
Preliminary Course

h

SSooffttwwaarree
DDeessiiggnn aanndd

DDeevveellooppmmeenntt

Allan Fowler

H e i n e m a n n

100101001101001101101111001010001100101100010

Heinemann
A division of Reed International Books Australia Pty Ltd
22 Salmon Street, Port Melbourne, Victoria 3207
World Wide Web hi.com.au
Email info@hi.com.au

Offices in Sydney, Brisbane, Adelaide and Perth.
Associated companies, branches and representatives throughout the world.

© Allan Fowler 2000
First published 2000
2003 2002 2001 2000
10 9 8 7 6 5 4 3 2 1

Copying for educational purposes

The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10%
of this book, whichever is the greater, to be copied by any educational institution for its
educational purposes provided that that educational institution (or the body that
administers it) has given a remuneration notice to Copyright Agency Limited (CAL)
under the Act.

For details of the CAL licence for educational institutions contact CAL, Level 19,
157 Liverpool Street, Sydney, NSW, 2000, tel (02) 9394 7600, fax (02) 9394 7601,
email info@copyright.com.au.

Copying for other purposes

Except as permitted under the Act, for example any fair dealing for the purposes of
study, research, criticism or review, no part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means without prior written
permission. All enquiries should be made to the publisher at the address above.

Publisher: Rosie Adams
Editor: Felicity Shea
Designer: Gerry Theoharis
Design development: Giulia De Vincentis
Cover designer: Relish Design
Illustrations: Guy Holt
Photograph researcher: Janet Pheasant

Typeset in 10.5/12.5 Berling by Idczak Enterprises
Film supplied by Type Scan, Adelaide
Printed in Australia by the australian book connection

National Library of Australia
cataloguing-in-publication data:

Fowler, Allan, 1949–
Heinemann software design and development:
preliminary course.
Includes index.
ISBN 0 86462 438 7.
1. Computer science. 2. Computer software—Development.
I. Title

005.3

Disclaimer

All the Internet addresses (URLs) given in this book were valid at the time of
printing. However, due to the dynamic nature of the Internet, some addresses may
have changed, or sites may have ceased to exist since publication. While the authors
and publisher regret any inconvenience this may cause readers, no responsibility
for any such changes can be accepted by either the authors or the publisher.

Introduction v
Heinemann Software Design and Development and

the Preliminary Course Outcomes vi

1 Social and ethical issues 1
Ergonomics 4
Intellectual property 15
Inclusivity 22
Review exercises 25
Chapter summary 26

2 Hardware and software 27
Hardware 30
Software 48
The relationship between hardware and software 57
Review exercises 63
Chapter summary 64

3 Software development approaches 67
Introduction 70
The structured approach to software solutions 70
The prototyping approach to software solutions 78
Rapid application development (RAD) 81
End-user development 83
Review exercises 85
Chapter summary 86

4 De f ining the rblem and planning
software solutions 87
Defining the problem 90
Abstraction/refinement 95
Data representation 98
Data types 103
Structured algorithms 112
Checking algorithms 140
Review exercises 147
Chapter summary 149

Contents

iv

5 Building software solutions 151
Coding in an approved programming language 154
Error-correction techniques 174
Libraries of code 188
User interface development 193
Documentation 207
Review exercises 217
Chapter summary 218

6 Checking the software solution 219
Test data 222
Evaluation of design 236
Evaluation of implemented solution 239
Review exercises 242
Chapter summary 244

7 Modifying software solutions 245
Reasons for maintenance coding 248
Social and ethical implications 255
Features in source code that improve its

maintainability 256
Interpretation 260
Documentation 267
Review exercises 269
Chapter summary 270

8 Developing software solutions 271
Implementing projects 274
Project management techniques 285
Project documentation 290
Social and ethical issues related to project work 292
Review exercises 294
Chapter summary 295

Appendix 1: Sample examination paper 297

Appendix 2: Pascal syntax structure diagrams 304

Glossary 309

Index 312

v

Introduction
This book has been written to support students and teachers in implementing the
NSW Software Design and Development Preliminary Course. The course has
been introduced by the Board of Studies to give students who are interested in
the field of software design and development an opportunity to study the subject
and create appropriate software solutions.

The development of software involves careful planning, clear documentation
and an appreciation of the effects that the product may have on members of
society. To this end, the book covers aspects of development, including analysing
the problem, planning a solution, creating and testing the solution, documenting
the solution as well as the associated social and ethical considerations.

Since different problems will need different approaches, a number of methods
of software development are examined. These vary from the formal, structured
approach through to the informal approaches such as end-user development. The
nature of the problem to be solved will also dictate which computer language is
most suitable to develop the solution. To cater for this need, examples have been
drawn from a wide range of languages.

A short biography of a significant contributor to computing introduces each
chapter. This feature has been included to help the student understand that
computing is a very human activity. For interested students and teachers, further
information about these people and their contributions can be found from the
Internet.

Each chapter begins with a statement of the chapter outcomes, student know-
ledge and student experiences. This allows both the teacher and the student to
ensure that the syllabus content has been met. The chapters end with a summary,
a set of review exercises and a team project.

Teamwork is an important part of software development as many projects are
too large and complex for a single individual to tackle. The team projects have
been designed to enable students to experience working members of a team.
Each of the team projects covers one or more of the aspects of software design
and development that have been covered in the chapter. Thus, the projects will
also give students the opportunity to review and discuss the material presented
in the chapter.

Additional support for teachers and students is available on the Internet site:
http:/www.hi.com.au/softwaredesign.

About the author
Allan Fowler has taught Computing Studies to senior students at Gosford High
School since the beginning of 1978.The first courses were school-based program-
ming courses as Other Approved Studies.

Allan then taught the 2 Unit course, first examined in 1990, and was a partici-
pant in the support-material writing workshop held in Port Macquarie that year.
He has contributed computing related articles to professional journals in both
computing and mathematics and has given many workshops and presentations to
teachers, parents and students in computing.

Allan wrote the very successful Heinemann Senior Computing Studies 3 Unit
(Additional) HSC and contributed to the Heinemann Senior Computing Studies
2/3 Unit Common HSC Course. He wrote the solution manuals for both texts.

vi

Acknowledgments
I am indebted to my wife Kaye and my children Katharine and Stephanie for their
patience and understanding throughout the writing of this text.

Comments and suggestions made by the reviewers (Anthony Connolly, Dieter
Opfer, Greg Tardiani, Rick Walker, Cathie Webber and Chris Wiecek) have signifi-
cantly assisted in the task of producing this text. I would particularly like to thank
Dieter Opfer for his contribution to the text and Glenda Horner for her criticisms
and suggestions for improvements to the early drafts.

Finally I would like to thank Rosie Adams and the team at Heinemann for the
very professional help and encouragement that they have willingly given.

Allan Fowler
February 2000

Heinemann Software Design and Development and
the Preliminary Course Outcomes
The following grid shows how the chapters in Heinemann Software Design And
Development: Preliminary Course link with the Preliminary Course Outcomes.

Preliminary Course Outcomes Chapter(s)

P 11 Describes the functions of hardware and software 2

P .2 Describes and uses appropriate data types 4, 5, 7, 8

P .3 Describes the interactions between the elements of a
computer system 2, 4, 5, 8

P .1 Describes developments in the levels of programming
languages 2

P .2 Explains the effects of historical developments on
current practices 1, 2, 3, 4, 7

P .1 Identifies the issues relating to the use of software
solutions 1, 2, 3, 4, 5, 6, 7, 8

P .1 Analyses a given problem in order to generate a
computer-based solution 3, 7, 8

P .2 Investigates a structured approach in the design and
implementation of a software solution 3, 4, 5, 6, 7, 8

P .3 Uses a variety of development approaches to generate
software solutions and distinguishes between these
approaches 3, 4, 5, 7, 8

P .1 Uses and justifies the need for appropriate project
management techniques 5, 6, 7, 8

P .2 Uses and develops documentation to communicate
software solutions to others 4, 5, 6, 7, 8

P .1 Describes the role of personnel involved in software
development 1, 2, 3, 5, 6, 7, 8

P .2 Communicates with appropriate personnel throughout
the software development process 5, 6, 7, 8

P .3 Designs and constructs software solutions with
appropriate interfaces 5, 6, 7, 8

11Social and ethical issues

cchhaapptteerr

Ergonomics
• effects of prolonged use of software, including RSI and injuries created by

overuse

• procedures to prevent and minimise injuries

• ergonomically designed and placed equipment

• ergonomic issues regarding software design:
– acceptable response time in software
– ‘user friendly’ software, including ease of use, appropriate messages to the

user and consistency of the user interface

Intellectual property
• software licence agreements, including:

– licence terminology
– legal aspects
– use of software covered by a licence agreement

• origin of software design ideas
– evolution of existing concepts, including GUI interface and search engines
– new and exciting approaches, including Visicalc, web browsers and

presentation software

Outcomes
• explains the effects of historical developments on current practices

(P 2.2)
• identifies the issues relating to the use of software solutions (P 3.1)
• describes the role of personnel involved in software development

(P 6.1)

Students learn about:

2 Heinemann Software Design and Development: Preliminary Course

• identify sound ergonomic practices when using computers
• assess the ergonomic needs of the user when developing software
• debate the issues relating to intellectual property
• use software in an ethically and legally correct manner
• evaluate existing software interfaces in terms of their inclusivity

Students learn to:

• events that have led to the need for software licence agreements, including:
– ease of reproduction and copy
– collaborative development history—the current open environment of the Internet

• sources of code and conditions that apply, including:
– the Internet
– books and magazines
– shareware

Inclusivity
• the need for software design and development to be inclusive

– cultural perspectives
– economic perspectives
– social perspectives
– gender perspectives
– disability perspectives

• the general strengths brought to the field of software design and development,
including:
– communication skills
– ability to work in teams
– creativity
– design skills
– problem-solving skills
– attention to detail

3Socal and ehica issues

Personal Profile—Countess of Lovelace
(1815–1852)

Augusta Ada Byron was born on 10 Decem-
ber 1815 in London. She was the daughter of
Lord Byron, the poet, and Anna Isabella
Millbanke. When Ada was only five weeks old
her mother and father separated. Ada was
raised solely by her mother, never again being
seen by her father.

Very little is known about her youth, but
her mathematical aptitude was certainly
recognised and encouraged by her mother.
Ada was a typical young woman who enjoyed
many of the entertainments available to a
person of her class. Ada was introduced to
Mary Sommerville, a mathematician of high
standing, when she was seventeen. She deeply
admired Mrs Sommerville who encouraged
Ada further in her mathematical pursuits.

As well as acting as a mathematical
mentor to Ada, Mary Sommerville also intro-
duced her to William Lord King whom she
married when she was nineteen.William, who
soon became the Earl of Lovelace, encouraged
and supported Ada in her work. Although
Ada was intellectually superior to her hus-
band, it caused no friction in their marriage as
William took pride in her achievements and
accepted her many talents.

Settling into the country, Ada had two sons and a daughter. As was a common
practice among the upper class, the children were brought up by others, leaving
Ada time to pursue her interests in mathematics. However, illness prevented her
from developing her ideas fully.

In 1836 she started a correspondence with Charles Babbage (see Chapter 2)
which was to last until her death. In 1842 she translated a paper on Babbage’s
analytical engine written by an Italian mathematician, L. F. Menebrea, adding her
own notes which extended the ideas considerably. In Ada’s final letter about the
paper, she clearly shows that she understood the limitations of the machine when
she wrote, ‘The analytical Engine has no pretensions whatever to originate
anything. It can do whatever we know how to order it to perform. It can follow
analysis, but it has no power of anticipating any analytical revelations or truths.
Its province is to assist us in making available what we are already acquainted
with.’

Ada’s life was tragically cut short by cancer in 1852 when she was just 36. She
is buried beside her father in Hucknall Torkyard, Nottinghamshire. It was only a
century later, with the advent of computers, that the real worth of her work was
appreciated.

4 Heinemann Software Design and Development: Preliminary Course

Ergonomics
The term ergonomics refers to study of the relationship between people and
their work environment. It is the process of designing or arranging workplaces,
products and systems so that they fit the people who use them. The way a com-
puter is used, and the work environment or surrounding influences, can have an
effect on the body. The work environment includes the operator’s desk, the type
of chair, where the computer equipment is placed, the technique used at the
keyboard, the work routine, the software being used, and the room lighting, noise
and temperature. The relationship with all these factors affects health and effi-
ciency. If computers are being used in the correct way, the working environment
is safe and the user will be working at maximum efficiency. Conversely, incorrect
use of computers can cause health problems such as eyestrain, headaches, back-
aches, fatigue, muscle pain and repetitive strain injury (RSI).

Effects of prolonged use of software

Repetitive strain injury
Repetitive strain injuries are caused by a number of different factors, including:
• the number of movements made in performing a task
• the load or forces required to perform the task
• the amount of static muscle work required to perform the task (i.e. the muscle

work needed to keep the body in the position to perform the task)
• stress on the body and/or various joints
• the physical capacity of the individual
• the time needed to perform a task.

Two common forms of RSI are carpal tunnel syndrome and tenosynovitis:
• Carpal tunnel syndrome (CTS) is produced by repeating the same small move-

ments many times. Typical symptoms are numbness or burning in the fingers
or wrist. If not addressed early on, the injury can cause permanent damage.

• Tenosynovitis is an inflammation of the tendon sheath. It occurs when the
repetitive activity exceeds the tendon sheath’s ability to lubricate the tendon.
The friction resulting from the excessive repetitive activity causes pain and
swelling in the tendons.
To reduce these health problems, there have been numerous reports and

standards that deal with ergonomics and personal computers.These standards can
contain conflicting results as they are based on different anthropometric data
(body size and shape). The Australian Standard AS 3590.2 and the Worksafe
Australia checklist will be referred to in the following sections. Everybody who
uses a computer should endeavour to meet these standards.

Procedures to prevent and minimise injuries
This section examines environmental factors such as lighting, indoor climate and
noise. These factors affect the way a computer is used.

Lighting
Incorrect lighting can cause eyestrain, resulting in a burning of the eye, double
vision, headaches and reduced visual powers. Lighting needs to be uniform, and

5Socal and ehica issues

Indoor climate
If the climate of a room is uncomfortable, it can cause weariness, sleepiness, loss
of performance and increased errors. The maintenance of a comfortable climate
indoors is essential for well-being and maximum efficiency. Air temperature, air
humidity and air movements affect the indoor climate. The temperature range at
which a person feels comfortable varies and depends on the amount of clothing
being worn and the amount of physical effort. For a clothed and resting person,
the temperature should range between 20°C and 23°C. If the relative humidity
of the air is between 30 per cent and 70 per cent it will not create any discomfort.
Air movements such as draughts are unpleasant if they exceed 0.2 metres per
second and are at the level of the head and knees.

Computer equipment can generate heat and raise the temperature of the
work environment, so air-conditioning is often required. Furthermore, good air
circulation is essential; otherwise the stuffiness can make people drowsy and
reduce efficiency.

Noise
Excessive noise in the work environment can be a significant distraction. Noise
levels should not exceed 55 decibels. Levels above this make communication
with others difficult and can affect concentration. Protection from noise can be
obtained by:
• planning the subdivisions of the building (The noise level will decrease with

increasing distance from the source; hence offices should be sited as far away
from noisy areas as possible.)

• sound insulating a room by covering the walls and ceilings with sound-ab-
sorbing materials

• enclosing the source of the noise with sound-absorbing materials
• using headphones, ear plugs and soft music.

Most pieces of computer equipment do not produce excessive noise and are
seldom the source of complaints.

Figure 1.1 Reflected glare affects reading.

bright enough for all text to be read
easily on the screen, keyboard and
paper. Harsh lighting should be avoided
and the level of brightness in the room
should be similar to the brightness of
the screen. Adjust the contrast and
brightness on the computer screen to a
comfortable level. Clean the computer
screen and other surfaces regularly.
Light fixtures should be positioned
directly above the computer to reduce
the reflected glare (see Figure 1.1). All
parts of the work environment should
have non-reflective surfaces to minimise
glare. Reduce or eliminate glare by using
window shades, diffusers on overhead
lighting and anti-glare filters for
computers.

6 Heinemann Software Design and Development: Preliminary Course

Work routine
The work routine is the way the job is done, and this directly affects performance.
The design of the job, the workload and the pressures of the job are important
factors in work routine.

Job design
The job should be designed to suit the outcomes to be achieved, the methods to
be followed and the required skills. If jobs are carefully designed they can be both
satisfying and productive. The following issues need to be considered when
designing a job:
• What is the extent of the job?
• Does the job involve a variety of tasks?
• What opportunities exist for social contacts?
• What satisfaction can be gained from the job?
• How can boredom be reduced?

Jobs that are highly repetitive, such as data entry using a computer, require
rest pauses and a variety of tasks that involve movement away from the computer.

Workload
The body needs a balance between work and rest. It is important that workload
matches and does not exceed an operator’s needs and capabilities. Rest pauses are
taken when switching work, dealing with changes in the nature of the work
(waiting for a printer), at prescribed times (lunch), and voluntarily. These rest
pauses reduce the effects of fatigue and improve performance and efficiency.
When the workload does involve extended periods of computer use, a rest should
be taken every hour, away from the computer. Special exercises can be done
during these rest pauses to prevent RSI.

Work pressure
Work pressure causes stress and has an effect on health and efficiency. It can
create feelings of anxiety, tension, depression, anger, fatigue, lack of vigour and
confusion. The factors affecting the degree of stress include workload, job satis-
faction, job design, social support and job security. Reduce stress by:
• planning ahead and setting realistic expectations for what can be accom-

plished during the workday

Figure 1.2 An organised work environment.

7Socal and ehica issues

• organising the workload to help even out busy and slow times
• varying tasks to make the day more interesting, for example, delivering a mes-

sage in person instead of phoning
• arranging the desk and work environment so that you have space to work and

are not distracted by useless information (see Figure 1.2).
Most people who use a computer at work do not find it stressful. There are

some problems involved in learning a new task with the computer, but once the
task has been mastered, people enjoy the interaction. However, computer
breakdowns or software freezes can create a stressful situation while users are
waiting for the computer to be repaired, as the work is building up and the next
day’s workload is increasing.

Touch-typing
Touch-typing is the ability to locate keys by finger touch rather than by looking
at the keys. Touch-typing gives the advantage of being able to keep your eyes on
the document. Two-finger typists have to look from the document they are
typing to the keyboard and back again, often losing their place and hence losing
time. There is also a greater risk of making spelling or other mistakes. Two-finger
typists have to memorise the words to be typed and then focus on the keyboard.
If they have not memorised the words correctly, mistakes will occur.

Exercise 1.1
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
The rlaionsip between pople andthei enviroment s tudied in

 The correct use of computers an help the user to be and
. Incorrect use may causehealthproblems such as ,
, , , and . Elements of

the work environment are , of equipment, keyboard
, work , being used and the routine.

2 What factors of an office environment can affect the health of a worker?
Describe the way in which each of these factors affects the worker’s health. You
can present your answer as a word-processed document called OFFICEWK.

3 Perform a search on the Internet to discover the latest standards in ergonomic
design. Report briefly on these standards, acknowledging the sources of your
information. This document should be word processed and saved with the
filename STANDARDS.

4 Report on the ergonomics of your school computer rooms. What improvements
would you make if you were allowed an unlimited budget?

5 Design an ergonomically sound home office, to be set up in a 3.6 m by 3.6 m room
which has one window 3 m wide opposite a door that is 0.85 m wide. Your design
should be presented as a scale drawing accompanied by a report which gives
details of the placement of items together with the reasons for this placement.
You may use appropriate computer technology to help you with this task.

6 Explain how the tasks that workers have to perform may affect their health.

8 Heinemann Software Design and Development: Preliminary Course

Ergonomically designed and placed furniture
In the past there was no thought given to the height of the operator’s desk or
chair. Whether a person was 140 cm or 190 cm tall, the same piece of furniture
would be used. We now know that furniture needs to be adjusted to suit each
person's body, otherwise problems may develop in the back, neck, shoulders,
arms and legs. The desk and chair need to be positioned so that these body parts
are used effectively without strain and undue fatigue.

Desk
The desk design is related to work efficiency. There needs to be sufficient space
for the computer equipment and other documentation. The following recom-
mendations will reduce health problems.
• The height of the desk should be about 200 mm above seat level. In this way

the forearms will be parallel to the floor when typing and muscle strain will
be reduced. The recommended height is between 660 mm and 680 mm for a
fixed desk, and between 610 mm and 720 mm for an adjustable desk.

• The depth of the desk should be about 900 mm to allow the keyboard to be
repositioned and to provide room for other computer equipment. There
should be at least 50 mm for palms and wrists between the front edge of the
desk and the keyboard. This will reduce the strain on forearms when typing.

• Legroom should be sufficient at both knee and foot level to permit changes in
position.

• An adjustable section for the keyboard is not considered essential for an ergo-
nomic desk. If the desk is the correct height for the operator there is no need
for the height of the keyboard to be adjusted.

Chair
The chair is an important ergonomic factor as it affects your posture. Poor
posture and an uncomfortable chair can result in pains in the neck, shoulders,
back, wrists, joints, arms and legs. It is important that chairs be designed to
provide maximum comfort and minimum restriction. The following recommen-
dations will reduce health problems:
• The correct seat height depends on the height of the operator. Most ergo-

nomic chairs have an adjustable seat height with the recommended range of
370–520 mm from the floor. This allows a clearance of 200 mm between the
seat and the desk. If compromising with a fixed height chair it should be in
the range of 410–30 mm from the floor.

• Seat depth is measured from the front edge of the seat to the backrest. The
recommended range is 380–420 mm. If the seat depth is too large, small
people cannot sit back far enough to get the benefit of the backrest.

• The backrest should be adjustable to fit snugly into the small of the back. This
supports the back and minimises the tendency to slump in posture. The
recommended range for the backrest above the seat height is 170–250 mm.

• The seat should be flat, well padded, and slanted slightly backwards. This will
force the operator to lean back against the backrest and maintain good posture
(see Figure 1.3). Chairs with an adjustable slope should be set with a maxi-
mum backward slope of 5 degrees.

• Chairs should have a swivel base and castors to allow the operator to move
without any unnecessary twisting that could damage the back.

9Socal and ehica issues

The desk and chair can reduce muscle pain by helping you to maintain good
posture. The feet should rest flat on the floor, thighs should be parallel to the
floor, and the forearms should make a right angle at the elbow and rest on the
desk. The small of the back should be supported, the shoulders relaxed (not
slumped), and there should be no pressure under your thighs. It is important to
alternate between different postures on a regular basis.

Ergonomically placed equipment
Clearly, ergonomically designed furniture is important in setting up a safe
working environment, but so is the placement of the computer equipment. In
recent years system boxes bought as a tower or mini-tower have become very
popular.They allow the user to position the system box away from the screen and
keyboard, and thus provide increased desk space. Ergonomic recommendations
exist for the screen, keyboard and mouse.

Screen
Looking at a screen all day can lead to eyestrain but will not cause permanent eye
damage. Symptoms of eyestrain include sore, tired, itchy, dry or burning eyes;
brief difficulty refocusing the eyes; blurred or double vision; headaches; and
increased sensitivity to light. Taking regular breaks from the screen and blinking
to keep the eyes lubricated can prevent eyestrain. In addition, the following
recommendations for the screen will reduce eye soreness:
• The screen should be about an arm’s length away, with the operator looking

down at the screen, not up. The screen should be between 15 and 30 degrees
below the eye level (see Figure 1.3).

• The image should be clear, sharp, and steady.
• The surface of the screen should also be adjusted so that it is at right angles

to the line of sight. For this reason the screen should be titled slightly upwards.
• Minor adjustments of angle, brightness and contrast should be possible, to

cater for individual differences.

Figure 1.3 The correct arrangement of furniture and computer equipment.

Sitting
upight

Back
suppot

Seat height
420–520 mm

Looking
down to
sceen

5 –30

Angle of
keyboad

Desk height
660–680 mm

200 mm

10 Heinemann Software Design and Development: Preliminary Course

• A filter can be placed in front of the screen to reduce the amount of glare
from natural or artificial light.
The effects of electromagnetic radiation (EMR) generated from screens are

not known for certain, but there are some statistics that link computers to mis-
carriages, birth defects, skin problems and cancer. These statistics have related to
people using computers for at least eight hours a day. Scientists are investigating
a theory that low-frequency EMR vibrates molecules like a base speaker resounds
through the body. In addition, they have been able to measure an increase in the
calcium concentration in certain cells when exposed to EMR. Though it is not
certain, there seems to be enough evidence to cause concern. For this reason,
international standards have been set which aim to reduce EMR emissions.
NEC™ is the first computer manufacturer to have a produced an ergonomically
designed monitor that meets these requirements.

Keyboard
When using the keyboard, an unnatural strain is being placed on muscles and this
can cause RSI. The following recommendations will reduce RSI:
• The keyboard should be placed on a stable desk and positioned so that the

forearms are parallel to the floor.
• The angle of the keyboard relative to the desk should be between 5 and 18

degrees (see Figure 1.4). It is desirable for this angle to be adjustable.
• The keyboard should be detachable and separate from the screen.
• The keyboard may be stepped, sloped or concave.
• The keys should require a minimum of pressure and the operator should be

aware of a completed keystroke by touch and sound.
• The keyboard should contain a numeric keypad if large amounts of data

containing numbers are to be entered.

Stepped Concave Sloped

5 – 18°

Figure 1.4 Types of keyboard that are acceptable.

Figure 1.5 Microsoft’s
Natural Keyboard is an
example of an
ergonomically designed
keyboard.

Some companies have introduced ergonomic keyboards that help you main-
tain good posture when typing. Microsoft’s Natural Keyboard (see Figure 1.5) has
a wedge shape that keeps the shoulders straighter and the arms in a more relaxed

11Socal and ehica issues

position. It has a built-in palm rest, and a wrist-levelling device that allows the
keyboard height to be adjusted to help maintain a straight wrist.The PerfecTouch
101 keyboard is similar to Microsoft’s except that the split angle is adjustable.
This lets you set the angle for optimal comfort.

Exercise 1.2

Figure 1.6 The first mouse, designed by
Douglas C. Englehart in 1964.

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
Furniture needs to be to suit each person’ . Problems may
develop in a person’s , , , and

f such funitur is not used.Furniture muste positioned so that
these body parts are used without strain or .

2 Use a drawing program to draw a picture of an adjustable desk and an adjustable
chair. On the drawing, mark in the recommended distances and heights. Save
your file as DESKSEAT.

3 Investigate a number of different keyboards that are available for purchase. For
each keyboard give details of the claimed ergonomic features. Choose the
keyboard you like the best and, using the results of your investigation, state why
you would choose this one in preference to the others.

4 Examine the placement of equipment in the computer room of your school.
Describe those features of the placement that are ergonomically good and those
that are ergonomically bad. Suggest some improvements that could be made to
make this workspace an ergonomically better place to work.

Mouse
The mouse is often forgotten when
designing an ergonomic workstation.
However, it is important to consider the
following features when purchasing a
mouse:
• The mouse should fit the hand and be

easily moved.
• The button should require a mini-

mum of pressure.
• The sensitivity of the mouse should

be easily adjusted to suit the operator.

12 Heinemann Software Design and Development: Preliminary Course

Ergonomic issues regarding software design
Software is the link between the operator and the computer and, like the hard-
ware, it should be ergonomically designed to make the operator feel relaxed and
comfortable. A range of software has been developed to meet the needs of all
software users, depending on their level of software understanding and their task
requirements. Software should be designed to minimise movement, improve
speed, and be easy to use. If the software is easy to understand and use it is called
‘user-friendly’. Most people find the GUI (graphical user interface) environment
easier to use than trying to remember commands. Instructions are entered by
using a mouse and clicking on icons (pictures) and menus.

Software can be purchased that controls the use of other programs and
prevents the operator from using typing techniques that might result in RSI. For
example, typing speed can be controlled and rest breaks can be built in. PC
Dynamics offers a shareware program featuring a carpal tunnel syndrome typing
break reminder that pops up an animated hourglass when it’s time to take a
break. Furthermore, if eyes are being strained in reading normal text, and they
have been tested, use software that increases the size of lettering on the screen.

Case study

Microsoft Word contains features that
make it easier for people who are blind or
have low vision to read and for those with
limited dexterity to write. These features
are outlined in the Microsoft Word Help
screen, and are reproduced here:
• The magnification of your document

can be changed.
• Shortcuts can be used to insert fre-

quently used text and graphics.
• The AutoComplete feature can be used

to insert entire items—such as today’s
date, the day of the week or month,
your name, or AutoText entries—when
a few identifying characters are typed.

• A toolbar can be created that contains
only the buttons and menus you use
most often. The toolbar buttons can

also be made larger and the related
ones grouped together.

• A toolbar button or a menu command
can be created or a shortcut key
assigned that can be used to quickly
gain access to frequently used com-
mands, styles, AutoText entries and
fonts. For example, you can create a
shortcut key that applies a frequently
used paragraph style or character style.

• Lists of all the shortcut keys available
can be viewed and printed.

• The Microsoft IntelliMouse pointing
device can be used to scroll and zoom
directly from the mouse. For example,
you can automatically scroll to the end
of the document with just one mouse
click and without using keys.

Microsoft Word

Acceptable response time in software
One of the most annoying features about some software is its slow response to
the entry of commands. A user expects a computer program to react ‘immedi-
ately’ to a request. For example, the tool for drawing a rectangle on the screen
should respond immediately to the movement of the cursor if it is to be useful.
Any delay in displaying the rectangle may lead to errors in the document. It is
also important that similar items have similar response times, as users often
anticipate the result of an action before that action has been completed. This
means, for example, that no matter which of the pull-down menus is chosen, that
menu should be displayed as quickly as all the others.

13Socal and ehica issues

Where the response of a program to a command is going to be slow, there is
a need for the program to indicate that an action is being undertaken. Graphical
user interfaces, such as Windows and the Macintosh operating system, have the
ability to change the cursor to a watch or hourglass thus giving an indication that
something is occurring. Another common way of indicating that an operation is
occurring is to show progress by means of a ‘thermometer’.

‘User-friendly’ software
As computers have become faster and more powerful, it has become possible to
create software that presents a more friendly user interface. Early computers
were programmed by completing physical circuits by means of wires, plugs and
sockets, which meant that they were very hard to use. As technology progressed,
first paper tape and then punch cards were mainly used, which still required a
specific knowledge to operate the computers. The advent of the cathode ray tube
as a display device opened up the use of computers to a wider group of people,
as it was possible to communicate with the user by means of text in real time.
The text-based user interface became widespread, allowing people with little
technological knowledge to use the power of a computer as long as the messages
were of the appropriate type. Now that the graphical user interface is widely
used, people with virtually no technical knowledge can interact with a computer.

In order to help both the experienced and the inexperienced user, a software
designer has to design the user interface with three factors in mind. The first is to
make the interface as easy to use as possible. Messages to the user are an impor-
tant part of the communication process and must be well structured. The inter-
face must also be consistent across the whole of the application, in order to
improve the user’s confidence, speed and accuracy. These factors will be exam-
ined in detail later in the course but will be looked at briefly here.

Ease of use
Features that affect the ease of use of a software application are its learnability
(how easy it is to learn to use the application), its flexibility and the robustness
of the interface.

Learnability often relies on the application being put in a familiar context,
with analogies between the tools available on the computer and those used for a
similar task in a non-computer setting. For example, graphics manipulation pro-
grams use various styles of ‘brush’ to create an effect with the colour being
applied. This mirrors the effects that can be achieved with paint and various
methods of applying it to a canvas.

Flexibility allows the user to customise the application to work in the most
familiar way. For example, many word processors can be customised to automate
common tasks and to present menus that contain those commands a user will be
most likely to use.

Copying to 'hard disk'

77% complete

Figure 1.7 A ‘thermometer’ can be used to show the progress of an action.

14 Heinemann Software Design and Development: Preliminary Course

Robustness of an interface refers to the way that it stands up to use. The user
is using the computer to achieve a certain goal, such as creating a letter. Features
that assist in the achievement of the desired result contribute to the robustness.
Among these features are the ability of the user to gauge progress from the dis-
play, the way in which the program allows the users to recover from an identified
error, the rate at which communication takes place between the user and the
computer, and whether the application performs all the procedures the user
needs to complete the task.

Appropriate messages to the user
Messages to the user are an important part of the user interface as they are the
way in which the computer communicates with the user. Language should be
plain and non-threatening, and any messages should avoid attempted humour
and derogatory comments. The messages must convey information as clearly
as possible.

Consistency of the user interface
One of the best ways of ensuring that a user gains confidence in using a new
software application is to make sure that screens are presented in a consistent
way. This involves placing similar items in the same place on all screens,
separating items in the same way and making sure that all dialogues are presented
and responded to in the same way.

Exercise 1.3
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Software shold be esigned to make the operaor feel
and . Software sould be designed to minimise , improve

and be . Most eople find the easier to use than
tryng to remember . Instuctins ina GUI are enteed by using a

, and clicking on and .

2 Examine the features of the word processor you use and list those that could help
disabled people in their work. Save your answer as a word-processed document
called FEATURES.

3 Describe the features of your word processor that make it easy for you to use. In
what ways do you think that your word processor could be improved? Give
reasons for your answer. Present your answer as a word-processed report or as a
slide presentation.

4 Explain why a program needs to react immediately to a user’s request. Give
examples to support your answer.

5 Compare two pieces of software that perform the same task. In your comparison,
examine the user interface and choose the one you think has the better user
interface. Give reasons for your answer.

15Socal and ehica issues

Software licence agreements
When software is purchased, it comes with a licence agreement. This agreement
is a contract between the purchaser and the software company, allowing the
purchaser to legally use the software. When purchasing a licence, the user is not
buying the software itself but the right to use it. The code still remains the
property of the vendor. There are different types of agreement covering single
and multiple users. Single-user licences allow the installation and use on one
computer. Multiple-user licences can vary from allowing use on a fixed number
of computers to allowing use on all computers on one site or within one
organisation. A distribution licence granted to a school is a special licence that
allows the school to legally distribute the software to students and staff as well as
install it on the computers on the school campus.

Figure 1.8 Software is governed by the laws of copyright, in the same way as books, magazines and
videotapes.

Intellectual property
Books, newspapers, paintings, photographs, music, films and television programs
are all the result of a creative process. Each of these products is covered by
copyright which protects the interests of the creator. Copyright in these products
acknowledges both the fact that the creator has produced an article and the right
for the creator to be paid for the thought and effort involved in its creation. The
laws of copyright protect authors’ ownership of their intellectual property.

Computer software and files are no different from artistic products, as their
creation also involves a great deal of thought and effort. Software is covered by
the laws of copyright. As it takes a great deal of money, skill, time and effort to
produce and maintain application software, copyright also protects the large
monetary investment made by the software company. The main problems found
with software items are the ease of copying and the difficulty of detecting
breaches of copyright.

16 Heinemann Software Design and Development: Preliminary Course

Software is often distributed through outlets other than shops, such as direct
downloads from the Internet. It is very hard in these cases to incorporate the
paper licences that contain the agreement. These software items come with a
licence in electronic form, often as shareware or freeware. A shareware licence
allows a user to trial the software before paying the developer for a full licence.
Shareware may also be configured so that, when a licence has not been pur-
chased, some features are disabled, or reminder messages appear on the screen.
Freeware is usually accompanied by a licence but no fee has to be paid to the
developer. Even though a software title is freeware, it is still covered by the laws
of copyright and cannot be distributed or used in any way that is contrary to the
licence agreement.

Licence terminology
Since the software licence is a legal document, it is often written in legal terms.
Some of these terms and their definitions are listed below:
• Licence: This is a legal statement that allows a purchaser to use software pro-

duced by another person. Buying a licence allows people to use the software;
they do not own the software.

• Use of the program: This means that the program is either in RAM or on the
hard disk of a computer. Even though it may not actually be running at the
time, you are still using a copy of the program if it is loaded on the hard disk
of the computer. However, some licences state that a program installed on the
hard disk of a network server is not in use until it is in the RAM of those
terminals connected to the server.

• Network: This term means two or more computers connected together.
• Reverse engineering: This term refers to the conversion of the machine code

as provided on the CD or disk back into a human-understandable form such
as assembly language. Licences disallow this practice as the machine
instructions are an expression of the programmer’s thoughts, in the same way
that the words in a book are the expression of an author’s thoughts.

• Derivative works: This term means a program which is basically the same as
the copyrighted one. For example, a program which teaches Japanese cannot
be modified to make a program that teaches Chinese. If someone wanted to
produce a program to teach Chinese, then they have to build it up from the
beginning.

Legal aspects
Copyright consists of a set of legal rights given to authors of original material.
Software covered by the laws of copyright includes programs, applications, data
codes and manuals. Also included are any documents included with the original
software, such as sample files and templates. Not included are user-generated
documents such as word-processing documents or spreadsheets files. However, if
these documents include items such as clipart, which has been supplied with the
application, the item is still regarded as subject to the conditions of the copyright.

When buying a licence, the conditions of use are specified in that licence and
the software must be used and stored according to those conditions. Generally
these conditions will cover aspects such as the following:
• installation on a fixed number of computers
• the keeping of backup copies in case the original fails.

17Socal and ehica issues

Only the copyright owner has the rights to the following:
• reproduction of the software in a material form
• publication of the software
• broadcasting of the software (including distribution by such means as the

Internet)
• adaptation of the software in some form.

As mentioned previously, there are three types of software licence: freeware,
shareware and commercial. However, it should be remembered that even if a
program is freeware or shareware the author’s rights are still protected by the
laws of copyright.

The Copyright Act 1968 (Cwlth) and the Copyright Amendment (Re-enactment)
Act 1993 (Cwlth) are the only Australian laws covering copyright. They provide
for penalties of up to $60 500 for individuals and up to $302 500 for organis-
ations who commit offences under the Act.

Use of software covered by a licence agreement
It is the responsibility of the user to fully understand and abide by the software
licence that comes with an application. By installing and using a software appli-
cation, a user is entering into a legally binding contract.

Exercise 1.4
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Copyrght protects the of the creator of a sotae title. Authors
create an property when theydesign sotware.Copyight also
protects the made by the software cmpany. Whenpurchasing a

cence, the buyer s ony buyng a to use the software; the
code sl reains the of t seller. The most common forms of
software licence are user user and licences.

2 Choose one software licence and rewrite it, keeping the same meaning but using
simpler language.

3 Obtain copies of several software licences and compare the terms of the
agreements.

4 Explain, in your own words, the meanings of the terms that you have found in
the software licences you have examined.

5 Investigate some legal cases involving copyright. The Internet is a good source of
material, including various judgments. Choose one case and write a report dis-
cussing what the case was about, who was involved and what the outcome of the
case was. Present your report as a word-processed document called LAWCASE.

Origin of software design ideas
The first computers were designed with scientific and military applications in
mind. The programs, therefore, were specialised applications in these areas. As
computers became more accessible, so the applications became more diverse. In

18 Heinemann Software Design and Development: Preliminary Course

the early days of commercial use, for example, software was mainly concerned
with bookkeeping duties. Now the same enterprises use computers for a wide
variety of tasks.

Many of the tasks performed by software are adaptations of non-computer
tasks, for example text processing and database management systems. These
software applications have been refined and now provide capabilities that were
not available to the general population. We will look at the evolution of the
graphical user interface and search engines as an example of this evolution.

Evolution of existing concepts
The origins of the GUI can be found before the advent of the electronic digital
computer. In 1945, Vannevar Bush published an essay called ‘As We Think’, in
which he talked of a desk consisting of multiple screens, with a keyboard, buttons
and levers. The desk, called a Memex, was able to store and display a large
amount of information.

Figure 1.9 The Apple Lisa was the first commercial
computer to use the GUI interface.

Unlike the Xerox machines, the Lisa had overlapping windows and the direct
manipulation of icons and windows. During development, the menu bar was
placed at the bottom of the window, but before the release of the computer it
was moved to the top. The Lisa also used the concept of the desktop, with
documents being able to be manipulated on it. Although the Lisa was not a
commercial success, it left a legacy of the graphical user interface. Although many
different graphical operating systems have been created since the Lisa, very little
has really changed in the implementation of the interface.

The Internet is such a large unstructured store of information that it would be
almost worthless were it not for search engines. The development of more and
more sophisticated methods of searching have allowed the Internet to become
the useful tool it is now. Early search engines were Archie, WAIS and Gopher.
Archie was developed in the early 1990s to help find files on the networks
forming the Internet. It obtained directory listings of all the files on thousands of
sites around the world and put them in a database. This database was searchable
through a simple interface. WAIS was developed as a source of information for

During the early development of the
computer, the human interface was of
secondary importance. Most input was
by punched card and paper tape, the
human readable output usually in the
form of printed matter. As computers be-
came more widely used, they employed
the cathode ray tube for the display of
information, but only using a text-based
interface. Some of these computers were
able to display some form of graphics,
but they were not used in the interface.
In 1972, Xerox produced the Alto and
Star computers that ran by using a bit-
mapped screen display. The Xerox
display employed icons which were
selected then acted on from a pop-up
menu. It was not until 1983, when the
Apple Lisa was released, that the GUI
interface became commercially available.

19Socal and ehica issues

big business, and was able to be searched by using questions in natural language
(normal language such as English). Gopher was developed by the University of
Minnesota to help its staff and students by distributing campus information.
These search engines formed the basis for those that are available today.

New and exciting approaches
Many software applications that we take for granted now are the result of
creative lateral thinking. Among these applications are spreadsheets, web brow-
sers and presentation software.

The story of the spreadsheet began in 1978, when the program Visicalc was
launched for the Apple II computer. Visicalc was based on the paper spreadsheets
used by businesses, but it had the advantage that calculations could be made
automatically. The functions provided in Visicalc were minimal when compared
with modern spreadsheets. As the spreadsheet developed, further functions were
added, increasing its application to tasks outside finance. Added to these features
were the ability to turn tabulated material into graphs and the further ability to
automate tasks by means of macros. The spreadsheet, more than any other appli-
cation, took the personal computer from being an enthusiast’s ‘toy’ to being an
important part of the modern office.

The growth in the use of the Internet is almost entirely due to the ease with
which it can be navigated.The applications that give us the ability to find our way
around the Internet are the browsers. Before 1993 the Internet was basically an
ASCII-text-based network. In that year the graphical browser Mosaic was first
released by NCSA (The National Center for Supercomputing Applications) for
a number of different computer platforms. The release of Mosaic allowed full use
to be made of the World Wide Web (which was created in 1989 at CERN in
Switzerland) and the hypertext links it provided. The original developers of
Mosaic left NCSA soon after the release of Mosaic, to form the Netscape Com-
munication Company. Although Mosaic and Netscape perform the same tasks,

Figure 1.10 Netscape Navigator was produced by members of the Mosaic
development team.

20 Heinemann Software Design and Development: Preliminary Course

Netscape was written from scratch, solving a number of bugs that were inherent
in Mosaic. Internet Explorer from Microsoft was developed from Spyglass’
Mosaic browser for use with the Windows 95 operating system.

Most research seems to suggest that the first application to be used for
presentations was the Hypercard programming environment released by Apple in
August 1987 for use on its Macintosh computer systems. Although not specific-
ally designed for presentations, Hypercard found favour due to the ease with
which links could be formed between various elements of a presentation. There
are now a number of differing software titles that may be used for presentations,
some forming part of an integrated package, others being designed specifically for
presentations.

Exercise 1.5
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Software was ritten for theearly computersto solve and
probems As computers became more business and commerce found
uses for the computer. Now computers are used for a ________ variety of

. Many of these are of non-comput aplications, for
example and . These have now been
for the geneal who often use them at home and at .

2 Use the Internet to investigate the evolution of a software application, for
example spreadsheets, or of a particular application such as Hypercard. Use
presentation software to help you with a talk to the class. Save your file as
HISTORY.

3 Examine the operating system used by your school computers and suggest what
that operating system may be able to do in five years’ time. Use a word processor
to present your report. You may like to take some screen dumps from the existing
operating system and use a graphical package to modify the screens so that the
graphics illustrate your points.

Events that have led to the need for software licence agreements
As we have seen earlier, a number of different factors have led to the need for
agreements to cover the use and distribution of software.The main factors are the
ease with which software can be copied, the collaborative approach to writing
applications and the availability of software from the Internet.

In the early days of computers, software was usually written for a specific
application on a specific computer. Copying of such software was generally not
an issue since there was a relatively small number of computers around. With the
advent of the personal computer and commercially produced applications aimed
at the home and small business market, the acquisition of software has become a
regular occurrence. The ease with which software can be duplicated or trans-
ferred from one computer to another has often encouraged people to ‘borrow’
software from various sources. In these circumstances, software developers have
had little choice but to strengthen the licensing arrangements to ensure that they
receive a fair reward for the thought, time and effort put into creating a software

21Socal and ehica issues

package. The agreements drawn up now assign only a right of the purchaser to
use the software and not ownership which remains with the developer.

One of the major costs associated with application software is that of the
development team. Duplication and distribution of a software title are a very
small proportion of the total cost in bringing out a new title. Many teams of very
skilled people work for a long time to generate, test and debug commercial
software. If the developers are to continue in their business, the rewards must be
there for them. The only source of these rewards is by means of sales.

The Internet poses a large problem as far as copyright is concerned. The ease
with which software can be made available to a global audience is the greatest
worry. The openness of the Internet and the lack of control mean that anyone is
able to publish anything without regard to the source of the material.

Exercise 1.6
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
to cover the use and of software have become necessary

because softwareis now to copy. Softwae develoersemploy large
of people to the software. This is an process

and the deeloper must be rewaded if more sftware is to be
. Licence ensure that the receives payment for

the and effort put into the software.

2 Explain what would happen to software development if licence agreements were
not legally enforceable.

3 What difficulties do software developers have in enforcing licence agreements?
What body in Australia helps software developers ensure that software is used
legally?

Sources of code and conditions
that apply
There are various sources of code: the
Internet, books and magazines, freeware
and shareware. The publication of a code
in one of these forms does not necessarily
give a person the right to use it. Each of
these sources is covered by the laws of
copyright, and the programmers need to
be aware of their responsibilities in this
regard. For example, in some cases, por-
tions of code may be reproduced for
personal use, but not distributed.

There are a number of freely accessible
sites and newsgroups on the Internet that
cater for programmers in many computer
languages. Code samples obtained from
these sources may be free of copyright, as
these places are a forum for discussing

Figure 1.11 Books and magazines can be a source of
code, but the laws of copyright still apply.

22 Heinemann Software Design and Development: Preliminary Course

various problems. It is not hard to check on the status of any code on the Internet,
as a short e-mail to the code’s author will clarify the situation.

Books and magazines are subject to copyright. If the code within one of these
sources is free to distribute, it will usually be noted in the copyright notice in the
source. If you are in doubt about the copyright status of any of the code, then a
letter should be written to the publisher to ask about the status.

Freeware and shareware are generally not sources of code, as they are covered
by the same laws of copyright as commercial software. Some freeware licences do
state that the code may be modified but not for profit. In these cases it is possible
to use the code, as it is a part of the licence. However, if the code is modified, it
is a general courtesy to send a copy of the changed application to the original
author.

Exercise 1.7
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Sources of computer code are , , , and

. l of these sources are subject to . Sites and on
the Internet that are used by ma provide coe that is free of

. Freeware and are gerally unable to be used as
of code, as the softwre tem is covered by a agreement.

2 Investigate books, magazines and the Internet as sources of code and report on
whether the code you find is free of copyright or not. Create a database of code
sources that are able to be used. In this database, you will need to have fields that
contain the source of the code, its purpose and the computer language that the
code is in. Save your database as CODEDATA. This will be a useful database later
in the course when you will need to find code samples.

Inclusivity
Software design and development need to allow for many human perspectives.
These include cultural, economic, social, gender and disability perspectives. No
member of society should be excluded from using a software application for any
of these reasons.

The need for software design and development to be inclusive
Software is designed to be used by people. When developers set out to create a
new software item, they need to ensure that it is available to the widest possible
audience. The following perspectives should be taken into account:
• Cultural. Software should not assume any cultural heritage. The language of

prompts and messages needs to be written in plain and simple English, for
example. Images should not reflect any bias towards one culture.

• Economic. When writing software, a programmer should not assume that the
user will come from a particular type of economic background.

• Social. Software should not emphasise any one particular social background.

23Socal and ehica issues

• Gender. A software title should not be written in such a way as to appeal to
either males or females. Software should also provide messages and prompts
that are gender-independent.

• Disability. People with disabilities should have access to the same technology
that the able-bodied have. Software should be structured in such a way as to
encourage those with disabilities to take advantage of the features. For
example, the incorporation of a magnifying feature in a word processor will
assist the visually impaired in working with that program.

Exercise 1.8
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
The human that software evelopers needto allw for include

, , , and perspectives. This
is done so that software is made to the widet possible .

2 Choose an application and examine it in terms of the five perspectives. How do
you think that the application could be improved to allow it to be used by a wider
audience?

The general strengths brought to the field of software design and
development
Creation of software is not only beneficial to the user, but it also develops the
strengths and skills of the members of the development team. Apart from the
obvious skills in working with others, team members’ experiences enhance their
communication skills, exercise their creativity, sharpen their design skills,
improve their problem-solving ability and refine their attention to detail.

Many projects are completed as a team effort and, as such, there is the need
for different people to work together. Members of a team have to appreciate the
skills of others as well as their own shortcomings.

Communication is really at the core of all software projects. Whether large or
small programs are being created, the programming team has to provide
documentation. These documents vary from memos and notes for the use of the
development team through to the user manuals that accompany the finished
product. One of the hardest tasks faced by a programmer is to create the clear
and simple messages that are needed as part of the program interface.

Programming is a very creative process. A programmer needs to be able to
make a product that not only functions well but also acts in a familiar way. Screen
design is the obvious way in which creativity is shown, but there are many other
ways in which it can be displayed. For example, a programmer may find a simpler
and faster way of obtaining a result.

The design of a process that takes place within a program is no different from
the design of an object such as a car. A software developer needs to be able to
analyse the needs of a user and turn them into a useful product which fulfils all
the requirements.

The process of software development is not an easy one. Many problems will
occur during the process, some with the program and others with documentation

Team Activity

A large business is moving its entire office
staff to a new building. The business
requires the best ergonomic standards,
privacy for computer work, and facilities
that promote ‘teaming’ within the office.
Write a report that makes recommend-
ations in the following areas:

• furniture design—desk and chair
• placement of computer equipment—

screen, keyboard and mouse.
• work environment—lighting, indoor

climate, placement of work areas and
noise.

Ergonomics

24 Heinemann Software Design and Development: Preliminary Course

or final implementation. A software developer needs to be able to overcome
these problems for the project to have a successful outcome. Problem-solving
skills such as lateral thinking are developed to a high degree in this context.

Finally, the program being developed must fulfil all the requirements set down
by the original specifications. This means that all the fine details must be
attended to. An application is not going to be successful if it fails to work under
a rare, but possible, set of circumstances. For example, a word processor is not
much good if it works properly for all combinations of characters except for the
three letters i, o and u following each other. This word processor will work
correctly most of the time, but if the word facetious is used, then it will fail.

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
Computer programing can enhance the of the members of the
team. The slls used in programdevelopment e skills, ,

skis, slving aility and attention to . Working
as a member of a helps people to work with as well as
hepng ith lls. Dvelopment of softareinvoles a lot of

, some for the team and some for the . This
means that a dveloper needs gokills.

2 Each of us has differing skills in each of the areas mentioned in this section. For
each of the skills listed, state whether you think you have that skill or need to
develop it further. Give reasons for your answer for each of the skills. Choose the
skill that you think is your weakest and plan a course of action to improve it.

Exercise 1.9

25Social and ethical issues

Review exercises

1 Measure a typical chair in one of the
classrooms at your school. Explain why
this chair is not ergonomically suitable
for use at a computer desk.

2 Compare a number of different
computer mice by looking at the
features of each. Construct a database
of mice which lists the features of
each, rates the ‘feel’ of each as good,
fair or poor and records the cost of
each mouse. Using the information
from your database, make
recommendations as to the best value
mouse and the best mouse
ergonomically.

3 Investigate the causes, symptoms and
cures for either carpal tunnel
syndrome or tenosynovitis. Explain
what can be done by a computer user
to minimise the risk of these disorders.

4 Describe how the workplace
environment can affect the health
and performance of a computer user.
Illustrate your answer with
appropriate examples.

5 Explain, in your own words, what
makes a computer program easy to
use. Choose a public domain program

and analyse how easy it is to use.
Publish your report with the filename
EASY2USE.

6 Explain why the laws of copyright are
necessary. What would happen to
computer software if it was not
covered by these laws?

7 Describe the responsibilities of a
computer programmer as regards the
use of program code from outside
sources.

8 Visit the website for the Business Soft-
ware Association of Australia. Describe
the steps that should be taken by a
company to ensure that software theft
by its employees is prevented.

9 Voice recognition software is
becoming much better. What new
applications, or adaptations of old
applications, will occur as a result of
this advance? Describe the tasks that
the new software will perform.

10 You have been chosen to develop a
library enquiry system for your local
library. What features will you include
to make it useable to the largest
number of people possible?

Chapter summary

26 Heinemann Software Design and Development: Preliminary Course

• Ergonomics is the study of the relationship between people and their work
environment.

• The work environment includes the operator’s furniture, equipment
placement, work techniques, software interface and general working
surroundings.

• Prolonged use of software may lead to RSI if the environment and work
practices are not right.

• Furniture needs to be properly designed and placed for worker to avoid
problems cause by poor posture.

• User-friendly software can assist in the prevention of work-related health
problems.

• Software that is user-friendly will have acceptable response times, be easy
to use, provide appropriate messages to the user and have a consistent
interface.

• Objects such as books and computer programs which result from a
creative process are covered by the laws of copyright.

• Software licence agreements spell out the conditions under which a
software item can be used.

• Licences will specify how the software may be installed, the reproduction
of the software and the manner in which backup copies can be kept.

• When installing a software title, the user automatically agrees to the terms
of the licence.

• Software design ideas have come from a large number of different sources.
• When using a section of code, a programmer needs to ensure that all the

laws of copyright are followed.
• Software should be available to the whole population, taking into account

various perspectives.
• Software design benefits both the user and the designer, as the designer

acquires or enhances skills in many areas.

22Hardware and software

cchhaapptteerr

Outcomes
• describes the functions of hardware and software (P 1.1)
• describes the interactions between the elements of a computer

system (P 1.3)
• describes developments in the levels of programming languages

(P 2.1)
• explains the effects of historical developments on current practices

(P 2.2)
• identifies the issues relating to the use of software solutions (P 3.1)
• describes the role of personnel involved in software development (P 6.1)

Hardware
• the function of hardware within a computer system, namely:

– input
– storage
– output
– control
– process

• the operation of a variety of input devices, output devices, storage devices and
CPU components

• the current trends and developments in computer hardware

Software
• system software, including utility software
• applications packages and custom-designed software
• generations of programming languages, namely:

– machine
– higher level languages

Students learn about:

28 Heinemann Software Design and Development: Preliminary Course

– assembler
– declarative languages

• event-driven versus sequential approach
• the need for translation

– compilation
– incremental compilation
– interpretation

• characteristics of different operating systems, including:
– command-based or graphical user interface
– multi-tasking

• current trends in the development of software and operating systems

The relationship between hardware and software
• processing of software instructions by hardware

– the ‘fetch-execute’ cycle

• the initiation and running of an application
– start fetch-execute cycle
– display the start screen
– locate on disk
– wait for user input
– load into RAM

• the existence of minimum hardware requirements to run some software
• elements of a computer system, including:

– hardware
– procedures
– software
– personnel
– data
and their role in software design and development

• describe how data is captured, stored and manipulated on a variety of hardware devices
• competently use computer hardware, selecting appropriate hardware for specific tasks
• competently use a range of software
• describe the development of subsequent generations of programming languages
• appraise the effect of the operating system on the tasks that the system can perform
• interpret and use an ASCII table
• identify the elements of a computer system
• describe the significance of each element in the software solution using a case-study

approach

Students learn to:

29Hardware and software

Personal Profile—Charles Babbage
(1791–1871)

Born in Teignmouth, Devon, on Boxing Day
1791, Charles Babbage was the son of a
banker. Today he is acknowledged as the
‘Father’ of the modern computer. His ana-
lytical engine, which was never completed,
was the first machine to be conceived as an
automatic calculating device. The machine
would have used punched cards to store
both data and instructions, very much like
the early-generation electronic computers.
The other feature that this device had in
common with the modern computer was
the division of the machine into three basic
units: the store, the mill and the control.
These units correspond to the parts of a
modern computer system: storage, process
and control.

Little is recorded about Babbage’s life before he entered Trinity College
Cambridge in 1810. While at university he married Georgiana Whitmore, whose
half-brother Wolryche was a member of parliament. He graduated from Cam-
bridge in 1817 with a MA degree in mathematics.

In 1823 he started work on his ‘analytical engine’ which was designed to
calculate and print mathematical tables. Finance for the project had been
provided by a government grant of £1500. Babbage stopped work on the project
in 1827 when his wife died, and travelled to Europe. By the time he returned in
1828 the money had gone. In 1829, with the help of some of his friends, Babbage
managed to gain a further grant of £3000 from the Prime Minister, the Duke of
Wellington. Disagreements with his construction engineer forced work on the
engine to stop in 1830. In 1834 Babbage approached the new Prime Minister,
Lord Melbourne, for funding for his machine, the analytical engine. However, the
government was unwilling to give him more money as the difference engine was
not complete. He continued to lobby the government for funds until 1842, when
he was told that the funding would not eventuate. By 1851 he had come to the
conclusion that the analytical engine would not be constructed.

During this period Babbage continued to work in other fields, having been
appointed Lucasian Professor of mathematics at Cambridge University in 1830,
although he never actually gave a lecture. He was a founding member of the
Analytical Society (formed in 1823), the British Association for the Advancement
of Science (in 1831) and the Statistical Society of London (in 1834). He was also
involved with the construction of railways and published various books and
articles. When he died in 1871, his passing was barely noticed. It was not until the
advent of the modern computer that Charles Babbage’s contributions were
appreciated.

30 Heinemann Software Design and Development: Preliminary Course

Hardware
The function of hardware within a computer system
A computer programmer writes the software that directs the hardware to
perform a particular task and so solve a problem.The software consists of detailed
instructions that control the hardware. When writing these instructions, program-
mers view hardware in terms of their five logical elements: input, processing,
control, storage and output.

Input involves entering data into the computer for processing into infor-
mation. The term ‘data’ refers to the raw facts used by the computer, such as
letters and numbers. ‘Information’ is data that has been ordered and given some
meaning. Information is the result of work on the computer and depends on the
data entered. If the data entered is inappropriate, the information presented will
be meaningless. A related computer saying is ‘garbage in, garbage out’ (GIGO).
Input devices include keyboards, mice, disks and scanners.

Processing involves changing data to produce information by following a series
of instructions. Processing is performing the required task and is carried out by
the central processing unit (CPU). The CPU takes the data entered from an in-
put device, changes it in some way to produce information, and sends it to an
output device to be presented.

Control coordinates the operations of the input, processing, output and
storage. It is performed by the control unit which is part of the CPU. The control
unit is the organiser that directs the flow of data in the computer, in the same
way as traffic lights control the flow of vehicles at an intersection.

Storage involves receiving and retaining data over a period of time, allowing it
to be accessed and retrieved when required. Storage may be classified as primary
storage or secondary storage, and as permanent or temporary. Primary storage
holds data and programs before and after they are processed by the CPU, and is
called ‘internal storage’. Secondary storage is more permanent and is called
‘external storage’. It uses media such as hard disks, floppy disks and CD-ROM to
store data.

Output involves the presentation of information to a person, or data to
another computer. It includes the transfer of data from primary storage to an out-
put device such as a monitor or printer. The information presented is the result
of the operator’s work on the computer.

All the elements of hardware work together. Data is entered using an input
device and processed in some way before being presented using an output device.
If necessary, data can be held on a storage device for later use (see Figure 2.1)

These five elements can be seen in the type of computer used at your school,
called a microcomputer (see Figure 2.2). A microcomputer is only one member
of a large family of computers and is also known as a PC (personal computer) or
home computer. Data is entered using a keyboard (or mouse) and then changed
in some way and presented on the screen. These tasks are performed under the
control of a program that resides in the computer’s memory. If required, the data
can be stored on a disk. All types of computers, from large to small, have input,
process, control, storage and output.

Peripheral devices
Peripherals are devices other than the CPU. They are often attached to the com-
puter and include input and output devices, and secondary storage. For example,
the keyboard, mouse, monitor, printer and disk drive are all peripheral devices.

31Hardware and software

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
All computer hardware systems consist of five logical elements. These are

, , , and . Entering data is
caed . Producing information from this data is done by .
Coordnaton of event is arried out by te section of th computer.
When datais kept or later us, t ispaced in . Te presentation of
nformaton is caried out by thesection of the hardwae system.

2 For each statement, select a matching word or phrase from the following list:
control, data, hardware, information, input, microcomputer, monitor, output,
peripherals, storage.
a Data that has been given order and some meaning.
b Presentation of data or information to a person or another computer.

Processing

Input Control Output

Storage

Figure 2.1 The elements of hardware.

Figure 2.2 A personal computer
system contains all five elements of
a computer system. Which ones can
you identify from the photograph?

Exercise 2.1

32 Heinemann Software Design and Development: Preliminary Course

c Receipt and retention of data.
d Another name for a personal computer.
e Entry of data into the computer for processing.
f Pieces of computer equipment other than the CPU.
g An output device.
h Coordinates the operations of the input, processing, output, and storage.
i The computer equipment that you can see and hold.
j Raw facts put into the computer system.

3 Name the five elements of hardware. Use a drawing program to illustrate how
data passes between these elements. Save the file on disk and name it
HARDWARE.

4 Explain the role of storage in a computer. Use your creation of the file
HARDWARE in question 3 to illustrate how storage is an important part of the
hardware system. You can present your answer as a word-processing file called
STORAGE1.

5 Name the two types of storage. Use the example of your file HARDWARE to
explain the similarities and differences between these storage types. You can
present your answer as a word-processing file called STORAGE2.

6 Create a small database with two fields called DEVICE and TYPE. Enter as many
peripheral devices into this database as you can. Each peripheral should be
classified in the TYPE field as an INPUT, OUTPUT, PROCESSING, CONTROL or
STORAGE device. You can save your database as a file called PERIPH.

EXTENSION

7 The typical advice given to a person wanting to buy a personal computer is that
they should first choose the major software needed, and then choose the
hardware that will execute the software. However, a consultant strongly advised
a person to buy an IBM-PC without considering the software. Evaluate the con-
sultant’s advice. Present your answer as a word-processing file called COMPBUY.

8 The introduction of a personal computer to an office makes some people feel
insecure and inadequate. What remedies would you suggest to solve this prob-
lem? You may, if you wish, present this answer as a word-processed document.

Input devices
A computer needs data and instructions before it can work. Entry of data from
outside the computer system is called input. Once taken from the outside en-
vironment, data needs to be changed by the input device into a suitable form to
be processed. There are many types of input devices used for different purposes.

The keyboard
The keyboard is the most commonly used input device. It consists of a number
of rows of electrical switches. Electronic circuits inside the keyboard convert the
keypress into a code which represents a character. The code is then passed on to
the processor.

There are many different layouts for keyboards. The most common, named
the QWERTY keyboard after the first six letters on the top row, was developed
for mechanical typewriters then adapted for computer use.The main disadvantage

33Hardware and software

Figure 2.3 Computer
keyboards are very much
like a typewriter keyboard,
but they usually contain
more keys, which makes
the keyboard more flexible.

Figure 2.4 A mouse connected to a
computer allows the user to ‘point’ to a
wanted item.

of the QWERTY keyboard is that it was designed to slow down the typist in the
days of mechanical typewriters. Other keyboard arrangements have been in-
vented for the purpose of improving the speed of input, the most notable being
the Dvorak keyboard. However, the cost of retraining typists and re-equipping
computers with new keyboards makes these other designs uneconomical and
they are not widely used.

Most computer keyboards have extra keys that are not found on typewriters.
The purpose of these keys is to modify the code sent from the keyboard so that
it can stand for another character. For example, commonly found modifier keys
are the control key, the alt key and, on Macintosh computers, the command key.
Other keys not normally found on typewriters are programmable function keys,
an escape key and numerical keys arranged as a separate numerical keypad.

Pointing devices
Pointing is an instinctive ability. We learn to point
before we can stand, sit or talk. Thus it can be easier
to point to something on the screen rather than to
enter a command into the computer using a
keyboard.

A mouse is an input device that can be used to
move a pointer on a screen. It consists of a ball that is
rolled over a flat surface (see Figure 2.4). The ball’s
movement on the surface causes the cursor to move
to a corresponding position on the screen. Clicking or
pressing a button on the mouse allows a character or
command to be selected from the screen.

A mouse is now supplied with most PCs because
people find them easier to use than keyboard com-
mands. The mouse can move the cursor to any point
on the screen with a single sweep of the hand.

The mouse is an important device used in a graphical user interface (GUI)
where choices are made by pointing to an icon or menu, then clicking on the
mouse button. It replaces the command line interface where the cursor was
moved using nine separate keys on the keyboard (four arrow keys, tab, page up,
page dn, home, and end) and choices were made by using a combination of one
or more keys.

The movement of the mouse ball is translated into two signals, one repres-
enting the ‘vertical’ movement of the mouse on the mat and the other the
‘horizontal’ movement of the mouse. These two signals carry data about the dis-
tance moved by the mouse in each direction. The data is then converted by the
computer program into movement of the pointer on the screen.

34 Heinemann Software Design and Development: Preliminary Course

A trackball is similar to a mouse, except that the
ball is on top of the device instead of the bottom
(see Figure 2.5). The operator moves the trackball
with the palm, finger or thumb. which allows the
cursor to be moved. Trackballs are frequently used
in computer-aided design (CAD) applications
because their movement is far more precise than
that of a mouse. In addition, they do not require a
flat surface, making them a convenient pointing
device for many laptop computers.

Joysticks are mainly used for computer games.
They are used to move the cursor or other object
on the screen and, like the mouse and trackball,
they translate physical movements into two signals
which are interpreted as screen movements by the
computer program.

Figure 2.5 A trackball is really only a
mouse on its back.

Figure 2.6 A digitising tablet can be
used to ‘draw’ directly on a screen.

A light pen is an input device that can change pictures or drawings into
electronic signals. The pen is wired to the computer and can be used like an
ordinary pen. It is used simply to ‘draw’ on the screen in the same way as drawing
on paper. The light pen works by detecting the light produced by the scan at the
point on the screen. The signal to the computer is translated by the computer
program into a position on the screen.

