoints, in programs 169,

255–6
bubble sorts 104–5

C++ programming language 34,
265–6

call and return mechanism 87–8
Carol's Computer Repairs, case

study 29
CASE tools 36–40

and design of prototypes 65
and documentation of software

design 244
and documentation of

software solutions 182
and documentation of test

results 208–9
use in monitoring changes 222

direct addressing 144
direct cut-over, conversion

method 31
division, binary arithmetic 292–4
DLLs 151
documentation

of algorithms 85–6
changes to software solutions

220–2
design specifications 193–4
and quality of software 5
reports on testing 207–10
software design 241
software development projects

245–6
of software solutions 173–82

use of application software
181–2, 241
use of CASE tools 38–40
use of software 244

dot matrix printers, case study
308–9

dynamic link libraries 151

EBNF 133, 134
electronic circuits

for software functions, design
298–9

for standard software
operations 296–303

encapsulation 263
end-user development, approach

to software development
20, 29

equivalence partitioning 197–9
ergonomics 236
errors in programs

detection and correction 164
isolation 163
logic 166
run-time 167–8
syntax 164–5, 167

ethical considerations 12–14
and new systems 49–50
and software development

236
ethical issues, see also codes of

conduct
exhaustive condition decision-

condition testing 197
expert system shells 270–2
Extended Backus Naur Form see

EBNF

failure, of software see software,
reliability

feasibility studies 47–8
fifth-generation computer

languages 252, 259–60
files 138–9

definition 240
first-generation computer

languages 252, 253–5
fixed point numbers, binary

arithmetic 292–4

central processing unit see CPU
classes, data types 264
CM 220, 221
code generation 158
codes of conduct, software

developers 6
collections 118–22
communication, between

developers and users 69–70
compareStrings function 111
compilation

translation method 152
and code generation 158
and lexical analysis 153
and optimisers 159
pros and cons 159
and syntactical analysis 156
in third-generation

languages 257
computer-assisted-software-

engineering see CASE
computer viruses 6, 13
concatenation, of two strings

108–10
configuration management see

CM
copyright 3, 7–10, 236
Copyright Act 1968 (Cwlth)

8, 9
cost-benefit analysis 48
CPU, and operation of software

142–51
customised software packages 35

data
representation 281–6

coding methods 286–7
data dictionaries 37–8, 180, 239,

244
data flow diagrams 57, 63
data structures, selection 236,

238–9
data types 52–4

selection 236
databases, terminology 115
debugging

output statements 163
tools 168–9

decimal numbers 281
conversion to binary numbers
282
conversion to hexadecimal
284

decision-condition coverage
testing 196

decision tables 66
decision trees 66, 67
decompilation 9
decomposition, and reusability

87
Delphi programming language

267–8
design patterns 75–6
design specifications 51–7
desk checking 83–4, 166–7

Index

321Index

flags, in programs 163
floating point numbers, binary

arithmetic 292–4
flowcharts 39, 64, 140, 233–4
forward chaining 270
fourth-generation computer

languages 252, 258–9
fractions, binary arithmetic

292–4
function libraries 87
function testing 200
functional decomposition 76–9
functional programming 273–5
functions

anatomy 88–9
definition 118–19
input 89–90
and modules 87–93
names 89
output 90–1
processing 91
and traversal of arrays 97

gates, electronic circuits 296–8
global variables 83
goals 269

hardware devices
and implementation of
software solutions 184–5
programming 304–7
selection 238

help screens 131–2
heuristics 269
hexadecimal numbers 283–4
hierarchical storyboards 60–1
hybrid storyboards 62–3

ICOT project 252
incremental compilation

translation method 153
and code generation 158
pros and cons 160
and syntactical analysis 156

indexing, arrays 96
inference engines 270, 271
inheritance 263–5
input

processing by hardware
devices 305

input data streams 305–6
input, process, output diagrams

see IPO charts
inputs, identification 81
installation guides 174
integrated circuits 302–3
integration testing 200
intellectual property 7

see also copyright
interface design 130–2

and software development
233, 237–8

interpretation
translation method 152, 153

and badly organised code
159

and code generation 158
and lexical analysis 153
pros and cons 160
and syntactical analysis 156

optimisers 159
OR gates 297
output data streams 306–7
outputs, identification 81
outsourcing, of software

development 33–4

parallel conversion 31
parse trees 155–7
parsing 153, 155–8
peer checks 166
phased conversion 31–2, 246
pilot conversion 32, 246
plagiarism 7
polymorphism 263
problem-solving strategies 75–80
problems, definition 45–72
process diaries 173–4
process documentation 173, 241
processes, identification 81
product documentation 173,

