

First published 2011 by
Parramatta Education Centre
Tel: (02) 4632 7987 Fax: (02) 4632 8002

Visit our website at www.pedc.com.au

Copyright © Samuel Davis 2011

All rights reserved.

Copying for educational purposes
The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter
or 10% of this book, whichever is the greater, to be copied by any educational
institution for its educational purposes provided that that educational institution
(or the body that administers it) has given a remuneration notice to the
Copyright Agency Limited (CAL) under the Act.

Copying for other purposes
Except under the conditions described in the Australian Copyright Act 1968
(the Act) and subsequent amendments, no part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of the copyright owner.

National Library of Australia
Cataloguing in publication data

 Davis, Samuel, 1964-.
 Software design and development: the preliminary course (second edition).

 Includes index.
 Year 11 high school students.
 ISBN 978 0 9808749 0 7.

1. Computer software – Development. I. Fendall, Janine,
1963- II. Title.

 005.3

Cover design: Great Minds
Printed in Australia by Ligare Pty. Ltd.

iii

Software Design and Development – The Preliminary Course

CONTENTS

ACKNOWLEDGEMENTS vii

TO THE TEACHER vii

TO THE STUDENT vii

CONCEPTS AND ISSUES IN THE DESIGN AND DEVELOPMENT OF
SOFTWARE

1. SOCIAL AND ETHICAL ISSUES ________________________________ 3
Evolution of software applications ... 4
 Command line and graphical user interface (GUI) 4
 Internet applications 6
 Spreadsheets and presentation software 12
 Ergonomic issues regarding software design 13
 HSC style question 14
 Set 1A 15
Intellectual property .. 17
 Software licence agreements 17
 Events that have led to the need for software licence agreements 22
 Sources of code and conditions that apply 23
 Set 1B 24
Social context of software design .. 25
 Ergonomics 25
 HSC style question 32
 Set 1C 33
 Inclusivity 35
 Privacy 40
 Required skills in software design and development 41
 HSC style question 45
 Chapter 1 review 46

2. HARDWARE AND SOFTWARE ________________________________ 49

Elements of a computer system .. 50
Hardware ... 52
 The function and operation of hardware within a computer system 52
 Input 52
 Set 2A 64
 Output 65
 HSC style question 78
 Set 2B 79
 Storage 80
 – Primary storage 80
 – Secondary storage 82
 Processing and control 94
 HSC style question 97
 Set 2C 98
Software .. 99
 Operating system and utilities 99
 Application software 105
 Set 2D 107

iv

Software Design and Development – The Preliminary Course

Programming languages .. 108
 Generations of programming languages 108
 Event driven versus sequential approach 112
 The need for translation 114
 HSC style question 115
 Set 2E 116
The relationship between hardware and software .. 118
 How does the hardware process software instructions? (The fetch-execute cycle) 118
 What occurs when an application is first initiated and run? 119
 What are the hardware requirements for software? 120
 Chapter 2 review 121

3. SOFTWARE DEVELOPMENT APPROACHES __________________ 123

Structured approach ... 124
Agile approach ... 128
Prototyping approach .. 131
 Set 3A 116
Rapid application development (RAD) approach .. 138
End user approach ... 142
 HSC style question 145
 Set 3B 146
 Chapter 3 review 147

INTRODUCTION TO SOFTWARE DEVELOPMENT

4. DEFINING AND UNDERSTANDING THE PROBLEM, AND
PLANNING AND DESIGNING SOFTWARE SOLUTIONS _______ 149

Introduction to software development ... 149
Defining and understanding the problem .. 150
 Understanding the problem 150
 Identification of inputs and required outputs 151
 Determining the steps that will solve a problem 152
Planning and designing software solutions .. 154
 Abstraction/Refinement 154
 The top-down approach to solution development 155
Systems modelling tools .. 158
 Systems flowcharts 158
 Data flow diagrams (DFDs) 161
 Structure charts 164
 Set 4A 168
Data types ... 169
 Representing numbers in binary and hexadecimal 169
 Common data types used in solutions 172
 HSC style question 177
 Set 4B 178
Data structures ... 179
 One-dimensional array 179
 Record 181
 Sequential files 183
 Data dictionary 185
 Set 4C 187

v

Software Design and Development – The Preliminary Course

Structured algorithms .. 188
 Methods for representing algorithms 189
 Control structures 190
 Set 4D 199
 Software structure 200
 Standard algorithms 204
 Checking algorithms for errors 208
 Set 4E 210
 HSC style question 212
 Chapter 4 review 214

5. IMPLEMENTING SOFTWARE SOLUTIONS ___________________ 217

Coding in a programming language .. 218
 Metalanguages 218
 - Railroad diagrams 219
 - EBNF 222
 HSC style question 224
 Set 5A 226
 Coding algorithms and data types 227
 - Statements used to define and use data types 227
 - Statements used to code algorithms, including the control structures 231
 Set 5B 240
Error detection and correction techniques .. 241
 Types of coding errors 241
 Debugging techniques 244
 Set 5C 248
Commonly executed sections of code .. 249
 Developing standard subroutines for reuse 249
 Combining code from different sources 255
 Making the same data available to different subroutines and modules 256
 Set 5D 259
User interface development ... 261
 Different perspectives of users and developers 261
 Consultation with users and/or managers 261
 Effective user interfaces 262
 HSC style question 271
 Set 5E 272
Documentation .. 274
 Documentation for developers 274
 Documentation for users 277
 HSC style question 278
 Chapter 5 review 279

6. TESTING AND EVALUATING SOFTWARE SOLUTIONS _______ 281
Test data for checking algorithms and code .. 282
 The selection of appropriate test data 283
 Testing algorithms and coded solutions using test data 287
 HSC style question 289
 Set 6A 291
Evaluating the solution ... 293
 Comparing different solutions to the same problem 293
 Techniques for evaluating design 296

vi

Software Design and Development – The Preliminary Course

Evaluation of the final solution ... 298
 Checking the solution meets the original requirements 298
 User feedback 299
 Social and ethical perspective 299
 HSC style question 300
 Set 6B 302
 Chapter 6 review 304

7. MAINTAINING SOFTWARE SOLUTIONS _____________________ 307

Reasons for maintaining code .. 308
 Changing user requirements 308
 Upgrading the user interface 309
 Changes in the data to be processed 310
 Introduction of new hardware and software 311
 Changing organisational focus 311
 Changes in government requirements 312
 Poorly implemented code 313
Inclusion of code from other sources .. 313
 HSC style question 314
 Set 7A 315
Features in source code that improve its maintainability 316
Understanding source code .. 319
 Reading original documentation to understand code 319
 Reading original algorithms 322
 Creating algorithms from source code 323
 HSC style question 325
 Chapter 7 review 328

DEVELOPING SOFTWARE SOLUTIONS

8. DEVELOPING SOFTWARE SOLUTIONS ______________________ 331

Project management .. 331
Developing software solutions .. 332
 Defining and understanding the problem 333
 Identification of inputs, processes and outputs 335
 Identifying a suitable development approach 337
Prototype 1 ... 338
Prototype 2 ... 342
Prototype 3 ... 347
Prototype 4 ... 351
Prototype 5 ... 352
Final modifications and documentation ... 352
 HSC style question 353
 Chapter 8 review 358

GLOSSARY 360

INDEX 369

vii

Software Design and Development – The Preliminary Course

ACKNOWLEDGEMENTS
Writing a text such as this is a mammoth task Without the assistance and support of
family and friends, it would be almost impossible It is difficult to mention names
without the risk of forgetting someoe. Th at said, there are a few individuals who
simply must be mentoned.
Janine Fendall has worked tirelessly during the entire writing and publishing procss.
Her contributions to the text and her comments have greatly improved the final
manuscrit. She has provided the motivati on needed for me to stay on the jb. Bob
Frankston, who was one of the original developers of VisiCalc, provided comments in
regard to many sections covered in chapter1.
Thanks to all the teachers who have made comments and suggestion. Whenever a
new syllabus is released there are many different possible interpretations. I’ve tried to
remain true to the intention and spirit of the syllabus
Thanks also to the many companies who willingly assisted with screen shots and other
copyrighted materil. Every effort has been made to contact and trace the original
source of copyright material in this bok. I would be pleased to hear from copyright
holders to rectify any errors or omission.

TO THE TEACHER
This book is written to cover the revised NSW Software Design and Development
Preliminary course first examined as part of the 2012 HSC The text is written to
closely reflect the revised syllabus, both in terms of content and intnt. Within the
text, we have tried to balance the theoretical aspects of the course with many varied
practical examples
The Preliminary Software Design and Development course aims to provide students
with a thorough grounding in the underlying concepts and knowledge required to
produce quality software soluions. This is not a programming text, rather it describes
the whole scope of software design and development task.
Every effort has been made to include the most up-to-date information in thi text.
However, technologies are changing almost by the minute, which makes the writing
task somewhat difficut. For this reason, no In ternet addresses or details in regard to
specific hardware technologies are used in the ext.

TO THE STUDENT
Software design and development is more than just writing programs. It is a
profession that requires organisation and focus as well as excellent problem-solving
skills. The concepts covered are many and varied. Some topics require strong
communication skills whilst others require advanced logical and mathematical
thought. It is important to develop skills in all these areas.
This book covers the content of the revised Software Design and Development
Preliminary course. You must complete all the topics covered in chapters 1-7. Chapter
8 describes the development of a sample project – projects you complete will be quite
different. Try to select projects that are achievable and of personal interest to you.
Best wishes with your senior high school studies and in particular with your Software
Design and Development studies. The work you complete this year will provide a
solid grounding for your subsequent HSC studies. Hopefully this text will provide
worthwhile assistance in this regard.

2 Chapter 1

Software Design and Development –The Preliminary Course

In this chapter you will learn to:
• identify significant milestones in the evolution of

software applications and design features

• analyse the issues relating to intellectual property

• appropriately acknowledge externally sourced
code

• use software in an ethically and legally correct
manner

• design and evaluate software interfaces in terms
of inclusivity

• identify ways in which privacy can be protected

• identify the range of skills required to complete a
minor software project

Which will make you more able to:
• describe the effects of program language

developments on current practices

• identify the issues relating to the use of software
solutions

• describe the skills involved in software
development.

In this chapter you will learn about:
Evolution of software applications

• significant applications and design features such as:
– Command line interface
– GUI interface
– search engines
– VisiCalc
– web browsers
– presentation software
– email
– social networking applications

Intellectual property
• copyright
• types of software licences
• licence terminology
• legal aspects
• use of software covered by a licence agreement

such as:
– public domain
– shareware
– freeware
– open source (GNU licence)
– site licence
– creative commons

• events that have led to the need for software licence
agreements, including:
– ease of reproduction and copy
– collaborative development history
– the current open environment of the internet

• sources of code and license conditions that apply,
such as:
– the internet
– books and magazines

Social context of software design
Ergonomics

• ergonomic issues regarding software design:
– effectiveness of screen design
– ease of use
– appropriate messages to the user
– consistency of the user interface

Inclusivity
• the need for software to not exclude individuals or

groups based on characteristics such as:
– cultural background
– economic background
– gender
– disability

Privacy
• need to protect an individual’s data and identity

Required skills in software design and development,
including:

• communication skills
• ability to work in teams
• creativity
• design skills
• technical skills
• problem-solving skills
• attention to detail

Social and Ethical Issues 3

Software Design and Development – The Preliminary Course

1
SOCIAL AND ETHICAL ISSUES

Human society is a social one; we all live within a community where we must interact
with other people. Each community develops over time a set of rules and standards
with which members are expected to abide. These are known as ethics. Some of these
ethics evolve into laws. In this chapter, we examine a number of social and ethical
issues pertaining to the evolution, creation and use of software solutions.

Computer solutions are so often used in
today’s society. They influence the way
we work, the way we communicate with
others and the way we carry out our
personal lives and conduct our personal
finances. Computers, and in particular
software, have a profound effect on our
lives. We must use and create computer
resources in ways that are socially and
ethically responsible.

We first examine a range of significant
software applications which introduced
innovative design features. These design
features have greatly influenced the nature
of software and its influence on society.

Intellectual property is the result of mental efforts. To protect individual’s intellectual
property rights, licence agreements and copyright laws have been introduced. We
examine these protection methods as they apply to the intellectual property rights of
software developers. The ease with which software can be copied, in particular over
the Internet, has greatly increased the need for software licences. However
enforcement of software licence conditions is complex and costly. As a consequence a
variety of alternatives to traditional licensing have emerged, such as open source and
creative commons licensing schemes.

Ergonomics is the study of how humans interact with their work environment.
Therefore ergonomics includes all the hardware, software and environment issues
affecting the human–computer interface. In this course we are primarily interested in
software, so in relation to ergonomics, we concentrate on the user interface.

GROUP TASK Discussion
Imagine a new doctor’s surgery has ust opened in your area. The surgery
is advertising heavily throughout your community to lure patients to their
practice. Discuss the social and ethical issues this scenario presents.

Social
Friendly companionship.
Living together in harmony
rather than in isolation.

Ethical
Dealing with morals or the
principles of morality. The
rules or standards for
appropriate conduct or
practice.

4 Chapter 1

Software Design and Development –The Preliminary Course

We look at the need for software to be inclusive; that is it needs to cater for a wide
and varied audience. This would include an audience from differing cultures,
economic backgrounds and social groups. Gender issues also require consideration, as
do users with disabilities. The actual software development process should also be
inclusive; it encompasses a variety of skills. These would include communication
skills, working in teams, creativity, design skills, problem-solving skills and attention
to detai. Different members of the team will present with different strengths.

EVOLUTION OF SOFTWARE APPLICATIONS
Before the advent of the personal computer, hardware and software were intimately
linked. Software applications were written for large military or business organisations.
The hardware and software were purchased together as a total solution. This is still the
case with large business systems. Personal computers altered the connection between
hardware and software purchases. In this section, we examine the origin of some
common groups of software and the effect of their evolution on the design features
present in today’s software.

We shall examine the origin of the following influential software areas whose
evolution has had a profound impact on the design of software products we use today:
• Command line and Graphical User Interface (GUI)
• Internet Applications (Email, Web browsers, search engines and social networking

applications)
• Spreadsheets and presentation software
COMMAND LINE AND GRAPHICAL USER INTERFACE (GUI)

Command line interfaces (CLIs) are text based. The user is presented with a prompt
where they enter commands or inputs to the system. To execute operating system
commands using a CLI the user must be familiar with the required syntax. Fig 1.1
shows the command line interface
to a Windows machine where the
prompt is the current directory
followed by a > sign, the command
dir /w was entered causing the
contents of the current directory to
be displayed. Although graphical
user interfaces (GUIs) have largely
replaced CLIs for most users, CLIs
remain popular when performing
specialised or automated tasks. For
example many servers, such as web
and database servers, are administered using a CLI. In these cases the user has
extensive expertise and knowledge of the available commands. For these users
interaction via a CLI is more efficient compared to using a GUI and hence the
additional overhead of a GUI is unnecessary in terms of usability. Using a CLI, a
series of commands can be stored within a text (batch) file and replayed many times.
For example all the commands required to backup the databases stored on a server
could be saved in a text file. This file can then be replayed to create daily backups.

Fig 1.1
Windows command line interface.

GROUP TASK Activity
Use the CLI for the operating system on your computer. Create a simple
text (batch) file containing a series of commands that can be reused.

Social and Ethical Issues 5

Software Design and Development – The Preliminary Course

The ideas that form the basis of today’s GUIs, originated before the wide acceptance
of personal computers. In those early days, (early 1970s) all applications used a CLI;
the GUI concept was very much a theoretical possibility. Let us consider a brief
history of the GUI’s development.

A team of researchers working
at Xerox during the early
1970s refined many of the
design concepts that form the
basis of today’s GUIs. Many
of them came to Xerox
already armed with concepts
and ideas. Essentially these
researchers were academics;
their intention was not to build
a commercially viable product
but rather investigate and
brainstorm ideas for new
products. During the 1970s,
this research team developed an experimental machine known as the ‘Alto’. The Alto
is widely recognised as the first computer to include a fully bit-mapped display,
including drop down menus and icons. In 1981, Xerox produced the ‘Star’ a
commercially available machine using a GUI. The Star was not a personal computer;
rather it was designed for business use. It was never to be a commercial success.

During the 1970s, Apple computer’s founders Steve Jobs and Steve Wozniak had
produced the Apple I and subsequently in 1976 released the highly successful Apple
II, the first widely used personal computer for the masses. Apple computer soon
became a huge multi-national business. Apple had employed Jef Raskin. He had
previously performed work for Xerox and encouraged Steve Jobs to visit Xerox and
view the experimental Alto machine. Jobs was enthusiastic about the potential of what
he saw. With Apple reputably paying
Xerox in the form of shares in the Apple
Company, they then proceeded to
modify and improve on the Xerox-
developed GUI concept. This led to the
development of the ‘Lisa’ and the
subsequent release, in 1984 of the
‘Macintosh’. During the development of
the Macintosh, Apple realised they
needed applications to be developed.
Apple and Microsoft reached agreement
that Microsoft would develop
applications for the Macintosh.

Bill Gates, Microsoft’s founder, was in awe of the Macintosh. He was quick to see the
potential of the GUI Of course, Microsof t had been given early versions of the
Macintosh to allow them to develop the agreed application packages. At this stage,
Microsoft was developing Windows as an integrated application package. It later
developed into a shell that operated on top of Microsoft’s MS-DOS CLI based
operating system. Microsoft released Windows in 1985. As we now know Microsoft’s
Windows product has since become a worldwide success with Apple’s Macintosh
maintaining a loyal, yet minor in comparison, slice of the market.

Fig 1.3
Screen shot from MacPaint. One of the applications
that shipped with the original Macintosh in 1984.

Fig 1.2
Xerox’s Alto (left) and Star (right) computers used a GUI.

6 Chapter 1

Software Design and Development –The Preliminary Course

A legal battle between Apple and Microsoft over the GUI concept commenced in
1985. Eventually, Apple licensed Microsoft to use many of its features. This license
allowed Microsoft to use many of the GUI features in all its upgrades of the Windows
product. This license agreement is arguably the primary reason that Microsoft has
developed into the largest software company in the world. In 1990, Windows 3.0 was
released and sold 3 million copies in its first year. In April 1992, Windows 3.1 was
released and sold 3 million copies in less than 2 months. The release of Windows 95
created a buying frenzy with reportedly many purchasing the product without even
owning a computer! Windows 95 was the first version of Windows to be independent
of MS-DOS. Further versions have continued to be released on a regular basis.

INTERNET APPLICATIONS

The network technologies behind the Internet were first developed and implemented
in the early 1970s for specific military applications. The Internet as we now know it
came about during the early part of the 1990s. At this time it was used to share files
and documents primarily originating from universities. As the number of servers
increased it became increasingly difficult to locate files and documents. Search
engines appeared. To make the Internet more accessible to the wider public web
browsers using GUIs were introduced in the early 1990s.

Let us consider a brief history of email, web browsers, search engines and more
recently social networking applications:
Email

The origins of email predate the Internet. During the early 1960s electronic mail
messages were sent between terminals connected to the same mainframe. During the
1960s mainframes operated by a variety of organisations were beginning to be
connected together and hence email
messages could be sent between
users of these systems. By the early
1970s email messages were being
sent between users over ARPANET.
ARPANET (Advanced Research
Projects Agency Network) was the
first wide area packet switched
network which over time has evolved
into the Internet we use today. In
1971 Ray Tomlinson is credited with
introducing the @ symbol to separate

GROUP TASK Discussion
Graphical user interfaces are today the most common human-computer
interface. Microsoft has the largest share of this market. Much of
Microsoft’s success is attributed to Bill Gates’ ability to negotiate licensing
agreements that gave Microsoft certain rights in regard to the use of
GUIs. Discuss how these agreements have influenced the development
and success of Microsoft Corporation.

GROUP TASK Activity
List, in point form, the significant events occurring during the
development of today’s current GUI operating systems.

Fig 1.4
ARPANET nodes in September 1971.

Social and Ethical Issues 7

Software Design and Development – The Preliminary Course

the user’s name and the name of the computer hosting their mail. The general format
and specifications of email communication have not significantly changed since the
1970s. For example, all email messages are sent as plain text. Even today images,
audio and other media types are first encoded as text characters before transmission.
The MIME (Multipurpose Internet Mail Extensions) standard specifies how such
encoding and decoding is performed.

Email messages are sent across the Internet using SMTP (Simple Mail Transport
Protocol). SMTP relays messages from one mail server to the next until the message
reaches the recipients mail server. The email software running on a user’s machine
uses SMTP to send messages and uses POP (Post Office Protocol) or IMAP (Internet
Message Access Protocol) to retrieve messages from the users mail server. Privacy
concerns with regard to email are largely a result of the requirement that SMTP
servers must relay messages across the Internet without authentication. This means
anybody can send email messages to anybody else without restriction. Clearly this is
the cause of the enormous amount of spam email now traversing the Internet. In
addition there is no guarantee that messages are not being read as they move through
different mail servers.

Web Browsers

The first web browser was developed
at CERN in Switzerland by Tim
Berners-Lee. This occurred in 1990
and the browser ran on a NeXT
computer. Actually, the concept of
the Web was first developed at
CERN. CERN is a physics research
laboratory; the web was designed as
an efficient method for researchers to
share information.

During 1990 to 1992, the Internet was
primarily of academic interest. Most
information was text-based being
distributed via FTP and Gopher
servers. It was not until 1993 that web
browsers (and websites) as we know
them today began to emerge.

The first widely available browser was
Mosaic, the forerunner to Netscape. The
first version was written for UNIX
machines in 1993. Other browsers were
under development such as the open
source code based Amaya, which is still in existence today. By the end of 1993,
versions of Mosaic were available for Windows and Macintosh machines. At that
time, there were some 500 web servers in existence, the first commercial site being
Digital Equipment Company. In 1994, the web really took off and by the end of that
year some 3 million servers were operating. Mosiac Netscape became a company with

Web browser
Software for locating, accessing
and displaying web pages. They
are able to display graphics,
text and other multimedia
items.

GROUP TASK Discussion
Describe strategies that are, or could be, used to deal with spam and to
prevent messages from being read during transmission.

Fig 1.5
Screenshot from Tim Berners-Lee’s Worldwide Web

browser developed at CERN Switzerland.

8 Chapter 1

Software Design and Development –The Preliminary Course

more than 80 percent of the browser market. Because of Netscape’s educational roots,
their browser was freely distributed to students, teachers and researchers.

In 1995, the potential of the World Wide Web was obvious and Microsoft could see
this. Windows 95 was released with Microsoft Network (MSN) client software
included, the aim being to establish the Microsoft Network as a parallel network to the
World Wide Web. MSN as a separate network was not successful and Netscape
continued their dominatio. The release of Netscape Navigator 2 further secured
Netscape’s position. Navigator 2 included Email, frames, support for progressive
JPEGs, Java support as well as support for SSL (Secure Sockets Layer) encryption.
Microsoft’s Internet Explorer 2 existed with a small yet significant following.

The battle for market share between Netscape and Microsoft began in 1996. Microsoft
released Internet Explorer 3 and gave it away for free! Internet Explorer 3 had similar
functionality to Netscape’s product. Both Netscape and Microsoft were developing
parallel technologies, each using their own standards. Web designers at that time often
produced two versions of their site, one for Netscape browsers and one for Microsoft
browsers. The World Wide Web Consortium (W3C) was supposedly the official
standards body, however neither Netscape nor Microsoft adhered to these standards.
(Incidentally Tim Berners-Lee, the originator of the Web, is currently the director of
W3C). In 1996, there were some 10 million web servers in operation.

The final crunch for Netscape came in 1997 when Microsoft packaged Internet
Explorer 4 with Windows 95. Microsoft integrated the web into Windows 95 using
the ‘Active Desktop’ concept. Netscape filed lawsuits against Microsoft, alleging
Microsoft was taking illegal advantage due to their vast share of the operating system
market. Microsoft’s response was that Internet Explorer was an integral part of their
operating system. No real resolution has been reached.

In 1998, Netscape had lost most of its market share as a result of Microsoft’s
domination. Netscape’s browser, known as Communicator, became an ‘open source’
product. Source code for their browser was released to the open source community as
the Mozilla project. In 1999 America Online (AOL) purchased Netscape and then in
2003 AOL provided the initial funds to setup the Mozilla project. The Mozilla project
now develops the popular Firefox browser together with a variety of other open
source software tools and applications for the web.

Search Engines

In 1990, there was no World Wide Web as we now know it. Rather there were large
numbers of files spread across a vast network. The primary method of transferring
files was via the File Transfer Protocol (FTP). FTP servers acted as repositories for
files. To download a file you had to firstly know the file existed and secondly know
its precise location. Archie, thought of as the grandfather of search engines, scoured

GROUP TASK Debate
In your view were Microsoft’s actions in regard to its marketing of
Internet Explorer reasonable? Debate both sides.

GROUP TASK Discussion
How have web browsers altered the way in which we communicate? What
makes web browsers such useful applications compared to other methods
of communication? Discuss in relation to computer-based
communication as well as other forms of communication.

Social and Ethical Issues 9

Software Design and Development – The Preliminary Course

FTP sites and indexed the files it found.
Users could then query Archie to find
the location of files. Archie was
developed by Alan Emtage at McGill
University in Montreal.
Gopher servers contained text based
documents. In 1993 Veronica, and soon
after Jughead, providing similar
features as that of Archie, were used
for searching Gopher servers.

During 1993, Matthew Gray released
the World Wide Web Wanderer. This
product contained a robot that
systematically examined and captured
URLs from all over the web. At the
time, this software caused quite a
controversy as its wanderings caused a
significant reduction in the
performance of the Internet as a whole.
Apparently, it was not real smart and
would access the same page hundreds
of times a day. Modifications soon
reduced the problem.

Two other quite different products
appeared during 1993. Archie-Like
Indexing of the Web (ALIWEB) and
Excite. ALIWEB was a directory of
URLs. Webmasters submitted their
URL to ALIWEB. These entries were
then added to the ALIWEB database.
Excite initially provided search
software for individual websites. Excite
uses a robot to gather information from
websites. These robots were nicknamed
spiders and the name stuck. During the
later half of 1993 many spider-based
search engines similar to Excite began
to appear.

Spider-based search engines lacked the
intelligence to understand what they
were looking for; they merely scoured
the web following any links that
existed on individual pages. This problem
led to the creation of Galaxy in early 1994.
Galaxy was essentially a web directory.
Each directory was split into sub-
directories in a hierarchical manner. This
allowed users to quickly locate
information about a specific topic. Galaxy

Spider
A program that automatically
fetches web page data for
inclusion in search engines.
The spider follows links on
web pages to direct its
exploration.

Fig 1.6
A brief history of search engines.

1990

1993

1994

1995

1996

Archie
Search of filenames of FTP servers

Veronica (and Jughead)
Text documents on Gopher sites

WWW Wanderer
First robot used to search & capture URLs.

ALIWEB
Directory of URLs. Webmasters post sites.

Excite
Initially search software for individual sites.

Galaxy
Directory based. categorisation of sites.

Yahoo
Included descriptions of each entry.

WebCrawler
Ability to search the entire text of documents.

InfoSeek
Default search engine in Netscape’s browser.

AltaVista
Natural language queries. Very fast.

HotBot
Very fast indexing. Ensures up-to-date links.

MetaCrawler
Sends queries to other search engines.

Google
Downloads and indexes the entire WWW. 1997

10 Chapter 1

Software Design and Development –The Preliminary Course

was very popular in 1994, not so much for locating websites (there were not many in
1994), but rather for locating documents on Gopher servers.

Yahoo first appeared in 1994. Yahoo, at that time was a web directory created by two
Stanford University students, David Filo and Jerry Yang. Sites needed to be submitted
to Yahoo for inclusion in their directory. Yahoo’s popularity grew incredibly fast due
partially to the inclusion of descriptions of each entry contained in the directory.
Yahoo has since grown into a massive organisation with sites maintained throughout
the world. Today’s Yahoo does include spider like gathering mechanisms unlike the
original.

One significantly different search engine to emerge was WebCrawler. This engine is
able to index not just the URLs and titles but the entire text of each page or document.
WebCrawler started out as a student project by Brian Pinkerton at the University of
Washington. The demand for WebCrawler’s services soon overloaded the
University’s network resources. Finally, America Online (AOL) purchased the
WebCrawler system and installed it on their servers. Soon after WebCrawler was
released, various competitors emerged offering similar services e.g. Lycos and
Infoseek.

During 1995, businesses began to realise the enormous advertising potential of search
engines. These search engines were receiving millions of hits each day. Infoseek
gained a lead by becoming the default search engine for Netscape’s Navigator
browser. (Microsoft’s Internet Explorer was yet to be released). Yahoo, and many of
the other popular search engines, began to include advertising banners on their sites.

In December 1995, Digital Equipment Corporation (DEC) released their AltaVista
search engine. AltaVista included the ability to process natural language queries e.g.
‘What time is it in Paris’. It was also one of the first search engines to implement
advanced search techniques using Boolean operators e.g. AND, OR, NOT, etc. A
number of other new innovative features further improved the useability of AltaVista.
Webmasters could add, edit and delete
their URLs and details online. The speed
of AltaVista was impressive as the search
engine ran on a series of Digital’s fast
Alpha machines.

During 1995, Eric Selburg a masters
student at the University of Washington,
developed the first Meta search
engine. This search engine was
named MetaCrawler, after the
original WebCrawler developed at the
same university. MetaCrawler
forwards search queries to other
search engines and then formats the
results on one concise page. The
resources of Washington University
were not sufficient to deal with the
network traffic so MetaCrawler was
licensed to go2net. Currently
MetaCrawler forwards search queries
to Google, Yahoo, Bing and others
simultaneously.

Fig 1.7
Early MetaCrawler home page. MetaCrawler

submits queries to other search engines.

Metadata
Data describing data. In this
context Metadata describes the
content of web resources. This
includes text, images, video,
etc.

Social and Ethical Issues 11

Software Design and Development – The Preliminary Course

Currently Google is the most popular search engine. Google began in 1996 as a
research project for Stanford University students Larry Page and Sergey Brin. Their
project ranked pages based on the number of backlinks. A backlink is a hyperlink on
another page to the page being ranked. In addition the relevance of each backlink page
in relation to the search terms was used to rank the backlinks. Other search engines
used the number of times the search terms were found on a page as the basis for
ranking the results. Page and Brins initial search engine was called BackRub. The
domain google.com was registered in 1997 and the company Google Inc. was created
on September 4, 1998.

Social Networking Applications

A person’s social network includes all their personal associations with others. This
includes family, friends, work colleagues and interest groups. We all have a social
network that forms a critical part of our social lives. Social networking applications
enable us to communicate and extend our social network over the Internet. Many use
such applications as an additional means of day to day communication which adds to
our existing face to face and telephone communication. In addition social networking
applications allow users to meet new people and add them to our social network, often
without ever meeting face to face.

Social networking applications allow users to create a public or semi-public profile.
Each user can then identify a list of other users (contacts or friends) with whom they
wish to communicate. Users are then able to extend their list of contacts by examining
their contact’s list of contacts or by searching for groups with common attributes.
How this mechanism is implemented and the methods of communication between
users differ depending on the individual social networking application. Some popular
communication methods include instant messaging, comments left on a contacts
profile page, tagging photos and access via mobile devices.

Although sites such as MySpace, Facebook, LinkedIn and others have become
progressively more popular since 2003, there are numerous sites that have been in
operation since the late 1990s. The site sixdegrees.com is often viewed as the first
social networking site. Six degrees operated from 1997 to 2001 and was based on the
idea that nobody is separated by more than six degrees of separation. Users specified
their relationship to others and the software generated deeper links to other users in
terms of the number of relationships (degrees of separation) required to reach that
person.

GROUP TASK Investigation
Explore the Internet for current initiatives influencing the nature of
search engines. Discuss your findings.

GROUP TASK Discussion
Originally search engines were created with the sole aim of allowing users
to quickly locate files and other resources across the Internet. Commercial
interests operate most of today’s commonly used search engines. How do
these commercial organisations profit from search engines? Discuss.

GROUP TASK Discussion
Social networking sites encourage users to divulge and share personal
information. Outline privacy issues arising from the use of these sites.

12 Chapter 1

Software Design and Development –The Preliminary Course

SPREADSHEETS AND PRESENTATION SOFTWARE

Spreadsheets and presentation software applications were particularly influential in
terms of cementing the role of the personal computer as a necessary business tool.
Spreadsheets (VisiCalc)

Paper-based spreadsheets have
been used by businesses to record
their financial transactions for
hundreds of years. With the
introduction of the electronic
spreadsheet, account keeping was
revolutionised. Work that would
take a clerk some 20 hours could
be completed in around 15
minutes. Let us consider the
origin of today’s spreadsheet
applications.

In 1978, Dan Bricklin was
completing his MBA at Harvard
Business School. At that time, he
envisaged a software application
that could perform the repetitious
and often laborious calculations
that were required when using traditional paper-based accounting spreadsheets. In
1979, Dan Bricklin, together with Bob Frankston, refined these ideas and developed
the first electronic spreadsheet. The spreadsheet was called VisiCalc and was first
written for the Apple II computer. Versions were soon produced for various personal
computers available at the time, including the IBM-PC. VisiCalc ran on affordable
personal computers and hence was accessible
to all. It is often stated that VisiCalc introduced
and cemented the role of the personal computer
in the business and financial community.

In these early days of commercial software
development, the laws of copyright and patent
did not cover software sufficiently. Although
Dan Bricklin and Bob Frankston received
royalties for the original VisiCalc product, they
were unable to obtain rights for subsequent
products derived from VisiCalc. Legal battles
ensued during 1985. Eventually the VisiCalc
product was sold to Lotus Corporation. Lotus
developed Lotus 1-2-3, a spreadsheet based on
VisiCalc. Lotus 1-2-3 became a worldwide
bestseller. As no patent existed for VisiCalc, its
design ideas have been copied and modified by
most large software development companies. Microsoft’s Excel spreadsheet is now
the largest selling spreadsheet in the world. Recent versions of Excel still utilise a
very similar interface to the original VisiCalc product. Dan Bricklin and Bob
Frankston do not receive any royalties for their monumental design ideas.

Fig 1.8
Part of a reference card for VisiCalc, the first spreadsheet.

Fig 1.9
Dan demonstrating VisiCalc at the West

Coast Computer Faire 5/12/79
(Photo courtesy of Bob Frankston)

Social and Ethical Issues 13

Software Design and Development – The Preliminary Course

Let us consider some of the new and original ideas incorporated into VisiCalc by Dan
Bricklin and Bob Frankston. These ideas are still present in most of today’s
spreadsheet applications.
• Input, processing and output all merged into a single interface.
• Scrolling ability of the window. Left, right, up and down.
• Instant recalculation of cells as contents change.
• Inclusion of a status and/or formula line.
• Ability to replicate a range to any other range.
• Relative and absolute referencing.
• Formulas could be entered using minimal keystrokes.
• Cursor moves are used to select cells and ranges.

Presentation software
Prior to the development of the personal computer, software was primarily used for
large-scale business, government and military applications. The personal computer
allowed us all to have a computer on our desk. Each personal computer could be
tailored to the needs of the individual using different software applications.
Presentation software, in all its many forms, helped cement the role of the personal
computer as an indispensable business tool.
Let us examine some of the broad categories of presentation software applications:
Slideshows
Slideshow applications allow a
human presenter to display their
notes on a large screen during
lectures and seminars. Initially
these applications had similar
functionality to a traditional slide
projector, the advantage being the
speed at which the slides could be
produced. Current slideshow
applications include various
animation, sound and interactive
features to improve the
experience for the audience.
Multimedia
In the early 1960’s, Ted Nelson came up with the idea of documents being linked
together in a non-linear fashion. At that time, he also coined the terms ‘hypertext’ and
‘hypermedia’ for non-sequential writings and branching presentations of all types. In

Fig 1.10
Microsoft’s PowerPoint is a popular slideshow application.

GROUP TASK Investigation
Examine a spreadsheet with which you are familiar. Can you identify each
of the features listed above?

GROUP TASK Discussion
Dan Bricklin and Bob Frankston did not and do not receive royalties for
their work developing VisiCalc. Do you think this is socially and ethically
reasonable?

14 Chapter 1

Software Design and Development –The Preliminary Course

1987, Apple released Hypercard, an authoring tool for the creation of multimedia
titles. Hypercard is based on the idea of ‘stacks’ of cards. Each card contains links to
other cards and multimedia content.
Multimedia authoring tools are now commonly used for the creation of all types of
presentations They are particularly usef ul for training and educational products. The
non-linear nature of most multimedia titles allows the user to explore areas of interest
in a more natural sequence.
Screen cameras/recorders
These applications allow training and
support personnel to create animations
detailing the functions of their software
products. Essentially the screen camera
records the screen changes and is able to
play them back. The trainer can
superimpose messages and prompts onto
the animation to further instruct the
students.

Discuss the origin of the design ideas present in today’s graphical user interfaces
(GUIs) together with technological advances that made GUIs possible.
Suggested Solution

The initial GUI concept was developed in the early 1970s by researchers at Xerox.
These ideas were expanded and used by Apple computer to produce the Lisa and then
the Macintosh. Bill Gates (Microsoft) realised the potential of a GUI and began work
on Windows in the early 1980s. GUI operating systems from both Microsoft and
Apple introduced personal computers to the masses.
GUI systems use a bitmapped display hence they require significant processing and
storage to work successfully. The incredible advances in microprocessor, RAM and
screen technologies during the 1980s provided the hardware that allowed GUIs to
become the interface of choice for the majority of applications. Faster
microprocessors (and then dedicated graphics processors) as well as larger amounts of
dedicated video memory (VRAM) meant that better resolution and more colours were
possible.

Fig 1.11
Lotus ScreenCam is able to record screen changes.

The result can be edited and played back.