Touch screens enter data by detecting the touch of a finger. Some of them
have infra-red light beams shining horizontally and vertically across the face of
the screen. The exact location of a finger is determined when the beams are

broken. Other touch screens work by changes
in capacitance across the screen or by ultra-
sonic reflections. In addition, there are devices
that allow most monitors to be used as a
touch screen. The computer program again
receives a signal from the device, converting it
into a screen position.

The digitising tablet is another input
device which sends signals representing the
position of a ‘pen’ on a special pad. There are
several different ways in which this infor-
mation is measured: by electrical resistance,
magnetically by detecting current pulses, and
by sonic tablets that use microphones. Many
laptop computers use a small digitising tablet
called a trackpad in preference to a mouse or
trackball.

Character readers
Character readers are input devices that can accept text and send it to the
computer.

A barcode wand is an input device that allows the computer to read the bar-
codes on packaged products. It usually looks like a thick pen and is rubbed lightly
over the barcode. It works by detecting variations in the thicknesses of the bars.
This data is then converted to a coded signal and sent to the computer program
which changes the signal to a series of digits. Barcode readers in supermarkets are
set into the surface of checkout counters.

35Hardware and software

A document reader is an input device that can read text. Many multiple-
choice tests require answers to be marked on specially printed answer sheets
using a pencil. The answer sheets are corrected using a computer which receives
its information from a document reader. This input device consists of a series of
lights and photoelectric cells which can read the lead from the pencil.

Optical character readers are used in shops to monitor sales. They are hand-
held devices that can read specially printed numbers from a label attached to an
item. They are usually attached to a terminal at the shop counter, which in turn
is connected to a computer. The computer program detects either the shape of
the character or the area of the character, comparing this with a character data-
base. Optical character recognition (OCR) software can now be used to change
printed text, such as from a typed page, into strings of character codes which
represent the text as a word processor file. Programs which ‘read’ handwritten
text are also becoming more widely available as they become more accurate.

Figure 2.7 A scanner converts an image into a
bit pattern which represents the picture.

Other graphical input devices
Scanners are input devices that can turn photo-
graphs and drawings into bit patterns able to be
read by the computer. The bit patterns carry
information about brightness and colour in the
scanned document. These patterns can be
stored, changed, and the pictures printed by a
graphics program. In addition, character recog-
nition software can be used to read text and
store it in a word-processing program. A scan-
ner works by shining a strip of light onto the
page and measuring the reflected light with
light sensors (see Figure 2.7).

Digital cameras create bit patterns similar to
those produced by a scanner. These patterns are
produced by the lens focusing the image on a
light-sensitive grid. Digital cameras can send
these patterns directly to the computer or store
them in a memory for later transfer to a computer. Video cameras work in a
similar way, but they can take a sequence of still images very quickly (about 30
each second for full-motion video).

Video input devices take in a signal from a video source such as a video
recorder or television tuner. These video cards convert the analogue signal re-
ceived into a digital sequence which can be interpreted by the computer in the
same way as the input from a digital camera or scanner.

Sound devices
Sound from sources such as microphones can be turned into a digital sequence
that can be processed by a computer. The process involved in digitising the sound
is the same as is used when music is stored on compact disk.

Sounds can also be ‘captured’ from certain types of musical instruments by
means of a MIDI (musical instrument digital interface). The MIDI system does
not actually record the sound but uses a code to represent the tones. These codes
can be manipulated and saved, then sent to a musical instrument capable of pro-
cessing them in order to reproduce the desired musical effect.

Data can also be input from another computer by means of disks, modems and
network interfaces.

36 Heinemann Software Design and Development: Preliminary Course

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
Probaby the most common device used is the keyboard.
The keyboard is much more efficient than the one.
Ponters on screens are ually ctrolled by a ,but devices such as a

and can also be used to ontro a pointer. Other devices
that can be used to input text are the and . Other data that
can be entered into a computer includes , and .

2 Explain why it is easier to point to a choice on the screen rather than type it into
the computer.

3 Use a drawing program to illustrate how a mouse works as an input device. Save
your work with the filename MOUSE.

4 Name all the different pointing devices. Discuss the similarities and differences in
the ways they work.

5 Describe one task where a mouse is superior to the keyboard and one where the
keyboard is superior.

6 Why are trackpads a convenient pointing device for many laptop computers?
7 List the input devices available to you in your school. Describe the schoolwork

tasks that you can perform with each of these devices. Present your report as a
word-processed document with the filename SCHOOLIN.

8 Scan a photograph of yourself and modify the picture using a graphics program.

EXTENSION
9 A punched card is a thin piece of cardboard on which information is recorded as

small holes. This information is passed into the computer through a machine
called a card reader. Why have punched cards become obsolete?

10 ‘Touch screens are easy to use and will eventually replace the mouse as a pointing
device.’ Comment on this statement.

Exercise 2.2

Output devices
Output is the presentation of information to a person, or data to another
computer. It enables results to be obtained. Computers can present data as text
(letters and numbers), graphics (pictures) or as computer-generated/reproduced
sounds.

Visual display devices
A monitor is a television-like device used to display images generated by the
computer. Though similar to a television screen, it is much clearer and provides
immediate feedback about what the computer is doing. The monitor is the most
common output device and has several names, including the screen, cathode ray
tube (CRT) or visual display unit (VDU).

The screen itself is a cathode ray tube with electrons being bounced onto a
phosphor coating at the front of the tube to make it glow. The beam of electrons
rapidly scans across and down the screen to produce the image. This beam forms

37Hardware and software

the picture on the left–right scan by being rapidly turned on and off. When
moved from the right to the left to start a new scan line, the beam is turned off.
This scan is known as a raster.

Liquid crystal displays (LCDs) are flat screens used in portable computers.
They use the same type of display as digital watches and calculators. This
technology provides displays that are very light, take up less room, produce no
heat, have no glare, and create no radiation. Furthermore, LCDs require less
power than a CRT, allowing them to run on batteries. These displays use the
properties of ‘liquid crystals’ which change direction when subjected to an
electric current. Polarising filters are used so that when the crystal turns light is
prevented from being reflected back through the filter as its polarisation is
changed. (Try looking at an LCD calculator display through polarising sunglasses
while turning the calculator slowly from left to right. This will illustrate that the
light is not reflected back.)

Screens are classified according to the clarity of their image or resolution.
Resolution is measured by the total number of pixels (dots) that occupy the
screen. A number of standards for computer screens have been developed, each
offering a higher resolution and hence a sharper picture.

In addition, screens are available in monochrome or colour. Monochrome
means ‘one colour’ and screens can be black and white or, in some cases, amber
or green on black. Monochrome is cheaper but colour screens are widely used be-
cause most software now has many different features that make colour essential.
The depth of colour (the number of different colours that can be displayed)
varies from computer to computer. Depths usually vary from 256 colours
through to millions of colours. The number of bits used to represent each pixel
will have an effect on the number of colours that can be displayed.

Hard copy devices
A printer converts data in the form of electric signals to impressions on paper.
The paper containing the data is called hard copy or printout. Printers can be
classified as impact and non-impact printers. Impact printers make an image on
the paper by striking it with a metal print head, while non-impact printers make
an image using some other method. Impact printers include dot-matrix printers,
and non-impact printers include laser and ink-jet printers.

Figure 2.8 A monitor screen uses a raster scan to produce an image.

38 Heinemann Software Design and Development: Preliminary Course

Laser printers use a laser beam to create an image on a specially sensitised
drum. The drum then picks up the toner that creates the image on the paper in
much the same way as a photocopier. Laser printers provide high-quality output,
their speed is fast, and they can produce graphics as well as text of varying size
and styles. Laser printers tend to be more expensive than other printers.

Ink-jet printers produce characters by spraying very fine ink jets onto paper,
or by bursting tiny bubbles of ink by means of a small heater. They can produce
colour or black output and are quiet, light and reasonably priced, which is making
them increasingly popular.

Figure 2.9 EFTPOS machines use dot-matrix
printers to make duplicate copies.

Figure 2.10 Plotters use pens to
create accurate drawings.

Dot-matrix printers were the most com-
mon type of printer because they were reli-
able and cheap. Even though the cost per
page of dot-matrix printing is at least four
times less than that of any other printing, its
popularity has decreased. Laser and ink-jet
printers are now more popular because of
their much lower unit price and far better
print quality. The dot-matrix printer forms
its characters as a series of dots, very much
like the characters formed on the VDU.
Each dot is formed by the impact between
a pin, the printer ribbon and the paper. The
pins are located in the print head and can
range from 9 to 48 all arranged in a vertical
line. Dot-matrix printers are also noisy. Im-
pact printers such as the dot-matrix printer
are still used in applications where an exact
copy of the original is needed. For example,
EFTPOS machines still use dot-matrix
printers.

Other output devices
Other output devices include speakers for the output of sound, and MIDI inter-
faces to output to electronic musical instruments and directly to video or
television. Data can also be output to another computer by means of disks,
modems and network interfaces.

A plotter is a specialised printer
used in architectural and engineer-
ing design. It uses special pens that
are moved around to create the
desired drawing (see Figure 2.10).
It operates by interpreting com-
mands which move the pen across
the paper in both the vertical and
horizontal directions.

39Hardware and software

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.

VDUs and diplays are eamples of coy devices as the copy
cannot be used from the comute. Printers produce a
copy that can be used away fro the The main ypes of printers are

printers, printers and printers. A plotter is also
a copy device but it uses to draw on the .

2 For each statement, select a matching word or phrase from the following list:
CRT, dot-matrix, hard copy, ink-jet, input, LCD, monitor, monochrome, output,
printer, VDU.
a A television-like device, used to display images generated by the computer.
b Converts data in the form of electric signals to impressions on paper.
c Abbreviation for cathode ray tube.
d A type of monitor that displays in one colour.
e A popular non-impact printer.
f Another name for a printout.
g Screen used by many portable computers.
h Presentation of data or information to a person or another computer.
i Abbreviation for visual display unit.
j Entry of data into the system for processing.
k An impact printer that makes an exact copy of the original.

3 What is the term given to the presentation of information to a person or data
to another computer?

4 Create a database with three fields DEVICE, TYPE and ADVANTAGES. Enter each
of the output devices into this database and classify its type as soft copy or hard
copy. List the advantages that each type of output has over the others. Save your
file as OUTDEVIC.

5 Find and describe five examples of where a display is better than a hard copy
output. Explain why the display is better for this application. Use a word
processor to answer this question, saving your answer with the filename
DISPLAYS.

EXTENSION

6 Although futurist writers predict a paperless office, high-speed printers continue
to print tonnes of paper every hour. How can a business reduce the amount of
paper it is using?

7 The resolution of computer screens has increased in the past few years. Compare
the resolution of a screen with that of a printout obtained from a laser printer.

Exercise 2.3

40 Heinemann Software Design and Development: Preliminary Course

data from any input device, changes this
data according to the instructions given by
the operator, and then sends the results to
an output device. These results are the
information required to solve the problem.

The CPU consists of millions of elec-
trical components located on a thin silicon
wafer called an integrated circuit (IC) or
silicon chip. In a microcomputer the CPU
is contained on one integrated circuit and
is called a microprocessor. In larger com-
puter systems the CPU may consist of
more than one integrated circuit. These
integrated circuits are located on the flat
printed circuit board inside the computer
called the main board, logic board or
motherboard (see Figure 2.11). The main
board also contains other integrated
circuits to store data.

With advances in technology, micro-
processors are becoming more powerful
and cheaper. This has allowed the micro-
computer to do tasks that once required a
computer the size of a classroom. The
CPU is made up of the control unit, the
arithmetic logic unit and registers (see
Figure 2.12).

Control unit
The control unit coordinates the opera-
tions of input, processing, output and
storage. It is the organiser that directs the
flow of data in the computer in the same
way as traffic lights control the flow of
vehicles at an intersection. The control
unit selects and retrieves instructions from
storage in sequence, interprets them, and
starts the required operation.

Figure 2.11 The main board (also called logic
board or motherboard) of a computer showing the
silicon chips that contain the electronic circuits
needed to work the computer.

Arthmetc
logc unt ALU

PROCESS

Control unt

CONTROL

Regsters

STORAGE

Figure 2.12 The central processing unit (CPU) is
made up of three parts.

Process and control
The central processing unit (CPU) is responsible for controlling and processing
data within the computer. It is the ‘brains’ of the computer. The CPU accepts the

Arithmetic logic unit
The arithmetic logic unit (ALU) is the part of the CPU that does all the
mathematical and logical calculations. It performs:
• basic mathematical operations, including addition, subtraction, multiplication

and division
• comparison operations to make decisions using relational operators (=, < >, >,

<, >=, and <=)
• logical operations to combine decisions using the logical operators (and, or, not).

41Hardware and software

Registers
A register is a temporary storage area for small amounts of data or instructions
needed for processing. Registers are located within the CPU to provide faster
access to data than primary storage. Some of the different registers are:
• the accumulator, for storing the result of the latest calculation
• the storage register, for storing data coming from, or being sent from, primary

storage
• the address register, for storing information such as a number about the

location of data in primary storage (This information is called the address of
the data.)

• the instruction register, for storing the instruction or operation code (op code)
to be followed

• other registers used to store data that can be used for comparisons, for
example a flag register where a 1 is stored in a specified place in the register
when an operation gives a particular result.

1 Copy and complete the following sentences:

a The CPU stands for the prcessig unit.
b The CPU accepts data from an evice.
c The CPU sends the esults to n device.
d An ircit cosists of t silicon wafe contng millions of

electrical components.
e In a microcomputer, the CPU contained on one integrated circuit is referred to

as a .
f The lat rintedcicuit bordinside a coputeis caled the .
g The is the oraniser tht directs the flow f data in te computer.
h The part of the CPU that carries out all the mathematical and logical

calculations is called the .
i A reisteris a temporary area f small amounts of data and

instructions.
j A reglates the speed of tsks in the fetch–exeue cycle.

2 Describe the purpose of the CPU.
3 What effects have advances in technology had on microprocessors during the

past ten years?
4 Name the three parts of the CPU and describe the purpose of each of the parts.

Use a word processor to present your answer. Save the file as CPU.
5 If the speed of a CPU is given as 500 MHz, what does this mean?

EXTENSION
6 ‘A computer is more intelligent than any person because the CPU can carry out

arithmetic operations many times faster’. Comment on this statement.

7 In 1959 Jack Kilby and Robert Norce developed the first integrated circuit (IC). The
integrated circuit is now the heart of the computer and has many applications.
What precautions are taken during the manufacture of integrated circuits?

Exercise 2.4

42 Heinemann Software Design and Development: Preliminary Course

Storage
Primary storage
Primary storage is a part of the computer that holds data and programs before
and after they have been processed by the CPU. Primary storage is directly
accessible by the CPU. It is also known as main memory, primary memory, main
storage or simply memory.

The amount of primary storage is very important in determining the capa-
bilities of a computer. Computers with more primary storage can store more data
and larger programs. Since many software programs require a specific amount of
memory before they can be used, a computer with more primary storage can also
use more powerful software. The unit of measurement of storage is a byte and it
represents a single character such as a letter, a number, a punctuation mark or a
space. The prefixes ‘kilo’, ‘mega’, ‘giga’, and ‘tera’ are then added to ‘byte’ and
these words are more commonly used to measure data storage (see Table 2.1).
Most microcomputers bought today have a memory measured in megabytes.
Many computers have provision, if necessary, for either adding individual in-
tegrated circuits to the main board or adding expansion cards to increase their
storage capabilities.

Sometimes there is not enough primary storage available in the computer, so
virtual memory is used. Virtual memory uses a secondary storage device to
simulate extra primary storage. Using virtual memory is slower than using main
memory by itself, as large amounts of data need to be transferred between
primary and secondary storage.

Unit Symbol Meaning Value
byte B 1
kilobyte kB thousand bytes 210 Approx. 1 000
megabyte MB million bytes 220 Approx. 1 000 000
gigabyte GB billion bytes 230 Approx. 1 000 000 000
terabyte TB trillion bytes 240 Approx. 1 000 000 000 000

Table 2.1 Units of measurements for data storage.

There are two main types of primary storage—permanent memory, called
read-only memory (ROM), and temporary memory, called random access mem-
ory (RAM).

Read-only memory (ROM)
ROM holds data and instructions which are fixed at the time of production and
cannot be changed by the operator or the computer. Clearly, permanent memory
only allows data to be retrieved (read) and not entered into storage. The software
that is stored in ROM is called firmware. Storage of software within ROM pro-
tects it from being damaged or changed. The firmware often contains part of the
operating system of the computer so that the computer, or even software such as
a word processor, can be started. The actual contents of ROM are set by the
computer manufacturer. ROM is non-volatile. Non-volatile memory does not lose
its contents when the power to the computer is turned off. There are different
types of silicon chips used for ROM. Programmable ROM (PROM) chips allow
data and instructions to be entered only once and cannot be reprogrammed.
Erasable programmable ROM (EPROM) chips, as the name suggests, can be
erased and reprogrammed by the computer manufacturer.

43Hardware and software

Random access memory (RAM)
RAM is where data and instructions are held temporarily and where they can be
manipulated or executed. This type of memory allows us to read and write data.
RAM depends on a supply of electricity to maintain data storage. When the
power to the computer is shut off, everything in RAM is lost. In other words,
RAM is volatile memory. Different types of silicon chips are used for RAM.
Dynamic RAM (DRAM) chips are commonly used in microcomputers as they
are small and relatively simple. Static RAM (SRAM) chips have faster access time
than DRAM chips but require additional power which is usually supplied by a
small battery. SRAM chips are used in small portable computers. A recently
developed memory type is ferroelectric RAM (FRAM). FRAM is non-volatile
memory with fast access time that could replace the need for ROM and some
secondary storage devices such as hard disks.

Cache memory
Cache memory is another type of primary storage used in many computers. It is
located between the CPU and RAM and is used to speed up the access to
program instructions and data.

1 Copy and complete the following sentences:
a Prmary storagei intenal storage,a it is to the compter’s CPU.
b memory is another name fo primary sorage.
c Computers ith more primary storage can storemore .
d The uit of measurement of stoage is a .
e Most icrocomputers have heir memoy size meaurd in .
f Expanson can be added to some computes to incrase their

storage capabilities.
g Prmary storage tha is permanent meory s alled .
h Prmary storage tha is temporary meory s alled .
i The actul contents of ROM are set by the omputer .
j memory is used to speed up the access to programinstructions and

data.

2 Describe the purpose of primary storage and explain why a program needs to use
primary storage.

3 Describe why the amount of primary storage is important in determining the
capabilities of a computer.

4 Convert the following measurements to the units indicated:
a 4 MB = B.
b 6 GB = B.
c 140 kB = B.
d 20 MB = B.
e 40 MB = kB.
f 2000 MB = GB.
g 3 000 000 B = MB.
h 7000 kB = MB.

Exercise 2.5

44 Heinemann Software Design and Development: Preliminary Course

Secondary storage
Secondary storage is a more permanent storage area than RAM, using a periph-
eral device such as a hard drive or a floppy disk. The majority of computers use
secondary storage because primary storage is limited in size and its RAM is
volatile. Secondary storage is also called external storage, as it stores data away
from the computer’s main board. Secondary storage media include magnetic
tapes, magnetic disks and CD-ROM disks.

Magnetic tape
Magnetic tape is a very long, thin strip of plastic, coated with a thin layer of
magnetic material. Data is stored on the tapes in frames, each frame consisting of
one byte. The data is ‘written’ onto the tape by a read/write head which converts
electrical impulses into magnetic impulses that change the direction of
magnetism of the coating on the tape.

The main disadvantage with magnetic tape is that it uses sequential access to
retrieve data. This form of access starts at the beginning of the tape and reads all
the data until the required item is found. Sequential access to data is slow, making
magnetic tapes unsuitable for data which is often revised or updated. Magnetic
tapes are made in reel-to-reel, cassette and cartridge forms. Each form holds dif-
ferent amounts of data and accesses the data at different rates.

Figure 2.13 Magnetic tape drives are usually
used for backup.

EXTENSION

5 The storage capacities for microcomputers have increased rapidly in the past few
years. What do you predict will be the primary storage capacity for a popular
personal computer in three years’ time? Explain your reasons. Use an appropriate
computer program to present your answer as a file called STORAGE1.

Magnetic disks
A magnetic disk consists of a circular
piece of metal or plastic whose surface
has been coated with a thin layer of
magnetic material. Data is written and
read using the same principle as for
magnetic tape, except that the medium
is a disk rather than a long strip of
plastic.The disk is housed in a protective
jacket or container, since a fingerprint, a
spot of dust or a smoke particle can
damage the disk and prevent access to
the data. Floppy disks and hard disks
are two types of magnetic disks.

Magnetic disks use direct access (or
random access) to retrieve data. This
form of access allows data to be found
directly without accessing all the pre-
vious data. It follows that direct access
allows data to be retrieved much faster
than the sequential access used on
magnetic tapes. In addition to attaining
faster data retrieval, magnetic disks can
hold more data in a smaller space.

45Hardware and software

A magnetic disk cannot be used until it has been formatted. Formatting, or
initialising, prepares a disk to store data and organises the disk into concentric
circles called tracks and pie-shaped wedges called sectors. The operating system
determines the number of tracks and sectors. It labels each sector of each track
with an address, so that the computer can go directly to a specific area (direct
access). If a disk is formatted by one operating system, a different operating
system may not be able to read its data.

Floppy disks may be single density, double density or high density. The higher
the density, the greater the disk’s data storage. Double density floppy disks
can store about 720 kB of data, while high density floppy disks can store about
1.44 MB of data.

Floppy disks
A floppy disk is a magnetic disk made of flexible plastic and covered with
magnetic material. Floppy disks cost only a few dollars, with the most common
sizes being 3.5 inches (9 cm) and 5.25 inches (13 cm). These sizes measure the
diameter of the disk, and the use of the unit ‘inch’ comes from the American
influence on computer development. The 5.25 inch disks are flexible, as their
name suggests, but the 3.5 inch disks are housed in a hard plastic jacket. To be
used, a floppy disk must be inserted into the disk drive, which is either built into
the computer or is in an external unit connected to the computer by a cable. The
disk drive spins the disk at a constant speed and data is stored on, or retrieved
from, tracks located on the surface of the disk. Most floppy disks in common use
today can store between 140 kB and 1.44 MB of data, depending on the type of
computer and disk drive.

Figure 2.14 A hard disk drive is still a
peripheral even though it may be housed
inside the main system box of a computer.

Hard disks
A hard disk is a magnetic disk made of metal and
covered with magnetic material (see Figure 2.14).
It is located inside the computer’s casing or in a
sealed unit, and works on the same principle as a
floppy disk, except that it is rigid and much
thicker. The rigid construction of a hard disk
allows it to be rotated faster than a floppy disk,
giving faster access to data. Another advantage of
its hard construction is that it permits data to be
stored more densely. For example, hard disks
attached to a microcomputer can store between
2 GB and 20 GB of data, which is much more
than a floppy disk can.

Hard disk drives are available for all sizes of
computers. The disk may be permanently installed
in the drive, when it is called a fixed disk, or it
may be in the form of a removable cartridge or
disk pack that can be removed from the drive.

A fixed disk is enclosed permanently inside the sealed case for protection from
the elements. Fixed-disk systems contain one or more hard disks and can be used
on all types of computers. In large computers the fixed-disk system provides
storage capacities in the gigabyte (billions of bytes) range.

A removable cartridge, for example a Zip Disk or a Super Disk, has a similar
speed and capacity to a hard disk. These cartridges usually contain one or two
disks. Many hard disks used with small computers are designed to use removable

46 Heinemann Software Design and Development: Preliminary Course46

cartridges. The advantage of the removable cartridge is that it can be removed at
any time, and a different cartridge inserted. For example, a separate cartridge can
be used for a different application or to transfer data from one place to another.

A disk pack is another removable device in which several hard disks (a
common number is eleven) are packed into a single plastic case. The disk pack
drives are designed for large systems that require large storage capacities of
hundreds of megabytes.

Compact disks
A CD-ROM (compact disk read-only memory) disk is an optical laser disk which
stores digital data by using laser beams (see Figure 2.15). It is based on the
technology of the CD audio disk. This laser technology provides very large
storage capacities, and a CD-ROM disk is able to store up to 600 MB of data.
Since you cannot write to a CD, it is not suited to applications where data
changes, but it is very convenient for storing data that remains constant. In
particular CDs are used for encyclopedias, reference material, educational titles,
children’s stories and games. They are also popular for multimedia applications
to store video and audio data.

CD-R (compact disk recordable) technology allows data to be recorded once.
With the appropriate software and hardware, audio, video and computer data can
be recorded on each CD-R. CD-RW (compact disk read write) technology allows
a CD-RW disk to be rewitten.

Laser source

Detector

Figure 2.15 Compact disks work by using laser light reflected
from the surface of the disk onto a detector.

Exercise 2.6
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
storage is lessvatile storage tan min . Different

methods of storage are used, some of them being , and
. Magneicis athn lasic ribbon cated with a

substance When dat is to be stored, the changes the
pattern on the tape and disks also use a
coatng When disks are they are made ready for us. CD-R disks can
ony be ritten to once and are read by means of a beam.

47Hardware and software

2 Explain why it is important for computer systems to use secondary storage devices
as well as primary storage.

3 Describe the similarities and differences between the three most common
secondary storage devices. Choose three uses of secondary storage, one for each
of the devices. Explain why that type of secondary storage is better for that
application than the other two.

EXTENSION
4 A large primary storage enables the computer to retrieve and store data quickly

and thus operate at high speed. However, primary storage is more expensive than
secondary storage. What factors need to be considered when deciding on the
amount of primary storage to be purchased?

5 ‘Laser technology will replace magnetic tapes and disks as the most popular
secondary storage medium.’ Comment on this statement.

Figure 2.16 Computer speed and power have been increased by the design of integrated
circuits that contain a larger number of electronic components, such as these that make up this
memory module.

Current trends in hardware
It is very difficult to make firm predictions about where technology will be in
even three years’ time. We can, however, look at trends and make some educated
guesses. A great deal of time, money and effort are continually being expended in
order to improve all aspects of computing. Technologies have physical limitations
which researchers are constantly seeking to overcome by the invention of new
technologies. For example, modem speeds over copper wire telephone lines are
limited to 55 600 bps with the current technology.

Hardware technology is focused on improving processing speed, increasing
storage and providing a better human–computer interface. Processing speed is
improved by increasing the clock speed of the computer and increasing the
number of bits processed at the one time (the word length). Increased storage
allows a computer to manipulate data from more complex systems, for example
real-time audio and video, as these types of data carry a large amount of infor-
mation. Equally important in the storage of large data files is the need to rapidly
move the files from secondary storage into primary storage. In order to provide a
more friendly working environment for users, the interface with the computer is
undergoing changes, especially with regard to the use of non-keyboard input
devices such as a microphone.

48 Heinemann Software Design and Development: Preliminary Course

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
Computer technlogy is contially bein . Increases in and

aow the computer to process morecomplex such as sound
and . The between the computer and human beigs is also
beng improve. oice reonition software ow allows the to
communcate ith the computer byo it. Faster procssos also let us
view in time.

2 Use a word processor to compare the speed, storage and types of peripheral in
use five years ago with those available today. Describe the main improvements
during this time. Using the information you have gathered in this activity, make
predictions about the future improvements in computer technology. Save your
document as FUTURE.

3 Use newspaper articles, magazines and the Internet to research current trends in
hardware. Internet sites that will prove useful are those run by hardware
manufacturers. Don’t concentrate just on the trends in computers, but also look
into peripherals such as printers and cameras. Your research should be
summarised as a word-processed document named TRENDS.

Exercise 2.7

Software
Society’s acceptance of computer technology is due to its adaptability to a very
wide range of tasks. For example, the same hardware item can be used to monitor
the security of a factory at night and prepare the week’s payroll the next day. This
adaptability is made possible by software.

Software can be classified as system software or application software. System
software provides the algorithms for the computer to manage its resources and to
communicate with peripherals. Application software is responsible for the
instructions which allow the computer to perform a particular task.

System software
System software falls into two groups: the operating system and utility software.
The operating system provides the computer with programs that allow it to
communicate with the outside world and manage its resources. Utility software
allows the user to perform common tasks such as formatting disks, deleting files
and searching through files.

The main tasks of the operating system are in the management of resources
and to isolate the user from the direct use of hardware items. The operating
system’s task starts as soon as the computer is turned on and does not finish until
it has been turned off. At startup, the computer needs a program to follow so that
it is ready for the user. This program is provided by the operating system, which
ensures that the input and output devices are made ready for use and the primary
memory is set up to receive to receive programs and data. The user sees the
computer go through a predetermined set of steps which will leave it in a

49Hardware and software

predictable state of readiness for the user
to perform whatever tasks are required.

While the computer is on, the oper-
ating system usually provides the link be-
tween the application program and the
input and output devices. When programs
are writte, input and output are usually
described in general terms, for example
PRINT ‘Hell. It is up to the operating
system to communicate at a machine-to-
machine level with the required peri-
phera. In the case of printing to a printer,
the operating system will communicate
with the printer’s driver (the program
which controls the operation of the
printer)This allows the same application
program to be used on computers with
different printers.

Some utilities are often included with-
in modern operating sysems, for example
utilities to copy files, delete files and
transfer files from one directory to
another. Other utilities may be added to
the operating system to perform less
common tasks, such as virus checking or
file recovery.

Figure 2.17 System software manages the
computer and its resources.

Application software
System software is responsible for the operation of the computer hardware and
the general interface with the outside world. The second class of software,
application software, is responsible for the computer being able to perform
specific tasks. If we look at a factory as an analogy, the operating system cor-
responds roughly to management and the application software to the workers
who actually produce the items made by the factory. Application software can be
classed as mass-produced software or custom software.

Mass-produced programs are designed for general use. They are written with
a specific task in mind but also with a wide group of users in mind. Application
software of this type includes word processors, spreadsheets database manage-
ment systems, games, and graphics and multimedia applications. Some appli-
cation packages allow the program to be customised for a particular user. The
user is able to set personal preferences for the way in which the program works
or to create a personal set of templates that are appropriate for their own use.
This type of software, although very expensive to produce, is relatively cheap
to purchase, since the cost of development is shared among the purchasers of
the program.

Custom software, on the other hand, is developed for a single customer. This
type of software is specialised for the task the customer requires. In some
applications, for example an airline’s booking system, this leads to a large team
being employed over a long period of time. However, since the application has a
specific purpose, the customer is forced to meet the total cost of development.

50 Heinemann Software Design and Development: Preliminary Course

Generations of programming languages
The modern use of computers in so many diverse fields stems from their
adaptability. Before computers were invented different jobs required different
devices—many tasks could not be performed by a single device. What makes the
computer unique is its ability to be programmed with a set of instructions which
can be stored and then reused many times, often without human intervention.
The same device can be used to carry out different tasks by changing its set of
instructions or program. This program needs to be in a form, or language, that the
device can use. However, people create computer programs, and as there is not a
common language which is easily understandable by people and computers, an
intermediate language, or programming language, is needed.

The development of computer programming languages closely follows the
development of computer hardware. As the capabilities of computers increased,
so did the need for more sophisticated programming methods.

Computer languages can be categorised in five generations. First- and second-
generation languages are known as low-level languages and are processor-
dependent; that is, they are used to develop programs which are specific to a
particular type or series of processor. Third-generation and later languages are
known as high-level languages and are processor-independent.They can resemble
either natural languages such as English or symbolic languages such as mathe-
matics. Languages of the third generation and later are used to develop programs
in terms of the problem being solved rather than the hardware on which the
solution is implemented.

First-generation languages were, by necessity, those that could be directly
‘understood’ by computers—they were in binary form. Early computers were
programmed by using paper tape with holes punched to represent 0s and 1s or
they had their instructions wired by means of plugboards, wires and switches.

Exercise 2.8
1 Note down the tasks that your school computer performs as it starts up. Use a

word processor to list these tasks. Save your file as STARTUP.

2 When your school computer is running, the operating system ‘looks at’ peripheral
devices waiting for data to be entered. Describe how this might take place.
Present your work as a word-processed document with a filename WAITING.

3 Run an application such as a spreadsheet and list the tasks you see being
performed by the computer. Some of these are the responsibility of the operating
system and some are the responsibility of the spreadsheet program. Write down
on your list whether each task is carried out by the operating system or the
application program. Save the word-processed document as WORKING.

4 To your document WORKING, add the tasks the program uses as you program the
spreadsheet to display the numbers 1 to 100 in the cells A1 to A100 by using the
formula =A1+1 in cell A2 then filling down in the spreadsheet. You can then save
the spreadsheet as COUNTING, and again note down the tasks that are
performed as the program saves to disk.

5 Use a database program to create a database of all the applications you can find
on your school computer. This database should name the application in one field
and its purpose in a second. Save your database with the filename PROGRAMS.

51Hardware and software

Both methods presented problems when a new program was required and a high
level of skill was needed to create the programs. Since the instructions are in
binary form, these languages are known as machine languages and are specific for
the type of computer being programmed.

Second-generation languages or symbolic assembly languages replaced the
sequences of binary digits with mnemonic codes (or short code words) to
represent instructions. Like machine languages, assembly languages are specific
for the type of processor. However, they offer great advantages over machine
code as the mnemonics are easier to remember and read. Their development
meant that programming accuracy was improved, since the instructions could be
coded using normal written characters. Furthermore, a program did not have to
be rewritten if the physical location of a variable or instruction needed to be
changed, as the memory locations used to store values are addressed by symbolic
names instead of locations. The assembler provides suitable physical memory
locations when the program is assembled into machine code for execution.
Assembly languages were given names such as AUTOCODER or SAP (symbolic
automatic programming).

First generation

Sod gatio

Thr
d gene

raton

52 Heinemann Software Design and Development: Preliminary Course

and language processing originated in the field of artificial intelligence. Programs
written in a fifth-generation language often appear to be highly intelligent or to
possess an expertise much greater than that of most people. Japan’s fifth-
generation project, ICOT, is an attempt to use artificial intelligence techniques
together with new hardware designs, such as massive parallel processing, to
rapidly advance the power of computing technology. This project is important in
the development of the fifth generation as there is a coordination of efforts in all
research areas, so that new hardware development is made available to the
software researchers and vice-versa.

Event-driven versus sequential approach
Different problems require different methods of solution. Some, such as a
cooking recipe, can be solved by a chain of steps; others, such as a computer-
controlled machine, need to react to different circumstances as they change.
Programming languages can cater for either of these methods. Programming
which uses the recipe formula is known as sequential programming, whereas
programming which caters for reactions to different happenings is known as
event-driven programming.

Sequential programming
Sequential programming is used to create a sequence of steps which, it is hoped,
will solve the given problem.A majority of languages in the first, second and third
generations support this model. There are several reasons for this, the major one
being that the processors supporting these languages were designed to perform
one operation at a time, so implementing the translation is a reasonably easy task.

There is a wide range of problems suited to solution by sequential methods,
most of which involve the processing of data collected from other sources.

This imperative programming paradigm is easiest to implement on the Von
Neumann computer. The basis of the Von Neumann computer is the separation
of the processing components from memory. In contrast, the human brain
operates in a manner which combines memory and processing. In the Von
Neumann computer, the storage of instructions and data are in the same memory
locations, and processes within the processor govern whether the value stored in
a particular location refers to instructions or data. This architecture lends itself to
imperative languages which employ variables to model memory locations and
assignments which model the processes of the transfer of data from location to
location. When iteration (the process of repetition of a number of steps) is added
to the language structure, a versatile and powerful language is produced.

Turn VCR Insert tape in VPressplay buttn Watch video

Figure 2.19 Playing a tape on a VCR is an example of sequential programming.

Event-driven programming
Event-driven programming is well suited to ‘real time’ applications of computer
technology, since this type of programming determines what will happen after a
certain external event has been communicated to the system via an interface
such as a sensor, mouse, joystick or touch screen.

53Hardware and software

The main applications, at present, are in the realms of computer-controlled
systems and games software, although many general applications can also be
written using this programming method. The method parallels the way human
beings think, in that we solve problems by reacting to events. For example, if a
car driver senses that there is the chance of a collision with an object, the driver
will take what actions are necessary to avoid the collision. The driver’s mind has
been ‘programmed’, through experience, to deal with this particular event in a
certain way.

The most common of the event-driven programming languages available to
general computer users are the ‘hyperscript’-type languages, one of which is
Hypertalk, the scripting language for Hypercard which is available for the Mac-
intosh range of computers. Hypertalk begins an event handler with a statement
such as ‘on mouseUp’ (when the mouse button is released) or ‘on opencard’
(when a card in the stack is displayed on the screen); this corresponds to an event
(something which is sensed by the computer). After this statement comes a series
of steps which are executed.

A sample Hypercard script will display the card called ‘TitleCard’ with a
visual effect (in the case of Hypertalk an iris closing) when the mouse button is
released. (The reason that the release of the mouse button is used rather than
depressing the button is that it allows the user to change his or her mind and not
invoke the steps that follow.) The event which triggers the sequence of steps in
the program can be changed; for example, the event ‘on mouseDown’ would start
the chain of events when the mouse button is depressed.

on mouseUp
visual effect iris close
go card ’TitleCard’

end mouseUp
Event-driven programming is of particular advantage when there are external

devices attached to the computer, each device being able to trigger a subprogram.
A word-processing program may be written that uses a keyboard for text entry
and a mouse for various editing commands and cursor placement. Some of the
events ‘captured’ by the program could be:

keypress (depression of one of the keys on the keyboard)
mouse position (the position of the mouse pointer on the screen)
mouseclick (one click of the mouse button)
mousehold (depression of the mouse button and holding it).

Each of these events would then lead to the subprogram which handles what
is to happen once the event occurs—including further event-driven programming.

Figure 2.20 The program which runs the VCR is an event-driven program, with
the VCR performing a task corresponding to the button or buttons pressed.

54 Heinemann Software Design and Development: Preliminary Course

1 Complete each of the following statements with the most appropriate word from
the list (one word is used twice):
event-driven, handler, sequential, variables

a The programing method known as prorammin employs
variables and assignments.

b A cooing rcip is a form of pogamming.
c programmng is approriate when the computer has to react to

some form of happening.
d n the Von Neumann computermodel, are used to represent

memory locations.
e When an object rceives a message, a processes thatmessage.

2 Explain why a majority of first-, second- and third-generation languages are
examples of sequential programming languages.

3 Explain the three main components of any imperative programming language,
and illustrate your answer by choosing examples of each component from a
language of your choice.

4 Examine the operating instructions for an electronic device such as a video
recorder. Choose one section of the instructions which illustrates sequential
programming and one which illustrates event-driven programming. Justify your
choices.

5 Explain why an event-driven system will, with current technology, still require
some sequential programming.

Exercise 2.9

The need for translation
Programs written in any of the higher-level languages (second-generation and
above) cannot be directly understood by a processor. The instructions contained
within the program have to be converted from the human-readable form in that
higher-level language (called the source code) into a machine-readable form (the
object code). Source code is usually created using a text editor which forms part
of a program development system. However, a text file which has been created
by other means, for example in a word processor, may also be translated. The
process of translation from the source code to the object code is accomplished by
using one of three translation methods: compilation, incremental compilation or
interpretation.

Compilation, using a compiler, involves translating the whole of the source
code into object code and storing the object code to be executed later. Compila-
tion is similar to the translation of a book from one language to another, in which
the whole book is translated before being read. A program which has been com-
piled will be executed quickly, since the computer can understand the instruc-
tions directly.

In interpretation the source code is translated to object code which is
immediately executed. Interpretation can be likened to an interpreter who stands
beside a foreign dignitary and translates the sentences into the known language
as they are spoken. Interpreters produce code which is immediately executed and
therefore has the advantage of being able to identify errors within a statement at

55Hardware and software

the time of execution. A second advantage of the interpreter over the compiler
is that the program can be tested for both syntax and run-time errors. A common
use of interpreters was in the early personal computers such as the Commodore
64 and Apple II, which had a BASIC interpreter in ROM.An interpreted program
will be executed more slowly than compiled object code since the translation
process has to be carried out each time a program is executed. This is most
evident where there are a number of loops within the program. A compromise is
to use an interpreter during the development stage of a program and compile the
resulting source file when all errors have been identified and corrected.

In incremental compilation, an interpreter is used to translate the high-level
code. Sections of code which are used repeatedly are translated and stored for use
by the interpreter when needed. Use of this method means that the interpreter
does not have to repeat the translation process for these sections of code, thus
speeding up execution of the program.

The language translator is, itself, a computer program. Input for this program
is the source code which consists of high-level language that has been entered as
text. Output from the translation system is the executable object code. The
language structure determines the processes used within the translator.

Characteristics of different operating systems
As we have seen, the operating system is responsible for communication between
the user and the computer system. Two types of operating system are in common
use: the command-based interface and the graphical user interface (GUI).

The command-based, or command-line, interface relies on the use of text to
communicate with the computer. The basis of the command-based interface is
the use of special words or phrases to initiate an action by the computer. In a
command-based interface, the display consists of a predetermined number of
lines of text of a fixed length. (A common standard is to have 24 lines each of 80
characters.) Text is stored in a part of main memory called a screen buffer. Each
of the character positions on the screen is represented by one memory location
in the screen buffer. The values in this screen buffer, usually conforming to the
ASCII set of characters, are translated into displayable characters by a character
generator. The command-based interface may use one or more lines on the screen
to accept input text and may also use menus and keyboard combinations for
frequently used operations. Text displayed in this way is very limited as there is
little that can be done to a character by way of emphasis. Early computers used
this kind of interface, as both processing power and mass storage were expensive.
There are still peripheral devices, such as automatic teller machines (ATMs) with
LED (light-emitting diode) displays, which can only display characters.

The graphical user interface uses windows, icons, a mouse (or other pointing
devices such as a trackpad) and pointers (thus it may also be referred to as a
WIMP interface) to present information on the screen and make selections. The
graphical user interface uses a greater amount of main memory as a screen buffer,
as each of the memory locations represents one pixel (dot) on the screen. This
type of user interface became prominent only when the cost of processors
decreased and their processing speed increased. The graphical user interface uses
the concept of having items on a desktop. Items are usually represented by icons
and may be selected by using the mouse to point and click. Choices within the
program may also be presented graphically by means of palettes and choice boxes
as well as by menus. The GUI is also able to display documents in a form which
closely resembles their final form. This form of display is known as WYSIWYG
(what you see is what you get).

56 Heinemann Software Design and Development: Preliminary Course

Current trends in the development of software and operating
systems
The development of software closely parallels the developments in hardware. As
processors become more powerful, these capabilities can be applied to software.
Currently there are two main areas of interest for software developers—those
focusing on the tasks performed by an individual and those focusing on tasks
performed as a group.

For the individual, the most exciting development is in the area of voice
recognition. Many potential users are put off using computers as they find the
keyboard intimidating. Development of voice recognition in both application
software and operating system software is well under way and it should not be
too long before we see systems which, once trained, will perform most tasks with
little or no keyboard input. Further development in multimedia will also see the
computer and entertainment systems become integrated, with the television
becoming not just a passive device presenting to the viewer but an interactive
device able to perform many tasks now done by a computer.

Collaborative working (i.e. a group of people working on a single task) also
presents an exciting future. The problems involved with collaborative working on
a single file are being addressed. Teleconferencing by computer is also well devel-
oped and further development will see it integrated into group work on a file.

Exercise 2.10
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Programs wittenin a language cannot be understood by a
uness it has been tanslte. ighlevel codeis called the code and
the macine-readale for is known as code. There are three
methods of translation: , and . The process of

transates the wole of te level code into
before it can be run. An translates eah section of the code and the
resulting is immediately .

2 Describe the similarities and differences between the three translation methods.

3 Examine the operating system on your school computer and explain whether it is
command-based or graphical. Give reasons for your choice. Present your answer
as a word-processed document called SCHOOLOS.

4 Use the ASCII table on page 105 of the book to convert the phrase Software
Development into a string of decimal ASCII values. Don’t forget the difference
between the uppercase and lowercase letters in the name, as well as the space.
Use a spreadsheet to copy each of these values into cells A2 down to A21. In cell
B2 type the formula =CHAR(A2) and fill down to cell B21. If your codes are right,
you should see the words Software Development written down column B. Save your
document as ASCIIONE.

5 Convert the following set of ASCII values in decimal into characters:
3, 32, 108, 105, 107, 101, 32, 86, 101, 103, 105, 109, 105, 116, 101

6 Using a second blank spreadsheet, type your name down column A from cell A2,
with one character per cell. In cell B2 type the formula =CODE(A2), then fill it
down to the same length as your name. Column B will contain the ASCII codes for

57Hardware and software

your name. Check the values with the ASCII table on page 105. Save your file as
ASCIITWO.

7 Describe the differences between command-based and graphical user interfaces.
Give one example where a command-based interface would be appropriate and
one where a graphical user interface is appropriate. Give reasons for you choice.

8 Examine two application packages which perform the same task, for example two
word processors, one current product and one from five to ten years ago. Explain
the differences between the applications. Using these applications as examples of
the evolution of software, describe the changes in word processing you might
expect within the next ten years. Present your answer as a word-processed docu-
ment called FUTUREWP.

The relationship between hardware
and software
Software provides the instructions for the hardware to follow. Program instruc-
tions need to be performed in the designed order if the computer is to achieve
the desired results. The control part of the processor ensures that the instructions
are followed in the correct order. It is helped in this task by a special register,
often known as a program counter, which stores the memory location of the next
instruction to be followed. As each instruction is performed, the processor passes
through what is known as the fetch–execute cycle.

Processing of software instructions by hardware: the
‘fetch–execute’ cycle
To process data, the CPU performs a cycle of events on a single instruction. This
cycle is called the fetch–execute cycle, or machine cycle. The fetch–execute
cycle, as the name suggests, has two parts: the fetch cycle (or instruction cycle)
and the execution cycle. The fetch cycle involves the control unit getting the

Fetch
(Get instruction)

Decode
(Work out what

to do)

Execute
(Carry out instruction)

Store
(Copy result to

memory)

Figure 2.21 The fetch–execute cycle.

instruction (fetch) and working out what to
do (decode). The execution cycle involves
the ALU carrying out the instruction
(execute) and the control unit sending the
results to storage (store) (see Figure 2.21).

The fetch–execute cycle can be divided
into nine steps:
• fetching the instruction from primary

storage
• decoding the instruction into an opera-

tion code and data addresses
• copying the operation code into the

instruction register
• copying the addresses of the data into

the address register
• using the address register to copy the

data into the storage register

58 Heinemann Software Design and Development: Preliminary Course

• sending the operation code and data to the ALU
• executing the instruction on the data
• sending the result to the accumulator, ready for the next instruction
• storing the results in primary storage.

A system clock regulates the speed of the tasks in the fetch–execute cycle by
sending out electrical pulses at a certain rate. The number of electrical pulses per
second is the speed of the CPU and is called its clock speed. New personal com-
puters have clock speeds between 300 and 500 MHz (megahertz). A speed of
500 megahertz means the clock is generating 500 million electrical pulses per
second.

The initiation and running of an application
We can see the fetch–execute cycle in operation if we look at the events that
occur when we choose to run an application. As soon as the computer is turned
on, the fetch–execute cycle begins. The instructions which load and run the
operating system come from hardware (ROM) and from a secondary storage
device such as a hard disk. The ROM contains the program that loads the
operating system. This program loads the operating system program into main
memory and then executes the operating system.

Once the operating system has been loaded, the computer is ready for use.
While waiting for the user to choose an application to run, the operating system
continually monitors the input devices for actions. When the user has chosen the
application to run, the operating system locates the start of the application on the
external storage device and begins to load it into main memory. The operating
system continues with loading the program into main memory, finding the ap-
propriate sections of the program on the disk as they are needed. When the
program has been loaded into main memory, control is passed from the operating
system to the now-loaded application. The application usually has to set up
memory locations for its own use and perform other initialisation activities so
that it can run effectively. While this set of steps is being performed, the appli-
cation will usually display a startup screen to indicate that it is working. Once the
startup activities have finished, the program will display a start screen giving the
user options to commence work using the application. Finally, the program will
again cycle through various input devices, looking for an instruction from the user
to perform a task.

The existence of minimum hardware requirements to run some
software
Application programs are developed to perform a specific task or group of tasks.
The complexity of a program or the task it is designed to perform means that
there will often be a minimum set of hardware requirements that need to be met
before the application can run successfully.

Many factors might contribute towards running an application, including:
• files requiring a large amount of main memory for their manipulation, for

example graphics or sound files
• applications where the speed of processing is critical, for example in the

production of full-motion video
• particular requirements of peripherals, for example the need of a sensor for a

certain type of interface with the computer

59Hardware and software

• processors which can interpret a particular set of instructions, for example
when special machine code instructions have been written to perform a
specialised task

• external storage devices with a particular capacity to store intermediate results
or parts of the program

• particular types of input or output devices, such as touch screens or network
interface cards.

Programm loading

Please wait

Program

Request from
operating system

Figure 2.22 Running an application involves loading the program from external storage
into memory and starting it.

Exercise 2.11
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Hardware flows the povided by sofware. The CPU moves through
the steps of the cycleas it executs the instructions ne by one. The
first stage in the cycle is for the unit to the
nstructon. Tis ste isfollowed by the process of , where the

unt works out what t do.The last two ste are called the
cyce Tis ccle egin with the carrying ot the instruio, following
which the unit sends the result to .

2 Use a drawing program to create a series of diagrams that show the
fetch–execute cycle in operation on an instruction that takes a value of 3 from
memory location 8 and adds it to the total in the accumulator register. Call your
file FETCHXE.

3 Start the word processor on your computer and examine the visible steps your
computer carries out as the file loads. List these steps as a word-processed file
called BEGINWP. Compare these steps with the steps in the section above.

4 Examine a number of software titles for any minimum hardware requirements.
For each of these items, give reasons why you think these restrictions exist.
Present your findings as a database file with fields for software title, minimum
hardware and reasons.

60 Henemann Software esign and Deveopmen:Preliminary Course

Elements of a computer system
A computer system can be viewed as containing five elements all working
together to achieve a purpose. These five elements are hardware, software, data,
procedures and personnel. When designing a software solution to a problem, all
of these elements must be kept in mind, as no one of them is any more or less
important than the others.
• Hardware consists of the physical devices needed to perform the required job.

These devices perform the tasks of input, output, process, control and storage.
• Software consists of the steps, coded in a way that can be interpreted by a

computer, required to perform the task. These instructions may be given to
the computer in a machine-understandable form, such as a word-processing
program, or in a human-understandable form, such as a program written in a
language such as Visual Basic or Pascal.

• Data is the raw facts that are manipulated by the computer system in order to
present us with information.

• Procedures are tasks that are performed by, and rules put in place for, the
users of the computer system. These procedures are put in place to ensure
that the people using the system perform the correct tasks at the appropriate
times with the required data.

• Personnel are all the people involved with the computer system, not just the
direct users of the computer hardware. These people include:
– direct users—people who use the hardware
– indirect users—people who are affected by the system
– computer operators—people who look after the computer resources in a

large computer system such as a mainframe computer
– data entry operators—people who enter data into the terminals
– information systems managers—people who plan and oversee the

computing resources within an organisation

05782365489
2364896572
23596546399
985426325458
475895746
23689455945
58465894352

5849
4326
5648
9854
5436
254
7563

2369
4582
55694
2587
45996
2544
2654

2548
36588
44569
5247
69544
2687
97654

2548958
36685477
2546995
4655445
6508732
5445435
2335468

Hardware

Software

Data
Procedures

Personnel

Figure 2.23 A computer system has five elements which work together to achieve its purpose.

61Hardware and software

– maintainers—people who support the computer system by providing
technical help in installation, maintenance and repair of computer
equipment (computer technicians), assistance to users (technical support
staff), training to users in how the system operates (training specialists) and
advice on how problems can be solved (computer consultants)

– developers—people concerned with the design and development of the
system, such as systems analysts, computer programmers and hardware
engineers.

Case study

Each of the elements of a computer system
are examined in more detail in the fol-
lowing case study.

A supermarket uses a computer system
to operate its checkouts and manage its
banking. Barcodes are scanned at the
checkout, the items are identified from a
central database and the prices and item
descriptions are printed on the customer’s
docket. When all the customer’s items
have been scanned, a total price is
calculated and displayed for the checkout
operator to see. Once the cash has been
tendered by the customer, the change is
calculated, and the total is added to the
day’s takings of the checkout as well as to
the store’s takings on the central com-
puter. The elements of this system can be
classified as follows:
• Hardware consists of the main com-

puter, printer and networking hard-
ware together with a barcode reader,
cash register, cash register printer and
display for each of the checkouts.

• Software includes the operating system,
backup software, network manage-
ment software, database management
system for items stocked, accounting
software loaded onto the master
computer, and cash register software
loaded onto the registers.

• Data used by the system includes bar-
codes, item descriptions, item prices,
customer totals and daily totals for the
store and for each cash register.

• Procedures performed by the checkout
operator include scanning individual
items, calculating the total to be paid

by the customer and giving the receipt
and change. Procedures carried out by
management include banking the day’s
takings, balancing the cash registers
and backing up the data.

• Personnel can be viewed as belonging
to the groups outlined above: direct
users, indirect users, maintainers and
developers. Direct users in this example
would include the checkout operators
and store managers. Indirect users are
the customers. Maintainers include the
technical repair staff, trainers and help-
desk staff. Developers were involved
with the design of the system and
would also be needed if, for example,
the supermarket wanted to add an
EFTPOS ability to each checkout.

Computers in the supermarket

Figure 2.24 Cash registers are one of the
hardware items in a supermarket system.

62 Heinemann Software Design and Development: Preliminary Course

Developing software
When software is being developed to solve a problem, each of these system
elements has its part to play. Hardware needs to be obtained that will perform
the tasks required. The necessary software is either bought off the shelf or
developed. Data entering and leaving the computer system is examined to work
out the processing and storage needed within the system. Procedures are
designed to ensure that the correct data is entered and the appropriate output is
obtained from the system. Personnel are involved in all phases of the
development of the new system.

Managers and users are observed and questioned to find how the system
works and what improvements are wanted. Developers create the new system,
with programmers writing or modifying any computer code required.Technicians
and trainers are employed to install the new hardware and train users in the
operation of the system.

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
A computer consists of five elements. These are ,

, , and . The physical devices are the
system’s . Programs ae classified as . Raw facts form the

 Tasks performed are the an eope inolved with the
system are the .

2 Examine your school library system and identify and list the hardware, software,
data, personnel and procedures used for this system. Present your report as a
word-processed document called SYSLIB.

3 Examine a computer system of your own choice, identifying the elements of that
system in the same way as in question 2 above. Present your report as a word-
processed document called MYSYSTEM.

Exercise 2.12

63Hardware and software

Review exercises

1 Name the five elements of computer
hardware and describe, in your own
words, the purpose of each of these
elements within the computer system.

2 You have been given the task of
publishing the school magazine using
the computers in the computer room.
Describe the input devices you will use
for this task and the purpose of each.

3 Choose an application of computer
technology used in a business and
investigate the input and output
devices used by that business. Your
investigation should focus on the
devices used and the purpose for
using them. You can publish your
report as a word-processed document.

4 Explain the tasks of each of the three
parts of a CPU when data is being
processed. Use diagrams to help with
your explanation.

5 Describe the similarities and
differences between primary and
secondary storage. Explain the role of
each in the processing of data. Use an
example to help with your
explanation.

6 Describe the reasons why the speed of
processors has increased and the
amount of primary storage in
computer systems has increassed. How
have these increases been achieved?

7 Explain the differences between
system and application software.
Describe the role of each in the
operation of a computer system.

8 a List the features of each of the
generations of programming
languages.

b Extension: Choose one application
where each of these languages
would be appropriate and give
reasons for your choice.

9 Find one example of sequential
programming in a device at home and
one of event-driven programming.
Explain why you chose the devices you
did and briefly describe the actions of
each program.

10 Explain the reasons why code written
by a computer programmer needs to
be translated for the computer.

11 Explain why a word-processing
program written for an operating
system such as the Macintosh OS will
not run on a computer running
Windows.

12 Choose an application of computer
technology in business or commerce.
Describe each of the five elements of
computer systems as they apply this
application. Don’t forget any indirect
users as well as direct users of the
system. You can publish your report as
a word-processed document.

Chapter summary

64 Heinemann Software Design and Development: Preliminary Course

• Hardware consists of input, process, control, storage and output.
• Input involves entering data into the computer for processing.
• Processing consists of the steps required to change input into the required

output.
• Control involves the coordination of the processes involved in input,

processing and output.
• Storage is the holding of data over a period of time so that it can be used

when required.
• Output consists of the presentation of processed data to a person or

another computer.
• Peripherals are devices other than the central processing unit (CPU).
• Input devices consist of items such as keyboards, mice, trackballs,

trackpads, light pens, touch screens, digitising tablets, character readers,
scanners, cameras and microphones.

• Output devices include visual display devices, hard copy devices, speakers
and devices that output to another computer.

• Process and control are performed by the CPU.
• The CPU consists of the control unit, the arithmetic logic unit (ALU) and

registers.
• The control unit coordinates the processes of input, processing and output.
• The ALU performs the tasks given to it by the instructions.
• Registers are memory locations inside the CPU that are used to store data

and instructions that are needed for processing.
• Storage can be classed as primary storage and secondary storage.
• Primary storage is directly accessible by the CPU and is usually in the form

of ROM and RAM.
• Secondary storage is more permanent than RAM and it stores data away

from the main board.
• Examples of secondary storage devices are magnetic tape, floppy disks,

hard disks and CD-ROMs.
• Trends in hardware are focused on increasing power by using faster

processors with greater primary storage.
• Software is classified as system software or application software.
• System software consists of the operating system and utilities.
• The operating system allows the computer to communicate with the

outside world.

65Hardware and software

Chapter summary

• Utilities allow the user to perform common tasks such as copying files and
formatting disks.

• Application software performs specific tasks such as word processing.
• Mass-produced application software titles are designed for general use.
• Custom software is designed for a particular user.
• Programming languages can be categorised by their generation.
• First-generation languages are machine codes directly understandable by

the processor.
• Second-generation languages are assembly languages, where each

mnemonic code is translated into one machine instruction.
• Third-generation languages are independent of the processor used and use

steps, branches and loops of instructions.
• Fourth-generation languages contain some of the same structures as third-

generation languages but use form filling, screen interaction and
computer-aided graphics as well.

• Fifth-generation languages employ artificial intelligence techniques to
code complex knowledge from which the computer can draw inferences.

• Sequential programming uses instructions arranged as a set of steps that
can be followed.

• Event-driven programming uses input from an external device to
determine how the system will react.

• High-level languages need to be translated so the processor can
understand the instructions.

• The three methods of translation are compilation, interpretation and
incremental compilation.

• Compilation is the process in which all the source code is translated into
object code for later execution.

• Interpretation involves the source code being translated and executed line
by line.

• Incremental compilation uses an interpreter, but frequently used sections
of code are compiled and used whenever needed.

• Operating systems can be classed as either command-based or a graphical
user interface.

• The command-based interface uses commands in the form of text to com-
municate with the computer system.

• The graphical user interface uses windows, icons, mice and pointers to
make selections and use the system.

Chapter summary

66 Heinemann Software Design and Development: Preliminary Course

• Software development trends are focusing on tasks performed by the
individual and tasks performed by groups..

• Software instructions are performed by the fetch–execute cycle.
• The main steps in the fetch–execute cycle are fetch the instruction, decode

it, execute it and store the result.
• When an application is run, the operating system locates the application on

disk, loads it into RAM, displays a start screen and then waits for user
input.

• Many applications need a minimum hardware setup in order to run.
• The elements of a computer system can be classified as hardware, software,

data, procedures and personnel.
• Hardware is the set of physical devices needed.
• Software provides the computer instructions.
• Data is the raw facts needed by the computer for the task.
• Procedures are tasks performed by the users of the system.
• Personnel are all the people involved with, or affected by, the system.

Team Activity

You have been given the task of designing
a system to run the school’s interactive
tour for prospective students. Investigate
and list the hardware and software you
would need to perform this task. Choose
the items from the list that you think are

most appropriate for the task and give
reasons for the choice. Include the mini-
mum hardware you will need for this task.
Present your report as a word-processed
document. Also use a spreadsheet to
prepare a costing for these items.

33Software development
approaches

cchhaapptteerr

The structured approach to software solutions
• program development cycle for the structured approach, including defining the

problem, planning, building, checking and modifying
• characteristics of the structured approach, including:

– long time periods
– large-scale projects
– large budgets

• involvement of personnel, including analysts, designers, programmers, users and
management

• team approach

Outcomes
• explains the effects of historical developments on current

practices (P 2.2)
• identifies the issues relating to the use of software solutions (P 3.1)
• analyses a given problem in order to generate a computer-based

solution (P 4.1)
• investigates a structured approach in the design and

implementation of a software solution (P 4.2)
• uses a variety of development approaches to generate software

solutions and distinguishes between these approaches (P 4.3)
• describes the role of personnel involved in software development

(P 6.1)

Students learn about:

68 Heinemann Software Design and Development: Preliminary Course

The prototyping approach to software solutions
• characteristics of the prototyping approach, including:

– non-formal
– shorter time period
– small-scale projects
– small budgets

• involvement of personnel, including programmer and users
• links with the structured approach

The rapid applications software development approach
• characteristics of the rapid approach, including:

– lack of formal stages
– coding languages used
– relationship of programmer to end user
– short time period
– small-scale projects
– low budgets

• involvement of personnel, including developer and end user

End-user approach to software development
• characteristics of the end-user approach, including:

– use of standard software packages
– lack of formal stages
– short time period
– potential long-term, small-scale project
– low budgets

• end user as the developer

• identify sound ergonomic practices when using computers
• identify each of these stages in practical programming exercises
• design and develop a limited prototype as a demonstration of a solution to a specified

problem
• use an existing software package to develop a customised solution
• select appropriate software development approaches for specific purposes

Students learn to:

69Software development approaches

Personal Profile—Konrad Zuse
(1910–1995)

Konrad Zuse was born on 22 June 1910 in
Wilmersdorf, a suburb of Berlin. After com-
pleting his schooling, Konrad entered the
University of Berlin, Charlottenberg, in
1927 to study civil engineering.

On graduation, Konrad joined the Hens-
chel Aircraft Company and was set to work
investigating the stresses caused by the vib-
rations of aircraft wings. This work involved
a great deal of calculation. To help with
these calculations he designed and built a
mechanical computer, named Z1, in his
parents’ living room. Work on Z1 began in
1934 and finished in 1938.

The beginning of World War II in 1939
brought a temporary halt to Zuse’s plans to
build a bigger and better machine. He was
called up to serve in the infantry, but was
eventually able to persuade the army to
allow him to go back to building computers.

By 1941 Konrad had built two further computers, called Z2 and Z3, for the
German Aerodynamic Research Institute. These were electromechanical com-
puters which used relays to perform calculations. Z3 was the first programmed
control calculating machine in operation. It was able to store 64 numbers each
consisting of 22 bits and to multiply two rows of digits in 3 to 5 seconds. How-
ever, his plans for an electronic computer using valves were rejected as not neces-
sary since the authorities believed that Germany would soon win the war.

In 1942 he commenced work on Z4. Towards the end of the war, the Allied
bombing of Germany forced Zuse to move the computer which was nearly
completed. The first move was to Göttingen, but the threat of the Z4 being
captured forced Zuse into making a further move, this time to a small village in
Bavaria called Hinterstein. In 1950 Z4 was installed in the ETH in Zurich,
Switzerland, where it remained operational until 1955.

In 1950 Konrad started his own computing company, which was taken over
by Siemens in 1967. He continued to work for Siemens as a consultant in com-
puter research. In 1966 he was appointed an honorary professor at the University
of Göttingen.

Zuse also made a great contribution to software in 1945 by developing the
first algorithmic programming language, known as ‘Plankalkül’. Using this langu-
age, he designed a chess-playing program.

70 Heinemann Software Design and Development: Preliminary Course

Introduction
There is no one correct way of produ-
cing a computer solution to a problem.
Many different factors will affect the
way in which a software package is
developed. These factors will include
the time, budget and resources available,
the nature of the problem and the
expertise of the developer. Four of the
more common approaches are the struc-
tured approach, prototyping approach,
rapid application development (RAD)
and end-user development.

Structured
approach

Prototyping
approach

Rapid
application

development
End - user

development

Which
method?

Figure 3.1 There are four common approaches
to software development. Many factors will
determine which is used in a particular case.

The structured approach to software
solutions
This software development approach is based on a tried and tested design
method. It can be divided into five stages—defining the problem, followed by
planning, building, checking and modifying the solution. These steps form what
is commonly known as the software lifecycle. The steps can be thought of as
forming the ledges of a waterfall, the flow from one stage to the next following a
downhill path. Figure 3.2 shows these stages diagrammatically.

Figure 3.2 The structured approach to program development can be likened to a waterfall.

Define the
problem

Plan the
solution

Build the
solution

Check the
solution

Modify the
solution

71Software development approaches

We will follow these stages in the development of a program for a small coach
company called Cumfy Coaches. At the present time, Cumfy Coaches uses a card
system to keep a record of the bookings for their trips. This system is slow and
inefficient, so the company has decided to use a computer system instead.

Defining the problem
Before any solution to a problem can be created, the problem itself must be
understood.At the beginning of the process, effort is put into determining exactly
what is wanted from the software. Statements such as ‘I want to computerise my
office’ are not of any use when it comes to solving the problems that exist. In this
first stage no thought is given to the computer technology. All effort is put into
an examination of the needs of the user.

At this stage in the development cycle, the managers of the busines and a
representative of the software development team, usually a systems analyst,
discuss the nature of the business as well as the problems faced with the current
system. The analyst needs to have a clear indication of what is to be done by the
software. From these discussions comes a document which clearly states the
requirements of the new system.

The requirements should be exressed in terms of what must be done, not how
it is to be done. The requirements should also be clear and sufficiently detailed to
allow the final solution to be measured against them. Finally, they should be
complete, covering all the existing needs as well as any new ones.

Cumfy Coaches—defining the problem
In discussions with Ian, the managing director of Cumfy Coaches, the systems
analyst, Kara, has found out the following about the company. Its purpose is to
provide tours for a wide range of people within the local community. The
company has two coaches which are regularly booked for tours of varying
lengths. The current system consists of one card file box for each of the tours
being offered. Each card contains the details of one passenger and the seat
allocated to that passenger. When a tour has been completed, the cards are filed
in an archive, with the file box being reused for a new tour.

Figure 3.3 Comfy Coaches system will not cope with
the arrival of two new coaches.