241
program counters 149
program listings, as

documentation 178–80
program traces 170
programmers 22
programming 75–124

languages
evolution 251–75
generations 251–60

project management techniques
242
and software development

227–8
Prolog programming language

272
prototypes, as development tools

65–6
prototyping, approach to

software development 19, 27,
85

public domain software 8

quality, of software, criteria 5
quality assurance 204–5

RAD see rapid application
development

railroad charts 133
random number generators

139–41
rapid application development,

approach to software
development 20, 28

real numbers, binary arithmetic
292–4

records 114–18
collections 118–22

registers 143, 147–8
see also program counters

reliability, of software 4, 14
response to problems, software

developers 5–6
reverse engineering 9
run-time errors 167–8

scheduling, implementation of
new systems 49

screens, design 64–5, 130–2

and type checking 157
introductory manuals 174
IPO charts 24, 25, 57–9

Java programming language 34,
245, 266–7

knowledge bases 270

levels of testing 199–202
lexical analysis 153–5
linear searches 100
linear storyboards 60
linkers 158–9
LISP programming language

259, 274
List Processor see LISP
loaders 159
local variables 91
logic circuits, design 298–9
logic errors 166
logic gates, electronic circuits

296–8
logic paradigm 268–70
LOGO programming language

259, 274

machine code 143–51
generation 158

machine languages
see first-generation computer

languages
metalanguages 133
methods, sub-programs 264–5
Microsoft, anti-trust case 13
modelling 57–69
modules 76

and functions 87–93
identification 80
interfaces between, testing

203
testing 199

multi-dimensional arrays 134–7
multiple decision-condition

coverage testing 196–7
multiplication, binary arithmetic

291–2

NAND gates 297–8
needs, and system design 45–6
nested records 116
network storyboards 61–2
networked software 34–5
networks, software licences 9
Neumann’s Nurseries, case study

28
NOR gates 297–8
NOT gates 296–7
numbers, representation in ASCII

287

object-oriented languages see
OOP

object-oriented programming see
OOP

objectives, and system
performance 46

off-the-shelf packages 35
online help 176–8, 245
OOP 115, 261–3

322 Heinemann Software Design and Development: HSC Course

searching 100–3
second-generation computer

languages 252, 255–6
selection sorts 106–7
self-documentation of the code

178–80
shareware 7–8
single line stepping 170
social considerations

introduction of new systems
49–50

and software development
12–14, 236

software
development

approaches 19–42
current trends 33

failures see reliability
licences 3, 8

conditions 9
and copyright laws 10
networks 9

markets 10–12
packages 35
reliability 4,14
standards 5
testing 85

software developers, rights and
responsibilities 3–7

software piracy 9, 236
see also copyright

software solutions
development 227–47

problem identification
229–32

documentation 173–82
implementation 130–88,

243–6
maintenance 215–22
test reporting 207–10
testing 193–205

sorting 104–7
source code

creation 151–2
documentation 221

To Understand Syntax
Instructional Language see
TUSIL

trace tables 84–5
tracing 170
translation, of programming

languages 151–60
traversing arrays 96–7
trimString function 110–11
Trumpet Software Pty Ltd & Anor

v OzEmail Pty Ltd & Ors 12
truth tables 296–301 passim
Turing, Alan Mathison 261
TUSIL programs 153, 155, 156

and modification of code 219

unit testing 199
user documentation 174–6
user interface

and inference engines 271
upgrading 215

user manuals 175
user needs, and software design

45, 56
users, need to be empowered

69–70

validation processes 240
variables 54–5

resetting of values 169
trace tables and 84–5
and writing of algorithms
81–3
see also global variables; local

variables
viruses 6, 13
Von Neumann computer 261

white box testing 195–7

XOR gates 297–8

Y2K see year 2000 problem
year 2000 problem 13, 49

translation 151–60
stack pointers 149–50
statement coverage testing 196
storyboards 59–63
string processing 108–13
stringContains function 111–12
structure diagrams 39, 66–8
structured approach

to program development
162–70

to software development 19,
22–7

structured programming 76–9
stubs, in programs 163
subtraction, binary arithmetic

289–91
symbolic assembly languages

see second-generation
computer languages

syntactic analysis 155–8
syntax errors 164–5, 167
syntax structure diagrams 133
system administrator's manuals

175
system flowcharts 64
system reference manuals 175
systems

conversion methods 30–3
implementation 243–6
testing 201–2

technical documentation 180–1
test data 38, 194–9

live 202
use in software design 242

testing
of modifications to programs

219
of software solutions 193–205,

245
text characters, representation in

code 286–7
thesauri 112–13
third-generation computer

languages 252, 257–8

Acknowledgments
The authors and publisher would like to thank the following for permission to reproduce
copyright material in this book:

The Age, pp. 4 top, 13 top, 50; Australian Picture Library, pp. 4 bottom, 13 bottom; Bill Bachman,
pp. 24; Borland, p. 11; ClarisImpact, pp. 176, 177; Coo-ee Picture Library, p. 49; Malcolm Cross,
p. 34; Great Southern Stock, pp. 202, 204; IBM, p. 26; Dale Mann/Retrospect Photojournalism,
pp. 14, 21, 34, 216; Northside Photos, p. 28; United Feature Syndicate Inc., p. 228, 229, 241;
Universal Press Syndicate copyright 1993 G. B. Trudeau, p. 193 top; Valve Software, p. 66.