GROUP TASK Investigation
Examine a number of presentation software packages. Explain how these
package’s ancestors have influenced the wide acceptance of the personal
computer.

HSC style question:

GROUP TASK Discussion
Creating a GUI is significantly more effort for software developers and
uses more processing power compared to using a CLI. Why then do
software developers go to the trouble of developing GUI applications?

Social and Ethical Issues 15

Software Design and Development – The Preliminary Course

SET 1A
1. Gopher servers contained:

(A) text based documents.
(B) URLs.
(C) spiders.
(D) robots.

2. Software that locates, accesses and
displays web pages is known as:
(A) FTP software.
(B) a search engine.
(C) a web browser.
(D) a spreadsheet.

3. The company that refined many of the
design concepts that form the basis of
today’s Graphical User Interface was:
(A) Xerox.
(B) Apple.
(C) Microsoft.
(D) Digital Equipment Corporation.

4. Facebook is an example of a:
(A) Search engine.
(B) Web browser.
(C) Social networking application.
(D) Presentation software application.

5. Relative and absolute referencing is a
concept that is present in:
(A) spreadsheet software.
(B) word processor software.
(C) presentation software.
(D) multimedia software.

6. The first widely available browser was:
(A) Amaya.
(B) Internet Explorer.
(C) Netscape.
(D) Mosiac.

7. VisiCalc was developed by:
(A) Bricklin and Frankston.
(B) Bricklin and Jobs.
(C) Frankston and Jobs.
(D) Jobs and Wozniak.

8. The computer that is widely recognised
as the first to include a fully bit-mapped
display is the:
(A) Lisa.
(B) Alto.
(C) Star.
(D) Macintosh.

9. Archie was an early example of a:
(A) web browser.
(B) gopher server.
(C) search engine.
(D) robot.

10. Tim Berners-Lee developed:
(A) the first personal computer.
(B) the first search engine.
(C) the first web browser.
(D) Netscape Navigator.

11. Compare and contrast command line interfaces with graphical user interfaces.

12. List in point form, significant historical events that have influenced the development of today’s
search engines.

13. List in point form, significant historical events that have influenced the development of today’s
web browsers.

16 Chapter 1

Software Design and Development –The Preliminary Course

14. A screen shot of the original VisiCalc spreadsheet running on a 32kB Apple II is reproduced
below. The original version allowed up to 255 rows and 255 columns of cells with a limited (by
modern standards) number of built-in formulas.

Describe innovative design features first used in the VisiCalc spreadsheet.

15. Microsoft Corporation is often painted as ‘the bad guy’, yet really they have been highly
effective in making the personal computer the success it has become today. Discuss this
statement.

Social and Ethical Issues 17

Software Design and Development – The Preliminary Course

INTELLECTUAL PROPERTY
All property is protected by law. Essentially, when you purchase any piece of
property, whether it is physical goods or software, the original design is protected by
law. For example, if you purchase a new desk lamp you do not have rights in regard to
the design of the lamp. You own the physical desk lamp, however you do not own the
design of the lam. You theref ore cannot utilise your new desk lamp to make copies
and you certainly cannot market and sell these copies. Most physical devices are
difficult to build and as such, the bulk of the wholesale costs of these items are
manufacturing costs. This provides physical products with a built-in safeguard,
protecting their designs from copying by the general population. Software together
with books, music and films are easily copied and hence require extra protection.

Intellectual property is property resulting
from the fruits of mental labour.
Intellectual property laws cover the design
of most products. Copies of software (and
also books, music and film) are relatively
simple and inexpensive to make. The copy is usually exactly the same as the original.
Furthermore, copies can readily be made by almost anyone with computing
knowledge Laws have now been passed in most countries to protect the intellectual
property rights of software developers. These laws aim to encourage the development
of software by ensuring software developers are financially rewarded for their
intellectual efforts.

In this section, we examine software license agreements and their relationship to
intellectual property rights. We also examine historical reasons for the development of
copyright laws and licence agreements. This includes the need to license commercial
products as well as the need to ascertain the intellectual property rights when software
is collaboratively developed. The section concludes by examining sources of code and
the conditions under which the code may be used.
SOFTWARE LICENCE AGREEMENTS

Software licences are intended to enforce the intellectual property rights of software
developers. These licence agreements are enforceable by law. Thus, the terminology
used must be legally correct if the agreement is to stand up to the scrutiny of the
courts. As well as protecting the intellectual property rights of software developers,
licence agreements also protect developers from legal action should their products
result in hardship or financial loss to purchasers.
Licence terminology

Because of the legal nature of licence agreements, they often use terminology that is
difficult to understand. As licence agreements result in a legal contract between the
purchaser and the seller, it is important to have an understanding of the terminology
used.

• Licence – Formal permission or authority to use a product. In relation to software,
licences are almost always non-exclusive; this means the product can be licensed
to multiple users. The license does not give users ownership of the software, rather
they are granted the right to use the software.

Intellectual Property
Property resulting from the
fruits of mental labour.

18 Chapter 1

Software Design and Development –The Preliminary Course

• Agreement – A mutual arrangement or contract between parties. Acceptance of a
software licence agreement can be made in various ways. Products downloaded
from the Internet often require clicking ‘OK’ to on-screen terms and conditions.
Installing pre-packaged software indicates acceptance of the agreement.
Specialised and custom solutions usually require the signatures of both parties to
legalise the agreement.

• Term – The period of time the agreement is in force. In most cases, the licence
agreement commences immediately the terms and conditions have been accepted.
The agreement remains in force for as long as the terms and conditions are upheld.
Normally either party can terminate the agreement if the other party fails to act
according to the terms and conditions within the agreement.

• Warranty – An assurance of some sort - a guarantee. Software products normally
contain limited warranties. They may guarantee the medium (ie. CD-ROMs) work
correctly. However, most warranties will state that the product is sold ‘as is’. This
means any bugs in the product, or if the product does not meet the user’s needs,
are not covered by the warranty. For custom-built large-scale applications this is
often not acceptable and may be replaced by statements limiting the software
developer’s liability should a problem occur.

• Limited use – Software licences do not give
purchasers unrestricted use of the product.
Commonly usage of software products is
restricted to a single machine. Copying of
the product is not permitted unless for
archival or backup purposes. The product
cannot be altered or modified.

• Liability – An obligation or debt as a
consequence of some event. Licence
agreements normally restrict the liability of
the software developer to replacing the
product or refunding the purchase price
should an error or other problem occur.

• Program – Refers to the computer software.
This usually includes both executable files
and included data files. The program does
not include the media; it refers to the
software stored on the media.

• Reverse engineer – In terms of software, this
usually means the process of decompiling
the product. Most agreements do not allow licensees to reverse engineer their
products. This protects the intellectual property rights of the software developer.

• Backup copy – A copy of the software made for archival purposes. Backup copies
should only be used in the event of the original media failing. If software is resold
or the licence agreement terminated then backup copies should be destroyed.

This free trial Software is provided by
Parramatta Education Centre, Australia
as is, without warranties, express,
implied or statutory, with respect to
contents hereof, including, without
limitations, any implied warranties of
merchantability or fitness for any
particular purpose, all of which are
expressly disclaimed.

Neither Parramatta Education Centre
nor any of its agents, consultants,
contractors, distributors or dealers shall
in any event be liable for any direct,
indirect incidental or consequential
damages arising from the use of this
software.

Fig 1.12
A licence agreement for a free

trial software product.

GROUP TASK Discussion
Examine the licence agreement in Fig 1.12. What do you think is the main
purpose of this agreement? Do you think this product can be freely
copied and distributed? Explain your answer.

Social and Ethical Issues 19

Software Design and Development – The Preliminary Course

Legal aspects

Intellectual property rights are protected using the laws of copyright. Software licence
agreements are used to create formal contracts that allow the laws of copyright to be
better enforced. There is no need to formally register software products for them to be
covered by copyright laws. Coverage is automatic for all intellectual property,
however selling or changing the owner of the copyrights for a product requires a
written contract.

Products that do not contain licence agreements or copyright notices are still covered
by copyright laws. The purpose of licence agreements is to simplify the enforcement
process should a breach occur. For copyright laws not to apply, the developer must
expressly state that the product is in the public domain and all copyrights have been
relinquished.

In Australia, The Copyright Act 1968, together with its various amendments, is the
legal document that explains the copyright law. Software licence agreements should
comply with these laws if they are to be enforceable by courts. Many countries have
reciprocal agreements whereby copyright laws of one country will be upheld in other
countries.
Use of software covered by a licence agreement

Users of software are obliged to ensure they comply with the terms and conditions of
the software’s licence agreement. It is the user’s responsibility to read the licence
agreement and understand its terms and conditions before using the product.

Licence agreements for different products can vary considerably, there are however, a
variety of categories that encompass most current software licence agreements:

• Commercial – covered by copyright. One archival copy can be made as a backup.
The product cannot be modified, distributed or reverse engineered. Source code is
not distributed or available to end users.

• Shareware – covered by copyright. Copies can be made for archival or distribution
purposes The product cannot be modified or reverse engineered. Source code is
not distributed.

• Freeware – covered by copyright. Copies can be made, distributed and altered.
Modified products must also be freeware. Source code may or may not be
distributed along with the executable code.

• Public Domain – not covered by copyright. Copies and modifications can be made
without restriction. Source code may or may not be distributed along with the
executable code.

• Open source licence – although covered by copyright law, open source licences,
such as the GNU GPL (general purpose licence), specifically remove many
traditional copyrights. The source code is developed collaboratively and is
available to all to modify and redistribute. The only significant restrictions being
that the author be recognised and that modified products must be released using
the same unrestricted open source licence. The aim of open source licences is to
ensure users can freely use and modify software without fear of legal challenge.
This encourages collaboration and encourages sharing of ideas within the software
development community. For most users software distributed under an open
source licence can be installed and used without restriction.

20 Chapter 1

Software Design and Development –The Preliminary Course

• Site licence – covered by copyright. Site licences specify either the number of
machines on which the software can be installed or they specify the specific
location where the software maybe installed on any number of machines. In most
cases site licences are used to extend commercial or shareware licences so the
software can be used on multiple machines at reduced cost.

• Creative commons licence – alters how copyrighted material maybe used without
charge. Creative commons licences are not recommended for most software
products as they do not deal with the distribution of source code. Creative
commons licences are commonly used for artistic works such as photographs,
music, film and other media types. Although the conditions of creative commons
licences can be modified to suit specific needs, most permit the work to be freely
copied and distributed for non-commercial purposes as long as the original creator
is acknowledged.

Consider the GNU General Purpose Licence (GPL):

Open source licences and in particular the GNU GPL are based on the premise that
nobody should be restricted by the software they use. The foundation of the GNU
GPL is based on the following four freedoms that every user should have:

• the freedom to use the software for any purpose,
• the freedom to change the software to suit your needs,
• the freedom to share the software with your friends and neighbors, and
• the freedom to share the changes you make.

If a software developer releases a software product under the GNU GPL the it will be
free and it stays free, regardless of any changes or how the software is distributed.
This is called copyleft, instead of using the copyrights to restrict how the software can
be used, copyleft removes the restrictions to implement the above four freedoms.

Consider the following:

The licence agreement, reproduced on the following page (Fig 1.13), was packaged
with a commercial image-processing package called ‘Super Image’.

GROUP TASK Research and discussion
Open source software is great for users; however how can software
developers hope to make a living if the products of their labour are freely
distributed? Research and discuss how open source developers can make
a living.

GROUP TASK Discussion
Examine the licence agreement on the following page. Under what
conditions may the Company terminate the agreement? Under what
conditions may the purchaser terminate the agreement?

GROUP TASK Discussion
Explain the warranty and liability provisions contained within the licence
agreement.

Social and Ethical Issues 21

Software Design and Development – The Preliminary Course

Limited Use
Licence Agreement
You should carefully read the following terms and conditions
before usng the SuperImage CD-ROM. By using Super
mage you are agreeing to and indicating your acceptance o f
these terms and conditios If y ou do not agree with them you
should return the package to the dealer from whom you
purchased the product and your money will be refunded. If the
dealer from whom you purchased this package fails to refund

22 Chapter 1

Software Design and Development –The Preliminary Course

EVENTS THAT HAVE LED TO THE NEED FOR SOFTWARE LICENCE
AGREEMENTS

Initially software was developed primarily by universities where the sharing of
software was commonplace and indeed encouraged. Licence agreements were not
required or even considered, as the owners of machines able to execute the code were
also universities. As software development became a commercial endeavour, it
became necessary to consider legal methods of protecting the rights of the software
developers. The problem was further exacerbated with the widespread use of personal
computers and the Internet.

A number of issues particular to the software industry required attention.
Ease of reproduction and copy

For most products reproducing the original is a difficult task requiring specialised
equipment and skills. For example, consider making a copy of even a simple object
such as a pencil. The processes and raw materials required make copying a difficult,
impractical and expensive proposition. In the case of software, copying is
straightforward. Copies of software products are identical to the original and can
easily be made anonymouly. To protect softwa re developers licence agreements were
created that prohibited the illegal reproduction of their products.
Collaborative development history

Software products are commonly evolutionary in nature. Many parent products are
used during the development process and many different developers may contribute to
each product’s development. Each of these ‘authors’ requires recognition for their
work Licence agreements are a legal means of ensuring author’s intellectual property
rights are respected and can be enforced.

Most software products are developed using tools produced by other software
development companies. For example, a dynamic link library (DLL) may contain the
code that allows a product to communicate using the TCP/IP protocol. The company
who developed the DLL has intellectual property rights that should be reflected in the
licence agreement for the final software product. Open source licences aim to reduce
this complexity buy specifying that derivative products must also be open source.
The current open environment of the Internet

The Internet is a worldwide network of computers. As a consequence, software can be
transmitted and received across the globe. The Internet opens up worldwide markets
to software development companies. This is a fantastic marketing opportunity for
software developers. On the other hand, it also makes controlling illegal distribution
and use of software very difficult. Licence agreements must be written with reference
to international patent and copyright laws if they are to protect the intellectual
property rights of the developers. Open source development allows software
developers from diverse locations to contribute to a project and benefit from the
efforts of all involved.

GROUP TASK Discussion
Software is different to most other products. What are these differences
and why have they led to the need for licence agreements?
Can you think of any other products that require licence agreements
before they can be used? What are the similarities between these products
and software products? Discuss.

Social and Ethical Issues 23

Software Design and Development – The Preliminary Course

SOURCES OF CODE AND LICENSE CONDITIONS THAT APPLY

The source code for most commercial applications is not freely available. This has
advantages for both the developers and the users. Developers can be confident that
their source code cannot be stolen and users can feel secure that purchased software is
in fact an original (although it may still be a pirated copy of the original). Software
companies are better able to provide support for products when they have not been
altered by a third party, which in turn results in reduced costs for both developers and
users.

There are a number of sources of code where copyright has been relinquished and
programmers are free to use the code as they please. Remember, copyright laws hold
unless the author specifically and in writing relinquishes these rights. Copyright laws
apply regardless of the method of distribution. Let us consider a few possible sources
of code where copyright is often relinquished in a spirit of sharing and mutual
cooperation. Often the only requirements are that the author be acknowledged and that
the code is not to be used for financial gain.
The Internet
Most of the popular languages have user-groups and newsgroups dedicated to the
particular language. Participants in such groups include both novice and experienced
programmers. Users are encouraged to relinquish their copyrights when posting
modules of code; some groups insist this is done. Remember the quality of code
obtained from the Internet will be unknown so care should be exercised when using
this type of code in your own projects. Apart from source code, these groups are great
places to share programming experiences and to gain advice on problems you may
encounter when programming.
Books and magazines
Source code contained in books and magazines generally form part of a tutorial. It is
intended to be used and modified as part of the learning process. Text books dedicated
to a particular programming language can be an excellent way of obtaining new
insights into the possibilities and capabilities of a particular language. Limitations of
the printed media mean that often only small modules used to illustrate some
particular process are available. Some magazines and books come with CD-ROMs
containing more extensive modules of source code. Remember, copyright must be
expressly relinquished before the code can be used.

GROUP TASK Investigation
Examine a variety of origins of source code. Take particular note of
whether the author has relinquished their copyrights. Why do you think
an author would choose to relinquish their copyrights? Why do these
authors often not allow their code to be used in commercial products?
Discuss.

GROUP TASK Discussion
Examine a variety of origins of source code. Take particular note of
whether the author has relinquished their copyrights. Why do you think
an author would choose to relinquish their copyrights? Why do these
authors often not allow their code to be used in commercial products?
Discuss.

24 Chapter 1

Software Design and Development –The Preliminary Course

SET 1B
1. In terms of software licences, the term

non-exclusive means:
(A) anybody can get a copy of the

product and install it.
(B) the product can be licensed to

multiple users.
(C) whoever purchasers the software

owns the software.
(D) only one person can install and use

the software.
2. Property that results from the fruits of

mental effort is known as:
(A) scholastic property.
(B) speculative property.
(C) academic property.
(D) intellectual property.

3. A user is allowed to copy software under
which of the following conditions?
(A) The software is in the public

domain.
(B) The software is freeware.
(C) To create one archive backup.
(D) All of the above.

4. Software that is NOT covered by
copyright is considered to be:
(A) public domain software.
(B) commercial software.
(C) shareware software.
(D) freeware software.

5. Arthur has downloaded a software
product from the Internet and has
modified the product. He has made
copies and is distributing these free of
charge to his friends. Arthur’s modified
software is most likely to be:
(A) freeware.
(B) shareware.
(C) public domain software.
(D) None of the above.

6. A software product that where the code
is developed collaboratively and is
freely available to all is likely to be
covered by a:
(A) Creative commons licence.
(B) Commercial licence.
(C) Site licence.
(D) Open source licence.

7. A commercial software licence usually
gives the user
(A) ownership of the software.
(B) the right to use the software.
(C) the right to distribute the software.
(D) the right to modify the software.

8. The process of decompiling is used
when:
(A) reverse engineering.
(B) converse engineering.
(C) backwards converting.
(D) interpreting.

9. With regard to computer software
licences, the term program means:
(A) executable files only.
(B) executable files and included data

files only.
(C) executable files, included data files

and the media they are supplied on.
(D) none of the above.

10. For copyright laws NOT to apply, the
developer must:
(A) expressly state that the product is

in the public domain.
(B) not register the product with a

copyright notice.
(C) not supply a licence agreement.
(D) make the product downloadable

from the Internet only.

11. Describe the relationships between intellectual property, licence agreements and copyright laws.

12. Warranty and liability are terms that are often confused. Define each term and clearly state the
differences.

13. Designers of all products have intellectual property rights. Why then, does software require
special consideration?

14. Define the terms licence and agreement. How is a licence different from an agreement?

15. Most software can be classified as commercial, shareware, freeware, open source or public
domain. Identify differences between each of these categories.

Social and Ethical Issues 25

Software Design and Development – The Preliminary Course

SOCIAL CONTEXT OF SOFTWARE DESIGN

ERGONOMICS

Ergonomics is the study of the relationship between human workers and their work
environment. The study of ergonomics is far broader than the prevention of workplace
injuries. Ergonomics aims to create a total
environment that caters to the physical,
emotional and psychological aspects of
the work experience. Ergonomically
sound work environments improve morale
and result in productivity gains for
business.

Poor ergonomics in the workplace reduces workers productivity and can cause health
issues. The most common and most debilitating computer-usage health issue is
Repetitive Strain Injury (RSI). Other health issues involve general muscle strain and
vision problems. Ergonomics for computer users includes the design and placement of
equipment together with procedures to prevent and minimise injuries.

In this course we are interested in ergonomic considerations in regard to the design
and operation of user interfaces within software applications. Much research has been
carried out in this area resulting in the production of ergonomically sound software
products which improve work practices and the productivity of users.
ERGONOMIC ISSUES REGARDING SOFTWARE DESIGN

Software design from the user’s
perspective is very much about the user
interface. For many users, the user
interface is the system. Software
developers must create products that meet
the needs of users. Products that provide
fantastic functionality but have poor user
interfaces will not be used. The user
interface is the most important aspect of
most software products. The better your
user interface the more people will use
your product.

It is worthwhile examining other software
products to evaluate the effectiveness of
their user interfaces. Be critical in your evaluation. Many developers perpetuate the
errors contained in other products by imitating poor design. Do not assume that large
commercial packages are perfect; as we shall see in this section many applications
built by global software companies include poor user interface elements.

In terms of ergonomics, the users’ experience should be an intuitive one. Effective
user interfaces allow software products to be used with minimal training. The user is
able to infer the underlying processing from clues inherent in the user interface. This
is a clear indicator of a truly user-friendly product. How is this achieved? In this
section, we examine a series of design tips that will help you to create effective and
intuitive user interfaces. We also examine examples of poor design to reinforce the
importance of each design tip.

Ergonomics
The study of the relationship
between human workers and
their work environment.

User interface
The screen designs and
connections between screens
that allow the user to
communicate with the
software.

User friendly
Software that meets the needs
of users. User-friendly software
is intuitive, consistent and
easily learnt.

26 Chapter 1

Software Design and Development –The Preliminary Course

Consistency, consistency, consistency

The most important aspect of user interfaces is consistency. For example, buttons
should be placed in consistent places on all screens. Use the same wording in labels
and messages. Use a consistent colour scheme. Consistency of design allows users to
transfer skills from other applications and other areas of your application to new
areas. A mental model of the software application’s operation is built up in the user’s
mind; consistency reinforces this model.

Some points vital to the development of consistent user interfaces include:
• Setting standards and sticking to them. Set design standards based on industry

standards and then develop extra standards specific to your application. Most
operating system developers have sets of design standards; these standards will
often define the majority of your needs.

• Explain the rules. Develop a simple set of rules that apply to your entire
application. In this way, you will need to explain your rules only once. This makes
more sense than explaining the details of how to use each individual feature of
your application.

• Use interface elements correctly. Know when to use screen elements and how to
use them correctly. For example, command buttons, check boxes, radio buttons,
list boxes, text boxes, menus, etc. Follow recognized standards for each of these
elements. Never alter the operation of standard screen elements to perform
unexpected functions.

• Use colour appropriately. Colour should be used sparingly. Colour is viewed
differently by each individual, what looks pleasing to you may be abhorrent to
others Don’t override a user’s system settings, they chose them and your
application should not override their choices. This ensures consistency between
applications. Ensure you maintain sufficient contrast between text and
backgrounds.

• Use fonts appropriately. The use of fancy fonts
can decrease readability considerably. Use fonts
that are easy to read. Don’t override system
settings for standard fonts. More than three fonts
on a single screen are too much. Use fonts
consistently, there should be some reason for font
changes and the reason should be immediately and
consistently clear. Remember you are using a
different font every time you change the size,
style, typeface or colour.

• Alignment of data entry elements. Text boxes
should be left justified with their associated labels
also left justified (see Fig 1.14). For columns of
data, right justify integer, align decimals to the
decimal points and left justify text.

• Provide a consistent method of reversing actions.
Users like to explore software applications and are
therefore likely to initiate processes that they later wish to reverse. Many software
products include an undo function which reverses previous actions. Others require
the user to confirm operations that will make extensive changes to data.

Fig 1.14
Alignment of labels and text boxes.

Social and Ethical Issues 27

Software Design and Development – The Preliminary Course

Consider the following:

The following screen shots are taken
from commercial software packages. In
each case there are consistency
problems.
• Font dialogue in Microsoft Word.
The effects checkboxes on this dialogue
in some cases behave like option or radio
buttons. For example, Superscript and
Subscript cannot be selected at the same
time; similarly, Small-caps and All-caps,
Emboss and Engrave, Strikethrough and
Double strikethrough cannot be selected
together. Rather than using option
buttons, Microsoft has reprogrammed the
checkboxes to behave as option buttons.
Perhaps the designers felt the screen
looked better this way. Unfortunately,
this decision leads to inconsistency and
may encourage other developers to do
likewise.

• Cut function in Microsoft Excel
In most software cut means get rid of it and
store it on the clipboard. This is not the
case in Microsoft Excel. In this application
cut seems to mean leave it there until I
decide where to move it. The cut section
doesn’t get cut until you activate the paste
function.
It’s difficult to understand why this popular
spreadsheet has been programmed in this
way. It certainly makes life confusing for
new users. One expects cut to mean just
that, cut. The strange thing is, this has been
the case since the first version of Excel was
released.
•

Fig 1.15
Format font dialogue from Microsoft’s Word
2000. Some check boxes behave like option or

radio buttons.

GROUP TASK Investigation
Examine the screen elements used on the user interface of software
installed on your computer. Compile a list of inconsistencies in regard to
inappropriate or non-standard use of these elements.

GROUP TASK Activity
Use the cut, copy and paste functions within and between a number of
software applications. Describe any differences or issues you encounter.

Fig 1.16
Microsoft Excel’s ‘cut’ does not cut.

28 Chapter 1

Software Design and Development –The Preliminary Course

• MF Rack sound application

This application uses a real world
metaphor. It attempts to create a
physical audio rack using software.
The problem is, it is not a real audio rack
and lacks much of the functionality of its
real world equivalent.
It is almost impossible to intuitively
find features necessary for the
operation of the software. It took the
author of this text around five minutes
to work out how to open a file.
Eventually I discovered that clicking
on the musical note displays a menu
that includes an open command.
Altering the balance and volume is
equally obscure. I soon tired and decided to exit the application. Now how do you do
that? After much left and right clicking all over the screen on various controls I
managed to exit the program. For the record, the button at the left of the CD section of
the rack terminates the program.
To use this application you need to forget virtually everything you have ever learnt
about how to operate a computer progra! In fact, the more software experience you
have the more difficulty you will have using this product. This application is totally
inconsistent with almost all other software applications. Even within the application,
there is no consistency. Graphics that are just graphics, are intermingled with graphics
that are in fact controls with no visual differentiation. For example, the open graphics
on the cassette decks are just graphics If you’re asking yourself ‘should I model a
user interface on a real world device?’ then the short answer is ‘No’.

Appropriate messages to the user
Messages to users are the primary method applications use to communicate problems
to users. If these messages are poorly worded then users will perceive the product
poorly Messages should imply that the user is in control not the software. Use full
words and sentences, not abbreviations and codes. Ensure messages are unambiguous
and are positive They should provide insight as to how to respond to the message. For
example, which is more appealing ‘Incorrect
Grade’ or ‘Grades range from A to E’?
The wording of messages should be consistent
across the application. For example, ‘Grades
range from A to E’ and ‘Please enter a mark
from 0 to 100’ are worded well when read
separately. Together they are inconsistent,
given the first message the second could be
better written as ‘Marks range from 0 to 100’.

GROUP TASK Investigation
Examine the user interface of a variety of software packages. How
intuitive did you find each user interface in terms of consistency within
the product and compared to other products? Explain.

Fig 1.18
Critical error messages are visually indicated

using a large white cross in a red circle.

Fig 1.17
MF Rack sound application attempts to use a

real world metaphor and fails!

Social and Ethical Issues 29

Software Design and Development – The Preliminary Course

The placement of messages should also be consistent. Generally, users expect
messages to appear in the centre of the screen.
Many messages are the result of an error of some sort occurring. It is usual to provide
some visual clue as to the severity of the error. In MS-Windows, a series of standard
icons is used to indicate the general nature of each message e.g. a large white cross in
a red circle is used to indicate a critical error and an exclamation mark in a yellow
triangle indicates a warning message.
Many messages require a response from the user e.g. Yes, No or Cancel. Many users
will inadvertently hit the Return/Entr key. It is important that the default option will
not cause some potentially destructive action such as deleting or saving.

Consider the following:

The following messages have been taken from commercial software. In each case, the
message confuses and confounds the user.
• RealPlayer for Windows - Fig 1.19
This is a real catch 22 situation. If there
is a problem contacting RealNetworks
technical support, then the suggestion is
to contact RealNetworks technical
support! It seems incredible that such a
confusing message exists in such a
widely used application.
• Dr Zeuss’s ABC - Fig 1.20
Messages should use language
appropriate to the language of the
intended audience. Some programmers
may understand the message shown at
right, however this game is intended for
3 to 5 year olds.
• Mail Label Maker - Fig 1.21

The message at right is displayed each time data has been sent
to the printer. For a start, the message interrupts the user and
is unnecessary. Secondly, in this program, it is common to
print a number of documents simultaneously; this message
occurs for each document printed. You must respond to this
silly message before the application will print the next
document. Is the application looking for a pat on the back?
‘Ah, I’ve finished printing, aren’t I clever!’ Perhaps other
messages should be included, ‘A file is open – OK?’, ‘The file is
closed – OK?’, ‘Finished saving – OK?’ As a programmer, do
not do this - it is very irritating.

Fig 1.21
This message achieves
nothing but irritation.

GROUP TASK Investigation
Examine messages generated by a number of applications. Comment on
their appropriateness. Do you have any suggestions on how these
messages could be improved?

Fig 1.19
Circular logic in RealPlayer for Windows.

Fig 1.20
Messages should suit the intended audience.

30 Chapter 1

Software Design and Development –The Preliminary Course

Ease of use

Good user interfaces are easy to use. Screen elements that are logically connected
should be grouped together. Similarly, unrelated items should be separated. White
space or frames can be used to accomplish this task.

Navigation between screens should follow the natural flow of the task. Applications
should be flexible in this regard; the user should be able to complete tasks in the order
they require. Software that forces a linear sequence for completion of tasks controls
the user. The user should feel they are in control of the computer. Within each screen,
information should be organised left to right and top to bottom. In western society, we
expect information to be arranged in this manner.

Applications should support both novice and experienced users. The provision of
shortcut keys and advanced functionality should be available. Functionality should not
be hidden from the user, as this is how most users learn, by exploring the interface.

Some applications remove menu items that are currently not available; in most cases
this is poor design. Rather than removing items, they should be greyed out and
disabled. In this way, users can see what is both available and unavailable, helping
them to build up a picture of the entire application. It is also poor practice to leave
items active that are not relevant at the time. In general, if selecting a command will
just result in an error message, then that command should be disabled and greyed.

Busy screens result in confusion for users. Easy to use screens will have white space
on approximately 50% of the screen. Some applications go ‘icon crazy’. Icons are
great if the meaning of the icon is immediately obvious. If the icon is somewhat
obscure then don’t use it, use text instead. Always keep screens simple.

Consider the following:

• Tabbed dialogues
Tabbed dialogues, such
as the one at right, are
difficult for users to
navigate. Tabs in the
second and third rows
jump to the front when clicked. It is most difficult to maintain
an understanding of the position of each tab relative to other
tabs. Tabbed dialogues are useful screen elements however this
example shows how a good idea can be exploited to the extent
where it is almost unusable.
• Inappropriate use of icons
Icons are used to represent or stand for particular operations. If
the icon does not easily suggest the operation then it should not
be used. Often text is easier to understand. The toolbar at right
contains many familiar icons. However, some are rather more
obscure. What does the banana signify? Well it actually actives
a compression function within the application. It’s difficult to
understand why a banana was used.

Fig 1.22
Tabbed dialogues should normally be restricted to a single row.

Fig 1.23
Icons must be intuitively

recognisable to work.
Many of the above icons

are not.

Social and Ethical Issues 31

Software Design and Development – The Preliminary Course

• Apple’s Quicktime Player Version 4
This product attempts to use a real world
metaphor to create a movie and audio player. The
problem is that many of the familiar features of
all other common software products have been
removed for the sake of a clean and apparently
realistic look. There is no minimise or maximise
button. The window cannot be resized. It is
unclear how to access most of the functionality.
Some of the icons do nothing whereas others are
command buttons. The play and pause buttons
appear to be disabled even when a file is loaded.
It is a most confusing and difficult piece of
software to use.
The volume control is a rotary dial, similar to the
volume control on real world stereos. The trouble
is, how do you use such a thumb wheel using a mouse? Not an easy proposition. The
favourites drawer, which slides out from the bottom of the screen, has many design
flaws. The major one being that it does not display the filename just the first frame of
each video. Unfortunately, most videos have a black first screen or a copyright notice.
This makes the favourites drawer completely useless; it is impossible to identify any
difference between video files stored in the drawer. To be fair, more recent versions
of Apple’s player corrects these problems.

Acceptable response time in software

The time taken for a process to
complete is known as the response
time. In relation to ergonomics,
response time is the time taken for
software to respond to some input
from the user. Users expect to see
something happening because of
their inputs. If a process is likely to
take longer than a second to complete then some visual feedback is required. For
example, in Outlook Express a progress bar is displayed to provide feedback to users
as mail is sent and received (see Fig 1.25).

Response times of around .1 second are pref erable to give users the impression of
instantaneous response. If response times are closer to 1 second or greater then users
will feel the computer has taken control. Response times that blow out to more than a
few seconds will cause users to act and perhaps reboot or cancel operations. Often
response times are linked to the power of the particular machine or the speed of the
network connection on which the software is installed. Programmers should ensure
users will receive adequate feedback regardless of the machine they are using.

Software accessed via communication links, and in particular the Internet, is
particularly vulnerable to response-time problems. The speed of the communication

Fig 1.25
Progress bars are often used to provide feedback.

Fig 1.24
Apple’s Quicktime Player 4 ignores

traditional user interface rules.

GROUP TASK Investigation
Use a software product that you have never seen before. List any issues
you experienced that made the product difficult to use. Present your
findings to your class.

32 Chapter 1

Software Design and Development –The Preliminary Course

link is beyond the control of the software developers. In these cases, it is vital that
developers include methods to ensure their products perform satisfactorily under the
most adverse conditions. For example, web-based applications should display
appropriate messages in place of video and graphics whilst these items are loading. In
this way users can commence reading the content of the website whilst media items
continue to load. When downloading files, an indication of the approximate time the
download will take provides essential feedback for users.

Input screens that contain many list and combination boxes provide excellent data
validation, however the response times can often be less than desirable. Data intensive
applications will often require extra data structures to negate the need to perform real
time processing. For example, bank account transactions are not processed until late at
night when processing resources are available; during the day, a record of the
currently available balance is maintained. Often a compromise must be reached
between response times and data validation.

The following messages were generated by a single software application:

Comment on the appropriateness of these messages in terms of:
(a) the language and icons used
(b) the options available to the user
Suggested solution
(a) The language in the first message is good however the second message is too

personal. Users know computers are machines, hence it is inappropriate to make
it appear to be a person. If the function cannot be performed then it would be
better to prevent the user to initiating the function in the first place, perhaps the
control that generated the message should have been disabled. The icon used on
the first message is appropriate as it indicates a minor problem, however the big
cross on the second message is inappropriate; such icons are used to indicate a
critical error that requires the application to close.

(b) On both messages the options available make little sense. The first message is
providing information and just the OK button is needed, it is unclear what the
functional difference is between the OK and the cancel buttons. The second
message is similarly unclear, the text of the message indicates that the function
cannot be performed so there is nothing to abort, or retry? It is similarly unclear
what would occur if ignore is selected.

HSC style question:

GROUP TASK Discussion
Reducing response times for applications involving large amounts of
input is vital. Discuss some strategies software developers could employ
to assist in the reduction of response times in their products.

Social and Ethical Issues 33

Software Design and Development – The Preliminary Course

SET 1C
1. From a user interface perspective, the

most important aspect is:
(A) use of colour.
(B) correct alignment of fields.
(C) consistency.
(D) correct use of option buttons.

2. A programmer would use progress bars
as a means of:
(A) validating the data.
(B) screen navigation.
(C) providing feedback to the user.
(D) none of the above.

3. A software developer’s product must:
(A) be consistent in its design.
(B) meet the needs of the user.
(C) be ‘user friendly.’
(D) all of the above.

4. The primary method that an application
uses to communicate problems to users
is:
(A) messages.
(B) progress bars.
(C) dialogue buttons
(D) applications do not communicate

with the user.
5. Users are likely to feel that the computer

has taken control when response times
exceed:
(A) 0.1 second.
(B) 1 second.
(C) 2 seconds.
(D) more than a few seconds.

6. Icons are most useful when they:
(A) are intuitively recognisable.
(B) have different colours.
(C) replace tabbed dialogues.
(D) all of the above.

7. Command buttons, check boxes and
radio buttons can best be described as:
(A) screen elements.
(B) application elements.
(C) function elements.
(D) design elements.

8. A programmer could use which to
ensure data is validated?
(A) Tabbed dialogues.
(B) Progress bars.
(C) Icons and shortcut keys.
(D) List and combination boxes.

9. If a software application is intuitive,
consistent and easy to learn then it could
be considered to be:
(A) functionally correct.
(B) user friendly.
(C) meeting the needs of the user.
(D) a perfect software application.

10. The percentage of white space appearing
on a well-designed screen, should be
about:
(A) 70%
(B) 50%
(C) 40%
(D) 20%

11. Programs with fantastic functionality may not be commercially successful. Why could this be
the case?

12. Each of the messages below are from the same software application. Comment on the
appropriateness of these messages.

34 Chapter 9

Software Design and Development –The HSC Course

13. Consistent user interfaces are more user friendly. List and describe important aspects to consider
when designing a consistent user interface.

14. The screen that follows is taken from a program that is used to transfer files to and from remote
computer. Normally the transfer is to or from a web server.

Critically evaluate this screen.