Jan has indicated that the system,
although it works quite well, has a
number of faults:
• With the card file system it takes

quite a while to find the details of
a passenger, as cards are stored in
seat order in the file box.

• There is often duplication of data
as passengers from the same
family are each allocated a seat
and therefore their details are
repeated on each card.

• The preparation of passenger lists
for each tour is a mundane task
and there have been embarrassing
mistakes made recently, when
cards were filed in the wrong box.

72 Heinemann Software Design and Development: Preliminary Course

• The system is completely independent of the accounting system which again
leads to duplication of tasks.

• When travel insurance claims are made by returning passengers, it takes staff
quite a long time to locate the details in the archive.

• The archive is taking up more and more space as more tours are completed.
• The system will pose further problems when the company takes delivery of

two more coaches which it has ordered to cope with increased business.
Kara has therefore set out the following requirements for the replacement

system:
• The system will allow new customer details to be added, existing ones to be

edited and cancelling customers to be replaced.
• The system will allow tours to be sorted on customer name, tour date, tour

destination and seat allocation.
• Once a tour is completed, the customer records will be stored in an archive

file for the calendar year in which the tour occurred.
• Family details will be able to be automatically duplicated for members of the

same family.
• The system will be able to produce reports, including passenger lists for the

drivers, and tour and customer details from archived files.
• The system will be able to manage 500 tours within a 12-month period.
• The software will be able to communicate with the accounting procedures in

use.

Exercise 3.1
1 Present the set of requirements for the Cumfy Coaches system as a word-

processed document. Add any other features that you think may be needed.
Create a folder (subdirectory) on your disk called CUMFYCOACH, and save the
report in this directory as CUMFYREQ.

2 Choose a manual system that you are using at home and list the functions of that
system together with the problems that it poses for you. Describe the
requirements you have for a replacement system. You should present this exercise
as a word-processed document called REQUIRED. Examples of the types of
problem that are suitable for this exercise are address books, birthday books,
management of a hobby collection such as stamps and the organisation of your
photographs.

Planning the solution
Once the requirements of the system are understood, attention passes to the
planning of the solution. This phase has to identify the needs of the user. The
process is usually carried out by a systems analyst who examines the inputs and
outputs of the present system. Processes and procedures of the existing system
are also observed in order to determine how the inputs are going to be converted
into outputs.

73Software development approaches

Varying analysis tools are used to help with this information-gathering pro-
cess. Interviews, questionnaires and observation are used to gather information
about the functioning of the current system. The results are put together and
presented as a report. The workings of the system may also be presented in a
graphical form in this report.

Cumfy Coaches—planning the solution
Now that Kara has a clear set of requirements, it is time to look at the way in
which the Cumfy Coaches company operates its business. The first person to
provide her with information is the secretary, Janine, whose task is to run the
office. Janine’s work involves looking after the booking system, creating the
passenger lists and bookkeeping. Next the two drivers, Marie and Angus, provide
information about the running of the company. Finally, Kara contacts some of the
past passengers to see whether they can provide her with any more information.

In this investigation, Kara concentrates first on the inputs and outputs of the
system. The inputs include the customer’s name, address, telephone number and
emergency contact details. She has found that the coaches are all fitted with
45 seats numbered from 1 to 45 and that the coach company assigns a four-digit
code to each of the tours. As the information-gathering process continues, Kara
also discovers that the coach drivers’ passenger lists contain the seat number, the
passenger name and an emergency contact number.

Kara then compiles a report which details all her findings, listing the data
items input into the system and the outputs from the system. Processes and
procedures needed to convert input data to output data are also described. In
order to make the workings of the system clearer for the designers, she creates a
number of diagrams showing how the system works. One of these, a dataflow
diagram, is shown in Figure 3.4. (You will learn how to understand and construct
dataflow diagrams in the HSC course.)

Figure 3.4 An example of a dataflow diagram which is used to show the way in which data
passes between parts of the system.

Customer

Tour number

Customer details

Record
customer
details

Tour number
and seat
allocation

Customer
details

Tour master file

Tour number,
customer name,
seat number and

emergency contact

Create
passenger

listTour passenger list
Coach
driver

74 Heinemann Software Design and Development: Preliminary Course

1 From the description above, create a report that might be presented by Kara once
she has examined the workings of the system. Save your document in the
CUMFYCOACH directory as a word-processed document called CUMFYPLN.

2 Examine the system you described in Exercise 3.1 and present a plan for the solu-
tion of the problem. Identify the inputs, outputs and processes that are needed
for the solution to your problem. Save your document as a word-processed
document with the filename PLANNED.

Exercise 3.2

Figure 3.5 A problem is much easier to solve if it is broken into smaller, more manageable
parts.

Big problem
Is broken into smaller,

more manageable
parts

Module 1

Module 2

Module 3

Module 4

Module 5

Module 6

Building the solution
The next step in this method of software development is to hand over the
specifications to the design team. This team will look at the areas of design and
programming. Sometimes both tasks are performed by the same individual, but
at other times these tasks are assigned to specialists. The design staff also use the
specifications to create a set of test data that can be used later to test the program
and its parts.

Designers have the responsibility of first breaking the required processes down
into smaller parts, known as modules. This procedure ensures that those re-
sponsible for the design of the processing steps have a small, understandable
process to work on. Modularisation also allows for these modules to be saved and
reused in other, similar applications. The third great benefit comes in the stages
of testing and modification, as these smaller units can be tested and modified
without affecting those sections known to work well.

Each of the modules is then turned into a set of steps, known as an algorithm.
It is the algorithm that is then passed on to the programmer for coding into an
appropriate computer language.

75Software development approaches

Cumfy Coaches—building the solution
The design specifications for the new system are now passed to Stephanie and
Katharine, the programmers. For this small system, they are acting as both
designers and programmers.

They decide to first divide the system into two large units: one to handle the
processing of customer details and the other to create the passenger list for each
of the tours. These two major system parts are shown in the dataflow diagram in
Figure 3.4. However, the ‘Record customer details’ module is still too large to be
comfortably handled, so it is broken down further.

While Katharine is working on decomposing the customer details module,
Stephanie starts to create a set of test data that can be used to test the modules.
This test data consists of details of a number of customers and a couple of tours.
She carefully chooses these items so that she can predict what the outputs
will be.

When they are happy with the sizes of the modules, the programmers work
on creating each module’s computer program. First they write the steps as an
algorithm (the necessary processing steps arranged in an order that will solve the
problem), then they test the algorithm and finally they translate it into a language
that can be run on a computer. (These processes will be examined in a later
chapter.)

Exercise 3.3
1 Decompose the customer details module of the Cumfy Coaches example into

smaller modules. Describe the task that each of your modules should perform.
This exercise should be word-processed and saved as CUSTMODL in your
CUMFYCOACH directory.

2 Break the system you examined in question 2 of Exercises 3.1 and 3.2 into a num-
ber of smaller modules. Present your answer as either a word-processed docu-
ment or a diagram (using a drawing program) with the file name MODULED.

Checking the solution
Once designed, the modules can be checked using the test data. Checking is
usually carried out both before the module is coded into a programming language
and after it has been coded. The checking procedure is designed to detect errors,
which can come from different sources.

Checking the algorithm design is carried out to make sure that the processes
chosen will properly perform the required task. This makes the task of finding
errors in the later stages much easier.

When the coded version of the module is tested with the test data, the
programmer is looking for errors that might occur when the module is run on the
computer. The two steps to this type of checking are to check the program code
manually first (called desk checking) and to test the module when it is being used
on a computer (called run-time checking). Errors in a module will lead to
modifications that will overcome the problems.

Once this stage of the cycle is complete, the application is ready for use by the
customer.

76 Heinemann Software Design and Development: Preliminary Course

Cumfy Coaches—checking the solution
Katharine and Stephanie set to work on the design of each of the modules. As
each module is completed as an algorithm, it is tested manually. When they are
satisfied that the module will work as planned, they move on to the coding step.
This involves choosing a language and converting their module steps to those in
the chosen language.

On completion, each of the modules is first checked for mistakes in the
coding. (These are called syntax errors—you will look at these in more detail in
Chapter 5.) The next step is to take the test data and perform a manual check on
the code.

The coding stage is followed by the process of entering the code into the
computer and again running the program using the test data. After the modules
are complete, they are gradually put together to form the whole program.As each
of the modules is added, the program is tested again with the test data to ensure
that it performs the tasks it is supposed to.

The program is then ready for use by Cumfy Coaches.

Figure 3.6 The modules go through a cycle of testing and change until they perform the tasks
they are supposed to.

Untested
module

Module ready
for use

Check the
module

Modify the
module

module does
not work

module works

Exercise 3.4
1 From the description of the system in the previous sections, design a database

that will store the customer details for one coach tour. Use a simple database
management system such as the one that is included in Microsoft Works or
Appleworks. Save your file with the filename TOURDATA in the same directory
as the other exercises. Fill up at least ten records in the database with some
test data.

2 Describe the tasks of one of the modules in your own case study. Use an
appropriate computer application to create a working module. Choose some data
to test your module.

77Software development approaches

Modifying the solution
When the new system is in operation, continual evaluation by users takes place
to determine whether it meets the requirements. Users identify any changes that
may be needed to the system. These changes are made by again following the
steps in the software lifecycle.

This approach to software development is very structured, although stages
tend to overlap. At any stage in the cycle it is possible for development to be
backtracked to an earlier stage of the process. This occurs when problems are
found with the output of a previous stage. For example, during the design stage
a problem may be found with the analysis. This problem must be fixed before the
development continues.

This approach allows teams of people to be involved. As the steps are distinct,
each of them may be performed by a different specialist individual or group. This
is why it is so important that clear and concise documentation is provided at each
stage of the process.

Cumfy Coaches—modifying the solution
After using the program for a short while, the staff make some suggestions as to
how the software might be improved.

In the office, Janine has discovered that along with the details of each pas-
senger there is a need for a record of payments to be kept. Many of the passengers
are paying for their trips in two or more instalments. She would like a module
that keeps track of these payments and generates letters of reminder that could
be sent six weeks before the departure of each tour.

The drivers would like the system to be able to identify any special needs of
the passengers, such as special dietary requirements.

The managing director would like the system to be able to manage the
rostering of coaches on trips, so that they spend as little time as possible off the
road.

With these new requirements in mind, Kara is now drawing up a new set of
specifications that could be used in the modification of the software.

Exercise 3.5
1 Write a set of specifications that could be used to modify the Cumfy Coaches

application described above. Save the document with the filename CUMFYMOD.

2 Examine your case study and suggest modifications to this application that might
be necessary. Present your document in an appropriate form.

Usefulness of the structured approach
Major disadvantages of this approach are that it is a time-consuming process and
an expensive one. Each of the stages in the process cannot be undertaken until
the previous one is completed or is close to completion. In some applications
time is critical, and so the structured approach is not always the best option to
take in development. However, for large and/or complex applications it provides
a structure within which efficient development can take place. This is especially
important when a team of developers is employed, as each member of the team
needs to have a clear understanding of where the process is up to.

78 Heinemann Software Design and Development: Preliminary Course

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
The structured approach to software development consists of five steps

, , , and . The first stage
focuses on the poblem nd lists the of the sftware. In the
second stage the and of the existing system are analysed
so that the development team knows how the system works. Stage 3 involves

the sluio. hi isfollowed by the stage, fter which the
software is placed in operation. While in operation, there is a constant
evauaton, the reults ofwhich are used to theprogram.

2 Using your answers to question 2 in Exercises 3.1 to 3.5 as an example, describe,
in your own words, the processes involved in the structured approach to software
development.

3 Examine the processes and procedures in your school library and develop a set of
specifications for a new software application to run the library.

EXTENSION

4 Describe the roles of each of the individuals involved in the development of the
Cumfy Coaches software application. Are any of the people involved more
important than the others? Give reasons for your answer.

Exercise 3.6

The prototyping approach to
software solutions
A prototype is a working model that is usually used to gain information about
how the elements of the system work together. For many years industries have
used throwaway prototypes to test new design features which are incorporated in
the final product. The car industry creates so-called ‘concept vehicles’ to test new
technology and customer reaction to design features. The information gathered in
this way is then used in the design of new car models.The concept vehicles them-
selves are either consigned to the scrap heap or kept in a museum for viewing;
they are not used.

There are software development tools that can produce a prototype that can
be refined into a fully working solution. This type of prototype is known as an
evolutionary prototype as the application evolves from a cycle of use, evaluation
and modification.

Prototyping as an information-gathering tool
When a prototype is used as an information-gathering tool, it is often at the
beginning of the structured approach to software development, described earlier.
When the user is unclear about exactly what is required from the application, a
systems analyst will develop an initial set of specifications that are quickly im-
plemented by the programming team. Prototypes of this form concentrate on in-
puts and outputs. Little regard is paid to error checking, The prototype is passed

79Software development approaches

to the user for evaluation under working conditions. On receiving the evaluation,
the systems analyst incorporates the user’s suggestions into the revised prototype.
When the user is satisfied that the prototype performs the required functions,
this information is incorporated into the requirements of the new system and the
structured approach is continued. The prototype in this situation is a ‘throw-
away’, as it is discarded when the requirements phase of development is finished.

Figure 3.7 A throwaway prototype is used to gather information and is then discarded.

Initial
requirements

Create
prototype

User uses
prototype

Modify the
prototype

Requirements
are documented

Requirements
used in

following stages

Prototype is
discarded

no further
suggestions

user has
suggestions for
improvement

Although prototyping appears to offer a shortcut in the normal system
development cycle, a prototype should be developed systematically with ap-
propriate documentation. Particular attention needs to be paid to documenting
modifications made as the prototyping process proceeds. If the prototyping
process is used without care, a working system may be constructed which does
not provide all the information needed.

This development tool is not suitable for complex processes or those that
involve a large amount of mathematical manipulation. In addition, a prototype
will often run more slowly than is needed for the final application, often as a
result of the prototyping language. Prototyping is a suitable tool for applications
such as multimedia applications and online enquiry systems. It is becoming more
common for software developers to prototype user interfaces in order to gauge
the users’ reactions to the proposed design.

North Sydney Airport Corporation—prototyping for information
gathering
The North Sydney Airport Corporation wishes to install an interactive tourist
guide at its airport. The guide is to provide information about a number of tourist
attractions and an accommodation booking facility that will accept credit cards
for payment. The airport, which will serve both interstate and international
travellers, is not yet in operation, so the systems analyst decides to prototype the
system. The initial prototype will be developed with the emphasis on input and
output modules; a reduced number of tourist attractions can be used to trial the
system, and more added when the final system is implemented.

80 Heinemann Software Design and Development: Preliminary Course

The initial prototype consists of a main menu module which leads to modules
explaining local attractions, accommodation offerings and an accommodation
booking service which allows credit cards to be used to pay a booking deposit.
This system is a particularly good candidate for prototyping as it is an interactive
system which will be used by untrained people. The interface needed for an
application of this type needs to be intuitive and well tested. The system can be
evaluated under realistic conditions, with a reduced set of data.

Prototyping as a software development approach
Prototyping can also be used as an approach to the development of a final
solution. As with the ‘throwaway’ prototype, an initial set of specifications is
supplied to the programming team. Using this set of requirements, the team uses
a set of software tools to create a solution. This solution is passed to the user for
use and evaluation. Again, following evaluation the prototype is modified and
passed back to the user for further operation and evaluation. This process con-
tinues until the user is satisfied with the operation of the software. However, this
time the prototype is not discarded, but is used as the final solution. This ap-
proach is commonly known as evolutionary prototyping.

This form of software development is not suitable for large-scale projects, as
detailed feedback from the user is important to the success of the project. With
a large number of users or a complex system, this method would produce
problems in gathering and analysing feedback from the users.

Evolutionary prototyping will generally produce a software application in a
shorter time and at a reduced cost to the client. The reduction in time and
expense occurs because the process is less formal than the structured approach.
To ensure that the prototype is able to be maintained, it should still undergo the
stages of defining the problem, building and checking, although the distinction
between the stages will not be as clear as in the structured approach.

Figure 3.8 Evolutionary prototyping leads to a fully working
application that continues to be used.

Initial
requirements

Create
prototype

User uses
prototype

Modify the
prototype

Prototype used
for solution

no further
suggestions

user has
suggestions for
improvement

81Software development approaches

North Sydney Airport Corporation—evolutionary prototyping
The North Sydney Airport Corporation’s interactive tourist guide can also be
developed as an evolutionary prototype. The plan in implementing this prototype
system is again to develop one which lists a limited number of attractions.
Emphasis in the initial design is on input and output modules. The difference is
that, in this case, the prototype system is installed in the airport. As it is used, the
development team uses feedback from both visitors and attraction operators to
modify the features of the system.

Exercise 3.7
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
A prototype is a that is used to gain . When used in this
way itis often oceit s no longer needd fo ths use.It is used in this
way when the user is of what the system are. As the user
works with the it isevaluated. Th results of this are used
to reine the prototpe.This method can also be useda a tool. In this
case, the is continually until it is able to perform all the

tasks

2 Design suitable input and output screens for the tourist information system to
describe three motels in the area and to accept bookings. Use a graphics program
or a hypertext system for this question. Save your file as TOURGUID.

3 Explain how you would use a simple flat-file database system, such as that found
in Microsoft Works or Claris Works, to prototype a stock-control system for a small
general store.

4 Create a prototype for a general store stock-control system. The store owner
wishes to keep a database which details the name of each item in stock, the
supplier, the quantity, the level when it should be reordered, the wholesale price,
the percentage markup and the wholesale value of the stock in the shop. Test the
prototype, making suggestions for additional features.

EXTENSION
5 Choose an application you think is suitable for prototyping, and give a brief

description of the system requirements and your reasons for using prototyping as
a development tool. Design at least one input and one output screen for this
system. Present your answer as an appropriate set of documents.

Rapid application development (RAD)
The term rapid application development (RAD) is used very loosely to describe
any software engineering process design that leads to faster application develop-
ment. A number of different approaches may be used in RAD, including those of
CASE (computer-aided software engineering), the reuse of code and the use of
templates. Software tools used would include development environments such as
Visual Basic, Hypercard, Hyperstudio, Access, Filemaker Pro and REAL Basic.

82 Heinemann Software Design and Development: Preliminary Course

One of the main features of the RAD approach to software development is
the lack of formal stages. In the more structured approach, the lifecycle stages can
be clearly identified by the processes taking place. Less formal stages are more
suited to the development of smaller, low-cost projects, as the development
teams are also small, often consisting of one programmer.

When a RAD approach is taken, the user is often directly involved with the
programmer. The tools allow a programmer to develop a solution which can then
be tried by the user.

Barton’s Books—a RAD approach
Barton’s Books is a small bookshop catering for a wide variety of tastes.At present
the staff use a cash register and a card system to keep track of their stock.
However, this system is becoming unmanageable, so they have decided to
upgrade to a computer system.

After discussing the requirements with the store manager, the software
developer, Marie, decides to implement the system using a relational database
management system, such as Access or Filemaker Pro. This will allow her to
create and link files to manage the stock, the suppliers and the customers.

The chosen development tools allow for rapid development, since input and
output form design are functions that are included in these development
packages. The use of one of these database management systems also gives Marie
the ability to customise some of the operations as macros which can be used by
either keystroke or screen buttons.

Exercise 3.8
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Rapd apicaion deelopment, or , can be used o describe any

process thatleads to a develomen. This approach has
_____________ stages that are sutable for and cost
projects Often the and programmer wrk closely tgether.

2 Describe a situation in which a developer might decide to use a RAD approach to
software development. Explain why the RAD approach should be used in this case
in preference to the structured approach.

3 Use a database management system, such as Access or Filemaker Pro, to develop
an application to catalogue a compact disk collection. Reports should be created
to allow the user to view the data in these ways: by artist, by music type and by
CD name. Buttons, or macros, should be used to allow the user to move from one
view to the next. When moving between views, part of the macro should sort the
database records on the field that is requested. Save the file as CDCOLL.

83Software development approaches

End-user development
As hardware and software have become more powerful, so has the ability of users
to customise applications to their own situations. The adaptation of software
tools to varying situations by users has enabled many of them to create software
solutions to their specific problems quickly and cheaply.

The emphasis in this type of development is on rapidly arriving at a solution.
There are no formal stages in this type of development, the user taking advantage
of the application’s capabilities and customising them for use. These projects are
often small-scale projects initiated for the sole use of the person doing the
customising. It is not unusual for these projects to be used for a long time, as the
end user has created a tool that reflects his or her own ways of working. As the
user finds further tasks for the system to perform, it can be modified to meet
these new needs.

Because there is little or no involvement of outside personnel, the end-user
application can be produced at a fraction of the cost of a custom-built software
package. A further advantage of end-user development is the familiarity the user
has with the package, thus removing the need for further training in its use.

The off-the-shelf application packages that end-user development uses
generally consist of a fourth-generation language such as a database management
system or spreadsheet application.These tools supply a number of features which
simplify the interface with the computer and the language required. Within these
applications will be found tools such as a report generator, a query language and
a screen design.

Jessica’s motoring records
Jessica wants to keep track of her car expenses, so she decides to use a spreadsheet
application to help her. In this spreadsheet she wants to be able to store the
odometer reading when the expense occurred. The expenses she has listed are for

Figure 3.9 Jessica’s spreadsheet is an example of end-user development.

84 Heinemann Software Design and Development: Preliminary Course

petrol, repairs, registration and insurance, and tyres. She sets out the spreadsheet
so that it calculates the total cost as well as the cost per kilometre.

Using the spreadsheet’s help facility, Jessica has no problem devising her
spreadsheet. In her design, she uses each ‘page’ of the spreadsheet workbook to
hold the data for a year. The application takes her a little over an hour to com-
plete. Since the sheet is for her own use, Jessica does not even bother to
document how it works. When the following year comes, she will copy the
formulas from one sheet to the next.

Jessica could also create a macro that will automatically set up a new sheet for
the new year.

Exercise 3.9

Team Activity

As a team, investigate the requirements
for a school report program that could be
used within your school. Write a report
which details the requirements of such a
system. Examine the inputs and outputs of

the report system, and use interviews and
other information-gathering processes to
plan a system that could be implemented.
Present your report in a suitable form on
disk.

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
End-user devlopmentinolves the of a systemcreatig a solution to
a without the aid of a team. More computers
and apicaion mean that a softwae solution can be created

. The of the solution is also reduced as help is
not use. The usr s also ery with he application because he or she
deveoped it and so needs no moe in its use.

2 Using Figure 3.9 as a guide, develop the spreadsheet solution to Jessica’s problem.
Save your file as JESSCAR.

3 Use an appropriate software package to develop an application to manage your
budget. Format the document to make it useable and create a button, or macro,
to print a copy of it. Save your file as BUDGET.

EXTENSION

4 What are the advantages and disadvantages of an application created by the
user? Use an example to illustrate your answer.

Review exercises

85Social and ethical issues

1 Describe the types of project which
are best suited to each of the four
development approaches described in
this chapter. Word-process your
answer and save it as a document
called DEVAPPCH.

2 Name the development approach best
suited to each of the following
applications, giving reasons for your
choice.
a An airline wants to develop a

program to manage aircrew rosters.
b A school student wants a program

that can manage her study
timetable.

c A radio station needs a computer
application to manage its
advertising schedules.

d An interstate coach company needs
a computer application to manage
its booking system.

e A large shopping centre requires an
interactive guide to its facilities.

3 Use a hypertext development tool,
such as Hypercard or Hyperstudio, to
develop a prototype of a school
directory. Your directory should have a
main page and at least three other
linked pages.

4 Use a suitable application to develop a
budgeting program for a family.

5 Investigate the requirements of a
service station for a software package
that can be used to manage the
business.

6 Investigate the requirements of a
primary producer for a software
package that can be used to manage
the business.

7 Describe the features of a
development tool such as Visual Basic
that make it suitable for rapid
application development.

Chapter summary

86 Heinemann Software Design and Development: Preliminary Course

• Four of the more common approaches to software development are the
structured approach, prototyping, rapid application development and end-
user development.

• The structured approach consists of five steps: defining the problem,
planning the solution, building the solution, checking the solution and
modifying the solution.

• The structured approach is used for large-scale projects with a long
development time and a large budget.

• The structured approach is used when a team is working on the project, as
the structure gives direction for each of the members of the team.

• The personnel involved in the structured approach are analysts, designers,
programmers, users and management.

• Prototyping is the creation of a working model of the software solution.
• The prototype is used as a tool to gain information, after which it thrown

away, or it is progressively refined into a working solution.
• The throwaway prototype is used when the users of a system are unclear

as to their requirements.
• The evolutionary prototype is created and utilised, with user evaluation

being used to further refine the prototype until it performs the required
tasks effectively.

• Prototypes are used for small-scale projects with small budgets and short
development times. The process of prototyping is also less formal than the
structured approach.

• The process of evolutionary prototyping usually involves a small number
of people. The personnel involved include programmers and the users.

• Rapid application development (RAD) is a broad approach to software
development. CASE tools are often used, as are development environ-
ments such as Visual Basic.

• RAD is identified by the lack of formal stages, and is used in small, low-
cost projects with small development teams involved.

• End-user development is characterised by the use of readily available soft-
ware packages to develop a small-scale project.

• The end user is often the only person involved with developing the system.

44Defining the problem and
planning software solutions

cchhaapptteerr

Defining the problem
• understanding the problem
• identification of inputs and required outputs
• determining the steps that, when carried out, will solve the problem

Abstraction/refinement
• the top-down approach to solution development
• refinement of a proposed solution
• modification of an existing solution

Data types
• data types used in solutions, including:

– integer – string – floating point
– Boolean – date and currency formats

Outcomes
• describes and uses appropriate data types (P 1.2)
• describes the interactions between the elements of a computer

system (P 1.3)
• explains the effects of historical developments on current practices

(P 2.2)
• identifies the issues relating to the use of software solutions (P 3.1)
• investigates a structured approach in the design and

implementation of a software solution (P 4.2)
• uses a variety of development approaches to generate software

solutions and distinguishes between these approaches (P 4.3)
• uses and develops documentation to communicate software

solutions to others (P 5.2).

Students learn about:

88 Heinemann Software Design and Development: Preliminary Course

• understand a problem by using an IPO chart
• work out a way to solve the problem and describe the solution using an algorithm

description method
• check the solution to a problem by means of a desk check
• convert numbers to and from their decimal representation to binary, octal and

hexadecimal forms
• distinguish between the programmer’s, or abstract, view of data and the physical

representation of that data within a computer system
• identify simple data types and describe the ways in which the different types are

represented within a computer system
• differentiate between simple and structured data types
• differentiate between the structure of an array and the structure of a record
• reference an element within a data structure;
• match the data requirements of a problem to appropriate data structures and justify

the choice
• create a paper representation of appropriate data structures for storing data
• identify the different constructs used in an algorithm
• read and understand algorithms written as pseudocode and as a flowchart

Students learn to:

• data structures, including:
– one-dimensional array – record
– sequential files

• limits of particular data types
• integer representation in binary, decimal, octal and hexadecimal forms
• the impact of hardware/software limits on different data types

Structured algorithms
• methods for representing algorithms

– pseudocode – flowcharts
• control structures

– sequence
– selection (binary and multiway)
– iteration (pre-test, post-test including FOR..NEXT loops)

• software structures
– subroutines – modularity

• use of standard algorithms, including:
– load and print an array – process records from a sequential file

• checking the algorithm for errors
• historical events that led to the development of a structured approach to algorithm

design

89Defnng the problem and lanning softwar solutions

Personal Profile—Grace Hopper
(1906–1992)

Grace Hopper was born Grace Murray in
1906 in New York. She graduated from
Vassar College in 1928 with a BA in mathe-
matics. Remaining at Vassar, she earned an
MA in 1930, a PhD in 1934 and married
Vincent Hopper, who died in 1945.

In 1943 Grace left Vassar, where she was
an associate professor, to join the US Naval
Reserve. After Midshipman’s school, she was
sent to the Bureau of Ordnance Compu-
tation Project at Harvard’s Cruft Labora-
tories where she worked on the Mark series
of computers. Grace became the third per-
son to program the Mark I computer,
receiving awards for her pioneering work.

In 1949 Grace joined the Eckert-
Mauchly Computer Corporation which
produced the UNIVAC I, the first large
electronic computer. She encouraged
programmers to share libraries of code, thus
reducing errors and the duplication of tasks.
She is best known for her contribution to the
design of compilers which allow programmers to write programs in languages
more closely approaching normal language. She was an active participant in the
design of the COBOL business language. She remained with the company until
1967, during which time it was purchased by Remington Rand which in turn
merged with the Sperry Corporation. Grace again joined the military where she
remained until retirement in 1986, having risen to the rank of Rear Admiral. She
remained active, consulting to the Digital Equipment Corporation, working well
into her eighties. Grace died in her sleep on 1 January 1992.

The term ‘bug’ is supposed to have been coined by Grace Hopper when a
moth was found to have caused a malfunction in one of the early computers.

90 Heinemann Software Design and Development: Preliminary Course

Defining the problem
There are three main steps in producing a solution to a problem. They are:
• Understand the problem. Before a solution can be designed, the problem must

be fully understood.
• Work out a way to solve the problem. How a solution is arrived at depends a lot

on past experience. For example, a chef would have no trouble describing how
to make French onion soup. If a similar problem has been solved, it is an
obvious advantage. The plan of the solution may involve the use of an
algorithm.

• Check the solution to the problem. After the solution to the problem has been
designed, it needs to be tested. If the results are unsatisfactory, it is modified
or discarded. There is usually more than one correct solution for any problem
and the best solution is a matter of personal choice.
It is important to remember that after a solution has been produced it has to

be implemented. A computer-based solution could be implemented using a soft-
ware application or it could be converted into a programming language.

The following sections deal with some methods that can be used to help us
understand the problem.

IPO chart
Before a computer solution to a problem can be implemented, it is necessary to
understand the processes and data interactions within the system. Paper
representations of the system allow the programmer to better understand the
ways in which its components work together. An IPO (input, processing, output)
chart is used to describe the data elements which will enter the system (or
subsystem), the processes which will occur and the data elements which will
leave the system. Although the formats of IPO charts might differ, they will
contain a heading, a list of inputs, a description of the processes and a list of
outputs.

The IPO chart in Figure 4.1 illustrates the action of a railway ticket vending
machine. The traveller inserts a banknote and presses a destination key. The
destinations with their fares are read from a fares master file and the particular
destination is matched with the fare. The machine prints and issues the ticket as
well as calculating and giving the change due to the traveller. At the end of the
transaction the machine’s transaction file is updated on the central system.

Figure 4.1 Ticket system IPO chart.

O Destination
and banknote

Fares
master file

Match
destination
and fare

Issue ticket
and change

Update
transaction file

I

O I

O I

O I

O I

O I

O I

91Defnng the problem and lanning softwar solutions

A different IPO chart format is shown in Figure 4.2. This chart describes the
processing of an employee’s wages to determine the amount of tax to be
deducted, the outputting of the net wage (after-tax wage) and the amount of tax
payable. The form that the processing takes is shown in more detail than in the
previous type of chart.

Figure 4.2 Wages calculation IPO chart.

IPO chart
System: WAGES
Function: TAX, NET PAY CALCULATION

Input:
GROSS_WAGES

Process:

1. TAX_SCALE found from TAX_FILE

2. TAX_AMOUNT = GROSS_WAGES x TAX_SCALE

3. NET_WAGES = GROSS_WAGES – TAX_AMOUNT

Output:
NET_WAGES
TAX_AMOUNT

In creating an IPO chart, it is important to look at the problem in the
following way.

The first step is to look at the outputs that are required in order to solve the
problem. We need to decide what it is that the system is to do before we look for
the necessary inputs and processes. Designing a solution is very much like baking
a cake. We need to know what type of cake we want before buying the
ingredients and following the recipe.

After deciding on the outputs that are required, we then look at the inputs
needed for those outputs. In terms of baking a cake, we are listing the ingredients
that are needed for the type of cake to be baked.

The final step in creating an IPO chart is to decide on the processes that are
needed to turn our inputs into the required outputs. In the cake example, this
corresponds to the recipe.

92 Heinemann Software Design and Development: Preliminary Course

Example
Terry Cotta’s Tiling Company has decided to computerise its quoting system. A
salesperson will enter the area’s dimensions and the tile type that has been
chosen by the customer. The system is to output a quote for the job, subdivided
into costs for materials and for labour.

In this example, it is quite clear that the required outputs are the total cost of
the job and the individual costs of the materials and labour. After this stage, the
IPO chart will look something like the chart in Figure 4.3.

Figure 4.3 Stage 1 in producing an IPO chart. The outputs are specified.

Figure 4.4 Stage 2 of the production of an IPO chart now brings in the required inputs to
achieve the outputs.

Total cost of job

Cost of materials

Cost of labour

INPUT PROCESS OUTPUT

In order to obtain these outputs, we will need the details as entered by the
salesperson as mentioned in the design brief (that is, the tile type and the dimen-
sions of the area). However, these are not the only inputs that are needed for this

INPUT PROCESS OUTPUT

Dimensions of area to
be tiled

Tile type

Cost of tiles per
square metre

Amount of other materials
(grout, adhesive) needed
per square metre

Unit costs of other
materials

Area of tiles that
can be laid in
and hour

Tiler's hourly
rate of pay

Total cost of job

Cost of materials

Cost of labour

93Defnng the problem and lanning softwar solutions

INPUT PROCESS OUTPUT

Dimensions of area to
be tiled

Tile type

Cost of tiles per
square metre

Amount of other
materials (grout and
adhesive) needed per
square metre

Unit costs of other
materials

Area of tiles that can be
laid in and hour

Tiler's hourly rate of pay

Calculate area.

Calculate cost of the tiles.

Calculate cost of the other materials.

Calculate cost of all materials by
adding the cost of the tiles to the cost
of the other materials.

Calculate time required by the tiler.

Calculate cost of the tiler's labour.

Calculate total cost of the job by
adding the cost of all materials and
the cost of the labour.

Output total cost of the job, cost of
materials and the cost of the labour.

Total cost of job

Cost of materials

Cost of labour

task. In addition to these data items, the system will need to be able to provide
the cost of the tiles per square metre and the cost of the other materials needed,
such as adhesive. As well as these costs, the labour charge needs to be calculated.
This charge is also dependent on the inputs of the area of tiles that can be laid in
an hour as well as the hourly rate of pay of the tilers. These amounts may depend
on the type of tile chosen by the customer. We have now built up our IPO chart
as illustrated in Figure 4.4.

Finally, we can look at the processes required to produce the customer’s
quote. These would include:
• calculating the cost of the tiles by multiplying the area by the cost of the tiles

per square metre
• calculating the amount and cost of other materials such as adhesive and grout
• calculating the time that a tiler needs to do the job
• calculating the cost of the labour.

Our IPO chart is now finished and can be seen in Figure 4.5.

Figure 4.5 Stage 3, the processes required to achieve the outputs are included in the table.

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
When we solve a problem, there are three steps we should follow. The first is to

the prolem, the secod is to find a he problem and the
last is to the solution. One of the ways we can the
problem is to draw up a(n) which lists the required to
produce the wanted as well as the required.

Exercise 4.1

94 Heinemann Software Design and Development: Preliminary Course

2 Describe the purpose and advantages of an IPO chart during the software devel-
opment cycle.

3 A subsystem is to calculate the postage of a parcel according to the following
rule:
The postage on a parcel is calculated as being $2.00 plus $1 for each kilogram or
part of a kilogram.
Draw an IPO chart for this system.

4 Describe in words the system represented by the IPO chart in Figure 4.6.

Figure 4.6

Figure 4.7

O Barcode

Barcode
master file

Match
barcode
and item

Display and
docket

Update
transaction file

I

O I

O I

O I

O I

O I

O I

IPO chart
System: QUESTION 5
Function: EXERCISE

Input:
DATE
BORROWER_NUMBER

Process:

1. DATE found from BORROWER _FILE

2. OF DATE < TODAY – 14, OVERDUE = TRUE

3. LIBRARY_ FINE = 0.5

4. IF OVERDUE, BORROWER.STATUS = FALSE

Output:
OVERDUE
LIBRARY_FINES
BORROWER.STATUS

5 Describe in words the system represented by the IPO chart in Figure 4.7.

6 Using a word processor that has the ability to produce a table, create a blank
table with the headings ‘Input’, ‘Process’ and ‘Output’ in one row together with
a blank row. Use the ‘Format Border’ menu item (or similar) to create a border

95Defnng the problem and lanning softwar solutions

Abstraction/refinement
Top-down design
When designing an algorithm to solve a problem, many computer programmers
use a top-down design. In this approach, large complicated problems are broken
down into a series of smaller, easier-to-solve problems. The solution to one of
these smaller problems is sometimes called a module. Clearly, a large complicated
problem could consist of many modules. Each module is written separately
before they are brought together as a whole. Top-down design results in com-
puter programs which are easier to write and correct. In general, if an algorithm
is not going to fit onto one page it should be broken down into modules.

The basic concept underlying the process of top-down programming is the
decomposition of a solution into smaller and smaller units until each of the units
can be expressed as one instruction. An alternative name for this method is
stepwise refinement. This design method will produce a program which clearly
shows the structure. Figure 4.8 illustrates the decomposition of a program into
modules and sub-modules. The modules and sub-modules are sometimes given a
numerical naming, each of the numbers in the name denoting a level in the

around your table and between the cells. Save this document with the filename
IPOBLANK. You can then use copies of this document to draw the IPO charts for
the following exercises.

7 A wages system is to input the hours worked by an employee and the rate of pay,
and then calculate the week’s wages and output the gross pay (pay before tax).
Draw an IPO chart for this system.

8 Choose a small subsystem and construct an IPO chart to describe its operation. In
addition, describe its operation in words.

Figure 4.8 Top-down programming produces smaller and smaller program units.

Main program

Module
Level 1

Module
Level 1

Module
Level 1

Level 2 Level 2 Level 2 Level 2 Level 2 Level 2 Level 2

Leve 3 Levl 3 Leel 3 Lvel 3 evel 3Level Level3 Level 3Level 3 Level 3 Level 3Level 3 Level 3

1 2 3

1.1

1.1.1 1.1.2 1.1.3 1.1.4 2.1.1 2.1.2 2.3.1 2.3.2 2.3.3 3.2.1 3.2.2 3.2.3 3.2.4

1.2 2.1 2.2 2.3 3.1 3.2

96 Heinemann Software Design and Development: Preliminary Course

hierarchy. As an example, module 2.1.2 is at the third level of the hieararchy as
it contains three numbers. Each of the numbers represents its relationship to the
other modules. We can see immediately that module 2.1.2 is a part of module
2.1, which, in turn, is part of module 2.

One of the main advantages of adopting this programming approach is that
the logic of the program can be examined and tested at each stage of develop-
ment. A main program, for example, can be constructed and tested before any of
the modules have been created. As each of the new modules is created, it can first
be tested to determine whether it works. Once this testing and modification
process is complete, the module is put in place and tested with the other written
modules. This simplifies the testing procedure, since errors which occur can be
directly attributed to the new module. When the new module is in place and
working properly, the next one can be written. The main program or algorithm is
often kown as the driver module.

Example
Suraya has been asked to create a program which will act as an address book. In
the first analysis, she decides that the program will contain an initialisation
module, an update module, a search module and a closing module. This de-
composition has divided the total program into four smaller units.

Main program

CloseSearchUpdateInitialise

Update module

Add a name Change an entry Delete an entry

Figure 4.9 First decomposition of the address book program produces four modules.

Figure 4.10 Decomposition of the update module leads to three smaller modules.

The four modules are each decomposed into smaller units. For example the
update module can be decomposed into three sub-modules which allow the user
to add a new name to the book, change an existing entry and delete an entry from
the book.

Suraya will then further decompose the modules at this level, repeating the
process until the modules are expressable as a sequence of instructions.

When writing the program, Suraya can easily write and test the main
controlling program. Once it has been checked and tested, the modules one level
down the hierarchy can similarly be created.

97Defnng the problem and lanning softwar solutions

Modification of an existing solution
Quite often an existing system is able to perform a number of the tasks required
by its replacement. In these situations it is sensible to use those parts of the old
system that still work satisfactorily. In other cases, the existing system may be
performing well, but the users have identified a further function they need.
Again, it is uneconomical and wasteful to design a completely new system and
throw out the old one.

In modifying a solution to cope with new needs of the users, we still move
through the steps of problem solving (understand the problem, design the
solution and check the solution). However, we can use, or change, parts of the
existing solution in our design. Those parts we use without modification should
still take part in the testing of the new solution, as the manner in which they
interact with the new parts of the system might affect the whole new system.

Exercise 4.2

Figure 4.11 The first-level modules of James’ washing machine program.

1 Choose the word or phrase from the list which best completes the statements
below:
decompose, driver module, hierarchy, modules, stepwise refinement, top-down
design

a The process of braking a prolem in smallr poblems is known as
or .

b A program conaningallows the structure to bemoe clerly seen.
c The numbers given to steps are used to show the of hose steps.
d The programmer ll a robem intsmalle poblems.
e The min algrith is often known as the .

2 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
Computer programmers use a design method to solveaproblem. The
term is also used to describe this process. B a problem
into , more managable parts, it becomesto solve. The
smaer parts are known as .

3 James has decomposed the instructions for a washing machine into the following
set of modules (Figure 4.11). Decompose the initialise module into a number of
sub-modules.

Main program

Remove washingSelect cycleLoad washingInitialise

98 Heinemann Software Design and Development: Preliminary Course

4 An algorithm for preparing and serving breakfast is to be designed. Decompose
this problem into a number of smaller steps at the first level of decomposition;
that is, list the modules that will form the main program.

5 Take one of the steps from question 3 and decompose it to the second level. Are
these steps small enough to now write an algorithm? Justify your answer.

6 You have been asked to write an instruction manual for a video recorder. Your
first job is to take the problem and decompose it into smaller steps. (These will
form the main ‘chapters’ of your instruction manual.) Each of these steps is then
to be further decomposed to a second level. (These would form the sub-chapters
of your instruction manual.) You do not have to write any algorithms for this
problem. You can use the ‘outline’ feature of a word processor to present your
decomposition. Save the document as VIDSTEPS.

7 Choose one of the second-level modules from your video recorder problem (such
as recording using the timer) and write an algorithm that describes the steps of
this module. You can use the word processor to present your algorithm, using the
‘TAB’ key to indent the instructions. Save the document as VIDMODUL.

8 Write an algorithm for the driver module of the breakfast problem in question 4.
You can use the word processor to present this algorithm. Save it as BREAKALG.

Data representation
Digital computers use the binary number system to represent data items and
instructions. The binary number system requires only two digits to represent all
numbers (we use 0 and 1). The medium we use to store data will determine how
these digits are represented. Common media are electronic, magnetic and optical:
• Electronic media, such as the RAM inside a computer, can be thought of as

using the electrical states ‘on’ and ‘off’ as representing the digits 1 and 0.
• Magnetic media, such as disks, represent data as magnetic ‘spots’. If we want to

represent a 1 magnetically, we can magnetise the spot. To represent a 0, the
spot is left unmagnetised.

• Optical media, such as fibre-optic cables, use pulses of laser light to represent
1s and no light to represent 0s.
Unfortunately as human beings we do not think of numbers in binary form.

Our counting numbers are based on a system where we use ten digits (0 to 9) in
our representation of numbers. So in order for us to understand what happens
inside a computer, we will need to be able to convert numbers from our decimal
form into the binary form used by the computer.

Conversions to and from the binary number system
As mentioned above, the binary number system uses only the digits 0 and 1 to
represent all numbers. This means that, once we have counted up to one, we have
used up all the single-digit numbers and so we need to think of a way of
representing two. In our normal counting, once we have reached the last single
digit (9), we increase the number of digits to two to represent the next counting
number (10). The same happens in binary. Thus the number two can be
represented in binary by the digits 102 (this is read as ‘one zero’ not as ‘ten’). The
following number, three, can now be represented by 112 (one more than our

99Defnng the problem and lanning softwar solutions

representation of two). Now we have used up all our
two-digit binary numbers, so we have to use three digits
to represent the number four (i.e. 1002). This idea can
be used to count to any number we like using the
binary number system. The first ten counting numbers
in binary are listed in Table 4.1.

Using a table like this is not a very practical way of
converting larger numbers from our base ten counting
system into binary. A division method is much more
practical as it can be used to convert any counting num-
ber into its binary equivalent. The steps are as follows:
Step 1. Write down your chosen number and divide it
by two (for the example we will convert 10310 into
binary). R is used to show the remainder once the
division has been performed:

2)103 R

Number inary represetation
one 1
two 10
three 11
four 100
five 101
six 110
seven 111
eight 1000
nine 1001
ten 1010

Table 4.1 Binary representation of
the first ten counting numbers.

Step 2. Repeatedly divide the answer by two until you reach 0, each time writing
down the answer (quotient) and writing the remainder in the R column. (If there
is no remainder, write 0.)

2)103 R
2) 51 1
2) 25 1
2) 12 1
2) 6 0
2) 3 0
2) 1 1
2) 0 1

Step 3. The digits in the remainder column are then read from the bottom to the
top to give the answer. This means that 10310 is equal to 11001112.

When we have a large number of digits, it is often more convenient to group
the digits in fours from the right-hand side. The binary equivalent of 10310 would
be written as 110 01112.

When it comes to converting binary numbers back to base ten, we use the fact
that each digit in the binary number represents a power of two. The powers
increase from right to left, starting with 20 (which is 1) as the value of the right-
most binary digit. The digit on the right is also called the least significant bit, as
it is the bit with the least value. Similarly, the digit on the extreme left of a binary
number is called the most significant bit.

To see how to convert a binary number back to decimal we will look at the
conversion of 110 01112 back to decimal.
Step 1. Think of the digits with the powers of two above like this:

26 25 24 23 22 21 20

1 1 0 0 1 1 1
Step 2. Write down the decimal values of the powers of 2. (Don’t try to remem-
ber these powers as they are easy to calculate.)

64 32 16 8 4 2 1
1 1 0 0 1 1 1

Step 3. Add up the numbers with 1s below them and ignore those with 0s below.
110 01112 = 64 + 32 + 4 + 2 + 1

= 10310

100 Heinemann Software Design and Development: Preliminary Course

As most numbers we work with are fairly large, the binary number system is
not really a suitable way to manipulate values. For this reason, two other number
systems are used, both based on powers of two so that we can group binary digits
together. These systems are octal (base eight) and hexadecimal (base sixteen).

Conversions to and from the octal number system
The octal number system is based on eight, and so uses eight digits to represent
numbers. These are the digits 0, 1, 2, 3, 4, 5, 6 and 7. Rather than convert
numbers directly from decimal to octal, it is usually much easier to change the
decimal number to binary and then use these digits to find the octal equivalent.
As an example, we will again use 10310, which we already know is 110 01112.
Step 1. Group the digits in threes from the right-hand side of the binary number,
adding zeros if necessary to create the last group of three:

110 01112 becomes 001 100 1112
Step 2. Using the equivalents already known for the digits 0 to 7 in binary (see
Table 4.1), replace each group of three with the appropriate digit. In the
example, 0012 represents 1, 1002 represents 4 and 1112 represents 7, so our octal
equivalent to 10310 is 1478.

Again to convert an octal number back to a decimal number we need to look
at the value of each of the digits in the octal number. This time each place
represents a power of eight, moving from right to left in increasing order.

To change 1478 back to a decimal number, we follow similar steps to the
conversion from binary to decimal.
Step 1. Write the number with the power of eight above each digit.

82 81 80

1 4 7
Step 2. Change the powers of eight to their decimal equivalents.

64 8 1
1 4 7

Step 3. Add up the values.
1 × 64 + 4 × 8 + 7 × 1 = 64 + 32 = 7

= 10310
As can be seen, the octal number system reduces the number of digits needed

to represent 10310 from seven in binary down to three, but since eight is a power
of two, we can still match up the digits with their binary equivalents. This feature
makes octal a convenient way of rewriting binary numbers. However, it has fallen
into disfavour somewhat, since most binary data these days is stored in bytes,
consisting of eight bits, which are a little difficult to break into groups of three.

Conversions to and from the hexadecimal system
A far more convenient way of representing the binary strings that represent
values stored within a computer is to break the one-byte units into two halves
each of four bits. This means that there are sixteen different combinations of 0s
and 1s which can be represented by these half-bytes (sometimes called nybbles
or nibbles). This leads us to the number system based on sixteen, called the hexa-
decimal number system.

The next problem, once the number base of sixteen is chosen, is to find a way
of conveniently writing the sixteen different digits that are going to be used in
the representation of numbers in this base. (Remember that base two uses two
digits, 0 and 1, base eight uses eight digits, 0 to 7, and base ten uses ten digits, 0

101Defnng the problem and lanning softwar solutions

to 9.) The problem is solved by using the ten normal digits (0 to 9) together with
the first six uppercase letters of the alphabet (A, B, C, D, E and F). Thus, if we
were to count to fifteen in hexadecimal we would count 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F. Once we reach sixteen, we need to create another digit place,
so in base sixteen (hexadecimal), sixteen is represented by the number 1016.

Number DeimalBinary Octal Hexdecimal
one 1 1 1 1
two 2 10 2 2
three 3 11 3 3
four 4 100 4 4
five 5 101 5 5
six 6 110 6 6
seven 7 111 7 7
eight 8 1000 10 8
nine 9 1001 11 9
ten 10 1010 12 A
eleven 11 1011 13 B
twelve 12 1100 14 C
thirteen 13 1101 15 D
fourteen 14 1110 16 E
fifteen 15 1111 17 F
sixteen 16 10000 20 10
seventeen 17 10001 21 11
eighteen 18 10010 22 12
nineteen 19 10011 23 13
twenty 20 10100 24 14

Bnary it pattern Hexdecimalequivalent
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Table 4.3 The hexadecimal equivalent
for each of the sixteen bit patterns that
can be formed from four bits.

Table 4.2 The first twenty counting numbers in decimal, binary, octal and hexadecimal.

The first twenty numbers in
each of the number bases are
shown in Table 4.2.

As with octal, it is much
easier to convert a decimal
number into binary form first
before attempting the con-
version to hexadecimal. Once
the value is in binary form, the
digits are grouped into sets of
four from the right-hand side
and then the bit patterns are
changed to their hexadecimal
equivalents (see Table 4.3.) The
process is very similar to the
conversion to octal.

102 Heinemann Software Design and Development: Preliminary Course

To convert 10310 to hexadecimal, first convert it to binary (see the example
on p. 99). The bit pattern 110 01112 is now written as two groups of four bits by
putting an extra 0 at the front to make it up to eight bits. Now, using the
conversions in Table 4.3 we find that the bit pattern 01102 represents 6 and
01112 represents 7, so 10310 = 6716.

To convert 6716 back to base ten, we again look at the values of the digits. The
right-hand digit again stands for the units, the next digit to the left stands for the
sixteens and so on, with each digit to the left representing sixteen times the
previous digit. So 6716 = 6 × 16 + 7 × 1 or 10310.

Notice that the largest value that can be represented as two digits in hexa-
decimal is FF16. Doing the conversion, remembering that F16 stands for fifteen,
FF16 represents 15 × 16 + 15 × 1 = 240 + 15 or 25510. Thus two hexadecimal
digits can represent up to two hundred and fifty-five in our decimal system.

Exercise 4.3
1 Complete each of the following statements with the most appropriate word from

the list: binary, bit, decimal, hexadecimal, octal

a The system of numbes is used to sore values in computer.
b We nomally count usi g the number system.
c One digit in a binary number s called a .
d Because binary numbers are difficult to work with, a system which contains the

digits 0 to 7, called , is used.
e The number system uses he letters A to F to represent some of the

digits.

2 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
Digita computers store data as and . Since ther are only
two iitsin this systm,it is known as the number system. The

number systemi inconenient for us to use, so the system
based on eight and the number system basd on sixten are also used
by programmers.

3 Convert the following decimal numbers into binary form:
a 9 b 17 c 30 d 89 e 248
Extension: Design a spreadsheet that will perform the change of base from
decimal to binary. Save it with the filename DECBIN. Check your answers to
question 3 by using this spreadsheet.

4 Convert the decimal numbers in question 3 into octal form.
Extension: Modify the DECBIN spreadsheet so that it will perform the change of
base from decimal to octal. Save this spreadsheet as DECOCT. Check your answers
to question 4 by using this spreadsheet.

5 Convert the decimal numbers in question 3 into hexadecimal form.
Extension: Modify the DECBIN spreadsheet so that it will perform the change of
base from decimal to hexadecimal. Save this spreadsheet as DECHEX. Check your
answers to question 5 by using this spreadsheet.

6 Convert these binary strings to decimal numbers.
a 1012 b 11012 c 1100 10112

103Defnng the problem and lanning softwar solutions

Extension: Create a spreadsheet that will perform the change of base from binary
to decimal. Save this spreadsheet as BINDEC. Check your answers to question 6 by
using this spreadsheet.

7 Convert these octal numbers to decimal numbers.
a 158 b 378 c 2068 d 7778

Extension: Create a spreadsheet that will perform the change of base from octal
to decimal. Save this spreadsheet as OCTDEC. Check your answers to question 7
by using this spreadsheet.

8 Convert these hexadecimal numbers to decimal numbers.
a 1516 b 4B16 c C016 d 10E16

Extension: Create a spreadsheet that will perform the change of base from
hexadecimal to decimal. Save this spreadsheet as HEXDEC. Check your answers to
question 8 by using this spreadsheet.

9 First write each of these octal numbers in binary, then rewrite each number in
hexadecimal.
a 158 b 378 c 2068 d 7778

Extension: Create a spreadsheet that will perform the change of base from octal
to hexadecimal. Save this spreadsheet as OCTHEX. Check your answers to
question 9 by using this spreadsheet.

10 Explain why the binary number system was chosen for number representation in
computers rather than the decimal system.

11 Show, using examples, why the hexadecimal rather than binary representation of
numbers is preferred by computer programmers.

Data types
Data and instructions are stored in a computer system as strings of binary digits,
with no distinction between their meanings; it is the program which decides the
interpretation of the binary string. It is quite likely that a particular binary
sequence stored in a particular location will represent part of an instruction on
one occasion, a character on the next occasion, and part of an integer on another
occasion. When looking at the physical storage of data in the computer system,
we can move one step further and add the fact that the eight bits which make up
a byte may not even be physically stored in the same integrated circuit. It is
common practice for eight different chips to be used as primary storage, each of
the eight bits of a byte being stored in the same location in each of a number of
memory chips. These physical representations of data do not correspond to the
ways in which the same data is represented in a non-computer system. Human
beings think in terms of characters, numbers, words, sounds and so on.

The manner in which people represent problems to solve does not necessarily
match the way in which the computer represents the same problems. People
might think of problems in terms of lists, letters and numbers, pictures and
sounds, graphs, etc. All these have to be represented in a computer as patterns of
bits stored in the computer’s memory. In first- and second-generation languages
it was the programmer’s role to translate people-oriented representations into
computer-oriented representations. Third-generation languages and above have
been designed to more closely resemble human languages and as such need to

104 Heinemann Software Design and Development: Preliminary Course

offer data structures that more closely resemble those found in non-computer
systems. A programmer employs a logical view of the data which more closely
resembles the non-computer representation of the way we talk about problems.

Data often needs to be represented on paper so that we can understad what
needs to be done to process it. Know as abstract data types, these structures are
beneficial to the programmer, as the definition of their properties is independent
of the computer system being used. Abstract data structures can be classified as
simple data types or structured data types. The more basic of these two forms is
the simple data type and it consists of the Boolean, character, integer, floating
point and string data types, also date and currency formats. Structured data types
are used to represent related data elements in a form that is manageable by the
programmer, the compiler or the interpreter taking care of the physical re-
presentation within the computer system. The most common structured data
types are the array, the record and the file. Files often take the form of a database.

Simple data types

Boolean data type
The Boolean data type is the simplest data type available as it can be used to
represent one of only two possible values: true and false. For example, the result
of an addition or a subtraction may be either positive or negative.A processor will
store a bit in a register (often given the name flag register) after an addition or a
subtraction, the value of this bit being set to 0 if the result is positive and 1 if it
is negative. By using the stored value of this bit it is possible to make comparisons
between two values as well, giving a computer the power to make decisions.
Boolean data types have many uses in applications. For example, a Boolean con-
tainer may be used to store whether a person is male or female within a database
application, to determine whether a search has been successful, or to flag
whether a particular data item should be included in a selection or not.

Character data type
The character data type is widely used as it represents the smallest item of data
that an individual normally uses. Figures 4.12 and 4.13 show two common
character sets. A character usually occupies one byte in primary storage, which
gives a maximum of 28 or 256 different characters within one set. A larger
number of characters within one set is possible by using two or more bytes to
represent each character. Languages such as Chinese, which contains thousands
of different characters, will employ a multi-byte representation. Since each
character is represented by a string of bits, a code is needed to match the
character with its representation. The most common code used at present is the
ASCII code. Another popular code is EBCDIC, which is used mainly by IBM in
their larger computers.

Integer data type
There are two commonly used simple numerical data types: the integer and the
floating point. The integer data type is usually stored as two bytes (sixteen bits)
and so has 216 or 65 536 different combinations of bits. In order to cater for
negative values, these numbers are stored in a form known as ‘two’s complement’.
By using this method with two bytes, a range of –32 768 to 32 767 is achieved.

105Defnng the problem and lanning softwar solutions

Figure 4.12 Binary numbers can represent characters. This table shows the most common
coding, known as ASCII.

Binary b6 0 0 0 0 1 1 1 1
b5 0 0 1 1 0 0 1 1
b4 0 1 0 1 0 1 0 1

Hex 0 10 20 30 40 50 60 70
b3 b2 b1 b0 Dec 0 16 32 48 64 80 96 112

0 0 0 0 0 0 NUL TC7 SP 0 @ P ` p
DLE

0 0 0 1 1 1
TC1

DC1 ! 1 A Q a q
SOH

0 0 1 0 2 2
TC2

DC2 " 2 B R b r
STX

0 0 1 1 3 3
TC3

DC3 # 3 C S c s
ETX

0 1 0 0 4 4
TC4

DC4 $ 4 D T d t
EOT

TC8
0 1 0 1 5 5

TC5
NA % 5 E U e u

ENQ
K

TC6
TC9

0 1 1 0 6 6 AC
SYN

& 6 F V f v
K

TC1
0 1 1 1 7 7 BEL 0 ' 7 G W g w

ETB

1 0 0 0 8 8
FEO CA

(8 H X h x
BS N

1 0 0 1 9 9
FE1
HT

EM) 9 I Y i y

1 0 1 0 A 10
FE2
LF

SUB * : J Z j z

1 0 1 1 B 11
FE3
VT

ESC + ; K [k {

1 1 0 0 C 12
FE4 IS4
FF FS

, < L \ l |

1 1 0 1 D 13
FE5 IS3
CR GS

- = M] m }

1 1 1 0 E 14 SO
IS2
RS

. > N ^ n

1 1 1 1 F 15 SI
IS1
US

/ ? O - o DEL

Floating point data type
The integer data type is not suitable for applications that require values which lie
between integers; the floating point data type is designed to represent these
values. In computing terms floating point numbers are dealt with as fractions.
This is not quite the same definition as found in mathematics, but each number

Figure 4.13 The EBCDIC code also was devised to encode characters as binary strings.

An Aside
Twos complement representation of integers
This method of representing negative numbers will be more fully explained in the HSC
Course, but we need to know how this representation method will affect the range of
integers we can have for a number of bits.

As we have seen, there are 216 (that is, 65 536) different patterns of 0s and 1s when
we use two bytes to represent an integer. Twos complement representation evenly
divides these representations into two by representing equal numbers of positive and
negative integers. That is 32 768 positive numbers and 32 768 negative numbers. Since
0 is taken to be a positive number, the range of positive numbers that can be shown in
this way is 0 to 2 767. The negative numbers that can be shown are −1 to −32 768.
Combining these ides, this gives us a range of −32 768 to 32 767 as the values that can
be stored in two btes.

106 Heinemann Software Design and Development: Preliminary Course

Binary b7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
b6 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
b5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
b4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Hex 0 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

b3 b2 b1 b0 Dec 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
0 0 0 0 0 0 NUL SP & _ 0
0 0 0 1 1 1 / a j A J 1
0 0 1 0 2 2 b k s B K S 2
0 0 1 1 3 3 c l t C L T 3
0 1 0 0 4 4 d m u D M U 4
0 1 0 1 5 5 HT NL LF e n v E N V 5
0 1 1 0 6 6 BS f o w F O W 6
0 1 1 1 7 7 DEL g p x G P X 7
1 0 0 0 8 8 h q y H Q Y 8
1 0 0 1 9 9 i r z I R Z 9
1 0 1 0 A 10 ¢ ! ;
1 0 1 1 B 11 . $, #
1 1 0 0 C 12 < * % @
1 1 0 1 D 13 () - .
1 1 1 0 E 14 + ; > =
1 1 1 1 F 15 BEL | ? "

107Defnng the problem and lanning softwar solutions

which can be stored by a computer needs to be able to be represented as a finite
number of digits, hence the above definition. Floating point numbers are stored
in two parts: an exponent and a mantissa. The exponent is stored as one or more
bytes and represents, as an integer, a power of two. The mantissa is expressed as
a sum of binary digits and again is stored as a number of bytes.

For single precision floating point numbers, it is common practice to use one
byte for the exponent and three bytes for the mantissa. Double precision floating
point numbers consist of one byte for the exponent and seven bytes for the man-
tissa. In order to simplify the explanation and demonstrate the effects that the
method can have on calculation, we will consider how a floating point number
can be shown using only two bytes: one for the mantissa and one for the exponent.

The number 32010 may be stored in two bytes in the following manner:
0000 0100 0101 0000. The first byte represents the power of two (in this case
23, so this byte has the same value as 8 in binary; in this case, it represents 28 or
25610). The second byte represents the mantissa (the digits from the left to right
in the mantissa represent first the sign of the mantissa in two’s complement form,
then decreasing powers of two from 20 down to 2−6). The value 32010 is therefore
represented in this form as 256 × 1

The accuracy afforded by this example is low, since it is difficult to obtain an
exact representation of even simple floating point numbersch as 3 .

The larger the number of bytes allocated to the mantissa of the floating point
number, the better the accuracy. The representation in this simple example has a
range of 1.984 375 × 2127 to 1.984 375 × 2−127, 0 and –1.984 375 × 2127 to
–1.984 375 × 2–127. As decimals, this range becomes 3.376 239 109 × 1038 to
1.166 310 801 × 10−38, 0 and −3.376 239 109 × 1038 to −1.166 310 801 ×
10−38.

This range looks impressive, but due to the relatively small number of bits
used to represent the mantissa, there are many values within this range that are
not able to be represented exactly. Increasing the mantissa to three bytes gives a
useful degree of accuracy for calculation, and this representation is in common
use. A further problem with floating point numbers is that, as calculation
progresses, especially in solutions with a large number of operations on the same
data, the degree of accuracy of the result may be reduced due to truncation or
overflow. Accuracy may be improved by rounding off results or, better still, using
a larger number of bytes to represent floating point numbers. (This type is often
known as double precision floating point representation.)

String data type
Data is often in the form of words. The character data structure is unsuited for
this representation as each character in a word would have to be treated as a
different data element. The string data structure is used to represent a sequence
of characters, such as a word, but keeps its identity as a single data element. The
abstract view of a string is as a number of adjacent locations, each containing a
single character. This structure can be thought of as equivalent to writing a
sequence of characters on a single line. The method of storing strings varies, but
some of the more popular methods are:
• the use of one or more bytes at the beginning of the string to represent the

size of the string
• setting the size of the maximum string length when declaring the variable at

the beginning of a program module

1
10

1
4

108 Heinemann Software Design and Development: Preliminary Course

• the use of an ‘end of text’ character to mark the end of the stored string of text.
Each of these methods has its advantages for various applications. For

example, a word-processing program will create strings of varying lengths (each
document may be stored as a single large string) and may use either the first or
the last of these methods of storage. The word-processing program may even use
the first method to write a string to disk and the third method when storing the
text in the primary storage area. A database, however, may be written with string
fields having a fixed length, so the second method would be suitable. These
decisions are not usually made by the programmer but are built into the
programming language being used.

Date and currency formats
Two special simple data types appear regularly in the solution of problems: date
and currency.

A number of different methods of storing a date have been devised, each with
its own merits. All need to incorporate the day, the month and the year. Some
applications may also need the day of the week, but since it is possible to
calculate that from the day, the month and the year there is no need to store it.
Some storage methods use the following methods:
• Separate bytes are used to store the day, the month and the year. (This led to

the so-called Millennnium Bug at the end of 1999 as the year was stored as a
two-digit value to save on memory, which was expensive during the early
period of the computer revolution.)

• The date is stored as a serial number which counts the number of days from
a particular known date (for example 1 January 1900). This method is useful
as it makes the calculation of periods between dates very simple.Also, by using
a floating point number, a time and date can be represented by the one serial
number.
Currency may be represented by a floating point number stored as described

earlier. However, this method is not an efficient way of doing it as there is a fixed
number of digits after the decimal point (usually two). Thus we can think of the
currency data type as being different. Storage of these data items can be
improved by using a byte to represent the cents and two or three bytes to
represent the dollars. In this way the cents can be represented exactly, unlike
using a floating point representation where the cents would be represented
approximately.

Structured data types
The simple data structures discussed above have limited usefulness. In some
situations the use of simple data structures with related data items is unwieldy
since each item needs to be accessed by a unique identifier. For example, the
average maximum temperatures in Sydney for each of the twelve months of the
year are related data items in that they are temperatures, but each item is
different as it relates to a particular month. A convenient way of representing this
data would be to name the collection of data as an identifier (for example
TEMPERATURE) and use some way to identify each of the items individually.
The structured data types called arrays and records overcome this problem by
allowing data to show logical relationships by using the same identifier.

109Defnng the problem and lanning softwar solutions

Arrays
The array is the easiest of the data structures to understand as it relates data of
the same type. An array can be thought of as a number of separate storage
locations arranged in a pattern. The simplest of these is a straight line, rather like
a line of numbered boxes, with each data item being stored in its own numbered
box. The data items can then be accessed by naming the box that it occupies
using a number called an index. For example, Sydney’s average April temperature
is stored in box number 4 and so may be accessed from that box. This structure
is known as a one-dimensional array. A one-dimensional array extends the use of
a variable by allowing it to be used for a number of related data items.

Different languages define arrays in differing ways. However, the array
identifier together with the indexing must be included for the interpreter to set
aside the appropriate amount of memory for storage. We can illustrate how two
different languages handle the definition of an array, using the one-dimensional
array illustrated in Figure 4.14. In BASIC the array is declared by the statement
DIM AVERAGE_TEMP(12). In Pascal the array is identified in the declaration part
of the program by the statement temperature = array[1..12] of real;
appearing in the type declaration and the statement average_temp :
temperature; being placed in the variable declaration.