Every effort has been made to trace and acknowledge copyright. The authors and publisher would
welcome any information from people who believe they own copyright to material in this book.

100101001101001101101111001010001100101100

HSC Course

h

SSooffttwwaarree
DDeessiiggnn aanndd

DDeevveellooppmmeenntt

Allan Fowler

H e i n e m a n n

9

ISBN 0-86462-513-8

780864 625137

Heinemann Software Design and Development: HSC Course

is the second in a series written to provide comprehensive

coverage of the new Stage 6 Software Design and

Development syllabus in NSW. Experienced author, Allan

Fowler, and a team of leading secondary and tertiary

contributors, have combined their expertise in this

systematic guide for students. The book covers the main

aspects of software design and development. This includes

analysing the problem, planning, creating, testing and

documenting the solution as well as the associated social

and ethical considerations. It uses a wide range of

computer languages so that students learn to use the most

appropriate to develop each solution.

Key features

• matched exactly to the new Stage 6 HSC Course

• list of outcomes at beginning of each chapter

• end-of-chapter summary to reinforce learning

• chapter review exercises

• team exercises where appropriate

• skills development through graded activities

• questions to stimulate discussion on issues

• extensive glossary

• detailed index

• online support at hi.com.au/softwaredesign

About the author

Allan Fowler is an experienced Computing Studies teacher

with particular expertise in programming languages and

program development. He has many years’ experience in

teaching Computing Studies and is the author of the highly

successful, Heinemann Senior Computing Studies 3 Unit

HSC Course and Heinemann Software Design and

Development: Preliminary Course.

Also available from Heinemann

Heinemann Software Design and

Development: Preliminary Course

ISBN 0 86462 438 7

H
einem

ann Softw
are D

esign and D
evelopm

ent:H
SC

 C
ourse

A
llan

 Fow
ler

You can visit the Heinemann World

Wide Web site at hi.com.au or send

email to info@hi.com.au

100101001101001101101111001010001100101100010

	Contents
	Introduction
	Heinemann Software Design and Development and the HSC Course Outcomes
	Chapter 1 - Social and ethical issues
	Preliminary review
	Rights and responsibilities of software developers
	Software piracy and copyright
	The software market
	Significant social and ethical issues
	Review exercises
	Chapter summary

	Chapter 2 - Application of software development approaches
	Preliminary review
	Software development approaches
	Methods of implementation
	Current trends in software development
	Use of CASE tools and their application in large systems development
	Review exercises
	Chapter summary

	Chapter 3 - Defining and understanding the problem
	Defining the problem
	Design specifications
	Modelling
	Communication issues
	Review exercises
	Chapter summary

	Chapter 4 - Planning and design of software solutions
	Developing a problem-solving strategy
	Design concepts
	Modules and functions
	Arrays: basic concepts
	Advanced sorting and searching techniques
	Binary search
	String processing
	Records and collections
	Review exercises
	Chapter summary

	Chapter 5 - Implementation of software solutions
	Interface design in software solutions
	Language syntax for software solutions
	The role of the CPU in the operation of software
	Translation methods in software solutions
	Program development techniques in software solutions
	Documentation of a software solution
	Hardware environment to enable implementation of the software solution
	Emerging technologies
	Review exercises
	Chapter summary

	Chapter 6 - Testing and evaluation of software solutions
	Testing the software solution
	Reporting on the testing process
	Review exercises
	Chapter summary

	Chapter 7 - Maintenance of software solutions
	Modification of code to meet changed requirements
	Documentation of changes
	Review exercises
	Chapter summary

	Chapter 8 - Developing a solution package
	Developing a solution package
	Case study
	Defining the problem and its solution
	Understanding the problem
	Planning and design
	Systems implementation
	Review exercises
	Chapter summary

	Chapter 9 - Evolution of programming languages
	Introduction
	Generations of programming languages
	Characteristics of each language type
	Paradigm specific concepts
	Inheritance
	Description and history of languages
	Logic paradigm
	Expert system shells
	Functional programming
	Review exercises
	Chapter summary

	Chapter 10 - The software developer's view of the hardware
	Representation of computer data
	Data representation—coding methods
	Integer binary arithmetic
	Electronic circuits to perform standard software operations
	Programming of hardware devices
	Review exercises
	Chapter summary

	Appendix: ASCII code
	Glossary
	Index
	Acknowledgments