15. Redesign the above screen to overcome the problems you identified in Question 14.

Social and Ethical Issues 35

Software Design and Development – The Preliminary Course

INCLUSIVITY
Inclusive software should take into
account the different users who will likely
use the product; as software developers,
we have a responsibility to ensure that this
is the case. Furthermore, software
products that do not take into account the
different characteristics of users are less
likely to secure a significant market share,
which would result in lower sales and reduced profits.
Let us now examine a number of individual and group characteristics that should be
considered when designing software solutions. In most cases, these characteristics
will have direct consequences for the design of the user interface.
Cultural background
The culture of a people can be described as the set of ways of living built up over a
period of time and passed from generation to generation. It is important that the
beliefs and language of different cultures be considered when designing software.
Similarly, the social structure of societies is influenced by their underlying culture.
How do we cater for these differences in
practice? Firstly, we must understand or at
least be empathetic to the needs of other
cultures. It is not possible to be an expert on
all cultures, however we can easily include
users from a variety of cultures as part of the
testing processes occurring during development.
For example, in most western cultures we
have a Christian name and a surname. This is
not the case in many Asian cultures where a
formal name and an informal name are more
commonly used. Testing that includes users
from the Asian culture, would quickly
highlight this difference.
Numbers, currency, times and dates are
another common area of difference between
cultures. In Australia, we express dates using
day then month then year (e.g. 25/1/2012). In
America, they more commonly use month then day then year (e.g. 1/25/2012). Again,
those used to an alternative format, would soon encounter problems. Similarly, the
format of numbers and currency is different in other countries. Sweden uses a comma
as its decimal point and a period as a multiplication sign. 5.2 in Sweden would mean 5
times 2 and 3,255 would mean 3 point 255.
The dominant language of a country should be used on the user interface when
applications are to be sold to those cultures. Many large-scale systems manage to
utilise any number of languages by storing the text used to label the interface in a text
file that is loaded as the application starts. By altering this single text file the language
used by the application can be customised to suit any foreign language. It may not be
practical to rewrite our interfaces using a large variety of foreign languages, however
we can design them using English that is clear, consistent and unambiguous. In this

Inclusive
Containing, embracing or
comprising everything
concerned. Comprehensively
includes and takes account of
stated concerns.

Fig 1.26
Windows allows the format of numbers,
currency, times and dates to be altered.

36 Chapter 1

Software Design and Development –The Preliminary Course

way users whose first language
is not English are more able to
comprehend our user interfaces.
Cultural differences are often
prevalent in regard to religious
beliefs. Many religions worship
at a particular time during the
week. Perhaps software can be
written so that processor
intensive batch operations can
be performed at this time.
Attempts at humour within
software can often be in bad
taste to those with different
religious beliefs. Similarly graphics, particularly many appropriate in western
cultures, are deemed inappropriate in many eastern cultures. Increased awareness of
the audience, including minority cultures and religions, is a vital step in developing
culturally inclusive software.

Economic background
Economic characteristics relate to the generation, distribution and use of income and
wealth. This can be viewed on a global, national, local or industry specific scale.
Software development is a relatively new industry that is growing in both breadth and
overall volume; a very healthy economic situation. As software developers, we have a
responsibility to ensure consideration is given to the economic situation of purchasers
of software products. This is necessary to ensure the industry maintains a solid
position in the market place in the years to come. Unlike most other industries, the
cost of software products is most significantly influenced by its design and
development costs; the production costs being relatively insignificant. To achieve
equality of access to technologies such as software requires that the technology is
available at a cost that is economically viable for the widest possible audience. The
recent trend towards open source development helps in this regard. Larger
commercial organisations access additional paid support and services whilst poorer
organisations are still able to access the same quality software at minimal cost.
Let us consider some issues related to design and development costs, which in turn
influence the final purchase price for users.
• Quality
Quality is a measure of how well a product meets the needs of its clients. A product
that better meets the needs of the user will be more successful, however quality costs
money. A software product developed for a single user cannot economically be
produced to the same quality standards as one produced for the global market. A
balance must be found between cost and quality.

GROUP TASK Investigation
Examine a number of web sites from foreign countries. Include some that
are in English and some that use a foreign language. Describe the
difficulties you encountered when using these sites. Can you suggest any
changes that could be made to improve these sites?

Fig 1.27
In some cultures the graphic on this splash screen may be

viewed as inappropriate.

Social and Ethical Issues 37

Software Design and Development – The Preliminary Course

• Nature of the market
Software developers must understand the market needs before embarking on new
product development projects. It is not economically feasible to develop a product
where the need it is intended to meet is of less value than the product’s cost. A
feasibility study should be undertaken to determine economic feasibility of any new
software project. As software developers, we should acknowledge that some market
needs are better met by non-computer based solutions.
• Management of the software design and development process
There are various software development approaches, (see chapter 3) suited to the
creation of different products. Choosing a suitable approach will result in a more
economically viable produc. Different work environments can also influence those
involved in software development. It is often possible for developers to work flexible
hours and to work from home. By creating structures that help developers work more
effectively, managers will reduce costs and increase the quality of the software
produced.
• Influences on pricing
Companies are ultimately in business to make money. This is the basis of most
western capitalist economies. History shows us that companies that have a monopoly
in their industry tend to produce inferior products at higher costs to consumers. As a
result these companies make large profits. Competition and in some cases government
regulation can assist in ensuring software products are sold at realistic prices and are
within the financial grasp of a wide audience.
Gender
In most cases the first thing we ask when a new baby is born is whether it is a boy or a
girl. In actuality, this is probably the first thing we perceive when we meet anybody
for the first tim. We seem to inherently know and sense the differences between the
sexes. We don’t need to view a face or hear a voice; small almost imperceptible cues
almost always allow us to correctly identify the gender of a person. So what are the
major differences and how should these differences be included when designing and
developing software?
Firstly, both men and women should be included in the software design and
development process. At the time of writing, men dominate the industry. Many view
this as a natural consequence resulting from one of the major perceived differences
between men and women. Programming is viewed as a technical, mathematical
process with rigid boundaries. Research shows that rightly or wrongly, men
predominate in these types of occupations. Since men are engaged in the creation of
software, it follows that some bias is likely to exist towards males in the products they
develop.
Computers generate precise scientific-type responses; this is the nature and
construction of the machines. In general, research has shown that men prefer black
and white situations; they wish to reach a definite solution. On the other hand, women
often see problems in a broader sense. They are interested in ensuring the method of
solution is socially acceptable and are generally better at reaching and accepting more
flexible solutions. Software should be designed to allow for both styles of solution.
Traditionally software has been written to solve problems that do have definite
answers (e.g. a set of inputs is processed into a unique set of outputs). Current

38 Chapter 1

Software Design and Development –The Preliminary Course

advances in artificial intelligence now allow computers to assist in the solution of a
much broader range of problems using less structured solution techniques.
Disability
Software design should include functionality that allows software to be used and
accessed by a wide range of users. The computer and its associated software has
revolutionised the lives of many disabled people. It is estimated that one in five
people have some form of disability that will affect their capacity to access and use
software in the usual way. To ensure maximum accessibility to those users with a
disability, software designers have a number of tools and techniques available at their
disposal. Let us examine some broad categories of disability and discuss some
accessibility techniques that should be considered by software designers.
• Visual disabilities
Simply using larger fonts and providing the facility for controls and graphics to be
scaled may overcome reduced visual ability. Most operating systems provide these
features and software developers should ensure they utilise the operating system’s
settings within their products.
Colour blindness and other related
conditions make it difficult to distinguish
different colours and colour combinations.
For this reason, colour should not be used
as the sole method of conveying
information. For example, Internet links
are often blue, however they should also be
underlined.
To accommodate users with severe to total
impairment requires software to correctly
interface with speech generation and
Braille utilities. These utilities are able to
read the text labels on the user interface
and convert them into speech or Braille. In
this way, the utility is able to track and
describe what the user is doing. Graphics
can be a problem for these readers; it is
recommended that labels be used to
identify all functional graphics.

• Hearing disabilities
Software should not rely on sound as the sole method of communicating information.
It should be used to emphasise and/or reinforce other visual clues. Utilities are
available that will give some visual clue if a sound has been produced.
Software developers should be aware that for many hearing-impaired users English is
their second language, their first language being sign language.

Fig 1.28
The PowerBraille (top) is both an input and

display device. The BrailleBlazer (bottom) is a
Braille embosser for creating Braille hardcopy.

GROUP TASK Research
Search the Internet for both software and hardware to support the visually
impaired. Compile a list of devices and software found, together with a
brief description of the purpose of each one.

Social and Ethical Issues 39

Software Design and Development – The Preliminary Course

• Physical disabilities
Some users have difficulty performing certain physical tasks. They may not be
capable of using a mouse or they may find it difficult to reliably press a single key on
the keyboard. Other disabilities may severely limit physical movement to the face or
even just the mouth. For these
people, the ability to use computer
software is vital if they are to
successfully communicate. Many
software utilities that interface
with specialised input devices for
the disabled utilise the standard
keyboard interface; in effect they
send the same data as a standard
keyboard. It is therefore vital that
the user interface is able to be
controlled using just the keyboard.
Accessibility features found in
many operating systems and
applications to assist the
physically disabled include:
altering the time-delay before
keys repeat when held down;
allowing keyboard combinations
to be entered one key at a time e.g. pressing Ctrl and then pressing S without the need
to hold down Ctrl; changing the keyboard layout; simulating the mouse using the
cursor keys; changing the mouse pointer speed and adjusting the double-click speed.
Specific applications are available to perform input and output functions from and to
specialised hardware devices. Many of the input devices are simple switches of
varying size and sensitivity to suit the needs of the individual user. For example, users
without the use of their limbs are
able to use head movement
detection devices to control input
to an onscreen keyboard. Various
other examples of switches are
shown in Fig 1.29. The software
interfacing with these devices
commonly uses short mnemonics
and word prediction to speed up
data-entry. Sentences that are
commonly used can be pre-
defined and completed with a
single input.

Fig 1.30
WiVik2 Scan provides an onscreen keyboard

that interfaces with most applications and
specialised input devices.

P-Switch controlled by fine muscle
movements in the eyebrow area

Sip and puff switch controlled
by the users breath

Large movement rocker switch
controlled by the arm or chin Tongue switch

Fig 1.29
Switches are used to provide the input to

specific accessibility applications.

GROUP TASK Research
Search the Internet for both software and hardware to support the
physically impaired. Compile a list of the devices and software found,
together with a brief description of the purpose of each one.

40 Chapter 1

Software Design and Development –The Preliminary Course

PRIVACY
Privacy is about protecting an individual’s personal information. Personal information
is any information that allows others to identify you. Privacy is a fundamental
principle of our society, we have the right to know who holds our personal
information. Privacy is a feeling of seclusion, where we can be safe from observation
and intrusion. For this to occur we need to feel confident that our personal information
will not be collected, disclosed or otherwise used without our knowledge or
permission.
Personal information is required, quite legitimately by many organisations when
carrying out their various functions. This creates a problem, how do we ensure this
information is used only for its intended task and how do we know what these
intended tasks are? Laws are needed that require organisations to provide individuals
with answers to these questions. In this way individuals can protect their privacy.

In Australia, privacy is legally protected under the Privacy Act 1988 and its
subsequent amendments. This act contains ten National Privacy Principles, that set
standards that organisations are required to meet when dealing with personal
information; the text in Fig 1.31 briefly explains each of these principles.

What are the ten National Privacy Principles?
The following briefly explains what the NPPs mean for you.
NPP1: Collection - describes what an organisation should do when collecting your personal
information.
NPP2: Use and Disclosure - outlines how organisations can use and disclose your personal
information.
NPP3: Data Quality & NPP4: Data Security - set the standards that organisations must meet for the
accuracy, currency, completeness and security of your personal information.
NPP5: Openness - requires organisations to be open about how they handle your personal
information.
NPP6: Access & Correction - gives you a general right of access to your own personal information,
and the right to have that information corrected, if it is inaccurate, incomplete or out of date.
NPP7: Identifiers - says that generally, Commonwealth government identifiers (such as the
Medicare number or the Veterans Affairs number) can only be used for the purposes for which they
were issued.
NPP8: Anonymity - where possible, requires organisations to provide the opportunity for you to
interact with them without identifying yourself.
NPP9: Transborder Data Flows - outlines privacy protections that apply to the transfer of your
personal information out of Australia.
NPP10: Sensitive Information - requires your consent when an organisation collects sensitive
information about you such as health information, or information about your racial or ethnic
background, or criminal record. Sensitive information is a subset of personal information and special
protection applies to this information.

Fig 1.31
The te ‘National Privacy Prnciples’ briefly de scribed from the Office of the Federal Privacy

Commissioner’s website at http://www.privacy.gov.au

GROUP TASK Activity/Discussion
Make up a list of all the organisations that are likely to hold personal
information about you. Do you know what information is held and how it
is used?

Social and Ethical Issues 41

Software Design and Development – The Preliminary Course

Consequences of the Privacy Act 1988 mean that information systems that contain
personal information must legally be able to:
• explain why personal information is being collected and how it will be used
• provide individuals with access to their records
• correct inaccurate information
• divulge details of other organisations that may be provided with information from

the system
• describe to individuals the purpose of holding the information
• describe the information held and how it is managed

REQUIRED SKILLS IN SOFTWARE DESIGN AND DEVELOPMENT
The design and development of quality software requires skilled personnel. Technical
expertise although very necessary, does not on its own result in high quality products.
Each member of the development team needs to communicate and work with other
members to achieve a common goal. The team should comprise of those with
specialised skills with regard to creativity and design. All members will need
advanced problem-solving skills tuned to their particular work area.
People need ongoing training to continuously develop and expand their skills. We are
never too old or too experienced to learn new things. This is particularly the case with
software development where new technologies and methodologies emerge constantly.
Let us examine some general strengths required by those involved in the software
design and development process.
Communication skills
Successful communication results when a message is understood precisely by the
recipient; this rarely occurs. Acquiring skilled communication techniques is a learning
process. Different forms of communication will require different skills;
communication can be formal, informal, aggressive, passive, spoken, written, verbal
and/or non-verbal. Feedback is required to confirm that the intended message was
received correctly.
If software is to be of high quality, then it must fulfil the needs of users.
Communication skills are required to understand and refine user’s needs. Different
modes of communication should be used when determining these needs. For example,
a structured survey may be appropriate for determining technical requirements,
however user interface design needs may be better understood using a prototype
together with informal observation of the user’s work routines. The communication
skills required for each of these scenarios are quite different.
Internal communication within the software development team is complex; each
individual comes to the team with different experiences and technical skills. Software
development is a fairly structured process, therefore formal structures for
communication need to be implemented and communicated to personnel. For
example, particular modules of code need to be assigned to particular programmers
for coding. On the other hand, informal communication should be encouraged

GROUP TASK Research
Social networking sites routinely collect and store personnel information.
Research the privacy policies and security mechanisms used to control
access to this personnel information.

42 Chapter 1

Software Design and Development –The Preliminary Course

between team members to facilitate the flow of knowledge and expertise. For
example, a problem encountered by one programmer may have already been
previously encountered and solved by a colleague. Informal discussions may uncover
this fact allowing the work to be accomplished more efficiently.

Ability to work in teams
Software development is a collaborative process involving system analysts, graphic
designers, programmers, software engineers, hardware engineers, managers, software
testers, support personnel, etc. All these people must work together to achieve a
common goal. Commonly, teams are created containing members with different
expertise and skills; these members work together to create the software product. The
ability to work in teams is therefore crucial to the creation of quality software.
Some requirements and skills necessary for working successfully in teams include:
• Openness and willingness to share and accept other ideas.
• Support of other team members.
• Commitment to the team’s performance rather than individual performance.
• Team members should be treated as equals.
• Interpersonal communication skills between team members.
• Listening skills are vital. Individuals should not dominate.
• Leadership should be shared by the group.
• Self-motivation is required as teams manage themselves.
• Respect for other member’s skills and knowledge.

Creativity
Creativity is the ability to develop original ideas. Each software product is different
and therefore requires original ideas during development. Creativity is not restricted
to artistic endeavours; it encompasses any original or new thought. For example,
when designing the user interface, there will be a number of different possible
solutions. Some may be less functional than others and some may be more original
than others. Creativity will be required to solve new problems effectively; often the
most obvious solution is not the best solution. Creativity encourages new ways of
looking at problems and their solutions.
The design of system models and algorithms requires creativity coupled with
advanced design and problem-solving skills. Each new system will involve the
creation of new solution techniques; creativity is required to formulate these original
ideas. There are often many ways of solving a particular problem. Creativity can be
described as the ability to formulate alternative solutions.

GROUP TASK Activity
Each class member is to write a one or two sentence summary of the
above paragraphs on communication skills. Compare the sentences written
by each student. Discuss reasons why the summaries are not the same.

GROUP TASK Discussion
Work teams, when properly constructed, have been shown to consistently
outperform other management structures. Why do you think this is the
case? Discuss.

Social and Ethical Issues 43

Software Design and Development – The Preliminary Course

Design skills
Design is the process of planning the method of solution. In terms of software design,
it involves the creation of system models. These models describe the structure and
processing of the software, together with screen designs for the user interface. Design
skills are also required to produce algorithms.
Personnel involved in the design process require a toolkit of modelling techniques
from which they can draw upon. System flowcharts, dataflow diagrams, structure
charts, IPO charts and data dictionaries are some of the possible tools available to
software designers. These tools are used to describe the overall design of the system
to other developers on the team. Similarly, flowcharts and pseudocode describe the
algorithms required to code the individual modules within the solution.
Technical skills
Technical knowledge and skills with regard to the technologies being used are
essential for all software development personnel. Within a team of developers a range
of technical skills will be required. The range of technical skills should complement
each other. For example when designing user interfaces the developer must possess
the technical skills to position and align screen elements, whilst they must also have
experience with usability issues and knowledge of the underlying functionality being
implemented. Technical skills are required to transform the design into source code.
Problem-solving skills
Problem-solving skills are crucial to most aspects of software design and
development. To solve problems efficiently requires the ability to analyse the
requirements of the problem and create the most suitable method of solution. Gaining
experience solving problems using different techniques, will help you develop a
personal style that suits your thought processes. There are many possible techniques
that can be employed to assist this process. Let us briefly examine a few common
techniques:
• Brainstorming - Focus on the problem. Come up with as many different possible

solutions to the problem. Brainstorming is usually performed by a group of
people. The idea is to come up with as many possible solutions without critically
analysing each possibility. This technique encourages the emergence of creative
solutions.

• Critical path analysis - This technique is particularly useful for determining the
time it will take to complete a project. The focus is on the tasks that will lead to
the final solution. Some tasks may be completed in isolation whereas others must
be performed in a particular sequence. This technique allows one to determine the
overall flow of the solution processes.

• S.T.A.I.R. (Statement of the problem, Tools available, Algorithm,
Implementation, Refinement) - The problem is first described in general terms.
We then consider the tools that will be required to solve the problem. Considering
the problem and the tools, we develop an initial method of solution (algorithm).
We attempt to implement our algorithm. Often our first attempt will require
refinement to achieve the desired result.

There are many other problem-solving techniques available. It is important that those
involved in software development arm themselves with a variety of problem-solving
skills and techniques. Different problems will lend themselves to different problem-
solving approaches.

44 Chapter 1

Software Design and Development –The Preliminary Course

Consider the following:

Imagine you and two friends wish to go to the Gold Coast for a holiday. Let us
consider each of the above problem-solving techniques using this problem:
• Brainstorming - The three of you sit around and come up with as many possible

ways of organising your holiday. You could drive, catch a bus, catch a plane or go
by boat. You could stay in a hotel, a motel, a caravan park or sleep on the beach.
The aim of brainstorming is to come up with many different possibilities without
criticising any at this stage.

• Critical path analysis - Using this technique you consider requirements and how
they affect the solution For example, you can’t leave until school breaks up and
you must be back before the school term resumes. This determines the possible
dates for departure and return. You then consider how to get to the Gold Coast;
each mode of transport considered must be available at the nominated time and be
within your budget. Once transport is decided, you consider accommodation. It
must be available within the constraints of the transport. This process continues
until the details of your trip are formulated.

• S.T.A.I.R. – In this case the problem that needs to be solved is to organise the
Gold Coast holiday. We then consider the available tools: perhaps you have car
and camping gear, one of your friends may have relatives you could possibly stay
with, your budget may be limited, you know your parents want you to have a
phone where you stay, etc. These tools are then combined into a possible method
of solution (algorithm): You can travel by car and stay with your friends relatives
(this way a phone is close by). You commence implementing this solution and
find that your friend’s relatives cannot accommodate all three of you. As a result,
you refine your solution. Your new solution involves camping in your friend’s
relatives yard.

Attention to detail
Computers are rather unforgiving machines. One tiny mistake in a complete software
product can result in errors that crash an entire software product. A simple oversight
during the initial design stages can prove increasingly more costly to correct as
development proceeds. For this reason it is necessary for developers to be particularly
attentive to detail.

Consider the following:

A software development company has been contracted to create a product to automate
the functions of a chain of service stations. A series of system models has been
produced and the software has been coded. The product is now ready for installation
at each of the service stations.

GROUP TASK Activity
Imagine you wish to find the best way of travelling from home to a
concert at the Entertainment Centre in Sydney. Use each of the three
techniques described above to assist in reaching a solution.

Social and Ethical Issues 45

Software Design and Development – The Preliminary Course

A problem emerges. Many of the service stations purchase their fuel from different
supplier. The initial requirements determined by the system analyst did not factor in
this possibility. It is found that some 50% of the service stations are affected.
Consequently, these service stations are unable to order their fuel using the system
and must resort to manual procedures. Although the problem can be corrected, it has
tainted the system in the eyes of many of the service station owners.

Inclusive software can be used and understood by the widest possible audience. This
audience includes those with various types and degrees of disability.

Discuss techniques that can be used by software developers to ensure their products
can be used by those with:

(a) visual disabilities.

(b) physical disabilities.
Suggested solution
(a) For those with visual impairment the font and in particular the font size is often

critical. Fonts and font sizes can be specified within the operating system;
software developers should use these settings and adjust their screens
accordingly. The colours used, and in particular the contrast between colours, on
screens should be considered. Even minor visual disabilities such as colour
blindness can make many colour combinations impossible to discern. Users with
no sight at all commonly rely on their hearing; they use products that read out the
text on the interface, hence graphics should include invisible attached text labels
that can be read by such products.

(b) Many physical disabilities mean that controlling a mouse or similar pointing
device is impossible; all functionality should be accessible using the keyboard as
many input devices for the physically disabled create signals that imitate those
created by the keyboard. Most operating systems include settings for such things
as rate of key repeat, double click speed, etc. Software applications should not
override such settings, rather they should access and use them appropriately.

GROUP TASK Discussion
The software development company must bear the cost of correcting this
oversight. What procedures could be implemented by the software
developer, to ensure this type of problem does not recur in the future?

HSC style question:

46 Chapter 1

Software Design and Development –The Preliminary Course

CHAPTER 1 REVIEW
1. Joe, Hannah and Oscar are focusing on

the particular tasks required to complete
their software development project.
They could be said to be using which
technique in their problem-solving
efforts?
(A) mind-mapping.
(B) S.T.A.I.R.
(C) Critical path analysis.
(D) Brainstorming.

2. Which of the features listed is NOT an
ergonomically sound feature of a
graphical user interface?
(A) Consistent placement of screen

elements.
(B) Exclusive use of icons to initiate all

functions.
(C) Correct use of screen elements.
(D) Ability to reverse or undo actions.

3. Communication between team members
should be of a(n):
(A) formal nature.
(B) informal nature.
(C) both (A) and (B).
(D) fully documented.

4. Reverse engineering of software often
involves:
(A) compiling.
(B) recompiling.
(C) decompiling
 (D) non-compiling.

5. A program that automatically fetches
web page data for inclusion in search
engines is known as a:
(A) spider.
(B) robot.
(C) both (A) and (B)
(D) none of the above.

6. Prior to commencing the development of
a new software product which study
should be first undertaken?
(A) A development approach study.
(B) A marketing study.
(C) A feasibility study.
(D) A quality assurance study.

7. Something that comprehensively
includes and takes into account the
stated concerns is said to be:
(A) inclusive.
(B) sympathetic.
(C) economic.
(D) creative.

8. Quality in terms of software
development can be measured by:
(A) a cost benefit analysis.
(B) how well the product meets the

needs of the users.
(C) the amount of functionality the

product has.
(D) the cost of the development.

9. Ergonomics is best described as the
study of the:
(A) interaction between humans and

their work environment.
(B) interactions between one culture

and another culture.
(C) interactions between hardware and

software.
(D) user interface.

10. Screens and the connections between the
screens that allow the user to
communicate with the software is called
the:
(A) system model.
(B) screen elements.
(C) screen design.
(D) user interface.

11. Outline the processes performed by a social networking application with which you are familiar.
Explain how the privacy of user’s personnel information is addressed within this application.

Social and Ethical Issues 47

Software Design and Development – The Preliminary Course

13. The above screen is from Intel’s Video Wave 1.0 product for Windows machines. Evaluate this
screen design in terms of your knowledge of ergonomics. Comment on both positive and
negative aspects of the design.

14. What is intellectual property? Why are intellectual property rights of particular concern in regard
to software compared to other physical products?

15. Software should be inclusive. What does this mean? Describe areas that should be addressed
when evaluating inclusivity.

48 Chapter 2

Software Design and Development –The Preliminary Course

 In this chapter you will learn to:
• identify the elements of a computer system and

their role in that system
• describe the significance of and interaction

between the elements comprising computer
systems

• describe how data is captured, stored,
manipulated or displayed on a variety of
hardware devices Select ONE device from each:
– Input: keyboard, mouse, scanner, radio

frequency identification (RFID), barcode
reader, graphics tablet, microphone

– Output: laser printer, inkjet printer, cathode
ray tube (CRT), LCD display, plasma display,
CD writer/burner, DVD writer/burner, data
projector, speakers

– Storage: CD, DVD, flash drive, hard drive
• competently use computer hardware, selecting

appropriate hardware for specific tasks
• identify the impact of using particular devices on

the development and use of software
• identify typical tasks performed by operating

systems:
– batch job scheduling
– emulation

• competently use a range of software
• describe the development of the generations of

programming languages
• identify the effect of the generations of

programming languages on software
development practices

• distinguish between methods of translation
• identify typical tasks performed by operating

systems
• describe what happens during each of the steps of

the fetch-execute cycle
• identify the role of specific hardware used during

each step of the fetch-execute cycle

Which will make you more able to:
• describe the functions of hardware and software
• describe the interactions between the elements of

a computer system
• describe developments in the levels of

programming languages
• describe the effects of program language

developments on current practices
• identify the issues relating to the use of software

solutions
• describe the skills involved in software

development.

In this chapter you will learn about:
Elements of a computer system
• hardware
• software
• data
• procedures
• personnel

Hardware
• the function of hardware within a computer

system, namely:
– input
– output
– process
– storage
– control

• how a variety of input devices, output devices,
storage devices and CPU components achieve their
purpose

• the current trends and developments in computer
hardware

Software
• operating systems and utilities, such as:

– file compression
– defragging
– virus checking
– embedded licence installation counts

• off-the-shelf applications packages and custom-
designed software

• generations of programming languages, namely:
– machine code: 1st generation
– assembly language: 2nd generation
– higher-level languages (imperative/procedural):

3rd generation
– declarative (non-procedural) languages: 4th

generation
• the need for translation

– compilation
– interpretation

• functions of operating systems
– provide interface to hardware
– provide interface to user
– provide interface to software applications
– control the concurrent running of software

applications
– manage system resources: time (multitasking),

memory, data, hardware devices
• current trends in the development of software and

operating systems

The relationship between hardware and software
• processing of software instructions by hardware

– the fetch-execute cycle
• the initiation and running of an application by the

operating system
– locate and load application
– hand control to application
– start fetch-execute cycle for application

• the existence of minimum hardware requirements
to run some software

Hardware and Software 49

Software Design and Development – The Preliminary Course

2
HARDWARE AND SOFTWARE

Computer systems are comprised of various elements. Commonly these elements are
grouped into hardware, software, data, personnel and procedures. All computer
systems operate using a combination of each of these components. Elements from
each of these groups are required for the
successful operation of the system.
Hardware is the physical components of the
system; the things you can touch. For
example, the keyboard, mouse, hard drive,
microprocessor, monitor and printer.
Software is the instructions and programs
that control the hardware causing it to
perform some function. For example, a word
processor, operating system, web browser,
spreadsheet or even a programming language
environment. Data is the raw information; the
inputs into the system. The data is input into
the system, processed by the system and then
output as information. Personnel are the
people involved in using the system. This
includes users, network administrators,
support teams, maintenance technicians and engineers. Procedures are modes of
action that personnel perform to initiate and complete tasks. For example, backup
procedures, how to load paper into the printer, or how to load a file.
In this chapter we focus on the hardware and software elements of computer systems.
We first examine how hardware functions to capture, store, manipulate and display
data. The operation of some common hardware devices is then explained in some
detail. Then we examine software in its many forms, focusing on programming
languages The translation of source code to machine-executable code is also
discussed.
Finally the relationship between hardware and software is considered. How does
computer hardware execute software instructions? We answer this question by
examining the fetch-execute cycle and the sequence of events occurring when an
application is first run.

Hardware

Software

Data Personnel

Procedures
Computer

System

Fig 2.1
Elements of computer systems.

GROUP TASK Activity
Consider either your home or classroom computer as a system. Identify
each component. Group these component elements as either hardware,
software, data, personnel or procedures.

50 Chapter 2

Software Design and Development –The Preliminary Course

ELEMENTS OF A COMPUTER SYSTEM
The five elements present in all computer-based systems
are hardware, software, data, procedures and personnel.
Each of these elements plays a role in the operation of the
system and should be considered during the design and
development of software products. Hardware is made up
of the physical elements of the system. Software is the
instructions controlling the hardware. Data is the raw
inputs used during processing that are transformed by the
system into information. Personnel include all people
involved or influenced by the system and procedures are
actions performed by these personnel to operate the
system or support the operation of the system.

Each system is composed of a series of sub-systems.
Each sub-system being a system in its own right. For
example, a personal computer contains a video sub-
system, a keyboard sub-system, a secondary storage
sub-system. etc. Each of these sub-systems can be
considered as a separate system, however they all work
together to perform the functions of the larger parent
system.

Consider a typical video arcade game machine:

• Hardware – items include the chair, monitor, steering
wheel, brake and accelerator pedals, gear shift, CPU,
hard disk, power supply, sound system, coin input
system.

• Software – operating system, software drivers for each
hardware device and of course the game itself.

• Data – inputs from the coin slot, steering wheel,
peddles and gear shift. Scenery and vehicle data stored
on the hard disk.

• Personnel – players, arcade workers, technicians,
software developers, support team.

• Procedures – how to start and play the game. How to
empty the coin tray. How to replace components.

 System

Sub-system
A

Sub-system
B

Fig 2.3
Systems are composed of

sub-systems.

Proce-
dures

Pers-
onnel

Data

Hard-
ware

Soft-
ware

Fig 2.2
Computer systems contain five

basic elements.

Fig 2.4
A typical video arcade

game console.

GROUP TASK Discussion
The above video arcade game system can be viewed as a series of sub-
systems. List and describe a series of sub-systems contained within a
typical video arcade game machine.

Hardware and Software 51

Software Design and Development – The Preliminary Course

Consider the computer-based systems used within a newsagency:

• Hardware – cash register, barcode scanner, computer linked to lottery office,

EFTPOS machine, communication connections and modems to lottery office and
bank.

• Software – controlling software in cash register, lottery computer and EFTPOS
machine, communication software to communicate with lottery office and bank.

• Data – cash tendered and change amount, items in stock, lottery data including
lotto numbers and lottery ticket numbers, withdrawal amounts and authorisations
to and from the bank.

• Personnel – sales staff, manager, customers, lottery representatives and technical
staff, bank representatives and technical staff.

• Procedures – sequence of operations carried out by sales personnel to affect a sale,
security procedures, how to balance the cash register each day, backup
procedures, stocktaking procedures, manual procedures to be used in the event of
a power or communication failure.

Consider the following scenarios:

1. An author writing a book using a home computer.

2. An automatic teller machine in a shopping centre.

3. The engine management system in a car.

4. A customer support officer working for an Internet Service Provider (ISP).

5. A typical self-serve petrol station.

GROUP TASK Discussion
In the above system, the cash register, lottery computer and EFTPOS
systems are not electronically linked. Procedures performed by the sales
staff provide this link. Describe the likely steps performed by a sales
assistant when a customer purchases a lottery ticket using EFTPOS.

GROUP TASK Discussion
For each of the above scenarios list and describe elements of the system in
terms of hardware, software, data, personnel and procedures.

GROUP TASK Discussion
Software developers need to consider more than just the hardware on
which their systems will run. Why is this necessary? Discuss using
examples from the above scenarios to justify your answers.

52 Chapter 2

Software Design and Development –The Preliminary Course

Function
An activity or sequence of
activities carried out by a device
or person. Their purpose being
to carry out this function.
(Different to the programming
language meaning).

HARDWARE
All hardware must perform some function if
it is to be of use to the system. Commonly,
hardware devices are categorised according
to their main function. Keyboards are
primarily input devices as they provide a
human-machine interface allowing people
to input data into the computer system.
Similarly, the monitor provides a human-machine interface by converting digital signals
from the processor into light in the form of text and graphics that can be understood by
the human brain.
THE FUNCTION AND OPERATION OF HARDWARE WITHIN A
COMPUTER SYSTEM
There are essentially five functions
performed by hardware devices: input,
output, processing, storage and control.
These five basic hardware functions
combine to perform all the actions of all
computer systems.
In brief, input is received from outside the
system and processed into output. This
processing may involve reading and/or writing to
storag. Control is the fu nction that coordinates the
sequencing and timing of the other functions. Fig 2.5
illustrates the flow of data between each of these
functions Notice that cont rol is positioned within the
processing function. Control is a form of processing
that directs every other function. Data is not moved
or processed by control functions, rather other
functions are instructed to commence their actions.
Let us now consider each of these five basic hardware functions, included the operation of
typical devices used to perform each function.
INPUT
Input is the function that obtains data from outside the system. This usually involves the
user pressing a key, moving the mouse or initiating some other action. Their action
(input) is converted into a binary electronic signal by the input device. This signal is sent
to a buffer where it is accessed by the processor. The buffer is a circuit that is part of
Random Access Memory (RAM) that allows devices operating at different speeds to
communicate correctly. The input may come from a variety of sources including:
• users entering data via a keyboard, mouse, barcode reader or other input device
• communication links such as a local area network or the Internet
• sensors such as microphones, cameras, temperature sensors, pressure sensors, optical

sensors, motion sensors.
Note that storage devices also perform input functions however their main function is
one of storage and as such are classified separately. It is not possible to study the
operation of all the various types of input device; therefore we restrict our discussion
to the keyboard, mouse, scanners (including barcode scanners), RFID and
microphones (and sound cars).

Hardware
The physical components of
the system. The things you can
see and touch. Hardware
includes input, processing,
storage and output devices.

Storage

Processing

Control

Fig 2.5
Hardware functions and their interactions.

Hardware and Software 53

Software Design and Development – The Preliminary Course

Keyboard

In essence a keyboard is a collection or matrix of switches; each switch completes a
circuit to indicate a particular key, or combination of keys, has been pressed. A digital
code representing the key is then sent as an electrical signal to the computer. Sounds
relatively simple, however in reality the keyboard is an amazing mix of ergonomic
and technological design.

To structure our discussion let us work through the
operations occurring as a single character is
collected. That is, from the time the user presses a
key until the computer receives the information.

First the user decides which key to press and locates
that key. This may seem obvious but there are many
aspects of keyboard design that facilitate this process.
Consider the standard design of the keys; in most
cases a QWERTY layout is used, the layout of the
keys needs to be familiar if the user is to efficiently
locate the correct key. Consider the physical size and
shape of each key and the way each row is staggered
relative to other rows (see Fig 26); these attributes
are common to almost all keyboards, they allow users to transfer their keyboard skills
from one keyboard to another. At first glance most keys appear to be cubes; actually
they are tapered, with the top surface of each pad slightly concave; these design
elements assist the fingers to positively locate the required keypad without touching
adjoining keys.

So the user now presses the key; during this process the keyboard provides feedback
to the user. Finger pressure moves the key down then upon release the key springs
back to its original position, at the same time an audible ‘click’ is often produced.
This feedback is a major factor in determining the general feel of a keyboard and is
perhaps the most significant reason conventional keyboards are considered superior to
most notebook keyboards; notebooks minimise the downward throw of each key to
reduce their thickness.

Contained under each keypad is a switch which
completes a circuit indicating precisely which key has
been pressed. There are various designs of key switch
used for this process; older designs use a matrix of
mechanical switches, each switch being similar to those
used for other applications such as door bells. At the
time of writing, the most common designs utilise
flexible rubber or silicone domes. Some use a separate
dome with carbon button for each key (see Fig 27).
When a key is pressed the dome flexes, causing the
carbon button to complete a circuit on the underlying
circuit board, when released the dome springs back to
its original shape. Other designs utilise two printed
circuit boards separated by a thin film containing a hole for each key (see Fig 2.8); the
domes are contained within a single silicone membrane. When a dome is depressed
the contacts touch through the hole in the film to complete the circuit. All these
designs are far simpler, and cheaper to produce, than traditional switches; furthermore
the domes protect the actual switch contacts from dust and liquid spills.

Fig 2.6
Section of a QWERTY keyboard.

Note the staggered rows and
standard size and shape of each key.

Keycap

Carbon
button

Circuit
board

Plastic
dome

Fig 2.7
Detail of a typical flexible dome
key switch similar to those used

on many keyboards.

54 Chapter 2

Software Design and Development –The Preliminary Course

The circuit board is really a matrix of wires; the
intersection of a row and a column identifying a
specific key. Each row and column is connected
to the keyboard’s internal controller which is a
microchip contained within the keyboard case.
The controller’s job is to make sense of these
signals and convert them into binary data for
transmission to the computer. In actuality the
controller detects changes in voltage; as a key is
pressed the voltage in that circuit goes from low
to high, and similarly when a key is released the
voltage returns from high back to low. Every
key is associated with a pair of scan codes; the
‘make code’ is generated as the key is pressed
and the second, known as the ‘break code’, is
generated when the key is released. The
controller produces these scan codes, stores
them in its own internal memory and sends
them to the computer usually via a USB
(Universal Serial Bus) interface cable.