Records
Arrays are used to store multiple data items of the same type. However, we often
wish to link items which are related but are of different types, and the record
structure is used for this purpose. A record consists of a number of data items,
called fields, which may be logically linked. Individual fields within a record can
be accessed by naming both the record and the required field. For example, the
details of an employee will contain differing data elements such as the surname,
first name, employee number, pay rate, number of years of service and
department identification. These elements are linked by the fact that they hold
data which identifies certain features about the employee. However, processing
would be difficult if each of these fields was stored using the same data type, for
example strings, since some of the fields are integers (for example the employee
number), others may be represented by floating point numbers (for example the
pay rate), and it may be possible to represent others by characters (for example
the department). A major area in which records are used is that of database
management; the terms record and field are both identified within this context.

Since a single record contains a number of related data elements, its use is
limited. But when the record data structure is combined with the array structure,
a very powerful tool is created to use in data processing. An array of records gives
a programmer the opportunity to create large databases with a structure that is
easily represented on paper.

Figure 4.14 Representation of a one-dimensional array to hold average maximum monthly
temperature.

Jan

25.6

Feb

25.6

Mar

24.4

Apr

21.7

May

18.9

Jun

16.1

Jul

15.6

Aug

17.2

Sep

19.4

Oct

21.7

Nov

23.3

Dec

25.0

110 Heinemann Software Design and Development: Preliminary Course

As with arrays, the interpreter needs to be able to allocate memory to a
record, so it needs to be declared. In Pascal the array declaration is made in the
following manner:
type

name = packed array[1..20] of char;
person =

record
surname : name;
first_name : name;
employee_number : integer;
pay_rate : real;
department : char;

end;
var

employee : person;

Files
The term ‘file’ was used well before the advent of computer technology to
describe a set of papers arranged in such a way that they could be easily
referenced. In computing, the term file is generally used to describe a collection
of data held in a secondary storage device. A file may well bring together a
number of different data items in various forms. For example, a markbook file
may consist of a string representing a class name, an array of records which
represent students’ names together with the results of a number of assessment
tasks, and a one-dimensional array of floating point numbers which represent the
average score for each of the assessment tasks. However, a file is typically a
collection of data subdivided into records, each of these records, in turn,
consisting of fields. The physical structure of a stored file (in terms of sectors and
blocks) is quite different from the logical file structure that the programmer
develops to represent the data in the problem.

Some sophisticated database management systems allow users to create their
own applications. These systems can be categorised as fourth-generation. The file
structure used in such systems can be complex, especially where relational
databases are concerned. A relational database management system can be used
to link several files by using one or more fields common to each file. For example,
one school administration file may consist of student information, whereas an-
other may consist of class information. If each student is identified by a student
number, this field can then be used in the class file to identify the student. A
further benefit is that it provides a link with all the other data relating to the
student. If a student’s details change, the link allows that change to be reflected
in the linked data too. A program called a report generator can be used to create
output from the linked files.

The simplest form of file structure is one known as a sequential file. In this
structure all records are stored in a way that allows access to a record only as long
as all previous records have been processed. This is very similar to the storage of
a number of songs on an audio tape, where to listen to the third song on the tape
you must at least pass by the first and second songs (assuming that you are
starting from the beginning of the tape). The end of a sequential file is always
indicated by some form of ‘marker’, known as an end-of-file (EOF) mark.

111Defnng the problem and lanning softwar solutions

The most common uses for this are those in which all data elements of the
structure are processed at each execution of a program and the order of
processing is irrelevant in providing the correct output.

For example, a company’s pay records may be stored as a sequential file. In this
structure, each data element is processed in turn, as each of an employee’s details
is entered for the new pay period. In this case it does not matter when an
employee’s pay is processed in the sequence as long as it is done.

Exercise 4.4
1 Complete each of the following statements with the most appropriate word from

the list (one of them is used twice):
abstract, array, Boolean, character, exponent, field, index, mantissa, physical,
record, sequential, string

a The structure of daa is independent of the computersystem in
which it is stored.

b The storage of data as a magnetic pattern on a disk is an example of the
structure of stored dta.

c The data structure ould be represented ason it within a
computer system.

d Data of the same type can be represented s a(n) .
e Reated data withdifferent data types may be representedby a(n) .
f Each element within an array may be individually accessed by using a(n)

g A is the allestunit of datanormally used bya person.
h A file in which data items must be accessed in order is known as a

file.
i A loaing oint numbr is often represented by to parts: an and

a .
j A can be pictured as a one-dimesional array of s.
k Each iniidul dat ite ithin a rcord is knon as a .

2 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
A data type cotains one ata ite pe idntifier. The most common
of these types are , , , and

. Two other pcil simple data types are and
When rlated dat items are to be stored, we use adata type. The
simplest of these data types are the and the .
contan rlated dat items of the same data type nd ontain related
data items which may be of a different data type.

3 The following two bytes are stored in a computer:
0100 1000 0110 1001
Determine their interpretation as Boolean, ASCII character and integer data
types.
You may like to use a spreadsheet to help you with this activity. Save your file as
EX404Q3.

112 Heinemann Software Design and Development: Preliminary Course

4 What data type would be suitable for each of the following data items?
a the height of a person
b the birthday of a friend
c the address of a company
d the day’s takings of a shop
e the number of litres of fuel used by a truck each day for a month
f the sex of a zoo animal
g the number of ice-creams sold in a day from an ice-cream van
h the name, address, telephone number and age of a friend

5 Chris wishes to write a computer program to store her birthday book and has
decided to use an array of records to store the data. Name suitable fields for her
to use and the simple data type which would be used to represent each of them.

6 Explain, using your own words, the differences between an array and a record.
Use a word processor to prepare your answer and save the file as EX404Q6.

7 Why would a programmer describe data in an abstract form in preference to
describing it according to its physical characteristics?

Structured algorithms
The algorithm
An algorithm is a finite set of steps, with a single beginning and a single end,
which solves a problem. This means that when we decide to design a solution to
a problem, we can enter the algorithm at one place only and leave at one place
only.

Designing an algorithm allows a problem to be solved by breaking it down
into steps. It can be used to solve many types of problems and is an important
part of the development of a computer-based system. In this section we examine
algorithms from a familiar but non-computing context.

Algorithms can be used to describe simple daily actions. For example:

Algorithm to make a phone call:
Pick up the phone.
Dial number.
Deliver the message.
Hang up the phone.

Algorithm to catch a train:
Travel to station.
Buy a ticket.
Go to the correct platform.
If the correct train, catch the train; otherwise wait.
Repeat the above step.

113Defnng the problem and lanning softwar solutions

Algorithms are commonly used in recipes, do-it-yourself instructions, and
knitting manuals. Here are some examples:
Algorithm to make lemonade:

Fill a tall glass with cracked ice.
Add lemon juice and sugar.
Shake and pour unstrained into glass.
Top with water.
Add a slice of lemon.
Serve with drinking straws.

Algorithm to make French onion soup:
Peel onion and chop finely.
Fry onion in butter, covered, on a very low heat for 20 minutes.
Add water, crumbled beef stock cubes,and mustard.
Simmer for 30 minutes.
Spoon into heatproof dishes.
Sprinkle grated cheese on top.
Put under griller until cheese melts.

Algorithm to install a smoke alarm:
Select a central location such as the hallway.
Select a wall or ceiling on which to mount the alarm.
Unlatch and remove the mounting plate from the alarm.
Use the screws to secure mounting plate to wall or ceiling.
Install batteries into alarm body.
Hook the alarm body onto the mounting plate.
In all of these examples the algorithm presents a solution in a definite number

of steps, with each step short enough for it to be easily carried out. For example,
the algorithm to make lemonade takes six steps. Furthermore, for the algorithm
to work in all situations the steps must be performed in a particular order.
The French onion soup would not taste very nice if the water, stock cubes and
mustard were added after the cheese.

Exercise 4.5
1 Copy and complete the following sentences:

a An lgoithmis a series f which when performedcoctly will
solve a problem in a finite time.

b Agorthms can be used to escrbesimple that you doeach day.
c Agorthm descipionis comonly ued in , do-ityoursel manuals,

and knitting manuals.
d Each stepin th agorithm must be enough o that it an be easily

carried out.
e For the algorithm to work in all situations, the steps must be performed in a

particular .
f Before an algrithm can b written, the musbe fully nderstood.
g How you arive at olution depends very much on past .
h After the algrithm has bee writen it needsto be .
i f the reults are te lgorithm must be modied or discarded.
j There is uslly more than ne algorithm.

114 Heinemann Software Design and Development: Preliminary Course

2 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
An consists of a number of steps which, when
followed, will a problem. An must have a definite

and a single . The of an algorithm must
be performedin a aricular for it to work.

3 Why do we create algorithms?

4 What type of problems can an algorithm solve?

5 Where are algorithms commonly used?

6 What needs to be done before the algorithm is written?

7 What affects how you arrive at a solution to a problem?

8 What needs to be done after the algorithm has been written?

9 The following algorithms have errors in their sequence. Find these errors
and write the correct solution to the problem.
a Algorithm to read a book:
Open to first page.
Close book.
Get book.
Read book.
b Algorithm to make buttered toast:
Get butter.
Remove toast from toaster.
Get bread.
Butter toast.
Put bread in toaster.

10 Design an algorithm to make a cheese sandwich. The algorithm should be
written using a word processor and saved with a filename of SANDWICH.
Obtain a printout of your algorithm and cut out each step. Rearrange these
steps and give them to another student. Ask this student to put together
your steps to make a cheese sandwich. Compare the student’s result with
your original algorithm.

EXTENSION
11 Design an algorithm to listen to a CD. The algorithm should be written

using a word processor and saved with a filename of HEARCD.

12 Design an algorithm to pump up a bicycle tyre. The algorithm should be
written using a word processor and saved with a filename of PUMPTYRE.

13 Find an example of an algorithm such as a recipe, a do-it-yourself
instruction, or a knitting pattern. Use a word processor to write a
description of your algorithm in ordinary English. Call your file MYALGOR.

14 At home, find as many examples of different algorithms as you can. For
each algorithm write down what it describes, the way it is presented (i.e. as
a recipe, an instruction book or some other way) and whether it is easy to
understand. Create a database with the fields ‘Description’, ‘Presentation’
and ‘Ease of use’, use one record per algorithm, then save the database as
ALGLIST.

115Defnng the problem and lanning softwar solutions

Methods of algorithm description
Algorithms can be represented in a number of different ways. These are referred
to as methods of algorithm description. There are many methods, such as
pseudocode, flowcharts, English prose, structured English, Nassi–Schneiderman
diagrams, HIPO, structure charts and decision tables. In this course, pseudocode
and flowcharts are the approved methods of algorithm description.

Pseudocode
Pseudocode is one method of algorithm description involving the use of English.
It relies on indenting lines and using keywords to highlight the structure of the
algorithm. Pseudocode is very popular because it is in text form and can be easily
modified using a word processor. Furthermore, many of its keywords are similar
to those in programming languages such as Pascal.

Even though different standards of pseudocode have been established for
different purposes, there are some generally accepted rules. The flow of control
in pseudocode is always from the top to the bottom. The keywords are
highlighted in capital letters or bold type to emphasise them and to indicate the
type of action being performed. The most common keywords are shown in
Table 4.4. These keywords are grouped in pairs. For example, for every BEGIN
there is an END, and for every IF there is an ENDIF. Indentation is used to show
the structure of the algorithm.

Keywords Meaning
BEGIN
END Terminal: start and finish.
F (coniion) eletin:different tasks are performed
THEN process 1 accrding to theonition. The ELSE
ELSE process 2 statemet isopona. (binry selection)

ENDF
CASEWHERE (coniion) eletin: many tasks are performed

(vaue 1: process 1 acording to tecndition. Te OTHERWISE
(vaue 2: process 2 stateent s tionl (muliwa selection)

OTHERWSE: process 3
ENDCASE
WHLE (coniion) Repttin: statements between the

process 1 keywords are repeatewhile th condition
ENDWHILE is true. (pre-test repetition)
REPEAT Repetition: statements between the

process 1 keywords are repeatewhile th condition
UNTL (coniionis tue. (post-test eetition)

Consider an example of an algorithm written in pseudocode.
Problem: Design an algorithm to describe making a cup of coffee.
Pseudocode
BEGIN make_coffee

Fill a kettle with water.
Boil the water in the kettle.
Add coffee to the cup.
Pour boiling water into the cup.

END make_coffee

Table 4.4 Some of the common keywords used in pseudocode.

116 Heinemann Software Design and Development: Preliminary Course

Flowcharts
A flowchart is a pictorial or graphical method of describing an algorithm. Flow-
charts are often favoured because it is easier to follow the structure in a picture
than in words. On the other hand, it is very easy to draw a flowchart that is
complex and difficult to change into a programming language.

The basic elements of a flowchart are a set of symbols that contain messages,
and interconnecting lines with arrows. A set of standards for flowcharts has been
established for a number of different applications. The four most commonly used
symbols are shown in Table 4.5.

Table 4.5 Some of the common symbols used in flowcharts.

Figure 4.15 Flowchart of algorithm for
making a cup of coffee.

Symbol Meaning

117Defnng the problem and lanning softwar solutions

1 For each statement, select a matching word or phrase from the following list:
algorithm, decision, flowchart, flowlines, indentation, keywords, pseudocode,
terminal, word processor

a One method of algorithm description, involving the use of English, that relies
on keywords and indentation.

b Software application used to modify algorithms written in pseudocode.
c Highlighted in capital letters or in bold type to indicate the type of action

being performed.
d Used to show structure in pseudocode.
e A pictorial or graphical method of describing an algorithm.
f Lines and arrows used in flowcharts to indicate the flow of control.
g A series of steps which, when performed correctly, will solve a problem in a

finite time.
h A symbol used in a flowchart to indicate the start and the finish.
i A symbol used in a flowchart to indicate selection.

2 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
Some of the methods f lgorithm decription used today are ,

, , and The two methods approved
for this course are and . The graphical method is the

. The method which usesEngsh-ike lanuageis called .
When using flowcharts, we read them from to and

to , moving from step to step along .
s poplar becaus its ae close to those in programming

languages.

3 What is pseudocode?

4 Why is pseudocode very popular?

5 Where is the flow of control in pseudocode?

6 Why are keywords highlighted in pseudocode?

7 What is the purpose of indentation in pseudocode?

8 What is a flowchart?

9 Why are flowcharts favoured as a method of algorithm description?

10 What are the basic elements of a flowchart?

11 Use a drawing program to create a set of basic flowchart symbols. Save these with
the filename FLOWSYMB. You can then copy the symbols from this file when you
need to draw a flowchart.

12 What is the main direction of flow in flowcharts?

Exercise 4.6

118 Heinemann Software Design and Development: Preliminary Course

13 An algorithm to make a phone call is shown below:
Pick up the phone.
Dial number.
Deliver the message.
Hang up the phone.

a Convert the above algorithm into pseudocode. The algorithm should be
designed using a word processor and saved with a filename of PHONEPSEU.

b Convert the above algorithm into a flowchart. The algorithm should be
designed using a drawing program and saved with a filename of PHONEFLOW.

EXTENSION
14 Design an algorithm in pseudocode to fry an egg.

15 Design an algorithm in pseudocode to wash a car.

16 A set of standards for flowcharts has been established for a number of different
applications. Find an example of a standard set of flowchart symbols.

Pseudocode Flowchart
BEGIN maincode

instruction 1
instruction 2
instruction 3
instruction 4
instruction 5
•
•
•

END maincode

Begin

End

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Standard constructs
Algorithms are composed of standard constructs or control structures: a
sequence of instructions, a selection between two or more alternative courses of
action, and a repetition of a set of instructions a number of times (an iteration).
Programming languages, irrespective of their generations, will implement these
constructs. The languages may be represented in varying ways but the constructs
will always be present. They are the building blocks of an algorithm.

Sequence
The simplest of the three standard constructs is the sequence, which is a set of
instructions following one after the other, rather like a simple recipe. Table 4.6

Table 4.6 Representation of a sequence in pseudocode and as a flowchart.

119Defnng the problem and lanning softwar solutions

shows how the sequence is represented in the algorithm description methods. A
sequence can be easily identified since the flow will pass through every instruc-
tion of the sequence on all occasions.

In pseudocode, the steps are placed between BEGIN and END (see the
problem below). The sequence of four steps is indented to show the structure
and to improve the readability of the algorithm. The reason will become clear as
the algorithms become more complex. Finally, note that the flow of control is
from top to bottom, starting at the first step and finishing at the last step.
Problem: Design an algorithm to describe buying a pair of shoes.

Figure 4.16 A flowchart for
buying a pair of shoes.

Begin

Go to
shop

Find
shoes

Pay for
shoes

Leave
shop

End

Exercise 4.7
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
The simlest structure is the . The directin of flow passes
through steps in this structure. In pseudocode, a will
always be the same amount. As a flowchart, the is
dentfed as a number of stpsflowingthe fowchart.

2 What are the three control structures used in all algorithms?

3 What is a sequence in an algorithm? Illustrate your answer with examples.

4 How does an algorithm in pseudocode start and finish?

Pseudocode
BEGIN buyingshoes

Go to shop.
Find shoes.
Pay for shoes.
Leave shop.

END buyingshoes
The flowchart always starts and finishes with a

terminal symbol (an oval). The steps are placed between
these symbols and joined by flowlines (see Figure 4.16).
Each step in this problem is an action and is represented
by a process symbol (a rectangle). Furthermore, the
direction of flow is down the page between the terminal
symbols.

120 Heinemann Software Design and Development: Preliminary Course

5 What is the advantage of indenting steps in pseudocode?

6 How does a flowchart start and finish?

7 What does the process symbol in a flowchart represent?

8 Why is the direction of flow for pseudocode and flowchart from top to bottom?

9 Rearrange into the correct sequence the following steps to cook a piece of steak:
Put steak into frying pan.
Remove steak when cooked.
Heat oil in frying pan.
Turn steak as required.
Get steak and oil.

Use a word processor to prepare your answer and save the file as STEAKALG.

10 Rearrange into the correct sequence the following steps to sharpen a pencil:
Turn pencil.
Get pencil and sharpener.
Put pencil into sharpener.
Remove pencil from sharpener.

Use a word processor to prepare your answer and save the file as SHARPEN.

11 Use the steps in question 10 to design an algorithm to sharpen a wooden pencil:
a in pseudocode
b as a flowchart
You can use a word processor for part a, saving your file as SHARPENP, and a
drawing program for part b, saving your file as SHARPENF. (Don’t forget to use
the symbols you saved in Exercise 4.6 as the file named FLOWSYMB.)

12 Rearrange into their correct sequence the following steps to make cornflakes for
breakfast:

Pour milk over cornflakes as required.
Get bowl, cornflakes, milk and sugar.
Put sugar over cornflakes as required.
Fill bowl with cornflakes.

13 Using the steps in question 12, design an algorithm to make cornflakes:
a in pseudocode
b as a flowchart
You can use a word processor for part a, saving your file as CORNFLP, and a
drawing program for part b, saving your file as CORNFLF. (Don’t forget to use the
symbols you saved in Exercise 4.6 as the file named FLOWSYMB.)

14 Rearrange into their correct sequence the following steps to wash your hands:
Rinse off soap.
Turn on water.
Dry hands.
Clean hands with soap.
Wet hands.
Turn off water.

15 Using the steps in question 14, design an algorithm to wash your hands:
a in pseudocode
b as a flowchart

121Defnng the problem and lanning softwar solutions

You can use a word processor for part a, saving your file as WASHP, and a drawing
program for part b, saving your file as WASHF. (Don’t forget to use the symbols
you saved in Exercise 4.6 as the file named FLOWSYMB.)

EXTENSION
You may like to use a word processor and drawing program for the following. If you
do, don’t forget to save your work with appropriate filenames.

16 Design an algorithm in pseudocode to make a glass of cordial.

17 Design an algorithm as a flowchart to run an application on the school computer.

18 Find one application where an algorithm does not have a sequence construct.

Selection
A popular feature of computers is their ability to ‘make a decision’ and act
accordingly. The process of decision making is known as selection; a particular
course of action is followed according to the data at a particular time and a set of
selection rules. Selection is a standard construct to determine which particular
step (from a set of steps) is to be executed next. There are many situations where
the normal sequence of one step followed by the next is not appropriate. Using
selection, a condition such as a question can be given and, depending on the
answer, different paths can be followed. There are two types of selection: binary
selection and multiway selection.

Binary selection
The simplest selection structure will allow for two courses of action. This is
known as a binary selection. The most common binary selection construction is
of the form ‘IF condition THEN action ELSE alternative action’.

Binary selection allows a choice between two options. If a condition (circums-
tance) is met, then one path is taken; otherwise the second path is followed.

In pseudocode the keywords used for binary selection are IF…THEN (see the
problem below). The condition is put after the IF keyword. There are only two
possible answers to the condition: true or false. If the condition is true, the pro-
cess after the THEN keyword will be carried out or executed. If the condition is
false, the flow of control moves to the next step and ignores the process(es) after
the THEN keyword. The ENDIF indicates the finish of binary selection.
Pseudocode

IF condition THEN
process

ENDIF
In the following problem, the condition is whether it is raining or not, and the

process (if it is raining) is to take an umbrella.
Problem: Design an algorithm to describe deciding when to take an umbrella.
Pseudocode

BEGIN MAINPROGRAM
Check weather
IF it is raining THEN

take an umbrella.
ENDIF

END MAINPROGRAM

122 Heinemann Software Design and Development: Preliminary Course

Figure 4.17 Flowchart for deciding when to take an umbrella.

Begin

End

Check the
weather

t s ranng

Take an
umbrella

false true

In a flowchart the selection is made using a decision symbol (a diamond). The
condition is placed inside this symbol and the answer must be true or false (see
Figure 4.17). These answers are placed on opposite sides of the decision symbol
to indicate the two possible paths. In this problem, if the condition is true, the
direction of flow is to the right, and a process (take an umbrella) is executed. If
the condition is false, the direction of flow is to the left, and the process is
ignored. It is very important for the two flowlines from the decision symbol to be
labelled with true or false to determine which path to follow. The two flowlines
join to complete the binary selection.

The binary selection in pseudocode can be extended using the keywords of
IF…THEN…ELSE (see the problem below). There are still two possible paths
based on the condition after the IF keyword. Furthermore, the process after the
THEN keyword still takes place if the condition is true. However, if the condition
is false, the process after the ELSE keyword is executed.
Pseudocode

IF condition THEN
process_1

ELSE
process_2

ENDIF
In the following problem, if the signal is green, you pass through the traffic

lights. If the signal is not green, you stop the vehicle.

123Defnng the problem and lanning softwar solutions

Problem: Design an algorithm to follow when approaching a set of traffic lights.
Pseudocode

BEGIN MAINPROGRAM
IF signal is green THEN

pass through traffic lights.
ELSE

stop the vehicle.
ENDIF

END MAINPROGRAM
The binary selection can also be extended using a flowchart (see Figure 4.18).

The decision symbol is still used to determine the two possible paths. Further-
more, if the condition is true, the flow of control is still to the right, and a process
is executed. However, if the condition is false, another process is executed. In this
problem it is clear that if the signal is green you pass through the traffic lights,
but if the signal is not green you stop the vehicle.

Figure 4.18 Flowchart to follow when approaching a set of traffic lights.

Begin

End

Check the
traffic lights

Lght s green

Pass through
lights

Stop the
vehicle

false true

Multiway selection
A binary selection control structure is sufficient to enable us to design an
algorithm that will function perfectly well. However, if a number of branchings
need to be made at one point in the program, it becomes unwieldy to use a
number of binary selections to perform that task. In order to classify a data
element in one decision and take the appropriate action, a different selection
structure is needed. These selections are known as multiway selections, as shown
in the pseudocode and flowchart (Table 4.7).

124 Heinemann Software Design and Development: Preliminary Course

In pseudocode the keywords used for multiway selection (see problem below)
are CASEWHERE…ENDCASE. The condition is put after the CASEWHERE
keyword. Since there are many different answers or possibilities, you need to be
aware of all the possibilities and provide an instruction to cater for each possibility.
The possibilities are indented under the CASEWHERE keyword with a process
to be executed only if the answer is true. Each data item, when compared, should
make only one of the CASEWHERE choices true.

For example, if we were approaching a set of traffic lights, the signal could be
red, amber, green or not working. There are four options. We could ask four
questions and use binary selection to find the required action, but it is much
easier to use a multiway selection (multiple selection).

In this problem there are three options: red, amber and green, with a colon
specifying the process to be carried out if the option is true. The OTHERWISE
keyword is used to account for any other possibility such as where the lights are
not working. The OTHERWISE keyword is similar to the ELSE keyword in
binary selection and is not always required.
Problem: Design an algorithm to describe a driver’s response to all possible
signals at a set of traffic lights.
Pseudocode

BEGIN MAINPROGRAM
CASEWHERE signal is

Red : stop the vehicle.
Amber : stop the vehicle.
Green : pass through traffic lights.
OTHERWISE : proceed with caution.

ENDCASE
END MAINPROGRAM
In a flowchart, the multiway selection is made using a decision symbol (see

Figure 4.19). The condition is placed inside this symbol and there are many
different answers to this condition. These possibilities are written above the
process to be executed if the possibility is true. In this problem there are four
possibilities: red, amber and green, and otherwise.

Pseudocode Flowchart

CASEWHERE expression is evaluated
as

choice 1 : process_1
choice 2 : process_2
choice 3 : process_3

• •
• •
• •

OTHERWISE : default process
ENDCASE

Expression

OherwiseChoice 3Choice 2Choce 1

Deaul processProcess 3Process 1 Process 2

Table 4.7 Multiway selection shown in pseudocode and as a flowchart.

125Defnng the problem and lanning softwar solutions

1 Copy the following passage and complete it by filling in the blanks with the ap-
propriate terms or phrases.
When a decision is to be made in an algorithm, we have the choice of two
types: the and the . When there are only two options to
choose from, we use . In pseudocde, thi sletions identified by
the keywords. When there are more than two options we have to
use a . It is identified in pseudocode by the keywords . In
ths type of selction we ay also use the keyrd to allow for
other data items to lead to an outcome. Each data item entering a
shoud make nly one of th choices .

2 What standard constructs are represented by the following algorithm segments?
a IF (condition) THEN

process
ENDIF

b BEGIN MAINPROGRAM
process 1
process 2
process 3

END MAINPROGRAM

Figure 4.19 Flowchart to describe a driver’s response to all possible signals at a set of traffic
lights.

Begin

End

Check the
traffic lights

Signal is

Proceed with
caution

Stop the
vechicle

Stop the
vehicle

Pass through
traffic lights

Red Amber Green Otherwise

Exercise 4.8

126 Heinemann Software Design and Development: Preliminary Course

c CASEWHERE (condition)
process 1
process 2
OTHERWISE process 3

ENDCASE
d IF (condition) THEN

process 1
ELSE

process 2
ENDIF

e

false

true

falsetrue

Figure 4.20

f

g

Figure 4.21

Figure 4.22

127Defnng the problem and lanning softwar solutions

3 What is selection in an algorithm? Give an example to illustrate your answer.

4 Use examples to explain the difference between binary selection and multiway
selection.

5 What keywords are used for binary selection in pseudocode?

6 Why are the answers placed on opposite sides of a decision symbol in a flowchart?

7 How can binary selection in pseudocode be extended so that two processes are
executed?

8 What keyword is used for multiway selection in pseudocode?

9 Describe how multiway selection is made in a flowchart.

10 Explain what the following algorithms do?
a Pseudocode

BEGIN
set number to user input
IF number is negative THEN

print ’Negative number—no square root’
ELSE

print the square root of the number
ENDIF

END
b Pseudocode

BEGIN
display ’What is the capital of Australia?’
set answer to user input
IF answer is Canberra THEN

print ’Well done, correct.’
ELSE

print ’Sorry, the answer is Canberra.’
ENDIF

END

h

Figure 4.23

128 Heinemann Software Design and Development: Preliminary Course

Begin

End

Print 'What is my
favorite colour?'

Input
colour

Colour is blue

Print 'Well done,
you're right'

Print 'You are
wrong, it's blue'

Begin

End

Print 'How old
are you'

Input
age

Age is

Print 'Pay is
$420'

Print 'Pay is
$300'

Print 'Pay is
$330'

Print 'Pay is
$360'

Print 'Pay is
$390'

15 16 17 18 19

c

d

Figure 4.25

Figure 4.24

129Defnng the problem and lanning softwar solutions

11 An algorithm to wash hands is as follows:
Turn on the hot water tap.
Turn on the cold water tap.
If water is too hot, increase the amount of cold water.
If water is too cold, increase the amount of hot water.
Clean hands with soap.
Rinse off soap.
Turn off taps.

a Convert the above algorithm into pseudocode. Create your algorithm using a
word processor and save it with the name WASHANDP.

b Convert the above algorithm into a flowchart. Create your algorithm using a
drawing program (using your symbol file) and save it with the name
WASHANDF.

12 An algorithm to make a phone call is as follows:
Pick up the phone.
Dial number.
If answered, deliver message.
Hang up the phone.

a Convert the above algorithm into pseudocode. Modify the file called
PHONEPSEU (see Exercise 4.6) to represent this algorithm.

b Convert the above algorithm into a flowchart. Modify the file called
PHONEFLOW (see Exercise 4.6) to represent this algorithm.

EXTENSION
13 Complete the following algorithms to determine if a particular examination score

(expressed as a percentage) is a pass or a fail, and to print this result. If the score
is above 50, it is a pass; if the score is below 50, it is a fail.

Figure 4.26

a

130 Heinemann Software Design and Development: Preliminary Course

b Pseudocode
BEGIN

INPUT
IF THEN

print
ELSE

print.............................
ENDIF

END
14 Find a problem whose solution requires a selection construct. Design an

algorithm to solve this problem. You may use a computer application to help you
construct your algorithm description.

Iteration (repetition)
An iteration (also known as a repetition or loop) is a standard construct that
allows a number of steps to be repeated until the same condition is satisfied. The
steps to be repeated are referred to as the body of the loop. It is very important
that each loop contain a condition to stop the loop going on forever. The
condition can be checked, or tested, at the beginning or end of the loop, being
respectively known as a pre-test loop or a post-test loop. A special construct
known as a counted loop is often used when a loop has to be executed a pre-
determined number of times.

Pre-test repetition
In a pre-test repetition or guarded loop the condition is checked at the very
beginning of the loop before the steps to be repeated are executed.

In pseudocode the keywords used for a pre-tested repetition are
WHILE…ENDWHILE (see problem below). The condition is put after the
WHILE keyword. While the condition remains true, the body of the loop
between the WHILE and the ENDWHILE will be executed repeatedly. If the
condition is false, control moves to the ENDWHILE keyword and the loop is
finished. To illustrate this, consider the problem below.

The guarded loop is important since the condition contained in the pre-test
may prevent control from entering the loop on the first attempt. For example, a
particular program is to calculate the sum of an unknown number of positive
values, the end of the dataset being indicated by a negative number. If the first
number in the dataset is negative, the loop should not be entered, as the entered
value is not required for the sum. For this program to work properly, a pre-test
has to be used in order to pass the program control around the loop.

In the following problem, if the condition that the car is travelling remains
true, the ‘keep seat belts on’ message on will be repeatedly executed. When the
car is not travelling, the repetition stops.
Problem: Design an algorithm to determine a safety procedure for travelling in a
car.
Pseudocode

BEGIN
WHILE car is travelling

keep seat belt on
ENDWHILE

END

131Defnng the problem and lanning softwar solutions

Post-test repetition
In a post-test repetition or unguarded loop the condition is checked at the end
of the loop after the steps to be repeated are executed. The important difference
between a pre-test and a post-test repetition is that the body of the loop is execu-
ted at least once in a post-test repetition. A pre-test repetition if the condition
was false would result in the body of the loop not being executed at all.

In pseudocode, the keywords used for a post-test repetition are REPEAT…
UNTIL (see problem below). The body of the loop to be executed is placed
underneath the REPEAT keyword. In the post-test repetition the condition is
after the UNTIL keyword, and if it is true, the flow of control is back to the
REPEAT keyword. If the condition is false, the repetition is finished.

In the following problem, the plants are watered before the condition is
tested.
Problem: Design an algorithm to water plants until the ground is soaked.
Pseudocode

BEGIN
REPEAT

water plants
UNTIL ground is soaked

END
In a flowchart the post-test repetition is made with a decision symbol and

flowlines (see Figure 4.28). The body of the loop is executed before the condition
is met in the decision symbol. If the condition is false, the direction of flow is up,
and the body of the loop is executed again. If the condition is true, the repetition
is complete.

Begin

End

Car is travelling

Keep seat belt on

false

Figure 4.27 Flowchart with a pre-test
repetition: to determine a safety procedure for
travelling in a car.

In a flowchart the pre-test repetition
is made using a decision symbol and
flowlines (see Figure 4.27). The condi-
tion is placed inside the decision symbol
and there are two possible paths. If the
condition is true, the direction of flow is
down, and the body of the loop is execu-
ted. When these processes are executed,
the flow of control is back to the condi-
tion in the decision symbol. If the con-
dition is false, the repetition is complete.

132 Heinemann Software Design and Development: Preliminary Course

Begin

End

Ground is
soaked

Water plants

false

true

Figure 4.28 Flowchart with a post-test repetition:
to water plants until the ground is soaked.

Counted loop
The two forms of iteration described above are sufficient for any algorithm. How-
ever, we often need to execute a set of steps a predetermined number of times.
In this case, a counted loop using the construction: FOR identifier goes from
value_1 to value_2 ... NEXT identifier. The implication here is that the value of
the identifier is progressively increased from the first value mentioned up to the
second value in steps of 1. For example, the following algorithm will progressively
display the numbers 1 through to 10.
Pseudocode

BEGIN
set end to 10
FOR counter goes from 1 to end

print counter
NEXT counter

END
The main advantage of this type of construction is that it frees the

programmer from having to worry about the starting and ending values of the
counter and from having to put the increase of the counter in the right place to
make the algorithm work correctly. This is especially important when there are
loops inside loops. The following example shows how easily a set of multipli-
cation tables can be printed by using two counted loops, one inside the other.
Pseudocode

BEGIN
FOR firstnumber goes from 1 to 1

print ’The ’, firstnumber, ’ tables are’
FOR secondnumber goes from 1 to 12

print firstnumber * secondnumber
NEXT secondnumber

NEXT firstnumber
END

133Defnng the problem and lanning softwar solutions

1 What standard constructs are represented by the following algorithm segments?

a WHILE (condition)
process

ENDWHILE
b REPEAT

process
UNTIL (condition)

Exercise 4.9

false

true

Figure 4.29

c

false

true

Figure 4.30

d

134 Heinemann Software Design and Development: Preliminary Course

2 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
When a number of steps are to be executed more than once, a
should be put in the algorithm. There are two types of loop: the
oop and the . For cnvenience, we ue a thirdtype of loop
caed aloop when we want the steps executed a
number of times. Its other name is a loop. The test in a

oop comes at the end ofthe loop.For a loop, the
test is placed at the beginning. The keywords used in pseudocode for the

loop are and UNTIL.

3 What is another name for a repetition?

4 Why must a repetition contain a condition?

5 Explain the difference between a pre-test repetition and a post-test re-
petition. Give examples of each of the repetitions.

6 Describe how a counted loop works.

7 Draw flowcharts to represent the counted loops in the two examples on
p. 132. Use the drawing program and your templates file to help you. Save
your work as COUNTED1 and COUNTED2.

8 What keywords are used for a pre-test repetition in pseudocode?

9 Describe how a pre-test repetition is made in a flowchart. You may use the
drawing program if you wish.

10 What keywords are used for a post-test repetition in pseudocode?

11 Describe how a post-test repetition is made in a flowchart. You may use the
drawing program if you wish.

12 Explain what the following algorithms do.
a Pseudocode

BEGIN
set count to 1
WHILE count is less than 11

print count
increment count by 1

ENDWHILE
END

b Pseudocode
BEGIN

set count to 10
REPEAT

print count
increment count by 1

UNTIL count is 20
END

c Pseudocode
BEGIN

set end to 52
FOR index goes from 1 to end

print ’Week’ index
NEXT index

END

135Defnng the problem and lanning softwar solutions

13 Describe the error that exists in the following algorithms as they attempt to
satisfy the problem. Write the correct solution using the same standard
constructs.
Problem: Design an algorithm to select a can of drink from a drink dispenser.

a Pseudocode
BEGIN

remove drink
REPEAT

check all buttons
UNTIL a button is pressed

END

Begin

End

Set count to
20

Count is
greater than

0

Print
count

Decrease count
by 1

true

false

Figure 4.31

Begin

End

Set count to
30

Count is
less than 8

Print
count

Decrease count
by 2

true

false

Figure 4.32

ed

136 Heinemann Software Design and Development: Preliminary Course

b Pseudocode
BEGIN

check all buttons
WHILE no button has been pressed
ENDWHILE
check all buttons
remove drink

END

Begin

End

Button
is

pressed

Check all
buttons

Remove
drink

true

false

Figure 4.33

c Begin

End

No button
is

pressed

Check all
buttons

Check all
buttons

true

false

Figure 4.34

d

14 Describe the error that exists in the following algorithms as they attempt to
satisfy the problem. Write the correct solution using the same standard
constructs.
Problem: Design an algorithm to catch a bus.
a Pseudocode

BEGIN
WHILE no bus caught

walk to bus stop
check all buses
IF correct bus

THEN catch bus
ENDIF

ENDWHILE
END

137Defnng the problem and lanning softwar solutions

b Pseudocode
BEGIN

walk to bus stop
IF correct bus

THEN catch bus
ENDIF
REPEAT

check all buses
UNTIL bus caught

END

Begin

End

Correct bus

No bus
is caught

Walk to
bus stop

Check
bus

Catch
bus

true

true

false

false

Begin

End

No bus
is caught

Correct bus

Walk to
bus stop

Catch
bus

Check
bus

true

true

false

false

Figure 4.35

c

Figure 4.36

d

138 Heinemann Software Design and Development: Preliminary Course

15 Design algorithms that will print out the multiples of 8 up to the number that is
read.

a Pseudocode
BEGIN

set multiple to 0
set counter to . . .
set number to user input
REPEAT

increase . . . by 1
multiple equals 8 times counter
print . . .

. . .counter equals number
END

..........

..........

Begin

Set multiple to
.....................

Set counter
to 0

Set
to user input

Increase counter
by 1

.............. =
8 x counter

Print
module

............. is
equal to
number

End

Figure 4.37

b

16 The following algorithm (Figure 4.38) attempts to satisfy the problem, but errors
exist in the logic. Describe two errors and explain how each prevents the flow-
chart from achieving its purpose.
Problem: Design an algorithm that will print a person’s name, age, and whether
or not they are eligible to vote (must be at least 18 years old).

139Defnng the problem and lanning softwar solutions

false

true

false true

Print
'You can vote'

Print name
and age

Enter name and
age in years

Print
'You cannot vote'

This is the
last person

Age > 18

End

Begin

EXTENSION
17 Read the following algorithm:

BEGIN
set counter to 1
set sum to 1
set number to user input
REPEAT

add counter to sum
increase counter by 1

UNTIL counter equals number
print sum

END
a If the number is assigned the value 4 as a result of the ‘read in’ statement, what

would be the result of the algorithm?
b The algorithm was meant to produce the sum of all the counting numbers up

to and including the number which is ‘read in’. Rewrite the algorithm so that
it correctly carries out this task.

Figure 4.38

140 Heinemann Software Design and Development: Preliminary Course

18 Find a problem whose solution requires a repetition construct. Design an
algorithm to solve this problem. Answer this question using either a word-
processing program or a drawing program. Save your file as MYLOOP.

19 The three basic control structures are not only applicable to computer programs.
Give at least two non-computer examples of each of the different control struc-
tures. Prepare your answer using a word processor’s ‘table’ functions.

20 Gina has included the following post-test in her program, but has found that a
pre-test is needed as a negative mark may be entered as the first one. Construct
an appropriate pre-test which achieves the same result as this post-test:

set mark to user input
REPEAT

set total to total + mark
set mark to user input

UNTIL mark < 0

Checking algorithms
One reason for designing an algorithm before writing a computer program is to
make sure that the steps chosen to solve the problem actually do so. A very
important step in the process of software design is that of checking an algorithm
after it has been written. The process involved is known as desk checking the
algorithm, so-called because it is performed without the help of a computer.

Desk checking involves working through the algorithm, keeping track of the
values of the variables and the outputs of the algorithm as the steps are manually
gone through with sample data items. These data items, known as test data, have
been chosen so that they check all parts of the algorithm and have known
outputs. We will look at how these items are chosen at a later stage in the course.

In performing a desk check, we need to record our progress. This is usually
done by drawing up a table which lists the variables by name, the values of the
variables as they change and the values of the outputs. One of the most common
ways of drawing up the table is to have one line representing a different variable
and its values.

As an example, we will desk check the following algorithm which is supposed
to add up the counting numbers up to the number input by the user.
Pseudocode

BEGIN
set end_number to user input
set counter to 0
set sum to 0
WHILE counter < 5

set counter to counter + 1
set sum to sum + counter

ENDWHILE
display counter, sum

END
The first step is to read through the algorithm, listing the variables in the left

column as we come to them for the first time. In this way no variables will be left
out of the table (see Figure 4.39).

141Defnng the problem and lanning softwar solutions

As the value of a variable is changed, it is neatly crossed out with a line so that
it can still be read if necessary, and the new value is added. This process of
keeping track of the values of the variables is commonly known as tracing. As
outputs are reached in the algorithm, they are listed in the last column.

The table above will look like this after the algorithm has been tested:

end_number

counter

sum

Variable Vaues Output

Figure 4.39 The desk check table after listing the variables.

end_number

counter

sum

5

15

5

0 , 1 , 2 , 3 , 4 , 5

0 , 1 , 3 , 6 , 10 , 15

Variable Vaues Output

Figure 4.40 The desk check table after the check has been performed.

The final stage of a desk check is to compare the expected result, which has
been provided with the test data, against the actual outputs in the table. If they
match, the algorithm works; if they don’t, the algorithm will need to be modified.

Modification of the algorithm will usually involve only a few steps, although
in some cases it may be necessary to completely re-design the algorithm. This
decision is made after the desk-checking process has been completed. Once an
algorithm has been modified or re-designed, the whole process of desk checking
should be undertaken again.

In more complicated algorithms, more than one set of test data may be
required to check its workings. In this case a separate table will be required for
each of the data groups. The test data itself will probably be displayed in the form
of a table which lists the values and expected outputs. This table is known as an
input/output table.

Example
A program is to be written to grade a typist's speed. If the speed in words per
minute (wpm) is below 25, the typist is to be graded as ‘Unsatisfactory—needs
training’; if the speed is 25 wpm to 55 wpm inclusive, the typist is to be graded
as ‘Satisfactory’; if the speed is over 55 wpm, the typist is to be graded as
‘Exceptional—receives a 10% bonus’ (see Table 4.41 on the next page).

142 Heinemann Software Design and Development: Preliminary Course

1 Copy and complete the following sentences with the most appropriate word or
phrase from the list:

desk checking, input/output table, test data, tracing, variables
a A listing of test data items with the expected outputs is known as a(n)

b s the process ofusing a pen and paper to hec a algorithm.
c A process lle is used to keep tracko variable an teir values.
d Data items chosen to check an algorithm are kown as .
e A must blisted before a desk check ca tke place.

2 Draw up a table which would be used to desk check this algorithm:
Pseudocode
BEGIN

set count to 1
set total to 0
set maximum to user input
WHILE count is less than maximum

set total to total + count
print count and total
increment count by 1

ENDWHILE
END

Exercise 4.10

Data item
Type speed Expected output Reason for inclusion

24 Unsatisfactory—needs training Below the lower boundary value
for satisfactory

25 Satisfactory The lower boundary value for
satisfactory

26 Satisfactory Within the satisfactory range

55 Satisfactory The upper boundary value for
satisfactory

56 Exceptional—receives a 10% bonus Above the upper boundary
value for satisfactory

–1 Invalid input—out od range To test data validation procedures

Figure 4.41 Input/output table for typing speed grading.

143Defnng the problem and lanning softwar solutions

3 The following algorithm is supposed to display all the numbers from 0 up to and
including the input number. Draw up a table for the desk check, then use it to
check the algorithm, using an input of 5. Does the algorithm work properly?
Pseudocode
BEGIN

set count to 0
set maximum to user input
WHILE count is less than maximum

print count
increment count by 1

ENDWHILE
END

4 Use an appropriate computer application to design a form that you could use for
your desk checks. Save this form so that you can print and use it any time you
have a desk check to perform.

5 This algorithm is designed to display the two input numbers in order, with the
larger one first. Test data items for the desk check are shown in the input/output
table in Figure 4.42. Perform a desk check on this algorithm and report whether
it solves the problem.

Data item
first number

Data item
second number

Reason for
inclusionExpected output

10 Bigger number is 11

Smaller number is 10

Test with smaller number

first

11

11 Bigger number is 11

Smaller number is 10

Test with bigger number

first

10

10 Bigger number is 10

Smaller number is 10

Test with identical

numbers

11

Figure 4.42 Input/output table for ordering two numbers.

144 Heinemann Software Design and Development: Preliminary Course

Begin

End

Set temp to
item 1

Set item 1 to
item 2

Set item 2 to
temp

Standard algorithms
There are some common processes which appear in a
wide range of problems. Rather than rewriting the algor-
ithm each time it is required, a standard one can be used.
This saves both time and effort as the algorithm needs to
be changed only slightly for each of the new applica-
tions. These changes will be to variable identifiers and
the range of counters. Following are some standard
algorithms which may be of use.

Swap two data items
This algorithm has an input of two data items called
item1 and item2.At the conclusion of the algorithm, the
values of item1 and item2 will have been swapped. To
use this algorithm, replace item1 with one of the
variables you wish to swap and item2 with the other.
Pseudocode

BEGIN swap items
set temporary to item1
set item1 to item2
set item2 to temporary

END swap items
Figure 4.43 Flowchart
to swap two data items

Pseudocode
BEGIN

set firstnumber to user input
set secondnumber to user input
IF firstnumber > secondnumber THEN

set temporary to firstnumber
set secondnumber to firstnumber
set firstnumber to secondnumber

ENDIF
Print ’Bigger number is ’, secondnumber
Print ’Smaller number is ’, firstnumber

END

Access elements of an array
In many cases we wish to access the elements of an array in order. The most
common of these cases would involve reading in the elements of the array,
printing each of the elements of the array or processing the records of a file
sequentially. The basic structure of these algorithms is the same, that is, to pass
from the first array element to the next until the final one is reached. We will use
the same basic structure to show this in two examples—working with an array
and processing the elements of a file from the first until the last one is reached.
Look at the similarities between the algorithms.

Array processing
Array name arrayitem(count), starting index value first and ending index value
last need to be replaced by the appropriate values for your problem (Figure 4.44).

145Defnng the problem and lanning softwar solutions

Pseudocode
BEGIN process array

FOR count goes from first to last
process arrayitem(count)

NEXT count
END process array

As the value of count changes, we are accessing different members of the array
arrayitem(count). For example, if count has a value of 6, the line process
arrayitem(count) is exactly the same as using process arrayitem(6). How-
ever, when counter changes to 7, our line process arrayitem(count) changes
to mean process arrayitem(7).

Processing records from a sequential file
The purpose of this algorithm is to pass through each of the data items in a
sequential file until a sentinel value is found. If the data is stored as an array with
a known number of elements, then the above algorithm may be used to pass
through the array of records (see Figure 4.45).

Begin

End

Set count to
start

Count is
greater than

last

Process
arrayitem (count)

Increase count
by 1

true

false

Begin

End

Set count to
1

recorditem
(count). field is
sentinel value

Process recorditem
(count). field

Increase count
by 1

true

false

Figure 4.44 Flowchart for array
processing.

Figure 4.45 Flowchart for processig
records from a sequential file.

146 Heinemann Software Design and Development: Preliminary Course

The variable recorditem(count).field is the field that takes part in the
processing in this template. It may need to be replaced by more than one field if
the processing involves more than one field from each record. The value
sentinelvalue should also be replaced by the value you are using as a sentinel.

BEGIN process sequential file
set count to 1
WHILE recorditem(count).field <> sentinelvalue

process recorditem(count).field
set count to count + 1

ENDWHILE
END process sequential file

Exercise 4.11
1 Use a word processor to copy the three pseudocode algorithms from this section.

Save the files as SWAPVALP, ARRAYPRP and FILEWORP. You can then use these
files as templates for the following exercises.

2 Use a drawing program to copy the three flowcharts from this section. Save the
files as SWAPVALF, ARRAYPRF and FILEWORF. You can then use these files as
templates for the following exercises.

3 Using the swap algorithm in this section as a basis, create an algorithm to read in
two numbers, swap their values and print out the resulting numbers.

4 Create an algorithm that will input two numbers and swap them only if the first
number is bigger than the second. Print out the numbers in order, with the
smaller one first.

5 Use the array algorithm as a template to help you design an algorithm that will
input ten numbers and then print them out after they have been stored. (Hint:
You will need to use the array algorithm twice.)

6 An array of names and ages has been saved as a sequential file. The sentinel value
for the list is an age of –1. Modify the file algorithm so that all stored names and
ages are printed. The records should be named as person(count).name and
person(count).age.

EXTENSION

7 Write an algorithm that will print out the largest value in a list of ten numbers.
Check your algorithm with the values 10, 4, 23, 16, 8, 19, 27, 13, 15 and 3.

Review exercises

147Social and ethical issues

1 Explain, in your own words, the
three main steps in solving a
problem. Use an example to
illustrate your answer.

2 Create an IPO chart for a system that
performs the following task:
When a sensor on an automatic door
senses a person, the door is opened
for 30 seconds. If a second person is
detected within the 30 seconds, the
door remains open for a further 30
seconds; otherwise the door closes.
(You do not have to write an
algorithm for this problem.)

3 An automatic petrol pump has three
nozzles which dispense three
different types of fuel. A program is
required to operate the pump.
Decompose this problem into a
number of sub-modules.

4 Represent the number 21210 in:
a binary form
b octal form
c hexadecimal form

5 Represent the binary number
1001 11012 as:
a an octal number
b a hexadecimal number
c a decimal number

6 Name the different simple data
types and give an example of the
appropriate use of each of them.

7 Explain the difference between an
array and a record, giving an
example of each.

8 Describe, using examples from the
flowchart in Figure 4.46, the basic
structures to be found in this
algorithm. Figure 4.46

End

Begin

Set counter to
0

Set string
to null

Get
character

Add 1 to
counter

Set counter
to 0

Set string
to null

Display suitable
message

Change string
to number

Change string
to number

Add character
to string

Is counter ≥
3 or char =
RETURN?

Is character
a digit or
RETURN?

No

Yes

Yes

No

148 Heinemann Software Design and Development: Preliminary Course

9 Create an algorithm that will input
ten numbers and print out their sum
and their average.

10 Explain the similarities and differences
between the three types of iteration.
Show how each of these types of
iteration could be used to create an
algorithm, in pseudocode, that
displays the first ten square numbers.

11 An algorithm is required to grade
oranges as ‘small’, ‘medium’ and
‘large’. ‘Small’ oranges have a
diameter of less than 8 cm, ‘large’
oranges have a diameter over 12 cm,
and all others are graded as ‘medium’.
Design a set of test data to test this
algorithm. Display your test data as an
input/output table.

12 The following algorithm in
pseudocode is designed to add up the
numbers from 1 to 10 and display the
result at the end. Perform a desk

check on the algorithm. Find the error
in the algorithm and correct it,
showing that it works correctly by
performing a desk check on your
corrected solution.
BEGIN

set counter to 0
set total to 0
REPEAT

set total to total +
counter

set counter to counter
+ 1

print total
UNTIL counter > 10

END

13 A class markbook program calls for
25 marks from a test to be entered
and stored as an array. These marks
are then to be averaged and the
average printed. Using the array
template as a guide, write an
algorithm that will perform this task.

Team Activity
Design a program that will keep rainfall
records for the past 30 days. When a new day’s
rainfall is entered, the previous rainfalls are
‘shuffled back’ in the array. (For example,
day 29’s rainfall goes into day 30, day 28’s
rainfall goes into day 29 and so on, so that the
most recent rainfall is then placed into day 1’s
place.) Create an IPO chart to go with the

solution, as well as an algorithm. The final
project should be presented as a computer-
generated document, both on disk and on
paper. You can use either a word processor or
a drawing program to construct the algorithm,
depending on whether you wish to use pseudo-
code or a flowchart.

Review exercises

Chapter summary

149Defining the problem and planning software solutions

• There are three steps to solving a problem:
– Understand the problem.
– Work out a way to solve the problem.
– Check the solution to the problem.

• An IPO (input, processing, output) chart can be used to help understand the
problem.

• An IPO chart is created by looking first at the outputs required, then the
inputs needed, and finally the processes required to turn the inputs into the
required outputs.

• One way of solving a problem is to break it down into smaller and smaller
parts. This method is known as the top-down approach.

• An advantage of the top-down approach is that the logic of the program can
be tested at each stage of development.

• Computers use binary digits to represent data and instructions.
• The binary system uses the digits 0 and 1 to represent all numbers.
• We may need to convert numbers from decimal into binary in order to

understand what happens inside a computer.
• The binary number is not a convenient way to write numbers, so octal (base

eight) or hexadecimal (base sixteen) numbers may be used.
• Data often needs to be represented on paper so that we can understand what

needs to be done to process it. These structures are known as abstract data
types.

• The simple data types are:
– Boolean (true/false)
– character (such as letters and digits)
– string (a number of characters treated as one item)
– integer (whole numbers)
– floating point (decimal numbers)
– date and currency (special purpose types).

• Structured data types are:
– array (a number of related data items of the same type stored together)
– record (a number of related data items of different types stored together)
– file (a number of records stored together).

• A sequential file is stored in such a way that the records are processed in
order.

• An algorithm is a finite number of actions with a single beginning and a
single end that will solve a problem.

Chapter summary

150 Heinemann Software Design and Development: Preliminary Course

• Algorithms can be described in a number of different ways. The approved
methods in this course are flowcharts and pseudocode.

• Pseudocode is an algorithm description method that uses the English language
to describe the steps.

• A flowchart is a graphical method of describing an algorithm.
• All algorithms are made from three standard constructs:

– sequence (steps follow one after the other)
– selection (a choice is made between different paths)
– iteration, or repetition (one or more steps are repeated a number of times).

• There are two forms of selection:
– binary selection, in which there is a choice of two different paths
– multiway selection, in which there is a choice of three or more different

actions.
• There are two different types of iteration:

– the pre-test loop (the test to exit takes place at the start of the loop)
– the post-test loop (the test to exit the loop takes place at the end of the

loop)
• In a counted loop iteration the loop will be executed a counted number of

times.
• An algorithm needs to be tested to ensure that it works properly. With a set

of test data that has known outputs, a manual testing method known as desk
checking is used.

55Building software solutions

cchhaapptteerr

Coding in an approved language
• metalanguages
• the syntax of control structures
• the syntax of defining data structures

Error correction techniques
• types of coding errors
• stubs

Outcomes
• describes and uses appropriate data types (P 1.2)
• describes the interactions between the elements of a computer

system (P 1.3)
• identifies the issues relating to the use of software solutions (P 3.1)
• investigates a structured approach in the design and

implementation of a software solution (P 4.2)
• uses a variety of development approaches to generate software

solutions and distinguishes between these approaches (P 4.3)
• uses and justifies the need for appropriate project management

techniques (P 5.1)
• uses and develops documentation to communicate software solutions

to others (P 5.2)
• describes the role of personnel involved in software development (P 6.1)
• communicates with appropriate personnel throughout the software

development process (P 6.2)
• designs and constructs software solutions with appropriate interfaces (P 6.3)

Students learn about:

152 Heinemann Software Design and Development: Preliminary Course

• read and construct productions using the metalanguages BNF, EBNF and syntax
structure diagrams

• identify the syntax of control structures and correctly code a control structure in a
chosen language

• define data types in a chosen language
• identify types of coding error including errors in syntax, run-time errors and logical

errors
• use stubs, flags and debugging output statements to help identify errors.
• create standard modules for reuse
• use code from different sources to create a solution to a problem with minimal change
• develop an effective user interface after consultation with users
• create appropriate documentation for a software solution
• interpret code and documentation from other developers

Students learn to:

• flags
• debugging output statements

Libraries of code
• reusable code
• combining code and modules from different sources

User interface development
• consultation with users
• user and developer perspectives
• effective user interface

Documentation
• types of documentation
• internal documentation
• online help

153Buldng software soutions

Personal Profile—John Backus (1924–)

the pre-medicine course at an Atlantic City hospital he was diagnosed with a
brain tumour. A subsequent operation left him with a plate in his head. John’s
medical career lasted only a further nine months at which stage he felt that
medicine too was not to be his chosen career. He left the army in 1946.

While enrolled in a radio technician’s course, John found that he had an
aptitude for mathematics, which led to his enrolment in a science degree
majoring in mathematics. In 1949, when almost at the end of his degree course,
John visited the IBM Computer Centre on Madison Avenue and mentioned that
he was looking for a job. He was hired to work on the IBM Selective Sequence
Electronic Calculator (SSEC), a primitive mechanical computer which had no
software memory, all programs being entered using paper tape. During his three
years working on SSEC, John devised a program called Speedcoding which was
the first to include floating point numbers.

At the end of 1953 John proposed a programming language for the new 704
model computer. The proposal was accepted by IBM as the language would be
quicker and simpler for programmers to use. The language was FORTRAN
(FORmula TRANslation), which is still used by many mathematicians and
scientists today. However, the team assembled by Backus was overtly optimistic
about the time it would take to design both the language and its translator, the
whole of the design taking two years rather than the anticipated six months.

John Backus’s next important contribution to computer science was the
development of the notation BNF, used to describe the rules of a language, in
1959. The first use of BNF was in the design, concluding in 1960, of the language
ALGOL. Following his involvement in the ALGOL project he continued to look
for better methods of programming, and his third contribution was the
functional-level language FP. During his career John Backus was given many
awards for his contributions to computer programming. He retired from the
computer industry in 1991.

Born in 1924 in Philadelphia, John Backus
spent his early years in Wilmington, Delaware.
His family was quite wealthy as his father was
a chemical engineer, so he was able to attend
the prestigious Hill School in Pottstown,
Pennsylvania. At this stage he exhibited little
interest in academic pursuits, earning poor
grades but still managing to graduate.

John studied chemistry briefly at the
University of Virginia, where his lack of
interest in the practical aspects of the course
saw his attendance rates fall and he was ex-
pelled. In 1942 he joined the army. As a
corporal in charge of an anti-aircraft battery, he
was given an aptitude test which led to him
studying engineering. A further aptitude test
while he was in this course prompted another
career change, this time to medicine. During

154 Heinemann Software Design and Development: Preliminary Course

Coding in an approved programming
language
Metalanguages
One of the most important features of any programming language is that it must
not contain any ambiguous statements. In other words, any statement written
using the language must have only one, precise meaning.

First- and second-generation languages, since they are processor-specific, have
individual instructions which are directly translated into an action by the
processor. The form of these instructions is created when the processor is
designed. When programming with first- and second-generation languages, the
algorithm is broken into these single instruction steps. Since the program is
written as a series of immediately recognisable simple instructions, there can be
no thought of ambiguity.

Languages of later generations, or ‘high-level languages’, are more complex,
since they more closely approach natural languages. A single statement in one of
these languages will be translated into a number of processor instructions. The
need to translate from one language to another made it important to have every
statement in the high-level language unambiguous. If this were not the case, a
program might produce one result when run one day and a different result the
next. It is obviously unacceptable to create computer programs that produce
unpredictable results.

In the mid to late 1950s, an American, John Backus, devised a notation which
could be used to describe the manner in which a programming language’s rules
could be described. The notation is known as a metalanguage, that is, a language
used to describe the rules of another language. In 1959 this notation, known as
Backus Normal Form (BNF), was used to describe the syntax of the language
ALGOL 58. In 1960 Peter Naur modified the metalanguage slightly for the
description of the language ALGOL 60. This modified form, now known as
Backus-Naur Form (BNF), has become one of the more common methods of
describing programming languages. Later a further change was made to BNF
which gave the metalanguage the ability to describe the repetition of a language
element. This extended form is known as Extended Backus-Naur Form (EBNF).

Because it is a text-based description of a language, the structure of each of
the language elements may not be as clear as it would be with a graphical des-
cription. In order to overcome this problem, it is possible to show graphically the
structures described by BNF or EBNF. These diagrams are commonly known as
syntax structure diagrams or syntax graphs.

Representation of syntax
The syntax of a language refers to the rules which govern the way that the
elements of that language can be joined to form valid statements. The syntax of
a language will determine how simple elements can be joined to create state-
ments, as well as the ways in which these statements can be combined to form
compound statements.

A computer language needs to be precise in its definition, since every
statement has to be unambiguous. Ambiguity refers to the situation where a
particular statement can be given two or more different meanings. For example,
the statement ‘Jane beat Graeme’ might mean that Jane scored better than
Graeme in some form of competition, or it might mean that she hit Graeme.

155Buldng software soutions

Syntax structure diagrams (railroad diagrams)
Syntax structure diagrams show the allowable structure of a language element by
tracing a path from left to right; the allowable features correspond to the
‘stations’ along the line. Branches are shown as railway ‘points’, and the path can
only move onto a branch by travelling onto the points as if it were a train (see
Figure 5.1).

Example 1
Following the diagram shown in Figure 5.3 from the left, a Boolean constant is
defined as being either True (following the main line from left to right) or False
(following the branch line). Note that the flow does not allow us to retrace the
line back through ‘True’ once the branch joins the main line.

Figure 5.1 Branchings of a syntax structure diagram.

Drecton of travel along dagram

Allowable path Path not allowed

The syntax structure diagram employs three
symbol types to represent two allowable elements:
the rectangle to represent a previously defined
element, and a rounded rectangle (bubble) or circle
to represent a fixed element (such as an individual
symbol or reserved word) (see Figure 5.2).

Interpretation of syntax structure diagrams
As described above, syntax structure diagrams are
read as if following the path of a railway train from
left to right. When a branching point (like the set of
railway points) is reached, there is the option of
following one of these branches.

Once on a fork, that line must be followed until
it reaches the main line again. There will be only
one beginning to a diagram and only one ending.

Figure 5.2 Basic symbols of a syntax structure
diagram.

Pre-defined
language element

Fixed
element

Fixed
element

Boolean constant True

False
Figure 5.3
Alternative elements.

156 Heinemann Software Design and Development: Preliminary Course

Construction of syntax structure diagrams
The construction of a syntax structure diagram to represent a particular language
element is not very difficult. The two main structures illustrated in Figure 5.2
(previously defined elements and fixed elements) can be joined to create a
diagram which represents a legal language element.

For example, a name might be defined as ‘an uppercase letter followed by one
or more lowercase letters’. (Assume that the elements ‘uppercase letter’ and
‘lowercase letter’ have been previously defined.) The structure diagram must
therefore contain an uppercase letter as the first ‘station’, followed by a lowercase
letter, giving the diagram in Figure 5.6.

Example 3
In the structure diagram shown in Figure 5.5, the element ‘digit’ has already been
defined. This diagram defines an integer as having an optional ‘minus’ sign (since
there is a path past the minus sign) followed by at least one digit. One or more
optional elements can be included in a diagram by leaving a free path in addition
to the branch or branches.

Example 2
The diagram shown in Figure 5.4 presumes that the element ‘letter’ has been
previously defined. The definition of a ‘word’, using the diagram, is that it must
consist of at least one letter (since the main line runs through the letter element)
but may consist of more, as the branch may be followed around to another letter.

Word Letter

Figure 5.4 Repeated elements.

DigitInteger

–

Figure 5.5 Optional elements.

157Buldng software soutions

Checking the syntax of a written language element
The main purpose of syntax description is to enable programmers to check coded
statements and ensure that they have been coded within the rules set down for
the particular language. In the examples shown in Table 5.1, the syntax structures
in Figure 5.8 will apply.

Some of the code samples in Table 5.1 are legal, and some of them are illegal.
The right-hand column of the table indicates whether the sample is legal in terms
of the syntax rules; if it is not, an explanation is given as to why it is illegal.

Figure 5.6 Stage 1 of the construction.

Figure 5.7 The completed syntax structure diagram.

Name Uppercase letter Lowercase letter

Name Uppercase letter Lowercase letter

Figure 5.8 Syntax structure diagrams showing the rules used in Table 5.1.

0

2

3

A

B

C

D

+

_

*

/

Digit Letter

Operation

Identifier Letter Digit

158 Heinemann Software Design and Development: Preliminary Course

Code sample Legality

1. B3 Legal identifier—it contains a defined letter followed by a
defined digit

2BAllea idnifier—th fist letter has tbe followed by a
defned iit

3C3{A4/B1*Clleal exprssion

4b3{A1*Clleal—th idnifier b3 stats wianillegal charcter (only
uppercase letters have been defined s a letter)

5A2*C4{Blleal—the syntaxon allowsonedentifier before the brace
(‘{‘ character)

6B4{2*Clleal—nl idnifiers a allowed to be operated upon

7A1{(B2+C4)/Alleal—the brackets are t alowable charates wthin this
syntax

8. A5{C4—B3 Illegal—the digit in the first identifier is not defined

Table 5.1 Code samples written using the syntax structures.

Backus-Naur Form and Extended Backus-Naur Form
Backus-Naur Form (BNF)

The Backus-Naur Form (BNF) of describing syntax structure has found favour
with many language developers as it can be employed by a computer system to
assist with language design and implementation. BNF was designed by the
American computer scientist John Backus (the ‘father’ of FORTRAN) to assist in
the formal description of the ALGOL language which, at the time, was proposed
as a universal language. BNF was originally called the Backus Normal Form, but
it was refined by the Danish astronomer Peter Naur, and so his name was
incorporated into the description name (the acronym BNF conveniently staying
the same).

BNF is a text-based system and as such cannot draw upon shapes to define or
refer to elements. Several symbols are used in BNF to indicate the structures seen
above (see Example 4).

Language elements are referred to either by their names (if they have been
pre-defined) or as individual characters. Those elements which are defined else-
where (known technically as non-terminal symbols) are enclosed by ‘less than’
and ‘greater than’ symbols—for example <language element>. Individual charac-
ters or strings of characters (known as terminal symbols) are not enclosed. For
example, in BNF …print… means that the word ‘print’ in a definition is a string
of characters. (Note that each of the characters in the word is a terminal symbol.)
If it appears in a definition as …<print>…, the word ‘print’ represents something
defined elsewhere. (The word ‘print’ is, therefore, a non-terminal symbol.)