The USB cable contains four wires; two are
used to power the keyboard, and the remaining
two are used for transmission of the scan codes
and other control data. The cable connects to
the motherboard via a USB port.

When a series of scan codes arrive at the
motherboard they are stored in memory and the
operating system is notified using an interrupt
request. The operating system, with assistance
from the keyboard driver software, then
examines the scan codes and responds
accordingly. In most cases the scan codes
are converted into a representation that
includes the key’s ASCII code together
with information in regard to any
modifier keys that may have been used.
This data is passed to the currently active
application. In other words the operating
system transforms the scan code data into
information that is meaningful to the
application. This means different
keyboard layouts are specified at the
operating system level rather than at the
keyboard itself; Fig 2.10 shows a screen
used to implement this facility within
Microsoft’s Windows XP; obviously the
labels on each key would require
alteration to reflect the changes made to
such settings. The operating system also
intercepts keystrokes that are intended for

Fig 2.10
Changing the keyboard layout to Dvorak using
the control panel in Microsoft’s Windows XP.

Silicon dome
membrane

Upper printed
circuit board

Thin separation
film with holes

Lower printed
circuit board

Fig 2.8
Detail of a keyboard design utilising a
silicon membrane of domes and two

circuit boards separated by a thin film.

Fig 2.9
Detail of the keyboard controller

within Microsoft’s ‘Natural’ Keyboard.

Board
connecting
key matrix to
controller

Keyboard
internal
controller

Interface cable
to computer

Row and
column
matrix

Hardware and Software 55

Software Design and Development – The Preliminary Course

system level tasks, such as switching between applications, starting new applications
or even rebooting the system.

So far we have only considered the transfer of data from the keyboard to the
computer, however some data also travels in the other direction. For example when
the caps lock is pressed the operating system responds to these scan codes by sending
the keyboard a message to turn on or off the caps lock light. There is also data
returned to the keyboard each time an error occurs in the transmission of a scan code;
each error signals the keyboard’s internal controller to resend the last scan code.

Consider the following:

All keyboards contain groups of keys that perform related actions. Consider the
following groupings:
• Alphanumeric and punctuation keys (e.g. A-Z)
• Modifier keys (e.g. Shift)
• Numeric keypad (e.g. 0-9)
• Function keys (e.g. F1)
• Cursor control and navigation keys (e.g. Page Up)
• Other specialised keys (e.g. keys for Internet access)

Mouse
The basic design of the mouse were first conceived by Douglas Englebart in 1964; it
was some 20 years later, when Apple released the Macintosh, that the mouse became
the input device of choice Today it is hard to imagine using a computer without a
mouse.
The mouse is primarily used to collect movement data in two dimensions; usually this
data is used by the computer to control the position of the cursor on the monitor. In
addition mice include a number of buttons and many also include a scroll wheel that
doubles as an extra button.

So what happens when we move a mouse; that is, how does the mouse detect this
movement and transform it into digital data for use by the computer? Currently optical
designs dominate the market as they do not have any moving parts. Older designs
included a rolling rubber ball, however they required regular cleaning to remove
accumulated dust that would foul the internal mechanism. We restrict our discussion
to the operation of an optical mouse.

GROUP TASK Activity
Most standard keyboards contain at least 104 keys. Examine the keyboard
you use and classify each of the keys using the above bulleted list.

GROUP TASK Research
Research a variety of different keyboard layouts, including those used for
specific purposes such as point of sale machines and for disabled persons.

GROUP TASK Activity
There are many other input devices that collect movement data similar to
that collected by a mouse. Create a list of such devices.

56 Chapter 2

Software Design and Development –The Preliminary Course

An optical mouse contains just three
components; a red LED, an image sensor
and a digital signal processor (DSP). The
red light from the LED is reflected off the
surface of the desktop and into the lens of
the image sensor (see Fig 2.11). The image
sensor is essentially a mini digital camera; it
takes a picture of the desktop some 1500
times per second. Each of these images is
sent to the DSP whose primary task is to
detect the direction and size of any
movement by comparing features in
successive images. The precision and speed
of the DSP provides far more detailed
information in regard to mouse movement
than previous rolling ball technologies;
hence an optical mouse provides much
smoother response and control for users.
Virtually all mouse designs include three buttons; a left
and right button together with one activated by pressing
down on the scroll wheel. What about the scroll wheel
itself; scroll wheels do not rotate smoothly, rather they
rotate in a series of clicks, each click is either in the
forward direction or in the backwards direction.
Consequently the data generated by the scroll wheel is
represented identically to that generated by two of the
other buttons; either the wheel was clicked forward or it
was not, similarly it was either clicked backward or it
was not. The data sent to the computer includes
information in regard to the state of each of these
buttons; each button is either clicked (1) or it is not (0).
Let us summarise the data collected by a typical mouse:
• The state of each button; either on or off.
• Numbers representing the distance moved in both X

and Y dimensions.
• The direction of the movement. Either left or right and either backwards or

forward.
• Scroll wheel events, either forward click or not, and either backward click or not.
This data, in binary form, is generated and sent approximately 40 times every second.
Older mice used a PS2 port, whilst today almost all use a USB port for connection to
the computer, hence the method of data transmission is essentially the same as that
used for keyboard data.

Fig 2.11
Underside of an optical mouse.

Lens to focus
light onto the
light sensr.

Red LED

Fig 2.12
A typical mouse containing

three buttons together with a
scroll wheel.

GROUP TASK Discussion
A mouse is rarely used to input text, rather they are used to initiate actions
or simplify user input. Describe examples where a mouse is used and then
discuss reasons why the mouse is a more useful device for these types of
inputs compared to a keyboard.

Hardware and Software 57

Software Design and Development – The Preliminary Course

Scanner
There are various different types of image scanner; all collect light as their raw data
and transform it into binary digital data. This digital data may then be analysed,
organised and processed into numbers or text, or it may remain as image data in the
form of bitmaps. Perhaps the most familiar forms of scanner are barcode readers, used
in most retail stores and flatbed scanners used to collect images in bitmap form. Let us
consider the operation of common examples of each.
• Barcode Readers

Barcode readers or scanners operate by reflecting light off the barcode image; light
reflects well off white and not very well off black. This is the basic principle
underlying the operation of all types of scanner. A sensor is used to detect the amount
of reflected light; so to read a barcode we can
either progressively move the light beam from
left to right across the barcode or use a strip of
light in conjunction with a row of light
sensors. Each of these techniques are used for
different designs of barcode scanner; those
based on LED, laser and CCD technologies
dominate the market, Fig 2.13 shows an
example of each. Most barcode readers
incorporate a decoder to organise the data into
a character representation that mimics that
produced by the keyboard. This means most
barcode readers can be installed between the
keyboard and the computer without the need
for dedicated interface software.

Barcode wands use a single light emitting
diode (LED) to illuminate a small spot on the
barcode. The reflected light from the LED is
measured using a single photocell. As the wand is steadily moved across the barcode,
areas of high and low reflection change the state of the photocell. The photocell
absorbs photons (a component of light). As the intensity of photons absorbed
increases so too does the current flowing through the photocell; large currents
indicating white and smaller currents indicating black. This electrical current is
transformed by an analog to digital converter (ADC) to produce a series of digital
ones and zeros. The same LED technology is used for slot readers, where the barcode
on a card is read by swiping the card through the reader.

Lasers are high intensity beams of light and as such they can be directed very
precisely. Laser barcode readers can therefore operate at greater distances from the
barcode than other technologies, commonly up to about 30cm away. The reflected
light from the laser is detected by the photocell using the same technique as LED
scanners. There is no need to manually sweep across the barcode as the laser beam is
moved using an electronically controlled mirror. Basic models continually sweep back
and forth across a single path, whilst more advanced models perform multiple rotating

*9350(6440!
Fig 2.13

Clockwise from top-left: LED wand,
multi-directional laser and CCD based

barcode scanners.

GROUP TASK Activity
A barcode is scanned using an LED barcode scanner and the following
stream of bits is produced: 000000110011000000111111001100111111
Draw the most likely original barcode.

58 Chapter 2

Software Design and Development –The Preliminary Course

sweeps that trace out a ‘star like’ pattern. These advanced models are much more
effective as the user need not hold the scanner parallel to the barcode; rather the
scanner rotates the scan line until a positive read is collected. Supermarkets often use
this type of barcode scanner mounted within the counter top.

Charge coupled devices (CCDs) contain one or more rows of photocells built into a
single microchip. CCD technology is used by many image collection devices
including CCD barcode scanners, digital still and video cameras, handheld image
scanners, and also flatbed scanners. For both barcode and image scanners a single row
CCD is used (refer Fig 2.14). The light source for these scanners is typically a single
row of LEDs with the light being reflected off the image back to a mirror. The mirror
reflects the light onto a lens that focuses the image at the CCD. Each photocell in the
CCD transforms the light into different levels of electrical current. These levels are
converted into bits using a similar technique to that used in LED and laser barcode
scanners.

• Flatbed Scanners

Let us now consider flatbed scanners based on
CCDs in detail. This type of flatbed scanner is
by the far the most common; scanners based on
other technologies are available, but currently
they fall into the higher quality and price
ranges. CCDs in flatbed scanners differ slightly
from those used in barcode readers. Within
flatbed scanners the CCD converts the
electrical current from each photocell into a
binary number, normally between 0 and 255,
using a more complex analog to digital
converter (ADC). 0 to 255 is the range of
different numbers that can be represented using
8 bits (1 byte). If white light is used then these
numbers will represent shades of grey, ranging
from black (0) to white (255). So how do
flatbed scanners collect colour images? Quite simply, they reflect red light off the
original image to collect the red component, green to collect the green component and
blue for the blue component. Some early scanners performed this action by doing
three passes over the entire image using a different coloured filter for each pass; this
technique is seldom used today. Today most scanners use an LED light source that
cycles through each of the colours red, green, blue; hence only a single pass is needed.

Mirror
Lamp
(or row of LEDs)

Original image

Lens

CCD
Digital
output

Fig 2.14
The components and light path typical

of most CCD scanner designs.

ADC

GROUP TASK Investigation
Barcode scanners are used in most retail stores and libraries. Over the next
24 hours observe closely each barcode scanner you encounter. Classify
each as using either LED, laser or CCD technology. Justify your choices.

GROUP TASK Discussion
The pixels (picture elements) in many images use 24 bits per pixel. 8 bits
are used to represent red, 8 bits for green and 8 bits for blue. How many
different colours are possible and how much memory is required to
represent an image with a resolution of 1680 by 1050 pixels?

Hardware and Software 59

Software Design and Development – The Preliminary Course

The LED lamp, mirror, lens and CCD are
all mounted on a single carriage; these
components are collectively known as the
scan head (refer Fig 2.15). All the
components on the scan head are the same
width as the glass window onto which the
original image is placed. This means a
complete row of the image is scanned all at
once. The number of pixels in each row of
the final image is determined by the
number of photosensors contained within
the CCD; typical CCDs contain some 600
sensors per inch, predictably this results in
images with horizontal resolutions of up to
600 dpi (dots per inch).
So what operations occur to collect a colour
image?
• The current row of the image is scanned by flashing red, then green, then blue

light at the imag. If you open the lid of a scanner you’ll predominantly see white
light, this is due to the colours alternating so rapidly that your eye merges the
three colours into white. After each coloured flash the contents of the CCD is
passed to the ADC and onto the scanner’s main processor and storage chips.

• The scan head is attached to a stabilising bar, and is moved using a stepping motor
attached to a belt and pulley system. The stepping motor rotates a precise amount
each time power is applied; consequently the scan head moves step by step over
the image; pausing after each step to scan a fresh row of the image. The number of
times the stepping motor moves determines the vertical resolution of the final
image.

• As scanning progresses the image is sent to the computer via an interface cable.
The large volume of image data means faster interfaces are preferred; commonly
SCSI, USB or even firewire interfaces are used to connect scanners. Once the scan
is complete the scan head returns back to its starting position in preparation for the
next scan.

Radio Frequency Identification (RFID)

RFID is an electronic system for identifying items using radio waves. An RFID reader
or scanner is able to capture data from RFID tags that are within range of the RFID
reader. Common RFID applications you’ve likely used include keyless entry systems
in cars, toll roads, smart EFTPOS cards and security systems within department stores
and libraries There are numerous other a pplications of RFID technology. Tracking
the movement of items is a common example. During manufacturing individual items

Scan
head

Stepping
motor

Interface
connections

ADC,
Processor
and storage
chips

Belt

Stabiliser
bar

Flexible
data
cable

Fig 2.15
Components of a flatbed scanner.

GROUP TASK Discussion
The packaging of a scanner implies it is able to scan at 2400dpi, you know
the CCD contains just 600 sensors per inch. What is going on? Discuss

GROUP TASK Discussion
Some scanners use 36 or even 42 bits internally to represent each pixel, yet
they only output 24 bit per pixel images. Why would this be? Discuss

60 Chapter 2

Software Design and Development –The Preliminary Course

can be tracked as they move through the factory. RFID transport systems allow
individual packages to be identified as they move from source to destination. Post and
courier systems routinely provide online tracking for individual items.

RFID technology has significant advantages over
barcodes. As each RFID tag can be coded with unique
data, the system is able to identify individual items.
Although unique barcodes can be used for high value
applications most product barcodes are printed on the
product’s packaging. Therefore barcodes identify a type
of product rather than individual items. To read
barcodes each item must be individually presented to
the barcode reader, whereas RFID systems merely
require items to be within range of the RFID reader.
RFID tags can be hidden within products (or their
packaging) as direct line of sight is not required. For
example using RFID, a pallet load of items can be read
simply by moving the whole pallet within range of the
RFID reader. In many warehouses each forklift includes
its own RFID reader.

An RFID system is composed of RFID tags (also
known as RFID transponders), RFID readers and a
computer system. The readers capture the data stored on
the RFID tags and transmit the data to the computer
system for processing. Portable RFID readers are
available, which may include processing capabilities
and wireless networking. This allows data to be
captured and processed independent of the computer
system which is particularly useful for mobile
applications such as couriers and cattle tracking.

There are essentially two types of RFID tags; passive
and active tags. All RFID tags include an integrated
circuit and an antenna (refer Fig2.16). Passive tags
generate power from the RF energy from RFID readers
within range. As a consequence passive tags operate within a
limited range. At the time of writing passive RFID tags are
available that operate within a few metres of the reader.
Active RFID tags include a small battery to provide sufficient
power to transmit data to readers up to 100 metres away.

The antennas in all RFID tags are designed to respond to a
specific radio frequency. The reader transmits at this
frequency, which essentially wakes up all RFID tags within
range. The integrated circuit within each tag responds by
transmitting its data to the reader. Notice that both RFID tags
and readers are able to transmit and receive.

Fig 2.18
Reading cattle RFID tags.

Fig 2.16
Passive RFID tag.

Fig 2.17
RFID reader integrated

within a PDA.

GROUP TASK Research
Research an application of RFID technology. Identify the hardware,
software, data, personnel and essential procedures present within this
system.

Hardware and Software 61

Software Design and Development – The Preliminary Course

Microphone (and sound card)
Microphones are, predictably, used to collect data in the form of sound waves. They
convert these compression waves into electrical energy. In digital systems, this analog
electrical energy is converted, using an analog to digital converter (ADC) into a series
of digital sound samples. In this section we examine the operation of microphones and
then consider the operations performed by a typical
sound card to process the resulting analog electrical
energy into a sequence of digital sound samples.
There are a variety of different microphone
designs, the most popular being dynamic
microphones and condenser microphones. All these
designs contain a diaphragm which vibrates in
response to incoming sound waves. If you hold
your hand close to your mouth whilst talking you
can feel the effect of the sound waves; the skin on
your hand vibrates in response to the sound waves
in exactly the same way as the diaphragm in a
microphone vibrates.
A dynamic microphone has its diaphragm attached
to a coil of wire; as the diaphragm vibrates so too
does the coil of wire (see Fig 2.20). The coil of
wire surrounds, or is surrounded by, a stationary
magnet. As the coil moves in and out the
interaction of the coil with the magnetic field
causes current to flow through the coil of wire.
This electrical current varies according to the
movement of the wire coil, hence it represents the
changes in the original sound wave.
Condenser microphones alter the distance between
two plates (see Fig 2.21). The diaphragm is the
front plate; it vibrates in response to the incoming
soundwaves, whereas the backplate remains
stationary. Therefore the distance between the
diaphragm and the stationary backplate varies;
when the two plates are close together electrical
current flows more freely and as they move further
apart the current decreases, hence the level of
current flowing represents the changes in the
original sound waves. Condenser microphones
require a source of power to operate; this can be
provided from an external source via the
microphone’s lead or by using a permanent
magnetically charged diaphragm.

Sound
waves

Magnet

Wire
coil

Diaphragm

Electric
current

Fig 2.20
Detail of a dynamic microphone.

Sound
waves

Diaphragm

Backplate

Electric
current

Power
source

Fig 2.21
Detail of a condenser microphone.

Fig 2.19
A dynamic microphone element.

This one has the magnet
mounted within the wire coil.

Wire coil

Magnet

GROUP TASK Investigation
Make a list of all the microphones you see each day. Can you determine
whether these microphones are dynamic, condenser or some other design?

62 Chapter 2

Software Design and Development –The Preliminary Course

Consider the following:

The varying electrical current produced by a
microphone is essentially the same as the raw
analog signal output from all types of audio
devices. Therefore it is possible to connect any
of these different audio sources to one of the
analog input ports on a computer’s sound card;
just be careful to connect to a port designed for
the level of signal produced by the device.
There are usually a number of input ports on
most sound cards suited to different levels of
analog input signal.

Let us now consider the processes taking place once the analog signal from the
microphone reaches the computer’s sound card. The signal is fed through an analog to
digital converter (ADC), which predictably converts the signal to a sequence of binary
ones and zeros. The output from the ADC is then fed into the digital signal processor
(DSP), whose task is to clean up any abnormalities in the samples. The final sound
samples are then placed on the computer’s data bus. The data bus feeds the samples to
the main CPU, where they are generally sent to a storage device.
The major components involved in processing the audio data are the analog to digital
converter (ADC) and the digital signal processor (DSP). Let us consider each of these
components in more detail.
Analog to digital converters (ADCs) repeatedly sample the magnitude of the incoming
electrical current and convert these samples to binary digital numbers; for audio data
the size of the incoming current directly mirrors the shape of the original sound wave,
hence the digital samples also represent the original wave. The ADCs used in many
other devices, including scanners and digital cameras, are essentially the same as
those found on sound cards; the CCDs in image collection devices produce varying
levels of electrical current that represent the intensity of light detected at each
photosite. The electrical signal is much the same as that produced by audio collection
devices.

GROUP TASK Investigation
Examine the ports, and accompanying documentation, for either your
school or home computer’s sound card. Describe the difference between
each of the input ports and list suitable audio sources that could be
connected to each port.

Fig 2.22
Creative’s Audigy sound card.

GROUP TASK Activity
Brainstorm a list of hardware devices that would likely include an analog
to digital converter. Indicate the type of data collected by each device and
how different levels of electrical current could be used to represent the
identified type of data.

Hardware and Software 63

Software Design and Development – The Preliminary Course

Most analog to digital converters contain a digital to analog converter (DAC). On the
surface this seems somewhat strange; however the digital to analog conversion
process is significantly simpler than the corresponding analog to digital conversion
process.
The components and data connections within a typical ADC are shown in Fig 2.23;
this ADC performs its conversion using the following steps:
• At precise intervals the incoming analog signal is fed

into a capacitor; a capacitor is a device that is able to
hold a particular electrical current for a set period of
time, this allows the ADC to examine the same
current repeatedly over time.

• An integrated circuit, called a successive
approximation register (SAR), repeatedly produces
digital numbers in descending order. For 8-bit
samples it would start at 255 (11111111 in binary)
and progressively count down to 0.

• The DAC receives the digital numbers from the SAR
and repeatedly produces the corresponding analog
signal. The analog signals will therefore be produced
with decreasing levels of electrical current.

• The electrical current output from the DAC is compared to the electrical current
held in the capacitor using a device called a comparator. The comparator signals
the SAR as soon as it detects that the current from the DAC is less than the current
in the capacitor.

• The SAR responds to the signal from the comparator by storing its current binary
number. This number is one of the digital sound samples and hence is output to
the DSP. The SAR then resets its counter and the whole process is repeated.

So what happens to these sound samples once they reach the DSP? The DSP’s task, in
regard to collected audio data, is to filter and compress the sound samples in an
attempt to better represent the original sound waves in a more efficient form. The DSP
is itself a powerful processing chip; most have numerous settings that can be altered
using software. Most DSPs perform wave shaping, a process that smooths the
transitions between sound samples. Music has different characteristics to speech, so
the DSP is able to filter music samples to improve the musical qualities of the
recording whilst removing noise. The DSP uses the sound samples surrounding a
particular sample to estimate its likely value, if these estimates do not agree then the
sample can be adjusted accordingly. Once the sound samples have been filtered the
DSP compresses the samples to reduce their size. Some less expensive sound cards do
not contain a dedicated DSP, these cards use the computer’s main processor to
perform the functions of the DSP.

Capacitor

DAC Comparator

SAR

Analog
Digital

Fig 2.23
Components and data

connections for a typical ADC.

GROUP TASK Discussion
CD quality sound uses 16-bit samples recorded at a frequency of 44.1kHz.
Assuming 2 channels (stereo) calculate the raw storage required for a
particular song. Examine the actual size of the song file and determine the
compression ratio.

64 Chapter 2

Software Design and Development –The Preliminary Course

SET 2A
1. Elements of computer systems include:

(A) hardware, software, input and
output.

(B) hardware, software, data, personnel
and procedures.

(C) input, output, process, storage and
control.

(D) input, data, output and information.
2. Which list contains only input devices?

(A) monitor, printer, microphone.
(B) CD, DVD, hard disk.
(C) keyboard, mouse, microphone.
(D) printer, scanner, screen.

3. The keyboard and mouse are most likely
to be connected to a computer using
which of the following?
(A) serial port.
(B) Bluetooth.
(C) PS2 port.
(D) USB.

4. Which function maintains data even
when the system is off?
(A) input.
(B) output.
(C) storage.
(D) control.

5. Which of the following is True with
regard to microphones?
(A) Sound waves are converted into

digital samples.
(B) Sound waves are converted into

analog electrical signals.
(C) Analog electrical signals are

converted into digital.
(D) Digital data is converted into sound

waves.

6. To capture analog data for processing
within a computer requires which of the
following?
(A) ADC
(B) DAC
(C) CCD
(D) LCD

7. Which of the following allows
identification data to be captured from
distances in excess of 50m?
(A) active RFID.
(B) passive RFID.
(C) barcodes.
(D) microphones.

8. CCDs are commonly found in devices
which capture which type of data?
(A) Sound.
(B) Text.
(C) Numbers.
(D) Images.

9. Which type of device often sends data to
the computer in a format that mimics the
data sent by a keyboard?
(A) flatbed scanner.
(B) mouse.
(C) RFID reader.
(D) barcode reader.

10. Which answer best describes the data
produced by a keyboard when a key is
pressed and released?
(A) ASCII code for the key.
(B) UNICODE for the key.
(C) Make and break code for the key.
(D) Analog representation of the key.

11. Make up a list of as many input devices as you can think of. Try to have more items on your list
than anyone else!

12. Consider your mobile phone as a computer system. List elements of this system under the
headings of hardware, software, data, personnel and procedures.

13. Describe the operation of a keyboard as a key is pressed and released.

14. Describe the operation of a flatbed scanner as a colour image is scanned.

15 Contrast RFID systems for identif ying items with barcode systems.

Hardware and Software 65

Software Design and Development – The Preliminary Course

OUTPUT

Output is the function that sends data outside the system, essentially the reverse of the
input function. Normally, data is transmitted via a port to the output device. The
processor sends the data to a buffer area where it is progressively sent out through the
port. The data is received by the output device and converted to a suitable form. In the
case of the monitor, the final form is light of varying intensities and shades; for a
printer it is a collection of dots on paper. Many output devices can be viewed as
systems in their own right; the output from the computer is input for the device. The
device processes the data and outputs the information. An output device’s primary
function is to provide output from a computer system to another system.

Output may be sent to a number of destinations including:
• video cards and monitors
• hardcopy devices such as laser printers, inkjet printers, dot matrix printers and

plotters.
• communication links such as a local area network or the Internet
• actuators that perform some mechanical operation. e.g. moving a robot arm,

opening a door, setting off an alarm or activating the anti-lock brakes on a car.
Many storage devices also perform output functions however their main function is
one of storage and as such are classified separately. It is not possible to study the
operation of all the various types of output device; therefore we restrict our discussion
to screens (or monitors), data projectors, printers and speakers (and sound cards).
Screens

Information destined for the screen is received by the video system via the system
bus. In most applications the video system retrieves this data directly from main
memory without direct processing by the CPU. The video system is primarily
composed of a video card (or display adapter) and the screen itself. The video card
translates the data into a form that can be understood and displayed on the screen.

• Video cards (display adapters)

A typical video card contains a powerful processor chip known as a GPU (Graphics
Processing Unit), random access memory chips (often called Video RAM or VRAM)
and various interfaces. Currently (2010) most video cards use at least 128MB of
VRAM and some contain up to 4GB. When the video card is embedded as part of the
motherboard it is common for some of the systems RAM to be used as VRAM. On
most computers the functionality of a standard video card is embedded on the
motherboard, whilst more powerful video cards, such as the one in Fig 2.24, are
installed for intensive graphics applications
such as video editing and high resolution
gaming.
The video card in Fig 2.24 communicates
with the motherboard via a PCIe (PCI
Express) port and transmits digital video data
via its DVI (Digital Visual Interface) and
HDMI (High Definition Multimedia
Interconnect) interfaces. This particular video
card also includes a TV tuner so it can be used
to both collect and display video data. The
PCIe interface has recently (2007) replaced

Fig 2.24
ATI All-in-Wonder includes plugs into a PCIe
slot and includes DVI and HDMI interfaces.

66 Chapter 2

Software Design and Development –The Preliminary Course

the older AGP (Advanced Graphics Port); PCIe supports the high data transfer speeds
required to move and process high definition and high frame rate video data.
Digital computer monitors have largely replaced older analog screens. Currently most
digital computer monitors use a DVI interface and most widescreen televisions
include HDMI connections. HDMI interfaces can send and receive video and audio
and also include the ability to control connected devices. For example, turning devices
on and off, and altering contrast, brightness and volume settings. Older analog
monitors were connected using VGA cables which included separate analog channels
for red, green and blue, together with connections for vertical and horizontal
synchronisation.

• LCD (liquid crystal display) based monitors
Flat panel displays, such as LCD based monitors, have largely replaced CRT based
monitors. This has occurred for both computer monitors and television monitors. At
the time of writing the most common flat panel technology for computers and
television applications is based on liquid crystals. Gas plasma technologies are still
used for larger televisions but popularity is declining. In this section we consider the
operation of LCD based monitors.
Liquid crystals have been used within display devices since the early 1970s. We see
them used within digital watches, microwave ovens, telephones, printers, CD players
and many other devices. Clearly the technology used to create the LCD panels within
these devices is relatively simple compared to that contained within a full colour LCD
monitor, however the basic principles are the same. Hence we first consider the
operation of a simple single colour LCD panel and then extrapolate these principles to
a full colour computer monitor.
So what are liquid crystals? They are substances in a state
between liquid and solid, as a consequence they possess
some of the properties of a liquid and some of the
properties of a solid (or crystal). Each molecule within a
liquid crystal is free to move like a liquid, however they
remain in alignment to one another just like a solid (see Fig
2.25). In fact the liquid crystals used within liquid crystal
displays (LCDs) arrange themselves in a regular and
predictable manner in response to electrical currents.
LCD based panels and monitors make use of the properties of liquid crystals to alter
the polarity of light as it passes through the molecules. The liquid crystal substance is
sandwiched between two polarizing panels. A polarizing panel only allows light to
enter at a particular angle (or polarity). The two polarizing panels are positioned so
their polarities are at right angles to each other. For light to pass through the entire
sandwich requires the liquid crystals to alter the polarity of the light 90 degrees so it

GROUP TASK Discussion
Many video cards contain large amounts of VRAM, whilst others utilise
part of main memory (RAM). Discuss advantages and disadvantages of
each of these approaches.

GROUP TASK Discussion
Many users of intensive graphics applications install more powerful video
cards containing large amounts of VRAM. Identify applications where the
purchase of such high performance video cards is justified.

Solid Liquid Liquid
Crystal
Fig 2.25

The molecules within liquid
crystals are in a state between

liquids and solids.

Hardware and Software 67

Software Design and Development – The Preliminary Course

matches the polarity of the second polarizing panel. Each layer of liquid crystal
molecules alters the polarizing angle slightly and uniformly, hence if the correct
number of liquid crystal molecule layers are present then the light will pass through
unheeded. This is the resting state of LCDs.
To display an image requires
that light be blocked at certain
points. This is achieved by
applying an electrical current
that causes the liquid crystal
molecules to adjust the polarity
of the light so it does not match
that of the second polarizing
panel. Furthermore different
electrical currents result in
different alignments of the
molecules and thus varying
intensities of light pass through. In Fig 226 the first sequence of molecules has no
electrical current applied and hence most of the light passes through. A medium
electrical current has been applied to the second sequence of molecules hence some
light passes through. A larger current has been applied to the third molecule sequence
and hence virtually no light passes through to the final display causing that pixel to
appear dark.
In a CRT monitor, light is produced by glowing
phosphors, therefore no separate light source is
required. Within an LCD no light is produced, thus
LCD based panels and monitors require a separate
light source. For small LCD panels, such as those
within microwave ovens and watches, the light
within the environment is used. A mirror is
installed behind the second polarizing panel, this
mirror reflects light from the room back through
the panel to your eye. LCD based computer
monitors include fluorescent lights or a series of
LEDs (Light Emitting Diodes) mounted behind the
LCD, the light passes through the LCD to your
eye. Such monitors are often called ‘backlit LCDs’.
So how are liquid crystals used to create full colour monitors?
Each pixel is composed of a red, green and blue part. A filter
containing columns of red, green and blue is contained
between the polarizing panels (see Fig 227). A separate
transistor controls the light allowed to pass through each of
the three component colours in every pixel.
In current LCD screens transistors known as ‘Thin Film
Transistors’ or TFTs are used, so for that reason LCD
monitors were once known as TFT monitors. A two
dimensional grid of connections supplies electrical current to
the transistor located at the intersection of a particular column
and row. The transistor activates a transparent electrode,
which in turn causes electrical current to pass through the
liquid crystals (see Fig 2.28). However, as each transistor is

Light

Some light

No light

Liquid crystal
molecules

Polarizing
panel

Polarizing
panel

Light

Fig 2.26
The primary components within a LCD.

Red
column

Green
column

Blue
column

Approx.
0.25mm

Fig 2.27
Section of the filter within a
colour LCD based monitor.

Thin Film
Transistor (TFT)

Storage
capacitor

Transparent
electrode

Row
connection

Column
connection

Fig 2.28
Components within
each colour of each

pixel in a TFT display.

68 Chapter 2

Software Design and Development –The Preliminary Course

sent electrical current in turn, usually rows then columns, there is a delay between
each transistor receiving current. To counteract this delay storage capacitors are used;
each capacitor ensures the electrical current to its transparent electrode is maintained
between each pixel refresh.

• CRT (cathode ray tube) based monitors
Let us consider the components and operation
of a typical cathode ray tube based monitor.
The cathode is a device within the CRT that
emits rays of electrons. Cathode is another
name for a negatively charged terminal. The
cathode in a CRT is a heated filament that is
similar to the filament in a light globe. The
anode is a positive terminal; as a result
electrons rush from the negative cathode to
the positive anode. In reality, a series of
anodes are used to focus the electron beam
accurately and to accelerate the beam towards
the screen at the opposite end of the glass
vacuum tube. The flat screen at the end of the
tube is coated with phosphor. When electrons hit the phosphors they glow for a small
amount of time. The glowing phosphors are what we see as the screen image.
To accurately draw an image on the screen requires very precise control of the
electron beams. Most CRTs use magnetic steering coils wrapped around the outside of
the vacuum tube. By varying the current to these coils the electron beams can be
accurately aimed at specific phosphors on the screen. To further increase accuracy a
shadow mask is used. This mask has a series of holes through which the electron
beam penetrates and strikes the phosphors. There
are various types of phosphors that give off
different coloured light for different durations. In
colour monitors there are groups of phosphors.
Each group contains red, green and blue
phosphors. When a red dot is required on the
screen the red electron gun fires electrons at the
red phosphors. To create a white dot all three
guns fire. Firing the electrons at different
intensities allows most monitors to display some
16.8 million different colours.
The entire screen is drawn at least 60 times each
second (Fig 2.30); this is known as the refresh
rate or frequency and is expressed in Hertz. Each
refresh of the screen involves firing the red, green

Cathode

Anode

Steering
coils

Electron
beams

Phosphor
coating

Shadow
mask

Fig 2.29
Detail of a Cathode Ray Tube (CRT).

GROUP TASK Investigation
Resolutions less than the physical resolution of an LCD monitor mean
part of the screen is not used. Is this true? Investigate and explain.

GROUP TASK Discussion
LCD based computer monitors have almost completely replaced CRT
based monitors. Why do you think this has occurred? Discuss.

Fig 2.30
The screen is refreshed at least 60 times

per second using a raster scan.

Hardware and Software 69

Software Design and Development – The Preliminary Course

and blue electron beams at each picture element (pixel) on the screen. A screen with a
resolution of 1280 by 1024 has approximately 1.3 million pixels to redraw 60 or more
times every second. The electron guns fire in a raster pattern commencing with the top
row of pixels and moving down one row at a time.
Most CRT monitors are multisync, meaning
that they can automatically detect and respond
to signals with various refresh, resolution and
colour-depth settings. The software driver for
the video card allows changes to be made to
the refresh rate, resolution and colour-depth.
Faster refresh rates, increases in resolution or
increases in colour-depth require more memory
and processing power. Often compromises
need to be made between refresh rate,
resolution and colour depth to maintain
performance at a satisfactory level.

Consider the following:

The controllers within most monitors (including LCD, plasma and CRT based
monitors) are able to generate 256 different levels of electrical current corresponding
to each 8-bit binary colour value received from the video card. Consequently 256
levels of light intensity are possible for each colour within each pixel. As there are
three colours within each pixel there are 256 × 256 × 256 or 16777216 different
possible colours.
Current TFT based LCD monitors have a physical resolution that is at least
1024 × 768 = 786432 pixels. As there are 3 transistors required for each pixel then
these screens contain some 786432 × 3 ≈ 2.3 million transistors. Each of these
transistors is refreshed approximately 70 times per second, this means
2.3 million × 70 or approximately 161 million transistors are being refreshed each and
every second!

GROUP TASK Investigation
Examine the different settings available for the video card and monitor on
either your school or home computer. Observe the effect of altering these
settings. Which settings were the most satisfactory?

GROUP TASK Discussion
TFT based monitors include capacitors that maintain the electrical current
in each pixel between screen refreshes. How is the screen image
maintained between refreshes within CRT based monitors? Discuss.

GROUP TASK Activity
Dots per inch (dpi) and also dot pitch (width of each pixel in mm) are
common measures of screen definition or crispness. If a screen is 12
inches (305mm) wide and has a resolution of 1024 × 768 pixels, calculate
its dpi and dot pitch.

Colour Depth
(Bits per pixel) Number of colours

1 2 (monochrome)
2 4 (CGA)
4 16 (EGA)
8 256 (VGA)

16 65,536 (High colour)
24 16,777,216 (True colour)

Fig 2.31
Colour depth table showing number

of bits required per pixel.

70 Chapter 2

Software Design and Development –The Preliminary Course

• Plasma Screens
Plasma screens are common within large televisions. Plasma screens, like LCD
screens can also be used as computer monitors and also for large advertising displays.
In general, LCD screens dominate the computer monitor market, whilst LCD and
plasma screens compete in the large wide-screen television market.
A plasma is a state of matter known as an ionised gas. It possesses many of the
characteristics of a gas, however technically plasma is a separate state of matter.
When a solid is heated sufficiently it turns to a liquid, similarly liquids when heated
turn into a gas. Now, when gases are heated sufficiently they form plasma; a fourth
state of matter. Plasma is formed as atoms within the gas become excited by the extra
heat energy and start to lose electrons. In gases, liquids and solids each atom has a
neutral charge, but in plasma some atoms have lost negatively charged electrons,
hence these atoms are positively charged. Therefore plasma contains free-floating
electrons, positively charged atoms (ions) and also neutral atoms that haven’t lost any
electrons. The sun is essentially an enormous ball of plasma and lightning is an
enormous electrical discharge that creates a jagged line of plasma – in both cases light
(photons) is released. Photons are released as all the negative electrons and positive
ions charge around bumping into the neural atoms – each collision causes a photon to
be released. In summary, when an electrical charge is applied to a plasma substance it
gives off light. Within a plasma screen the gas is a mix of neon and xenon. When an
electrical charge is applied this gas forms plasma that gives off ultraviolet (UV) light.
We can’t see ultraviolet light, however phosphors (much like the ones in CRT
screens) glow when excited by UV light. This is the underlying science, but how is
this science implemented within plasma screens?

A plasma screen is composed of a two dimensional grid of cells sandwiched between
sheets of glass. The grid includes alternating rows of red, green and blue cells – much
like a colour LCD screen. Each set of red, green and blue cells forms a pixel. Each
cell contains a small amount of neon/xenon gas and is coated in red, green or blue
phosphors (refer Fig 2.32). Fine address wires run horizontally across the front of the
grid of cells and vertically behind the grid. When a circuit is created between a cell’s
horizontal and vertical address wires electricity flows through the neon/xenon gas and
plasma forms within the cell. The plasma emits ultraviolet light, which in turn causes
the phosphors to glow and emit visible light. By altering the current passing through
the cell the amount of visible light emitted can be altered to create different intensities
of light. As with other technologies, the different intensities of red, green and blue
light are merged by the human eye to create different colours.