Alternative elements are indicated by placing a vertical bar in each space
between alternatives: |. The symbol set : : = is used to represent the statement ‘is
defined as’.

Note that, for clarity, in this text extra spaces have been placed between
language elements in both BNF and EBNF; this may not always be the case.

Extended Backus-Naur Form (EBNF)

The main shortcomings of BNF are its inability to simply show optional parts of
a definition (such as the negative sign in the integer example above), possible

159Buldng software soutions

repetition (such as possible extra letters in the definition of ‘word’ above) and the
grouping of elements. The extended form of BNF introduces these capabilities to
the structure (see Example 5).

Alternative elements are again indicated by placing a vertical bar in each space
between alternatives: |. The symbol ‘=’ is used to represent the statement ‘is
defined as’. Terminal and non-terminal elements are represented in the same
manner as in BNF.

Repetitions are indicated by enclosing the repeated element(s) in braces: { }.
Repetition is taken as being anything from 0 times upwards, meaning that the
repetition is also optional.

Optional elements are enclosed in square brackets: [].
Grouped elements are enclosed in parentheses: ().

Example 4
1 The Boolean constant defined in Figure 5.3 would appear thus in BNF:
Boolean_constant ::= true | false

2 The word defined in Figure 5.4 would appear thus in BNF:
word ::= < letter > < word > | < letter >
In this example a word is defined differently from the structure diagram,
since BNF has no way to show repetition. Repetition is indicated by using a
method known as recursion, in which the definition of the element is used to
define itself.A word here is defined as being a letter followed by either a word
or a letter. This definition eventually breaks down a word into two con-
secutive letters, which is a legal construction. A single letter, under this
definition, is not a word. For example, TUSIL is a legal word since IL is a
letter followed by another. Hence SIL is a legal word as it is the letter S
followed by the word IL. Therefore USIL is a word, and finally TUSIL is a
word under this definition.

3 To define integer in the same way as it is defined in Figure 5.5 using BNF we
need to define two elements, an unsigned integer and then the integer:
unsigned integer ::= < digit> | < digit> < unsigned integer >
integer ::= < unsigned integer > | — < unsigned integer >

Example 5
1 The Boolean constant defined in Figure 5.3 appears in this form in EBNF:

Boolean_constant = true | false
2 The word defined in Figure 5.6 would appear thus in EBNF:

word = < letter > { < letter > }
This definition is easier to follow as its defines a word as at least one letter
followed by an optional repetition of other letters.

3 The integer defined in Figure 5.5 is again much simpler to define in EBNF
than in BNF as it can be accomplished in one statement:
integer = [—] < digit > { < digit > }
In this definition an integer is defined as an optional minus sign followed by
at least one digit.

160 Heinemann Software Design and Development: Preliminary Course

Checking the syntax of a written language element
Like the railroad diagram, a BNF or EBNF statement is read from left to right.
The structure of the element being examined can be checked against the defined
syntax.

In the examples shown in Table 5.2, the following EBNF syntax structures will
apply:

letter = w | x | y | z
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
operation = + | − | × | ÷ | √
identifier = <letter> { <letter> | <digit> }
number = [—] <digit> • <digit> { <digit> } [e <digit> <digit>]
expression = <identifier> ← <identifier> | <number> { <operation>

<identifier> | <number> }
Some of the code samples that are shown in Table 5.2 are legal, and some are

not. The right-hand column of the table indicates whether the sample is legal in
terms of the syntax rules; if it is not, an explanation is given as to why it is illegal.

Code sample Legality

1. z3 Legal identifier—it contains a defined letter followed
by a digit

2 xw34yz Lega ideniier—the first charactr i a letter, and each
of the other i eithe a letter o a digit

3 we3 ega ideniierit conains an udefined character
(the letter ‘e’)

4 w70←3.14×x Lega

5 x2×y4←z2 ega—the syntax llows only ne dntifier before
the arrow

6. w41←2√z143 Legal

7 y1←(x2+y4)/w2 ega—the brackets and th slash (/) arenot allowable
characters itin his syntax

8. Z5←x4-yq3 Illegal—the letter in the first identifier is not defined
(it is uppercase and only lowercase letters have been
defined)

Table 5.2 Code samples written using the syntax structures.

Syntax description examples
In the Examples 6 and 7, we will examine the manner in which syntax des-
criptions can be used to assist in the coding of a language. These examples illus-
trate the simple assignment of summing two values stored in main memory, and
placing the result (weekly wage) in a third storage area, and calculating the area
of a trapezium. They illustrate different ways in which languages implement this
simple structure. Each of the examples gives the structure of the statement in the
syntax description methods of BNF and structure (railroad) diagrams.

161Buldng software soutions

Example 7 A typical spreadsheet application
A description of the syntax of a simplified spreadsheet application is presented
in Figure 5.9 on the next page as a structure diagram.

In this simplified spreadsheet language, the assignment of a value to a cell
would involve the entry of the appropriate language elements into the cell. Thus:
a The pseudocode instruction

set weekly_wage to normal_pay + overtime
becomes, using cell B5 for the contents of weekly_wage, and cells B2 and B3
for the normal_pay and overtime values respectively, and typing the following
formula into the cell to achieve the required result:

= B2 + B3
b The pseudocode instruction

set area to (top_side + bottom_side) * height / 2
becomes, using a similar structure to the above and placing the formula into an
empty cell:

= (J12 + K12) * B3 / 2

Example 6 FORTRAN IV
A BNF description of assignment statements and associated elements in the
FORTRAN language is presented below:
Arithmetic operation ::= <Number> | <Identifier> | <Bracketed

Operation> <Arithmetic Operator> <Number> | <Identifier> |
<Arithmetic Operation>

Arithmetic operator ::= + |—| * | / | ^
Assignment statement ::= <Identifier> = <Identifier> | <Arithmetic

Operation> | <BracketedOperation>
Bracketed operation ::= (<Arithmetic Operation>)
Identifier ::=<UppercaseLetter> <Letter or Number String>
Letter or number string ::= <Uppercase Letter> | <Digit> |<Letter

or Number String>
Number ::= <Real Number> | <Integer>
Note: In order to save on space and assist with the understanding of the struc-
ture, definitions of symbols such as Uppercase Letter and the Number types have
been omitted, as have the distinctions between Integer and Real Identifiers. For
simplicity, inbuilt functions such as the trigonometric functions have also been
omitted. Thus in FORTRAN, as described above, the following translations may
be made.
a The pseudocode instruction

set weekly_wage to normal_pay + overtime
becomes, in FORTRAN:
WEEKWAGE = NORMALPAY + OVERTIME

b The pseudocode instruction
set area to (top_side + bottom_side) * height / 2
becomes, in FORTRAN:
AREA = (TOP + BOTTOM) * HEIGHT/2

162 Heinemann Software Design and Development: Preliminary Course

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
Computer languages must be so that each statementhas only one

. In the esign of languags a is used to sow the rules or
of thelanguae. The gapical form o sowinis called

a diagram o diagram. We can also sho the rules by using
one of two text-based forms known as and .

2 The syntax structure diagrams in Figure 5.10 define the syntax for a simple
theoretical language we will call TUSIL (To Understand Syntax Instructional
Language). Use the structure diagrams to answer the questions which follow.
Note that the language element RB is used in the assignment statement to
represent the term ‘is replaced by’.
a Identify whether each of these TUSIL elements is legal or illegal, and if it is

illegal, state your reasons. For example:
• Identifier MN3_12 is a legal identifier.
• Identifier 32_VB is not a legal identifier as the first character is not a letter.
• Assignment TOTAL RB SUM1 + SUM2 + SUM3 is a legal assignment.

i identifier EVERY_1
ii identifier ALL_OF_THEM
iii identifier Weeks_Wages
iv integer –32176
v real number –3214.676
vi real number 23

Figure 5.9 Representation of a simple spreadsheet syntax using structure charts. Values have
not been defined in this structure, but are numerical.

Cell contents

Expression

Calculation

Cell reference

Cell reference

Value Operaton Clclaion

Calculaton

Calculaton

Expression Operation

$

=

+

–

*

/

^

$

Row name Column name

[

Exercise 5.1

163Buldng software soutions

vii assignment WEEKS_WAGES RB HOURLY_RATE * HOURS_WORKED * 1.12
viii assignment IS_IT RB IS_IT_FOUND or IS_LIST_FINISHED

b Using the structure diagrams as a guide, write a legal TUSIL expression for each
of the following. Create language elements which are legal in the TUSIL
language.

i an identifier to represent a student’s test mark
ii a real number representing π (use your calculator to find the value)
iii an expression for calculating the number of days in W weeks
iv an expression which calculates the hypotenuse of a right-angled triangle

given the other two sides
v An expression which finds the value from using the logical operator AND

on an identifier and the integer value 8
c Draw a structure diagram for each of these TUSIL elements as described below.

i A relational operator is one of the following operations:
greater than, less than, equal to, greater than or equal to, and less than or
equal to.

ii An IF statement consists of the word IF followed by an identifier, a rela-
tional operator (you may only use the term ‘relational operator’ to refer to

Figure 5.10 TUSIL structure diagrams.

A
B
C
D
E
F

G
H
I
J
K
L
MLetter

N
O
P
Q
R
S

T
U

V
W
X
Y

Z

1
2
3
4
5Digit

6
7
8
9

+

√

{ }

–

*
/

^Binary
opperation &

or

not

xor

Value Real number

Integer

Identifier

Character Digit

Identifier Letter

Character

Digit

Expression Value

Expression

Expression

Operation

–

Integer Digit

Digit–

RB

.Real number Integer

Assignment Identifier Expression

Letter

–

164 Heinemann Software Design and Development: Preliminary Course

the definition above), and a value, followed by the word THEN, after which
comes an expression. The word ELSE is optional, but if used it must be
followed by an expression. The IF statement must be terminated (ended) by
the word ENDIF.

iii A variable declaration begins with the word ‘declaration !’. Following that,
each variable declaration consists of an identifier followed by the words ‘is
an integer’ or ‘is a real number’. The declaration of each variable is
separated by an exclamation mark symbol (!) and the declaration is ended
by an exclamation mark and the statement ‘end declaration’. At least one
variable must be declared. For example, a legal variable declaration would
be written thus:
• to declare a single variable such as COUNTER

declaration ! COUNTER is an integer ! end declaration
• to declare more than one variable
declaration !

PAY_RATE is a real number !
NUMBER_OF_DAYS is an integer !
HOURS_WORKED is a real number !

end declaration
d Using the diagrams in Figure 5.10 and those created in part c above, check the

following piece of TUSIL code, reporting and correcting any syntax errors:
declaration OLD_MARK is a real number !

NEW_MARK is a real number !
TOTAL_PROCESSED is an integer !

end declaration
IF OLD_MARK < 50 THEN

NEW_MARK = OLD_MARK * 2
ELSE

NEW_MARK = OLD_MARK * 3.
ENDIF
TOTAL_PROCESSED RP TOTAL_PROCESSED + 1

3 Using the following EBNF syntax descriptions, identify and correct the fragments
of code which follow:
upper_case_letter = A | B | C | D | E | F | G | H | I | J | K |
L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
lower_case_letter = a | b | c | d | e | f | g | h | i | j | k |
l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
letter = <upper_case_letter> | <lower_case_letter>
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter_or_digit = <letter> | <digit>
space = ASCII character 32
special_characters = ” | # | % | & | ‘ | (|) | * | + | , |
- | . | / | : | ; | < | = | > | _ | |
character = <letter_or_digit> | <special_character> | <space>
integer = <digit> { <digit> }
signed integer = [—] <integer>
decimal_number = <signed_integer> [. <integer>]
exponent = E [+] <integer> | E [–] <integer>
scientific_number = <decimal_number> <exponent>
character_string = ” { <character> } ”
identifier = <letter> { [_] <letter_or_digit> }

165Buldng software soutions

a Determine the type of each of the following legal elements in the language
described by the above EBNF.

i E
ii E3
iii E_3
iv 3E+43
v +45.81E-12
vi 4123645
vii ”The answer to the question of the meaning of life is 42”
viii E_4123645

b Each of the following identifiers is illegal according to the syntax described
above. Find the error and name and correct it.

i Item 1
ii 1_item
iii Item_number_1_
iv Item#1
v Item_bought_on_12.3.97

4 The letters of the alphabet are divided into vowels (A, E, I, O and U) and
consonants (all other letters). A two-letter word must consist of either a vowel
followed by a consonant or a consonant followed by a vowel. Write these syntax
rules both in BNF and as a syntax structure diagram.

5 Convert the TUSIL syntax structure diagrams in Figure 5.10 above into EBNF.

6 Convert the EBNF statements in question 3 above into syntax structure diagrams.

7 Describe the syntax of a simple arithmetic number sentence (for example
3 + 4 – 5 = 2) using BNF, EBNF or a syntax structure diagram.

The syntax of control structures
Although different programming languages have differing syntaxes, the basic
control structures are very similar.

Sequence
The coding of a sequence is basically the same in all languages. Each instruction
in the sequence will be in the position that corresponds to its place in the
algorithm Some languages, such as FORTRAN IV, require that each instruction
is placed on a separate line. Others may allow multiple instructions on a line, each
individual instruction being separated from the others by some kind of separator
symbol (for example, Pascal uses the semicolon). Other languages may require
the use of brackets to separate instructions. No matter how the language has been
designed, the basic structure of a sequence will be apparent, with one operation
following another (see Figure 5.11).
Syntax of a sequence in EBNF

sequence = <operation> { <operation> }

166 Heinemann Software Design and Development: Preliminary Course

Selection
When implemented in a language selections will have the same basic structure.
The binary selection usually starts with the keyword IF and a multiway selection
uses the keyword CASEWHERE, just as they do in pseudocode.

The second part of a binary selection will be some condition which will have
a result which is either true or a false (the condition is often said to have a
Boolean result). The keyword THEN is required, followed by an action. If the
result of the condition is true, the action following the keyword THEN will be
performed. The alternative action (what happens if the condition is false) will
follow the keyword ELSE. In cases where there is to be no alternative action, a
majority of languages will allow the ELSE part of the statement to be omitted.
Syntax of a binary selection in EBNF
binary selection = IF <condition> THEN <operation> [ELSE <operation>]

Figure 5.11 Structure diagram showing the syntax of a sequence.

Sequence

Operation

Operation

Example 8
FORTRAN code

RADIUS = 7
AREA = 3.1415927 * RADIUS *RADIUS
WRITE(1s, 200) RADIUS, AREA

200FORMAT(1X, F5.1 , F10.5)

Pascal code
radius := 7;
area := 3.1415927 * radius * radius;
writeln(radius, area);

Visual Basic code
radius! = 7
area! = 3.1415927 * radius * radius
message = Format(radius, ”Fixed”, area , ”Fixed”)
MsgBox(message)

Java code
{radius = 7;
area = 3.1415927 * radius * radius;
system.out.println(radius + ”” + area);}

In each of the following code examples, the area of a circle of radius 7 is
calculated and printed. In the FORTRAN sample, the line numbered 200 is used
to declare the format of the printed numbers.

167Buldng software soutions

The multiway selection is implemented in a large number of recent languages.
It is a more efficient way of performing a choice than a number of nested IF
statements. However, the disadvantage is that only a list of values can be used.
This makes it difficult to use for cases where there are a large number of values
in a group or where the value being tested has a range rather than specific values.

The multiway selection will be identified by the use of the keyword CASE,
followed by an expression that can be evaluated.The appropriate course of action
is followed by finding the value of the expression in the list given as part of the
CASE statement.
Syntax of a multiway selection in EBNF
multiway selection = CASE <expression> IS <list of values> :

<operation> { <list of values> : <operation> }

Figure 5.12 Structure diagram showing the syntax of a binary selection.

Binary
selection

condition operation

operation

IF THEN

ELSE

Example 9
if pay > 500 then

tax_rate := 0.35
else

tax_rate := 0.2;

Spreadsheet code
=IF(A5 > 500, 0.35, 0.2)

Visual Basic code
If pay > 500 Then

tax_rate = 0.35
Else

tax_rate = 0.2
End If

Java code
if (pay > 500) {

tax_rate = 0.35;
}
else {

tax_rate = 0.2;
}

The binary selection in each of the following code examples gives a tax rate
of 0.2 to those whose pay is $500 or less and a rate of 0.35 for all other values of
pay. In the spreadsheet example, the value of pay is held in cell A5, the tax rate
being held in the cell containing the formula.

Heinemann Software Design and Development: Preliminary Course

Figure 5.13 Structure diagram showing the syntax of a multiway selection.

Example 10
Pascal code

case mark of
5 , 4 : grade := ’A’;
3 , 2 : grade := ’B’;
1 , 0 : grade := ’C’;

end

Visual Basic code
Select Case mark

Case 5 , 4
grade = ”A”

Case 3 , 2
grade = ”B”

Case 1 , 0
grade = ”C”

End Select

Java code
switch(mark) {

case 5 :
case 4 : grade = ’A’;

break;
case 3 :
case 2 : grade = ’B’;

break;
case 1 :
case 0 : grade = ’C’;

break;
}

Multiway
selection expression list of values operationIS :CASE

Iteration
The three types of repetition appear in most languages in a form that is not too
different from its representation in the approved form of pseudocode.

When implemented in a language, the counted loop has probably the most
consistent form of the three iterations. Almost all languages use the keyword
FOR, with most using the keyword NEXT to terminate the loop. The counter
used within the loop is commonly incremented (increased by 1) as a default;

The code examples following illustrate the use of a multiway selection by
assigning a grade A to marks of 5 and 4, a grade B to marks of 3 and 2 and a grade
C to marks of 1 and 0.

168

169Buldng software soutions

some languages allow the programmer to increase, or decrease, the counter by
using the keyword STEP.
Syntax of a counted loop in EBNF
counted loop = FOR < variable > = < value > TO < value > [STEP <

value >] < operation > NEXT < variable >

Counted
loop variable

variable

value value

value

operation

FOR = TO

NEXT

STEP

Figure 5.14 Structure diagram showing the syntax of a counted loop.

Example 11
Pascal code

sum :=0;
for counter := 1 to 10 do begin

sum := sum + counter
end;

Visual Basic code
sum = 0
For counter = 1 to 10

sum = sum + counter
Next counter

Java code
sum = 0;
for (counter = 1; counter <= 10; ++counter)

{
sum = sum + counter;
}

The pre-test loop can be identified by the use of the keyword WHILE at the
beginning of the loop. Various languages implement this structure in different
ways, but if you look for the keyword at the beginning you should have no
problem. The end of a pre-test loop is not so easy to pick. Look at the following
examples to see how the pre-test loop is implemented. Remember that the
operation(s) inside the pre-test loop are executed while the condition is true, the
loop finishing once the condition is not met.

The following code examples illustrate the use of a counted loop by finding
the sum of the numbers from 1 to 10.

170 Heinemann Software Design and Development: Preliminary Course

Figure 5.15 Structure diagram showing the syntax of a pre-test loop.

The post-test loop is usually implemented in a similar way to its pseudocode

representation, that is, using the keyword REPEAT at the beginning of the loop

and the keyword UNTIL at the end together with the condition needed to end

the loop. Remember that the post-test loop continues while the condition is false,

looping ends once the condition becomes true.

Syntax of a post-test loop in EBNF

post-test loop = REPEAT < operation > UNTIL < condition >

Example 12
Pascal code

sum := 0;
counter :=1;
while counter <= 10 do begin

sum:= sum + counter;
counter := counter + 1

end;
Visual Basic code

sum = 0
counter = 1
Do While counter <= 10

sum = sum + counter
counter = counter + 1

Loop
Java code

sum = 0;
counter = 1;
while(counter <= 10)

{
sum = sum + counter;
++counter;
}

Figure 5.16 Structure diagram showing the syntax of a post-test loop.

Syntax of a pre-test loop in EBNF

pre test loop = WHILE <condition > <operation > ENDWHILE

The following examples illustrate how a pre-test loop can accomplish the

same task as given for the counted loop.

ENDWHILE

operation conditionPost-test loop REPEAT UNTIL

Pre-test loop WHILE condition operation

171Buldng software soutions

Syntax of data type definitions
Languages are structured in such a way as to ensure that the storage required for
variables is made available when needed. This is done in a variety of ways.

One way is to require that variables are defined (often known as variable dec-
laration). For example, the following declaration of variables representing simple
data types in Pascal illustrates the methods employed in this type of language:

var
counter, item_count : integer;
item_description : packed array [1..20] of char;
markup , cost_price , sell_price : real;
order_now : boolean;
row_id : char;

A second method is to use a symbol after the variable name to identify its
simple data type. The variable type symbol is placed at the end of the variable
identifier the first time it is used in the program. This example shows a portion
of code in Visual Basic which uses this idea:

markup! = 0.25
cost_price@ = 8.8
sell_price@ = cost_price * markup
order_now = false

Example 13
Pascal code

sum := 0;
counter :=1;
repeat

sum:= sum + counter;
counter := counter + 1

until counter > 10;

Visual Basic code
sum = 0
counter = 1
Do

sum = sum + counter
counter = counter + 1

Loop Until counter > 10

Java code
sum = 0;
counter = 1;
do

{
sum = sum + counter;
++counter;
} while(counter <= 10)

The following example of adding the numbers from 1 to 10 illustrate the
similarities and differences between languages.

172 Heinemann Software Design and Development: Preliminary Course

Visual Basic also allows for variables to be declared in a similar way to Pascal:
Dim counter As integer, item_count As Integer
Dim item_description As String
Dim markup As Single
Dim cost_price As Currency , Dim sell_price As Currency
Dim order_now As Boolean
Dim row_id As Boolean
A method used by older languages, such as FORTRAN, was to allocate a data

type certain initial letters of variable names. In the case of FORTRAN, the letters
I, J, K, L, M and N were taken to mean an integer data type, all others implying
a floating point data type. Thus in FORTRAN the variable name COUNT would
be taken to be representing a floating point number; if an integer was required,
the variable name would be changed to ICOUNT.

Structured data types need to be declared in all languages before they are
used. The reason for this is that often large amounts of storage have to be
allocated for the data items.

Arrays are declared in such a way that the size of the array is given together
with the simple data type which is to be stored in that array. For example, in
Pascal an array to contain the twelve monthly average temperatures (see
Chapter 4) may be declared as follows:

var
average_temperature : array [1..12] of real;

In Visual Basic the same declaration would be made using the following code:
Dim temperature(1 To 12) As Single
In declaring a record data structure, the name and simple data type of each of

the fields needs to be declared. This is done in the following way in Pascal:
type

details = record
initial : char;
surname : packed array [1..20] of char;
age : integer;
height : real

end;
The variable used in the program is then given the data type ‘details’ in the
normal way in the variable declaration. This is how that is done:

var
person : details;
......................

To access one of the fields in the record, for example if we wished to increase the
age by 1, then the following statement would be used in Pascal:

person.age := person.age + 1;
This statement has the effect of retrieving the value of the field ‘age’ from the
‘person’ record, adding 1 to the value and then storing that value in the field ‘age’
of the ‘person’ record.

A sequential file is processed from the first record until a sentinel value
(usually an end-of-file or EOF character) is found.

173Buldng software soutions

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
The three bsic conrol structures of comuter languages are ,

and . Keywords o look for in selection are and
 The binary selction ually uses the keyword and the

mutway slecion ll use or smethnsmilar Repetitios are also
known as and are gerally identified by keywords such as

, and . The counted loop will contain the
keywords and . Pre-test repetitions have the at
the of the loop, whereas have the at the end
of the loop.

2 Using the programming language of your choice, write a statement which will:
a Define the variable counter as an integer.
b Define the variable name as a string of length 15 characters.
c Define the variable financial_member as Boolean.
d Define an array months_sales as being an array with 31 elements.
e Define a record type called stock which contains the fields item_id which is

a six-character string, quantity which is an integer, and cost_price and
markupwhich are both floating point numbers. Define a variable of type stock
which has a variable name item.

3 Code each of the following actions in your chosen language.
a Add 1 to the variable counter and store it back in counter.
b Set the value of pi to 3.14159, then calculate the circumference of a circle

that has a radius given by the value of radius. (Remember C = 2πr.)
c Calculate profit from cost_price and sell_price.
d Award a grade of ‘GOOD’ for a mark of 80% or better, and a grade of ‘FAIR’ for

a mark of less than 80%.
e Use a counted loop to count to 100 and print the even numbers up to 200.
f Use a pre-test repetition to display the even numbers from 0 to 200.
g Use a post-test repetition to display the numbers from 0 to 200.

4 Check your answers to question 3 parts b to g by completing a program to
perform each of the tasks. You will have to add some input and output
statements and possibly some variable declarations depending on your chosen
language. Test your programs by running them on a computer

5 Write a small program to set up an array of ten items called evens. Use a counted
loop to put the even numbers from 2 to 20 into the array elements 1 to 10
respectively. Print out the array elements in order. Test your program by running
it on a computer.
Extension: Modify the program so that the array elements are printed out in
reverse order (that is, from 20 down to 2).

6 Construct a program that will input the rainfall for each of twelve months and
then print out the total average rainfall together with the average of the
monthly rainfalls. Test your program by running it on a computer
Extension: Create an array of strings and enter the month names into the array.
Print out the month’s name together with the average rainfall for that month.

Exercise 5.2

174 Heinemann Software Design and Development: Preliminary Course

7 Write a portion of code in your chosen language that will set up a record type,
called results, that contains the following fields:
student_name a string (of length 25 if needed)
test_mark1 a floating point number
test_mark2 a floating point number
average a floating point number
grade a character

8 Use your portion of code from the answer to question 7 to declare a variable
called student that has a data type of results.

9 Use your answers to questions 7 and 8 to declare an array of records that will
contain 30 student records, each of data type results.
Extension: Create a program that will input up to 30 names together with two
marks for each student and print out the student’s name and his or her total
mark. Test your program by running it on a computer.

Error-correction techniques
Types of coding errors
Most programs when first coded will contain errors of one kind or another. The
errors will fall into one of two categories: errors in syntax or execution errors. Fre-
quently, logic errors will have been removed by this stage by following the
sequence of the program development cycle. However, some logic errors may
only surface when the program is running and is able to be tested using the
appropriate test data.

Syntax errors
Syntax errors, or compile-time errors, are identified by the programmer as
written statements that do not conform to the rules of the language. This type of
error is, therefore, dependent on the language used. Variations in the implement-
ation of languages may render a legal statement on one computer platform illegal
on another. Most syntax errors, however, occur through typographical mistakes
when the code is being prepared on the text editor. Care with typing can assist
in reducing the number of errors. A further aid in error detection, with both
syntax and run-time errors, is to have one or more people desk check the program
steps as if they were the computer compiling and running the program. (For a
more complete description of desk checking, refer to Chapter 4.) As far as
possible, the author of the program should not participate in this check.

Early compilers were very curt in providing indication as to the problem in
the source code. Statements such as ERROR 002 IN LINE 23 or ERROR 35 gave
little indication of the form of error; this had to be determined by the program-
mer from the compiler documentation. Early personal computers, such as the
Apple II, often came with a BASIC interpreter in ROM. These interpreters, again,
were very curt in their error indication, issuing the message SYNTAX ERROR IN
LINE ... but giving no indication as to the form of the error. The main reason for
the brevity of the message was the need to create the compiler or interpreter so
that it would occupy minimal memory. As computing technology has advanced
and memory is available in larger quantities, the assistance that can be provided
by the interpreter has increased. Current-generation compilers and interpreters

175Buldng software soutions

assist the programmer by providing not only a message stating the error but also
an indication as to where the error might occur and how it might be corrected.

Common causes of syntax errors include:
• missing or wrong statement punctuation, for example failure to close paren-

theses, missing commas, missing semicolons (see Figure 5.17) or the wrong
type of parentheses for the statement type

• typographical errors in reserved words, for example the word REPEAT being
entered as REPET

• failure to complete groupings, for example following a REPEAT with UNTIL
at the end of a loop

• incomplete program statements, for example starting an IF statement but
omitting a condition statement such as WAGE > 40000.
Compile-time errors may be caused by other factors besides a badly con-

structed program statement. In languages that require identifiers to be declared
before use, a syntax error will be generated by the use of an undeclared identifier
(see Figure 5.18). The cause of an undeclared identifier may be either a typing
mistake or the inadvertent omission of the identifier from the declaration section
of the program.

Other syntax errors include:
• a mismatch in the types of variable within an assignment statement, for

example trying to assign a numerical value to a variable of type character.
• the use of a reserved word as a variable identifier or, in some languages, within

an identifier. (For example, the use in Pascal of the variable end_valuemay be
rejected by the compiler as end is a reserved word.)

• compiler only being able to handle strings of characters up to a certain length
(for example in displayed messages) or of a certain complexity in calculation.
In both cases the errors can be eliminated by splitting the text or calculation
into two or more parts, each occupying its own statement.

Figure 5.17 A syntax error message in THINK Pascal for the Macintosh.

176 Heinemann Software Design and Development: Preliminary Course

Run-time errors
Syntax errors are relatively easy to locate and correct, but run-time errors (or
execution errors) can be difficult to locate. A run-time error in a program may
not be evident at the point at which it occurs, but it may surface later, causing all
kinds of trouble in the program.

The first kind of error involves one or more data values that cause the com-
puter to attempt a calculation for which there is no result or for which the result
is not as anticipated. For example, a division by zero is unable to be evaluated and
so the operating system will cause an error to be generated. This type of error will
be signalled at the point in the program where it occurs, usually halting
execution, so it is easy to locate and correct. Other errors which fall into this
category are those in which the tangent ratio of 90° is to be used and some results
of integer arithmetic.

Figure 5.18 An undeclared identifier error.

Example 14
Integer arithmetic can cause problems if the result of an operation is outside the
range allowed for that machine (typically between –32 768 and 32 767). If, for
example, 32 766 and 32 760 are added using integer arithmetic, a result of –10
occurs, which is clearly not the correct result. This problem may be overcome by
reordering the operations in the statement or choosing a different data type for
the variable(s).

Calculations performed by a computer using real numbers are subject to
errors caused by the inability of the computer to exactly store decimal values. A
small part of the value may be ‘lost’. This process is called truncation. In many
cases the errors are insignificant and will not cause problems for the programmer.

177Buldng software soutions

However, if there are a large number of calculations to perform, the order of
operations may make a difference. In this case a reordering of the calculations
may improve the accuracy.

A further problem caused by the manner in which real numbers are stored is
that of equality. If a decision is to be made on whether a value is equal to another
or not, a wrong result may be obtained if the tested value is close. The reason for
this is again the manner in which calculation results are stored in main memory.
The following BASIC program illustrates this problem.

Example 15
10 INPUT NUMBER
20 ANSWER = NUMBER / 9999999999
30 ANSWER = ANSWER * 9999999999
40 IF ANSWER = NUMBER THEN PRINT ”equal” ELSE PRINT ”not equal”
50 END

The above program does not perform the expected match as the stored value of
ANSWER is truncated in line 20. When the multiplication in line 30 takes place,
a slightly different value is obtained, so the message ‘not equal’ is displayed.

By rewriting the program in the following manner, a correct result is obtained
each time the program is run:

10 INPUT NUMBER
20 ANSWER = NUMBER / 9999999999 * 9999999999
40 IF ANSWER = NUMBER THEN PRINT ”equal” ELSE PRINT ”not equal”
50 END

Figure 5.19 THINK Pascal for the Macintosh allows the programmer to step through a
program and view the values of the variables at each stage of execution.

178 Heinemann Software Design and Development: Preliminary Course

The ability to step through a program one instruction at a time and the ability
to display the values of each of the variables at each stage of execution will often
help in locating and correcting these run-time errors. Once the run-time errors
have been located, they need to be corrected. The process of correction may be
as simple as changing a line of code or adding a new line, or it may require a
rewriting of an algorithm and coding a completely new subprogram.

Logic errors
Most logical errors should be identified during the algorithm description stage of
the design process. However, the differences between an algorithm description
method and the language used for the program may require that an action is not
coded in exactly the same way as it has been shown in the algorithm. This type
of logical error may involve control not following the paths as designed in the
algorithm description. This kind of error is much harder to rectify and involves
using techniques such as setting breakpoints and tracing the flow of control.

Breakpoints are places in the program where execution is temporarily sus-
pended so the programmer can determine whether the program flow reaches
that point.A breakpoint is often placed after a printout of values of variables.This
allows the programmer to examine the values before resuming the program.

Tracing refers to a display on the screen of the path taken during execution of
a program. Some languages support a trace function (for example many versions
of the BASIC language), but statements can be placed in the code of a sub-
program to achieve the same result. These statements may be simple messages
such as This is the barcode search module.

Exercise 5.3
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Three types of error can creep into a computer program. The three types are

errors, errors and errors. Those errors coming
from the algrithm are known as rrors. Those rrors picked up when
the program is being tanslated a called errors. A error
occurs during program execution. Errors in the algorithm are usually found
durng , although some may not be fod until theprogram is

2 Explain the term ‘syntax error’ in your own words. Give examples of syntax errors
to illustrate your answer.

3 There is an error in each of the following segments of code. Identify the most
likely error and correct it.
a COST PRICE—DISCOUNT
b while counter < 10 do begin
time := 0
(Use the Pascal syntax diagrams in the appendix to help with this question.)

c write(’This message will appear on the screen to help you);
(Use the Pascal syntax diagrams in the appendix to help with this question.)

d if then index := index + 1
(Use the Pascal syntax diagrams in the appendix to help with this question.)

179Buldng software soutions

4 Examine the following program in Pascal and identify as many syntax errors as
you can. Correct each error and compile the program to discover the errors you
may have missed. (Use the Pascal syntax diagrams in the appendix to help with
this question.)
program question_3

var
answer, counter : integer;

begin
counter := 0;
while counter <= 10 do

begin
write(counter);
start := counter;
counter := counter + 1
answer := start * counter;
writeln(’multiplied by one more is’, answer)

end
5 Examine the following program using LOGO turtle graphics and identify as many

syntax errors as you can. Correct each error and run the program to discover the
errors you may have missed.

TO SQUARE
REPEAT 4[FORARD 100 RIGHT 90]

END
TO CIRCLE

REPEAT 360[FORWARD 1 RIGHT 1
TO HOUSE

SQUARE
TRIANGLE

END
TO TREE

FORWARD 100
RIGHT 90
CRCLE
LEFT 90
BACKWARD 100

END
6 Examine the following GW-BASIC code and identify as many syntax errors as you

can. Correct each error and run the code to discover the errors you may have
missed. (You may have to modify some of the code to run on your system.)

10 COUNT = 0
20 WHILE COUNT < =
30 PRINT COUNT;
40 START COUNT
50 COUNT = COUNT + 1
60 ANSWER = COUNT START
70 PRINT ” multiplied by one more is ;ANSWER
80 WEND
90 END

180 Heinemann Software Design and Development: Preliminary Course

7 Examine the following code in Hypertalk and identify as many syntax errors as
you can. Correct each error and execute the code to discover the errors you may
have missed. You will need to create two card fields called Fahrenheit and Celsius.

on mouseUp
set numberFormat to 00.00
get card ”Fahrenheit”
subtract 32 from it
multiply it by 5
divide it by 9
put it into card field ”Celsius

end
8 Describe in your own words the meaning of the term ‘run-time error’. Give

examples to illustrate your answer.

9 Describe the steps that can be taken to identify where a run-time error has been
created.

10 Create a small program which asks for the entry of two numbers and outputs
their product. Write the code in two different ways: the first way treating both
numbers as integers, the second way treating the numbers as floating point
values. What effects does each of these methods have on the stored result?

11 Explain how you could trace the path through a program while it is being
executed. What purpose would a trace serve in the debugging process?

Stubs
Top-down programming often leads to the use of subprograms or modules. The
ways in which the modules work together have to be tested to determine
whether the desired result will be achieved. A programmer cannot sensibly wait
for a whole program to be coded and translated before performing these tests.
Many different causes can prevent the proper action of the program and, with
programs becoming more complex, debugging may become almost impossible.
One widely used method of testing involves creating small modules that
represent parts of the program which have yet to be written. These modules are
called stubs.

A stub may consist of a message which indicates to the programmer that a
particular portion of the program has been reached or it may set a particular
variable’s value. We will examine the use of each type of stub in the following
simple examples.

Example 16
Stubs in this example are used to test the menu module of a program. The menu
consists of four choices: add a record, delete a record, sort the records and exit
the program. The procedures for adding, deleting and sorting records have not
been written in full. Instead they have been replaced by stubs so that the main
logic can be tested.
continued next page

181Buldng software soutions

Pseudocode
BEGIN menu_test

get choice from user
WHILE choice is not ’E’

CASEWHERE choice is
’A’ : display ’Add record’
’D’ : display ’Delete record’
’S’ : display ’Sort records’
OTHERWISE display ’Invalid choice’

ENDCASE
get choice from user

ENDWHILE
END menu_test

Figure 5.20 Flowchart showing the use of stubs to test a menu.

START

END

Get choice

Display
'Add record'

Display
'Delete record'

Display
'Sort records'

Display
'Invalid choice'

Get choice

Is choice
'E'?

Choice is

A D S otherwise

Yes

No

continued next page

182 Heinemann Software Design and Development: Preliminary Course

A Pascal program corresponding to the above algorithm would be:
PROGRAM menu_test (input , output);
VAR

choice : char;
PROCEDURE Add_record;

BEGIN
writeln(’Add record stub’)

END;
PROCEDURE Delete_record;

BEGIN
writeln(’Delete record stub’)

END;
PROCEDURE Sort_records;

BEGIN
writeln(’Sort records stub’)

END;
PROCEDURE Invalid_input;

BEGIN
writeln(’Invalid choice stub’)

END;
BEGIN

writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’);
writeln(’D to DELETE a record’);
writeln(’S to SORT the records’);
writeln(’E to END this session’);
readln(choice);
WHILE (choice <> ’E’) AND (choice <> ’e’) DO
BEGIN
IF choice IN [’A’,’a’,’D’,’d’,’S’,’s’] {this statement ensures

that other characters are excluded; otherwise…}
THEN CASE choice OF

’A’,’a’ : add_record;
’D’,’d’ : delete_record;
’S’,’s’ : sort_records
END {end of case statement}

ELSE Invalid_input;
writeln(‘Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’);
writeln(’D to DELETE a record’);
writeln(’S to SORT the records’);
writeln(’E to END this session’);
readln(choice);

END {end of while statement}
END. {end of program}

183Buldng software soutions

Example 17
Stubs in this example are used to set values so that part of the test data can be
used.

A program has been designed to input data from a file stored on disk and to
search through that data. The programmer wishes to test the search algorithm but
does not want to input each of the data elements each time and has not yet
written the disk input/output modules. A series of assignment statements is used
to provide the necessary data elements. In this case the algorithm is one which has
a number of friends’ names and addresses.The user is required to enter an address,
and the name of the person living at that address is displayed.

A search algorithm (known as a linear search) for a particular address within
this array follows. (This type of search looks through each element of the array in
turn for the wanted item.You may like to modify the algorithm and use it for your
programs.)

Algorithm Comments
BEGIN

set flag to 0 Initialise variables
set index to 0
set friend[1].name to ’Jane Soo’ Begin stubs to set
set friend[1].address to the array element to test

’11 Marion St Goolga 2990’ data values
set friend[2].name to ’Felix Kato’
set friend[2].address to

’2A Beacon Dr Aulswell 2828’
set friend[3].name to ’Kim Kong’
set friend[3].address to

’Box 8751 GPO Hapion 3876’ End stubs with test data
get wanted_address from user Input search item
REPEAT Search the array one item at a

set index to index + 1 time for a match
IF friends [index].address

= wanted_address THEN
set flag to index

ENDIF
UNTIL (index = last) OR (flag <> 0)
IF flag <> 0 THEN

print ’The person living at that address is’ friend[flag].name
ELSE

print ’The address you want is not in the list’
ENDIF

END
continued next page

184 Heinemann Software Design and Development: Preliminary Course

A Pascal coded program for this search is as follows:
PROGRAM address_book (input, output);
CONST

last = 3;
TYPE

person =
RECORD

name : string[20];
address : string[50]

END;
VAR

friend : ARRAY [1..last] OF person;
wanted_address : string[50];
index , flag : integer;

BEGIN
flag := 0;
index := 0;
friend[1].name := ’Jane Soo’; {Begin data stubs}
friend[1].address :=

’11 Marion St Goolga 2990’;
friend[2].name := ’Felix Kato’;
friend[2].address := ’2A Beacon Dr Aulswell 2828’;
friend[3].name := ’Kim Kong’;
friend[3].address :=

’Box 8751 GPO Hapion 3876’; {End data stubs}
writeln(’Please type in your friend’’s address’);
readln(wanted_address);
REPEAT

index := index + 1;
IF friend[index].address = wanted_address
THEN

flag := index
UNTIL (index = last) OR (flag <> 0);
IF flag <> 0

A THEN
writeln(’The person living at’, wanted_address,

’is’, friend[flag].name)
ELSE

B writeln(’The person you want is not in the list’)
END

If, for example, the user input 11 Marion St Goolga 2990 to test the program,
what would the expected output be?

185Buldng software soutions

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
A is a shor piece of code used to represen an unwritten art of code.
A may be used to test the workings of the man or module
of a progrm. Using stu allows the programmer to the workings of
a without having to code it. Stubs may also be used in

to proide alues rather thanhaving to enter them each
time the program is .

2 What is the meaning of the term ‘stub’ when applied to the debugging process?
Explain, using examples, how stubs may be used during the development of a
computer program.

3 Describe the different types of stub, illustrating your answer with examples.

4 Write an algorithm for a bulletin board logon module which requests a user’s
identity and password. If the user is a new user (indicated by the identity ‘NEW’),
control passes to a new user module and asks for various details, following which
access to the board is given. For a registered user, control passes to the security
module which determines the user’s access rights and allows access to the board.
Code and test your algorithm using stubs to represent the various modules.

5 Write an algorithm which finds the largest and smallest members of a ten-
element array of integers. Code and test this algorithm in an approved language,
using stubs to provide the array members instead of the normal input statements.
Use the following ten values as test data: 52, 69, –4, 45, 74, 89, 0, –81, 91, 5.

Exercise 5.4

Debugging output statements
The process of error detection does not end with the correct working of the algor-
ithm and error-free coding. It is often necessary to trace the values of variables as
they change during the execution of a program in order to detect where the
problem comes from. One of the most widely used tracing methods is to use out-
put statements to display or print the values of various variables at each stage of
processing. By using this technique, the progress of data items can be monitored
during the testing stage. (Note that some programming environments, such as
Visual Basic and THINK Pascal, have the ability to trace the value of a variable
without the programmer having to add debugging output statements to the
code.) On the completion of the testing stage, these debugging statements may
be removed from the program, leaving only those program statements that are
necessary for the program to function correctly. Following are some general prob-
lems in which debugging output statements can help the debugging process.

Example 18
A program which reads data from disk and processes it cannot be tested for
correct input until the coding process is completed. A set of output statements
can be written which immediately 'echoes' the data read to the screen. In this
way the programmer can examine the data before processing begins, ensuring
that the dataset used in the program is being read correctly.

186 Heinemann Software Design and Development: Preliminary Course

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
A is used to display the value of a at a point in the
program bing testd. Ths is then removed aftr testing. Another use
of tis type of statemnt is tohelp n the flowof control through the

 Somelanguage systems have a functon ich allows the
through the program to bfolowed.

2 Explain, with examples, the purpose of debugging output statements.

3 Choose a program you have already written in your chosen programming lan-
guage. Place some debugging output statements in appropriate places within the
program (for example at the beginning, inside and after a loop) and follow the
values of the variables as they change during the execution of the program.

Exercise 5.5

Example 19
Programs incorporating a number of loops may contain errors in one or more of
the loops. For example, a program may be required to print out all the times from
midnight (0:00) to 23:45 in quarter-hour increments. If the looping is wrongly
constructed, we will end up with the incorrect output. When coded, the program
can have debugging output statements inserted where the hours and quarters are
changed in order to follow through the order of the changes. The following algor-
ithms using counted loops illustrate how the placement of one loop inside the
other is important. Perform a desk check on each of the algorithms to determine
which one works properly. Code both of the programs in your chosen language to
find the error. In the algorithm with errors, place two output statements after each
of the FOR statements to display the change that has been made to the variable.
Algorithm 1

BEGIN
FOR quarter_count goes from 1 to 3

FOR hour_count goes from 0 to 23
set minutes to 15*quarter_count
print hour_count, ”:” , minutes

NEXT hour_count
NEXT minute_count

END
Algorithm 2

BEGIN
FOR hour_count goes from 0 to 23

print hour_count, ”: 00” ,
FOR quarter_count goes from 1 to 3

set minutes to 15*quarter_count
print hour_count, ”:” , minutes

NEXT quarter_count
NEXT hour_count
END

187Buldng software soutions

Flags
As programs become more complex, it is easy to become lost in the maze of
coding. It is sometimes necessary to record whether a certain condition has been
met and to act on that condition later in the program. A flag is a variable which
is used to indicate or ‘flag’ whether an event has occurred or not. Such events
may be the reading of a negative value, or whether a matching value has been
found in a list.

A flag is usually created as a Boolean variable (able to be set to either ‘true’ or
‘false’). It is set to false at the beginning of the program, then has its value
changed as control enters the part of the program which is to be ‘flagged’. By
using an output statement at some appropriate place after this part of the
program, the flag can be displayed, its value indicating whether the desired
actions have taken place or not. Flags can be particularly useful in the program
testing by indicating whether a particular piece of code (for example a sub-
program) has been called.

Example 20
A program has been written which contains a number of calls to various sub-
programs, but it does not work properly. The programmer decides to use flags to
indicate whether a subprogram has been called. This is accomplished in a manner
similar to the following.

A flag is created as a global variable of type Boolean. (This is needed as we
wish to mark whether a subprogram has been entered. A variable which is local
to the subprogram will not be valid outside the subprogram for which it has been
declared.) The flag is set to ‘false’ at the beginning of the program; the same
variable is assigned ‘true’ within the subprogram. At an appropriate point in the
program (for example when the output from that subprogram is used) an IF state-
ment is used to read the flag variable and print, or display, an appropriate message.

In Pascal, for example, the output statement would appear thus:
If subprogram_flag then

writeln(’The subprogram has been used’)
else

writeln(’The subprogram has not been used’);
(Since subprogram_flag is of type Boolean, it can only have the value ‘true’ or
‘false’; therefore there is no need to write If subprogram_flag = true then ….)

Exercise 5.6
1 Describe, using examples, the purpose of a flag.

2 Why is a flag usually declared as a Boolean variable?

3 Australia Post has created a computer program for its letter-sorting machine in
Sydney. The program reads the postcode of a letter and determines which State
it is to be delivered to, by using the first digit of the postcode. Unfortunately, the
program does not work for letters to the ACT (since ACT postcodes begin with the
same digit as those in NSW). Explain how flags may be used to discover the error
in the program. Write an algorithm and a program which inputs a postcode and
determines which State or Territory the letter is to be delivered to.

188 Heinemann Software Design and Development: Preliminary Course

Libraries of code
As we have already seen, modules from other sources can be used to reduce the
amount of development needed for an application. When stored for later use,
pre-written modules form what is known as a library. We may also use code from
other sources, modifying them to suit our own needs. Sources of code will include
user-written modules, modules from the Internet (or other widely available
sources) and modules or templates included as a part of a development system.
When using modules other than those developed by yourself you should always
be mindful of the legal and ethical considerations such as copyright.

Reusable code
When writing modules we should look at keeping them as independent from the
main program as possible. In this way we can ensure that the module can be
reused with the minimal possible effort. This can be achieved by using local
variables where possible and defining identifiers for constant values within the
module rather than using the actual value in the module. By choosing to write
modules in this way, we can use them in other applications with very little
modification.

A very common process used in computer applications is the validation of
data items. The process of validation checks that data items are entered into the
system in an appropriate form or within a particular range. The following
algorithm can form the basis of any data validation module, as we will see.
Pseudocode
BEGIN data_validation module

set data_item to user input
WHILE data_item does not meet the requirements of the program

display message ’This value is invalid, please check and
re-enter the item’

set data_item to user input
ENDWHILE

END data_validation module
The flowchart is shown in Figure 5.21.

This module can now be used within a program. For example, if test marks
required for a markbook program must be in the range 0 to 100 inclusive, the
validation algorithms can be modified in the following manner:
Pseudocode
BEGIN data_validation module

set mark to user input
WHILE (mark < 0) or (mark > 100)

display message ‘This mark is out of range, please check
and re-enter the mark’

set mark to user input
ENDWHILE

END data_validation module
The flowchart is shown in Figure 5.22.

189Buldng software soutions

1 Using the general data validation algorithm described in the above section as a
template, write an algorithm that will accept values of the variable size within
the range 100 to 1000 inclusive. Use the appropriate computer application to
present your answer.

BEGIN

END

Input
data_item

Display
message

Input
data_item

data_item is
allowable

Yes

No

BEGIN

END

Input
mark

Display
message

Input
mark

mark< 0 or
mark > 100

Yes

No

Figure 5.21 Flowchart of data validation
module.

Figure 5.22 Flowchart of mark validation
module.

Exercise 5.7

190 Heinemann Software Design and Development: Preliminary Course

2 Write a data validation module that will accept the inputs of height and weight,
ensuring that both are positive with the height less than 3 and the weight less
than 500. Present your algorithm as a computer file called SIZE.

3 This algorithm accepts a date in the form dd-mm-yyyy and prints it in the form dd
month year. (For example, an input of 25-05-2004 will output 25 May 2004.)
Pseudocode
BEGIN datechange(day, month, year)

CASEWHERE month is
01 : set month_name to ’January’
02 : set month_name to ’February’
03 : set month_name to ’March’
04 : set month_name to ’April’
05 : set month_name to ’May’
06 : set month_name to ’June’
07 : set month_name to ’July’
08 : set month_name to ’August’
09 : set month_name to ’September’
10 : set month_name to ’October’
11 : set month_name to ’November’
OTHERWISE : set month_name to ’December’

END CASE
output dd, month_name, year

END datechange
Modify this algorithm to change the date format from the form dd month year
and output the numerical form dd-mm-yy. (For example, an input of 25 May 2004
will output 25-05-2004.) Present your algorithm in an appropriate form.

4 Use the CASEWHERE statement in an algorithm that will change the written form
of a number into its numerical form. The algorithm should be able to input the
words ‘one’ to ‘ten’ and output the values 1 to 10. (For example, if the input to
the algorithm is the string ‘six’, the output will be 6.)

EXTENSION
5 Use your answer to question 4 as a template to input the word numbers ‘twenty

one’ to ‘ninety nine’ and output the appropriate numerical form. (For example,
an input of ‘sixty seven’ will output the number 67.)

6 Modify your algorithm so that it will accept all word forms of the numbers ‘zero’
to ‘ninety nine’ and output the appropriate numerical values.

7 Using an appropriate language, code and run one or more of the modules
developed within this section.

Combining code and modules from different sources
As we have seen, it is economical, both in effort and development time, to reuse
modules and code whenever possible. The sources of code used in this way are as
varied as using one’s own code from a previous development through to standard
modules or processes. The amount of effort needed to modify a particular coded
module can often be reduced by the use of a few simple rules when coding
modules.

191Buldng software soutions

These rules are the basic guidelines that should be used when writing modules
whether or not you see a need for them in the future:
• Write each module as an independent unit, using local variables for proces-

sing. The external data items can be entered as parameters. For example, a
sorting module may be written to sort the array called name. Rather than using
this array name in the module, a local array called data could be used. The
items from the input array are transferred to the local array as the first part of
the algorithm.

• Any constants that appear in the module should be defined with constant
names at the beginning of the module (if the programming language being
used allows this), or local variables should be used, with the variable being
assigned the value at the beginning of the module. For example, in the sorting
algorithm the number of elements in the array, and hence the largest index
number to be used, may be given the identifier name last. Thus when the
module is used with an array of size 20, lastwould be set to 20. If the module
were used later with an array of size 1000, then setting last to 1000 would
allow the module to read all the data from the new set.

• Design modules so that, even though a process may not be exactly the same
as that designed, similarities in function can be used as a basis for the new
module. For example, if a module has been written to input the values into an
array, there is a great similarity to one in which the elements of the array are
printed out. (The only difference is the use of an output statement in place of
an input statement inside the loop.)
If the code modules are saved as text files, the process of reuse within a

particular application becomes a simple matter of replacing old values with those
required by the new application.

Most programming languages support the use of modules as subprograms and
as functions. Subprograms are completely self-contained parts of a program that
have only one starting point and only one end. They may be called at any time
during program execution and will always return control to the instruction
immediately after the calling instruction. Subprograms may or may not pass
values to or from the calling module. Functions are sets of instructions which
always return a single value from any input data.

Regardless of whether the module is designed as a subprogram (sometimes
called a procedure) or as a function, the designer should always ensure that the
code is independent of the module calling it. As we have seen, the use of local
variables and the use of constant identifiers will help in this regard. The link
between modules and the main program is created by the use of global variables
known as parameters. When writing the module algorithm in pseudocode, it is
common practice to put brackets in after the module name and enclose the
parameters being passed within those brackets. For example, the following
pseudocode algorithm draws a rectangle:

BEGIN rectangle(length, width)
set right_angle to 90°
FOR half goes from 1 to 2

draw line length units
turn right_angle
draw line width units long
turn right_angle

NEXT half
END rectangle

192 Heinemann Software Design and Development: Preliminary Course

When called from a program, the subprogram will have the parameters passed
in the following manner: rectangle(45,50) would create a rectangle 45 units
long and 50 wide and the statement rectangle(side, up) would produce a
rectangle side units long and up units wide.

Notice that, when the module is called, the first value in the brackets replaces
the first variable in the module definition and the second value replaces the
second variable. This means that rectangle(20,50) will produce a different
rectangle from rectangle(50,20). You must keep this in mind when modules
are reused.

Exercise 5.8
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
When devloing alictions, we may use o modules to
the time and effort needed to produce the solution. Three sources of such
modules are , and . Ethical and
aspects of sing from another sourc sould always be ket in mind.
Modues shold be kept from te main progra asthis helps when
we decide to them later. It is best to use variables in a
modue as his makes for faster when they are to be reused.

2 The following algorithm passes through five members of an array and adds them
up to form a total.
Pseudocode
BEGIN sum(array)

set size to 5
set total to 0
set count to 1
WHILE count <= size

set total to total + array(count)
set count to count + 1

ENDWHILE
END sum(array)
a Modify the algorithm so that it:

i asks for 5 items to be input
ii displays the 5 items
iii allows 20 items to be input, then added
iv asks for 5 names and addresses to be input into an array of records stored

as a sequential file
b Use your answer to part a above to write an algorithm that will read in five

values, find their sum and print out the five values followed by their sum.

3 Use an appropriate database system to create a personal database of algorithms
you have written or come across in your study. Fields in the database should
describe the purpose of the algorithm, list the parameters used by the algorithm,
describe the source of the algorithm (for example self, textbook) and whether the
algorithm is of a function or subprogram.

193Buldng software soutions

User interface development
The user interface is the only means by which the user communicates with the
application. The system designer needs to keep this in mind when deciding the
manner in which the user will work with the system.

There are several important factors that
must be taken into consideration when the
user interface is designed. One factor is the
users’ expectations of the system and these
can best be found by consultation with the
users. A second factor is the capabilities of
the output system. Also ergonomic con-
siderations need to be kept in mind as well
as those of efficiency of operation. Consist-
ency in design throughout the interface is
very important so that users quickly gain
confidence in the system’s operation and the
amount of user training and help needed
are reduced.

Consultation with users
When designing the user interface, one of
the most valuable sources of information is
the user. The value comes from two main
areas: their user’s experience with the old
system and their expectations of the new
one. The developer can use the experience of the user with the old system to
benefit the new system by making a determined effort to gain as much
information and input from the user as possible.

Many different tools are available to the developer, including interviews,
surveys, questionnaires, observation and examination of documentation.

The interview process allows the developer to interact directly with the user
and the user to feel part of the development process. Interview questions need to
be carefully planned in order to gain the maximum amount of information from
the user. This interaction with the user gives the developer the opportunity to
follow up any unexpected responses. A disadvantage of the interview process is
that the users may not give completely honest answers to the questions since the
process is not anonymous.

An advantage of surveys is that the users are able to answer questions without
the fear of their identity becoming known. Survey questions are usually framed
in such a way that responses can be given from a number of choices or as short
answers. This makes the data collected from the survey easy to collate. Questions
in a survey have to be very clear as they cannot be clarified by the user asking
questions.

A questionnaire has the advantages of a survey, but the responses to questions
are usually much more detailed, and can take whatever form the user chooses.
Information gained from a questionnaire will take more time to analyse than that
from a survey, but the information may bring up aspects not anticipated by the
developer.

The observation of a user interacting with a system can give a developer a great
deal of insight into the way in which the interaction works. There are two ways
in which observation may be used. The first way involves observing the user

Figure 5.23 Many automatic teller machines still
have a text-only display.

194 Heinemann Software Design and Development: Preliminary Course

interacting with the current system. This is important as the developer can use
the types of interaction that take place as the basis for the new interface design.
The second way involves the use of a prototype of the new system. Various
aspects of the new interface can be tested using this technique, and the user’s
reaction to each part of the interface is evaluated to provide a guide for further
modification.

Aspects of the interface investigated during this activity include:
• The type of interface required (that is, whether a graphical or text-based inter-

face is suitable). Although we tend to think of the GUI as the most effective
interface, there are applications where hardware devices still rely on a text-
based display. (For example, many automatic teller machines use a text-based
LED screen for their interface.)

• The system response times needed to properly process requests. Speed of
processing will determine the manner in which the interface works. For
example, the interface used by a word-processing program will have different
requirements from that for a real-time video editing application. (The pro-
cessing time for a text-based document will be smaller as less data needs to be
processed than for a full-motion video where there is a large amount of data.)

• The manner in which the interface will work. This aspect includes navigation
between program segments and the methods employed to give the user a
choice (for example whether choices are placed on a menu bar, displayed as a
palette or displayed as a dialogue box with choices).

• Security considerations. Levels of security within a system will have to be
carried through to the computerised solution. The effect of this is that the
interface will have to cope with those levels and display various prompts and
messages in an appropriate form.

• Hardware requirements (for example specialised input devices such as bar-
code readers). Different hardware elements have different interfaces. The
programmer needs to take into account the physical and technical limitations
of these interfaces when designing the way in which the user will interact with
them. For example, a barcode reader may be directly interfaced to a work-
station, giving a different interface from one that is portable and interfaced to
the computer only when the data has to be uploaded to the terminal.

User’s and developer’s perspectives
The developer and the user have two different perspectives of the system. The
developer views the system in terms of the processes and data needed to produce
a solution. Users, on the other hand, view the system as a means of achieving a
desired result. Both perspectives are equally important in ensuring that the final
system achieves the goals set by the requirements definition.

Developers are interested in a system from a problem-solving perspective,
which means that they concentrate on the factors relevant to this task. These
factors include:
• The forms of the input data. For example, a designer of an application to

process speeding infringements will look at the data needed to produce the
infringement notice. (These would include the speed limit, location,
registration number of the vehicle, registered driver of the vehicle and the
driver’s address.) Some of the data items would come from an existing system
(for example the driver and vehicle details), whereas other items would come
from other sources (for example a scanned photograph).

195Buldng software soutions

• The processing required to turn the input
data into output data. For the speed camera
application, the process involves scanning
the photograph for details of the location
and speed limit (these may be set up by the
camera operator to be recorded on each
photograph) as well as locating and ‘reading’
the registration number of the offending
vehicle. Calculation of the appropriate
penalty would also be part of the program-
mer’s job here.

• The format of the output. For example, the
programmer would have to examine the
form of the speeding notice sent to the
offending driver and the way it is to be done.
The user’s view of the speed camera is en-

tirely different from that of the programmer in
that the user needs to know what is to be
entered, the sequence of steps to be followed
and the appropriate tasks to perform with the

Figure 5.24 The processing of data from a speed
camera illustrates the difference between a
programmer’s view of the system and a user’s view.

output. For example, input may be a roll of film being placed into a scanner. The
tasks performed by the user would be to start the program running and monitor
the results of the processing. Output may be a number of infringement notices
and addressed envelopes. Further processing of this output would be the user
placing each notice in its appropriate envelope for posting.

Screen design

Design principles
The current generation of highly interactive computers relies heavily on a display
screen to communicate with the user. It is through the user interface that the user
of a program communicates with it and it also allows the program to com-
municate with the user. Through this interface, the user has to make choices and
enter data. A poorly designed screen may prevent the user from effectively using
the program, by contributing to fatigue, hindering navigation through the
program or impeding data entry.

Many features contribute to a screen design, and all of them are equally
important. The major concern in screen design is to provide an ergonomically
sound interface involving the accurate transmission of messages to and from the
user. The next sections examine the following design features: consistency,
message structure and text features.

Consistency in design
Design consistency involves the creation of screens which appear similar in
design and have uniform commands and message placement. A user will rapidly
gain confidence in using an application if the screen design is consistent; their
actions become intuitive, with little or no thought being necessary to find a menu
item or issue a command. Consistency involves the following:
• placement of like items in similar places
• choice of the same font and format to display the same type of information

196 Heinemann Software Design and Development: Preliminary Course

• similar commands to make choices or to navigate to new screens
• similar highlighting methods and the use of the same screen divisions to

separate differing screen elements
• appropriate use of colour to emphasise or de-emphasise screen elements (for

example display options unavailable at that time).

Figure 5.25 These two screens from the same program show a lack of consistency.

Compare the two screens from the same program in Figure 5.26. They
illustrate some of the inconsistencies which should be avoided in screen design:
• inconsistent placement of items such as the screen heading and instructions
• different methods of choosing menu items
• different formatting of the screen items
• different fonts used to display the same type of information.
The two screens need to be redesigned to follow the same format. Inconsistency
in design is not the only fault with these screens; they exhibit other problems
which will be examined later.

Message structure
Messages are a communication between the programmer and the user and are
employed to assist the user with some aspect of the program. It is important that
these messages are clear, concise and non-threatening so that they encourage
confidence in the use of the program and give the required help.

Some early amateur programmers used error messages such as ‘You pressed
the wrong key, dummy!’ or ‘Wrong!’. These kinds of messages are threatening to
inexperienced users and can undermine their confidence in using the program
and even the equipment. Such messages are better expressed in terms of advice
or help. For example, a wrong key press might be corrected by a statement such
as ‘Please press the number key corresponding to your choice’.

Long or imprecise instructions are also unsuitable, as they can be
misinterpreted by the user or may contribute to a novice user’s feeling of
insecurity.

Other inappropriate messages include those that rely on humour, those that
give the impression that the computer has human traits or a personality, and, of
course, those that use inappropriate language such as vulgar terms and jargon.

197Buldng software soutions

Text features
Legibility
Legibility refers to the overall ability of the screen elements to be distinguished
and interpreted by the user. Factors affecting legibility include the choice of fonts
and the use of colour.
• A screen has a lower resolution than hard copy, so a font which works well as

a printing font may not be as legible as a screen font. Also, the use of an
excessive number of fonts can have a detrimental effect on the legibility of the
displayed text.

• Some colours should not be used together as they produce a poor contrast,
which reduces the legibility of the display items. For example, purple text
displayed on a red background will be difficult to read.
In addition, all of the following text features affect legibility: spacing, use of

uppercase and lowercase, use of borders, and justification and alignment.

Text spacing
Text is still the most common form of communication on a screen. The spacing
of text will affect both its readability and its perceived importance. Text areas
that are isolated by space attract the immediate attention of the user and can
therefore be used to highlight important information. The use of space, both
horizontally and vertically, will also provide the user with information about the
grouping, or non-grouping, of the various displayed messages. For example, a set
of menu choices grouped together will be separated by smaller spaces than the
menu items and instructions.

Figure 5.26 Spacing text helps group similar items.

Space is also employed to avoid over-
loading a screen with text. Excessive
amounts of textual information cannot be
fully understood without the operator
making a conscious effort, which thus re-
duces concentration on the computer task.
This distraction will diminish the efficiency
of the program, especially if the screen is
used a large number of times. The problem
can usually be overcome by splitting the
screen into two or more related sub-screens
(for example by using two or more screen
displays in preference to a single crowded
display, or using scrolling screens to present
part of the information at a time).

Use of uppercase and lowercase text
The excessive use of uppercase text is one of the most common screen design
faults. Some people overuse this form of highlighting under the misconception
that uppercase text is easier to read. Uppercase can be utilised for features such
as major headings, but it should be used sparingly as it detracts from the
readability of a screen. Compare the legibility of the two screens in Figure 5.27.
In the screen using only uppercase, the text appears to be all at the same level.
This reduces readability, as an effort has to be made to distinguish the menu
elements from the menu header and instructions, as well as to distinguish
individual words.

198 Heinemann Software Design and Development: Preliminary Course

Text colour
As mentioned previously, the colour of the displayed text can have an adverse
effect on the legibility of a message. However, text colour can also be used to
assist in the conveyance of a message. Red, for example, is a colour associated
with danger and so is a natural choice for the display of a warning or caution
message. It is not a suitable choice for the items of a menu or for help topics.
Colour should be used sparingly, since a large number of colours can lead to
‘visual overload’. When this occurs, the brain spends more of its effort in
decoding the colours, leaving a smaller proportion available to process the
information presented. This is especially important if the user is colour blind.

Use of borders
Borders are an effective method of separating different screen elements. A border
indicates a relationship between the various elements within the border, whether
they are items stored in the same volume, words in a displayed document or
items in a menu. Borders should not be so prominent that they attract the user’s
attention, but should be used purely for the purpose of separation. Compare the
screens in Figure 5.28.

Justification and alignment
The terms ‘justification’ and ‘alignment’ refer to the lining up of the characters at
the beginning and end of a line of text. There are four methods used:
• left alignment (sometimes called ‘left justification’), in which the first

character of each line of type aligns vertically, and the characters on the far
right create a ‘ragged’ look

• right alignment (sometimes called ‘right justification’), in which the last
character of each line forms a vertical line, the characters on the left creating
a ‘jagged’ look

• centre alignment (sometimes called ‘centred text’), in which the lines of text
are placed equally on both sides of an imaginary line running vertically down
the centre of the screen

• justified (also called ‘fully justified’), in which the first and last characters of
each line of text are lined up with those above and below to form a neat
rectangle of text.

MAIN HEADING

MENU INSTRUCTIONS

MENU ITEM 1
MENU ITEM 2
MENU ITEM 3
MENU ITEM 4
MENU ITEM 5
MENU ITEM 6

MENU ITEM 7
MENU ITEM 8
MENU ITEM 9
MENU ITEM 10
MENU ITEM 11
MENU ITEM 12

HELP LINE APPEARS IN THIS POSITION

MAIN HEADING

MENU INSTRUCTIONS

Menu Item 1
Menu Item 2
Menu Item 3
Menu Item 4
Menu Item 5
Menu Item 6

Menu Item 7
Menu Item 8
Menu Item 9
Menu Item 10
Menu Item 11
Menu Item 12

Help line appears in this position

Figure 5.27 The use of both uppercase and lowercase text to display information is clearer
than using uppercase text only.

199Buldng software soutions

MAIN HEADING
Use the up or down arrow keys to make your choice

Menu item 1
Menu item 2
Menu item 3
Menu item 4
Menu item 5
Menu item 6

Menu item 7
Menu item 8
Menu item 9
Menu item 10
Menu item 11
Menu item 12

For help, press the F1 key

MAIN HEADING
Use the up or down arrow keys to make your choice

Menu item 1
Menu item 2
Menu item 3
Menu item 4
Menu item 5
Menu item 6

Menu item 7
Menu item 8
Menu item 9
Menu item 10
Menu tem 11
Menu item 12

For hep press the F1 key

MAIN HEADING
Use the up or down arrow keys to make your choce

Menu item 1
Menu item 2
Menu item 3
Menu item 4
Menu item 5
Menu item 6

Menu item 7
Menu item 8
Menu item 9
Menu item 10
Menu tem 11
Menu item 12

For hep press the F1 key

Screen has no borders
and related items do not
stand out clearly

Screen has light borders
and related items are
clearly separated from
other items

Screen has excessively
thick borders which make
the items hard to distinguish
and the borders are
overpowering

Figure 5.28 Borders are used to separate screen elements. The
choice of border can affect the legibility of the elements.

200 Heinemann Software Design and Development: Preliminary Course

In the presentation of screen information, care must be taken to ensure that
the text is clear and legible. For example, a major screen heading is more promin-
ent if centred across the screen rather than to the left or the right. However,
centred menu items do not work satisfactorily as the eye has to move horizontally
and vertically in order to read the next or previous item. Left alignment is the
most appropriate format. Right alignment is rarely used, for the same reason.
Justification may cause problems depending on whether the type is proportional
or mono-spaced. Using a mono-spaced typestyle gives each character, including
spaces, the same horizontal room. The only way that mono-spaced fonts can be
justified is if full spaces are added between words, which can lead to distracting
‘rivers’ of background appearing down the screen, as shown in Figure 5.29.

LCENCNG
NSTRUCTONS

LICENCING
INSTRUCTIONS

Figure 5.29 Justified mono-spaced text showing ‘rivers’ of white space.

Exercise 5.9

Before using this computer
program please read the
manual carefully and sign the
letter of agreement which is
packed with the disks. By
signing the agreement you
agree to be bound by the
terms and conditions of the
licence agreement.

Before using this computer
program please read the
manual carefully and sign the
letter of agreement which is
packed with the disks. By
signing the agreement you
agree to be bound by the
terms and conditions of the
licence agreement.

1 Complete each of these statements with the most appropriate word from the list:
alignment, clear, colour, concise, consistency, ergonomically, interface, justific-
ation, readability, relationship
a Unform commands throughout a progam is anexampleofdesign .
b A computer commnicateswith the user through th user .
c Excessve use o in text canoverload the sers visal system.
d Screen messages should be and .
e The spaing of texwill affect the of set f nstructions.
f A borderidicates a between he eleents it ncloses.
g and refer to t lining up of text atte beginning and

end of a line of text.
h One of the concerns of scree dsign is to provide a(n) sound

interface.

2 Briefly describe the features that constitute good screen design.

3 Describe the screen design features which assist with the legibility of a screen.
Illustrate your answer with examples.

4 Explain why consistency in screen design plays an important part in the con-
struction of a good user interface.

201Buldng software soutions

5 ‘Colour can play an important part in providing information to a user, but its
overuse can be detrimental to the effective use of a program.’ Discuss this
statement in terms of your knowledge of screen design principles.

6 Compare the two screens in Figure 5.25 in terms of screen design principles. State
the good and bad features of each. Redesign the two screens so that they exhibit
good design principles including that of consistency.

7 Choose a public domain program and comment on the good and bad points with
regard to its screen design.

8 Design a text-based screen which gives the user a choice of seven different
instructions at the bottom of the screen.

9 Use the form view of a database application such as Claris Works or Microsoft
Works to create an input screen for an address book.

10 Visit an ATM at a bank or building society and take note of the screen design.
Describe the features that exhibit good design and those you think can be
improved. Design a screen which welcomes a customer to an ATM.

Screen elements
Screen design is one component of the process of communication between a
program and its user; the other involves the choice of appropriate elements to
convey the information. Early programmers had little choice in the method of
presentation as most screens were text-based, but we are more fortunate. With
the advent of cheaper and faster computers, it became possible for graphical
methods to be used for display, and so the graphical user interface (GUI) was
born. The GUI provided two opportunities for the screen designer.
• to make communication between the computer and user more intuitive
• to provide information in a graphical form.

The remainder of this section describes the major types of screen elements
available to the programmer. The choice of programming language to implement
a problem may dictate whether or not some of these elements can be used.

Choice elements
Radio buttons
Radio buttons provide a method of choosing one of several options, at the same
time deselecting the previous choice (see Figure 5.30). They take their name
from the imagined action, which is similar to selecting a station on a push-button

Figure 5.30 A sequence of three radio buttons—only one of them is ‘active’ at a particular
instant. Pressing the ‘Print to Screen’ button deselects the ‘Print to Parallel Printer’ button.

First choice—parallel
printer

Second choice—serial
printer

Third choice—print screen

202 Heinemann Software Design and Development: Preliminary Course

radio. They are suitable for those menus which have several options, with only
one of them being active at any particular time. Radio buttons are usually used
in conjunction with a mouse or other pointing device, and the click of the mouse
button further adds to the perception that a button has been pressed.

Normal

Bold
Italic
Underline

OOuutlinnee

ShadowShadow

Figure 5.31 Two or more
check boxes may be marked at
a particular time.

Choice boxes
Radio buttons are used where only one choice is
able to be used within a selection. However, there
are cases in which two or more options can be
chosen from a selection. Choice boxes or check
boxes allow the user to mark a number of
selections before proceeding. Check boxes are
used to turn on or off a particular selection; this
process is known as toggling. Check boxes usually
indicate that an action has been chosen by the
user placing a cross inside a small square beside
the menu item. When a checked box is again
selected (usually by clicking the mouse button),
the cross disappears, indicating that the choice has
been deselected. A common use of check boxes is
within the formatting commands for text, where
characters may be given different characteristics
such as boldness, italics, underlining or shadow.

Figure 5.32 A dialogue box offering a default choice
(to cancel).

Navigational elements
An important aspect of program design is the manner in which the user moves
from choice to choice. This process is similar to choosing a path or route and is
therefore called navigation.

Dialogue boxes
A dialogue box, sometimes called a choice box, will usually occupy less than a
full screen. Its purpose is to provide the user with a choice of options before some
action is to take place. A dialogue box may consist of a simple message and two
or more choices, as shown in Figure 5.32, or it may provide access to a number
of different choices by means of choice boxes or radio buttons. Dialogue boxes
will usually appear on the screen with the most often used choice(s) as default
value(s), so that acceptance of the most commonly used items can be effected

simply.A default choice can also be used
in a dialogue box as a ‘safety net’ to
allow the user to exit from a potentially
dangerous situation. The example in
Figure 5.32 illustrates the use of a ‘safety
net’ type of default choice, the Cancel
option being a way out if the dialogue
box has been accidentally activated.

A dialogue box may also be used to
provide the user with further infor-
mation or help. While on the screen, a
dialogue box will usually be the only
active area of the screen, thus drawing
the user’s attention to the messages that
it carries.

203Buldng software soutions

Several differing navigation methods are available to the programmer. Those
that are chosen will depend on the type of application, the type of user being
targeted, the type of user interface and the options available within the particular
programming environment. The methods that are most commonly used include
the use of screen hot spots, icons, menus, special key combinations, palettes and
toolbars.
• Screen hot spots such as buttons have various actions associated with them.
• Icons (small pictures) represent the various program modules.
• Menus offer a number of choices, the choice being selected by the use of a

keyboard, a pointing device or another input mechanism. A menu may be
presented as a line of options on the screen, in which case it is called a menu
bar. Menu items can also be presented as ‘pop-up’ or ‘scroll-down’ menus.

• Special key combinations are very popular in the ‘command line interface’ in
which all communication with the computer is accomplished by keystrokes.
The use of key combinations is often accompanied by the provision of a
keyboard template which shows the user all of the appropriate key
combinations.

• Palettes present the navigational options in the form of a grid of choices,
which are often shown as icons. Palettes may be floating, which enables the
user to put them in places on the screen that do not interfere with the task
being performed. This type of navigational aid is often used in graphic-
processing applications, where a majority of the screen area is needed for the
manipulation of data.

• Toolbars present their options as a line of icons. Toolbars are usually placed
along one of the edges of the screen.

Figure 5.33 A screen showing a ‘floating palette’ and a menu bar.

Menus and menu bars
In all but the simplest programs, the user is required to make choices. One of the
most popular ways of displaying those choices is to use either a menu or a menu
bar. Creating a usable menu or menu bar is not just a matter of listing the choices
and thinking of the way in which they are to be presented. Foremost in the mind
of the screen designer is the need to quickly and clearly present the available
options and provide the user with an easy method of making a choice.

204 Heinemann Software Design and Development: Preliminary Course

Items presented in either a menu or a menu bar should be clearly defined and
consistent in placement, method of choice and meaning. As much as possible, the
same, or similar, menu items should appear in the same places on the screen and
require the same actions for choice. For example, it is common practice among a
number of programmers to use the ESCAPE key to either cancel an action or
return to the previous screen. If this method of cancellation is carried through the
entire program, it builds confidence in the user. However if, for some reason, a
programmer decides to use the ESCAPE key to cancel on one menu, and uses the
key combination CONTROL-X on the next, a user will have to make a conscious
effort to match the screen with the method of cancellation. The second example
will slow down the operator and may cause anxiety and loss of confidence in the
use of both the program and the computer.

Icons
An icon is a pictorial representation of an object or action. A properly designed
icon can provide an easily recognised portrayal of that item. The design of a
suitable icon is not easy. Several points have to be taken into consideration:
• The icon should be easily recognisable as representing the action or object. For

example, an icon in the shape of a pair of scissors is almost certainly going to
represent the process of ‘cut’. The scissors icon could not reasonably be inter-
preted as ‘delete from disk’.

• The icon should be simple. Fancy colours and graphics provide the user’s brain
with more information than is necessary, all of which has to be processed
before a decision on the icon’s meaning can be made.

• The icons in a screen group should, as far as possible, be easily distinguishable
from the others in the same group.

• Icons should be not too small as the user needs to be able to place the cursor
on them.
Icons can be used on the screen by placing individual icons in an appropriate

position on the screen, or by incorporating them in groups, using screen elements
such as toolbars, menu bars, rulers, palettes and dialogue boxes. They can also
appear as part of a dialogue box to bring the user’s attention to some operation
or consequence. For example, a ‘stop sign’ icon is often used to convey the
message that a process has been halted prematurely, or that the program has
stopped for the user to make a crucial decision such as whether or not to
continue with the deletion of a file. Figure 5.33 illustrates the use of icons in a
floating palette. Figure 5.34 illustrates the use of icons in a toolbar.

Figure 5.34 A toolbar illustrating the use of icons on buttons to represent various
menu choices. Some of the icons have obvious meanings, but others do not.

Windows
One of the most widely used screen display elements is the window. Windows
are areas of the screen that are enclosed by a border. The use of windows allows
several differing items to be simultaneously displayed, enabling the user to
quickly change from one to the other. The use of windows allows the user to
imagine the computer screen as a desktop on which there are various items; one

205Buldng software soutions

of these items will be ‘on top’ of the pile and therefore able to be changed.
Windows are most common in a graphical user interface. They can be employed
in a text-based screen display, but with difficulty.

Figure 5.35 A number of windows visible on a screen.

Prompts
Prompts are short messages to the user
giving information about what actions
can be carried out. Screen prompts are
an important communication between
the program and the user and as such
should be clear and unambiguous. Good
prompts should be non-threatening,
should not talk down to the user and
should avoid humour. The placement of
prompts is also significant, as a prompt’s
positioning on the screen will often
signal its importance. For example, a
prompt in the centre of the screen will
be very noticeable and is therefore most
suitable for a warning message, whereas
a prompt placed at the bottom of the
screen is less noticeable and is often
used as a help item.

Figure 5.36 The placement of a prompt will often signal its
importance.

206 Heinemann Software Design and Development: Preliminary Course

Graphics, pictures and text
During the twentieth century the printing industry has moved from a largely
text-based system to one which incorporates graphics and pictures. A similar
transformation has occurred with computer technology, and many printing
techniques can be utilised by a programmer when designing a screen.

Graphics, pictures and text form the visual image which the user interprets.
Often a message can be conveyed better through the use of a visual image such
as a picture or a graphic, although on other occasions text is a better choice.There
are times when two or more of these elements have to be combined and this is
where a designer needs to exercise caution. The placement of these elements in
relation to each other is important, as poorly placed graphics, pictures or text can
result in the element(s) being ignored by the user.

When determining the placement of these items, the natural reading scan has
to be taken into consideration. The reader of English scans the page from left to
right and from top to bottom. Therefore elements in the top-right and bottom-
left corners of the page or screen will have less impact. Similarly, when users first
look at a screen, their attention is drawn to its centre, so elements in the centre
of the screen will be more noticeable than those at the edges. The top of the
screen will take precedence over the bottom, as the user’s eyes are most likely to
focus on the top first.

Exercise 5.10
1 Complete each of the following statements with the most appropriate word from

the list:
check boxes, command line, default, GUI, icon, navigation, palette, prompts,
radio buttons, window

a A user interface which uses pictorial methods to present information is known
as a .

b An option which is most likely to be chosen by the user can be made a
vaue itin aialogue box.

c A text-based syste is often known as a iterface.
d A is an area of the screen surrounded by a border.
e A grapicl method of howing choice, known s an , is used as

an alternative to text.
f can be used to present a number of choices to the uer when only

one is able to be used at a time.
g Short messages lled are presented to the user to provide

information about a choice.
h When two or more choices from a selection can be active at the same time, a

screen deigner may choose to represent hemwith .
i A number of relatd icons can be grouped together as a on the

screen.
j Movement from coice to choie within a pogram is nown as .

2 Briefly describe, with examples, four different screen elements.

3 Explain how the choice of screen elements can assist the user.

4 Describe the screen elements that are available to the designer of a text-based
screen.

207Buldng software soutions

5 Describe the advantages that a graphics-based screen has for the designer.

6 Design an icon which is suitable for representing an ‘undo’ which reverses the
previous action.

7 Design a dialogue box which allows the user of a database to move between the
‘add a record’, ‘delete a record’ and ‘update a record’ modules.

8 Design a screen for a program which has been created for a small child to practise
the alphabet. The child has a letter displayed together with a picture of an object.
Choices are to go on to the next letter, go to the previous letter, hear the letter
name spoken, hear the name of the object spoken or leave the program.

9 Examine and comment on the elements used in the design of a public domain
software application.

10 Compare the use of screen elements in the public domain application examined
in question 9 with those of a commercial software application.

Documentation
Types of documentation
Documentation can be categorised as external or internal. External document-
ation is needed for the development and use of software. Internal documentation
forms part of the actual programming.

Several forms of documentation are required during the software develop-
ment cycle. This documentation is not discarded at the implementation stage but
is used later by system developers to ensure that the software functions correctly.

Software specifications define the nature of the problem and indicate the
nature of the inputs, outputs and restrictions. Test data is also created at this
stage. As part of the specifications, documents such as a program specification
report, dataflow diagrams, a data dictionary, and input and output specifications
are created.

The algorithm description forms the basis for program design and, regardless
of the description method chosen, will give an unambiguous description of the
processes which have to be coded. Common methods used for describing algor-
ithms are the flowchart and pseudocode (the two approved methods of algor-
ithm description for this course), structured English and Nassi-Schneiderman
diagrams. Once coded in a particular language, the algorithm description be-
comes the program’s source code. (Source code will be documented by intrinsic
documentation such as the choice of appropriate identifier names and by other
internal documentation such as comments or remarks.)

Implementation of the software requires the following forms of document-
ation for those who install and use the software:
• an installation guide to inform the installer of all steps necessary to success-

fully install the software on a computer system; this guide will also provide
information on the minimum hardware requirements as well as on problems
that may be encountered during this phase

• a user’s manual (the main reference) to provide information on the tasks that
the system can perform and ways in which the user can overcome any
operating problems

208 Heinemann Software Design and Development: Preliminary Course

• supporting documentation such as trouble-shooting guides and various forms
of online documentation.
Each of these documents is produced at a particular stage of the development

cycle. In order to achieve a successful solution, these documents are sorted into
various sets, each set being appropriate to a particular group (or groups) of
personnel. One set is created for the development team to use during any
modifications; one set is designed for the end user and one for the system admin-
istrator. In this section we examine the documentation that is appropriate for
each of these groups and discuss the standards that should apply to these
documents.

During the development cycle a large amount of external documentation is
produced. Some of these documents will form the basis of the product docu-
mentation; the remainder, known as process documentation, will become largely
outdated.

Process documentation is documentation produced by the system develop-
ment cycle. It will have served its development purpose by the time the cycle
reaches the implementation stage, but should be retained to assist in system
maintenance and later development.

Product documentation falls into two categories: that which becomes manuals
and guides for system maintainers and developers, and that which forms user’s
guides. User documentation incorporates documents that describe the purposes
of the system and how end users can use the software. Other user documentation
is provided for system administrators whose task it is to keep the system running.

As can be seen from the above descriptions, final documentation of the
product is not created as an afterthought but forms an integral part of each stage
of the development cycle. It is extremely important that the documentation is
kept current, by being updated each time changes are made.

Documentation for developers
Documentation required by developers will consist mostly of process document-
ation, documenting the design process and the system.

The design process is an important aspect of documentation. The original
design plan, together with subsequent modifications, can be useful in planning
further design activities. Such a design history can be extremely useful in later
projects. Design processes learnt during the development of one system can lead
to greater success when new projects are attempted. Documents falling into this
category include test schedules, memos, working papers and reports.

The purpose of system documentation is to provide a detailed description of
the system and to provide information that will assist with the maintenance of
the system. System documentation consists of many of the documents produced
at various stages during the development cycle: the system requirements, system
descriptions, algorithm descriptions, program source code, plus a system
maintenance guide. They include dataflow diagrams, data dictionaries, output
specifications reports and data files specifications.

Documentation for users
Documentation required by users will consist of a number of documents: a
functional description, an introductory manual, a system reference manual, a
system installation guide and a system administrator’s manual. In addition, sup-
port documents such as trouble-shooting guides, reference cards and online help
are often provided.

209Buldng software soutions

Paper based documentation
A functional description contains a brief outline of the system requirements and
the purpose of the system. An introductory manual describes the manner in
which the system is started and the use of common system functions. The
introductory manual should contain a series of tutorials that illustrate these
common functions as well as methods of recovering from common errors. It is
important that the introductory manual is written in an informal and non-
technical manner so that a beginner will find it easy to follow (see Example 21).

Example 21
ClarisImpact is a business graphics package which enables the user to produce
multi-page drawings, reports and presentations. The Getting Started manual
(Figure 5.37) is divided into six chapters. The first is an installation guide, the
second provides a general overview of the application, and the other four deal
with the major features of the program. Each of the operational chapters uses a
series of tutorials to take a new user through the basic functions of the program.
At the end of each chapter is a reference table which directs the user to the
appropriate chapter in the User’s Guide (Figure 5.38) where more information
can be obtained.

Figure 5.38 The ClarisImpact
User’s Guide.

Figure 5.37 ClarisImpact Getting
Started manual.

210 Heinemann Software Design and Development: Preliminary Course

A more comprehensive system reference manual (or user’s manual) will
accompany the introductory manual. The system reference manual will contain
a complete listing of all the functions of the system, arranged in a logical manner
(for example listing the functions alphabetically or by family). Each of the
functions should be described in detail, with a description of the inputs the
function requires, the outputs it produces and any special features it may have.
As well as these basic descriptions, the manual may contain samples of screen
displays that the user may encounter while using the functions, and a graphical
representation of the way in which the functions relate to each other. A second
purpose of the manual is to provide a complete description of all known
operational errors and how to recover from them.

The system reference manual should be written in a more formal style than
the introductory manual and provide a comprehensive description, as its purpose
is for reference. Readability is not as important as accuracy and clarity. Language
used in this manual will tend to be more technical than in the introductory
manual, although the use of technical terms should be kept to a minimum.

Like the ClarisImpact Getting Started manual, the User’s Guide is arranged so
that it incorporates tutorials that explain the functioning of each available option.
The chapters are arranged according to tasks the application can perform; for
example, there are separate chapters on making data charts, making timelines,
making presentations and so on. Each of these chapters describes the program
functions which are required by the task, illustrating their use by means of
tutorial examples. The manual also provides a comprehensive alphabetical index.

The installation guide is usually aimed at the system administrator. It contains
details of the minimum hardware and software support required for the instal-
lation as well as a description of the computer-readable media containing the
installation files. A further purpose of the guide is to provide details of the
permanent files that will be installed as part of the system.

How to start the program and how to configure it to meet a particular user’s
needs will also be described. The installation guide should be written with these
aims in mind. Language should be non-technical and concise, and anticipated
problems should be described in detail together with their solutions. Installation
and configuration steps will often be presented in point or step form so that the
installer can check off each step as it is completed.

A system administrator’s manual is designed to provide the system adminis-
trator with a comprehensive description of the program’s interaction with other
elements of the system and other systems to which it is connected. It will
document all messages created when the system interacts with other systems and
how to respond to these messages. Language used in this manual will tend to be
more technical than in the other documentation; however, technical terms
should not be used unless absolutely necessary.

Trouble-shooting guides provide a detailed description of the solution to
operating problems. The guides expand on the error messages displayed on the
screen. Some guides are aimed at the user and contain common operational
errors, and others contain system errors and are aimed at the system administrator.

Reference cards, which contain a brief list of common system functions and
how to use them, can provide support to both experienced and first-time users.
A reference card is usually one sheet containing a minimal description of com-
mon functions. It is designed for ease of use, its purpose being to provide infor-
mation without reference to the main set of manuals. Colour coding of functions
and key combinations will provide the user with visual clues to help in the use
of the card.

211Buldng software soutions

The Quick Reference Chart supplied with ClarisImpact (see Figure 5.39)
provides a summary of the program’s shortcuts and functions available in each of
the modules. The card has a picture of each of the icons used in the program,
with the name of the function it represents beside it.

Online help
Online help is becoming a more common method of providing the user with
assistance, as a reduction in the cost and an increase in the power of computer
hardware have given programmers the opportunity to use the computer to
provide some of the documentation required. This form of documentation has a
great advantage over paper-based manuals since it is available to the user without
leaving the computer. This is especially important for network users who may be
in different locations. Online help can also be linked to the menu items, for
example providing a description of the function of a button by means of a
pointer. Several methods of providing online documentation have been devised;
the most commonly used are balloons, user instructions and tutorial assistants.

Figure 5.39 A part of the ClarisImpact Quick Reference Chart.

212 Heinemann Software Design and Development: Preliminary Course

Balloons contain a description of
the menu or screen item that is
pointed to. Balloon text is usually
associated with a graphical user
environment such as Windows and
the Macintosh operating system.
When enabled, balloon text will
describe the action of a display
element whenever that element is
pointed to by the screen pointer (see
Figure 5.40).

Figure 5.40 Balloons in ClarisImpact give users information
about a screen element that has been selected by the pointer.

Help screens describe each function on-screen. A particular benefit of the
help screen is that it can make use of a computer’s ability to rapidly search
through a database of items for a wanted function.

ClarisImpact provides two forms of online help: balloons and a topic-based
help program. Balloon help gives the user information about the various screen
elements (see Figure 5.40). The topic-based help program describes the steps
taken to perform various tasks. Both forms of assistance are available from the
menu bar.

Figure 5.41 User instructions are a useful online aid. They
are often placed at the bottom of the screen.

The placement of a set of user in-
structions on the screen is the easiest
of the screen aids to implement, as it
only requires the addition of a line or
two of output text. However, it is
often difficult to phrase the instruc-
tions so that they are clear to the
user. The instructions should be
placed in such a position that they
leave a majority of the working
screen for the application display.
The most common positioning of
user instructions is at the bottom of
the screen; this is especially true in a
text-based display (see Figure 5.41).

A documentation method which is gaining popularity is the use of a tutorial-
assistant which helps the user complete a task. This kind of help presents options
to the user at various stages of the process, assisting with the steps. These on-line
assistants have been designed to provide the user with the necessary information
to complete a task, often offering the most common choice as a default.

213Buldng software soutions

Exercise 5.11
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Documentaton avlale on the compuer is knon s . This type of
hep has become more opular as computers have become and

. There are several different types of help; ,
and are popular. places text in little areas of

the screen when thepoiner is at mnu item.areusually placed at
the same point on all screens and tell the user what needs to be done.
are designed to give the user experience in performing a task.

2 Name which of the online help methods is best suited for each of the following
tasks. Explain your choice.
a describing how to create a birthday card
b explaining the meaning of an icon
c showing how to mail-merge a list
d explaining how to deal with the choices of a dialogue box
e showing which item on a toolbar will format a page with three columns

3 Design balloon text for each of the following items:
a a button which erases a disk
b a menu for a word processor which contains all formatting commands
c a default button on a dialogue box

4 Create a tutorial for your word processor which shows a novice how to set up a
letter. Your tutorial should contain a sample file and word-processed instructions.
Save your tutorial on disk in a directory (folder) named WORDTUT.

5 Design a single line of instruction which:
a tells the user to press the ENTER key after data entry
b warns the user that a file is about to be permanently changed
c informs the user that the only keys to have effect are the A, B, C and D keys.

Internal documentation
Internal documentation is contained in the programs. It assists programmers in
modifying the program for maintenance and further development.

The program listing is probably the most obvious documentation associated
with a computer-based solution to a problem. However, the manner of present-
ation of a program can affect both its legibility and its ability to be followed
and/or modified. For example, compare the legibility of the following two
samples of identical Pascal code. The first sample has not been formatted to any
standards; the second has been coded with one instruction per line and
indentation has been used to show the statement levels.

The second sample program is easier to follow not only because of the place-
ment of single instructions as separate entries and the use of indentation to show
the logical blocks such as loops and decisions, but also because the use of upper-
case letters for the Pascal reserved words together with the separation, wherever
possible, of the comments allows the structure of the program to be immediately
visible. Thus any modification of the code can be accomplished efficiently.

214 Heinemann Software Design and Development: Preliminary Course

The programmer has a responsibility, when creating program code, to ensure
that it can be easily modified and updated. One of the easiest ways of
accomplishing this task is to employ internal documentation in the form of
comments (or remarks) and meaningful identifier names.

Most of the languages from the second generation and above allow the
programmer to insert text which is able to be ignored by the compiler or
interpreter. This facility has been included in the language to allow a programmer
to make notes (comments or remarks) inside the program code. The purpose of
this type of internal documentation is to provide a means for the programmer to
state the purpose of a section of code for later reference, for example in the
debugging or maintenance stages of the code. Internal documentation is also very
important if a team of programmers is working on the one problem, as it lets all
team members know the processes that are being carried out in other modules.

The careful choice of identifiers can assist in the processes of development
and maintenance. The use of meaningful names for variables and subprograms is
known as intrinsic documentation (that is, the documentation is built into the
code). For example, it is much easier to determine what is meant by the line of
code balance := balance–withdrawal than by a statement such as x := x–y
when written in a program to process withdrawals from bank accounts. The
second statement will, with the same data as the first, produce the same result;
however, its meaning may be lost to all but the programmer, and so maintenance
could be a problem.

The use of procedures (subprograms) to carry out repeated tasks and the use
of identifiers to represent constants in preference to using the value also assist
with maintenance. Declaration of constant identifiers at the beginning of a
program may seem to be a waste of time, but if it becomes necessary to change

Example 22
program menu_test (input, output); var choice: char;
procedure Add_record; begin writeln(’Add record stub’) end;
procedure Delete_record; begin writeln(’Delete record stub’) end;
procedure Sort_records; begin writeln(’Sort records stub’) end;
procedure Invalid_input; begin writeln(’Invalid choice stub’) end;
begin writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’); writeln(’D to DELETE a record’);
writeln(’S to SORT the records’); writeln(’E to END this session’);
readln(choice); while (choice <> ’E’) and (choice <> ’e’)
do begin if choice in [’A’, ’a’, ’D’, ’d’, ’S’, ’s’] then

{this statement ensures that other characters are excluded .. otherwise}
case choice of ’A’, ’a’: Add_record; ’D’, ’d’: Delete_record;
’S’, ’s’: Sort_records end {end of case statement} else

Invalid_input;
writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’); writeln(’D to DELETE a record’);
writeln(’S to SORT the records’); writeln(’E to END this session *’);
readln(choice); end end.

215Buldng software soutions

Example 23
PROGRAM menu_test (input, output);
VAR

choice : char;
PROCEDURE Add_record;

BEGIN
writeln(’Add record stub’)

END;
PROCEDURE Delete_record;

BEGIN
writeln(’Delete record stub’)

END;
PROCEDURE Sort_records;

BEGIN
writeln(’Sort records stub’)

END;
PROCEDURE Invalid_input;

BEGIN
writeln(’Invalid choice stub’)

END;
BEGIN

writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’);
writeln(’D to DELETE a record’);
writeln(’S to SORT the records’);
writeln(’E to END this session’);
readln(choice);
WHILE (choice <> ’E’) AND (choice <> ’e’) DO
BEGIN

IF choice IN [’A’,’a’,’D’,’d’,’S’,’s’] {this statement ensures
that other characters are
excluded; otherwise…}

THEN CASE choice OF
‘A’,‘a’ : Add_record;
‘D’,‘d’ : Delete_record;
‘S’,‘s’ : Sort_records

END {end of case statement}
ELSE Invalid_input;
writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’);
writeln(’D to DELETE a record’);
writeln(’S to SORT the records’);
writeln(’E to END this session’);
readln(choice);

END {end of while statement}
END.

216 Heinemann Software Design and Development: Preliminary Course

Team Activity

Your team is given the task of designing the
school’s interactive guide. You are to discuss
the screen design elements that are common
to all screens of the guide. Once you have
decided on the guidelines, publish them
using a word processor. Each member of the

team is then to use these guidelines in
designing one screen for the guide, using a
graphics program. When all screens are com-
pleted, team members should examine all
screens from the group and report on how
well the team guidelines have been followed.

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
A programmer ll produce two types of docmentation, and

 documentaionis uit into the code and takes the form
of comments and documentation. includes anuals,

, and . The documentation is
mportant for aintenance s it escribes the thatare bing carried
out in the program.

2 Explain the differences between internal and external documentation. Give an
example of each type of documentation.

3 Why would a program’s code listing would be useful after its implementation?
Given reasons.

4 Explain the role that formatting plays in the understanding of a program listing.

5 Reformat the following program so that its structure becomes clear:
on askQuestion ask ’Please enter X, Y or Z’ if it is not empty then
if it is ’X’ then do Xmenuitem else if it is ’Y’ then do Ymenuitem
else if it is ’Z’ do Zmenuitem else answer ’Please enter only X,Y
or Z’ do askQuestion endif end askQuestion

6 Code a program for the algorithm described in Figure 4.5 using an approved
programming language. In coding, pay attention to the formatting to ensure
that your program is easily read.

7 Define the term ‘intrinsic documentation’ when applied to a program listing.
What are the advantages of using intrinsic documentation?

8 Most high-level languages allow the programmer to insert comments or remarks
which are ignored by the compiler. What is the purpose of these statements?

Exercise 5.12

the value of one of the constants after the program has been written, one
occurrence only needs to be changed instead of a number throughout the
program. The use of clearly defined subprograms within the code further assists
a maintenance programmer in updating the program.

217Building software solutions

Review exercises

1 In English, a proper noun must start
with an uppercase letter followed by
at least one lowercase letter. Write a
description of this syntax using:
a BNF b EBNF
c syntax structure chart

2 Using Figure 5.10, the TUSIL structure
diagrams, determine whether each of
the following TUSIL elements is legal.
If the element is not legal, state the
error and correct the element.
a Real number .543
b Identifier hours-long
c Assignment WEEKS_WAGE
= PAY - PENALTY

d Integer 6543210
e Real number 6543210
f AVE RB SUM * NUMBER

3 Identify the probable control structure
in each of the following code
segments:
a if(paid) {

ticket = ’yes’}
else {

ticket = ’no’
b {ticket = ’yes’;

ticket = ’no’
}

c case grade of
’A’, ’B’ :
good_letter := true;

’C’ :
good_letter := false;

’D’, ’E’ :
bad_letter := true;

end;
d while index < 35 do begin

index := index + 1;
total := total +
weight[index]

end;

4 Explain why some languages require a
programmer to declare the type of
variables before they are used within
a program.

5 Describe the different types of error
that may occur when a program is
compiled and run on a computer. Give
one example for each of the errors
you have identified.

6 Explain how stubs, flags and
debugging output statements can be
used to help the programmer find
errors in the coded program.

7 Explain how you would write a
subprogram so that it can be added to
a library of code. Use an example to
illustrate your answer.

8 Use a graphics program to design a
screen for an interactive compact disk
player. The screen should display the
details of ten compact disks and allow
the user to select one to be played.

9 Design a text-based screen to perform
the same task as in question 8. Your
screen is restricted to 24 lines, each
containing 80 characters. Use a word
processor for the design. You need to
use a mono-spaced font such as
Courier for this exercise.

10 Use a graphics program to design a
suitable floating palette which gives
the choice to the user of 10, 12, 14, 16
and 18-point font size within an
application. Justify your choice of
method.

11 Design a trouble-shooting guide that
will help a novice computer user find
the reason why the computer is not
starting up properly.

12 Describe the differences between
product and process documentation.
Explain who uses each type of
documentation and the purpose for its
use.

Chapter summary

218 Heinemann Software Design and Development: Preliminary Course

• Metalanguages are used to describe the syntax of a language. The two
metalanguages used in this course are BNF/EBNF (text-based) and syntax
structure diagrams (graphical).

• Metalanguage constructions can be used to decide whether or not a
statement follows the rules of a language.

• As for algorithm descriptions, there are three basic control structures in a
language: sequence, selection and repetition.

• When a program is executed, memory locations have to be allocated for
variable storage. Each language has its rules for determining the type of a
variable so that this storage can be properly allocated.

• Errors in coded programs will either be syntax errors or execution errors.
• Syntax errors occur when a piece of code breaks one or more of the rules

of the language.
• Execution errors occur when the program is being run.
• Stubs are small portions of code which represent yet-to-be-written sections

and are used to test the logic of a program before it has been completed.
Stubs may also be used to input test data items into a section of code.

• Debugging output statements are used to print out the value or values of
variables at particular points in the program so they can be examined. They
may also be used to trace the flow of execution through a section of code.

• A flag is usually a Boolean variable whose value is changed from ‘false’ to
‘true’ if a section of code has been executed.

• Programmers create and use libraries of already written code to shorten
development time. When a module has proved successful it should be
added to the library.

• Subprograms and modules should be written in such a manner that they
can be easily modified to perform a new but similar task.

• The user interface is the only method of communication between the user
and the program, so it should be carefully and thoughtfully designed.

• Consistency in screen design and the use of appropriate messages, text
features and screen elements will assist the user in performing tasks as well
as improving user confidence.

• Process and product documentation are produced during the development
process.

• Process documentation is used to assist with maintenance of the system,
and includes the algorithms, test data and code.

• Product documentation is used to assist the user and system administrators
with the operation of the system, and includes manuals, tutorials and
online documentation.

• Internal documentation is contained in the programming and assists in
making modifications. It includes intrinsic documentation and attached
comments.

66Checking the software
solution

cchhaapptteerr

Outcomes
• identifies the issues relating to the use of software solutions (P 3.1)
• investigates a structured approach in the design and

implementation of a software solution (P 4.2)
• uses and justifies the need for appropriate project management

techniques (P 5.1)
• uses and develops documentation to communicate software

solutions to others (P 5.2)
• describes the role of personnel involved in software development

(P 6.1)
• communicates with appropriate personnel throughout the software

development process (P 6.2)
• designs and constructs software solutions with appropriate interfaces (P 6.3)

Students learn about:
Test data
• selecting data for which the expected output is known
• the need for thorough test data
• the selection of appropriate test data, including:

– data that test all the pathways through the algorithm
– data that test boundary conditions — upper and lower values and values upon which

decisions are based
– data where the required answer is known

• testing both algorithms and coded solutions with test data, such as:
– desk checking an algorithm
– stepping through a coded solution line by line

220 Heinemann Software Design and Development: Preliminary Course

Evaluation of design
• comparing different solutions to the same problem

– different interpretations of the design specifications
– the advantages and disadvantages of different approaches to reaching the solution

• peer checking
• structured walk-through
• desk checking

Evaluation of implemented solutions
• checking the solution to see if it meets the original design specifications
• user feedback
• social and ethical perspectives

• determine the expected result given the test data
• create a set of appropriate test data and use it to verify the logic in a solution
• use test data on algorithms and coded solutions
• communicate solutions to others
• critically evaluate their work and that of their peers and share good aspects of their

solutions using elegant aspects of other students’ solutions

Students learn to:

221Checkng the software slution

Personal Profile—Donald Knuth (1938–)

Donald Knuth was born in Milwaukee,
Wisconsin on 10 January 1938. He demon-
strated a number of varying skills while still
at school. In eighth grade he won a com-
petition for making the most words from a
candy bar name, easily winning by forming
over 4500 words. This win demonstrated
his ability to recognise and manipulate
patterns. Although interested in mathe-
matics at school, young Donald spent more
of his time playing and composing music.
He was going to major in music once he
went to college.

In 1956 Donald was offered a physics
scholarship to Case Institute of Technology.
In his first year at Case he taught himself to
program the university’s IBM 650 com-
puter.This was no mean achievement, since
at that period programming was performed
in assembly language. He excelled in programming, writing programs with
applications as varied as factorising numbers into primes, playing tic tac toe and
rating the players of the school’s basketball team. He graduated with both a BS
and an MS in 1960, the Master’s degree being awarded in recognition of his
exceptional achievements. In 1963 he was awarded a doctorate from California
Institute of Technology.

While still a graduate student, Knuth started writing compilers for various
computers. He served as a consultant to the Burroughs Corporation from 1960
to 1968. He was approached by the publisher Addison Wesley to write a book
about compilers. By 1966 he had written 3000 pages of draft, discovering a
general method for determining the rules needed for a language. The publisher
decided to expand the project to a seven-volume survey of programming.The Art
of Computer Programming is a standard reference on the subject, at the moment
consisting of three volumes, published in 1968, 1969 and 1973. Knuth has now
retired academically to concentrate on finishing the book.

Knuth started working on a digital typography project in 1976. This resulted
in the TeX document preparation system and the METAFONT system for type
design. As a result of this work, the WEB and CWEB languages for structured
documentation were also produced and the methodology was called Literate
Programming.

Donald Knuth was Professor of Computer Science at Stanford University
from 1968 to 1993 when he was appointed Professor Emeritus of the Art of
Computer Programming. He has written a large number of research papers and
a number of other books, including a novel. He is also an accomplished musician
and composer who has designed his own pipe organ. He still lives at Stanford
University.

222 Heinemann Software Design and Development: Preliminary Course

Test data
An item being manufactured will, at various stages of its construction, undergo
testing to ensure that it will effectively perform the task for which it was
designed. A computer program undergoes the same process. At each stage in its
development the program is tested to determine whether it will solve the
problem for which it was designed.

A program and its components cannot be tested unless some form of input is
given. Similarly, the outputs from these inputs need to be known before the
testing process is begun. A set of data known as test data has to be formulated to
use for the testing process. Documentation associated with this data will also be
needed in order to explain why certain elements have been chosen and what the
expected outcomes of the processing will be.

Requirements of test data
For a set of test data to be an effective assistant in the process of testing and de-
bugging, it is necessary to carefully formulate and document each data item.

The foremost objective in testing an algorithm or program is to determine
whether the original problem is solved by it. Thus the first step in test data design
is to choose data which relates to differing cases, as described in the original
problem. This process involves examining all decisions to be made in the
execution of the program and ensuring that test data is created which causes
program flow to be channelled along each of the paths within the algorithm or
program. When data enters a decision process, one or more values are used for
comparison; these values are known as boundary values. Test data needs to be
constructed in order to test not only what happens on both sides of the boundary,
but also the value itself.

A good set of test data should achieve the following three aims:
• to test all parts of the program
• to test each of the paths that can be taken during execution
• to test on each side of any boundary value as well as the value itself.

Example 1
Problem: Typist rating
A program is to be written to grade a typist’s speed. If the speed in words per
minute (wpm) is below 25, the typist is to be graded as ‘Unsatisfactory—needs
training’; if the speed is 25 wpm up to 55 wpm inclusive, the typist is to be graded
as ‘Satisfactory’; if the speed is over 55 wpm, the typist is to be graded as
‘Exceptional—receives a 10% bonus’.
Test data considerations
The boundary values in this problem are at 25 and 55 wpm. Test data should be
chosen in the following ranges: less than 25 wpm, exactly 25 wpm, between 25
and 55 wpm, exactly 55 wpm and over 55 wpm. The other consideration for this
set of test data is to ensure that negative and zero typing speeds are rejected as
being out of range. (The inclusion of one of these data items can then be used to
check data validation procedures within the processing.) Typing speeds in excess
of 600 wpm (10 words per second) are unreasonable, so such a speed should be
included to check for reasonableness. Sample test data are shown in Table 6.1.
continued next page

223Checkng the software slution

Ty ing speed (wpm) Expected output
24 Unsaisfactory—needs taning

25 Satisfactory

26 Satisfactory

55 Satisfactory

56 Excepionl—recives a 10% bonus

–1Invlid input—out of range

700Invidinput—unreasonble value

Table 6.1 Sample data for the typist-rating problem.

Letter weight (g) Expected output
–100 Invalid input

—out of range

145 50 cents

150 50 cents

155 75 cents

250 75 cents

255 $.00

350 $.00

355 $.25

450 $1.25

455 $1.50

500 $1.50

505 Parcl rates pply

Example 2
In this example the boundary values are not expressed directly within the
problem.

Problem: Letter postage
A program is to be written to calculate the cost of posting a letter according to
the following rule: Letters with weights up to and including 150 g cost 50 cents.
Each 100 g, or part, above 150 g is charged at a rate of 25 cents up to a maximum
letter weight of 500 g. All letters over 500 g are rejected as parcels.

Test data considerations
The boundary values in this problem are not clearly stated. We need to determine
what those values are before choosing test data for this application. The formula
states that the first 150 g are charged at 50 cents. The test data should therefore
cover values which are under 150 g and exactly on 150 g. Since the problem
specification also implies other boundary values, these should be taken into con-

Table 6.2 Sample data for the postage problem.

sideration when choosing other test
values. This type of data is especially
important if the algorithm ends up
using a number of binary selections,
or a multiple selection, as all bran-
ches need to be checked. Keeping
this in mind, values in the following
ranges also need to be included: over
150 g and under 250 g, over 250 g
and under 350 g, over 350 g and
under 450 g, over 450 g and under
500 g and over 500 g. The boundary
values of 250 g, 350 g, 450 g and
500 g should also be part of the set.
Finally, a negative letter weight is
included to check the data valida-
tion section of the algorithm.

224 Heinemann Software Design and Development: Preliminary Course

Example 3
Problem: Averaging in tens
A set of positive numbers, consisting of ten or fewer values, is to be averaged. If
there are fewer than ten values, the end of the data will be signalled by a negative
value. This process will continue until the first number input is negative, at which
stage the process will stop.

Test data considerations
Test data in this case should include the following: a set of exactly ten positive
values; a set of fewer than ten positive values terminated by a negative value; two
negative values in a row, one after a set of fewer than ten values followed im-
mediately by another negative to terminate the program; a test for a negative
after ten values; and, finally, a set of more than ten positive values in order to test
that the program averages the first ten, then the others. The boundary conditions
in this example are the maximum number of positive values to be processed and
the negative value which terminates either the data input for a set of values or
the program.

A

D E

B C

Figure 6.1 Branching multiplies the number
of possible execution paths through an
algorithm.

In order for the program to work properly, each of the paths through the
algorithm must also be checked. The test data required for this purpose needs to
be designed in a logical manner in order to ensure that no path is missed. The
amount of test data required will also depend on the number of branches that can
be taken during execution. There is a multiplying effect when a choice of path is
made; for example, the addition of a two-way branch will usually double the
amount of test data required, and a three-way branch will triple it. The possible
paths through the algorithm represented by the flowchart in Figure 6.1 are:

through A and D, A and E, B and D, B
and E, C and D, and C and E, giving
six possible paths, all of which need to
be tested. Many programs have a far
more complex structure in which
there are branches within branches of
the main flow; problems posed by this
structure are considered in the next
section.

225Checkng the software slution

The test data dictionary
As with all stages of the systems development lifecycle, documentation plays an
important part in the testing process. The purpose and expected output from
each item of test data need to be known by the tester, who may not be the test
data designer. A dictionary of data items is constructed to list all test data items,
their expected outputs and the reason(s) for their inclusion in the set.

Typing speed Expected output Reason for inclusion
(wpm)

24 Unsaisfactory—needs elow the boundar value fr satisfactory
tranng

25 Saisfactory Th lower boundar value fr satisfactory

26 SaisfactoryWihin the satisfactory range

55 Saisfactory The upper boundar value fr satisfactory

56 Excepionl—recives Above the upper bounday value for
a 10% bonus satisfactory

–1Invidinput—out of range To test atavalidation procedures

Example 4
Problem: Postage classification
A postal item is classed as either a letter or a parcel. If it is a letter, it is charged at
a rate of either 50 cents or 75 cents according to its weight. If the article is a parcel,
it is charged at one of four different rates according to its weight (two categories)
and distance travelled (also two categories). How many items of test data are
required to test the charging algorithm for this problem?
Test data considerations
We will assume, for this example, that validation test data is not included. Three
items are required to test the letter module of the program (one each for both
sides of the boundary and one on the boundary). The parcel data needs to include
three different weights (below, on and above the boundary value) and three
different distances (below, on and above the boundary value). This gives a total of
nine different data items to test the parcel algorithm. Hence the total number of
different test data items to fully test the algorithm is twelve.

Example 5
Problem: Typist rating
A program is to be written to grade a typist’s speed. If the speed in words per
minute (wpm) is below 25, the typist is to be graded as ‘Unsatisfactory—needs
training’; if the speed is 25 wpm up to 55 wpm, the typist is to be graded as
‘Satisfactory’; and if the speed is over 55 wpm, the typist is to be graded as
‘Exceptional—receives a 10% bonus’.

Test data dictionary

Table 6.3 Test data dictionary for the typist-rating problem.

226 Heinemann Software Design and Development: Preliminary Course

Letter weight (g) Expected output Reason for inclusion

–100Invidinput— To test da alidation procedures
out of range

145 50 cents Undr lowest bounday value

150 50 cents Lowest boundary value

155 75 cents Between next two boundry values

250 75 cents Boundary value

255 $1.00 Between next two bounday values

350 $1.00 Boundary value

355 $1.25 Between next two bounday values

450 $1.25 Boundary value

455 $1.50 Between next two bounday values

500 $1.50 Upper boundary value

505 Parcl rates pply Above upper boundry value

Table 6.4 Test data dictionary for the letter postage problem.

Example 6
Problem: Letter postage

The boundary values are not expressed directly within the problem.
A program is to be written to calculate the cost of posting a letter according to
the following rule: Letters with weights up to and including 150 g cost 50 cents.
Each 100 g, or part, above 150 g is charged at a rate of 25 cents up to a maximum
weight of 500 g. All letters over 500 g are rejected as parcels.

Test data dictionary

Example 7
Problem: Averaging in tens

Sets of positive numbers, consisting of ten or fewer values, are to be averaged;
each set will consist of ten or fewer values. If there are fewer than ten values, the
end of the data will be signalled by a negative value. Otherwise, the first ten
values will be averaged, the eleventh value forming the first number in the next
group. This process will continue until the first number input is negative, at
which stage the process will stop.

Test data dictionary

Each data item here is a list to be processed, instead of an individual item, as
shown in Table 6.5.
continued next page

227Checkng the software slution

Data item Expected output Reason for inclusion
–1, 3 Nil To test for termination on a first

negative input

3, 2, 1, 0, –1, –1 1.5 To test for set of values with fewer than
10 elements, terminate the run afterwards

10, 9, 8, 7, 6, 5, , 3, 5.5 To test fora st of vlues with exactly
2, 1, –1 10 elements, terminate the run afterwards

10, 9, 8, 7, 6, 5, , 35.5, 1.5 To testfor succeedng sets of values, the
2, 1, 0, 1, 2, 3, –1, –1 first with 10, the second with fewer

0, 1, 2, 3, –1, 10, 9 8,1.5, 5.5 To testfor succeedng sets of values, the
7, 6, 5, 4, 3, 2, 1, –1 first with fewerthan 10 elements, the

second with 10 elements

Table 6.5 Test data dictionary for the averaging in tens problem.

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
The min reason for esting a prgram s to findwhether it the

problem. In designing data, we need to all the
decisions in the . Decisions involve wit a value known as
a value. The data we design must also have
outcomes wich can be compard with the of our tests to determine
whether the program works.

2 Explain the reasons for including a dictionary of test data items in the system
documentation.

3 Explain the meanings of the terms ‘test data ’and ‘boundary value’.

4 What is the purpose of using test data during the program development cycle?

5 A computer program is being designed for the police department to process the
photographs from ‘speed cameras’. Create a set of test data for the processing
algorithm together with the expected outputs and reasons for choosing each
item of data. Write an algorithm for this problem and test it using your test data.
Code the program in one of the approved languages and use your test data to
check the program. The fines are calculated according to Table 6.6.

Exercise 6.1

Table 6.6

Speed above limit Penalty

1 to 15 kmh Fine $50 plu 4 points

16 to 25 kmh Fine $50 plu 6 points

26 to 35 kmh Fine $150 plu 8 points

over 35 km/Fine $280 lus lo of licence for 2 years

228 Heinemann Software Design and Development: Preliminary Course

6 A plumber charges a service call fee of $50 which includes the first 15 minutes
labour. Labour after the first 15 minutes is charged at a rate of $25 per 15 minutes
or part thereof up to a maximum of 2 hours. After 2 hours the rate becomes $60
per hour or part thereof. The plumber works a maximum of 8 hours in any one
day. Create test data that will test a program module to calculate the bill,
including data validation test data. Present your test data in a suitable form.

7 A particular algorithm contains three branches, the first with four choices, the
second with two choices and the third with two choices. Draw a flowchart similar
to Figure 6.1. Describe all possible execution paths through the algorithm.

9 Determine the total number of test data items to test an algorithm for the
following problem. Validation test data need not be included.
A store employs a credit rating system for customers who wish to pay off items
on time payment. Customers are rated as ‘ineligible’ or ‘eligible’ according to
their past credit records. Those customers rated as eligible are further rated
according to their ability to pay. These ratings are ‘A++’, ‘A+’ and ‘A’ and
determine the limit of their allowable borrowings.

10 Create a set of test data values for this problem. You do not, at this stage, have
to determine the expected output values from the algorithm or program.
The federal government wishes to introduce a new scale of taxation based on the
amounts shown in Table 6.7. A module is required to calculate an employee’s
weekly tax when the weekly wage in whole dollars is used as input.

Figure 6.3Figure 6.2

A

C D

B

E F

8 Name all the different possible execution
paths through each of the algorithm
structures in Figures 6.2 and 6.3.

Table 6.7

WWeekly wage Tax payable
up to $175Nil

$176 to $300 20 cents for eh dollar over $175

$301 to $500 $2 plus 35 cents for ach dollar over $300

over $500 $95plus 55 cents for ch dollar over $500

A

E F G

B C D

229Checkng the software slution

Testing both algorithms and coded solutions with test data
The success of a computer application is measured by its ability to perform the
task as required. A program that contains errors or does not fulfil the design
requirements could not be considered a success. A comprehensive program of
testing will ensure that the computer application measures up to the required
standards of performance. The main aim of testing is to cause and discover errors,
not to show that a program functions correctly.

Before beginning the desk check of the program, it is a good idea to devise a
testing strategy. The complexity of the program will determine whether the pro-
gram can be tested as a whole or whether it is more efficient to test each module
individually before examining their interaction. A small program is easy to test as
a complete unit, as the number of possible execution paths is relatively low.

The process of desk checking involves tabulating all the variables and keeping
track of their values while following the execution path. A method of accom-
plishing this is shown below.

11 Design a set of test data for this problem, giving the expected output from the
algorithm for each item of test data. Data validation items are not required.
The Big Bytes Computer Shop sells floppy disks for $20 a box. If customers buy
more than one box, a discount system applies: The first 10 boxes are sold at full
price, for orders up to 100 boxes; the remainder are given a 10% discount. For
orders of 100 boxes or more, a bulk discount of 20% is given for the whole order.

Example 8
A Pascal program calculates the postage on a letter using the following charging
scale: A letter weighing up to 150 g costs 50 cents, and each additional 100 g
attract a charge of 25 cents, with a maximum weight of 500 g. Any letter over
500 g is rejected as a parcel with the message ‘Overweight letter—parcel rates
apply’. A number of letter masses are entered. A zero letter mass will terminate
the program.

As the program was developed, the pseudocode description (next page) of the
algorithm was created and then rewritten in Pascal. Test data was created as
illustrated in Table 6.8.

Letter weight (g) Expected output ($) Reason for inclusion

100, 150 0.50, 0.50 Normal value, boundary values

200, 0 0.75, end Terminate with zero

0, 100 end Terminate with no data entry

250, 300, 350 0.75, 1.00, 1.00 Noral value, boudary value

400, 0 1.25, end Normal value

450, –100, 1.25, out of range, end Boudaryvae, invalid mass

475, 500, 550, 0 1.5, 1.50, verwight lettr Nrmal value, bundary value,
—parce rates aply, end oerweight

Table 6.8 Test data for the letter postage program.

continued next page

230 Heinemann Software Design and Development: Preliminary Course

Pseudocode
BEGIN
get mass from user
REPEAT

IF mass <= 150 THEN
set cost to 0.5
ELSE IF mass <= 250 THEN

set cost to 0.75
ELSE IF mass <= 350 THEN
set cost to 1.0

ELSE IF mass <= 450 THEN
set cost to 1.25

ELSE IF mass <= 500 THEN
set cost to 1.5
ELSE output ’Overweight letter:

parcel rates apply’
ENDIF

ENDIF
ENDIF

ENDIF
ENDIF
get mass from user

UNTIL mass = 0
END

Pascal
program Letter_rates;

var
mass, cost: real;

begin
write(’What is the mass of the letter?’);
readln(mass);
repeat

if mass <= 150 then
cost := 0.5

else if mass <= 250 then
cost := 0.75

else if mass <= 350 then
cost := 1.0

else if mass <= 450 then
cost := 1.25

else if mass <= 500 then
cost := 1.5

else
writeln(’Overweight letter — parcel rates apply’);
writeln(’The cost of the letter is $’, cost : 4 : 2);
write(’What is the mass of the letter?’);
readln(mass);

until mass = 0
end
continued next page

231Checkng the software slution

When desk checked, the results as outlined in Table 6.9 were obtained, and
were compared with the expected output in the test dataset.

Note that as the desk check progresses with each data set, the old value of the
variable is crossed out lightly and its new value is written by the side.

Two problems were found from this desk check; the terminating value of zero
generates a charge of 50 cents before the program finishes, as does a negative
mass. To overcome this problem, a software patch could be written which allows
the cost to be printed out only if the mass of the letter is over 0 g. A better
programming practice would be to rewrite the algorithm slightly so that these
letter masses do not cause the program to generate a charge in the first place.

Table 6.9 Desk check of the letter postage program.

Run number Data values mass (g) Output ($)

1 100, 150, 200, 0 0.50, 0.50, 0.75

2 0 0.50*

3 250, 300, 350, 400, 0 0.75, 1.00, 1.00, 1.25

4 450, –100, 0 1.25, 0.50*

5 475, 500, 550, 0 1.50 , 1.50, overweight letter—
parce rates aply

* indicates an unexpected value which needs to be examined.

The above method of desk checking works well with small programs and with
small subprograms or procedures, but to test a large program in this manner
would be an almost impossible task. The programmer has to devise a strategy
which is easily documented and which will obtain the desired result (a well-
tested program). White-box testing is a process of thoroughly testing a module,
rigorously following each of the execution paths. This type of testing was applied
to the letter postage program above.

A thorough testing procedure will first check each of the modules within the
application. This may necessitate using stubs to provide data values to be used as
input rather than values supplied by earlier modules. For example, the testing
procedure for the validation module in a barcode reading and validating program
can be easily tested if an input stub is provided to accept the barcode in
preference to a barcode scanner and its associated modules. Quite often in
module testing, all paths will be checked using a method known as statement-
coverage testing. In this method the decisions are tabulated, often with the aid of
a decision tree or decision table, and test data items are created to force control
through each of the possible paths. A problem with this method is that even for
a smallish number of decisions a large number of test data items is needed. For
example, up to sixteen test data items are needed for four binary selections (see
Figures 6.4 and 6.5 for a sample algorithm and its execution paths). By keeping
the size of the program modules down, exhaustive testing of each module can be
undertaken. On completion of this process for a number of modules, the modules
may be tested to examine their interaction. Test data for the typist rating program

232 Heinemann Software Design and Development: Preliminary Course

discussed earlier illustrates how the test data is designed to cover all possible
paths through an algorithm. When using this test data with the written program,
the programmer will be statement-coverage testing.

D1

falserue

D2

falserue

D3

true flse

D3

true flse

Figure 6.5 The different execution paths that
can be taken through the algorithm in
Figure 6.4.

Figure 6.4 An algorithm including four
binary selections within a module.

True Flse

True

True

False

False True False

D1

D2

D3 D4

Error types
Errors that can occur within modules include arithmetic, comparison, control
logic, data structure and input/output errors.

Arithmetic errors
Arithmetic errors are those that occur in the processing of numerical data, the
most common being divisions by zero and problems due to the order of
calculation and truncation. For example, a program to calculate the length of a
rectangle when the width and area are given as input data will not function
properly if a negative or zero width is entered.The following BASIC program will
exhibit arithmetic errors if a zero or negative length is entered. (Remember that
the numbers before the instructions are line numbers which are used to order the
statements.)

10 INPUT(”WHAT IS THE AREA OF THE RECTANGLE”),AREA
20 INPUT(”WHAT IS THE LENGTH OF THE RECTANGLE”),LENGTH
30 LET WIDTH = AREA / LENGTH
40 PRINT(”THE WIDTH OF THE RECTANGLE IS”,WIDTH)
50 END

Comparison errors
Comparison errors occur in the attempt to compare two different types of data
elements (for example an integer with a character). They may also occur in the
ordering of relational operations and nested comparisons as the results of these

233Checkng the software slution

are hard to predict. A comparison error can easily occur in a decision statement
where the programmer wants two different conditions to be true at the same
time, for example A to be greater than B and A to be greater than C. In English
we tend to say ‘If A is greater than B and C ...’. However, if we translate this into
a language such as Pascal, taking A, B and C as integers, for example, the
statement

if A > B and C
will produce a comparison error since the logical operation called AND will be
applied to the two integers B and C, giving a Boolean result. When the computer
tries to put this result in the location represented by the identifier A, an error will
occur, since A is meant to store an integer and we are attempting to place a
Boolean result there.

false

true

Do needed
operations

Set index to
index + 1

Set index
to 1

Is index = 3?

Figure 6.6 Algorithm with
a control logic error.

Control logic errors
Control logic errors occur within the selection and
repetition structures of the program. Selection
structures need to cater for all possible selections and
allow control to exit the structure for each of these
selections. The main causes for concern in repetition
structures are the proper initialisation of variables at
the beginning of such a structure, incrementing by
the correct amount and correct termination of the
repetition.

For example, a program requires a loop which is
to perform a particular operation three times. The
programmer devises the algorithm shown in Figure
6.6 which is supposed to execute a particular
operation (represented by a subprogram) three
times. This structure contains a control logic error as
the loop will only be executed twice: once when the
variable index has a value of 2 (the first time around)
and once when it has a value of 3 (the second and
last time through). This error can be corrected
simply by setting the initial value of index to 0
instead of 1.

Data structure errors
Data structure errors include those in the
initialisation of variables, tests for proper indexing of
arrays and consistency in the use of identifiers. A data
structure error would occur in a program where, for
example, an array was indexed from 1 to 30 but the
program tried to access data element number 31
from the array.

Input/output errors
Input/output errors include those associated with data validation, and opening
and closing files as well as special cases such as empty records or end-of-data
markers. One of the most disastrous examples of this type of error is the case in
which a file is updated by the program but the updated file is not saved to disk
for later use.

234 Heinemann Software Design and Development: Preliminary Course

Top-down testing involves first testing the main or driver module, then
working down the hierarchy to the lowest level modules. Top-down testing relies
on the use of stubs to represent unwritten or untested modules at that stage. An
advantage of top-down testing is that the main modules can be tested in a
situation that simulates operation and a partial system may be implemented at an
earlier stage of development. However, top-down testing has some disadvantages,
including difficulty in simulating the actions of lower-level stubs and trouble with
the creation of suitable output from lower-level stubs.

Top-down is illustrated by Figure 6.8. The driver module A is tested first using
stubs to represent the modules at level 1. Once module A is functioning properly,
modules B and C and all other level 1 modules will be tested using stubs for level
2 modules. Similarly, level 2 modules are tested next. When all modules at higher
levels have been tested, modules F and G, at the lowest level, can be tested.

When the program has successfully passed through the desk-checking stage, it
is ready for run-time checking. In this process, the program is run on a computer
using first the test data, then some real data for which the outputs are already
known.

Bottom-up and top-down testing
The testing methods described above are usually described as bottom-up testing.
This process involves testing from the lowest levels (simplest) of the module
hierarchy upwards to the highest level (the main or control module). The
bottom-up testing method complements the top-down programming process, as
each of the modules developed can be tested as soon as it has been created.

Bottom-up testing is illustrated by Figure 6.7. Modules G and F are tested first
to ensure that they work. Once these modules are functioning properly, module
D (which lies on the next level above) can be tested. All other level 2 modules
are similarly tested. The testing process can now be applied to the modules in
level 1. When all modules at level 1 have been tested, the driver module can
undergo its testing.

Figure 6.7 Bottom-up testing starts at the smallest modules and works up to
the whole program.

Driver module

Level 1
module

Level 2
module

Level 2
module

Level 2
module

Level 3
module

Level 3
module

Level 2
module

Level 1
module

Level 1
module

A

C B

E D

G F

235Checkng the software slution

Driver module

Level 1
module

Level 2
module

Level 2
module

Level 2
module

Level 3
module

Level 3
module

Level 2
module

Level 1
module

Level 1
module

A

C B

E D

G F

Figure 6.7 Top-down testing starts at the driver module and works down to
the smallest modules.

Exercise 6.2
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
Errors within a program or a module are , , ,

and errors. errors occur in the processing of
numerica data. Some of these errors may be by the order
n wich opertions are performd.logic errors ocur inside a

or structure. structure errors may occur during
the of variables, of arrays and in using
identifiers.

2 Describe in your own words the process of desk checking a program.

3 Describe the different types of error that may occur in a program, giving
examples to illustrate your answer.

4 Perform a desk check on the following LOGO procedure to draw a polygon with
a given number of sides (called SIDE), each side having a length of 10 units. (For
the desk check, 10 units is a length of 5 cm.)

TO POLYGON : SIDE
REPEAT SIDE(FORWARD 10 RIGHT (360/SIDE))

END
Use a sheet of drawing paper, a ruler and a protractor to perform a desk check
using the following values of SIDE: 3, 4, 2, 1 and 0. Does the program fulfil the
design brief? What errors are there in the program?

5 The following code, which performs the task of adding up the marks for a test
and outputting the results, contains an error. Determine the nature of the error
and correct it. (A knowledge of the imaginary language is not necessary to
answer this question, as there are no syntax errors in this code.)

236 Heinemann Software Design and Development: Preliminary Course

MODULE addmarks ! **This module adds the marks for each question **
INPUT: question[1..10]!
OUTPUT: total_mark !
VARIABLE

index is INTEGER !
BEGIN

index <- 0 !
total_mark <- 0 !
WHILE index <= 10

total_mark <- total_mark + question[index] !
index <- index + 1

ENDWHILE
END

ENDMODULE ! **total_mark now contains the total score for the test**
6 Describe a problem of your own choosing, and devise a full set of test data for

the problem together with the expected outputs. Create an algorithm to solve
the problem and desk check your algorithm. Code your solution in a program-
ming language and test the program.

Evaluation of design
Evaluation of software design can be thought of as two processes—verification
and validation. Verification is the process in which the software is tested to see
whether it performs its functions correctly. Validation is the process where the
software is evaluated against the original specifications to see whether it will per-
form the tasks specified in the problem definition.

Although these two processes may appear similar, in fact they are completely
different. It is quite easy to build a software solution and check that it performs
a task. However if the task performed is not going to completely solve the prob-
lem, then the software is not successful.

In the Cumfy Coaches example in Chapter 3, the aim of the software is to
manage the bookings for one or more coach tours. If the software allows bookings
to be made and recorded, but will not allow changes to be made to customer
details or bookings to be cancelled, then the software will not completely per-
form the required tasks. In this case the software would pass the verification tests,
as it does allow customers to book a tour and it also stores the details. However,
the same software application would fail when it comes to validation as it would
not have the required editing functions.

Comparing different solutions to the same problem
We often think that there is only one correct solution to a problem, but there are
often a large number of alternative solutions. For example, if the problem were
how to travel from Sydney to Darwin, we might decide on the solution of flying
there directly, as this seems to be the most appropriate. But this solution is not
the only way of travelling to Darwin. Others that come to mind are to drive (this
solution itself has many different solutions as the route taken could vary), ride a
pushbike, or even go on a cruise liner that is heading to Darwin. Each solution

237Checkng the software slution

will take you to Darwin, but the circumstances of the trip may make one of the
solutions a better proposition than the others. Thus if we want to travel there as
quickly as possible, we will most likely fly. However, if we wish to see the coast
between Sydney and Darwin and are in no hurry, we may decide to ride a bicycle.