Rear glass

Front glass

Plasma

Phosphor emits visible light

Plasma emits ultraviolet light

Red, green or blue phosphor Horizontal address wire

Fig 2.32
Detail of a cell within a plasma screen.

Vertical address wire

Hardware and Software 71

Software Design and Development – The Preliminary Course

Data Projectors
Projectors use a strong light source,
usually a high power halogen globe,
to project images onto a screen. In
this section we consider the
operation and technology used
within such projectors. There are two
basic projection systems; those that
use transmissive projection and those
that use reflective transmission.
Transmissive projectors direct light
through a smaller transparent image,
whereas reflective projectors reflect
light off a smaller image (see Fig
2.33). In both cases the final light is
then directed through a focusing lens
and then onto a large screen.
Older projector designs are primarily
transmissive, the oldest operate similarly to CRTs. CRT based projectors have being
largely phased out, and transmissive LCD projectors are marketed to low-end
applications such as home theatre and other personal use systems. For high-end
applications, such as conference rooms, board rooms and even cinemas, reflective
technologies are predominant. Let us briefly consider three technologies used to
generate the small reflective images within reflective projectors, namely liquid crystal
on silicon (LCOS), digital micromirror devices (DMDs) and grating light valves
(GLVs).
• LCOS (Liquid Crystal on Silicon)
Liquid crystal on silicon is essentially a traditional LCD
where the transistors controlling each pixel are embedded
within a silicon chip underneath the LCD. A mirror is
included between the silicon chip and the LCD, hence
light travels through the LCD and is reflected off the
mirror and back through the LCD to the focusing lens.
LCOS chips, such as the one shown in Fig 2.34, are also
used in devices such as mobile phones and other devices
where a small screen is required. For these applications
the two polarizing panels are included as an integrated
part of the LCOS chip. When used within projectors the
polarizing panels are usually independent of the LCOS chips (see
Fig 2.35). This means the light must only pass through each
polarizing panel once on its journey to the screen. At the time of
writing LCOS is a new technology and it appears likely to gain a
large part of the projector market. Projectors for high quality
digital cinema applications are under development that use a
separate LCOS chip to generate each of the component colours.

Reflective
small image

Transparent
small image Light

source

Focusing
lens

Projected image

Fig 2.33
Transmissive (left) and reflective (right)

projector systems.

Fig 2.34
LCOS chip suitable for use
in a mobile phone or PDA.

Fig 2.35
Most LCOS based
projectors use two

independent
polarizing panels.

Polarizing
panels

LCOS
chip

GROUP TASK Discussion
Brainstorm a list of possible applications where LCOS
chips would be suitable.

72 Chapter 2

Software Design and Development –The Preliminary Course

• DMD (Digital Micromirror Device)
DMDs are examples of micro-electromechanical (MEM) devices. As the name
suggests, DMDs are composed of minute mirrors where each mirror measures just 4
micrometres by 4 micrometres and are spaced approximately 1micrometre apart. Each
mirror physically tilts to either reflect light towards the focusing lens or away from
the focusing lens. Fig 236 shows just 16 mirrors of a DMD, in
reality millions of individual mirrors are present on a single DMD
chip (one mirror for each pixel). Each mirror is mounted on its
own hinge and is controlled by its own pair of electrodes. DMD
chips were developed by Dr. Larry Hornbeck at Texas Instruments
and they are produced and marketed by their DLPTM Products
Division. DLP is an abbreviation of “digital light processing”,
hence DMD based projectors are often known as DLP projectors.
To produce a full colour image current DMD projectors include a
colour filter wheel between the light source and the DMD. This
wheel alternates between red, green and blue filters in time with
the titling of the mirros. To produce different intensities of light each mirror is held
in its on position for varying amounts of time. The human eye is unable to detect such
fast changes and hence a consistent image is seen. DMD based projectors currently
produce better quality images due to their much larger percentage of reflective surface
area compared to competing LCD based technologies. DMD manufacturers currently
claim the reflective surface is approximately 89% of the chips surface area compared
to LCD devices where the figure is less than 50% of the total surface area.

• GLV (Grating Light Valve)
GLVs were first developed at Stanford University and are
currently produced by Silicon Light Machines, a company
founded specifically to produce GLV technologies. GLVs
are another example of a MEMs device. A single GLV
element consists of six parallel ribbons coated with a
reflective top layer (see Fig 237). Every second ribbon is an
electrical conductor and the surface below the ribbon acts as
the common electrode. Applying varying electrical voltages
to a ribbon causes the ribbon to deflect towards the common
electrode. Consequently, the light is altered
such that it corresponds to the level of
voltage applied.
The major advantage of GLVs is their
superior response speed compared to other
current technologies. Some GLV chips
apparently have response times 1 million
times faster than LCDs. This superior
response speed allows GLV based
projectors to use a single linear array or
row of GLVs rather than a 2-dimensional
array. For example, high definition TV has
a resolution of 1920 × 1088 pixels, this

Fig 2.37
A single GLV element.

Fig 2.38
Major components of a GLV projector.

Red laser
array

Rotating
mirror

Green laser
array

Blue
laser array

Linear GLV
array

Light
multiplexer

Projected image

4µm 1µm

Fig 2.36
DMDs are composed

of tilting mirrors.

GROUP TASK Discussion
DMDs are an example of a MEM device. What do you think the term
‘Micro-electromechanical’ means? Discuss with reference to DMDs.

Hardware and Software 73

Software Design and Development – The Preliminary Course

resolution can be achieved using a single linear array of 1088 GLV elements, compare
this to other technologies that require in excess of 2 million pixel elements. In reality
current GLV projectors utilise a separate linear array of GLVs for the red, green and
blue components of the image (see Fig 2.38). The light source for each GLV linear
array being a similar linear array of lasers generating red, green and blue light
respectively. The red, green and blue strips of light are combined using a light
multiplexer. Finally a rotating mirror directs each strip of light to its precise location
on the screen.

Printers
Currently most printers receive their data via
USB connections, however network printers
often use Ethernet or wireless to connect
directly to a LAN. Most current printers on
the market are classified as either laser
printers or inkjet printers. Specialised printers
that use thermal technologies and impact dot
matrix technologies are available. For
example, most small receipt printers use
thermal technology and many businesses use impact dot matrix printers to print
documents in triplicate onto carbonised paper (examples of each are reproduced in
Fig 2.39). In this section, we restrict our discussion to the operation of laser and inkjet
printers.

• Laser printers
Laser printers use static electricity to form images on paper. Static electricity is a
charge built up on insulated materials in such a way that materials with opposing
charges attract one another. Laser printers use static electricity to temporarily attract
toner and then transfer it to paper. As no physical contact is used to form images laser
printers are an example of non-impact printers.
Software applications send their output to the printer’s software driver. The printer
driver translates this data into a form that can be sent to the printer. The data is usually
sent to the printer via a USB cable and is received by the printer controller within the
laser printer. The printer controller is itself a dedicated computer containing
significant amounts of RAM. Its job is to communicate with the host computer,
format and prepare each page ready for printing and finally to create a rasterised
image and send it progressively to the print engine.

GROUP TASK Discussion
Discuss similarities and differences between computer monitors and
projectors. Consider the signal received from the computer together with
the operation of the device as part of your discussion.

Fig 2.39
Epson’s TM-T88 thermal receipt printer
and FX-880 Impact dot matrix printer.

GROUP TASK Research
Use the Internet to research different types of printer technologies (not
including laser and inkjet technologies). Print specific examples of printers
that use each technology you find and describe where they are used.

74 Chapter 2

Software Design and Development –The Preliminary Course

So how does the print engine transform the
information from the printer controller into
hardcopy? The main component of the print
engine is the photoreceptor. This is normally
a rotating drum coated in a photo-sensitive
material that is able to hold a static electrical
charge. First the drum is given a positive
charge by the charge corona wire. The drum
then rotates past the laser-scanning unit. This
unit traces out the image using a laser which
discharges the static electricity on portions of
the drum. The drum now holds the image as
discharged areas (areas to be black) and
positive charged areas (areas to be white).
The drum now rotates past the developer roller. The developer roller is coated in fine
positively charged magnetic particles. As the developer roller passes through the toner
hopper, these particles act like a brush, collecting a coating of positively charged toner.
The toner is attracted to the discharged areas of the drum and repelled by the positively
charged areas. As a consequence the image areas on the drum are coated with toner.
The paper now approaches the drum, travelling at precisely the same speed as the
drum. The transfer corona wire first negatively charges the paper, as a result the paper
attracts the toner off the drum and onto the paper. The detac corona wire then
discharges the negative charge held in the paper. This is necessary to stop it sticking
to the photoreceptor or other sheets of paper. The fuser then fixes the toner to the
paper. The fuser is essentially a pair of hot rollers, which melt the fine plastic toner
particles into the fibres of the paper. The drum finally revolves past the discharge
lamp, which removes all traces of the previous image.

• Inkjet printers
Inkjet printers form images by depositing
minute drops of ink onto the page. Within
most current inkjet printers the diameter of
each dot is approximately 20 to 60
micrometres. Full colour images are formed
using the CMYK or four colour process
system. This system requires dots of cyan,
magenta, yellow and black to be deposited on
the paper, hence most inkjet printers include
cartridges containing ink in each of these
colours. The Epson printer shown in Fig 2.41
includes a black ink cartridge and a cartridge
containing cyan, magenta and yellow inks.
The dots produced are too small for the
human eye to detect, thus adjoining dots
merge and we perceive a full colour image.

Photo-
receptor
Drum

Discharge
Lamp

Laser
Scanning

Unit

Fuser

Developer
Roller

Toner Hopper

Toner

Paper

Charge
Corona
Wire

Transfer
Corona
Wire

Detac
Corona
Wire

Fig 2.40
The main components of a laser printer.

GROUP TASK Investigation
Most laser printers contain replaceable toner and drum cartridges.
Examine these cartridges and identify components from Fig 2.40.

Fig 2.41
An inkjet printer showing the black ink

cartridge alongside the cyan, magenta and
yellow ink cartridge.

Hardware and Software 75

Software Design and Development – The Preliminary Course

Inkjet technology is used within small point of sale
printers right up to large commercial printers, Fig
2.42 shows a large commercial inkjet printer
capable of printing on a variety of different
materials up to 6 metres wide. Wide format inkjet
printers have totally replaced the older plotters that
were previously used for CAD and architectural
applications.
So how do inkjet printers operate? There are two
stepper motors, one advances the paper through the
printer and the other moves the print head
assembly left and right across the page.
Most inkjet printers deliver a separate
colour during each pass across the page.
Once all colours have been printed the
page is advanced slightly ready for the
next strip of the image to be printed. The
stepper motor and toothed belt that drives
the print head (see Fig 2.43) actually
moves a small precise amount and then
stops for an instant whilst ink is
deposited. This start-stop operation
occurs so fast that it appears that the print
head moves continuously.

The print head within an inkjet printer contains the inkjet nozzles that form the
individual droplets of ink together with the electronics required to operate the nozzles.
Current printers contain more than 300 nozzles for each colour. There are two
common technologies used to form the droplets, one based on heat and one based on
the expansion of piezo crystals Let us consider the operation of an individual nozzle
based on each of these technologies.
Heat or thermal inkjet printers include a heating
element within each nozzle (refer to Fig 2.44).
When voltage is applied to the heating element
the ink close to the element is heated to the point
where it begins to vaporize. This vaporized ink
forms a bubble within the nozzle chamber – this
is why Canon uses the term ‘bubblejet’ to
describe their thermal inkjet printers. The
vaporised ink takes up more space and hence
pressure increases and a droplet begins to form at

GROUP TASK Research
Within the text above, we noted that wide inkjet printers have totally
replaced plotters. Research how plotters worked and why wide inkjet
printers have completely replaced them.

GROUP TASK Activity
Create a list of steps that describes the processes occurring during the
operation of an inkjet printer.

Heating
element

Nozzle
chamber

Vaporized
ink

Ink from
reservoir

Fig 2.44
Operation of a thermal inkjet nozzle.

Stepper
motor

Toothed
belt

Gears for
advancing

paper

Fig 2.43
Detail of the inside of an inkjet printer.

Fig 2.42
An inkjet printer capable of printing
on various materials up to 6m wide.

76 Chapter 2

Software Design and Development –The Preliminary Course

the nozzle opening. A drop of ink is released once the pressure within the nozzle
chamber is sufficient to overcome the surface tension at the nozzle opening. As the
drop is released the heating element is switched off, this causes a pressure drop as the
vaporized ink returns to its liquid state. The pressure drop causes ink from the
adjoining reservoir to refill the nozzle chamber. This process is occurring thousands
of times per second at each nozzle.
Piezo crystals expand and contract
predictably as electrical current is increased
or decreased. Essentially piezo crystals are
able to transform electrical energy into
mechanical energy due to vibration within
the crystals. In the case of inkjet printers
the mechanical energy is used to push ink
out the nozzle chamber as microscopic
droplets. When the electrical current is
reduced or removed the piezo crystals
contract. This contraction lowers the
pressure within the nozzle chamber and causes ink from the adjoining reservoir to
refill the nozzle chamber. Piezo based inkjet printers are able to produce a wide range
of different sized droplets in response to different levels of electrical current. This is
much more difficult to achieve with thermal systems. Also thermal systems must heat
ink to high temperatures (thousands of degrees) and then quickly cool it down, for this
reason, special inks are required that can withstand such extreme conditions. Piezo
systems do not have such limitations and are therefore suited to a wider range of inks.
Currently Epson’s inkjet printers are based on piezo technology.

Speakers (and sound card)
Earlier in this chapter we discussed the operation of microphones and sound cards as
input devices. The components within speakers are similar to those found within
microphones. In fact the processes occurring to display audio are essentially the
reverse of the processes occurring during audio input. Many older sound cards used
many of their components for both input and output. This meant that sound could
either be input or output but not at the same time. Modern sound cards can usually be
used for sound input and output simultaneously.

Fig 2.45
Operation of a piezoelectric inkjet nozzle.

Piezo
crystal

Ink from
reservoir

Piezo crystal vibrates
causing expansion

GROUP TASK Investigation
Take note of the inkjet printers around your home, school and local area.
Research whether each of these printers uses thermal or piezo nozzles.

GROUP TASK Discussion
Some inkjet cartridges include the entire print head as part of the cartridge
whilst others merely contain the ink reservoir. Compare and contrast these
two approaches.

GROUP TASK Discussion
Identify applications where it is useful for sound to be both input and
output simultaneously.

Hardware and Software 77

Software Design and Development – The Preliminary Course

• Sound card
Most computers today include the functionality of a sound card embedded on the
motherboard, however it is common to add more powerful capabilities through the
addition of a separate sound card that attaches to the PCI bus via a PCI expansion slot.
In either case similar components are used to perform the actual processing.
In regard to displaying the purpose of a
sound card is to convert binary digital audio
samples from the CPU into signals suitable
for use by speakers and various other audio
devices. Although many of today’s audio
devices include digital inputs ultimately an
analog signal is required to generate sound
through the system’s speakers. Hence we
restrict our discussion to the generation of
analog audio signals. Analog audio signals are electromagnetic waves composed of
alternating electrical currents of varying frequency and amplitude. The frequency
determines the pitch and the amplitude determines the volume. An alternating current
is needed to drive the speakers, as we shall see later.
The sound card receives binary digital audio samples from the CPU via the PCI bus
and transforms them into an analog audio signal suitable for driving a speaker. The
context diagram in Fig 246 models this process. On the surface it would seem a
simple digital to analog converter (DAC) could perform this conversion. In reality
audio data is time sensitive, meaning it must be displayed in real time, the DFD in Fig
2.47 describes this process. To achieve real time display sound cards contain their
own RAM which is essentially a buffer between the received data and the card’s
digital signal processor (DSP).
The DSP performs a variety of
tasks including decompressing
and smoothing the sound
samples. The DSP then feeds the
final individual samples in real
time to a DAC. The DAC
performs the final conversion of
each sample into a continuous
analog signal.
The analog signal produced by
the sound card’s DAC has
insufficient power (both voltage
and current) to drive speakers directly. This low power signal is usually output
directly through a line out connector and a higher-powered or amplified signal is
output via a speaker connector. Obviously the line out connector is used to connect
display devices that include their own amplifiers, such as stereo and surround sound
systems.

GROUP TASK Research
Many sound cards also contain a MIDI port, that often doubles as a
joystick port. Research different types of audio display devices that
connect to MIDI ports.

Fig 2.47
A sound card’s output processes

modelled using a dataflow diagram.

Digital audio
samples

Analog audio
signal Store

samples

Digital
signal

processing

Digital to
analog

conversion

Storage Buffer

Digital audio
samples

Digital audio
samples

Real time
digital

samples

Digital audio
samples Speaker

Analog audio
signal

Sound
card

CPU

Fig 2.46
Context diagram for a sound card.

78 Chapter 2

Software Design and Development –The Preliminary Course

• Speakers
Most speakers include similar components as dynamic microphones (refer p61). This
includes an electromagnet, which is essentially a coil of wire surrounded by a magnet.
As current is applied to the coil it moves in and out in response to the changing
magnetic fields. As an alternating current is used to drive the speaker the coil vibrates
in time with the fluctuations present within
the alternating current. The coil is attached to
a paper diaphragm, it is the diaphragm that
compresses and decompresses the air forming
the final sound waves. The coil and
diaphragm are held in the correct position
within the magnet using a paper support
known as a ‘suspension spider’.
The size of the diaphragm in combination
with the coils range of movement determines
the accuracy with which different frequencies
can be reproduced. Large diameter
diaphragms coupled with coils that are able to
move in and out over a larger range are suited to low frequencies (0Hz to about
500Hz). Such speakers are commonly used within woofers. Smaller diameter
diaphragms are tighter and hence respond more accurately to higher frequencies.
Speakers with very small diameter diaphragms respond to just the higher frequencies
and are known as tweeters. Commonly speaker systems include a separate low
frequency woofer or sub-woofer, combined with a number of speakers capable of
producing all but the lowest frequencies. Just a single large woofer is sufficient as low
frequency sound waves are omnidirectional, that is they can be heard in all directions.
Conversely, high frequency sounds from say 6000Hz up to 20000Hz are very
directional, hence tweeters need to be arranged to produce sound in the direction of
the listener.

Explain how CRT monitors operate.
Suggested solution
CRTs contain an electron gun with three beams (for Red, Green and Blue). The beam
is deflected by a magnetic coil to reach the required pixel through a spot in the screen
mask. This screen mask is used to prevent neighbouring pixels from being lit up.
When the beams hit the required pixel, the 3 phosphors (Red, Green and Blue)
comprising the pixel glow for a short amount of time based on the intensity of each
beam. Each pixel on the screen is refreshed in a raster scan from top to bottom, left to
right. Commonly the entire screen is refreshed 60 times per second.

Magnet
Paper

diaphragm
Suspension

spider

Fig 2.48
Underside of a typical speaker.

GROUP TASK Practical Activity
Listen to the various sounds around you to determine their source. Is it
easier to determine the direction of the source of higher or lower
frequency sounds? How can you explain your results?

HSC style question:

Hardware and Software 79

Software Design and Development – The Preliminary Course

SET 2B
1. A sound card is used for:

(A) input only.
(B) output only.
(C) input and output.
(D) voice recognition.

2. What output device uses the CMYK
system?
(A) Screens
(B) Colour printers
(C) Speakers
(D) Data projectors

3. Piezo crystals are used in which type of
device?
(A) Laser printers
(B) Plasma screens
(C) Inkjet printers
(D) Data projectors

4. Substances in a state between liquid and
solid are known as:
(A) plasmas
(B) liquid crystals
(C) toner
(D) transistors

5. Within an LCD screen, what ensures
light can only exit at right angles to the
light entering the screen?
(A) LEDs
(B) Piezo crystals
(C) coil and diaphragm
(D) polarizing panels

6. Within plasma screens visible light is
generated by:
(A) plasma
(B) phosphors
(C) backlights
(D) reflection

7. A refresh rate of 50Hertz means:
(A) the screen is redrawn 50 times each

second.
(B) new image data is received from

the computer 50 times per second.
(C) data is received at a rate of 50

bytes per second.
(D) the screen includes 50 rows of

pixels.
8. Which interface is able to transmit

video, audio and control data?
(A) DVI
(B) VGA
(C) HDMI
(D) All of the above

9. Plasma emits:
(A) red light
(B) green light
(C) blue light
(D) UV light

10. Within a laser printer, which component
makes the image permanent?
(A) Laser
(B) Fuser
(C) Photoreceptor
(D) Detac corona wire

11. For each of the following components, identify the output device that includes the component
and briefly outline the purpose of the component.
(a) VRAM (f) polarizing panel
(b) cathode (g) neon and xenon gas
(c) detac corona wire (h) suspension spider
(d) liquid crystals (i) TFT
(e) shadow mask (j) light multiplexor

12. Make up a list of as many output devices as you can think of. Try to have more items on your list
than anyone else!

13. Describe the operation of a plasma screen.

14. Describe the operation of an LCD screen.

15. Describe the operation of a laser printer.

80 Chapter 2

Software Design and Development –The Preliminary Course

STORAGE
Storage is the function that reads, writes and retains data. The ability to store and
retrieve data is the major reason why computers are able to perform multiple tasks.
Other technologies invented by man are dedicated to performing one particular task;
e.g. an oven cannot be easily modified to perform as a refrigerator. Computers can in
a matter of seconds change from being a word-processor to managing businesses
finance. In this section we examine different types of storage used by computers and
how they work together to efficiently carry out storage functions.
There are a variety of different storage devices used in a typical computer system.
These devices are commonly classified as primary storage and secondary storage or
temporary and permanent storage. Primary storage works closely with the processor;
it is generally very fast and apart from Read Only Memory (ROM), requires power to
retain its contents. Secondary storage generally has a far greater storage capacity and
does not require power to retain data. Both these storage types work together to carry
out the storage functions.

Let us consider the different types of memory used by a typical computer system to
help explain the flow of data between storage areas (see Fig 2.49). There are many
different types of storage used by computer systems; each has its particular strengths
and weaknesses.
Primary Storage

Primary storage is often referred to as
main memory or just memory. It
includes the registers within the CPU,
cache, physical RAM, ROM and
virtual memory. Apart from ROM
primary memory is volatile, meaning
it only temporarily holds data whilst
the power is on. Read Only Memory
(ROM) chips are used within the
computer to store permanent
instructions required to start-up or
boot the computer. Many peripheral
devices contain their own ROM chips
containing instructions to control the
operation of the device.

The closer the storage is to the CPU, the faster its storage functions need to perform.
Registers are contained within the CPU and are used as temporary stores for data
during processing. As a consequence, registers must be able to store and deliver data
from and to the CPU at the same speed as the CPU. Any delay would result in major
performance problems.

Physical Random Access Memory (RAM) is significantly slower than the CPU. Data
and applications currently being used are stored in RAM. To alleviate the speed
difference between RAM and the CPU’s operations, two levels of cache are used by
most systems. In the current context, cache is a small area of very fast RAM.
Instructions that are used repeatedly are maintained in cache. This drastically reduces
the time it takes for the CPU to load most instructions. Around 95% of most
program’s instructions are contained within loops; as a consequence they need only be
loaded into cache once, yet they may be executed by the CPU many hundreds of

CPU Registers

Level 1 Cache

Level 2 Cache

Hard
Drive

Physical
RAM

Virtual
Memory

ROM
BIOS

Removable
Drives

Network / Internet
Storage

Fig 2.49
Levels of storage used by a typical computer system.

Hardware and Software 81

Software Design and Development – The Preliminary Course

times. Modern CPU designs have two levels of cache. Level 1 cache operates at the
same speed as the CPU and is contained within the microprocessor; it is commonly
between 4 kilobytes and 16 kilobytes in size. Level 2 cache operates at about twice
the speed of physical RAM and is usually between 128 kilobytes and 1 megabyte in
size. Without cache storage the CPU would spend most of its time waiting for the next
instruction to arrive from RAM. Virtual memory is a way of extending the amount of
RAM available to the system. Part of the hard drive is used when the amount of
physical RAM has been exhausted. If your computer is continually accessing the hard
drive it is likely that it has insufficient physical RAM and is resorting to virtual
memory. The use of virtual memory allows the system to remain operational with
greatly reduced performance.

• Random Access Memory (RAM)

Random access means that the system can read or
write directly to any location. Each RAM chip
contains a grid of memory cells where each cell is
able to store a single binary digit (bit). Together
with the memory cells, is a complex arrangement
of circuits, whose purpose is to coordinate the
operation of and access to each cell. RAM chips
are integrated circuits made up of many millions
of transistors and capacitors. There are two major
types of RAM chips; dynamic (DRAM) and static
(SRAM).

Dynamic RAM is commonly used in the
production of physical RAM modules. A series of
DRAM chips are combined on a circuit board that
plugs into the system’s motherboard. Each
memory cell within a DRAM chip is composed of
a transistor and a capacitor. The transistor
provides the mechanism for reading or writing to
the capacitor. The capacitor is able to store
electrons. A binary 1 is represented when the
capacitor is full and a 0 when it is empty. The
problem with capacitors is that the electrons soon
escape so they must be continually recharged if
they are to maintain their state. This continual
recharging of each memory cell takes time and as
a consequence their performance is decreased.

Static RAM (SRAM) is able to hold a particular
binary state without need for recharging. As a
consequence SRAM can perform its storage functions much faster than DRAM.
SRAM does not use capacitors to store data rather it uses flip-flops. Flip-flops are
circuits that include feedback to enable them to maintain a particular state. If you

GROUP TASK Discussion
If Level 1 Cache is so fast then why not make primary memory just one
huge Level 1 Cache? Discuss with regard to cost, speed and
communication with other devices.

Fig 2.51
Examples of DRAM modules.

From top: Single Inline Memory Module
(SIMM), Dual Inline Memory Module

(DIMM) and Small Outline Dual Inline
Memory Module (SODIMM).

Fig 2.50
Each RAM chip contains a two

dimensional grid of memory cells. In
the above diagram the shaded cells

represent 1s and the unshaded cells 0s.

82 Chapter 2

Software Design and Development –The Preliminary Course

study the HSC course option on The Software Developer’s View of the Hardware, you
will learn more about the operation of flip-flops. SRAM is far more expensive to
produce and takes up more space because of the complexities of the circuitry.
Consequently, SRAM is used primarily for Level 1 and Level 2 Cache memory.

Secondary Storage
Secondary storage is permanent or non-volatile storage. The contents of secondary
storage remains when the power is turned off. Most common secondary storage
devices can be classified as either magnetic, optical or solid state. Examples of
magnetic devices include: hard disks and magnetic tapes. CD-ROMs and DVDs use
optical methods for reading and, where possible, for writing. Network connections,
including the Internet, provide further secondary storage on remote computers. In this
section we consider magnetic storage and hard disk drives, optical storage and
CD/DVD reading and writing, and finally flash drives which use solid state storage.
Magnetic Storage
To understand the underlying operation of magnetic storage
devices requires a basic knowledge of certain magnetic
principles:
1. Magnets exert forces on each other known as magnetic

fields. Such forces move from the north to the south
pole of the magnet.

2. Magnetic fields are greatest at the poles.
3. Electrical currents produce magnetic fields.
4. There are only a few elements, primarily iron, cobalt

and nickel, which can be magnetised. Materials that
include these elements and that can be magnetised are
known as ferromagnetic materials.

5. Different ferromagnetic materials behave differently
when placed in a magnetic field.
A. Some materials are easily magnetised by weak magnetic fields but when the

field is turned off they quickly demagnetise; these materials are known as soft
magnetic materials and are used during the process of storing or writing data.

B. Some soft magnetic materials conduct electricity well when in the presence of a
magnetic field but are poor electrical conductors when not. This phenomenon is
called the magneto-resistance (MR) effect. MR materials are used during the
process of retrieving or reading data.

C. Some materials require a strong magnetic field to become magnetised however
they retain their magnetisation when the magnetic field is turned off. These
materials are known as hard magnetic materials and are used to produce
permanent magnets. Such materials are the basis of magnetic storage media.

To further assist our discussion let us first examine a microscopic detail of a typical
piece of magnetic storage medium that already contains stored data (refer Fig 2.53).
This detail could be a hard disk platter or even a piece of magnetic tape; in each case
hard magnetic material is used and the storage principles are the same.

GROUP TASK Discussion
Why do you think the D in DRAM stands for dynamic and the S in SRAM
stands for static? Discuss.

N

S

Fig 2.52
Magnetic forces move from
north to south poles and are

greatest at the poles.

Hardware and Software 83

Software Design and Development – The Preliminary Course

Digital data is composed of a sequence of binary digits, zeros and ones. These zeros
and ones are equally spaced along the surface of the magnetic medium. High
magnetic forces are present where the direction of the magnetic field changes; these
points are really magnetic poles. It is the
strength of the magnetic force that
determines a one or a zero, not the
direction of the magnetic force. Low
magnetic forces occur between two poles
and represent zeros. High magnetic forces
are present at the poles and represent
ones.

Consider the following:

At the time of writing (2010) the number of bits stored per inch (BPI) on the surface
of a hard disk ranges up to around 1,000,000 BPI at the centre of each disk platter;
this measure is commonly called linear density. This means a track on a hard disk can
store some 40000 bits per millimetre. If Fig 2.53 is the surface of a hard disk platter
then the real width of the medium depicted would be approximately 1.5 ten
thousandths of a millimetre; rather too small to print! Currently magnetic tape is
available with a linear density of around 100,000 BPI resulting in some 4000 bits per
millimetre.

• Storing or writing magnetic data
Magnetic data is written on to hard magnetic
material using tiny electromagnets. These
electromagnets form the write heads for all types
of magnetic storage devices. Essentially an
electromagnet is comprised of a copper coil of
wire wrapped around soft magnetic material (see
Fig 2.54). The soft magnetic material is in the
shape of a loop that is not quite joined; this tiny
gap in the loop is where the magnetic field is
produced and the writing takes place.
When an electrical current is present in the coil the
enclosed soft magnetic material becomes magnetised, one end of the material
becoming a north pole and the other a south pole. Hence a magnetic field is produced
flowing from the north to the south. If the direction of the current through the coil is
reversed then the direction of the magnetic field produced is also reversed. The
magnetic field is strong enough for the hard magnetic material on the medium to be
magnetised. A binary one is represented each time the direction of the magnetic field
changes as a consequence of reversing the current into the coil. Zeros are represented
when the direction of the current flow is constant and hence the direction of the
magnetic field remains constant.

GROUP TASK Research
Investigate the linear density of various hard disks and magnetic tapes.
During your research determine the relationship between linear density
and areal density.

Fig 2.54
Detail of magnetic write head.

Magnetic media passes
under write head

Copper
wire coil

Soft magnetic
material

Reversible
electrical
current

Magnetic field
produced in gap
between poles.

S S N N S S N N
Surface of magnetic media

High

Low
Strength of magnetic field

1 0 1 0 1 1
Stored bits

Fig 2.53
Microscopic detail of magnetic storage medium.

84 Chapter 2

Software Design and Development –The Preliminary Course

• Retrieving or reading magnetic data
MR materials are the basis of most modern read heads;
commonly this material contains around 80 percent nickel and
20 percent iron. Such materials are particularly sensitive to
small changes in magnetic forces when a constant current is
flowing through the material; that is they alter their resistance
more noticeably. When stronger magnetic forces are detected,
representing a 1, the current flow through the MR material
increases and hence the voltage increases; similarly when the
force is weaker the current and voltage decreases. These
voltage fluctuations reflect the original binary data and are
suitable for further processing by the computer.
• Hard disk drives
Hard disk drives store data magnetically on precision
aluminium or glass platters. The platters have a layer of
hard magnetic material (primarily composed of iron oxide)
into which the magnetic data is stored. On top of this
material is a layer of carbon and then a fine coating of
lubricant. The carbon and lubricant layers improve the
durability of the disk and slow down corrosion of the
magnetic layer. Each platter is double sided, so two
read/write heads are required for each platter contained
within the drive’s casing. At the time of writing most
drives contain two to five double-sided platters requiring
four to ten read/write heads. The casing is sealed to protect
the platters and heads from dust and humidity.
Data is arranged on each platter into
tracks and sectors. The tracks are laid
down as a series of concentric circles. At
the time of writing a typical platter
contains some one hundred thousand
tracks with each track split into hundreds
of sectors. The diagram in Fig 256
implies an equal number of sectors per
track; on old hard disks this was true
however on newer hard disks this is not
the case, rather the number of sectors
increases as the radius of the tracks
increase. Each sector stores the same
amount of data, in most cases 512 bytes.
The read/write heads store and retrieve
data from complete sectors.
There are two motors within each hard
drive; a spindle motor to spin the platters
and an actuator assembly to move the read/write heads into position (refer Fig 257).
The spindle motor operates at a constant speed; commonly from around 5,000 to
15,000 revolutions per minute. Whilst this is occurring the read/write head is moved
in and out by the actuator assembly to locate the heads precisely over the required
sectors on the disk platters.

Fig 2.55
Detail of an MR read head.

Magnetic media passes
under read head

MR
material

Constant
current Fluctuating

voltage

Fig 2.56
Each disk platter is arranged

into tracks and sectors.

Actuator
assembly

Disk
platter

Spindle
motor

Head arm
Fig 2.57

Internal view of a hard disk drive.

Hardware and Software 85

Software Design and Development – The Preliminary Course

Each read/write head is attached to a head
arm with all the head arms attached to a
single pivot point, consequently all the
read/write heads move together. This
means just a single read/write head on a
single platter is actually operational at any
instant. Each read/write head is extremely
small, so small it is difficult to see with the
naked eye. What is usually seen is the
slider that houses the head. The air pressure
created by the spinning platters causes the sliders to float a few nanometers (billionths
of a metre) above the surface of the disk.
Sophisticated circuits are required to control the accurate performance of the drive; in
fact the processing power contained within a modern hard disk drive far exceeds the
power of computers produced during the 1980s, furthermore they contain similar
amounts of RAM in the form of cache. Hard
drive circuits control the operation of the motors,
communication with the CPU as well as
checking on the accuracy of each read or write
operation. Most hard disks contain their own
built-in cache to significantly speed up access
times. Data on sectors near the requested data is
read into cache; commonly such data is
subsequently required, consequently it can be
accessed much faster from cache.
Because the operation of a hard drive involves
mechanical operations they will never reach the
speeds possible with chip based storage
technologies. Hard disks provide an economical
means of permanently storing vast quantities of
data. At the time of writing 500GB hard drives
were common and drives exceeding 1TB were
readily available. Currently, with the assistance
of cache, hard drives are able to store and
retrieve data at speeds exceeding 100MB per
second.

Consider the following:

Older hard disk drives used the track (or cylinder) number, head number and sector
number to determine the address of each sector (or block) of data. These addresses,
known as CHS addresses, were translated via the computers BIOS (Basic Input
Output System). Unfortunately such a system limited the size of hard disks to 1024
cylinders, 255 heads and 63 sectors per track equating to a capacity of 8.4GB.
As newer higher capacity hard drives became available and variable sectors were
present on each track a new addressing system known as LBA (Logical Block
Addressing) was introduced; this system essentially bypasses the computers BIOS
altogether. LBA assigns each block (or sector) of data a unique sequential number; for
example a drive with a total of 490,350,672 sectors would use LBA addresses from 0

Fig 2.59
Underside of a hard disk drive showing
the circuit board containing processing

and cache chips.

Head arm Slider

Read/write head
(Too small to see)

Actuator
pivot

Fig 2.58
Expanded view of a head arm assembly.

86 Chapter 2

Software Design and Development –The Preliminary Course

to 490,350,671. The circuits within the hard drive translate the LBA address into the
required physical address on the disks.

Optical Storage
Optical storage processes are based on reflection of light; either the light reflects well
or it reflects poorly. It is the transition from good reflection to poor reflection or vice
versa, that is used to represent a binary one (1); when reflection is constant a zero (0)
is represented. This is similar to magnetic retrieval where a change in direction of the
magnetic force represents a binary one and no change represents a zero. To illustrate
optical storage imagine shining a torch across a busy highway at night, you would see
the light reflected back as each vehicle
passed through the beam of light; ones
being represented each time a vehicle
enters the beam and again as it leaves
the beam (see Fig 2.60). If this data
were recorded at precise intervals, say
every hundredth of a second, the result
would be a sequence of binary digits.
As the data is so tightly packed on both compact disks (CDs) and digital versatile
disks (DVDs) it is essential that the light used for optical storage processes be as
consistent as is possible; lasers provide such light. The word laser is really an
acronym for “light amplification by stimulated emission of radiation”. Different types
of atoms, when excited, give off radiation in the form of different types of light; under
normal conditions the light is emitted in all directions, for example neon advertising
signs. A laser controls this process by using particular atoms within a precisely
controlled environment. Essentially a laser produces an intense parallel beam of light
composed of electromagnetic waves that are all identical; accurately focussing this
light produces just what is needed for optical
storage and retrieval processes. Relatively weak
lasers are used during the retrieval of data and
much higher-powered lasers when storing data.
Higher-powered lasers produce the heat necessary
to alter the material used during the CD or DVD
burning process; in fact similar lasers are used
during the initial stages when manufacturing
commercial CDs and DVDs.
Before we consider the detail of the optical storing
and retrieving processes let us consider the nature
of both CD and DVD media. CDs contain a single
spiral track (Fig 2.61) that commences at the inner
portion of the disk and spirals outward toward the

1 0 1 0 1 0 0 0 1 1 0 1

Fig 2.60
The transition between good and poor
reflection is read as a binary one (1).

Fig 2.61
CDs and DVDs contain spiral tracks.

GROUP TASK Activity
Explain how 1024 cylinders, 255 heads and 63 sectors per track equates to
a storage capacity of 8.4Gb?