The same ideas apply in software development, although not necessarily in as
extreme a form as the above example. Different programmers will see a particu-
lar problem in their own different ways. When given a problem to solve, each
programmer may design a completely different solution from that of their col-
leagues. If each of the solutions completely solves the problem, which is correct?

Differing interpretations of a set of design specifications by different people
may lead to completely different interpretations of what the problem is in the
first place. This can cause problems as an interpretation of the design specifica-
tions may miss out on important points within the specifications. If this occurs,
it is possible that the software may not fully meet all the requirements.

When a number of software solutions to a problem are compared and evalu-
ated, their differences may be quite obvious. For example, the interface of one of
the solutions may be more intuitive, whereas another solution may provide a
faster processing time or more efficient data storage. Each of these solutions has
its advantages and its disadvantages.

We can easily see the differences in approach to a solution when we compare
commercial software applications that perform a similar task, for example a
number of word-processing applications. Each of these applications performs the
same basic task, but some word processors will produce files that are much larger
than others, since the way in which the formatting information is coded into the
file affects the size of that file. This can be illustrated by the information in

Figure 6.9 Files containing the same data may occupy different amounts of storage if created
by different applications. These three files contained no typed text, but used up vastly different
amounts of storage.

238 Heinemann Software Design and Development: Preliminary Course

Figure 6.9. Each of the files was created by a word processor or a word-processing
module of an integrated package. These files contained no visible characters, but
their sizes on disk varied from 553 bytes to 6430 bytes.

An advantage for a programmer in examining different solutions to a problem
is that his or her experience is broadened, and the programmer can draw upon
this experience in the future to help solve other problems. The sharing of these
experiences among programmers also enhances the working relationship needed
within a design group.

Methods of evaluation

Peer checking
Peers are people of the same standing in an organisation or group of people. One
of the most effective ways of evaluating a solution is for a peer to check a design.
Peers feel more comfortable with each other as they are all at the same ‘level’ of
the organisation, and so feel that they can express an honest opinion (whereas
they may not want to risk offending someone who has authority over them).
Honesty is one of the most valuable tools when it comes to evaluation of a soft-
ware design, as a lack of constructive, honest criticism might allow a faulty
product to be released.

Peer checking of a software solution is also beneficial because the checker is
not directly involved with the design of the product and therefore does not take
anything for granted. When people check their own work, errors can remain un-
detected, since assumptions can be made about the way in which parts function.

Structured walk-through
A structured walk-through is a clearly defined process in which a number of
peers take on particular roles. The main aim of a structured walk-through is to
identify errors that might otherwise remain undetected. The word ‘structured’ in
this context means that the process is well organised. The term ‘walk-through’
refers to the process of passing through the product step by step in order to find
the errors. The philosophy behind a structured walk-through is similar to the
philosophy behind the process of peer checking, that is, that it is easier for
someone other than the designer to identify faults in a product. The aim of the
walk-through is solely to find the errors. It does not attempt to rectify the errors,
nor does it allot the blame to anyone.

There are a number of roles that are performed by the members of a walk-
through team. They are:
• The presenter submits the product for review. In software development this

is usually the author of the program.
• The coordinator is responsible for the overall running of the walk-through.

The coordinator acts as a chairperson ensuring that discussion remains on
track.

• The scribe is responsible for keeping an accurate record of the results of the
walk-through.

• A maintenance representative is concerned with the future ease of mainten-
ance of the product.

• The standards leader is responsible for the consistency of the product and for
ensuring that it meets the standards set down by the customer or organisation.

• A customer representative ensures that the product meets the needs of the user.

239Checkng the software slution

These people may be joined by others to form a larger group, although the
walk-through group should not become too large as all members need the
opportunity to make their contribution. For some projects some of the roles may
be combined; for example, the coordinator might also act as the scribe.

Before the walk-through the members of the team should be provided with
the documentation so they can read through it. During this process they should
attempt to provide one positive and one negative comment about the product,
although this may not necessarily happen. The coordinator needs to select an
appropriate time and place for the walk-through. The process usually takes
between half an hour and one hour, although it might last up to two hours. Any
time longer than two hours becomes counter-productive as team members
become tired and their concentration lapses. If a walk-through appears to need
more than two hours then the product should be divided into smaller parts.

At the appointed time and place the coordinator begins the proceedings by
giving the presenter the floor. The presenter first gives an overview, and then a
detailed presentation of the product piece by piece. The reviewing team should
make constructive comments, criticisms and suggestions, and provide lists of
errors to both the scribe and the producer of the product. The comments should
always be about the product and not the producer. The walk-through is not an
opportunity to attack the producer of the software. Similarly, the producer
should not be defensive about the product, any criticisms being purely of the
product. The scribe makes notes of the proceedings, incorporating any written
comments that come from the team members.

At the conclusion of the walk-through, the team makes a recommendation:
• to accept the product in its present form; or
• to accept the product with the suggested revisions; or
• that the product be revised, and then pass through another walk-through.

Desk checking
Although a desk check is used to detect errors in an algorithm or coded solution,
it also provides an opportunity to evaluate software design. As a program is being
desk checked, observations can be made about the overall design of the part being
tested, and judgments made about the manner in which the software works. For
example, if the desk checker identified that certain steps were repeated in
different parts of the code, the programming team would be given this infor-
mation and could then form these steps into a subroutine and thus decrease the
amount of code in the final application.

Evaluation of implemented solution
It must be remembered that the aim in writing a computer program is to solve a
particular problem. Programmers should not get carried away while writing a
program and provide a number of fancy additions but not completely solve the
original problem. For example, adding a module to a word processor that allows
the word processor to speak the typed text is of no use if the word processor does
not properly save the text to disk. Evaluation of the proposed solution to a
problem is a very important part of the software development cycle.

As well as being able to perform its task, a software application needs to have
a human orientation. This means that the user should feel comfortable using the
software, and that it should reflect the appropriate social and ethical perspectives.

240 Heinemann Software Design and Development: Preliminary Course

Checking the solution to see if it meets the original design
specifications
The design specifications for a computer solution are a detailed description of
what the program should do. Within the specifications should be a set of criteria
to measure the performance of the system. This is best illustrated by looking at a
non-computer example. If you decide to buy a motor vehicle, you decide on your
requirements before you go to look at those for sale. Each vehicle you examine
is measured up against the list that you have created. You then decide on the best
one for the job. In software development, we do not look at a large number of
different solutions, but we do have our list of requirements in the form of the
software specifications. The solution is then measured up against those
specifications.

Good software specifications are written in a form that allows us to measure
the product against measurable requirements. By ensuring that we have a
measurable scale for comparison, we can state whether the software fulfils the
specifications. For example, a graphics program may rescale a drawing, but if it
takes half an hour to perform this task, then the software may have failed to
measure up to the time specified in the original requirements of the program.

User feedback
Evaluation information provided by a user can be more valuable than that from
the development team. First, the user is familiar with the existing system; and
second, the user is not involved with the development process. Because of their
familiarity with the way things are done in the present system, users can quickly
determine whether a task is not being performed satisfactorily. Being away from
the development process, they can also comment independently on the operation
of the software.

User feedback should be sought on the following:
• the operation of the system
• the ease of use and suitability of the user interface
• response times for various tasks
• the overall ‘feel’ of the software application
• ease of learning of the software
• functions that may be improved or that have been omitted.

Social and ethical perspectives
As we noted in Chapter 1, there are a number of social and ethical perspectives
which need to be addressed during the process of software development. The
software needs to be evaluated in terms of:
• Copyright. Has there been a use of copyrighted code? If there has, then have

all the requirements of the licences been met?
• Ergonomics. Does the software provide a sound ergonomic working environ-

ment?
• User friendliness. Does the software perform in a user-friendly way?
• Inclusivity. Is the software designed for use by the widest possible audience?

Does it provide an environment which is free of economic, cultural, gender
and social bias and provide equal opportunity for those with disabilities?

241Checkng the software slution

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
The of the esign of a softwresolutin consists of twoprocesses:

and veiicaion. detemines whether the
meets the rgial seifiatins. Veriicaion is the prcess which

whether the software its correctly.

2 Devise a set of specifications for a word processor that would be suitable for
children up to the age of ten. Evaluate the word-processing program that you use
at school against these specifications. Write a report on your findings. Make
recommendations as to how the word processor could be improved for that
group of users.

3 Choose an algorithm that you have created earlier in the course and organise and
run a structured walk-through to evaluate the algorithm. Examine the results of
the walk-through and modify your algorithm to take the suggestions into
account.

4 Choose a productivity software application that you have not used before and
evaluate its performance. Your evaluation should be in the form of a report and
cover all the aspects listed in the section above titled ‘User feedback’. Suggest any
improvements that could be made to the software.

5 Compare as many different spreadsheet applications as you can for their
suitability for use within the school. Describe the similarities and differences
in the way that each of them performs its functions. Present your findings as
a report.

Exercise 6.3

242 Heinemann Software Design and Development: Preliminary Course

1 Describe the purpose of test data
during the systems development cycle.

2 Determine the boundary values for
the following problem: A real estate
agent charges according to a certain
commission structure: ‘Commission is
calculated at 2% for the first $150 000
of the selling price, 1.5% for the next
$200 000 and 1% on the amount
thereafter.’

3 An algorithm is to be designed which
contains a 3-way branch and two
2-way branches. Draw a diagram
showing the structure of the
algorithm (see Figure 6.1 for an
example) and determine the number
of test data items required to test
every path (excluding validation).

4 Design a set of test data, excluding
data validation, for the following
problem and present it in an
appropriate form: A refrigerator alarm
system is to be installed in a
commercial kitchen. The alarm is to
sound if the door has been left open
for more than 45 seconds or if the
internal temperature rises above 2°C.
Inputs to the system are taken from a
stopwatch, which starts when the door
is opened and which stops and resets
when the door is closed, and from a
temperature sensor. These values are
converted by the system into
numerical values, which represent the
number of seconds and the
temperature in degrees Celsius, and
then sent to the processor.

5 The algorithm in Figure 6.10 has been
designed to total a number of scores
and output that total. The first value

in the set is the number of scores to
be totalled; the numbers following are
the data. Create a set of documented
test data to fully check this algorithm.
Use your test data to determine
whether the algorithm performs the
task for which it was designed. What
problems, if any, are there with the
algorithm?

Figure 6.10

Stop

Start

Output
total

Get score
from user

Set total to
total + score

Set count to
count – 1

Set total
to 0

Get count
from user

Counter
is < 0

True

False

Review exercises

 s

243Checking the software solution

Team Activity

Choose a class of software such as word
processors and draw up a design specifica-
tion for that software application. As a
group, evaluate a software application of
that type using your specifications. Write a

report that gives your evaluation of the
chosen application, making suggestions
for the improvement of the software
application based on your findings.

6 Describe the social and ethical aspects
that are relevant to the Cumfy
Coaches case study encountered in
Chapter 3.

7 Organise a team to perform a
structured walk-through. Name each
member of your team and describe
the role that each is to perform during

the walk-through. Perform the walk-
through on the algorithm in
question 5.

8 Code the corrected algorithm from
question 5 in a programming
language and perform a desk check
on it. Evaluate it against its design
specifications

Review exercises

Chapter summary

244 Heinemann Software Design and Development: Preliminary Course

• A program is tested at each stage of its development to make sure that it
will perform the required tasks.

• The process of testing is designed to cause and discover errors.
• Test data are devised for use in the testing process. The output for each

item is also known.
• Test data are carefully chosen to test all parts of the algorithm or program.
• Test datasets should include each of the boundary values together with

items that are on both sides of each boundary value.
• Both the algorithm and the coded solution should be tested for errors using

the set of test data.
• Desk checking is a testing process in which the steps of the algorithm or

program are followed manually, at the same time keeping track of the
values of variables on paper.

• Errors may be classified as arithmetic errors, comparison errors, control
logic errors, data structure errors and input/output errors.

• Arithmetic errors occur in processing numerical data.
• Comparison errors occur within decision statements and involve data.
• Control logic errors occur within selection and repetition structures and

involve execution following a wrong path for one or more data values.
• Data structure errors occur in the initialisation or use of variables.
• Input/output errors occur in file reading/writing and in data validation

modules.
• The evaluation of software design consists of verification and validation.
• Verification is the process in which the software is tested to see whether it

functions correctly.
• Validation is the process in which the software is measured against the

original specifications to see whether it will perform the required tasks.
• Different solutions to the same problem may be compared in order to

evaluate the effectiveness of the different solutions.
• Peer checking is a process in which software is tested by someone other

than the designer who is at the same level in the organisation.
• A structured walk-through is a formal process in which the developer des-

cribes the workings of the program while the members of the group
evaluate it as a product. People in a structured walk-through have desig-
nated roles.

• Software is evaluated with regard to a number of criteria.
• The software must meet the original design specifications.
• The software is evaluated by the end user.
• The software is evaluated in terms of its social and ethical perspectives.

Modifying software solutions

cchhaapptteerr

• describes and uses appropriate data types (P 1.2)
• explains the effects of historical developments on current

practices (P 2.2)
• identifies the issues relating to the use of software solutions (P 3.1)
• analyses a given problem in order to generate a

computer-based solution (P 4.1)
• investigates a structured approach in the design and

implementation of a software solution (P 4.2)
• uses a variety of development approaches to generate software

solutions and distinguishes between these approaches (P 4.3)
• uses and justifies the need for appropriate project management

techniques (P 5.1)
• uses and develops documentation to communicate software solutions

to others (P 5.2)
• describes the role of personnel involved in software development (P 6.1)
• communicates with appropriate personnel throughout the software

development process (P 6.2)
• designs and constructs software solutions with appropriate interfaces (P 6.3)

Reasons for maintenance coding
• changing user requirements
• upgrading the user interface
• changes in the data to be processed
• introduction of new hardware or software

Outcomes

Students learn about:

77

246 Heinemann Software Design and Development: Preliminary Course

• changing organisational focus
• changes in government requirements
• poorly implemented code

Social and ethical implications
• plagiarism

Features in source code that improve its maintainability, including:
• use of variables instead of literal constants
• use of meaningful variable names
• explanation comments in the code
• use of standard control structures
• a clear and uncluttered mainline
• one logical task per subroutine

Interpretation
• reading original documentation in order to understand the code

– documents for the user (including user manuals)
– documents for software developers

• reading original algorithms to identify:
– inputs to the algorithm
– processes used
– the types of variables used
– outputs

• creating algorithms for source code when they are not available

Documentation
• using supplied documentation to:

– identify the control structures that have been used
– explain how variables have been used

• identify features in code, scripts or macros that allow them to be easily maintained
and explain how this can be achieved

• create solutions to ensure ease of maintenance
• modify original statements obtained from a variety of sources
• convert a fragment of source code, macro or script into its equivalent algorithm
• define the purpose of the code, macro or script to be maintained

Students learn to:

247Modfyng software soutions

Personal Profile—Kay McNulty Mauchly
Antonelli (1921–)

Kay McNulty Mauchly Antonelli was born in Donegal,
Ireland on 12 February 1921. In 1924 her family
emigrated to the United States of America, settling in
Philadelphia where she attended school. One of only
three mathematics majors in a class of 93 at Chestnut
Hill College for Women, Kay graduated in June 1942.

An army advertisement in a newspaper calling for
women with a degree in mathematics caught her eye.
She applied for the job and was accepted for a position
as a computer at the Moore School. A computer per-
formed the calculations needed to create tables of
trajectories for the war effort. In order to do the job, Kay
had to perform a mathematical process known as numeric integration.
Unfortunately, she had no idea of how to do numeric integration. Kay and the
other women employed at the same time were supplied with textbooks,
calculators and paper by the army but no instruction. Having taught themselves
the process, the group of women were put to work.

Kay’s office contained twelve women and four men.They were kept very busy
with calculators and large sheets of columned paper. The men in the office often
gave the women a hard time, and Kay sought an escape from the office by
venturing down to the basement where there was a differential analyser. Kay was
quick to learn how to operate the differential analyser, becoming very skilled in
the complex task of setting it up and obtaining the results of its calculations.
Working eight-hour days for six days a week, Kay became very familiar with the
way in which it worked. As the few men left were drafted to the war effort, Kay
took on a leadership role with the differential analyser.

Together with a number of other women, Kay then began work on the new
digital computer, ENIAC. Programming ENIAC consisted of plugging in con-
nections between panels and working switches. The women running ENIAC
became well-versed in its operation, learning how to debug the machine as well
as to program it. ENIAC holds a special place in Kay’s life as not only did she
work with the machine but she also married one of its inventors, John Mauchly.

Kay was one of the original six ENIAC programmers and, as such, had no
handbooks or instructions on how the computer worked. She is now recognised
as being one of the first digital computer programmers of all time. She was
honoured at the 50th anniversary celebration of ENIAC for her contributions to
computer programming.

248 Heinemann Software Design and Development: Preliminary Course

Reasons for maintenance coding
Once written, a computer program may still need to be modified. The
modification of existing code is known as maintenance coding. The purpose of
maintenance coding is to remove a bug, to improve the efficiency of the program
or to change the manner in which the program operates, to allow the program to
cope with changes in the input data, to meet new requirements within the
organisation or to comply with new government requirements. Maintenance may
also be necessary when changes are made to hardware or to software such as the
operating system.

D I

F

YM

O

Change
operation

Meet new
requirements

Improve
efficiency

Hardware/
software
changes

Remove a
bug

Changes in
input data

Government
requirements

Menu bar

User prompts

General workspace

Figure 7.1 Maintenance may be required
for a number of reasons.

Figure 7.2 A generic screen design can be easily modified to suit a large
number of different applications.

A well-written and documented program is
easier to maintain as the internal documen-
tation provides a guide to the present
operation. Modularisation also assists in main-
tenance as a module may be removed, modi-
fied or replaced without affecting the rest of
the program. As we have seen, modularisation
provides a further benefit in that the
programmer is able to use a subprogram, or
modified subprogram, in another application,
thus saving development time. A library of
subprograms can be developed, each needing
only minor maintenance in order to be used in
a different application. For example, a main
menu screen can be designed to be generic;
that is, it is applicable to a large number of
programs, each individual program using a
customised version.

249Modfyng software soutions

Changing user requirements
As a user becomes more familiar and competent in using a computer program,
shortcomings in its operation may become evident. These shortcomings may be
in the way that the program works or, more often, the user may wish or need it
to perform a further task.

Figure 7.3 The screen design has been found to be less easy to use than
the designers thought it would be.

Cumfy Coaches
CUSTOMER RECORD ENTRY

Name................................

Address..

Tour booked.........................

Deposit taken $.....................

To edit this record, please press the ESCAPE key
and choose EDIT from the main menu

Example 1
The Cumfy Coaches case study presented in Chapter 3 looked at a software
solution that would manage the bookings for the company. During the year
following the introduction of this system, the users have found some short-
comings in the software. The first involves the manner in which the user passes
from screen to screen and the second involves the manual preparation of
confirmation letters that include the amount still owing for the trip. These confir-
mation letters are sent to passengers four weeks prior to the tour’s departure. A
request is made to the original development team to modify the software so that
these needs are met.

Upgrading the user interface
When software is originally developed, the user interface receives a lot of
attention. However, it is often found that the user interface contains a number of
aspects that would benefit from redesign.

Redesign of the user interface may be needed because the user, in becoming
more familiar with the original interface, has discovered design problems. It is
common for this to happen as, although the user is involved with the original
interface design, its long-term use may bring to light problems that either were not
thought of or have been brought on by slightly different work practices. This can
be especially true in the design of menus and key combinations used for shortcuts.

In the Cumfy Coaches example, the user has reported that it is cumbersome
to have to navigate back to the main menu in order to correct an incorrectly
entered name. In order to solve this problem, the program is modified to take the

250 Heinemann Software Design and Development: Preliminary Course

user’s recommendations into account and the interface is redesigned to allow the
editing of the incorrect name from within the data entry module of the program.

A further problem that was identified by the user was the placement of some
of the menu items. The suggestion was made to group the items differently,
placing those most frequently used at the top of each of the drop-down lists.

Changes in the data to be processed
Changes in the form of the data to be processed will often lead to a need to
modify the software. The most recent worldwide example of this problem was in
the correction of the so-called ‘Millennium Bug’ in which the two-digit
representation of the year in a date, widely used in the last half of the 1900s and
identified as a potential source of problems, needed to be changed to four digits.
Date-dependent software had to be modified in order to accommodate the new
representation of the year.

Expansion of the existing system to allow for a greater number of data items
than was originally envisaged when the software was designed may involve
revising the representation of data items and/or data structures. These revisions
then have to be incorporated into the software if it is to function properly. An
example of this in Australia’s recent history was the conversion of all telephone
numbers to eight digits in the late 1990s in order to increase the number of
possible telephone connections.

Another source of change in the data to be processed is brought about by the
changing needs of the organisation. In this case new data items and processes may
need to be incorporated into the software application in order to obtain the
required outputs. For example, the federal government introduced legislation
requiring all citizens to have a Tax File Number. This meant that banks had to
modify their software to allow Tax File Numbers to be stored and retrieved as
well as to be linked to interest calculations.

Introduction of new hardware or software
Custom software generally has a long life within an organisation as it is initially
expensive to produce. Cases of software lives of ten to fifteen years are not
uncommon. However, during the life of the software, technology is improving
both the hardware and the operating system software. For software to last as long
as it does, maintenance will be required first to allow the software to run with the
new technology and second to take advantage of the benefits that the new
technology offers.

When automatic teller machines (ATMs) were introduced by the banks, the
existing software was not discarded in favour of completely new software. Rather,
the ATMs were integrated into the existing system. The banks took this path for
two reasons: a reduction in development time and a reduction in the cost of ATM
introduction. The development time needed for the introduction of the ATMs
was reduced by rewriting parts of the software to allow for ATM transactions.
And since the existing software performed its tasks well, it was more economical
to integrate the ATMs into the existing system.

Changing organisational focus
An organisation is not static. Its goals and purpose move through a continuous
process of evolution. As the organisation evolves, its focus changes. For example,
P&O started as a shipping company, with its focus on providing a service to Asia
and Australasia. However, P&O has now evolved into a company that owns cruise

251Modfyng software soutions

Figure 7.4 The introduction of ATM technology
into banks was accompanied by maintenance of
the software to accommodate the change.

Changes in government requirements
Government regulations and laws are continually changing to reflect social, polit-
ical and economic circumstances. As these laws change, it may be necessary to
modify an organisation’s software in order to comply with the new requirements.

In the case of Cumfy Coaches, the introduction of the Goods and Services Tax
in mid-2000 meant that customers had to pay the tax on their bookings. The
software needed to be modified to both charge the tax and keep track of the tax
that was due to be paid to the Taxation Department.

Figure 7.5 Changes in federal or state
legislation may force an organisation to
maintain software to meet its new legal
requirements.

Areas of government regulation in which these
changes are most evident to organisations are those that
involve the payment of taxes, but there are other cases in
which software may need modification. For example, the
government may impose laws or regulations that require
a company to track the use of particular chemicals or to
furnish details of the purchasers of their products. In
these cases as well, software will need modification in
order to comply with the government’s wishes.

Poorly implemented code
As discussed earlier, software often has a life of many
years. In the past the development of software was
usually not as structured as it is today; now the emphasis
is on the software being able to perform its task no matter
what the cost. As software that has been in use for a
number of years comes up for maintenance it may be-
come evident that it is not as efficient as it could be, or

liners and holiday resorts, provides freight
services, runs a cleaning service and operates
wharves.

As the focus of an organisation moves
through change, the software needs also
change. Companies generally move into areas
that are related to their original purpose, so
the new software needs will generally be
similar to their previous ones. Rather than
create a completely new software package to
carry out the new processing required by the
change in focus, a company usually finds that
its software can perform a majority of the
required tasks, so, again, it is more economical
in both time and cost to modify the current
software application.

For example, Cumfy Coaches decides to
run a regular bus service to Sydney. It will
need a booking system in order to perform
this service. The booking system will have a
number of similarities to their present
business, but the software will need to be
modified to allow bookings to be entered into
their system by Sydney agents.

252 Heinemann Software Design and Development: Preliminary Course

that a software patch has been used to work around a problem. Maintenance is a
good time to evaluate the code for its efficiency and properly overcome earlier
problems rather than relying on a software patch.

Figure 7.7 The rewritten algorithm that
performs the same task more efficiently.

true

false

false

true

BEGIN

END

Score > = 0

Number = 0

Set number to 0

Set total to 0

Set total to
total + score

Set number to
number + 1

Set average to
total/number

Set score to
user input

Display
average

Figure 7.6 The original algorithm
with the patch.

false

true

false

true

BEGIN

END

Score > = 0

Score < 0

Set number
to 0

Set total
to 0

Set total to
total + score

Set number to
number + 1

Set average to
total/number

Set score to
user input

Set score to
user input

Display
average

253Modfyng software soutions

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
The moiicaion of a computer proram is knwn as . This process
may need to be perfored if the program hasa , o improve its

, to change the way the operates to allow the
to cope with changes in or to meet new of either the

or the .

2 A school library management program is being reviewed in order to perform
maintenance on the software. The following shortcomings have been identified.
Identify the modification that needs to be made using the descriptions in this
section, giving reasons for your choice.
a The library was using a four-digit code to represent each of the books in the

collection. The collection is now approaching 9500 volumes and so the code is
to be changed to a six-digit code.

b The library system is to be integrated with the administrative system in order
to use student data files from the administrative system.

c The clerical staff want to use the system to produce overdue notices to be sent
to students’ homes.

d The federal government passed a law that required all libraries in the country
to furnish borrowing details to the National Library in Canberra so that authors
can be paid a royalty fee each time a book has been borrowed from a library.

e The library computer system is being updated to use the capabilities of a new
generation of computer terminal.

f Students’ fingerprints will be used to identify the borrower of a book instead
of the magnetic student card now used.

g At present the software cannot process a book number that ends with 000. The
librarian would like all book codes to be able to be used.

h When a book is withdrawn from the library, the book number cannot be reas-
signed to a new book. The librarian would like to be able to reuse these numbers.

3 A supermarket is introducing portable customer terminals (PCT) which auto-
matically register the price of an item as it is placed in the supermarket trolley. At
the checkout the PCT is connected to the cash register by the checkout operator.
The register then prints out an itemised docket and the customer pays in the
normal way. What modifications to the existing barcode-based checkout system
would be needed?

Exercise 7.1

For example, the following algorithm is to average a number of scores, termin-
ating when a negative score is entered. However, in the original implementation
it was found that, if a negative score was entered first an error occurred, so to
overcome this problem a ‘patch’ was added. The purpose of the patch is to allow
the calculation of the average only if there is an entry of at least one positive
score. This is not an entirely satisfactory solution, so the algorithm was rewritten
to ensure that if a negative score is entered first, then the average will not be
calculated.

254 Heinemann Software Design and Development: Preliminary Course

Figure 7.8 The original egg-grading algorithm.

rue

false
egg_weight

>65g

egg_weight
>55g

BEGIN

END

egg_weight
>45

get
egg_weight

Egg rejected
as too small

egg_size =
SMALL

egg_size =
LARGE

egg_size =
MEDIUM

false

true

true

false

4 The algorithm shown in Figure 7.8 is used to grade eggs as ‘small’ (45 g to 55 g),
‘medium’ (56 g to 65 g) or ‘large’ (over 65 g). Eggs that are under 45 g are
supposed to be rejected, but it has been found that 45 g eggs are also being
rejected. Modify the algorithm so that it works correctly. Code your algorithm in
a suitable language and then test the program.

5 Because of a glut of eggs on the market an egg farmer now wants to sell grown
chickens. Modify your program in question 4 so that it grades chickens as ‘small’
(< 1.2 kg), ’medium’ (from 1.2 kg to 1.7 kg) and ‘large’ (over 1.7 kg).

255Modfyng software soutions

Social and ethical implications
As we discussed in Chapter 1, software is a product that results from a creative
process. Modification of software must be performed within legal and ethical
bounds. We cannot take an original program, modify it in some small way and
release it as our own product.

If a software application has been bought off the shelf, it may be customised
for the user’s particular application as long as the code is not changed. Modifica-
tion of the code of such an application breaks the licence agreement and renders
the modifier liable to prosecution for a breach of copyright.

Within a program development system, the licence agreement will specify
that the supplied library routines may be incorporated in saleable software, but
the same routines may not be modified or sold separately. Licence agreements
also specify that the supplied library routines may not be ‘backwards engineered’
to find out how they work or to modify them, as this constitutes plagiarism.

Plagiarism
Plagiarism originally referred to the copying of text from a book and claiming
that it was original. For example, a student copying out an article from an
encyclopaedia word for word, and submitting it to the teacher as an original
assignment, is guilty of plagiarism. Plagiarism is more than just a breach of
copyright, as actual ownership of the article is being claimed. A breach of
copyright means that the intellectual property is being used illegally, but the
authorship of the work is undisputed. The difference between the two can be
illustrated by using this book as an example. If the whole book were to be
photocopied by a student, that student would be breaching the copyright of the
book. However if a student were to copy out all the text from this book and took
it to another publisher claiming that he or she wrote it, the student would be
guilty of plagiarism.

Within the context of software development and modification, plagiarism
includes the use of code within an application without acknowledging its source
and the reverse engineering of code to determine the algorithm which is then
recoded.

Exercise 7.2
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
When codeis , we must make sure tht we abide by any
agreements. A involves using illegally, whereas

s liing tha it was created by you lso includes the
reverse of code to find how it works so that the can be
written in another .

2 Explain why a student cannot submit a program seen in a textbook as his or her
work. Is this an example of breach of copyright or plagiarism? Justify your answer.

3 Examine the licence agreement of a program development system to discover the
references to library code and supplied subprograms. Explain, in your own words,
how you are allowed to use these samples of code.

256 Heinemann Software Design and Development: Preliminary Course

Features in source code that improve
its maintainability
Documentation within the code
When creating program code, the programmer has a responsibility to ensure that
it can be easily modified and updated. One of the easiest ways of accomplishing
this is to employ internal documentation in the form of comments (or remarks)
and choose meaningful identifier names. The use of procedures (subprograms) to
carry out repeated tasks and the use of identifiers to represent constants in
preference to using actual values also assist with maintenance. Declaration of
constant identifiers at the beginning of a program may seem to be a waste of time,
but, if it becomes necessary to change the value of one of the constants after the
program has been written, one occurrence only needs to be changed instead of a
number throughout the program. The use of clearly defined subprograms within
the code further assists a maintenance programmer in updating the program.

Some programming languages allow for constants to be given identifiers
(names) that can be used within a program. The value of the constant is usually
declared at the beginning of the code and, unlike variables, that value cannot be
changed as part of the processing. For those languages that don’t have this
feature, we can assign the value of the constant to a variable, then not change its
value during processing. As mentioned before, the purpose of this activity is to
make the code easier to modify. For example, if we have a program that calculates
the circumference and area of a circle, we may want to use 3.142 for the value of
pi. If at a later date we need to use a more accurate value, such as 3.141 59, the
pi value needs to be changed only once, where the constant is declared. We don’t
have to hunt through the program to find all the places where 3.142 occurs. The
following Pascal code illustrates the way in which the constant is used. This is a
very simple example. If the constant pi had occurred twenty times in the program
instead of twice, the time saved in changing it would obviously be much greater.

PROGRAM circle_calculations (input, output);
CONST

pi = 3.142;
VAR

radius, circumference, area : real;
BEGIN

write(’Please type in the radius of the circle’);
readln(radius);
circumference := 2*pi*radius;
area := pi*radius*radius;
writeln(’The area of your circle is ’,area);
writeln(’The circumference is ’, circumference)

END
The careful choice of identifiers can also assist in the processes of develop-

ment and maintenance. The use of meaningful names for variables and sub-
programs is known as intrinsic documentation; that is, the documentation is built
into the code. For example, it is much easier to determine what is meant by
the line of code balance := balance – withdrawal than by a statement such
as x := x–y when written in a program to process withdrawals from bank
accounts. The second statement will, with the same data as the first, produce the
same result; however, its meaning may be lost to all but the programmer, and so
maintenance could be a problem.

257Modfyng software soutions

Most of the languages from the second generation and above allow the
programmer to insert text which is able to be ignored by the compiler or
interpreter. This facility has been included in the language to allow a programmer
to make notes (comments or remarks) inside the program code. The purpose of
this type of internal documentation is to provide a means for the programmer to
state the purpose of a section of code for later reference, for example in the
debugging or maintenance stages of the code. Internal documentation is also very
important if a team of programmers is working on the one problem, as it lets all
team members know the processes that are being carried out in other modules.
The benefit for a maintenance programmer is that, although the original creator
of the code may not be available, the purpose of the code section is clearly spelled
out.

The area and circumference program above illustrates the use of intrinsic
documentation. If the code is read, the purpose of the program and the processes
involved are clear without the need for further explanation.

Presentation of a coded solution
The manner in which a coded solution is presented can have a large bearing on
the ease of maintenance. Factors that affect the presentation of the code are the
use of standard control structures, a clear and uncluttered mainline and the
allocation of one logical task to each subroutine. These can be shown in the code
by using levels of indentation to show the relationship between the various
portions of code. Indentation is ignored by the compiler or interpreter, these
features being included solely to help us understand the structure of the program.

For example, compare the legibility of the following two samples of identical
Pascal code. The first sample has not been formatted to any standards; the second
has been coded with one instruction per line and indentation has been used to
show the statement levels.

Example 2
program menu_test (input, output); var choice: char;
procedure Add_record; begin writeln(’Add record stub’) end;
procedure Delete_record; begin writeln(’Delete record stub’) end;
procedure Sort_records; begin writeln(’Sort records stub’) end;
procedure Invalid_input; begin writeln(’Invalid choice stub’) end;
begin writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’); writeln(’D to DELETE a record’);
writeln(’S to SORT the records’); writeln(’E to END this session’);
readln(choice); while (choice <> ’E’) and (choice <> ’e’)
do begin if choice in [’A’, ’a’, ’D’, ’d’, ’S’, ’s’] then
{this statement ensures that other characters are excluded .. otherwise}
case choice of ’A’, ’a’: Add_record; ’D’, ’d’: Delete_record;
’S’, ’s’: Sort_records end {end of case statement} else Invalid_input;
writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’); writeln(’D to DELETE a record’);
writeln(’S to SORT the records’); writeln(’E to END this session *’);
readln(choice); end end.

258 Heinemann Software Design and Development: Preliminary Course

Example 3
PROGRAM menu_test (input, output);

VAR
choice : char;

PROCEDURE Add_record;
BEGIN

writeln(’Add record stub’)
END;

PROCEDURE Delete_record;
BEGIN

writeln(’Delete record stub’)
END;

PROCEDURE Sort_records;
BEGIN

writeln(’Sort records stub’)
END;

PROCEDURE Invalid_input;
BEGIN

writeln(’Invalid choice stub’)
END;

BEGIN
writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’);
writeln(’D to DELETE a record’);
writeln(’S to SORT the records’);
writeln(’E to END this session’);
readln(choice);
WHILE (choice <> ’E’) AND (choice <> ’e’) DO
BEGIN
IF choice IN [’A’, ’a’, ’D’, ’d’, ’S’, ’s’] {this statement

ensures that other characters are excluded .. otherwise}
THEN CASE choice OF

’A’, ’a’ : Add_record;
’D’, ’d’ : Delete_record;
’S’, ’s’ : Sort_records

END {end of case statement}
ELSE Invalid_input;

writeln(’Please press the letter key corresponding to your choice’);
writeln(’A to ADD a record’);
writeln(’D to DELETE a record’);
writeln(’S to SORT the records’);
writeln(’E to END this session’);
readln(choice);

END {end of while statement}
END.

259Modfyng software soutions

The second sample program is easier to follow not only because of the
placement of single instructions as separate entries and the use of indentation to
show the logical blocks such as loops and decisions, but also because the use of
uppercase letters for the Pascal reserved words together with the separation,
wherever possible, of the comments allows the structure of the program to be
immediately visible. Thus any modification of the code can be accomplished
efficiently.

Exercise 7.3
1 Copy the following passage and complete it by filling in the blanks with the

appropriate terms or phrases.
The use of carully chosen names an help in a program.
Ths type of documenatin is known as docmentatonas it is

nto the program cde. Other forms of docmentation
consist of or remarks that can e included with the code.

260 Heinemann Software Design and Development: Preliminary Course

Interpretation
The program code is not the only source of information available about the
processes in a segment of code. We can also gain an insight into the workings of
the segment by looking at other documentation associated with the application.
This documentation consists of product documentation such as user manuals and
process documentation such as algorithms and system descriptions. It is also
possible to take the source code and convert it back into an algorithm in order to
perform a modification.

Reading original documentation to understand the code
Original documentation can be very useful when it comes to understanding the
workings of software. Well-written documentation can often provide as much
information as examining the code itself. As we have seen, there are two types of
documentation associated with software—product documentation and process
documentation. Both are a valuable source of information about the software and
its operation.

Product documentation such as user manuals and even tutorials can help us
to understand both the processes that are being carried out by the software and
the ways in which these processes are structured. If we understand the processes
from a user’s point of view, we are better placed to make appropriate changes to
the operation of the software.

Process documentation consists of all the documents produced during devel-
opment of the software. The process documents would include systems descrip-
tions, the original specifications, algorithm descriptions, memos, and any notes
made by the programming team. This documentation is most important as it
describes the development process. Looking through these documents gives us an
insight into the ways in which the algorithms were designed. We can also glean a
lot of information about problems that were encountered by the development
team.

For example, the Cumfy Coaches software development process was accom-
panied by a number of documents. When the company decided to operate a daily
coach service to Sydney, the system needed to be modified, and these documents
were read by the modification team. This allowed the maintenance team to
understand the ways in which the data was organised and allowed them to choose
a similar format for the new data. By using the existing screen layouts they were
also able to integrate the new modules into the existing software so that it looked
as if the whole program was created at the same time. The benefit of this for the
users was that they felt familiar with the new modules as soon as they saw them,
even though they had not previously been used. An added benefit in this case was
that, since a lot of the processing required by the new application was similar to
that of the existing software, some of these modules could be used for both tasks.
The combination of these factors, together with others, meant that the new
requirements were met by the software much more quickly and cheaply than
they would have been without this approach.

Reading original algorithms to identify inputs, processes and
outputs
As noted, the original algorithm descriptions form part of the process document-
ation formed during the development stage of the software lifecycle. These
algorithm descriptions show exactly how the software functions. They are a
valuable tool during maintenance as an existing algorithm may only need to be

261Modfyng software soutions

modified slightly in order to meet some
of the new requirements. Even if the
algorithm descriptions don’t lend them-
selves to modification, the algorithms
may be able to be used to pinpoint the
source of problems.

In reading the algorithms we must be
able to follow the way in which they
work. This means that we must be able
to find the inputs and determine the
variables used, the processes that take
place and the outputs from the algo-
rithm. The structure of the algorithm
will help us identify these key elements.

Inputs may come from the user, a file
or from some peripheral and, in most
cases will be fairly obvious. An examin-
ation of the algorithm will identify the
variables that were used. The data
structure represented by each of these
variables should also be apparent.

Following the processes is a much
more difficult task. We need to trace
through the algorithm to find out what
goes on. A big help is to obtain the set of
original test data and work through the
algorithm with that data. By treating the
exploration of the algorithm as a desk
check, we are forced to examine each
step carefully and therefore think about,
and become more familiar with, the
processes as a whole.

Outputs are usually fairly readily
identified, but we should be on the look-
out for any outputs to storage such as
disk files.

In the sample algorithm in Figure 7.9,
the first operation can be seen as reading
in the whole customer data file from
disk. A customer number is then input
and tested to see if it has been allocated.
If there is a customer record associated
with the given customer number, that
record is located and displayed; other-
wise a new record is created. The current
record is then displayed and updated.
After the change, the data file is stored
on disk and the option of continuing to
process a new customer or closing off the
process is given.

BEGIN

END

cust_number is
allocated

More processing
required?

Find
cust_record

Create
cust_record

Read customer
data file from

disk

Input
cust_number

Display
cust_record

Change
cust_record

Close off data
files

Write customer
data file to disk

no

yes

yes

no

Figure 7.9 Sample algorithm 1.

262 Heinemann Software Design and Development: Preliminary Course

Within this structure we can identify the customer data file as a file of records.
Each of the customer records contains a number of fields, which can be obtained
by looking at the subprograms which process the cust_record data item. How-
ever, we can identify that cust_number is one of the fields required. We can also
identify the use of a variable in the decision to continue processing.

Although this algorithm is written as the combination of a number of large
processing modules, the use of various variables is quite evident. If we analyse the
subprograms, we can find even more detail about the processing. For example,
the find cust_record subprogram is given in the following pseudocode
representation.

Sample algorithm 2 pseudocode
BEGIN find cust_record

set flag to 0
set index to 0
WHILE (flag = 0) AND (index < end)

set index to index + 1
IF cust_record[index].number = cust_number THEN

set flag to index
ENDIF

ENDWHILE
IF flag <> 0 THEN

display cust_record[index].name
display cust_record[index].address
display cust_record[index].order
display cust_record[index].order_cost
display cust_record[index].balance_owing
display cust_record[index].credit_rating

ELSE
display ’The customer record is not in the file’
display ’The file is damaged’
display ’Contact the systems administrator’

ENDIF
END

In this subprogram, we can identify the WHILE loop that passes through each
record in the file comparing the customer number with the wanted one. More
importantly, the data stored within cust_record is stated. The record consists of
fields for name, address, the order, the cost of the order, the balance that the
customer owes and the customer’s credit rating. We should also not forget that
the customer’s number is also stored as one of the fields.

We now have a good idea of the data structures used in the algorithm,
together with the processes that take place. Once all the subprograms within
sample algorithm 1 have been analysed in the same way, we will be in a position
to modify the solution to meet the new demands.

Creating algorithms for source code when they are not available
Since an algorithm is essential when writing code, it is sometimes necessary to
convert an existing coded solution into an algorithm in order to modify it later.
This is a reasonably easy task to accomplish as long as it is done in a systematic

263Modfyng software soutions

BEGIN

BEGIN

Set y to
c + x(b + ax)

Set a to
user input

Set b to
user input

Set c to
user input

Set x to
user input

Display y

Figure 7.10

way. Code which has been written without proper planning, however, may
require some work before the underlying algorithm becomes evident. This is
especially true of programs that have been written ‘at the keyboard’ with little or
no structure. This type of code is often called spaghetti code as following the
execution paths through the code is very much like trying to unravel the strands
of spaghetti on a plate.

Example 4
This code is written in Algol.
begin comment Example program in Algol;

real a, b, c, x, y;
read (a,b,c,x);
y := c + x * (b + a * x);
print (y);

end

Consider the Algol code in Example 4. We can first
identify the variables used as a, b, c, x and y as they are
declared as real numbers. As we follow the instructions,
we find that, in the third line of code, three of the
variable values, a, b, c and x are input. These values are
used to evaluate an expression in the next line which is
output as y. We are now in a position to translate this
simple program into an algorithm (Figure 7.10).
Pseudocode
BEGIN

set a to user input
set b to user input
set c to user input
set x to user input
set y to c + x(b + ax)
display y

END

264 Heinemann Software Design and Development: Preliminary Course

Consider the code in Example 5. Since this code is written in Fortran, the
variables have not been chosen to represent the names of the processed data
items. The major reason for this was that the language used the initial letter of a
variable to determine its data type. (Variables starting with the letters I, J, K, L,
M and N were all classed as integer variables in Fortran.) The first variable we
reach is the array X which has its size set to a maximum of 500 elements in the
first line. As we pass to the second line, the variable N is input. The FORMAT
statement 5 indicates to the computer the form that the input data will take. The
value of N read at this stage will determine the number of data items that are put
into the array on this run. Following the FORMAT statement we come to a single
line which reads each of the values from X(1) through to X(N).

Progressing through to the processing section of the program, we find that
J, XMAX, XMIN, SUM and SUMSQ are introduced and initialised. The
next four lines (from line 15) in order take element J, determine whether it is

Example 5
This code is written in a version of Fortran.

DIMENSION X(500)
READ (1,5) N

5 FORMAT (I5)
READ(1,10) (X(I),I=1,N)

10 FORMAT (8F10.0)
J=2
XMAX = X(1)
XMIN = X(1)
SUM = X(1)
SUMSQ = X(1) * X(1)

15 IF (X(J).GT.XMAX) XMAX = X(J)
IF (X(J).LT.XMIN) XMIN = X(J)
SUM = SUM + X(J)
SUMSQ = SUMSQ + X(J) * X(J)
J = J + 1
IF (J.LE.N) GO TO 15
RN = N
XMEAN = SUM / RN
STANDEV = SQRT ((SUMSQ - (1.0/RN)*(SUM * SUM))/(RN - 1.0))
WRITE (1,20) XMIN , XMAX

20 FORMAT(1H1,7X,19HTHE RANGE IS FROM, F12.4, 4H TO, F12.4)
WRITE (1,25) XMEAN , STANDEV

25 FORMAT(10HWITH MEAN, F12.4, 21H STANDARD DEVIATION, F12.4))
STOP
END
EXTERNAL CDI,PRINT
CALL DEBUG

265Modfyng software soutions

greater than the maximum, determine whether it is less than the minimum, add
it to the sum of the scores and add its square to the sum of the squares. When J
is incremented, it is tested to see if it is less than the number of scores, N, and if
it is, then the steps are repeated. Following this repetition, the mean and standard
deviation (XMEAN and STANDEV) are calculated and the required results are
output. The statement in which RN is given the value of N had to be performed
as Fortran would not allow operations which involved a mixture of real and
integer variables. The end of the processing within the program is at the STOP
statement. The END statement tells the compiler that it has reached the end of
the code to be converted and the last two statements are also messages to the
compiler to obtain some routines from the library.

We can now convert the code into an algorithm. This has been done below. In
the algorithm descriptions, we will keep the original variable names to make the
structure more closely identifiable with the Fortran code. These names are not
the best ones for use, as some of them don’t give any indication of the purpose
of the data item.
Pseudocode

BEGIN
set N to user input
set I to 1
WHILE I <= N

set X(I) to user input
set I to I + 1

ENDWHILE
set J to 2
set XMAX to X(1)
set XMIN to X(1)
set SUM to X(1)
set SUMSQ to X(1) * X(1)
REPEAT

IF X(J) > XMAX THEN
set XMAX to X(J)

ENDIF
IF X(J) < XMIN THEN

set XMIN to X(J)
ENDIF
set SUM to SUM + X(J)
set SUMSQ to SUMSQ + X(J) * X(J)
set J to J + 1

UNTIL J > N
set RN to N
set XMEAN to SUM /RN
set STANDEV to the square root of ((SUMSQ - (1/RN)*(SUM*SUM))/(RN - 1))
output XMIN, XMAX, XMEAN and STANDEV

END

266 Heinemann Software Design and Development: Preliminary Course

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
A number of documents, including , and , can
be used to otan infomation about the proesse in a . By reading
documents produced dring the of a program we can better

how the program woks. Th orginal n tell us how the
software andis, therefore, extemely sefu during . When
the of a program are noaailable, we can create them rom the 5 in
order to help us to maintain the program.

2 Describe the differences between product documentation and process docu-
mentation. Explain how these documents can help us in the process of program
maintenance.

3 Examine the following pseudocode algorithm. List the inputs and outputs
together with the variables used. Describe the processing that takes place.
BEGIN

set minimum_total to 150
set total to 0
WHILE total <= minimum_total

set amount to user input
set total to total + amount
display total

ENDWHILE
display ’You have now completed the task’

END
4 Modify the algorithm in question 3 so that it displays the amount still remaining

after the input value has been counted.

5 Construct the algorithms represented by the following sections of code. Describe
the purpose of each of these program segments.

a PROGRAM part_a (input,output);
VAR

count : integer;
price, total_price : real;

BEGIN
count := 0;
total_price := 0;
read(price);
REPEAT

count:=count + 1;
writeln(count, price);
total_price := total_price + price;
read(price)

UNTIL price=0;
writeln(’The total price is’, total_price)

END

Exercise 7.4

267Modfyng software soutions

b 1 S = 0
2 AREA = 3.1415927*S*S
3 WRITE(1,4) S,AREA
4 FORMAT (1X,F5.1,F10.5)
5 S = S + 0.1
6 IF (S.LE.10.0) GO TO 2
7 STOP

c 10 DIM Z(10)
20 LET I = 9
30 FOR J = 1 TO I STEP 1
40 LET K = J + 1
50 FOR L = 10 TO K STEP -1
60 IF Z(L) > Z(J) THEN GOTO 100
70 LET T = Z(L)
80 LET Z(L) = Z(J)
90 LET Z(J) = T
100 NEXT L
110 NEXT J
120 END

Documentation
As already seen, documentation is a very valuable tool in the maintenance phase.
We can gain an insight into the structure of the program by looking at the way in
which the program is structured and the way in which the processing involves
the variables. This structure is most evident from the algorithm descriptions
created during the development stage.

Using supplied documentation to identify the control structures
and explain how variables have been used
It was noted in the previous section that stepping through an algorithm can help
us become more familiar with the processes. A further benefit is that it allows us
to identify the structures that form the algorithm. We need to study these
structures before we begin the modification process; during the modification
process some of the algorithm’s structures may be changed, rearranged,
completely rewritten or even eliminated altogether from the algorithm.

Data items being processed by an algorithm are represented by the variables
used. As we follow a data item through the algorithm, the manner in which it is
used becomes clearer. Performing a desk check on the algorithm using test data
items from the development process allows us to more clearly identify both the
variables used and the ways in which they have been used.

Earlier we looked at an algorithm that uses a customer number to locate and
work on a record within a file. In the flowchart in Figure 7.9, we can see a
repetition and a binary selection. The loop is a post-test loop that requires the
user to decide whether there are any more data items to be processed. The binary
selection is used to create a new customer record if the customer number has
already been allocated.

Team Activity

n Chapter 4 you designed a program
to keep the raiall records for the past
thrty day. Use this design to creata fully
workng progra. As a team,evaluate the
performance of his program and suggest
ways in hic it couldbe imroed. Discuss

these improvements and implement the
improvement that the team thinks is most
important. During this process keep a diary
of the development and modification,
detailing the discussions that took place
and the results of those discussions.

1 Copy the following passage and complete it by filling in the blanks with the
appropriate terms or phrases.
By studing an we can become mofamliar with the prcesses being

 Wealsofollo a itm as t is being prcesed by looking
for the that has been used to represent it. check also
heps us understand thebeing carried out, as we are forced to work
through the step by tep. Once we know th variable we are in a
position to be able to he algorithm.

2 Explain why we need to identify the variables before beginning to modify a
solution.

3 Describe the processes that are carried out in the following algorithm. In your
description, name all the variables used and identify how they are used.
BEGIN

set number to user input
set factorial to 1
WHILE number > 0

set factorial to factorial * number
set number to number – 1

ENDWHILE
display factorial

END
4 Obtain the source code for a program in either BASIC or Pascal. Create an algo-

rithm from the code and then code the program in a language of your choice.

268 Heinemann Software Design and Development: Preliminary Course

The variable cust_record is the one which is used throughout the algorithm
to determine the flow of control. As we saw, the fields within the record selected
by the customer number are also involved in the algorithm.

You might like to create some data items and work through the algorithm as
written. This process will help you better understand how it works.

Exercise 7.5

269Modifying software solutions

Review exercises
1 Explain why maintenance coding is

important.

2 In Figure 7.11, the text-based user
interface was used with a school
athletics carnival program. Redesign it
as a graphical user interface.

3 A law has just been passed that
requires the State Traffic Bureau to be
emailed a list of all passengers
travelling on a coach before that
coach leaves on its journey. What

changes to the Cumfy Coaches
program would be required so the
company could comply with this law?

4 Modify the menu_test program on
page 258 to form a main menu for a
bank program to process deposits,
withdrawals and loan repayments.

5 Choose a small program, coded in a
language of your choice, from a book
or from the Internet and write the
program as an algorithm.

MC NULTY IGH SCHOOL
** CARNVAL**

2008

MAN MENU

* *

* *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

1 EVENT TRANSACTON

2 PROGRESSVE PONT SCORE

3 AGE CHAMPONS

4 CHECK AN EVENT

5 MAJOR EDT

6 EXT

SELECTON (1-6) ?

Figure 7.11 A text-based interface for an athletics carnival.

Chapter summary

270 Heinemann Software Design and Development: Preliminary Course

• Maintenance coding of a program may be required for a number of reasons: to
remove a bug, to improve the efficiency, to change the way a program works, to
allow the program to cope with changed data, to meet new requirements of the
organisation or to comply with government regulations.

• Maintenance can be needed if hardware or software have been changed.
• Changing user requirements may lead to maintenance.
• One of the user items that can need maintenence is the user interface.
• A generic user interface can be created which can be modified for many different

applications.
• Expansion of a system to cope with a greater number of data items can mean that

the software needs to be modified.
• Poorly implemented code, such as the use of software patches, can be improved

during maintenance.
• Software may need to be customised if it has been bought off the shelf.
• Software modification has to be carried out within legal and ethical bounds.
• Plagiarism is the use of intellectual property without acknowledging its source.
• Documentation within the code can help with maintenance.
• Intrinsic documentation is built into the code by the use of appropriate identifiers

for constants, variables and subprograms.
• Internal documentation involves the use of remarks or comments within the code

to explain what processes are being carried out.
• The presentation of the coded solution can also help in the modification. Indents

will help identify the major sections and groupings within the code.
• Original documentation can be used to help understand the software that is to be

modified.
• The original documentation consists of product and process documentation.
• Product documentation consists of user materials such as manuals.
• Process documentation consists of documents such as algorithm descriptions and

assists in system maintenance.
• The original algorithms tell us how the program works and how data has been

represented.
• Documentation can tell us about the control structures used and the ways in which

data has been processed.

88Developing software solutions

cchhaapptteerr

Implementing a project
• the steps in implementing projects, including:

– defining the problem
– understanding the problem
– identification of inputs, processes and outputs to be applied to the problem

• planning
– identification of a suitable development approach
– design of appropriate algorithms
– determination of appropriate data structures
– identification of relevant subroutines
– the design of test data and expected output

Outcomes
• describes and uses appropriate data types (P 1.2)
• describes the interactions between the elements of a computer

system (P 1.3)
• identifies the issues relating to the use of software solutions (P 3.1)
• analyses a given problem in order to generate a

computer-based solution (P 4.1)
• investigates a structured approach in the design and

implementation of a software solution (P 4.2)
• uses a variety of development approaches to generate software solutions

and distinguishes between these approaches (P 4.3)
• uses and justifies the need for appropriate project management techniques (P 5.1)
• uses and develops documentation to communicate software solutions to

others (P 5.2)
• describes the role of personnel involved in software development (P 6.1)
• communicates with appropriate personnel during the software development process (P 6.2)
• designs and constructs software solutions with appropriate interfaces (P 6.3)

Students learn about:

272 Heinemann Software Design and Development: Preliminary Course

– the desk check of algorithms
– identification of existing code that can be used

• building
– implementation of the solution in an appropriate language
– testing of the solution using test data
– documenting the solution, including algorithms, tutorials, test data and expected

outputs, data dictionaries
• checking

– testing of the solution using test data
– evaluation of the completed solutions

• modifying
– changing the solution to meet the specifications

Project management techniques
• identification of tasks
• identification of techniques to assist project management, including:

– Gantt charts – logbooks
– identification of subgoals

• allocation of resources
• identification of major milestones and stumbling blocks
• regular backup • response to difficulties
• regular reporting • evaluation
Project documentation
• algorithms • Gantt charts
• manuals • system documentation
• data dictionaries • diaries
• CASE tools
Social and ethical issues related to project work
• ease of use • gender bias
• accessibility of technical language • copyright
• ergonomics

• design and implement a software solution to a selected problem using project
implementation steps

• use Gantt charts and logbooks
• devise a management plan and use it when undertaking a software development

project
• use appropriate application packages in creating documentation to support the

development of a project
• prepare suitable documentation to accompany software solutions
• ensure that relevant social and ethical issues have been addressed
• evaluate the project in relation to the original understanding of the problem
• evaluate the quality of the solution

Students learn to:

273Develping softwar olutions

Personal Profile—Alan Mathison Turing
(1912–1954)

Alan Mathison Turing was born on 23 June
1912 in London. After attending secondary
school, he enrolled at King’s College, Cam-
bridge where he studied mathematics. In
1936 he published a paper called ‘On
Computable Numbers’ in which he des-
cribed a machine that could theoretically
solve any problem which could be solved
by a machine. His so-called ‘universal com-
puting machine’ later became known as a
Turing Machine and is the basis for all
current computers. The concept behind a
Turing Machine is that the machine con-
tains a control unit that can read and write
to a tape. Computation in a Turing Machine
consists of a number of steps executed by
the control unit with symbols being written
to the tape. The state of the machine at any
instant determines the action to be per-
formed by it.

In 1936 Alan was accepted as a graduate student at Princeton University,
where he carried out his research under the supervision of Alonzo Church. His
research resulted in the award of a doctorate in 1938 for a thesis entitled ‘Systems
of Logic Based on Ordinals’. The Church–Turing thesis states that there is no
process describable by an algorithm that cannot be computed by a Turing
Machine.

During the Second World War Alan worked on the top-secret Ultra project
which cracked the German Enigma code. After the war Alan joined the National
Physical Laboratory in London working on the project to design and build the
Automatic Computing Engine (known as ACE). In 1948 he moved to
Manchester University where the first running electronic stored-program com-
puter was under construction. His work also included theories of artificial intel-
ligence and applying mathematical theories to biology. In 1954 he was found
dead from cyanide poisoning while he was conducting an experiment.

Turing will be best remembered as the man whose theories of computational
machines made it possible to bring the electronic computing device from a dream
to a reality.

274 Heinemann Software Design and Development: Preliminary Course

Implementing projects
In previous chapters the theory and practice of the software development cycle
have been examined. In this chapter the theory is applied to a sample project.

Case study

Pizza Express wishes to establish a Web
presence. The company has heard that
e-commerce is the way of the future and
believes that sales could be greatly in-
creased with a Web site. Pizza Express
offers pizzas in three sizes: large, medium
and small. There are also a dozen pre-
defined pizzas on the menu and customers
are allowed to customise their pizzas if
they wish. From time to time there are

some special deals on offer—for example,
two small pizzas, garlic bread and a
1250 mL soft drink for $14.90. From
Monday to Thursday nights they offer
half-price pizzas for people who pick up
their own orders. In addition to pizzas,
Pizza Express also sells Italian dishes such
as Spaghetti Bolognaise and various
salads. In summer they sell gelato.

Pizza Express

As with any software solution we will be following five steps in implementing
projects: defining the problem, then planning, building, checking and modifying
the solution (see Figure 8.1).

Defining the problem
Defining the problem is broken down into two subsets: understanding the
problem and identifying the inputs, processes and outputs to be applied to the
problem.

Understanding the problem
In the Pizza Express case study we need to carefully examine what the problem
actually consists of.We need to break the problem down into its component parts
to better understand its full scope.

The business is interested in a Web presence to advertise its services and sell
its products. A solution to this problem will consist of a number of parts.

The first of these parts will be the construction of a Web site for the company.
The site will need to contain a number of areas. These will include an area for
general information about the company and its products and a secure area where
customers can place their orders. The site will need to have a database of the
company’s products. This database will need to be able to be queried by
customers and will also need to be updated as items are ordered and sold. Prices
of customer orders have to be calculated and cooking and delivery schedules
need to be generated. Confirmations of orders need to be created. Integration of
this system with the existing system of telephone orders and orders placed by
customers in person is also essential. As this is a very new undertaking, the
owners of the company will need to be assured that their system will be secure
and safe from malicious attack.

The second element of the solution is the development of a database of the
company’s products and stock levels. This database will need to be linked to the

275Develping softwar olutions

Web site and be searchable through a Web browser. As pizzas are ordered, the
database needs to be updated and management are to be alerted when stocks
need replenishing. Management should also be able to query the database to
determine trends in orders so as to allow them to streamline their stock of
toppings according to demand.

This is by no means an exhaustive breakdown of the problem. More details
will emerge as we go further into the software development cycle. It is important
to remember that each step is not a discrete entity; rather, each stage merges into
the stages preceding and following it.

Identification of inputs, processes and outputs
The next stage of the development cycle is to identify the inputs, processes and
outputs to be applied to the problem. In our example these need to broken down
for a number of subsections of the problem. There will be inputs, processes and
outputs for the Web site and others for the database, and there will possibly be
some overlap of these.

Inputs identified at this stage are:
• customer details: name, address, phone number, credit card details
• order details: number of pizzas required, size, toppings, other items
• stock details: items, number of each on hand, number of each on back order.
Processes involved are:
• displaying Web pages as requested by user
• processing orders

Figure 8.1 The stages of the software development cycle. The sizes of the circles
indicate the relative amount of time devoted to each stage.

Defnng
the

prolem

Pannng
&

prototying
Building Checking* Modfyng/

mantanng

276 Heinemann Software Design and Development: Preliminary Course

• delivering orders
• updating the database
• updating Web pages
• calculating cost
• debiting credit card account
• ordering new stock
• performing stocktake
• cooking pizzas/food
• giving change
• generating reports on trends.
Outputs required are:
• Web pages
• completed orders
• pizzas/food
• payments
• reports.

We need to take this information and create an IPO chart. This will help us to
see the interactions more clearly.

Other methods used to help understand the problems include dataflow
diagrams (see Figure 8.2) and system flowcharts (see Figure 8.3).

Exercises
Exercises in this chapter should be carried out as a team activity as they focus on
the software development process. The projects in Exercise 8.1 are only sug-
gestions to give an idea of the level required. You may even decide to develop an
application that you can use after finishing the course.

As you progress through this chapter, in each of the exercises the first question
or questions will involve the development of the Pizza Express solution.
Questions at the end of the set will relate to the development of your own
project. You should use computer technology to produce as much of the docu-
mentation for your project as possible, ensuring that it is presented in a suitable
form. It is suggested that you work through the exercises of this chapter doing
the Pizza Express question(s) in each section first, then pass onto your own
project after finishing these questions.

Input Processes Output

Customer detls Order form ompleted by customer Updated database entry

Order detls Customer rquirements enteredCompleted order ready
Order recorded and passed on to for delivery

cooks
Stock database adjusted

Table 8.1 IPO chart.

277Develping softwar olutions

1 You have been asked to design the Pizza Express Web page ‘order form’.
a Describe the problem presented by this design brief.
b Construct an IPO chart for this aspect of the final solution.
c Draw a dataflow diagram representing the order form.

Customer
Order

customers details
& order

invoice detailsAccounts
department

Prepare
invoice

order details
Chef

Chef

customer details
& order

Prepare for
dispatch

customer details
& order

order details

Order given to
customer

finished pizzas Fill pizza
order

order details

Update
stock

database

stock details

updated
stock

details

Stock databasestock
details

Prepare
order of
low stock

recorder details

Order to
ingredients

supplier

Figure 8.2 Dataflow diagram for Pizza Express.

Exercise 8.1

278 Heinemann Software Design and Development: Preliminary Course

2 Choose a project and produce the following documentation for your project: a
statement of the problem, an IPO chart describing the whole project, a dataflow
diagram representing the system, and a system flowchart.
Suitable projects include, but are not limited to:
a Simulate a supermarket cash register. A barcode is to be input from the key-

board, and the product price and description are to be displayed on the screen.
Once all items have been entered, the amount due should be displayed. An
appropriate message must be displayed if the entered barcode does not have
a product associated with it. The program should accept an amount tendered
by the customer and calculate the change due. The product description file
should contain at least twenty different products.

b Produce a warehouse management program that is to keep a database of at
least twenty items. The program is to keep track of the items entering and
leaving the warehouse. When the quantity of an item falls below a certain
level, the system is to create an order to the supplier.

Customer's
VDU

Customer's
Web browser

Customer's
keyboard

Customer's
modem

Shop
modem

Stock
order

Stock
master file

Shop
computer

Chef's order
Customer
invoice

Figure 8.3 System flowchart for Pizza Express.

279Develping softwar olutions

c Construct a simple library catalogue system that allows the user to add a book
to the library and remove one from the library. The catalogue system should be
able to be searched for books by a particular author and also by subject
keywords for books on a particular topic. Your database of books should
contain at least twenty entries.

d Create an interactive tour around your school. The tour should allow the visitor
to visit points of interest and be given information about that place. The guide
should use digitised images of the school to illustrate the various areas.

e Simulate the operation of a digital clock or watch with a reminder alarm. The
clock should be able to display the ‘time’ in both 12- and 24-hour modes. The
time should be able to be set, as should a reminder alarm. The display should
simulate the seven-segment displays usually found on these devices.

Planning
Having identified and understood the problem, we now enter the planning stage
of the software development cycle. This consists of a number of substages:
• identification of a suitable development approach
• design of appropriate algorithms
• determination of appropriate data structures
• identification of relevant subroutines
• the design of test data and expected output
• the desk check of algorithms
• identification of existing code that can be used.

Identification of a suitable development approach
Software development approaches range from a completely unstructured or ad
hoc approach to a highly structured approach. Ad hoc approaches are typically
used to build a personal support system, such as a spreadsheet to keep the budget
for a manager or a personal system to store addresses. A more structured ap-
proach is required in the development of larger and more complex programs. The
program developed must be correct and must perform the tasks that are expected
of it. In order for correctness to be achieved, the program needs to be defined
exactly before construction can begin.

For the pizza-ordering system a structured approach is to be followed. As the
program is to be a more or less trial project, the structured approach will not be
strictly adhered to and there will at times be room for ad hoc processes.

Design of appropriate algorithms
The next stage is to develop appropriate algorithms that describe the solution.
Algorithms can be represented in a number of ways, including flowcharts and
pseudocode. Flowcharts give the reader a graphical representation of the
problem, while pseudocode is written in language that is close to standard
English but is also very close to many programming languages such as Pascal.
Many programmers prefer to use pseudocode because the transition to a
programming language is easier.

The first algorithm that we will develop for our case study will describe the
overall system. This algorithm will contain subroutines or modules that are

shown by underlining the appropriate sections.
These modules will then be developed separately
and brought together later in the development
cycle.

Pseudocode
BEGIN On_line_pizza_orders

read order
read customer details
IF new customer THEN

add to customer database
print order
fill order
IF home delivery THEN

deliver order
ELSE

wait for customer to
collect order

get money from customer
update stock database

END
This algorithm is an extremely simplified

example. It will be modified and expanded a
number of times throughout the software
development cycle. Also, each of the underlined
elements represent subprograms or modules which
will need to be developed. For example, the get
money from customer module will need to show
how prices are calculated and will need to show
how change is calculated and given if required.