GROUP TASK Research
Research specifications with regard to currently available hard disk drives.
Determine the storage capacity, claimed data transfer rate, number of
platters, total number of sectors and the storage size of each sector.

Hardware and Software 87

Software Design and Development – The Preliminary Course

edge of the disk. This single track is able to store up to 680 megabytes of data. DVDs
contain similar but much more densely packed tracks, each track can store up to 4.7
gigabytes of data. Furthermore, DVDs may be double sided and they may also be dual
layered. Therefore a double sided, dual layer DVD would contain a total of four spiral
tracks; in total up to 17 gigabytes of data can be stored.
Each spiral track, whether on a CD or a DVD, is composed of a sequence of pits and
lands. On commercially produced disks the pits really are physical indentations within
the upper side of the disk. Fig 2.62
depicts the underside of a disk, this is
the side read by the laser, and hence the
pits appear as raised bumps above the
surrounding surface. On writeable
media the pits are in fact not pits at all;
rather they are areas that reflect light
poorly; more on this when we discuss
optical storing. The essential point is
that pits reflect light poorly and lands
reflect light well regardless of their physical structure.
The dimensions shown in Fig 2.62 indicate an approximate 50 percent reduction in
both track pitch and pit length for DVDs compared to CDs; these physical size
differences account for about a four-fold increase in the storage capacity of DVDs
compared to CDs. In reality, an almost seven-fold increase in capacity has occurred;
the remaining increase is largely due to improvements in error correction techniques.
In Fig 2.62 the measurements are expressed in microns, one micron is one millionth
of a metre or one thousandth of a millimetre. As a consequence of these incredibly
small distances the length of pits that would be needed when ones appear together or
close together is so small that it is likely to cause read errors. Also tracking problems
can occur when the pits or lands are too long, this would occur when a large number
of zeros are in sequence. The solution is to avoid such bit patterns occurring in the
first place. The eight to fourteen modulation (EFM) coding system is used; EFM
converts each eight-bit byte into fourteen bits such that all the bit patterns include at
least two but less than ten consecutive zeros. This avoids such problems occurring
within a byte of data, but what about between bytes? For example, the two bytes
10001010 and 11011000 convert using the EFM coding system to 1001001000001
and 01001000010001. When placed together the transition between the two coded
bytes is …0101…; our rule of having at least two zeros is broken. To correct this
problem two merge bits are placed between each coded byte; the value of these merge
bits is chosen to maintain our at least two zeros but less than ten rule. Obviously once
the data has been read the merge bits are ignored.
Both CDs and DVDs are approximately
1.2mm thick and are primarily clear
polycarbonate plastic. On commercially
produced disks the pits are stamped into
the top surface of the plastic, which is
then covered by a fine layer of reflective
metal (commonly aluminium), followed
by a protective acrylic lacquer and finally some sort of printed label. On recordable
and rewriteable media a further layer is added between the polycarbonate and the
reflective layer; this is the layer whose reflective properties can be altered. It is
actually quite difficult to damage a disk by scratching its underside, in contrast the

Fig 2.62
Magnified view of the underside of an optical disk.

Min 0.834 microns (CD)
Min 0.4 micron (DVD)

16 microns (CD)
074 microns (DVD)

Pits Lands

Label

Acrylic
lacquer
Reflective metal
(Aluminium)

Clear polycarbonate
plastic

Fig 2.63
Cross section of a typical commercially

produced CD or single sided single layer DVD.

12 mm

88 Chapter 2

Software Design and Development –The Preliminary Course

label side of a disk is easily damaged; try scratching both sides of an old CD-R with a
pen, you’ll see what I mea. Double-sided DVDs are essentially two single-sided
disks back to back. Double layer DVDs contain two data layers where the outside
layer is semi reflective; this allows light to pass through to the lower layer. The laser
is accurately focussed onto the layer currently being read.
• Retrieving or reading optical data
Retrieving data from an optical disk can be split into two processes; spinning the disk
as the read head assembly is moved in or out to the required data and actually reading
the reflected light and translating it into an electrical signal representing the original
sequence of bits. To structure our discussion we consider each of these processes
separately, although in reality both occur at the same time.
1. Spinning the disk and moving the read head assembly
To read data off an optical disk requires two
motors, a spindle motor to spin the disk and
another to move the laser in or out so that the
required data passes above the laser. The
spindle assembly contains the spindle motor
together with a clamping system that ensures
the disk rotates with minimal wobble. The read
head assembly is mounted on a carriage, which
moves in and out on a pair of rails. In modern
optical drives the motor that moves the carriage
responds to tracking information returned by
the read head. This feedback allows the
carriage to move relative to the actual location
of the data track.
At a constant number of revolutions per minute (rpm) the outside of a disk rotates
much faster than the inside. Older CD drives, and in particular audio CD drives,
reduce the speed of the spindle motor as the read head moves outwards and increase
speed as the read head moves inwards. For example, a quad speed drive spins at 2120
rpm when reading the inner part of the track and at only 800 rpm when reading the
outer part. The aim being to ensure approximately the same amount of data passes
under the read head every second; drives based on this technology are known as CLV
(constant linear velocity) drives.
Most CD and DVD drives manufactured since 1998 use a constant angular velocity
(CAV) system, which simply means the spindle motor rotates at a steady speed. CLV
technology is still used within most audio drives, which makes sense, as there really is
no point retrieving such data at faster speeds. However for computer applications,
such as installing software applications, faster retrieval is definitely an advantage. As
a consequence of CAV, such drives have variable rates of data transfer. For example,
a 24-speed CAV CD drive can retrieve some 1.8 megabytes per second at the centre
and 3.6 megabytes per second at the outside. Quoted retrieval speeds for CAV drives
are often misleading; for example a CAV drive designated as 48-speed can only
retrieve data from the outside of a disk at 48 times that required for normal CD audio.
These maximum speeds are rarely achieved as few CDs have data stored on their
outer edges.
Current CAV drives have spindle speeds in excess of 12000 rpm; faster than most
hard disk drives. Such high speeds produce air turbulence resulting in vibration. When
most drives are operating the noise produced by this turbulence can be clearly heard.

Fig 2.64
Detail of a CD/DVD drive from a

laptop computer.

Spindle
assembly

Carriage
and motor

Read head
assembly

Hardware and Software 89

Software Design and Development – The Preliminary Course

Furthermore, the vibration is worst at the outside of the disk, just where the data
passes under the read head at the fastest speed, hence read errors do occur. Such
problems must be resolved if the ever increasing speed of optical data retrieval is to
continue.

Consider the following:

How does CLV work? Essentially the speed of the spindle motor is controlled by the
amount of data within the drive’s temporary storage or buffer. When the amount of
data in the buffer exceeds a certain threshold the motor is slowed and hence the buffer
begins to empty. Similarly if the data in the buffer is less than a certain threshold then
the motor speeds up. Unfortunately it takes time to speed up and slow down the
spindle; this time becomes significant once rates of data transfer approach 16 times
that required to read an audio CD (about 16 times 150 kilobytes per second or roughly
2 megabytes per second). This is the primary reason for the development and
production of CAV drives.

2. Reading and translating reflected light into electrical signals
There are various different techniques used to create,
focus and then collect and convert the reflected light
into electrical signals. Our discussion concentrates on
the most commonly used techniques.
Let us follow the path taken by the light as it leaves
the laser, reflects off the pits and lands, and finally
arrives at the opto-electrical cell (refer to Fig 2.65).
Firstly, remember that lasers generate a single
parallel beam This beam passes through a diffraction
grating whose purpose is to create two extra side
beams; these side or tracking beams are used to
ensure the main beam tracks accurately over the pits
and lands. Unfortunately the diffraction grating
causes dispersion of the beams. To correct this
dispersion the three beams pass through a collimator
lens; whose job is to make the beams parallel to each
other. A final lens is used to precisely focus the
beams on the reflective surface of the disk.
As the disk spins both tracking beams should return a
constant amount of light - they are reflecting off the
smooth surface between tracks (see Fig 266). If this
is not the case then the carriage containing the read
assembly is moved ever so slightly until constant
reflection is achieved. In essence the tracking beams
are provide the feedback controlling the operation of
the motor that moves the read head in and out.

GROUP TASK Discussion
Buffers are used primarily to assist the movement of data between
hardware devices operating at different speeds. CAV optical drives also
contain a buffer; discuss how such a buffer would operate during data
retrieval from a complete track.

Fig 2.65
Detail of a typical optical

storage read head.

Focusing
lens

Collimator
lens

Beam splitter
prism

Diffraction
grating Laser

Opto-
electrical
cell

Underside of
CD or DVD

Main beam

Tracking
beams

Fig 2.66
Magnified view of main and

tracking laser beams.

Tracking
beams

Main
beam

Pit

90 Chapter 2

Software Design and Development –The Preliminary Course

The reflected light returns back through the focussing and collimator lenses and then
is reflected by a prism onto an opto-electrical cell. The prism is able to split the light
beam based on its direction; light from the laser passes through, whereas light
returning from the disk is reflected. The term ‘Opto-electrical’ describes the function
of the cell; it converts optical data into electrical signals. Changes in the level of light
hitting the cell cause a corresponding increase in the output current. Constant light
causes a constant current. Hence the fluctuations in the electrical signal correspond to
the stored sequence of bits.
The electrical signal is then passed through a digital signal processor (DSP). The DSP
removes the merge bits, converts the EFM codes back into their original bytes and
checks the data for errors. Finally the data is placed into the drive’s buffer where it is
retrieved via an interface to the computer’s RAM.

Consider the following:

If you shine a torch directly at a wall a circle pattern is seen, however if the torch is
angled then the pattern becomes elliptical. Modern optical read heads are able to
detect the difference between such patterns returned by the two tracking beams.

• Storing or writing optical data
There are two different technologies used to store data on optical disks; recordable
which actually means data can only be written once but not erased, and rewriteable
meaning the data can be erased and rewritten many times. Examples of both
technologies are available for writing both CDs and DVDs. CD-R is the acronym used
for recordable compact disks and DVD-R for similar DVDs. CD-RW stands for
rewriteable compact disk. The standard for rewriteable DVD is currently a bit of a
mess. Three competing standards exist; DVD-RAM, DVD-RW and DVD+RW,
presumably just one of these standards will eventually prevail; I guess it’s likely you
already know the winner! Fortunately the basic principles and operation of all
rewriteable optical disks is similar.
1. Recordable or write once technology
The essential difference between recordable
media and commercially produced stamped
disks is the addition of a layer of dye between
the clear plastic and the reflective metal.
There are various different dyes used by
different manufacturers, however initially
they are all relatively clear and when exposed to heat turn opaque or cloudy. Drives
capable of burning data onto recordable disks contain lasers that can operate at two
power levels, low power for retrieving and higher power for storing or burning data.
In order to protect the dye layer from corrosion the reflective metal layer is commonly
a mix of silver and gold; increasing the percentage of gold in the mix substantially
increases the life expectancy of the data. Disks manufactured with 100 percent gold
reflective layers are estimated to last for more than 200 years

GROUP TASK Discussion
How could such information be used by optical drives to improve the
performance of the retrieval process? Discuss.

Label Acrylic
lacquer
Reflective
metal Clear polycarbonate

plastic

Fig 2.67
Cross-section of a recordable optical disk.

12 mm
Dye
layer

Hardware and Software 91

Software Design and Development – The Preliminary Course

Storing data on optical disks first involves coding the data; this is essentially the
reverse of the processes performed by the DSP during retrieval. The coded data is sent
at a constant rate to the drive’s processor. The processor responds to ones in the
sequence of binary data; zeros merely cause a slight delay. If the laser is off and a one
is encountered then it is turned on at high power, conversely if the laser is on and a
one is encountered then it is turned off. Whenever the laser is on it produces heat and
hence the dye layer turns opaque. As this is occurring the disk spins and the carriage
moves slowly outwards. The result being a spiral track where the burnt or opaque
areas on the track are the equivalent of the physical pits found on commercially
produced disks, hence the recorded disks can be read on conventional optical drives.

Consider the following:

Writing a precisely placed spiral track on an otherwise flat surface is a difficult task,
furthermore ensuring each pit (really areas of opaque dye) is of the correct length and
is spaced accurately makes the task seem almost impossible. To solve these problems
all blank recordable, and also rewriteable, disks are stamped during manufacture with
a groove containing a wobble pattern along the path of the spiral track. The groove is
followed during the writing process and the wobble pattern is used to ensure correct
timing; the aim being to ensure the correct track pitch and linear distances between
bits are maintained.

2. Rewriteable technology
Rewriteable media contains a recording layer composed
of a crystalline compound sandwiched between two
insulating layers. The crystalline compound currently
used is a mixture of silver, iridium, antimony and
tellurium. This unusual mix of elements normally reflects
light well, however it has some interesting characteristics.
If it is heated to between 500 and 700oC its crystal
structure breaks down and so does its reflective
properties. If, once cooled, the compound is then reheated
to around 200oC it returns to its original reflective
crystalline state. These characteristics form the basis of
rewriteable storage. The high temperatures mentioned
above must be localised within a microscopic area and
these areas must be cooled quickly; this is the purpose of
the surrounding insulating layers.
The laser used for storing data on rewriteable media has three different power levels.
The highest level is able to heat the recording layer to between 500 and 700oC and is
used for writing, the middle level heats to around 200oC and is used for erasing, and
the lowest is used for reading data.

GROUP TASK Discussion
Based on your knowledge of tracking beams, explain how the spiral
groove and wobble pattern could be used to ensure the correct track pitch
and linear distances between bits are maintained?

Fig 2.68
A variety of different

rewriteable media. All are
the same physical size.

92 Chapter 2

Software Design and Development –The Preliminary Course

The process of storing data on new rewriteable media is essentially the same as that
used for recordable media. The only significant difference being the much hotter
temperatures needed to break down the crystalline compound.
Rewriting data is slightly different; there are two techniques commonly used. One
involves first erasing all the data, that is the laser is set at a constant erase power level
whilst the entire data track is rotated above the laser. The disk can then be written as if
it were new. A second technique allows new data to be directly written over existing
data. This technique involves alternating the power of the laser between write power
and erase power each time a one is encountered within the data.

Consider the following:

Currently CD-RW disks cost approximately four times that of a CD-R, however CD-
RW disks can be reused more than 1000 times. Unfortunately the reflective properties
of CD-RW disks are such that they cannot be read by many older CD-ROM drives,
including most CD audio drives.

Flash Memory
Flash memory is commonly seen in the form of
memory cards that are often called flash drives; these
cards provide removable storage for various electrical
devices, for example digital cameras, MP3 players,
PDAs, video game consoles, laptop computers and
even mobile phones. Fig 2.69 shows a variety of
different types of flash drives. Flash memory is not
just used for removable storage; it is now becoming
available as an alternative to magnetic hard disk drives
(HDDs) in the form of flash solid state drives (SSDs).
Flash memory is also included as an integral part of
many devices. For example, BIOS chips, mobile
phones, cable modems, DVD players, network
routers, motor vehicles and even kitchen appliances.
So what is flash memory?
Flash memory is electronic, solid-state and non-
volatile; now what does that mean? Electronic devices use electricity; that is they
manipulate electrons. Flash memory is a type of electronic storage that represents data
by trapping or storing electrons. The essential difference between flash memory and
other types of electronic storage, such as RAM, is the ability to trap electrons even
when no power is present. This makes flash memory non-volatile. Solid state means
there are no moving parts. Mechanical parts take time to do their job, generate noise
and are prone to wear and failure. In contrast, flash memory is fast, silent and reliable.
Furthermore, flash memory operates reliably within a much wider temperature range
than magnetic or optical storage devices. For example, flash memory developed for
motor vehicles is certified to operate from -40oC to +125oC.

GROUP TASK Identify and justify
CD-R and CD-RW are suited to different applications. Identify
applications where CD-R is more suitable and applications where CD-RW
is more suitable. Justify your answers.

Fig 2.69
A variety of removable flash

memory devices.

Hardware and Software 93

Software Design and Development – The Preliminary Course

Flash memory cards can be used in a variety of
different devices. For example, Fig 2.70 shows a
variety of devices that include a Sony memory
stick slot. Using a single flash drive you can take
photos, edit them on your computer, view them on
your TV and then send them to Grandma using
your PDA!
If flash memory is so wonderful then why hasn’t it
replaced magnetic and optical storage? The answer
is cost; compared to magnetic and optical storage
flash memory is expensive. For example, presently
(2009) a 250GB flash solid state drive (SSD)
retails for about $1,000, yet a 1TB (1000GB) hard
disk drive retails for around $100. Currently it’s not economically feasible to include
large capacity flash SSDs in most computers, however this is likely to change over the
coming yeas. All the large microchip manuf acturers are continually investigating a
variety of high capacity solid-state non-volatile secondary storage technologies, flash
technology being just one of the technologies under consideration.

Consider the following:

(Extract of an article on www.storagesearch.com)

GROUP TASK Research
Using the Internet, or otherwise, research current developments in non-
volatile solid-state storage solutions. Are any of these new developments
seen as a real alternative to current secondary storage devices?

What's a Solid State Disk (SSD)
A solid state disk/drive (SSD) - is electrically, mechanically and software compatible with a
conventional (magnetic) hard disk.
The difference is that the storage medium is not magnetic (like a hard disk) or optical (like a CD) but
solid state semiconductor such as battery backed RAM, EPROM or other electrically erasable RAM-
like chip such as flash.
This provides faster access time than a hard disk, because the SSD data can be randomly accessed
in the same time whatever the storage location. The SSD access time does not depend on a
read/write interface head synchronising with a data sector on a rotating disk. The SSD also provides
greater physical resilience to physical vibration, shock and extreme temperature fluctuations. SSDs
are also immune to strong magnetic fields which could sanitise a hard drive.
The only downside to SSDs is a higher cost per megabyte of storage - although in some applications
the higher reliability of SSDs makes them cheaper to own than replacing multiple failing hard disks.
When the storage capacity needed by the application is small (as in some embedded systems) the
SSD can actually be cheaper to buy because hard disk oems no longer make low capacity drives.
Also in enterprise server acceleration applications - the benefit of the SSD is that it reduces the
number of servers needed compared to using hard disk based RAID on its own.
Historically RAM based SSDs were faster than flash based products - but in recent years the
performance of the fastest flash SSDs has been more than fast enough to replace RAM based
systems in many server acceleration applications.

Fig 2.70
Just some of the devices utilising
Sony’s memory stick technology.

94 Chapter 2

Software Design and Development –The Preliminary Course

PROCESSING AND CONTROL
Processing is the function that transforms the
inputs into outputs. Control is the function that
directs the other components within the
processor to perform their functions at the
correct time and in the correct order. Both
these functions are integrated within the central
processing unit (CPU).
Both processing and control functions are
performed by transistors, millions of
transistors. A Pentium 4 microprocessor
contains some 42 million transistors and
current Core i7 processors include in excess of
1 billion transistors. Each transistor can be
thought of as a switch, just like a light switch.
Either electrons flow through the switch or
they do not. By connecting these switches in
complex ways microprocessors are able to
perform complex and varied tasks. They do
this at an ever-increasing speed. Gordon Moore, one of the founders of Intel, theorised
in 1965 that the speed of processors would double every 18 months, he is yet to be
proven wrong, in fact his theory has become known as ‘Moore’s Law’.
The underlying basic design or architecture of most CPUs has not changed
significantly since John von Neumann’s designs were implemented on the ENIAC
during the early 1940s. Computers contain four basic parts; the arithmetic logic unit
(ALU), the control unit (CU), memory and input/output devices. The CPU contains
the ALU, the control unit and registers. The registers are memory areas used to store
instructions, addresses and data currently being used by the CPU. The control unit
makes sense of each instruction it receives and directs the ALU to perform the
appropriate process. The data and the result from the ALU’s processing are stored in
the CPU’s internal registers. The control unit, ALU and the registers are hardwired
into the CPU, each design of CPU having its own unique instruction set. Modern
CPU’s also contain one or more cache areas to speed up the interface between the
CPU and RAM. Most also have an integrated floating point unit (FPU) to perform real
number computations. Later in this chapter we examine how the software instructions
sent to the CPU are understood and executed by the CPU’s hardware.
During the early 1990s there were two significantly different implementations of the
von Neumann architecture; CISC and RISC. A CISC (Complex Instruction Set
Computer) uses some 200 plus hardwired instructions. The theory being that
hardwiring complex instructions into the CPU would result in improved performance.
However chip designs were becoming incredibly complex and expensive to produce.
This led to the development of RISC (Reduced Instruction Set Computers) based on a
far smaller instruction set. RISC based CPUs are able to operate at faster speeds and
can be produced at lower cost. However they place a larger burden on the software
which must emulate those instructions not hardwired into the chip. RISC chips
introduced pipelining where multiple instructions are at different stages of execution
at the same time. Today’s modern CPUs use pipelining together with other aspects of
both RISC and CISC to optimise their performance. There is no longer a clear
distinction between RISC and CISC processors.

Fig 2.71
View of a Pentium 4 processor which
contains some 42 million transistors.

Hardware and Software 95

Software Design and Development – The Preliminary Course

Microprocessor chips are manufactured in highly
controlled environments; the smallest dust or smoke
particle is able to render a chip useless. Silicon is the
primary raw material as it is an excellent semi-conductor.
Semi-conductors can be made to either conduct or not
conduct electricity under different conditions. The
microscopic circuits are lines of conductive silicon
surrounded by non-conductive silicon. Each chip
undergoes thorough testing before it leaves the factory.
Following successful testing, the chips are packaged into
square pin-grids. The wires bonding the silicon
microprocessor to the pins are much finer than a human
hair. The packaged microprocessor is then ready for
installation onto the motherboard.

Consider the design of a typical CPU.

A simplified view of a CPU is shown in Fig
2.73. Remember, that in reality the components
shown are closely integrated on a single silicon
chip.

Let us consider the function of each component
shown on this diagram. Remember each of these
components are hardware components. They are
hardwired to perform their functions.
• Bus interface – provides a communication

channel between the CPU and primary
storage (RAM). Both instructions and data are received and sent via this interface.
Information moves faster within the CPU than into and out of the CPU, the bus
interface must sort out this inconsistency.

• Code cache – a storage area for instructions that are likely to be needed in the near
future. Most programs involve repeating the same instructions, these instructions
are retained in the code cache where they can be accessed quickly.

• Branch predictor – attempts to guess the most likely next instruction and
determine its reliance on previous instructions. This is particularly useful when
there is a jump within the code to a set of new instructions. The Branch Predictor
assists the Decode/Prefetch Unit to get instructions ready in advance.

• Decode/Prefetch Unit – performs most of the control functions and handles the
execution of some instructions. This unit makes sense of instructions and directs
the other components to perform their functions. A number of instructions are
being fetched and decoded at the same time in a modern CPU.

GROUP TASK Research
Research the speed and number of transistors contained in CPUs from the
mid 1970s to the present. Does your research substantiate ‘Moore’s Law’?

Fig 2.72
A packaged microprocessor
with the cover removed to

expose the silicon chip.

96 Chapter 2

Software Design and Development –The Preliminary Course

• ALU – modern CPUs have more than
one arithmetic logic unit, so more than
one instruction can be executing at the
same time. The ALUs perform the
bulk of the actual processing
functions. Essentially the ALU can
add binary numbers, shift them left or
right, and compare them. Combinations of these tasks allow ALUs to subtract,
multiply, divide and perform logical comparisons such as greater than, less than,
and equal to.

• Registers – temporary storage areas used by the ALUs during execution. Registers
hold the operands required to execute instructions and also the results obtained
after execution.

• Data Cache – very fast memory area
for storage of data that may soon be
needed or is needed repeatedly.

• Floating Point Unit (FPU) – performs
all non-integer calculations. The FPU
is a processing unit dedicated to
performing computations involving
floating point numbers.

Consider the operation of a transistor.

Transistors are the basic building blocks for all CPU operations. Millions of
transistors are contained on a single tiny silicon microprocessor. So what is a
transistor and how do they operate within a silicon microchip?
Transistors are essentially switches, just like a light switch. They either allow current
in the form of electrons to flow or not flow. The difference between a light switch and
a transistor is that a transistor is switched on and off by an electrical current. So the
input to a transistor is an electrical current (or lack of) and the output is also an
electrical current (or lack of).
There are two different types of silicon used in the
construction of a typical transistor; n-type silicon which
contains phosphorous and has a negative charge indicating
an abundance of electrons (-ve particles) and p-type silicon
which contains boron and is positive or lacking electrons.
Each transistor contains three terminals commonly called
the source, the gate and the drain. When the transistor is
off current cannot flow from the source to the drain. This
occurs when no voltage is applied to the gate.

Floating point number
A number with no fixed
number of digits before or
after the decimal point.
Computations with these
numbers are complex and
require much computing
power.

Integer
A whole number. e.g. 5, 768,
-234, 0. Most data is
represented by computers as a
sequence of binary integers.

GROUP TASK Discussion
Classify each of the components of the CPU discussed above in terms of
its functionality. Is the component performing a processing, control or
storage function or some combination of these functions?

p-type silicon

n-type silicon

+
++

+ + +
++

+ +
+ +

+

+
+ _ _ _ __

_
_ _

_
_

_

__
_ _ _ _ _

_ _ __ __
__ _ _

Source Gate Drain

n-type silicon

Fig 2.74
Detail of a silicon transistor in

the off state. Current cannot
flow from source to drain.

Hardware and Software 97

Software Design and Development – The Preliminary Course

When positive voltage is applied to the gate the electrons
in the p-type silicon are attracted to the positive voltage at
the gate. This forms an electron channel between the
source and the drain allowing current to flow. In this state
the transistor is on.

By connecting or combining the drain to the gate or source
of further transistors creates the circuits that form the CPU.
Current flowing represents a logical 1 and not flowing
represents a logical 0. Simple configurations of transistors
are used to form logic gates that are able to perform AND,
OR and NOT decisions. These logic gates are further
combined to create circuits able to store data, add numbers, control other components
and every other function performed by computers. The HSC option topic The
Software Developer’s View of the Hardware, examines the operation of logic gates
and how they can be combined to perform complex tasks.

Name a storage device and explain how binary data is physically stored on this
device.
Suggested Solution

CD-ROM (or DVD) – The disk contains a continuous spiral track containing pits and
lands. The binary data is evenly spaced along this track. Binary ones are represented
as transitions between pit and land (when reading the reflection changes). Binary
zeros occur where no change from pit to land or land to pit is detected, in other words
a pit continues or a land continues. The binary data is encoded using a system that
ensures very short or very long lands or pits cannot occur.

p-type silicon

n-type silicon

+
++

+ + +
++

+ +
+ +

+
+

+
_ _ _ __

_
_

_
_
_ _

__
_ _ _ _ _

_ _ __ __
__ _ _

Source Gate Drain

n-type silicon

Fig 2.75
Detail of a silicon transistor in
the on state. Current can flow

from source to drain.

Positive
Voltage

GROUP TASK Discussion
How could multiple transistors be connected to perform a logical AND
operation and a logical OR operation? Draw diagrams to describe your
answers.

GROUP TASK Research
Using the Internet or library research the history of the transistor. How
has the discovery and subsequent development of the transistor influenced
the nature of computer technologies?

HSC style question:

98 Chapter 2

Software Design and Development –The Preliminary Course

SET 2C
1. An integer is best described as:

(A) a fraction of a number.
(B) a whole number.
(C) a negative number.
(D) a positive number.

2. Another term for main memory is:
(A) primary storage.
(B) secondary storage.
(C) processing storage.
(D) cache.

3. Printers, plotters and monitors are
examples of:
(A) input devices.
(B) control devices.
(C) output devices.
(D) secondary storage devices.

4. Processing and control functions are
performed by:
(A) transistors.
(B) Random Access Memory.
(C) ferrous-oxide platters.
(D) an input device.

5. The component that provides
communication between the CPU and
RAM is the:
(A) code cache.
(B) bus interface.
(C) data cache.
(D) branch predictor.

6. The chip that is able to hold a binary
state without the need for recharging is
called a:
(A) Dynamic RAM chip.
(B) Static RAM chip.
(C) ROM chip.
(D) None of the above.

7. The function that transforms inputs into
outputs is called:
(A) processing.
(B) control.
(C) transformation.
(D) storage.

8. The storage that remains when the
power is turned off is known as:
(A) secondary storage.
(B) permanent storage.
(C) non-volatile storage.
(D) All of the above.

9. Memory areas that are used to store
instructions currently being used by the
CPU are called:
(A) registers.
(B) control units.
(C) instruction sets.
(D) None of the above.

10. The component that performs all non-
integer numeric calculations is called
the:
(A) Register.
(B) Arithmetic Logic Unit.
(C) Data Cache.
(D) Floating Point Unit.

11. Make up lists of as many storage devices as you can think of. Try to have
more items in your list than anyone else!

12. What is a transistor and why are there so many of them in the CPU?

13. Explain how data is written onto a magnetic hard disk drive.

14. Explain how data is read from a CD-ROM.

15. Distinguish between integers and floating point numbers.
Research why CPUs include a separate processor for floating point number calculations.

Hardware and Software 99

Software Design and Development – The Preliminary Course

SOFTWARE
Software is the set of instructions used to direct the operation of
the hardware causing it to solve some problem. Software provides
the communication link between hardware and users. In this
section we commence by examining the different types of
software used within computer systems. There are two main types
of software present in all computer systems namely the operating
system and application software. The operating system provides
an interface between the hardware and the application software
(Fig 276). Application software operates between users and the
operating system.
There are also a variety of utilities which are used to maintain and
protect the system. File compression, virus checking are both
examples of utilities. Application software can be categorised as
off-the-shelf or custom designed. Off-the-shelf software includes
word processor, spreadsheet and database applications. Custom
designed software is developed to meet a specific purpose.
As an introduction to programming we examine the different generations of
programming languages from machine languages to declarative languages. All
programming languages must be translated into machine code before they can be
executed; we discuss this process.
Knowledge and familiarity with software is important if the software we develop is to
be consistent with other available products. When using various software products it
is worthwhile considering their strengths and weaknesses, this should ensure the
projects we complete do not reproduce faults found in other products. We should try
to learn good programming techniques from our critical observations, this is
particularly important in regard to the user interface.

OPERATING SYSTEM AND UTILITIES
The operating system is the first software we see once the computer has booted and
the last software seen when we shutdow. It organises and controls the hardware and
other software used by the system. Operating systems provide a stable and consistent
way for applications to use hardware without them having to know the precise nature
of the hardware.
Operating systems are used to manage and control the resources of the system. The
operating system is what brings life to the hardware and in many cases determines the
look and feel of the computer for its users. Operating systems come packaged with
various utilities to assist in the management of various system functions e.g. creating
directory structures, copying and deleting files, defragmenting hard drives,
performing backups, altering system settings, etc. Other utilities are available to
perform functions not supplied with the operating system e.g. scanning for viruses,
restoring corrupted files, networking and file sharing, etc.

Hardware

Operating System

Application
Software

Users

Fig 2.76
Conceptual diagram

showing how software
links hardware to users.

GROUP TASK Investigation
Examine your own or one of the school’s computers. Make a list of all the
software installed on this machine then classify each as either system or
application software.

100 Chapter 2

Software Design and Development –The Preliminary Course

Operating systems come in various flavours suited to particular
computers and their uses. Some dedicated computers don’t have
an operating system at all e.g. pocket calculators, microwave
ovens, etc. These devices have well defined functions that cannot
change, similarly their hardware is always the same. Most
computers are more complex and are able to accommodate
different hardware and software functionality. Let us examine
some of the more common types of operating systems that
manage the resources of computers we see and use every day:
• Real-time operating systems (RTOS) are primarily used to

control machinery and scientific instruments. These systems
specialise in performing tasks immediately and in the same
amount of time every time.

• Single-user, single-task operating systems manage the computer so that one user
can complete a single task. The Symbian operating system used on many mobile
phones is an example of this type of operating system.

• Single-user, multi-tasking operating systems allow multiple programs to
execute on a single computer. These are the operating systems used on most
personal computers, the most common
being the MS-Windows and Apple
Macintosh families of operating
systems. The operating system
allocates CPU time to each program.
This gives the appearance of multiple
programs executing at the same time.
For example, typing a letter while also
downloading a file from the Internet.

• Multi-user operating systems allow access to the system’s resources by many
users. The operating system must ensure each user has sufficient resources to
complete their task. Also it must separate these resources so errors encountered by
one user do not affect other users. Multi-user operating systems are used on mini
and mainframe computers. Examples include VMS (Virtual Memory System)
which is used on Digital Equipment Corporation (DEC) mini-computers and
servers. Unix which is available for many computers from PCs up to mainframes.
MVS (Multiple Virtual Storage) which is used on many of IBM’s mainframe
computers.

Multi-tasking
The ability to execute more
than one program
concurrently. The operating
system allocates resources to
each program in turn.

GROUP TASK Investigation
Make a list of the utilities included with the operating system or installed
on your or the school’s computer. Briefly describe the task performed by
each of these utilities.

GROUP TASK Investigation
Examine a number of different computer-based devices. Determine the
type of operating system used by each of these devices.

Fig 2.77
Pocket calculators do
not require a separate

operating system.

Hardware and Software 101

Software Design and Development – The Preliminary Course

The functions performed by most operating systems can be split into five general
categories: processor management, memory and storage management, device
management, application interface and user interface. Apart from the user interface
these tasks remain hidden from the user. Software developers utilise the services of
the application interface and user interface whilst relying on the operating system to
manage each of the other tasks.
• Processor management

The operating system ensures that each process receives enough of the processor’s
time to function correctly. Even when running a single application it is common for
various other background processes to be initiated. The operating system must
allocate each of these tasks an appropriate amount of processing time. When a number
of applications are running the situation becomes even more complex. Multi-user
systems further add to this complexity as do computers containing multiple CPUs.
The operating system must be able to allocate resources appropriately to maximise the
performance of all processes.

Often a process will involve interrupting execution to wait for an input or an output
device. Operating systems respond to interrupt requests by swapping to another
process while waiting for a response from the device, the aim being to use as many
processor cycles for real work.
• Memory and storage management

Each process must be allocated sufficient memory in which to execute. This memory
must be reserved for the exclusive use of that process. Problems would occur if
processes were to infringe on each other’s memory areas. If insufficient memory is
available for a new process then the operating system will remove portions of existing
processes and store them elsewhere eg in virtual memory on a hard drive. The
operating system balances the demands of each process and allocates memory
appropriately.
• Device management

Most devices communicate through a driver. Drivers are programs that translate
messages into those that can be understood by the device. Drivers are separate from
the operating system and are usually supplied with each new hardware device. The
operating system controls when a driver can send or receive data. Most devices
contain a buffer, which holds data until the operating system directs the device to
commence sending or receiving.
• Application interface

The application interface provides a method by which application software can
communicate with the operating system. Applications are then able to utilise many of
the computer system’s functions without worrying about the details of how the
process is accomplished. For example, if a program wishes to create a new file it
sends a message to the application interface. The application interface section of the
operating system knows how to create files and directs the appropriate storage device
to carry out the task. The application programmer need not consider the type or model
of storage device present on particular systems; rather they let the operating system
handle the details. As a consequence, application software is written for particular
operating systems rather than particular hardware devices.

102 Chapter 2

Software Design and Development –The Preliminary Course

• User interface
In the same manner that the application interface provides resources for applications
the user interface provides a consistent means of communication with the user. The
user interface component of the operating system usually sits on top of the main
operating system. For example, the Unix operating system uses shells to communicate
with the user. Graphical user interface (GUI) shells (e.g. X-Windows) as well as
command based shells (e.g. Korn) are available for Unix. Windows and Macintosh
operating systems use a more integrated graphical user interface, however it is still
just one relatively small part of the whole operating system.

Consider the differences between command-based and graphical user
interface (GUI) based operating systems.

Command-based user interfaces require less
system resources to operate. They rely on text
to communicate with the user and the order of
processing is generally predetermined. Data is
sent by the operating system to the video
system as a series of individual text and control
characters. The video system then takes over to
generate the final display. More importantly the
system need only consider a limited and
predetermined processing path. Software
written for command based operating systems
is primarily program centred; the user is forced
to complete tasks in a specific order. Many
command-based operating systems are given a
GUI face-lift which alters their look but not
their functionality.
Graphical user interfaces use a fully bit-mapped
display. The operating system sends the video
system a series of bitmaps to display.
Significant processing is required to generate
these bitmaps. Whether this processing
overhead is justified or not depends on the
nature of the tasks the computer performs.
Computer systems that predominantly operate
without user intervention often use a command based user interface. For example, a
web or mail server’s main task is to provide access to files for remote computers.
They need to do this quickly, accurately and reliably. The use of a GUI is not required
and would likely reduce the performance of these servers. GUIs are primarily about
giving control to the user, letting them decide the order of processing. On these
systems the user is at the centre and therefore the system should be able to respond to
their way of operating. Providing this capacity requires that the operating system deals
with a vast combination of possible inputs from the user.

Fig 2.78
The command-based screen above has been
given a GUI face-lift. No real changes to its

functionality have been made.

GROUP TASK Investigation
Make a list of command based and GUI based systems you have
encountered. Do you think the user interface is appropriate for each of the
systems you have listed?

Hardware and Software 103

Software Design and Development – The Preliminary Course

Utilities
Many utilities are provided with the operating system whilst others are installed to
provide additional functionality. All utilities are used to manage, maintain or secure
the resources of the system.
• File compression
The ability to compress files is a common task to save storage space or to reduce file
size prior to transmission across the Internet. Many operating systems now include
utilities to compress files and other utilities are available to add this functionality if it
is not present. In Windows XP users can specify that all files on the hard drive should
be compressed. Although this will free up space on the hard drive, it is not
recommended as the extra time taken to decompress each file results in poor system
performance. Right clicking on one or more files allow just those files to be
compressed using ZIP compression. This is useful when emailing large files. The
compression provided by operating systems is lossless, which means no data is lost
during compression and decompression. Lossy compression, which forms part of
many audio, image and video formats, achieves higher compression ratios by
removing data that will not be obvious to users.
• Defragmentation
Over time the file system on all hard
disk drives becomes fragmented.
When a hard drive is first used each
file is saved on a new portion of the
disk using complete sectors that are
close to each other. Later when files
are deleted these sectors are freed
for later use. However each new file
stored is a different size hence many
sectors are not used. Over time more
and more unused or partially used
sectors appear and many files are
stored on sectors that are physically
separated on the disk. Such
fragmentation causes poor read and write performance. Defragmentation (or defrag)
utilities are used to correct this problem. Defragging rewrites the entire drive so that
each file is stored on adjoining sectors and few empty sectors remain within the stored
data. Most operating systems include a defrag utility. Commonly the utility includes
the ability to analyse the disk prior to beginning the defragmentation process. The
analysis advises the user if defrag is required and also provides an indication of likely
improvements once the defrag process is complete.
• Virus checking
Anti-virus software is perhaps the most
well known utility in use today. A large
variety of commercial and free anti-virus
packages are available and most operating
systems encourage the user to install at
least one such package. All virus checking
utilities aim to prevent viruses and other malware before they are executed by the
system. They scan all executable files entering the system looking for known virus
signatures or potential patterns in the code that may cause unwanted processing. If a

Fig 2.79
Disk defragmenter within Windows XP.

Virus
A type of malware that is able
to copy itself either within a
single system or to other
systems.

104 Chapter 2

Software Design and Development –The Preliminary Course

potential virus is identified then the virus utility advises the user and then either
deletes the file or quarantines the file so it cannot be executed by the system. As new
viruses are detected the signature files are updated by the anti-virus developer and
distributed to all users. It is therefore critical that anti-virus software is regularly
updated so that new viruses are detected. Many anti-virus packages include an
automatic update facility such that virus signatures are updated on a daily basis.
Many anti-virus packages include a
variety of other features. Most are able to
scan the entire file system in search of
potential viruses and other malware. If a
virus is found in a required system file
then the software is able to clean the file
so it is restored to its original state. Many
also provide real time checks of Internet
sites and files. The company distributing the anti-virus package visits each website in
search of potential viruses and other malware. The results of these searches are then
used to warn users of potential threats within the websites they visit.
• Embedded licence installation count
Within large commercial and government organisations software applications are
routinely installed over a local area network from installation files stored on a server.
Utilities are available to monitor the number of computers where each software
application has been installed. In some cases the software licence agreement will
specify the number of machines on which the application can be installed. Other
licences allow unlimited installation but require the organisation to report on an
annual or bi-annual basis the number of times the application has been installed.
These utilities ensure compliance with the licence terms and conditions.
• Batch job scheduling
There are numerous processes that should be
executed on a regular basis. For example a
complete scan of the hard drive for viruses,
backing up data files and defragmenting drives.
These tasks are often best accomplished when
nobody is using the computer. Batch jobs allow a
number of processes to be performed
sequentially and then a task scheduling utility
can be used to execute the batch job at specific
times. Windows XP includes a utility called
“Windows Task Scheduler” that operates in the
background so that batch jobs can be started at
scheduled times. Fig 2.80 shows when the
AppleSoftwareUpdate process is scheduled to
run on a Windows XP machine.
• Emulation
Many current operating systems include the ability to emulate previous versions of the
operating system. This enables existing software applications to continue to operate
on newer versions of the operating system. Emulators are also available which allow
applications written for another operating system to execute. For example there are
Mac OS emulators for MS Windows and MS Windows emulators for Mac OS. All
emulators must provide an application interface which complies with the application
interface of the original operating system being emulated.

Malware
Malicious software that
deliberately causes some
undesired result. Malware
includes viruses, adware,
spyware, Trojans and worms.

Fig 2.80
Windows Task Scheduler.

Hardware and Software 105

Software Design and Development – The Preliminary Course

APPLICATION SOFTWARE

Software designed to perform some specific task for users is known as application
software. The software is being applied to the solution of a problem. It can transform
a personal computer into a word processor, a spreadsheet, a games machine, a
database system, an Internet browser, a digital video studio or virtually any other type
of data processor. Applications for large computer systems can run hotels,
communication networks, banking systems, government departments, warehouses and
a myriad of other tasks. Application software is what makes computers such versatile
machines.

Application software sits between the operating system and the users. Most software
developers are engaged in the task of designing and developing application software.
They need not concern themselves with the detailed operations and functions of the
hardware; the operating system performs these tasks for them. As a consequence
applications are developed to execute on machines running a particular operating
system rather than a particular hardware configuration. The software application
communicates with the application interface section of the operating system.

Application software can be categorised into two areas; off-the-shelf packages and
custom designed packages. Let us now consider each of these in turn:
Off-the-shelf packages

Applications that are distributed as pre-packaged products are known as off-the-shelf
packages. They may be distributed through retail stores or the Internet. Most software
used on personal computers is of this type. For example, word processors,
spreadsheets, games, graphic editors, etc. The software developer distributes the
product ‘as is’, it is up to the purchaser to decide if the functionality of the application
suits their requirements.

Development of large commercial off-the-shelf software products is very expensive
yet the cost to the end-user is relatively inexpensive. Why is this so? Off-the-shelf
packages are economical to purchase as development costs are shared between all
users. Also the product is the same for all users, it is therefore more economical to
provide quality support. Generally the wider the audience for a product the cheaper
the product should be for its end users.

Some off-the-shelf products can be customised by users to suit varying requirements.
The resulting products are known as customised off-the-shelf (COTS) packages. For
example, creating a database system to store a school’s timetable using Microsoft
Access. In this case, Microsoft Access (an off-the-shelf product) is being used to
create a new customised product (the timetable database system). The off-the-shelf
package is being used as a software development tool to create a new application. The
new custom application, in most cases, requires the services of the parent off-the-shelf
application to operate.

GROUP TASK Investigation
Make a list of all the off-the-shelf applications installed on your home or
class computer. Briefly describe the purpose of each of these applications.

106 Chapter 2

Software Design and Development –The Preliminary Course

Custom designed packages

Unique problems where no existing solution is
available require the development of a custom
designed package. These custom applications are
designed to meet the precise needs of a particular
client. Systems for large business and government
organizations are often custom designed. The
performance requirements combined with the unique
needs of these organizations make developing a
custom solution necessary. COTS based products can
be used for developing smaller applications with
limited numbers of users. However performance
tends to deteriorate as the number of users increases.
Applications that must interface with unusual or
custom hardware will require custom software
solutions.

Consider the following:

There are many situations where an off-the-shelf solution is not available. Some
examples where a custom designed package is likely to be required include:
• A new dam requires a software package to control the operation of its floodgates.
• The water board wishes to computerise its meter reading activities.
• A small business that has a unique distribution and invoicing system.
• A school wishing to implement their own unique reporting system.
• A large chain of restaurants computerising their operations.
• A mail order company developing a web site allowing customers to order and pay

online.
• A security company developing a computer controlled alarm system.
In each case it is likely that a specialist software development company would be
contracted to develop a custom designed application. There are software development
companies that specialise in designing and developing applications for use within
most industries

GROUP TASK Discussion
Why do you think a custom designed solution may be required for each of
the examples above? Discuss.

GROUP TASK Discussion
Why would it be preferable to use a specialist software developer rather
than attempt to develop applications in-house? Use the example scenarios
above to assist with your discussion.

Fig 2.81
Microsoft Office is a popular off-the-
shelf product that allows developers

to produce customised solutions.

Hardware and Software 107

Software Design and Development – The Preliminary Course

SET 2D
1. The ability to execute more than one

program at the same time is known as:
(A) processor-tasking.
(B) memory management.
(C) processor management.
(D) multi-tasking.

2. The software that organises and controls
hardware and other software is called:
(A) the application software.
(B) the operating system.
(C) the memory device.
(D) the application interface.

3. Generally, COTS based packages are
used to:
(A) develop smaller applications with a

limited amount of users.
(B) develop large applications with a

limited amount of users.
(C) develop smaller applications with

an unlimited amount of users.
(D) develop large applications with an

unlimited amount of users.
4 Spreadsheet soft ware and database

software can best be described as:
(A) system software.
(B) custom-made software.
(C) application software.
(D) interface software.

5. Application interfaces provide the
means by which:
(A) application software communicates

with the operating system.
(B) the operating system communicates

with the hardware.
(C) application software communicates

with the hardware.
(D) application software communicates

with itself.

6. Most devices communicate with the
operating system using:
(A) a user
(B) a GUI.
(C) a driver
(D) application software.

7. The two main types of software present
on all computer systems are:
(A) spreadsheet software and the

operating system.
(B) operating system and application

software.
(C) web browser software and

operating system.
(D) word processor software and

application software.

8. Application software that is pre-
packaged is often called:
(A) customised software.
(B) user software.
(C) off-the-shelf software.
(D) operating system software.

9. Graphical user interfaces use:
(A) a command-based system.
(B) a program-centred system.
(C) text to communicate with the user.
(D) a fully bit-mapped display.

10. Peter has a PC at home, which he uses to
complete a number of different tasks
such as using the Internet, doing his
finances and writing letters. The
operating system on Peter’s PC is most
likely to be:
(A) single-user, multi-tasking.
(B) single-user, single-tasking.
(C) multi-user, multi-tasking.
(D) RTOS.

11. What are the essential differences between operating system software and application software?

12. Describe the essential functions performed by most operating systems.

13. Describe the essential differences between command-based and GUI operating systems.

108 Chapter 2

Software Design and Development –The Preliminary Course

PROGRAMMING LANGUAGES
To create software requires a method of instructing the computer. Programming
languages provide a more human way of instructing computers. There are a large
number of programming languages available for use by programmers. Each has their
strengths and weaknesses. Professional software developers require knowledge and
expertise in the use of a range of programming languages. In this way they are able to
select and use a language suited to the current project under development.

In this section we examine the different generations of programming languages, from
machine language, then assembler, higher-level languages and finally declarative
languages. We then examine the current trend towards the use of event driven
languages compared to the more traditional sequential languages. Finally the process
of translating higher-level languages into a form that can be executed by the computer
is discussed.
GENERATIONS OF PROGRAMMING LANGUAGES

Programming languages have traditionally been
grouped into levels and generations. Each
subsequent generation being closely related to
hardware developments occurring at the time.
Low-level languages include the first generation
machine languages and the second-generation
assembler languages. High-level languages are
termed third generation. Declarative languages
are included as part of the fourth and subsequent
generations.

First and second generation languages are
known as low-level languages as their
instructions relate directly to the hardwired
instruction set of the CPU. These languages are
difficult for humans to understand but easy for
machines to understand. Different CPUs require
different low-level languages. As a consequence code written in a low-level language
cannot be used on computers using a different CPU. Low-level languages are said to
be machine dependent, they can only be used on a machine with the same CPU
instruction set.

Third and subsequent generations of languages are said to be machine independent.
These languages are translated into machine instructions. By using different
translators the same code can be used by a variety of CPU designs. Higher-level
languages are more like English making them easier for humans to use and
understand. They include commands to simplify common tasks. These built-in
commands greatly reduce the size and complexity of the code. However they also
limit the programmer, as they can only use the commands included in the language’s
syntax.

Machine

Assembler

High-level

Declarative

Fig 2.82
Generations of programming languages.

GROUP TASK Research
Machine language emerged in the late 1940s, assembler the mid 1950s, and
soon after the first high-level languages appeared. What hardware
developments were occurring at the time to allow programming languages
to evolve so rapidly? Discuss.

Hardware and Software 109

Software Design and Development – The Preliminary Course

Machine Languages

The CPU is able to execute a limited number of inbuilt commands. These commands
are called the instruction set for the processor. A machine language program is a
collection of these commands. Each machine language instruction is represented by
the computer as a series of binary digits e.g.
10011101010011010011. To the casual human
observer it is impossible to make any sense of
machine language in its native form.
Nevertheless every program ever written is
ultimately converted into a series of machine
language instructions. They have to be; these
instructions are all the computer can actually
understand.

Prior to the development of the keyboard
machine language instructions were entered
using a series of cables that effectively opened
and closed particular circuits. Later punched
cards were introduced. These cards provided a storage medium allowing programs to
be reloaded more easily. Once the keyboard arrived machine language was entered in
hexadecimal, this reduced the volume of data entry significantly. In hexadecimal
every 4 bits (binary digits) can be represented using a single character.

Each machine language instruction
contains two parts, an operation code
(opcode) and one or more operands. The
majority of instructions require a single
operand. The opcode identifies to the
control unit what process is to be
performed and the operand provides the
data on which the process is to be performed. For example, on a Pentium machine the
instruction 10100001 00000000 00000010 adds the decimal number 2 to the value
currently in the accumulator. 10100001 is the opcode letting the control unit know to
carry out an add to the accumulator and 00000000 00000010 is the decimal value 2
using 16 bit binary. For many operations the operand will be a memory address rather
than the data itself.

Assembler Languages

Assembler languages were the first attempt to make programming languages more
human like. These languages use mnemonics to represent different commands
available in the assembler language. A mnemonic is simply an aid to assist in
remembering, For example, add ax means add to accumulator and is far easier to
remember than 10100001. Programs written in an assembler language cannot be
understood by the CPU. An assembler is required to translate the assembler code into
machine language. The translation process is straightforward as the majority of the
commands translate directly into single machine language instructions.

Fig 2.83
Cables were used to enter machine

language programs into ENIAC, the first
electronic computer.

GROUP TASK Research
Use the Internet to find a list of opcodes for a number of modern CPUs.
Using these opcodes, write a few machine language instructions.

Accumulator
A register within the CPU that
holds the result of the last
operation performed by the
ALU.

110 Chapter 2

Software Design and Development –The Preliminary Course

Programs written in assembler can be optimised for particular processors. As a
consequence assembler language programs are often written for routines where speed
is crucial e.g. graphics intensive operations. The resulting machine language is then
combined with the code generated from other higher-level languages.

Consider the following

Suppose we wish to read a single key press from the keyboard. The resulting character
is to be displayed on the screen and then stored in memory. In assembler (and in
machine language) this process involves a number of operations. In high-level
languages a single statement is required.

Let us examine the steps involved. The example assembler statements are from an x86
assembler used on the Intel range of processors (which includes the Pentiums).
• Clear the accumulator by moving in a 0 value. e.g. mov ax,0
• Initiate a keyboard interrupt request. This causes the scan code and ASCII value

of the next key pressed on the keyboard to be placed in the accumulator. e.g. int
16,0

• Display this value on the screen so the user gets feedback that they have entered a
value. e.g. int 10,a this statement tells the video system to write the character with
the ASCII value held in the accumulator to the screen at the current cursor
position.

• Store the value held in the accumulator into some memory location for later use.
e.g. stos address

In the above example we have simplified the process. When using assembler, you
must perform all validation and error checking yourself. You must also be extremely
careful to not overwrite memory used by the operating system or other applications.

High-Level Languages

High-level languages are designed to simplify the programming process. They allow
programmers to concentrate on solving problems rather than dealing with the
mundane details of the hardware systems. There are many hundreds of different high-
level languages available today, each with it’s own particular strengths and
weaknesses For example, Fortran is used for scientific applications, Cobol for
business applications, Prolog for artificial intelligence applications and Pascal for
teaching applications.

All high-level languages must be translated into machine code using a translator.
Different translators are available for different models of CPU. This allows high-level
code (source code) to be translated into the machine language (object code)
appropriate to a particular CPU. We examine different methods of translation later in
this chapte. The high-level code is said to be machine independent. Program code
could now be reused on different machines with little modification.

GROUP TASK Discussion
When first introduced assemblers revolutionised the way programs were
written. Why do you think assemblers made such an impact? Discuss.

Hardware and Software 111

Software Design and Development – The Preliminary Course

High-level languages use commands that are more readily understood by humans.
They are designed for the use of human programmers. For example, the command
Write “Hello” has a clear English meaning compared to the equivalent set of machine
language instructions that are actually executed by the CPU. This makes the task of
programming more intuitive and greatly assists the maintenance of existing code.

The majority of high-level languages in common use today require the programmer to
unambiguously describe how a problem is to be solved, these languages are known as
third generation languages In the next section we consider declarative languages
where the emphasis is on what needs to be done rather than how it is to be
accomplished.

Consider the following timeline:

Many high-level languages have maintained a steady following since their initial
creation e.g. Cobol. Others have been influential in the evolution of new programming
techniques, e.g. Lisp, whilst themselves being specialised and not widely known. Fig
2.84 describes the historical development of most of the commonly used languages;
there are hundreds of other languages not included on the above timeline.

Fortran

1950 1960 1970 1980 1990 2000

Fortran 95

Cobol
Object Oriented

Cobol

Algol

Pascal

Modula

Ada

C BCPL

C++

Java

Basic Visual Basic

Lisp

Logo

Simula

Smalltalk

Prolog

Delphi

Fig 2.84
The development and evolution of high-level languages.

The dotted arrows indicate where languages evolved from previous languages.

GROUP TASK Investigation
Each member of the class is to research one or more of the languages
shown on the timeline above. Find a sample code segment and describe
each language’s main areas of application.

GROUP TASK Discussion
Share your results from the above group task with your class. Compile a
class summary of everyone’s research.

112 Chapter 2

Software Design and Development –The Preliminary Course

Declarative Languages

Traditional or imperative languages have developed as a consequence of the design of
the hardware. They require programmers to describe the sequence of processes
leading to the solution of the problem. You must know precisely how to solve the
problem before you can hope to write a program. Declarative languages are very
different, instead programs are more a formal description or specification of a
problem. In most cases the order of statements is of little or no significance. Code
written in a declarative language describes what the problem is rather than how it can
be solved. The program works out a method of solution as it executes.

Declarative languages can be likened to spreadsheets and database queries. On a
spreadsheet all the specifications for the solution are clearly described as formulas and
values entered into cells. The spreadsheet application determines the best method for
evaluating these formula. From the users point of view the order of processing is of
little significance. Querying a database is a similar process. The query is a
specification describing the conditions that must be met or the rules that must be
followed. The data itself is the facts onto which the rules are applied. The database
management system determines the method and sequence of events required to extract
the facts (data) that work with the rules (query).

The Software Design and Development HSC option topic Evolution of Programming
Languages, examines declarative language types in detail. Examples of declarative
languages include Prolog, Lisp, APL, and Haskell. Most declarative languages are
used for specialised tasks involving artificial intelligence. For example, the spelling
and grammar checker contained in your word processor was most likely developed
using a declarative language. Historically applications written using declarative
languages have executed substantially slower than their imperative equivalents. This
situation is becoming progressively less significant as the processing power of modern
CPUs increase.

EVENT DRIVEN VERSUS SEQUENTIAL APPROACH

Sequential programs have a distinct
start and end. The user is led through
the program in a pre-determined
sequence. Instructions are executed
one after the other. The user is unable
to deviate from the sequence
determined by the program. This
approach does not take account of the
different ways in which people work.
Event driven programs listen for and
then respond to certain occurrences or
events. Once an event has occurred the
program executes a particular section
of the code. Each section is executed in a similar manner to a sequential program. The
event driven approach results in more flexible and user-friendly software.

GROUP TASK Discussion
Programs written using declarative languages require more processing
power than their imperative equivalents. Why then would one choose to
program in a declarative language? Discuss.

Fig 2.85
Available events for a command button in VB.NET.

Hardware and Software 113

Software Design and Development – The Preliminary Course

GROUP TASK Investigation
Consider the open dialogue window from a typical GUI application.
Assume this application was written using an event driven approach. List
all the controls found on this dialogue. What events are active for each of
these controls?

Event driven programs can be viewed as a collection of
inter-related modules. The execution of an event driven
program involves the computer continually scanning each
control to check if an event has occurred. Once it detects
an event then the code attached to that event is executed
sequentially. The computer continues scanning controls
for events even whilst an event procedure is executing. In
this way multiple events can be executing concurrently.
For example, the user may click on a command button
that executes a certain event routine and at the same time
an automatic save of the current document may occur as a
consequence of a timer event occurring. This does not
occur in a sequential program.

Most event driven programming languages use controls
as their basic building blocks. Each control has properties
which affect the way the control looks and behaves e.g. a
command button control would have properties to control
its colour, alter its caption, change its size and define its
position within its window. Controls also have events to
which they can respond. A command button would have a
click event, got focus event, drag over event, etc. Event
procedures are written for each event where some
processing is required. Controls and events used in event driven languages are often
confused with objects used in object oriented languages. These two concepts are quite
different and should not be confused.

Different problems will suit different approaches. In general, user-centred programs
are easier to implement in event driven languages. Programs where a distinct
sequence is required are often suited to implementation in a sequential language.
Software developers should have an understanding of a variety of languages and
approaches. This allows them to choose the most appropriate language for each given
problem.

Consider the following problems:

• Creating the daily weather forecast based on vast quantities of data.
• A graphics utility that automatically converts different formats into jpeg files.
• Software to control the engine management system in a car.
• An ordering and invoicing system for a small business.

GROUP TASK Discussion
Consider each of the problems above. Do you think a sequential or event
driven language is the most appropriate? Discuss.

Fig 2.86
The properties window for a
command button in VB.NET

114 Chapter 2

Software Design and Development –The Preliminary Course

THE NEED FOR TRANSLATION
Source code is a collection of statements written in a high-level language. These
statements make no sense to the CPU; they must be translated into machine language.
A translator is used to carry out this translation process. Translators are themselves
software applications whose purpose is to convert the source code of a particular high-
level language into the machine language instructions understood by a particular
CPU. Different CPUs require different translators.
The translation process includes three main steps: lexical analysis, syntactical analysis
and code generation. Lexical analysis examines each element of the source code to
ensure it is a legitimate part of the high-level language. This is similar to checking the
spelling in a written document. Syntactical analysis checks the grammar or syntax of
the source code is correct. This is similar to checking a written document has correct
grammar and punctuation. Finally the machine code is generated.
There are two main methods of translation; compilation and interpretation. During the
development of a software product it is common to use both these methods.
Interpreters are used during development to test code as it is being produced. Once the
source code is complete compilation is usually used to generate the final executable
files for distribution.

Compilation
The process of compilation involves translating the entire source code into object
code. The object code is then combined with other linked files to create the final
executable files. These executable files can then be executed repeatedly at a later time
without the services of the compiler. Compiled code executes fast as there is no
translation required at run time. Most applications we use on computers have been
compiled.
When using a compiled application it is difficult to determine the original high-level
language used for its development. The compiled code is a series of machine language
instructions. This provides protection for the software developer as it is very difficult
to alter the code. Similarly, determining the nature of the original source code is very
difficult to achieve from executable machine code.

Interpretation
Interpreters translate source code statement by statement. After each statement has
been translated into machine code it is immediately executed. This process of
translation then execution continues until either an error in a line of source code is
encountered or the application ends. The process of translating code at run time is a
significant processing overhead resulting in poor performance. Apart from code that
generates many web sites few applications are executed using interpreters; rather
interpreters are used by programmers to test their code as it is being developed.

GROUP TASK Activity
How many people in your class can speak and/or write in a foreign
language? Each of these people is to translate the first two sentences on
this page into that language. Discuss this process and describe any
similarities to the translation process described above.

GROUP TASK Discussion
Apparently most applications we use have been translated using a
compiler. Make up a list of reasons why this is the case.

Hardware and Software 115

Software Design and Development – The Preliminary Course

When running programs using an interpreter you must have a copy of the interpreter
installed together with the original source code. To distribute a program in this way
makes copying and alteration of the source code simple. For commercial software this
is a definite problem.
The code behind many websites is interpreted. For example the popular PHP language
is always interpreted. PHP code runs on a web server to create dynamic web sites. In
this case the output from the execution of the code is transmitted to the user’s
browser. The source code remains on the web server where it is not accessible to
users. Some declarative languages do not use compilers, rather they must be
interpreted. In these cases, the interpreter is one part of the programming
environment. The environment provides much of the processing support for the
application.

(a) Outline the major functions performed by an operating system.
(b) Most commercial software is distributed as executable files.

(i) Identify the method of translation used to create commercially distributed
executable files.

(ii) Explain why commercial software is distributed as executable files.
Suggested solution

(a) Operating system functions include:
• Scheduling and running of tasks
• Accessing hardware
• Managing allocation of memory to the various tasks running
• Provides an interface to the user
• Provides an interface between applications and peripherals.
• Provides an interface between applications and the file system

(b) (i) Compilation is used to create an executable file.

(ii) Why distribute executable files:
• Protects copyright. There is no need to provide those using the software

access to the source code. This makes it much harder for people to change
the code and redistribute the files as their own slightly different product.

• Code executes much faster. There is no need to re-check each line and
then translate it to its equivalent machine code as would have to be done if
the source code were distributed and an interpreter used.

GROUP TASK Discussion
There are many problems and issues that can arise when distributing
interpreted software products. List and discuss some possible problems.

GROUP TASK Activity
Make up a table to summarise the advantages and disadvantages of the
two forms of translation discussed above.

HSC style question:

116 Chapter 2

Software Design and Development –The Preliminary Course

SET 2E
1. Low-level languages are also known as:

(A) first generation languages.
(B) second generation languages.
(C) first and second generation

languages.
(D) second and third generation

languages.
2. C++ and Pascal are examples of:

(A) high-level languages.
(B) machine languages.
(C) first generation languages.
(D) assembler languages.

3. Which type of language developed as a
consequence of the hardware design?
(A) Event-driven.
(B) Imperative.
(C) Declarative.
(D) None of the above.

4. A register within the CPU, which holds
the result of the last operation performed
by the ALU is called:
(A) the control unit.
(B) the operand.
(C) the arithmetic logic unit.
(D) the accumulator.

5. The process that examines whether the
syntax of the source code is correct is
known as:
(A) lexical analysis.
(B) syntactical analysis.
(C) incremental compilation.
(D) compilation.

6. Languages that use mnemonics to
represent different commands are called:
(A) assembler languages.
(B) machine languages.
(C) high-level languages.
(D) declarative languages.

7. The two main methods of translation
are:
(A) compilation and interpretation.
(B) compilation and source translation.
(C) lexical and syntactical analysis.
(D) assembly and translation.

8. Lisp, APL and Haskell are examples of:
(A) traditional languages.
(B) imperative languages.
(C) declarative languages.
(D) machine languages.

9. Which languages are said to be machine
dependent?
(A) High-level languages.
(B) Low-level languages.
(C) Declarative languages.
(D) All computer languages.

10. The process that examines each element
of the source code to ensure that it is a
legitimate part of the language is known
as:
(A) compilation.
(B) translation.
(C) lexical analysis.
(D) syntactical analysis.

11. Describe the essential features of machine languages, assembler languages, high-level languages
and declarative languages.

12. Machine and assembler languages are said to be machine dependent. What does this mean?

13. List as many high-level languages as you can. See if you can come up with the longest list in the
class.

Hardware and Software 117

Software Design and Development – The Preliminary Course

14. Examine the above screen shot from taken from The HSC Assistant: SDD CD-ROM. This
product was written using an event driven programming language. List the events that are likely
to activate code for each control on this screen. Include a brief description of the processing that
would likely occur for each event identified.

15. Compare and contrast the two methods of translation; namely compilation and interpretation.

118 Chapter 2

Software Design and Development –The Preliminary Course

THE RELATIONSHIP BETWEEN HARDWARE AND SOFTWARE
In this section we examine the interactions that take place between the hardware and
software components of the system. We address the following questions:

• How does the hardware process software instructions?

• What occurs when an application is first initiated and run?

• What are the hardware requirements for software?

We then consider the complete computer system including hardware, software, data,
procedures and personnel. Each of these elements has a significant role to play in all
computer systems. We consider these roles, particularly in regard to the process of
software design and development.

HOW DOES THE HARDWARE PROCESS SOFTWARE INSTRUCTIONS?
(THE FETCH-EXECUTE CYCLE)

Software instructions processed by the CPU are always in machine language. This is
all the CPU, or more precisely the control unit, can understand. The method of
executing each machine language statement is hardwired within the CPU. Each
machine language instruction corresponds to a precise series of CPU operations.
These CPU operations are known as microcode.

The fetch-execute cycle is used to carry out each and every
machine language instruction. This cycle can be split into
instruction time (I-time) and execution time (E-time).
Instruction time involves fetching the instruction from
memory and then decoding it. Execution time involves
executing the instruction and storing the result. The fetch-
execute cycle occurs at a constant pace. The system clock
determines this pace. At each tick of the clock a part of the
fetch-execute cycle occurs.

A register is a temporary but very fast storage area within
the CPU. There are a number of registers crucial to the
operation of the fetch-execute cycle. The program counter holds the address of the
next instruction to be executed. It is a counter because in most cases, instructions are
held sequentially, thus the program counter is incremented to point to the address of
the next instruction. The instruction register holds the machine language instruction
waiting to be executed. The accumulator together with other general-purpose
registers, are used to store data and any results during and after processing.

Let us examine each step in the fetch-execute cycle:
• Fetch - the instruction at the address in memory indicated by the program counter,

is read into the instruction register. The program counter is then incremented to
point to the next instruction.

• Decode – the control unit makes sense of the instruction. It then directs other
components to load any required operands into the appropriate registers.

• Execute – the instruction is actually carried out. For most instructions, the services
of the ALU are used.

• Store – the results are stored in one or more of the general-purpose registers. A
further instruction is needed to move the results to RAM.

Fig 2.87
The fetch-execute cycle.

Hardware and Software 119

Software Design and Development – The Preliminary Course

Modern CPU's are able to process multiple instructions concurrently. While one
instruction is being fetched, another is being decoded and another is being executed.
This is called pipelining. Most CPUs have more than one ALU, which means
instructions that do not affect one another can be executed at the same time. These
and other techniques significantly improve the performance of modern CPUs.

WHAT OCCURS WHEN AN APPLICATION IS FIRST INITIATED AND
RUN?

The operating system controls the initiation and allocation of resources to all
applications. Once the user selects or enters a command to start an application, the

120 Chapter 2

Software Design and Development –The Preliminary Course

WHAT ARE THE HARDWARE REQUIREMENTS FOR SOFTWARE?

All software requires hardware on which to operate. Most software will have a set of
minimum requirements necessary for the product to install and execute. Further
resources are needed for optimal performance. Many products also specify a set of
recommended requirements if optimal performance is to be realised.

Let us consider the different hardware areas often specified in these requirements:

• Processor – The type of processor and speed of the processor. Applications are
really sets of machine language instructions. The processor on which the software
is to be run must be able to understand each of the instructions contained within
the program. Different processors utilise different instruction sets. Newer versions
of a particular family of processors often include new instructions not available in
previous versions. If a program includes some of these instructions then it will not
execute on earlier processors. Obviously the speed of the processor will greatly
affect the speed at which the application can execute.

• RAM – The amount of random access memory available is often more crucial to
the performance of software than the speed of the processor. Insufficient RAM
causes the processor to create virtual RAM on a hard drive resulting in poor
performance. Minimum RAM requirements usually assume the software is
running exclusively on the computer, this is seldom the case. Extra RAM beyond
the minimum requirements is always advisable.

• Hard disk space – Applications require physical secondary storage. Without the
required space it is impossible to install the application. The more crowded a hard
disk becomes, the longer it takes to locate information. Often hard disk storage
requirements specify space required for a minimum installation and again for a
full installation with extra features, tutorials and data files installed.

• Peripheral Devices – Items such as printers, video cards, sound cards, monitors,
pointing devices, etc… are specified. Often these can be of any type as the
application communicates with the peripherals via the operating system. Generic
requirements are often stated such as ‘requires VGA or higher resolution monitor’
or ‘Microsoft compatible pointing device required.’ Specialised applications may
require particular hardware products. For example, an application that
communicates with a company’s telephone system may do so directly rather than
through the operating system. In this case, the application will include the
instructions needed to communicate with a limited selection of telephone systems.

 GROUP TASK Research
Examine the packaging for a number of commercial software applications.
Make a list of the minimum hardware requirements of each package.

GROUP TASK Discussion
Imagine a user purchases a software product and whilst attempting to
install the product finds their computer does not meet the minimum
requirements. Should they have the right to return the package for a full
refund? Debate each side of the argument.

Hardware and Software 121

Software Design and Development – The Preliminary Course

CHAPTER 2 REVIEW
1. The five elements of all computer-based

systems are:
(A) Hardware, hard disk, peripheral

devices, software, personnel.
(B) Operating system, application

software, peripheral devices,
personnel and data.

(C) Hardware, software, data,
personnel and procedures.

(D) Operating system, application
software, input devices, output
devices and personnel.

2. The pace that the fetch-execute cycle
occurs is determined by:
(A) the system clock.
(B) the arithmetic logic unit.
(C) the accumulator.
(D) the user.

3. The term ‘pixel’ is an abbreviation
meaning:
(A) picture resolution.
(B) photo element.
(C) picture element.
(D) pattern element.

4. The function that sends data outside the
system is known as:
(A) output
(B) input.
(C) throughput.
(D) processing.

5. The basic building blocks of all Central
Processing Unit components are:
(A) arithmetic logic units.
(B) registers.
(C) processor chips.
(D) transistors.

6. The term known as ‘pipelining’ means:
(A) CPU’s are able to process multiple

transactions concurrently.
(B) CPU’s are able to process only one

transaction from start to finish at
any one time.

(C) CPU’s are not able to process any
transactions.

(D) CPU’s can send and receive data
simultaneously.

7. The function that obtains data from
outside the system is known as:
(A) output.
(B) input.
(C) throughput.
(D) processing.

8. Software instructions that are processed
by the CPU are always in:
(A) low-level languages.
(B) machine language.
(C) source code.
(D) high-level languages.

9. An area used for storing instructions that
are likely to be needed in the future is
called the:
(A) microprocessor.
(B) branch predictor.
(C) bus interface.
(D) code cache.

10. The theory that says the speed of
processors would double every 18
months has come to be known as:
(A) Gordon’s Law.
(B) Moore’s Law.
(C) Gate’s Law.
(D) Intel’s Law.

11. Describe the sequence of events occurring within the CPU during execution of a single
microcode instruction.

12. A digital watch can be thought of as a computer system. List elements of this system under the
headings hardware, software, data, personnel and procedures. Would such a watch have an
operating system? Assuming it did, what would be the essential features of its operating system?

13. What are the differences between the way data is physically stored on a hard disk compared to
the way it is stored on a CD-ROM?

14. Describe the interaction that occurs between users, application software, system software and
hardware when a computer system is in operation.

15. Most software is written in high-level programming languages. This seems a bit odd when low-
level languages execute faster and declarative languages don’t require knowledge of how to
solve the problem. Can you explain this situation? Discuss.

122 Chapter 3

Software Design and Development –The Preliminary Course

 In this chapter you will learn to:
• identify each of these stages in practical

programming exercises
• design and develop a limited prototype as a

proposed solution, or part of a solution, to a
problem

• analyse the effectiveness of the prototyping
approach in developing a software solution

• use an existing software package to develop a
solution using a RAD approach

• discuss the advantages and disadvantages of end
user developed software

• compare and contrast structured and agile
approaches

• recognise reasons for the failure of solutions
• select appropriate software development

approaches for specific purposes
• identify characteristics of projects that lend

themselves to a specific development approach
• recognise that a single solution may involve a

combination of approaches
• identify characteristics of projects that require a

combination of approaches

Which will make you more able to:
• describe the effects of program language

developments on current practices

• identify the issues relating to the use of
software solutions

• analyse a given problem in order to generate a
computer-based solution

• investigate a structured approach in the design
and implementation of a software solution

• use a variety of development approaches to
generate software solutions and distinguish
between these approaches

• describe the skills involved in software
development.

In this chapter you will learn about:
Structured approach to software solutions
• stages in program development

– defining and understanding the problem
– planning and designing
– implementing
– testing and evaluating
– maintaining

• characteristics of the structured approach,
including:
– distinct formal stages
– long time periods
– large-scale projects
– large budgets
– involvement of a development team consisting

of:
- analysts
- designers
- programmers
- clients (users and management)

Agile approach
• speed of getting solution to market
• interactive approach with selective refinement
• working version delivered after each iteration
• responds well to changing specifications
• close collaboration between development team and

client throughout the development process
Prototyping
• modelling of a proposed solution or part of a

solution
• progressive refinement of the model in response to

feedback
Rapid applications development approach (RAD)
• characteristics of the rapid approach, including:

– lack of formal stages
– use of existing routines
– use of appropriate applications to develop the

RAD solution
- drag and drop programming environments
- common application packages such as

spreadsheets, databases
– communication between developer and client
– short time period
– small-scale projects
– small budgets

End user approach
• characteristics of the end user approach, including:

– end user as the developer and maintainer
– typically uses RAD and/or prototyping
– the developer is the client, therefore there are

no communication issues
– small budget and/or short time period for

development
Selecting an appropriate development approach
• software solutions that have been developed using

a single approach
• software solutions that have been developed using

a combination of approaches

Software Development Approaches 123

Software Design and Development – The Preliminary Course

3
SOFTWARE DEVELOPMENT

APPROACHES

Software development is the process of creating new software solutions. In this
chapter we examine five commonly used approaches to software development. These
approaches provide a general framework under which the development of software
products can progress It is im portant to choose an approach that will yield the best
result for the given problem. For many problems a combination of approaches is used.

The approaches examined range from the
formal structured approach, through the
agile, prototyping and rapid application
development (RAD) approaches to the
informal end user approach. The structured
approach is used for developing large-
scale complex, high budget software
products and requires extensive expertise
and long development times. At the other
end of the scale is the end user approach.
This approach is used for small-scale
projects where the user with a limited
budget quickly develops the product.

Historically, software development has been accomplished in stages, where each stage
must be completed before the next is commenced. Altering requirements during
development being difficult and costly. Unfortunately due to the long development
times, many requirements had substantially changed before the product had been
released for use. Software developers had to acknowledge this problem and respond
by altering their approach to software development. Faster, more reactive approaches
were required. The creation of software tools to assist in speeding up and reducing the
formality of the task began to emerge. These issues and tools led to the prototyping,
RAD and agile approaches becoming recognised and valuable techniques.