Determination of appropriate data
structures
In writing the algorithms for our solution we need
to consider the data structures that will be
appropriate. Since we are creating a database for
this project we will need to consider using struc-
tured data types rather than simple data types. Our
database will consist of customer records, as well as
records relating to stock. We will need to use a
number of files that will have to be linked, so a
relational database will be used. As the clients are
an off-the-shelf database program (for example
FileMaker Pro or Access) to create the database.
The creators of the database management system
(DBMS) will have made the bulk of the decisions
about manipulation of the data structures. We will
need to make decisions about the field data types
as we create the database files.

280 Heinemann Software Design and Development: Preliminary Course

END

BEGIN

Add to
customer D/B

Deliver
order

Deliver
order

Get money
from customer

Update stock
D/B

Fill
order

Read
order

Read customer
details

Print
order

New
customer

Home
delivery

no

no

yes

yes

Figure 8.4 The online ordering system
expressed as a flowchart.

281Develping softwar olutions

Identification of relevant subroutines
As mentioned earlier, the main problem can be broken down into a number of
smaller problems. Each of these problems is then solved and the solutions are
combined to solve the main problem. In the algorithm given earlier there are nine
modules or subroutines. For example, deliver order is the subroutine to be
designed to deliver the order to the customer. This subroutine can also be broken
down into smaller parts, each of them a subroutine of the deliver order sub-
routine. One of these subroutines would be to collect the amount owing, which
itself could also be broken into even smaller subroutines.

The design of test data and expected output
Test data designed for the algorithms should test the limits of expected data. For
example, a minimum price of $12 is expected for an order that is to be home-
delivered as this limit is specified in the advertising. Minimum order for home
delivery $12. There would be no upper limit to the amount ordered, but an order
of, say, $100 or above may be treated as a special order and processed using
another algorithm. Some values that need to be entered to test the price calcu-
lation algorithm boundary values would be those above the upper limit (>$100),
those below the lower limit (<$12) and those within the range specified, as well
as the two boundary values $12 and $100.

Data items—pice Expected output Reason for nclusion

$10 Amount too all To test for piceselow minimum
for home livery boundary

$12 Coninue with order To test fo the minimum boundary

$15 Coninue with order To test that progam continues—
value within boundaries

$100 Uselarge order To test for the maximum boundary
agorthm

$150 Uselarge order To test for prices above the
agorthm maimum boundary

Table 8.2 Test data for home delivery price calculation.

The desk check of algorithms
Once the algorithms have been written they need to be checked to ensure that
they actually solve the problem that they have been created for. The process of
desk checking is now used. This involves taking the test data that have been
designed (as outlined in the previous section) and manually processing it using
the algorithm. This process is usually carried out away from a computer, hence
the term ‘desk checking’.

Each of the algorithms will need to be tested in turn until are all tested. After
testing, the algorithms will be able to be used as is or they will need to be modi-
fied. If an algorithm is modified, it must pass a desk check before it can be used.

Identification of existing code that can be used
One advantage of the structured approach to software development is that
problems are broken down into easily manageable parts. The smaller problems

282 Heinemann Software Design and Development: Preliminary Course

1 Describe the data items you need for the modules to read the order and customer
details and choose an appropriate data structure to represent these items. Create
test data and algorithms for the two modules read order and read customer
details used in the online pizza orders program. Check that your algorithms
perform the tasks required by the problem statement.

2 For your own project, determine the data structures required, create the test
data, design any algorithms needed and check the algorithms. Identify any code
or modules provided by your chosen language, or developed by you earlier in the
course, that may be appropriate. Again use appropriate computer software,
where available, to produce your documentation.

Exercise 8.2

Building the solution
Building the solution involves the translation of algorithms into an appropriate
language. It is at this stage that the design specifications are handed over to the
programmers. Programmers will code the solution using an appropriate language,
test the solution using the existing test data, and document the solution by
providing algorithms, tutorials, test data used, test outputs and data dictionaries.

Implementation of the solution in an appropriate language
The solution for the pizza shop owners is to create a Web site and a database to
allow customers to order pizzas via the Internet. For the Web site, the appropriate
language will be HTML (HyperText Markup Language). CGI (Common
Gateway Interface) scripts will also need to be written. These can be written in
most popular programming languages. Two of the most commonly used langu-
ages for CGI scripts, at present, are Perl and C++. As stated earlier, the database
will be created using an off-the-shelf DBMS and so the only programming
required for the database will be the construction of scripts that streamline
searches and the generation of reports from the database.

Testing the solution using test data
Once the solution has been coded it needs to be tested. This stage is similar to
the desk-checking stage. The major difference is that we now test the coded
program on computer rather than using pencil and paper and manually
performing the testing.The Web pages have been created and the CGI scripts and
database are in place on a test server (see figure 8.5). Programmers create test
data that are to be used to test the relevant parts of the solution. This is to ensure
that the solution does what is required of it.

Dummy data consisting of a number of test customers together with a variety
of test orders is created. The test data is structured in such a way as to test the
limits of the solution. As stated earlier, orders for home delivery will be a
minimum of $12 and a maximum of $100.Test data includes orders that are both
below and above this range, as well as falling within the range. Test data outside
of the range should generate appropriate messages. Test data within the range

are solved individually, with modules being created that may be reused in future
programs. The developers need to identify any existing code that may be used for
Pizza Express, thereby saving the company both time and money.

283Develping softwar olutions

should result in orders being processed correctly. The boundary values (in this
case $12 and $100) are also included to test whether the program performs the
correct processing when these items are encountered. Other test data is used to
test the database entries. For example, in the name field anything other than a
text string should generate an error message.

It is a good practice at this stage to employ non-programmers or people who
are not familiar with the system to perform some of the testing.These people will
bring to light problems that may not have been anticipated by the programmers.
The person who creates the program or indeed a person who creates the docu-
mentation often takes for granted things that a novice would not. Programmers
often become ‘blind’ to certain faults in their programs for the simple reason that
they have become accustomed to dealing with the problem in a certain way.
There are often small things that need to be fixed but that are neglected. It is only
when someone who has not been involved with the project comes to use the
program that these small problems are identified.

Documenting the solution
Keeping documentation is a crucial part of the software development process.
Documentation is kept on each stage of the process and is updated as specifi-
cations change or as changes are made to any aspect of the project. In
documenting the solution, programmers produce algorithms, tutorials, test data
and expected outputs, and data dictionaries.

Algorithms help the programmers to see the logic of the solution before any
coding begins. Algorithms are also a good reference point once the coding has
commenced.

No program can be completely intuitive, so tutorials in using the program
need to be written. Help pages on the Web site can form part of these tutorials.
The tutorials will also instruct the owners in the use of the database and give
instructions on how to extract useful statistics from the database.

Test data and expected outputs are created at both the desk-checking and
program-testing stages. These are recorded together with the actual testing
results. Data dictionaries describing the data used in the program are also created.

Figure 8.5 The Web page has been created and it is now time to test it.

284 Heinemann Software Design and Development: Preliminary Course

1 Using the algorithms you wrote for the two modules read order and read
customer details, implement your algorithm on a computer system using an
appropriate language or development system. Check that your program performs
the tasks required by the problem statement.

2 Create appropriate user documentation for the modules that you created in
question 1. This may be online or hard copy, depending on what you think is
appropriate for the application.

3 Code and test your own project algorithms. Create the appropriate documentation.

Exercise 8.3

Field Type Size Range Example

Surname Sting Up to 20 characters A to zzzzzz… Smith

Frst_name Sting Up to 15 characters A to zzzzzzz… John

Street_address Sting Up to 35 characters 0 to zzzzzz… 1 First Avenue

Suburb Sting Up to 20 characters A to zzzzzFairfield

Postcode Sting 4 nueric characters 0000 to 9999 2165

Phone_noSting 10 nueric 0000000000 to 0296574556
characters 9999999999

Table 8.3 Pizza online data dictionary—customer details.

Checking the solution
Checking is an indispensable stage of the software development cycle. In fact,
checking is carried out throughout the entire cycle. Checking at this stage, how-
ever, may be broken into two parts: testing of the solution using test data and
evaluation of the completed solution.

Testing of the solution using test data
Once the modules have been integrated and the solution is considered to be
complete, the solution needs to be tested. In the case of Pizza Express this
involves testing the ordering system as it will appear to the customers. The Web
site, complete with the database, is loaded onto a Web server and testers are given
test data to enter. The test data is designed to test as many scenarios as possible,
and will contain items that fall outside the acceptable range for inputs, inside the
acceptable range, and on the boundaries. This is the final testing cycle before the
Web site ‘goes live’ and is able to be accessed by the public and to take orders.

Evaluation of the completed solution
Once the solution is delivered and implemented it will need to be constantly
monitored and evaluated. This initial Web site is the pizza shop owner’s means
of testing the market to see if there are any benefits in having an online presence.
Close comparisons will be made between the online ordering system and tradi-
tional in-person or telephone systems. The Web site will not be economically
viable if only a handful of people use it. The owners will need to gain a significant
amount of increased business through the Web site to justify the expense.

285Develping softwar olutions

Further evaluation will also tell the owners which areas of the online service
are working well and which are not. Some adjustment to the system will
probably be needed so that it works efficiently.

1 Evaluate the Pizza Express Web page for customer input by testing it on people
outside your team. Document the evaluation and suggest ways in which the
module can be improved.

2 Test your own project, using people outside your group to do the testing. Docu-
ment the results and make suggestions as to how the product can be improved.

Exercise 8.4

Modifying the solution
Once the solution is in place it will be monitored closely.The owners will be keen
to see if the new Web site leads to an increase in business. As the owners monitor
the ‘final’ solution they may well decide that certain aspects do not look or work
as they had anticipated. If this is the case, there will be a need to make modific-
ations. For example, it may be necessary to change the database from a generic to
a purpose-built database, that is, one designed specifically for this client.

Changing the solution to meet the specifications
As the solution is being created there may be deviations from the original
specifications. These deviations can occur for a variety of reasons. Depending on
the nature of the deviations, some time may need to be spent on refining the
solution so that it more closely resembles the original specifications.

Exercise 8.5
1 Make any necessary changes to the modules you created for Pizza Express to

reflect the information reported by your testers.

2 Make the modifications to your own project suggested by the evaluation . Don’t
forget to properly document these changes.

Project management techniques
A project has a specific goal or objective that needs to be accomplished in a finite
time with finite resources. The goal of the case study in this chapter is to have, at
the end of a finite amount of time, a Web site that advertises the company’s
product and delivers its customers an online ordering service. The Web site must
also be completed within a specified budget.

At first a task such as this seems daunting. Careful reading of what is required
reveals a complex set of interrelated tasks. Assuming that we already have a
project team with a project manager, then one of the initial stages of project
management is to identify the various tasks involved and to break the project up
accordingly. These tasks are then assigned to the appropriate team members.

286 Heinemann Software Design and Development: Preliminary Course

Identification of tasks
Let us look back at the original brief. We need to pick out the actual tasks from
the written description. We do this by focusing on key phrases or words.

Pizza Express wishes to establish a Web presence. The company has heard
that e-commerce is the way of the future and believes that sales could be
greatly increased with a Web site. Pizza Express offers pizzas in three sizes:
large, medium and small. There are also a dozen pre-defined pizzas on the
menu and customers are allowed to customise their pizzas if they wish. From
time to time there are some special deals on offer—for example two small
pizzas, garlic bread and a 1250 mL soft drink for $14.90. From Monday to
Thursday nights they offer half-price pizzas for people who pick up their own
orders. In addition to pizzas, Pizza Express also sells Italian dishes such as
Spaghetti Bolognaise and various salads. In summer they sell gelato.
Many of the highlighted terms are not actually tasks, but they may give us a

clue as to what the possible tasks might be. For example, Web presence suggests a
number of tasks: providing space on a Web server, creating Web pages, providing
graphics and text. The term e-commerce suggests the provision of secure areas on
the Web site to provide safe ordering for customers and the owners of the
business. There are tasks that are not specified explicitly in the brief, such as the
creation of the database and CGI scripts.

Many of the tasks will emerge as a result of team meetings in which the
project team will examine the brief and brainstorm possible solutions.These tasks
can be represented as a task allocation table, showing the tasks, the start and
finish times and the resources.

Exercise 8.6

Task Start Finish Resource

Requrements speiicaion 0 Day 2 Project tm, client

Anayse current system Day 2 Day 5 Systms anyst, client

Create lgoithms Day 6 Day 13 Programmr/analyst

Code program Day 15 Day 22 Programmer

Table 8.4 Task allocation table

1 Identify the tasks that need to be performed in the creation of the Pizza Express
customer order page and create a task allocation table assigning each of the
team members, or team subgroups, to one or more of the tasks.

2 Create a task allocation table to assist your team with the management of your
own project. Assign the tasks to individual team members or to subgroups.

Techniques to assist project management
There is a wide range of techniques that are employed to help with project
management. These include Gantt charts, logbooks and the identification of
subgoals.

287Develping softwar olutions

Gantt charts
A Gantt chart provides a means of seeing the overall project, including deadlines
and resource allocation, in a pictorial manner. The Gantt chart is basically a table
that has the tasks listed down the left-hand side and the calendar or days listed
across the top. Figure 8.6 provides an example.

The chart shows the tasks that are to be completed. It shows the relationships
between the tasks, when each task begins and ends, and each task’s duration. You
can see from the chart that there are some tasks that can be performed at the
same time as other tasks, and there are those tasks that rely on the completion of
others before they can be started. The chart in Figure 8.6 is incomplete. It does
not show all the tasks and the resources required to complete each task have not
been recorded. When this is done the chart will change, as some tasks may
require resources that are being used for other tasks. This will mean that the
timing of tasks and the overall timing of the project will probably change. One of
the goals of the project manager is to complete the project in the shortest
possible time with the most efficient use of the available resources.

Figure 8.6 Gantt chart.

Logbooks
Logbooks (see Figure 8.7) are a form of process documentation (see Chapter 5).
Members of the project team keep a running log of their work on the project.
This helps to track changes. Also, if any team member leaves the disruption to the
project is minimal as the new team member is able to refer to the logbooks left
by their predecessor.

Identification of subgoals
It is obvious that the main goal of the project is to create a Web site with an
integrated database that allows customers to order pizzas online. A crucial task
for the project team is to identify subgoals. Just as the programming task is
broken down into modules, the main goal can be broken down into many smaller
goals. When the subgoals of the project are identified they are assigned to
relevant team members. Some of the subgoals of this project include the creation
of graphics, the development of a navigation system for the Web site, the creation
of the database, the coding of programs, the coding of Web pages and the testing
of modules and the completed components.

288 Heinemann Software Design and Development: Preliminary Course

1 Identify and describe the subgoals of the project to create the Pizza Express Web
page(s) for customer ordering. Present your document using a word processor.
Create a Gantt chart to assist with the completion of this task.

2 For your own project, identify the subgoals and assign responsibility for each one
to a member of your team. In this project some team members may need to have
responsibility for more than one goal; some of the goals will be simple and some
will be more complex. Having responsibility for a goal might mean that the team
member oversees the goal rather than completing it alone.

3 Create the necessary project management tools such as Gantt charts. These
should be created using the appropriate software. You will also need to design a
format for the process diary that accompanies your project.

Project tite Date

Team member

Stage/activity

Noes

Figure 8.7 One of a number of possible layouts of a logbook page.

Exercise 8.7

Allocation of resources
In any project the amount of effort required is equal to the duration multiplied
by the number of resources required at each stage. It is crucial that resources are
allocated judiciously. Certain tasks within the project may require the same
resources as other tasks, and, if so, the use of resources needs to be scheduled
carefully. This process usually takes place after the tasks have been scheduled.
Resources take on the dates of the tasks to which they are allocated. This can be
shown in a resource allocation table, which is the task allocation table rearranged.

Resource Task Start Finish

Project team, lient Rquirements pcifcation 0 Day 2

Systems anlyst, lient nalyse current system Day 2 Day 5

Programmer/anayst Create algorithms Day 6 Day 13

Programmer Code program Day 15 Day 22

Table 8.5 Resource allocation table.

289Develping softwar olutions

Identification of major milestones and stumbling blocks
Milestones in a project are the significant points along the path to completion of
the work. Milestones can be the start or finish of some important phase, the
completion of a task, the receipt of a progress payment, or any other event worth
recording.

Stumbling blocks in a project are those events or obstacles that can affect the
progress of the project. For example, the unavailability of resources at a specific
time will be a stumbling block. These obstacles need to be identified early in the
process and steps taken to avoid them wherever possible.

Regular backup
There is a saying in the computing industry that the only alternative to regular
backup is to do it again. Sound advice indeed. There is nothing more costly than
spending hours and expensive resources on a project only to have them wasted
because there has been no backup of the work completed to date. Efficient
backup can mean the difference between success and bankruptcy for a company.

Regular backups are made on removable media such a DAT tape or a CD-
ROM and at least one copy is kept off-site. (That is, the copy or copies are kept
in a building or location that is remote from the original building.) This is done
as a defence against theft or fire or some other similar disaster.

Response to difficulties
Difficulties are sure to arise even in the most carefully planned project. It is
impossible to avoid problems. Rather, processes need to be in place that will
ensure that recovery from these difficulties becomes a simple thing.

Regular reporting
An important feature of any project is regular reporting. Reports need to be given
to a variety of people involved in the project. The client will be keen to see
regular reports, particularly if they are required to make progress payments
throughout the project. Regular reporting also allows the project manager to
track the progress of all aspects of the project. It alerts the project manager to any
difficulties and assists with the reallocation of resources as they become available.

Evaluation
Evaluation of a project should be an ongoing process. It should not happen only
at the end of the project. It is good practice to step back regularly and evaluate
the work and there are a number of ways to do this. Evaluation can take the form
of structured walk-throughs, requirements’ reviews, design walk-throughs and
useability inspections. Regular evaluation can help teams deliver better products
faster. It has the added bonus of creating team members who learn to avoid the
mistakes in the first place. This can improve the process as well as the product.

CASE tools
The acronym CASE stands for computer-aided software engineering. CASE tools
are used predominantly for systems analysis and design. Most of the tools that are
available to software developers or project managers belong to one of five
categories:
• Project management tools such as Microsoft Project help a team to estimate,

plan and track schedules, resources effort and costs.

290 Heinemann Software Design and Development: Preliminary Course

• Analysis and design tools assist in the documentation, analysis and
management of requirements or in the creation of design models.

• Coding tools include code generators and reformatters and code analysis and
reverse engineering tools.

• Quality improvement tools include test planning and execution tools and
static and run-time code analysers.

• Configuration management tools let you track changes and defects, control
access to files, and build a product from its components.
These tools help to save time and reduce errors by automating a part of the

development and management process. An important point to remember is that
these tools only help to implement the processes; they are not a substitute for
having established processes.

Exercise 8.8

Project documentation
All projects need to be documented from start to finish. The documentation
generated at each stage of the project must be kept. This section looks briefly at
the nature of documentation.

Relevant documentation generated for any project should include algorithms,
Gantt charts, manuals, system documentation, data dictionaries and diaries or
logbooks. As well, any memos or notes made during the development process
should be included with the process documentation.

1 Create a resource allocation table for the Pizza Express customer Web page
required.

2 Identify points in the development of the Web site for Pizza Express that you
would consider to be milestones. Explain why you have made your choices. Try to
identify some points in the development where stumbling blocks could occur, and
explain how you might overcome them.

3 Describe the types of CASE tool that you think would be appropriate for the
development of the Web site for Pizza Express. At what points would you use
these tools? Give reasons.

4 For your own project, identify the milestones that you will look for. Record these
milestones in the project log and the dates they have been reached. Also identify
any stumbling blocks that occur and explain how you overcame them. (This will
also help you overcome or avoid similar problems in later projects.)

5 For your project, devise a suitable backup system and log these backups as your
project progresses.

6 At regular intervals evaluate the progress of your project, reporting on it and
noting the results in your project log.

291Develping softwar olutions

Algorithms
The final algorithms are kept for future reference in case the software needs to
be modified. They allow new programmers or project team members to see what
has gone before. An examination of the existing algorithms gives the new team
members a good overview of the software and enables them be able to avoid
duplicating tasks that have been completed previously.

Gantt charts
Gantt charts are a useful form of documentation during the course of the project;
they let the project manager keep track of the progress of the various aspects of
the project. It is also useful to keep the Gantt charts as a record of how the
project progressed to its completion. Project teams who undertake similar
projects in the future can examine these charts to see where improvements might
be made, or they might be able to reuse parts of the charts that are relevant to
the new project.

Manuals
Manuals include user manuals, installer manuals and other types of help manuals
and documentation that relates to the software. User manuals are usually written
after the software is complete and the focus is on showing the end user how to
use the program. Installer manuals are written chiefly for systems administrators;
they guide these people through the installation process, and they may include
instructions on how to load the software onto stand-alone machines, network
servers and networked workstations.

Other types of manuals might include the internal documentation in the
software itself. This is intended for use by programmers who need to debug or
rewrite the software. It is usually in the form of comments throughout the code
of the program. The computer ignores these comments as they are intended only
for humans. Special characters that tell the computer to ignore them usually
precede the comments. For example, in Java any such comments are preceded by
the hash symbol (#). In the following two lines of Java code the first line is the
comment and the second is the code that is executed.
Get the date
chomp ($date = ’$DATE’);

System documentation
System documentation includes items such as algorithms and dataflow diagrams
that show how the overall system works. The purpose of system documentation
is to provide a detailed description of the system and to provide information that
will assist with the maintenance of the system.

Data dictionaries
Data dictionaries are the tables that show the attributes of each item of data in a
database. The table usually includes the field name, the data type, the size, and an
example of an entry, often together with a reason for the inclusion of the data item.

Diaries or logbooks
Each member of the project team keeps a diary or logbook. If anyone leaves the
team, their replacement will be able to refer to the diary or logbook to minimise

292 Heinemann Software Design and Development: Preliminary Course

1 Create a database of the documentation that has been produced for the
customer order Web page for Pizza Express. This database will help you track the
progress of the project as well as being a record of the documentation associated
with this case study.

2 Use an appropriate filing method to keep the documentation for your own
project current and useable. You might like to use a clone of the database you
created in question 1 to help the management of the documentation.

Exercise 8.9

Social and ethical issues related to
project work
Software is built for people’s use. Without users, software becomes a meaningless
collection of bits. Whenever we embark on a software project we need to
consider the social and ethical issues that relate to both project development and
the finished product.

Some of the relevant issues are ease of use, accessibility of technical language,
copyright and ergonomics.

Ease of use
Software has to be easy to use. It doesn’t matter how fancy the programming is,
if it is difficult to use or it doesn’t take into account the users’ needs it will not
fulfil its purpose. When developing software you need to spend time learning the
requirements of the software and designing a user interface that can be
understood by the potential user.

Accessibility of technical language
When designing the user interface we need to avoid the use of technical language
as much as possible. Jargon or language that is too technical puts off the user and
can get in the way of what the software is actually trying to achieve. Where
technical language is required it should be accompanied by a brief explanation.

Copyright
Piracy or the illegal use of software is one of the most common computer crimes.
Copyright laws cover most software. Every effort must be made to gain the
permission of the copyright holder for any material that is used in your software.
This includes all graphics, text and modules that you use. It is too easy to copy
software. It is estimated that software piracy costs the Australian computer
industry at least $400 million dollars per year.

the amount of time needed to become a productive member of the team. A diary
also allows programmers to progressively keep track of changes that they have
made to the program. This enables them to easily undo any change that may not
work as expected.

293Develping softwar olutions

Ergonomics
Since software is the link between the computer and the operator, it should be
ergonomically designed to make the operator feel relaxed and comfortable. In
designing the Web pages for the online pizza ordering system, for example, every
effort should be made to ensure that the text is easy to read, that navigational
elements are in consistent places, and that the pages load quickly so as to
minimise the amount of waiting time. For example, the choice of text and
background colours can mean the difference between customers persisting and
actually placing orders and moving away from the Web site to other more visually
pleasant sites. A trend in Web pages for some time was to use red text on a black
background. This combination is actually quite hard on the eyes and Web
developers have moved to a more natural white background with black text.
Good use of white space also helps enhance the legibility of the page.

Exercise 8.10
1 Evaluate the Web site you designed for Pizza Express in terms of ergonomics. Can

you find any areas for improvement? Compare the ergonomics of your solution
with those of other teams.

2 What are the social and ethical issues that must be considered in the design of
the Pizza Express Web site? Explain how you have addressed these issues or how
you could change the solution in order to address the issues. Report on your
findings.

3 Evaluate your own project in terms of its ergonomics. Report on your findings.

4 Discuss the social issues that may have become evident as you created your
project. Report on how these issues have been addressed. Are there any issues
that you have missed in the development of the project? How can you modify the
project to address these issues?

Team Activity

Evaluate the product developed by an-
other team from your class. Your evalu-
ation should focus on whether the soft-
ware solves the stated problem, how well
it solves the problem, the type and quality
of user and development documentation
and the user interface. Present your report
as a word-processed document.

When you receive the report on your
team’s project, discuss ways in which your
team might have improved on those areas
identified as weaknesses in the develop-
ment and list those areas of strength. Keep
this document for reference when you
develop your individual projects for the
HSC Course.

Review exercises
1 Copy the following passage and

complete it by filling in the blanks
with the appropriate terms or phrases.
The main steps in implementing a
project are the poblem,

, ,
and the olution. The first
of these steps ivolves the
problem and then identifying the
inputs, and .
Once we have the roblem
we need to decide upon a suitable

approach

2 Name the main steps in implementing
a software project and briefly describe
what happens at each step.

3 A software solution is needed for the
management of a large personal
collection of videos and DVD discs.
Describe the inputs, processes and
outputs that would be necessary for
this solution. Draw up an IPO chart to
represent this system.

4 Describe the development approach
that you would follow in creating the
software solution for the problem
stated in question 3.

5 Explain why it is desirable to break the
video management program into
smaller modules for development.
Identify the major subroutines that
would be necessary for this solution.

6 Design an algorithm that describes the
operation of the problem in question 3.

7 Design a suitable set of test data for
the video management problem in
question 3. Arrange these data items
into a table which includes the
expected outputs and the reasons for
including each test data item.

8 Describe the process of desk checking
in your own words. Why is it essential
for an algorithm to be desk checked
before implementation in a language?

9 What language would be appropriate
for the video management program in
question 3? Justify your choice by
giving reasons.

10 Explain why documentation is
important in the process of software
development. Describe the
documentation that will be produced
during the development of the video
management program in question 3
and explain its purpose.

11 Explain the reasons for using project
management techniques during the
software development cycle. Are these
techniques relevant for the video
management program discussed in
earlier questions? Justify your answer.

12 Identify the tasks that will be needed
in the video management program in
question 3. Create a task allocation
table for this project.

13 Describe the tools that might assist a
project team in managing a project.
Explain the purpose of each of the
tools you describe, giving an example
of where its use is appropriate.

14 Explain the purpose of logbooks and
diaries in the software development
process. Is it appropriate to use a
logbook or diary when developing the
video management program discussed
in earlier questions? Give reasons for
your answer.

15 Describe the social and ethical issues
that may arise during the process of
software development. Which of the
issues would be relevant in the video
management program discussed in this
set of exercises? Explain your answer.

294 Heinemann Software Design and Development: Preliminary Course

295Develping softwar olutions

Chapter summary

• The steps in implementing a project are to define the problem, plan the
solution, build the solution, check the solution and modify the solution.

• Defining the problem consists of understanding the problem and
identifying the inputs, processes and outputs.

• To understand the problem, we break it down into smaller, more manage-
able parts.

• For each of the parts of a problem, we identify the inputs, processes and
outputs.

• Tools such as IPO charts and dataflow diagrams help us to understand the
problem.

• Planning the solution consists of identifying a suitable development
approach, designing the algorithms, determining the data structures, identi-
fying subroutines, designing test datasets, desk checking algorithms, and
identifying existing code that can be used.

• Development approaches range from ad hoc approaches to highly
structured ones.

• Ad hoc approaches are used to develop personal support systems such as
spreadsheets.

• Structured approaches are used to develop larger and more complex
programs.

• Algorithms can be represented in a number of different ways. Approved
methods for this course are as flowcharts and pseudocode.

• Test data should test the limits of expected data as well as any boundary
values. Each test data item should be accompanied by the expected output.

• Desk checking is used to find out whether the algorithm’s logic is correct.
• Identifying existing code that can be used will help to reduce development

time and costs.
• Building the solution involves translating the algorithms into an appro-

priate language.
• Programmers code and test the solution.
• An appropriate language for the program is chosen.
• The program is first checked by running it on the computer using the set

of test data. It is then checked in a ‘real’ situation with people who have
not been involved in its development.

• The solution is documented as it progresses through its development.
• Documents created will include systems representations such as dataflow

diagrams, algorithms, tutorials, test data, a data dictionary and logbooks.
• Once the solution has been completed and delivered it is constantly moni-

tored for performance and evaluated.

Chapter summary

296 Heinemann Software Design and Development: Preliminary Course

• Tasks involved in the development of a project need to be identified and
assigned to appropriate team members.

• Tasks can be identified by focusing on key terms in the program specifications.
• Tools to help in project management are Gantt charts, logbooks, and the

identification of subgoals.
• A Gantt chart shows the time allocated to each of the tasks in a graphical

form.
• Logbooks are used to keep track of changes and to allow members joining

the team to quickly understand what has to be done.
• Resources need to be scheduled, as the same resource may be used by

different team members. A task allocation table can help with this.
• Milestones are significant points in the development path.
• Stumbling blocks are events or obstacles that affect the progress of the

project.
• The project should be backed up regularly and stored off-site.
• Processes need to be in place to deal with any unforeseen difficulties.
• The project manager should receive regular reports on the progress of the

project.
• Evaluation of the project is an ongoing process.
• CASE tools can be used to help with the software development process.
• All documentation associated with the development process should be kept.
• Social and ethical issues need to be addressed during the software develop-

ment process.
• Relevant social issues are ease of use, accessibility of technical language,

copyright and ergonomics.

297Appendx 1

Appendix 1 Sample Examination Paper

This paper contains sample questions on the Preliminary course. It does not
purport to be an examination for the course. Each question has been matched
with a Preliminary outcome. Although all care has been taken, the author is not
responsible for any mismatching with the outcomes.

QUESTIONS 1–20

Select the alternative A, B, C or D that best answers the question.

1. Touch typing allows a user to avoid mistakes by:
A looking at the keyboard B using all the fingers on the keyboard
C looking at the document D avoiding strain and injury (P 3.1)

2. A single-user software licence agreement allows the user to load the software on:
A all the office computers B any computer she uses
C a single network D a single computer (P 3.1)

3. The graphical user interface was first used by:
A Xerox on their Alto Star computer
B Apple on their Lisa computer
C Apple on their Macintosh computer
D Microsoft in Windows (P 2.2)

4. Computer programs are protected by copyright because:
A programs can be easily copied by users
B programmers are creative people like artists and authors
C software companies want to make money
D other programmers might use their ideas in their programs (P 6.1)

5. Which of the following is a not a peripheral device?
A mouse B hard disk
C random access memory D video display unit (P 1.1)

6. A program designed to copy files from one location to another is:
A an application B a file manager
C the operating system D a utility (P 1.1)

7. The first programming languages that were designed to be independent of
the processor used are:
A first generation B second generation
C third generation D fourth generation (P 2.1)

8. The people who look after the computer resources in a large system are called:
A computer operators B data entry operators
C information systems managers D maintainers (P 6.1)

298 Heinemann Software Design and Development: Preliminary Course

9. Jasmine wants a computer program to manage her finances. She is most
likely to develop it using a:
A structured approach
B prototyping approach
C rapid application development approach
D end-user development approach (P 4.3)

10. An integer data type is most suitable to store:
A a person’s height in metres
B a telephone number with its STD code
C an employee’s wages
D the number of woolly jumpers in stock (P 1.2)

11. The order of filling in an IPO chart is:
A inputs, processes, outputs B outputs, inputs, processes
C processes, outputs, inputs D inputs, outputs, processes (P 4.2)

12. Which one of the following algorithms is an example of a post-test repetition?
A IF first < second

THEN
display first

ELSE
display second

ENDIF

B FOR counter goes from first
to last
process arrayelemen(counter)

NEXT counter

C process arrayelemen(counter)
WHILE counter < last
increment counter
process arrayelemen(counter)

ENDWHILE

D REPEAT counter < last
increment counter
process arrayelemen(counter)

UNTIL counter > last (P 5.2)

13. Given that the following are syntax definitions in a programming language:
<identifier> = P | Q | R
<operator> = & | @
<simple statement> = <operator> <identifier> | <simple statement>
<compound statement> = <identifier> <simple statement> [<simple statement>] IS

<identifier>
Which of the following is a syntactically correct compound statement in
that language?
A P&Q@R B P&QRISP
C PISQ@R D P@QISR (P 5.2)

14. Which of the following features is not a consideration when designing an
input screen display:
A consistency of design with other screens
B input data type
C text sizes and styles
D the placement of screen elements (P 6.3)

15. Which one of these types of documentation from previous projects can
help in managing future software development projects?

A process documentation B system documentation
C user documentation D internal documentation (P 6.2)

299Appendx 1

16. A postal article is classed as a parcel if its weight is 500 grams or more. The
following algorithm is designed to determine whether an article is a letter or
parcel, but there is a logical error. Which test data item will highlight the error?
BEGIN parcel_sort

Obtain article_weight from user
IF (article_weight < 500) OR (article_weight = 500)
THEN Display ”The article is a letter”
ELSE Display ”The article is a parcel”

END IF
END parcel_sort
A −100 B 450
C 500 D 560 (P 5.2)

17. Desk checking of a module takes place:
A after the algorithm description stage but before coding
B after the coding process
C during the algorithm description stage
D during the coding process (P 4.2)

18. An algorithm is to be written which chooses the largest value in an array of
positive numbers. The value is to be displayed. Which of the following is the
correct algorithm?
A BBegin

End

Set index
to 1

Set largest
to 0

Set index to
index + 1

Set largest to
number (index)

Display
largest

Largest <
number (index)

Index >
array size

true

true

false

false

Begin

End

Set index
to 1

Set largest
to 0

Set index to
index + 1

Set largest to
number (index)

Display
largest

Largest <
number (index)

Index >
array size

true

true

false

false

300 Heinemann Software Design and Development: Preliminary Course

C BEGIN find_largest
set index to 1
set largest to 0
WHILE index < array_size
IF largest > number(index)
THEN set largest to
number(index)

END IF
set index to index + 1

END WHILE
display largest
END find_largest

19. While a computer is waiting for user input it:

A does nothing

B loads in the next program section

C cleans out RAM

D cycles through the input devices looking for input (P 1.3)

20. Use the following Gantt chart to answer this question. Which one of the

following statements is true?

A Task 2 can be started before task 1 is finished.

B Task 3 can be started before task 2 is finished.

C Task 3 will be finished before task 2 is finished.

D Task 4 will be finished before task 3 is finished. (P 5.1)

Task 1

Task 2

Task 3

Task 4

Week 1 Week 2 Week 3 Week 4 Week 5

D BEGIN find_largest
set index to 1
set largest to 0
REPEAT
IF largest < number(index)
THEN set largest to
number(index)

END IF
set index to index + 1

UNTIL index < array_size
display largest
END find_largest (P 5.2)

21. Social and ethical issues
(a) Name two factors that can lead to operator injury or discomfort.

Explain how these injuries and discomfort can be avoided. (P 3.1)

(b) (i) Explain the similarities and differences between shareware and

public domain software. (P 3.1)

(ii)A software developer modifies a public domain software program

and then sells it. Explain why the software developer is not acting

ethically or legally. (P 3.1)

(c) Describe two skills needed by a software developer . (P 6.1)

(d) A number of features of the modern computer have made it possible

to use a graphical user interface. Explain why these features were not

available in early computers. (P 2.2)

22. Hardware and software
(a) Describe the five elements of a computer-based system. (P 1.1)

(b) Explain the fetch–execute cycle as it applies to starting a program. (P 1.3)

(c) A program is being designed to help children read. Explain why a

programmer would use a graphical user interface for this program. (P 6.1)

301Appendx 1

23. Software development approaches
(a) Describe the prototyping approach to software development. (P 4.2)
(b) Explain how a user participates in the development of a prototype

into a fully working application. (P 6.1)
(c) Describe a problem that would benefit from a prototyping approach

to software development. Explain why prototyping is suitable for
the development of the solution. (P 4.3)

24. Defining the problem and planning the solution
The following problem is to be used for your answers to this question.
Chris is an estimator for a vertical blind company. He needs a computer program
to generate an estimate of the cost of blinds for the windows in a house. The
window sizes are measured and the customer chooses the fabric. Chris wants a
printed estimate that includes the cost of the blinds and the Goods and Services
Tax of 10%.
(a) Create an IPO chart to describes the operation of the program. (P 4.2)
(b) For each of the following data items required by the program, choose an

appropriate data type.
(i) customer name (ii) length of the window
(iii) number of windows (iv) whether or not a pelmet is needed (P 1.2)

(c) Rearrange the steps in the following algorithm so that it reads in the
window measurements and calculates the cost of the blinds. The program
is to stop when 0 or a negative value is entered for the length of the
window.
BEGIN
set length to user input
set width to user input
set area to length * width
set cost to 20 + area * 15.75
display cost
set length to user input
set width to user input
REPEAT
WHILE length > 0
END (P 5.2)

25. Building software solutions
(a) The letters of the alphabet are divided into vowels (A, E, I, O and U) and

consonants (all other letters). A two-letter word must consist of either a
vowel followed by a consonant or a consonant followed by a vowel. Write
these syntax rules either in BNF or as a syntax structure diagram. (P 5.2)

(b) Given the following syntax definition for a programming language,
create a syntactically correct indexed name. (P 5.2)

H

S

C

Character

CharacterIndexed name Character{ }

302 Heinemann Software Design and Development: Preliminary Course

(c) An algorithm is required to input a series of values. The first value entered
is the number of values that will be processed. The algorithm is to calculate
the total and the average of the values entered, ignoring the first number.
There are two errors in the following algorithm. Describe the errors and
rewrite the algorithm to correctly solve the problem. Use the test data
values 4, 3, 5, 2, 14 which should output a total of 24 and an average of 6.
BEGIN
set count to zero
set total to zero
read howmany
read value
REPEAT
add value to total
increment count

UNTIL count = howmany
set average to total divided by value
display total
display average

END (P 4.2)
(d) Describe the purpose of a prompt. Design a prompt that will inform

the user that a wrong key has been pressed. (P 6.3)
(e) Explain why internal documentation is important in a coded program.

Illustrate your answer with an example. (P 5.2)
(f) Explain why a program module should be written so that it can be

reused. Use a simple example algorithm to help answer the question. (P 5.2)

26. Checking the software solution
(a) An airline carries First Class, Business Class and Economy Class passengers.

Each passenger is given a baggage allowance as described below:
First Class: 88 kg carried free, excess baggage being charged at $5 for each
kilogram or part thereof over 88 kg.
Business Class: 66 kg carried free, excess baggage being charged at $7.50 for
each kilogram or part thereof over 66 kg.
Economy Class: 44 kg carried free, excess baggage being charged at $10 for
each kilogram or part thereof over 44 kg.
Design a set of test data pairs that could be used to calculate the amount
payable in excess baggage. Justify the inclusion of each pair of values.
You need test only for positive values. (P 5.2)

(b) The following algorithm is supposed to exchange two values. Use the test
data set below to perform a desk check on the algorithm.
Test Data: 3,6
Algorithm:
BEGIN
set number_1 to user input
set number_2 to user input
set number_1 to number_2
set number_2 to number_1
display number_1, number_2

END (P 4.2)
(c) Describe the roles of the members of a structured walk-through team.

Describe the process of a structured walk-through. (P 6.1)
(d) Explain the differences between top-down and bottom-up testing. (P 5.1)

303Appendx 1

27. Modifying software solutions
(a)Name and describe two of the reasons that may be the cause of

software being modified after its initial installation. (P 3.1)
(b)Convert the following code into an algorithm expressed either as

a flowchart or as pseudocode.
MODULE addmarks! **This module adds the marks for each question **

INPUT: question[1..10]!
OUTPUT: total_mark!
VARIABLE
index is INTEGER!

BEGIN
index <- 0!
total_mark <- 0!
WHILE index <= 10
total_mark <- total_mark + question[index]!
index <- index + 1

ENDWHILE
END

ENDMODULE! **total_mark now contains the total score for the test** (P 4.3)
(c)Explain why a programmer has to fully document a modification of an

existing program. (P 6.2)

28. Developing software solutions
All questions relate to the following case.

An airline carries First Class, Business Class and Economy Class
passengers. Each passenger is given a baggage allowance described below:
First Class: 88 kg carried free, excess baggage being charged at $5 for each
kilogram or part thereof over 88 kg.
Business Class: 66 kg carried free, excess baggage being charged at $7.50
for each kilogram or part thereof over 66 kg.
Economy Class: 44 kg carried free, excess baggage being charged at $10
for each kilogram or part thereof over 44 kg.

When the baggage is checked in at the airport, a baggage label is created
showing the weight of each article, the 3-letter destination code and the
passenger’s name. Each passenger can check in only one article. A bill for
excess baggage is created if the weight of the bag is over the limit for that
passenger’s ticket.
The airline needs to update its baggage handling facility. Management has
asked you to design the computer program to process the baggage labels and
excess baggage bills.
(a) Identify the inputs, processes and outputs and present them as an

IPO chart. (P 5.2)
(b) Choose an appropriate development approach for this problem and

justify your choice. (P 4.3)
(c) List and briefly describe the steps your program development would

take. (P 4.2)
(d) Design an appropriate graphical user interface for the main menu

of this program. (P 6.3)

304 Heinemann Software Design and Development: Preliminary Course

ZYXWVUTSRQPONMLKJIHGFEDCBA

Letter

9876543210

Digit

Identifer

Unsigned integer

Unsigned number

–

+

E unsigned integerunsigned integer .

letter

letter

digit

digit

digit

consan ideniier

unsigned number

' '

Unsigned constant

NIL

character

unsigned number

' '

Constant

constant identifier

–

+

character

Appendix 2 Pascal Syntax Structure Diagrams

305Appendx 2

ype ideniier

ideniier

constant constant

(

(

)

,

..

Simple type

ype ideniier:

;

)

,

Parameter list

identifier

identifier

PROCEDURE

VAR

FUNCTION

,

type:

:

;

Field list

identifier

identifier

CASE

constant field list()

;

:

type identifier OF

,

(. .)

@

Variable field identifier

field identifier

variable identifier

.

,

expression

306 Heinemann Software Design and Development: Preliminary Course

ype ideniier

simple ype

simple type

simple type

field list

type

type(. .)

,

Type

ARRAY

FILE

SET

RECORD END

OF

OF

OF

@

PACKED

varable

unsgned consan

factor

expression

expression

()

()

(. .)

,

Factor

NOT

procedure/function
identifier

function identifier

expressionexpression

,

..

simple expression

= < > <> <= => IN

Expression simple expression

307Appendx 2

Term factor

factor

* / DIV MOD AND

Simple expression term

term

+ – OR

+

–

,
Block

CONST

BEGIN statement

FUNCTION

unsigned integer

TYPE

LABEL

END

constantidentifier

;

;

type

type

identifier =

=

;

;

;

;

;

VAR identifier ;

block

identifierPROCEDURE parameter list

parameter listidentifier type identifier

308 Heinemann Software Design and Development: Preliminary Course

vaiable

unsigned integer

expession saemensaemen

expession

expession

saemen

:

:

:

statement

THENIF

expession saemenDOWHILE

variable ideniier expession =FOR

saemen expessionUNTILREPEAT

unsigned integerGOTO

variable statementDOWITH

ELSE

ENDexpression saemenconsanOFCASE

BEGIN END

 =

procedure/function
identifier

procedure
identifier

function identifier

DOWN TO

TO

expression DO statement

) .identifierPROGRAM block(Program ;

,

identifier

309Gossary

Glossary
algorithm a series of steps which, when performed

correctly, will solve a problem in a finite time.
alt key a modifier key which is used in combination

with a second key. It changes the signal of the key
it is used with.

application software software that performs a
specific task.

array a structured data type containing a number of
related data items, each having the same data type.

ASCII code a standard method of representing
letters, numerals and special characters as unique
strings of binary digits.

binary selection a control structure in which a choice
of two paths is presented. The path executed
depends on the result of a condition.

bit a single binary digit. It is the smallest unit of
storage in a digital computer.

BNF (Backus-Naur form) a text-based method of
stating the rules of a language. See also EBNF and
syntax structure diagram.

Boolean data type a data type in which only two
possibilities, usually either true or false, are
represented by a variable.

breakpoint a place ‘marked’ in a program where
execution of the program is suspended so that the
values of variables can be examined. Breakpoints
are usually used only during debugging of a
program.

byte an eight-bit string of binary digits.

cache memory a type of primary storage, usually
located between the CPU and RAM, which is used
to speed up access to the program and data.

called a subprogram is ‘called’ when control passes
to that subprogram from the main program.

calling module the module from which a call to
another module is made.

central processing unit (CPU) a unit that retrieves,
decodes, interprets and executes instructions.

character the smallest unit of data normally
handled by people.

character data type a simple data type in which only
one coded character can be represented by the
variable.

command based interface a human–computer
interface in which the person has to type in
commands in order to manipulate data.

command key a modifier key which is used in
combination with a second key. It changes the
signal of the key it is used with.

command-line interface an alternative term used to
describe a command-based interface.

compound statements a statement in a
programming language which combines a number
of instructions, each of which is a simple
statement.

constant a value which cannot be changed during
the execution of a program.

control one of the logical elements of a computer
system. The control element of a computer system
coordinates the processes that are carried out.

control key a modifier key which is used in
combination with a second key. It changes the
signal of the key it is used with.

control structures a term which describes the three
basic structures of an algorithm (sequence, selection
and repetition).

database management systems a software system
which allows a database to be created, maintained
and accessed.

decrement to decrease the value of a variable by 1.
desk check manually checking the logic of an

algorithm by using test data.
direct access a method of accessing data in which a

record can be accessed without having to access
previous records. Also known as random access.

double precision the use of a greater than normal
number of bytes to store a numerical value,
allowing a greater degree of accuracy.

Dvorak keyboard an alternative keyboard layout
which was designed to increase the speed of a
typist. It was named after its inventor August
Dvorak. See also Qwerty keyboard.

EBCDIC (extended binary coded decimal
interchange code) a binary coding for characters
which uses eight bits to represent each character.
See also ASCII.

EBNF (extended Backus-Naur form) a text based
method of stating the rules of a language. See also
BNF and syntax structure diagrams.

end of file (EOF) mark a pattern of bits which
represents the character used to indicate the end of
a string of text. It is usually used to show the end
of a file stored on an external storage medium such
as a magnetic disk.

ergonomics the study of the relationship between a
person and their working environment.

escape key a key that by itself may be used to
terminate an action prematurely. The escape key
may also be used as a modifier key in conjunction
with another key.

evolutionary prototyping a method of prototyping
in which the prototype is developed into the final
software solution to the problem.

field one data item within a record data structure.
file a block of data which may have been written to

a storage device.
fixed disk a magnetic storage device in which the

disk is permanently housed with its read/write
mechanism. Also known as a hard disk.

floating point data type a simple data type which
represents rational numbers.

floppy disk a flexible plastic disk housed inside a
protective cover. It may be removed from the
read/write mechanism.

310 Heinemann Software Design and Development: Preliminary Course

function a predefined set of operations which
returns a value.

function keys one or more keys which may be
programmed to perform a particular task. Function
keys are often found above the character keys on a
keyboard.

GIGO (Garbage In Garbage Out) an acronym
which states that if the input data is not correct,
then the output will not be useful.

graphical user interface (GUI) a human–computer
interface which employs icons and menus to assist
the user to navigate through the choices of a
program.

guarded loop a loop in which the decision is placed
at the start of the loop. In pseudocode, it is the
WHILE......ENDWHILE structure.

hard disk see fixed disk.
hexadecimal a counting system based on sixteen.

The characters 0 to 9 and A to F are used to
represent the sixteen digits needed for the
hexadecimal system.

identifier a name given to a constant, variable,
function or subroutine of a program.

increment to increase the value of a variable by 1.
index the value which represents the position of a

data item in an array.
input the process of transferring data into a

computer system from the outside by means of a
peripheral device.

input/output table a table of test data that lists the
test data items and the expected outputs.

integer data type a data type used to represent
positive and negative whole numbers.

internal documentation documentation included in
the source code, consisting of intrinsic
documentation and remarks (also called comments).

intrinsic documentation documentation ‘built into’
the source code. The main type of intrinsic
documentation is the appropriate choice of
identifiers. The use of indentation to show that
program modules may also count as intrinsic
documentation as it makes the logic of the
program clearer.

IPO (input processing output) chart an IPO chart
tabulates the inputs, processes and outputs
required for a system.

iteration looping through a process a number of
times. See also repetition.

least significant bit the bit in a binary string that
has the smallest vlue. It is usually the bit at the
extreme right of a byte or group o bytes.

linear search a search which progresses, one
element at a tme, from the first indexed element
of an array towards th last.

loop an alternate term for a repetition or iteration.
metalanguage a method of describing the syntax of

a languag.
MIDI (musical instrument digital interface)

a standard for the connection of a musical
instrument to a computer using an intrface.

modifier key a key on a keyboard which changes
the ‘meaning’ of a key. See alt key and control key.

module a part of a program, such as a subprogram
or function, which performs a specific task. A
module will pass data to and/or accept data from
other parts of the program.

most significant bit the bit in a binary string that
has the greatest value. It is usually the left-most bit
of a byte.

multiway selection a control structure in which a
choice is made from a number of alternatives. The
choice is based on the value of an expression.

nibble a four-bit binary string.
non-terminal symbols elements of a language that

are defined elsewhere in the language description.
See also terminal symbols.

numerical keypad a keypad containing only keys
which represent the digits 0 to 9.

nybble an alternate spelling for nibble.
octal a counting system based on eight; only the

digits 0 to 7 are used to represent numbers. See
also binary selection and hexadecimal.

operating system the software that manages the
resources of a computer.

output the process of transferring data from a
computer system to the outside by means of a
peripheral device.

overflow a condition where an operation is too large
for the storage allocated. In this case, some data
bits are ‘lost’, leading to a wrong value being
calculated.

pixel the smallest element that can be displayed on
a screen display.

post-test repetition an iteration in which the
termination test is after the body of the loop. In
pseudocode, a post-test repetition is identified as a
REPEAT.......UNTIL construction.

pre-test repetition an iteration in which the
termination test is before the body of the loop. In
pseudocode, a pre-test repetition is identified as a
WHILE.......ENDWHILE construction.

primary storage storage that is directly accessible to
the CPU.

process an action (when the word process is used as
a noun) or to perform a set of instructions (when
the word is used as a verb).

prototype a working model of an application which
is used to gather information. A prototype may be
developed into the final application or it may be
‘thrown away’.

Qwerty keyboard a keyboard design by Charles
Sholes; its name being taken from the first six
letters of the top row.

random access a method of accessing data where a
record can be accessed without having to access
any of the previous records. Also known as direct
access.

random access memory (RAM) primary storage
which can be written to as well as read. See also
read-only memory.

311Gossary

raster the horizontal scanning line of electron
beams used in a cathode ray tube to build up the
image.

read-only memory (ROM) primary storage which
can only be read. See also random access memory.

record a collection of related facts. A record is
stored as one or more fields.

recursion a definition which incorporates itself.
relational database a database in which records in

two or more different files are linked by a field.
repetition an algorithm structure in which a

sequence of steps may be executed a number of
times.

RSI (repetitive strain injury) an injury which is
caused by the constant repetition of a task.

screen buffer an area of primary storage which is
used to store the data which represents the image
on a screen.

secondary storage storage which is not directly
accessible by the CPU.

selection an algorithm control structure which
presents two or more options, the choice of which
depends upon the result of a test.

sentinel value a value used to ‘mark’ the end of a
data list.

sequence an algorithm control structure which
consists of a number of steps one after the other.

sequential file a file structure in which, to reach
one record, each of the preceding records has to be
passed over.

simple data type a data type that may be applied to
one data element.

single precision the standard representation of a
simple numerical data type within a particular
programming language.

standard constructs the general term which
describes the basic elements of an algorithm:
sequence, selection and repetition.

statement a single step as written in a programming
language.

stepwise refinement a process in which a problem is
broken down into smaller parts until it can be
easily solved.

storage a device or medium that can be used to
hold data.

string data type a simple data type consisting of a
number of characters.

structured data type a data type which is used to
represent a number of related data elements as one
data item.

stub a small module representing a part of the
program which is still to be written.

subroutine a part of a program which performs a
specific task.

syntax the set of rules that govern the way in which
the elements of a language can be combined to
form a statement.

syntax graphs a pictorial method of illustrating the
syntax of a language. Also known as a syntax
structure diagram.

syntax structure diagram a pictorial method of
illustrating the syntax of a language. Also known as
a syntax graph.

system software the files and resources needed by a
computer system in order to allow it to run
properly. System software includes the operating
system and utility software.

terminal symbols individual characters, or strings of
characters, which are used in the definition of a
syntax structure.

test data data elements designed to test the
operation of an algorithm or program.

top-down design a design approach in which a
problem is broken down into a number of smaller,
easier to solve, problems.

tracing the process of following the execution path
of a running program in order to identify the
source of an error.

truncation the ‘loss’ of accuracy caused by a limit to
the way that results of operations can be stored.

two’s complement a method of using a fixed length
binary string of digits to represent both positive
and negative integers.

unguarded loop a loop whose body must be
executed at least once each time it is reached. Also
known as a post-test repetition.

user interface the link between the user and the
computer program. The most common user
interfaces use screens, keyboards and mice.

utility software programs that perform management
tasks such as formatting disks, duplicating files,
virus protection, etc.

validation a check made by the computer that data
is within allowable limits for processing.

variable a name used within the code of a program
to reference a stored data element.

variable declaration a statement in a programming
language that indicates the type of data that a
variable will be used to store. It is used by the
language translator to set aside an appropriate
amount of storage for the data item.

verification the manual process of checking that
data items have been entered correctly by
comparing the entered data with the source data.

virtual memory a technique which uses secondary
storage in the place of primary storage so that the
computer appears to have more main memory
than it really does.

WIMP (windows, icons, mouse and pointer)
another term for the graphical user interface.

word length the maximum number of bits that can
be processed at one time by a CPU.

WYSIWYG (what you see is what you get)
a display which shows on screen exactly what will
be output as hard copy.

312 Heinemann Software Design and Development: Preliminary Course

abstract data types 104
abstraction/refinement 95–7
access elements of an array 144–6
accessibility of technical language

292
algorithm description 207
algorithms 112–13, 291
checking 140–6
creating for source code when

they are not available 262–5
description 115–16
standard constructs 118–40
alignment 198–200
Antonelli, Kay McNulty Mauchly

247
application programs 49, 58
arithmetic errors 232
arithmetic logic unit 40
array processing 144–5
arrays 109, 172
ASCII code 104, 105

Babbage, Charles 29
Backus, John 153
Backus-Naur Form (BNF) 154,

158
checking 160
Backus Normal Form (BNF) 154
balloon text 212
barcode wand 34
binary number system 98
conversions to and from 98–100
binary selection 121–3, 166–7
syntax 166–7
Boolean data type 104
borders 198, 199
bottom-up testing 234
boundary values 222
breakpoints 178
building the solution 74–5, 282–4
Byron, Augusta Ada 3

cache memory 43
calling module 191
CASE tools 289–90
central processing unit (CPU) 30,

40
CGI (Common Gateway

Interface) 282
chair 8–9
character data type 104
character readers 34–5
check boxes 202
checking algorithms 140–6
checking the solution 75–6,

284–5
choice boxes 202
choice elements 201–2
clock speed 58
coding 154–74
coding errors, types of 174–80

Index

combining code and modules
from different sources 190–2

command-based interface 55
command line interface 33
comments 214, 257
compact disks 46
comparison errors 232–3
compilation 54
compile-time errors 174–6
computer system, elements 60–1
consultation with users 193–4
control logic errors 233
control structures 118–40
identified from supplied

documentation 267–8
syntax 165–71
control unit 40
copyright 16–17, 240, 292
counted loop 132, 168–9
currency 108

data dictionaries 225–7, 291
data representation 98–102
data structure errors 233
data types 103–11
syntax 171–2
data validation 188–9, 222
database management systems

110, 280
date 108
debugging output statements

185–6
decomposition 95, 96
defining the problem 90–3,

274–6
design evaluation 236–9
design process 208
desk 8
desk checking 140–1, 229, 239
developer’s documentation 208
developer’s perspective 194–5
dialogue boxes 202
difficulties, response to 289
digital cameras 35
digitising tablet 34
direct access 44
documentation 207–16, 267–8
for developers 208
for users 208–12
to identify control structures

267–8
types of 207–8
dot-matrix printers 38

EBCDIC code 104, 106
end-user development 83–4
equality 177
ergonomic software design issues

12–14
ergonomically designed furniture

8–9

ergonomically placed furniture
9–11

ergonomics 4–14, 240, 293
error-correction techniques

174–87
error types 232–3
ethical perspectives 241, 255
evaluation of a project 289
evaluation of design 236–9
comparing different solutions to

the same problem 236–8
methods 238–9
evaluation of implemented

solution 239–40
checking solution against original

design specifications 240
social and ethical perspectives

241
user feedback 240
event-driven programming 52–3
Extended Backus-Naur Form

(EBNF) 154, 158–9
checking 160
external documentation 207

fetch-execute cycle 57–8
fields 109
fifth-generation languages 51–2
files 110–11
first-generation languages 50–1,

154
flags 187
flexibility 13
floating point data type 106–7
floppy disks 45
flowcharts 116
formatting 45
fourth-generation languages 51
functional description 209
functions 191

Gantt charts 287, 291
glossary 309–11
government regulations 251
graphical user interface (GUI) 33,

55, 201
graphics, pictures and text 206
guarded loop 130–1

hard disks 45
hardware 30–48
elements 30, 31
relationship with software 57–62
help screens 211–12
hexadecimal system 100–2
high-level languages 50, 154
Hopper, Grace 89
HTML (HyperText Markup

Language) 282

313ndex

icons 203, 204
impact printers 37
inclusivity 22–4, 240
incremental compilation 55
indoor climate 5
ink-jet printers 38
input 30, 32, 261
input data 194
input devices 32–6
input/output errors 233
input/output table 141–2
installation guide 210
integer data type 104
intellectual property 15–22
internal documentation 207,

213–16
interpretation 54–5, 260–7
intrinsic documentation 214, 256
introductory manual 209
IPO chart 90–3, 276
iteration 130–2
syntax 168–71

joystick 34
justification 198–200

keyboard 10–11, 32–3
Knuth, Donald 221

laser printers 38
learnability 13
libraries of code 188–92
licence agreements 15–17, 20–1,

255
light pen 34
lighting 4–5
liquid crystal displays (LCDs) 37
logbooks 287, 291–2
logic errors 178
loop 130–2
low-level languages 50, 154
lowercase text 197

machine language 51
magnetic disks 44–6
magnetic tape 44
maintenance coding, reasons for

248–54
changed organisational focus

250–1
changes in data to be processed

250
changes in government

requirements 251
introduction of new

hardware/software 250
poorly implemented code 251–3
upgrading user interface 249–50
manuals 291
menus and menu bars 203–4
message structure 196–200
metalanguages 154
microcomputer 30
microprocessor 40
MIDI (musical instrument digital

interface) 35

milestones 289
modifying the solution 77, 285
monitor 36
motherboard 40
mouse 11, 33
multiway selection 123–5
syntax 176–8

navigational elements 202–4
noise 5
non-impact printers 37

object code 54
observation 193–4
octal number system 100
online help 211–12
operating systems 48–9
characteristics 55
optical character readers 35
organisational focus changes

250–1
origin of software design ideas

17–20
original algorithms, reading to

identify inputs, processes and
outputs 260–2

original documentation, reading
to understand the code 260

output 30, 36, 195, 261
output devices 36–9

palettes 203
paper-based documentation

209–11
parameters 191
Pascal syntax diagrams 304–8
peer checking 238
peripheral devices 30
pixels 37, 55
Pizza Express, case study 274–93
building the solution 282–4
checking the solution 284–5
defining the problem 274–7
modifying the solution 285
planning the solution 279–82
plagiarism 255
planning the solution 72–3,

279–82
plotters 38
pointing devices 33–4
post-test loop 131–2, 170–1
pre-test loop 130–1, 169–70
primary storage 30, 42–3
printers 37–8
process and control 40–1
process documentation 208, 260
processing 30, 195, 261
processing records from a

sequential file 145–6
product documentation 208, 260
program listing 213
programming languages
coding 154–74
generations of 50–2
project documentation 290–2
project implementation 274

building the solution 282–4
checking the solution 284–5
defining the problem 274–6
modifying the solution 285
planning the solution 279–82
project management techniques

286–90
prompts 205
prototyping approach 78–81
pseudocode 115

questionnaires 193

radio buttons 201–2
random access memory (RAM)

43
rapid application development

(RAD) 81–2
read-only memory (ROM) 42
records 109–10, 172
reference cards 210–11
registers 41
regular backups 289
regular reporting 289
relational databases 110
remarks 214, 257
repetition 130–2
repetitive strain injury 4
resolution 37
resource allocation table 288
response time, of software 12–13
reusable code 188–9
robustness 14
run-time errors 176–8

sample examination paper
297–303

scanners 35
screen 9–10, 36–7
screen design 195–6
screen elements 201–6
second-generation languages 51,

154
secondary storage 30, 44–6
selection 121–5
syntax 166–8
sentinel value 145
sequence 118–19
syntax 165–6
sequential access 44
sequential file 110, 172
record processing 145–6
sequential programming 52
simple data types 104–8
social perspectives 241, 255,

292–3
software 48–57
relationship with hardware 57–62
software development

approaches 70–84
software development cycle 275
software licence agreements

15–17, 255
reasons for 20–1
software lifecycle 70
software specifications 207

314 Heinemann Software Design and Development: Preliminary Course

sound devices 35
source code 54, 207
documentation within the code

156–7
maintainability 256–9
presentation of a coded solution

257–9
sources of code, and conditions

that apply 21–2
spaghetti code 263
special key combinations 203
standard algorithms 144–6
standard constructs 118–40
iteration 130–40
selection 121–30
sequence 118–21
statement-coverage testing 231–2
statements 154
storage 42–6
string data type 107–8
structured algorithms 112–40
structured approach 70–7
building the solution 74–5
checking the solution 75–6
defining the problem 71–2
modifying the solution 77
planning the solution 72–3
structured data types 104,

108–11
structured walk-through 238–9
stubs 180–4
stumbling blocks 289
subgoals, identification of 287
subprograms 191, 214–16
surveys 193
swap two data items 144
symbol 171
symbolic assembly languages 51
syntax 154
control structures 165–71

syntax description examples
160–2

syntax errors 174–6
syntax representation 154–65
Backus-Naur Form and Extended

Backus-Naur Form 158–62
syntax structure diagrams 154,

155
checking 157–8
construction 156–7
interpretation 155–6
system administrator 208
system administrator’s manual

210
system documentation 208, 291
system reference manual 210
system software 48–9

task allocation table 286
task identification 286
technical language, accessibility

292
test data 140, 141, 207, 222–36
for testing algorithms and coded

solutions 229–35
requirements 222–5
test data dictionaries 225–7, 291
testing strategy 229
text colour 198
text legibility 197
text spacing 197
third-generation languages 51
toggling 202
toolbars 203
top-down design 95–7
top-down testing 234–5
touch screen 34
touch-typing 7
tracing 178
trackball 34

translation methods 54–5
trouble-shooting guides 210
Turing, Alan Mathison 273
tutorial assistant 212

unguarded loop 131–2
uppercase text 197
user documentation 208–12
user feedback 240
user friendliness 13–14, 240, 292
user interface 13–14, 193
upgrade 249–50
user interface development

193–207
consultation with users 193–4
user’s and developer’s

perspectives 194–5
user manual 210
utility software 48, 49

validation (data) 188–9, 222
validation (design) 236
variable declaration 171
verification 236
video input devices 35
virtual memory 42
visual display devices 36–7

walk-through team 238–9
white-box testing 231
Windows 203–4
work routine 6–7

Zuse, Konrad 69

Acknowledgments
The author and publisher would like to thank the following for granting permission to reproduce the copyright
material in this book.

Australian Picture/Corbis Bettmann, pp. 221; Kay McNulty Mauchly Antonelli, p. 247; Malcolm Cross, pp. 5, 15,
21, 31, 33, 44, 45, 47, 193, 251 (top); Epson, p. 35; IBM, p. 153; LMT/Lockhead, Martin, Tenex/Malcolm Cross,
p. 195; Logitech, p. 11; Mary Evans Picture Library, pp. 3, 29; Microsoft, p. 10; Northside Productions, pp. 40
(top), 53; Swe-TECH, p. 38; Video Bytes, p. 34; Volgren, p. 71; Horst Zuse, p. 69, Wacom, p. 34 (bottom).

Every effort has been made to trace and acknowledge copyright. The authors and publisher would welcome any
information from people who feel they own copyright to material in this book.

	Contents
	Introduction
	Heinemann Software Design and Development and the Preliminary Course Outcomes
	1 Social and ethical issues
	Ergonomics
	Intellectual property
	Inclusivity
	Review exercises
	Chapter summary

	2 Hardware and software
	Hardware
	Software
	The relationship between hardware and software
	Review exercises
	Chapter summary

	3 Software development approaches
	Introduction
	The structured approach to software solutions
	The prototyping approach to software solutions
	Rapid application development (RAD)
	End-user development
	Review exercises
	Chapter summary

	4 Defining the problem and planning software solutions
	Defining the problem
	Abstraction/refinement
	Data representation
	Data types
	Structured algorithms
	Checking algorithms
	Review exercises
	Chapter summary

	5 Building software solutions
	Coding in an approved programming language
	Error-correction techniques
	Libraries of code
	User interface development
	Documentation
	Review exercises
	Chapter summary

	6 Checking the software solution
	Test data
	Evaluation of design
	Evaluation of implemented solution
	Review exercises
	Chapter summary

	7 Modifying software solutions
	Reasons for maintenance coding
	Social and ethical implications
	Features in source code that improve its maintainability
	Interpretation
	Documentation
	Review exercises
	Chapter summary

	8 Developing software solutions
	Implementing projects
	Project management techniques
	Project documentation
	Social and ethical issues related to project work
	Review exercises
	Chapter summary

	Appendix 1: Sample examination paper
	Appendix 2: Pascal syntax structure diagrams
	Glossary
	Index