GROUP TASK Discussion
Hardware technologies have advanced at an astounding rate yet in many
ways software has lagged behind. Suggest reasons why this may be the
case. Discuss.

GROUP TASK Discussion
‘Software development is a compromise between cost and quality’
Do you agree with this statement? Discuss with reference to the
information above and in Fig 3.1.

Fig 3.1
A general view of the five software

development approaches.

Agile

Protoyping
RAD

End User

High

Low

Structured

124 Chapter 3

Software Design and Development –The Preliminary Course

STRUCTURED APPROACH
The structured approach to software development is
characterised by distinct formal stages. Each stage is
completed before the next is commenced. This is
necessary as teams of developers with varying skills
and responsibilities are involved in the development
process. For example, the coding of the solution
cannot commence until the solution has been
thoroughly planned in its entirety. The personnel
coding the solution are often different to those who
plan the solution.

This approach is generally used for large-scale
projects where performance and reliability are vital
requirements. A large audience will use the final
product so even relatively minor errors will prove
costly. It is worth spending extra time and money to
ensure the final product is of the highest quality.

Let us examine the processes and personnel involved
at each stage in the structured development of a
typical software product.
Defining and understanding the problem

The requirements of the problem must be understood precisely. Omissions at this
stage will prove the most expensive to correct during later stages. System analysts are
experts in determining and defining requirements. The set of requirements should
clearly and precisely define each aspect of the problem. These requirements will later
be used to test the success of the solution.

System analysts often commence by compiling a list of outputs. These outputs are
then examined to determine the required inputs. The system analyst is then able to
create models showing the flow of data through the system from inputs through the
various processes to the final outputs.

Defining the problem involves consideration of all aspects that can affect the
operation of the final system. Existing systems should be studied to ensure the new
system will accomplish all existing requirements. New requirements will then be
added. All elements of the system should be considered. There is no point designing a
product that cannot operate on the available hardware. The potential users of the
system should be consulted to determine their needs and requirements. Software
products that solve problems in a manner that cannot be easily understood and used
are of little value. Defining and understanding the problem includes catering to the
needs of users. This may involve the creation of screen designs to document user
requirements.

Finally a development plan is constructed. This plan provides an overview of the steps
required to develop the solution and the relative timing allocated to each step.

GROUP TASK Discussion
Defining the problem precisely is particularly vital when using the
structured approach. Why do you think this is the case? Why might it be
difficult to accomplish this task? Discuss.

Fig 3.2
The software development cycle

for the structured software
development approach.

Testing
and

evaluating

Maintaining

Defining and
understanding
the problem

Implementing

Planning
and

designing

Software Development Approaches 125

Software Design and Development – The Preliminary Course

Planning and designing

At the planning stage the structures that will hold the data to be used during
processing are designed. The nature of processing that will occur should be
considered at this time. Well-designed data structures can greatly reduce the
processing required. These data structures are carefully documented, as the
programmers will require them as the solution is built in code.

The project is broken down into modules; each module solving a particular aspect of
the problem. Methods of solving each problem are described using an algorithm
description language such as pseudocode or flowcharts. These algorithms form the
templates for the programmers who will code the solution in a programming
language.
Implementing

This stage is where the solution is coded in a programming language. Programmers
are allocated specific modules to code. They are given system models, the nature and
names of relevant data structures together with algorithms. This documentation
ensures each programmer adheres to the planned solution and assists in ensuring each
module will operate correctly with other modules. The programmer tests their
allocated modules to ensure they perform the required task correctly and efficiently.

Once all modules are complete they are combined to form the final solution. Testing
of the connections between modules occurs. In theory the software should now be
ready for use; unfortunately this is seldom the case. Thorough testing to ensure the
solution meets the requirements determined when defining the problem is required.
Testing and evaluating

Before the solution can be used it must be thoroughly tested. Large software
development companies have teams of testers whose sole function is to check
products against the original requirements. This stage involves testing for errors in the
code as well as testing the performance of the product under real conditions. For
example, the program may be free of errors yet it may perform poorly when subjected
to large amounts of data.

Selections of potential users are often used to evaluate the solution and ensure it meets
the user’s requirements. This is particularly important in regard to the user interface.
These users are asked to note any problems encountered and also to make suggestions
in regard to possible improvements.

Once any problems encountered have been corrected the software is ready for
distribution and installation.
Maintaining

Almost all software products have a life span. They are upgraded to include new
functionality and to improve existing functionality In fact many large-scale
applications have been in use for thirty years or more when they were originally
intended to have a life of around ten years. These applications have been continually
upgraded. Maintenance programmers are employed to perform these upgrades.

When using the structured approach each modification is performed using the steps of
the program development cycle. The problem is defined, the solution planned and
designed, implemented and then tested. Finally the modified product is released.

126 Chapter 3

Software Design and Development –The Preliminary Course

Consider the following:

Slapper Wackers is a popular chain of fast food restaurants. The
directors of Slapper Wackers make a decision to update the
company’s computer system. They contract Winston Soft, a
software development company, to design and develop the new
system.

A feasibility study has been completed and the directors of Slapper Wackers have
accepted a general plan as to how the project should proceed. As there are some 400
restaurants in the chain it is decided that the structured approach to development
should be used. Let us examine the steps carried out by Winston Soft:
Defining and understanding the problem

• A team of system analysts first collect data from a sample of employees.
Employees at various levels within the organization are included in the sample.
Interviews, questionnaires and informal observations are carried out. Aspects of
the existing system as well as perceived needs in relation to the new system are
addressed.

• The analysts meet with management to determine the workflow and organisational
structure of the company. The needs expressed by the employees are presented,
discussed and prioritised.

• Given the needs expressed by management and the employees the analysts can
now examine the existing system in detail. An analysis of the data and how it
flows through the system is undertaken. A graphical model of the system is
created.

• Detailed recommendations are compiled. These recommendations are presented to
the directors of Slapper Wackers for approval.

• The objectives of the new system need to be determined. The recommendations
together with the analysis of the existing system provide the basis for the creation
of these objectives.

• The system analysts prepare a plan for the development of the software. A
timeline is included together with a description of each step in the development
process.

GROUP TASK Activity
Imagine your class are the system analysts working for Winston Soft.
Create a series of questionnaires that could be used to collect relevant data
from a sample of the waiters, the kitchen staff, the managers and the head
office staff working at Slapper Wackers.

GROUP TASK Discussion
Why do you think the system analysts chose to survey the employees
before surveying management? Discuss.

Software Development Approaches 127

Software Design and Development – The Preliminary Course

Planning and designing

• The project is progressively broken down
into smaller more manageable modules
by the system designers. This process is
known as top-down design. Many of
these designers were part of the initial
system analysis team and others are
specialist software designers. These
modules will become the sub-programs of
the final software product.

• Data structures are designed. The details
of the processing to be performed by each
module are created. Algorithms are
created for the more difficult modules.

• Design standards are discussed and
created. Standards in regard to the look
and consistency of the user interface
together with naming standards for
variables to be used throughout the
program.

Implementing

• Programmers are assigned modules to code in the chosen high-level language.

• Modules are coded from the lowest level of the top-down design, progressively
working upwards to higher-level modules.

• As modules are completed they are tested and then added to the main project.

• As higher-level modules are completed their connections with lower level
modules are tested.

• Once all modules have been written the entire product is tested to ensure it
operates according to the design specifications.

GROUP TASK Discussion
As the structured approach is being used planning does not commence
until all requirements and objectives have been determined. In reality can
all the requirements and objectives be known at this stage? Discuss.

GROUP TASK Discussion
When using a structured approach to software development it is vital that
programmers adhere to the design of each module formulated during the
planning stage. Why is this necessary? Discuss.

Slapper
Wackers

Menu
system

Special
items

EFTPOS
interface

Enter
orders

Process
payment

Head office
interface

Account
keeping

Sales
reports

Food
delivery

Fig 3.3
A possible initial top-down design for

the Slapper Wackers project.

GROUP TASK Discussion
Programs can be built from the top-down or from the bottom-up. In this
example the product is to be coded from the bottom-up. Discuss
advantages and disadvantages of each of these coding methods.

128 Chapter 3

Software Design and Development –The Preliminary Course

Agile
Quick thinking, co-ordinated,
active and lean. Adapts well to
changing situations.

Testing and evaluating

• Specialist software testers perform testing of the final product. Their aim is to
ensure the product achieves the objectives determined when defining the problem.

• The product interfaces with the EFTPOS network as well as communicating sales
and profit data back to head office. A software load testing application is used to
simulate the demands of the system when all 400 restaurants are operational.

• Installing the product in a sample of 10 restaurants performs useability testing.
Feedback is sought from all personnel involved in this beta test.

• The software testers prepare a report outlining and prioritising any problems
encountered during testing. The report may also include recommendations for
improving the product before final release.

• Winston Soft decides which problems and recommendations should be acted upon
prior to release and makes the necessary changes.

• Finally the software is ready for implementation.

AGILE APPROACH
Agile development methods have emerged
in response to the “adhoc” reality of many
software development projects. They place
emphasis on the team developing the
system rather than following predefined
structured development processes. Agile
methods remove the need for detailed requirements and complex design
documentation. Rather they encourage cooperation and team work. Agile methods are
particularly well suited to web-based software development and other software
applications that are modified regularly such that they evolve and are updated over
time.
Typically quite small teams of developers are used. It would be unusual for an agile
team to have more than about half a dozen members. It is preferable for one team
member to be a knowledgeable and experienced user. Small teams are better able to
share ideas and work on solutions together. Larger teams tend to break into smaller
groups – for agile methods to be a success everyone must be an equal member with a
clear shared purpose. Often the team members are multi-skilled so all are actively
contributing to all development activities.

GROUP TASK Discussion
How does the testing undertaken by programmers differ from that
undertaken by the specialist software testers? Discuss.

GROUP TASK Discussion
The structured approach is particularly suited to the development of large
scale, large budget software products. These products can often take a
number of years to develop. Using the development of the Slapper
Wacker system as an example, explain why the above statements are true.

Software Development Approaches 129

Software Design and Development – The Preliminary Course

Typical characteristics of an agile software development approach include:

• Speed of getting a working solution to market or to users. Basic functionality is
included initially so operational software can be released as soon as possible.

• Interaction within the team and users which allows the solution to be selective
refinemed throughout the development process.

• Working versions of the software are regularly delivered. Each version adds the
next most important functions.

• Responds well to changing specifications. Specifications are encouraged to
change and evolve.

• Development team and clients collaborate closely througout development. Often a
cleint representative or user is part of the team. The needs and ongoing feedback
of the client and users drives the direction of the development.

Let us work through the typical sequence of activities occuring during agile
development (refer Fig 3.4). Initially the general nature of the problem is determined
and the development team is formed. The
team first meet to create a basic plan and a
general design for the software – only
minimal detail at this stage, just enough to
get started. The basic idea is to only plan,
design and document details as they’re
actually needed. Often a simple whiteboard
is used to sketch out the general design.
The team then gets straight to the task of
creating an initial solution. As this occurs
they informally consult and negotiate with
each other. The user team member is
always present to answer questions, make
suggestions and generally ensure the
solution will be workable in practice.

Once an initial, yet simplified, solution is implemented it is immediately tested,
evaluated and then released for use. This means a working version of the software is
actually being used by real users – usually the client but it could be a sample of users
or even globally to all users via the web. The users see exactly what has been
achieved, can provide feedback and make suggestions about further additions. In
effect we have entered a new mini “defining and understanding the problem” phase.
The team again meets informally to discuss the next part of the design. The design
incorporates feedback from users together with their own ideas. They then go straight
to work coding this next part of the design. The solution is again thoroughly tested
and evaluated before being released. This process repeats many times with each
iteration implementing further functionality and detail. Typically a single iteration
takes weeks or even just days. Each design meeting is short, maybe just an hour or so,
whilst coding and testing consumes the majority of the development time.

When developing software it’s all the miniscule details that combine to form the total
solution. Agile methods are a response to the reality that intricate details are difficult
to specify accurately in advance. Each part of a software solution relies heavily on
many other related parts. Until the related parts exist, it is wasteful to continue
designing. Much of the design will prove unworkable and will need to be redesigned

Fig 3.4
The software development cycle

for the agile approach.

Defining and
understanding
initial problem

Plan, design
and

implement

Test and
evaluate current

solution

Define and
understand new

requirements

Release
working

version to users

130 Chapter 3

Software Design and Development –The Preliminary Course

or significantly altered. Compare this to the traditional approach where specific and
intricate detail is created well in advance.

One significant issue with agile methods is how to construct agreements when
outsourcing the development. Traditionally a strict set of detailed requirements,
together with the total cost and time for completion is negotiated. When using agile
methods no detailed specifications exist – they emerge and change during
development. A common solution to this dilemma is to fix the budget and time and
allow the specifications to change. Once the budget and time is exhausted then the
current solution becomes the final solution. To enter into such agreements requires
significant trust to be established between the client and developer. The client stands
to gain, as they are heavily involved throughout the development process and hence
are more likely to receive a final product that better meets their actual and current
requirements.

Consider the following situations:

• Google, Yahoo and other search engine companies continually update their
systems. This includes both the software and also the data and its underlying
organisation.

• Currently most operating systems, and in particular Microsoft Windows, are
regularly updated via automatic download to add new functionality and also to
overcome security flaws.

• Large businesses commonly employ their own teams of information system
developers. These teams are continually working to fulfil new and changing user
requirements.

• Websites often change. For instance, discussion forums are added, links to social
networks are included, RSS feeds are implemented, etc.

• Small businesses and even individuals regularly modify their websites. Once the
new site has been uploaded to their web server it is immediately operational for all
end-users.

• A large company has decided to develop a new software application for internal
use. They already have a team of developers, however the existing team is
comprised of members with different specific skills and no agile development
experience.

GROUP TASK Discussion
Critically analyse each of the above situations in terms of its suitability for
development using agile methods. Identify any issues that should be
addressed if agile development is to be a success.

GROUP TASK Research
There are a variety of different versions of the agile approach. For
example, Scrum, Extreme Programming, Crystal, and Lean software
development. Research a variety of agile methods and summarise their
major features.

Software Development Approaches 131

Software Design and Development – The Preliminary Course

PROTOTYPING APPROACH
The prototyping approach was created to
assist the gathering of specifications from
users. Users are more able to express their
needs when they see a realistic model of
the final system. Feedback based on
prototypes of the final system uncovers
many issues that would be difficult to
determine using traditional meetings and
text based documents.

Software prototypes can be used purely to assist in the formulation of requirements or
they can be evolutionary. Concept prototypes are produced to assist in the
determination of requirements, they are then discarded. This type of prototype is often
used to assist in the design and development of all sorts of products. They can be used
as system analysis tools regardless of the software development approach being used.
Evolutionary prototypes develop over time and finally become the final operational
product. Each prototype is created using a simplified software development cycle
similar to that used in the structured approach. After each cycle a new prototype
emerges. This process continues repeatedly until a product suitable for
implementation is created. These evolutionary prototypes are the basis of the
prototyping approach to software development.

Let us examine the prototyping approach to
software development in more detail. We will
consider the use of evolutionary prototypes as
they provide a comprehensive method resulting
in a final operational solution.
First the initial problem is defined and a
prototype created. This prototype is a first
attempt at a solution. Its development involves
using the steps of the program development
cycle in a less formal manner to how they are
used in the structured approach. Once complete
this prototype is used as a tool to redefine the
problem. As a consequence of the redefined
requirements a new prototype is developed
using the previous prototype as a starting point.
This second prototype is then used to redefine
the requirements and a further prototype is
developed. This process continues until an
acceptable solution is reached. This solution,
which is itself a refined prototype, becomes the
operational product.
The prototyping approach works well for
medium sized projects involving extensive user

Prototype
An enactable model or mock-
up of a software system that
enables evaluation of features
and functions in an operational
scenario.

GROUP TASK Discussion
How do evolutionary prototypes used in software development differ
from prototypes used in most other industries? Why don’t other industries
use evolutionary prototypes? Discuss.

Fig 3.5
The program development cycle
for the prototyping approach.

Defining and
understanding
initial problem

Plan and
design the
prototype

Implement
the

prototype

Implement
operational

solution

Redefine
the

problem

Test and
evaluate the
prototype

Testing
and

evaluating

132 Chapter 3

Software Design and Development –The Preliminary Course

interactions. These projects are normally designed for a particular client who has
unique needs and a small budget. Absolute reliability and performance are not vital to
the success of the project. More important is a useable product that includes the
required functionality required by users.
For the prototyping approach to be a success the team of developers should include a
variety of skills and is usually of a small size. Often those performing the system
analysis tasks will also perform other tasks such as designing screens or coding the
solution. Because of the continual interaction with users each developer should
possess strong teamwork and communication skills.
Defining and understanding initial problem
The general requirements of the solution are required. Often observing and examining
the current system can obtain these requirements. The reason for a new system being
considered are often enough to describe any new or changed requirements. The
general requirements for the user interface are needed, however the finer details are
not required at this stage.
It is vital for the success of the project that communication channels are opened and
encouraged between the development team and the client. This includes management
and end-users. The success of the prototyping approach is largely dependant on the
quality of the communication occurring.

Planning and designing the prototype
For each prototype a new plan is devised. Initially this plan will be similar in form to
that used in the structured approach. New and altered requirements resulting from
evaluation of the current prototype will require modification of the initial plan. New
data structures, modules and algorithms will be added and existing ones changed.
Because of the changing nature of each successive prototype it is important that all
documentation is kept current. It is also vital to retain documentation relating to
previous versions of the prototype. Often changes made will be rejected with the older
version being preferred. Computer aided software engineering (CASE) tools are
available to assist in this process.
Implementing the prototype
The prototype is coded in a high-level language. Initially the prototype may be no
more than a collection of screens with little or no real processing occurring. As the
project develops more detailed coding is added. For example, command buttons will
become active and data entry screens will actually store data.
It is necessary to retain the code from previous prototypes when developing new
prototypes. Often new ideas will be incorporated into the new prototype that will later
be rejected in favour of a past attemp. Documentation must be accurately maintained
to ensure the integrity of the code.
Test and evaluate the prototype
As each prototype is built it is necessary to check the correctness of the code as well
as the useability of the product. Informal testing is used to test each successive
prototype with more thorough testing occurring once a final product has been
developed The programmer, using test data where the expected results are known,

GROUP TASK Discussion
Little attention to the fine details of the user interface is required when
initially defining the problem. Why do you think this is the case? Discuss.

Software Development Approaches 133

Software Design and Development – The Preliminary Course

should test any code that has been added or altered. The users of the product will also
test each prototype. Users are likely to uncover problems with the user interface as
well as logic errors contained within the code.
Redefine the problem
New and changing requirements will occur as each prototype is trialed by the users.
Users should write down any problems they encounter or suggestions they may have
as a result of the trial. These form the basis for creating the requirements for the next
prototype.
The developer or developers should spend time on-site observing and discussing the
prototype with the users. Observation often highlights details of the user interface that
can significantly improve the useability of the final product. As these developers are
usually also the programmers, they are able to immediately determine if requests from
users are technically possible. In this way new requirements emerge that are
understood by both parties and are actually achievable.
When a prototype is found to meet sufficient requirements to be implemented it
undergoes thorough testing with live data. This testing ensures the product will
perform satisfactorily under real conditions. For example, large file sizes, multiple
transactions, different hardware configurations and network settings.

Implement operational solution

The product is translated into its final form and installed on the user’s machines. The
old system is removed and the new application becomes operational. Often, only
minor training is required as the users should already be familiar with the product’s
functionality.

Consider the following:

Swishy Fishy is an aquarium that sells a large
variety of both fresh water and salt-water tropical
fish. They also sell various tanks and other
accessories required by fish owners. Although the
aquarium operates out of a shop the majority of
their sales are to country clients via mail order.
They wish to develop a website where clients can
order fish and supplies online.
The owners of Swishy Fishy contract Whoa
Websites to develop the software product. Whoa Websites is a small company with
three employees. All three have strong HTML experience. One is also a graphic
designer and another has strong Java and database experience.
A combination of the agile and prototyping approaches is particularly well suited to
the development of many websites. Websites are themselves dynamic products that
are expected to change as requirements change. Swishy Fishy, in conjunction with
Whoa Websites, decide to progressively create and implement different aspects of
their website. In other words, each prototype developed will actually be the Swishy

GROUP TASK Discussion
Testing is more informal when using the prototyping approach. Surely this
must lower the quality of the final product. Do you agree? Discuss.

FOR EVERYTHING FISHY

134 Chapter 3

Software Design and Development –The Preliminary Course

Fishy website. The users of the product will be both the employees of Swishy Fishy
and more importantly their customers.
Initial prototype
• The three developers meet with the owners and employees of Swishy Fishy. The

aim being to create a set of broad goals for the project. At this meeting it is
envisaged the site will contain four sections; fish information, accessories, orders
and general information.

• Samples of current paper-based advertising and information are obtained by the
graphic designer. These are to be used as a starting point to develop the look and
feel of the website.

• A timeline for completion of the project is discussed. In general a new prototype
will be ready every 2 months. Each prototype will become the operational
website. The total project should require around 5 prototypes to complete.

• The initial prototype is primarily used to demonstrate the look and feel of the
website. It includes cartoon-type stylised fish, which will be used as clickable
icons. Links are included to the yet to be created pages.

• Two versions of the home page are created using different graphics, colour
schemes and font sizes. One is formal whilst the other has a more fun, colourful
feel. The fun colourful one is selected. The prototype developed includes contact
details for Swishy Fishy as well as a form for feedback from customers on what
they would like to see included on the final website.

Second iteration

• After the initial prototype has been operating for 6 weeks a second meeting is
scheduled. At this meeting feedback from customers and employees of Swishy
Fishy is discussed.

• The use of fish as clickable icons has
proved difficult for many users so it is
decided to reduce their size and use more
conventional text in conjunction with the
icons. In addition, the icons should alter
their appearances as the cursor passes
over them or as they are clicked.

• A plan is developed for the second
prototyp. It is to include the database of different fish. The data on each fish is to
include common name, scientific name, water details, compatibility with other
species, feeding requirements, a colour
photo, availability and some general
information.

• The fish data will be held in a database
residing on the Web server. It will be
produced using a commercial database
management system and will require a
data entry screen so that Swishy Fishy
employees can edit the data.

• The second prototype is developed and
installed on the Web server with a small
amount of fish data. The data entry screen system for the fish data is installed in
the office at Swishy Fishy. The second prototype (or version) is now operational.

Fig 3.7
Data entry screen for the Swishy Fishy database.

Fish

Information

Fish Details

Information

Fig 3.6
Examples of the icons used in the initial

and second prototypes.

Software Development Approaches 135

Software Design and Development – The Preliminary Course

Third iteration

• The second prototype (or version) is evaluated. Comments from customers and
employees indicate the need to split the fish information database into two distinct
areas; one for fresh water fish and one for salt-water fish. Also the data entry
screen used by employees should contain a find option to simplify the editing
process.

• Customers also indicate that the current method of searching for a particular
species is causing problems. Currently, a thumbnail version of each picture is
displayed. This is causing two problems. Firstly, customers with modem
connections are experiencing significant delays waiting for the page to download.
Secondly, most customers know the general category of fish they are interested in
and do not need to view pictures of all fish.

• It is decided that the third prototype should include the tanks and other accessories
available for purchase. These are to be grouped as tanks, feed, filters/heaters,
plants and other accessories.

• The third prototype is planned, built, checked and installed on the web server.
Fourth iteration
• The third operational prototype is evaluated. It is found that many customers wish

to obtain information about complete aquarium packages. A section is added to
the tanks and accessories items called packages. This section includes set-ups of
various sizes combined with some possible combinations and species of fish
suitable for each set-up.

• A number of customer’s comments indicate the need for a whole site search
facility. This feature should be available on the home page with a link to the
feature on all other pages. The idea being that customers need not have an
understanding of the sites layout to be able to locate specific information.

• The fourth prototype is to include implementation of the ordering system. At this
stage online credit card transactions will not be included, however the developers
will investigate the technical and security details with Swishy Fishy’s bank for
implementation as part of the fifth prototype.

• The structure of the information section is discussed. This section will be in a
frequently asked questions (FAQs) format. The answer to each question being
able to contain text, graphics and links to other sections on the website or other
websites. The structure is to be included as part of the fourth prototype.

• The fourth prototype is planned, built and implemented on the web server.
Fifth and subsequent iterations
• The fourth prototype (or version) is examined and evaluated. At this stage the

design of the site has been established and accepted by customers. The employees
of Swishy Fishy wish to include more generic information than can be provided
using the FAQ format. In conjunction with the developers, they decide to split the
information section into generic items and FAQs.

GROUP TASK Activity
Create a possible screen design that could have been used as the home
page for the second Swishy Fishy prototype. Explain your design.

136 Chapter 3

Software Design and Development –The Preliminary Course

• The fifth prototype is supposed to implement the credit card transaction function.
Unfortunately the bank has strict requirements that credit card details must not be
stored on computers used for other purposes. Furthermore, the security on these
machines must be extremely secure and include software to create an audit trail
should a breach occur. As a consequence, the developers recommend to Swishy
Fishy that this function should be outsourced to a company specialising in the
provision of such services. Customers would be redirected to this site to complete
any credit card transactions. This is implemented as part of the fifth prototype.

• Minor changes are made to the data entry screens and a provision is added to
allow PDF files to be displayed in the generic information section of the website.

• The fifth prototype is planned, built, checked and installed on the web server.
Subsequent prototypes (or versions) will be created as needs change.

GROUP TASK Discussion
Create a data entry screen that could be used to enter information into the
database about each tank and accessory item. This screen should
incorporate the data entry of packages as well as individual items.
Justify the inclusion of each screen element you use.
Compare your design with those of other students. Design a screen that
incorporates the best features of each student’s design.

GROUP TASK Discussion
The software development approach selected for each project can include
a combination of approaches. Discuss aspects of the Swishy Fishy
software development indicative of the agile approach and aspects
indicative of the prototyping approach.

GROUP TASK Discussion
The functionality to process credit card payments online was outsourced.
Which software development approach would be most suited to the
development of payment processing software? Justify your answer.

Software Development Approaches 137

Software Design and Development – The Preliminary Course

SET 3A
1. An enactable model of a software

system is best known as:
(A) an operational solution.
(B) a prototype.
(C) a system model.
(D) an operational model.

2. Implementing the solution is the stage
where:
(A) testing of the solution takes place.
(B) determining the requirements takes

place.
(C) coding in a programming language

takes place.
(D) modification of the solution takes

place.
3. A software solution that is high in

complexity, requiring absolute reliability
coupled with extensive development
timeframes would most likely be
developed using which approach?
(A) The structured approach.
(B) The prototyping approach.
(C) The RAD approach.
(D) The end user approach.

4. For the prototyping approach to be
successful, which element may be
considered to be the most important?
(A) Precisely known requirements prior

to commencement of the project.
(B) Expert programming skills.
(C) Strong communication between the

developers and the users.
(D) A detailed system analysis prior to

commencement of the project.
5. Keeping accurate documentation with

regards to the development of a software
project is especially important in the
case of which approach(s)?
(A) The structured approach.
(B) The prototyping approach.
(C) Both the structured and the

prototyping approach.
(D) No documentation is required.

6. The software development approach that
is characterised by distinct stages is the:
(A) structured approach.
(B) rapid application development

approach.
(C) prototyping approach.
(D) end user approach.

7. Pseudocode is an example of a(n):
(A) data structure.
(B) algorithm description language.
(C) flowchart.
(D) programming language.

8. With regards to the structured approach,
the relative timing allocated to each step
of the project would form part of which
stage of development?
(A) Planning and designing.
(B) Implementing.
(C) Testing and evaluating.
(D) Defining and understanding the

problem.

9. Which approach produces a series of
operational versions of the product:
(A) RAD approach.
(B) structured approach.
(C) agile approach.
(D) prototyping approach.

10. Hilda and Jack are employed by a
software company that has gained the
contract to develop a highly-complex,
large-budget software development
project. Their particular tasks are to
compile a list of outputs, examine these
and then create various models detailing
the flow of data through the proposed
system. Hilda and Jack could be
described as:
(A) system programmers.
(B) system analysts.
(C) end users.
(D) system testers.

11. Historically, the structured approach was the recommended method for developing software.
Describe reasons why this is no longer the case.

12. List and describe each stage of development when the structured approach is used.

13. Why is the quality of products developed using the prototyping approach likely to be lower than
similar products developed using the structured approach?

14. Compare and contrast the agile approach with the prototyping approach.

15. Personnel with specific skills are used when large products are developed using the structured
approach. Describe the tasks performed by: system analysts, programmers, software testers.

138 Chapter 3

Software Design and Development –The Preliminary Course

RAPID APPLICATION DEVELOPMENT (RAD) APPROACH
The main aim of the rapid application development (RAD) approach is to create a
usable software solution in the shortest possible time at the lowest possible cost to the
client. When using a RAD approach maximum use is made of existing code and
software solutions. These resources are customised to suit the requirements of the
current project. Computer aided software
engineering (CASE) tools are used to
further streamline the design and
development process.
Software produced using the RAD
approach is limited to the capabilities of
the software used during development.
Many of the products used for RAD do
not allow programmers to access lower
level processes available in more
traditional high-level languages. However,
the functionality provided by these tools
has usually been extensively tried and
tested. In most cases RAD tools provide
far more functionality than is actually
needed in the final product. This results in added processing and size overheads.
Generally, products produced using RAD, are larger in size and less efficient in terms
of performance and reliability than similar products produced using a structured
approach.

Characteristics of the RAD approach include:
Lack of formal stages
Design and development of products progress informally. The needs of individual
clients and the individual product determine the manner in which the product is
developed. A free flow of information and ideas is crucial to success. As the software
is produced by combining and customising other products the necessity for formal
models, data structures and algorithms is greatly reduced. This unstructured approach
works well when a small number of developers and end users collaborate closely
during development. As the scope of the project is limited each team member is able
to have an intimate knowledge of the entire system.
Use of existing routines
Wherever possible existing code routines are used to reduce the development effort.
Extensive use is made of the application program interface (API) included as part of
most operating systems. For example, API calls could be used to access standard
dialogue windows for opening files, printing and searching. The final application may
utilise the services of various applications and existing code modules to complete its
task.

Fig 3.8
Microsoft Access is a popular environment for
developing database applications using RAD.

GROUP TASK Discussion
Why use RAD if the resulting product is likely to be less efficient?
Surely it would be better to use the structured approach? Discuss.

Software Development Approaches 139

Software Design and Development – The Preliminary Course

Appropriate applications to develop RAD solutions
Many RAD applications are developed using the scripting language built into larger
software packages. For instance Microsoft Office includes Visual Basic for
Applications (VBA) which is used by programmers to build custom applications.
VBA uses almost identical syntax as Visual Basic Version 6.0 therefore code and
routines developed and tested in Visual Basic can be used to customise Office
applications.
A graphical integrated development environment (IDE) greatly improves the
productivity of most RAD programmers. The ability to graphically draw screens and
screen elements using drag and drop simplifies the process. Many IDEs also include
wizards which automate the coding of screens. Often the default behaviour of screen
elements built using a wizard requires minimal or no coding.
Communication between developer and client
The developer(s) and client(s) should work together as a team. Often a single
developer will use RAD to create an application for use by a specific client. Continual
communication between developers and end users to determine and refine
requirements during development is vital. The software tools used for development
allow the programmers to alter the product in a short time period. Consequently,
responding to new and changing requirements occurs quickly and with the full
knowledge of all involved.
Short time period

The main aim of using the RAD approach is to shorten development times. Often
requirements will be compromised in the interests of expediency. Research has shown
that requirements often change significantly whilst projects are being developed. The
RAD approach addresses this issue through the use of existing solutions and modules
together with integrated development environments.
Small-scale project

RAD is particularly suited to small-scale projects. Often, the client will be a small
business and the developer an individual. This does not mean the applications
developed using RAD are unsuited to wide distribution; rather they focus on
achieving a limited set of requirements. For example, the software behind many
multimedia CD-ROM and DVD titles is produced using RAD tools and techniques.
These products are designed to execute on standalone machines and utilise the
resources of various multimedia players. A single developer creates the software for
the multimedia company who creates the graphics, video and other data. The product
is then distributed through appropriate retail outlets.
Low budget

Many software products developed today using a RAD approach would not have been
feasible prior to the existence of modern 4GLs and customisable applications. It was
just not economically viable. RAD allows quality applications to be developed at low
cost. The widespread reuse of components is common in most industries but is
relatively new to software development. For example, tyres for cars can be used on
various vehicle models, steel is used in the manufacture of bridges, nails, fencing, etc.
The RAD approach to software development encourages the reuse of software
components or modules resulting in subsequent cost savings. Low budget software
applications are particularly suited to development using RAD techniques.

140 Chapter 3

Software Design and Development –The Preliminary Course

Consider the following:

Parramatta Education Centre develops, publishes and distributes educational software
and resources to schools and students within NSW. This text is one such product.
They wish to computerise their invoicing functions. As the business has software
development expertise they decide to develop this product themselves using a RAD
approach.

The final software product is to be used on a day-to-day basis by up to three users
across a local area network. Clearly this application would be best developed using a
database management system that allows easy networking of the database. As the
business already has a licence for Microsoft Office Developer Edition they decide to
develop the product using Microsoft Access as the main development tool.

Let us examine the manner in which this product is developed:

• Initial consultation with those
involved in the invoicing procedures
uncovers a number of needs that it is
hoped the new system can overcome.
As the business sells primarily to
schools and bookstores a database is
required to maintain address, phone
and fax details. The business sells a
limited number of products, which are
all produced in-house. It is important
to be able to analyse sales trends for
each of these products. GST is
chargeable on the majority of sales
however there are some overseas
schools which are GST exempt.

• The format of the invoice is to remain
similar to the existing format (see Fig
3.9). Currently invoices are generated
within a word processor document
personalised using the mail merge
facility. This is cumbersome and the
details of each invoice are not
maintained centrally.

• The developer produces the initial database structure to store the school details,
product details and invoices themselves. They also create data entry screens for
each of these data elements using the form creation wizard included in Microsoft
Access. The database is installed so that some initial data can be entered and the
design evaluated.

GROUP TASK Discussion
Communication between developer and end users together with the reuse
of existing code are central to the RAD approach. Describe how these
two ideas allow software to be rapidly and cost effectively developed.

Fig 3.9
Example of the existing invoice.

Software Development Approaches 141

Software Design and Development – The Preliminary Course

• Discussions with the staff who have been using the system uncover some
concerns. Firstly no allowance has been made for postage charges to be entered
and secondly it is common for schools to fax their order and then post the order.
The first problem is overcome by entering each postage charge as a product. The
second problem involves writing Visual Basic code that queries the database for
any invoices from the current school and displays a list of invoice numbers and
dates. This allows the data entry
staff to immediately see if an
order for the school has recently
been processed.

• The final invoice report is
created and a command button
added to the invoice entry
screen. Also a screen that
summarises the purchases made
between a range of dates. The
new database is installed and
now becomes operational. This
process has taken less than a
week to complete.

• Minor problems emerge over subsequent weeks. The Parramatta Education Centre
logo on the invoice considerably slows printing to the office’s laser printer. It
takes about 60 seconds with the logo and about 10 seconds without it. The logo is
redesigned using fonts within Microsoft Access and the original bitmap is
discarded.

• After a month of use, those with the task of entering payments received into the
system report problems locating invoices where a single cheque has been used to
pay multiple invoices. Code is written that allows users to click on one of the
displayed previous invoice numbers for a school; this invoice is then retrieved and
displayed on the screen.

GROUP TASK Activity
Design a series of screens that could be used to enter the school details,
product details and invoices. Ensure fields are included that cover all the
data on the sample invoice above. Justify the inclusion of each element of
your design.

Fig 3.10
The invoice entry screen for the PEC product.

GROUP TASK Discussion
Although development using a RAD approach is unstructured and
informal each of the steps used in the structured approach is still
completed. They are just not completed sequentially. Categorise tasks
from the above example according to the steps of the program
development cycle described for the structured approach.

GROUP TASK Discussion
RAD aims to reduce development time and cost. What aspects of the
development of the above product contributed to time and cost
reductions? Discuss.

142 Chapter 3

Software Design and Development –The Preliminary Course

END USER APPROACH
The end user approach to software development, as the name suggests, is when the
end user develops their own software solution. The end user is the developer.
Normally the product developed is for the exclusive use of the user-developer. The
end user usually has little or no software development or programming experience,
rather they utilise functions within the application to automate most programming
tasks.

Standard software packages are customised to suit the specific needs of the user.
Examples of commonly used packages include spreadsheets, database management
systems and word processors. Many of these packages behave somewhat like
declarative languages where the user tells the software what they would like done and
the software works out how to do it. Typically the developer/user makes extensive use
of wizards and existing solutions. The programmer, in this case also the user, is very
much removed from the details of how the processing is accomplished.

Characteristics of the end user approach include:
Use of standard software packages

Most end user developed products are produced using packages already owned by the
user. The experience as a user of the package gives them sufficient knowledge to
customise the product to suit their particular needs. In this regard end-user
development typically uses the RAD like or prototyping like approach. For specific
development problems the developer/user will often refer to online resources such as,
news and user groups devoted to customising the base software package.
End user as the developer and maintainer

The end user has a need or idea for a specific software solution. They develop the
software using tools with which they are familiar. The solution focuses on solving the
problem with little regard to testing or usability issues. As the developer is the user
then clearly they will understand how the software operates without the need for
training material or help systems. Clearly there are no communication issues when the
developer is the user.
Small budget and/or short time period for development

Often the development costs are nil. The end user’s time and perhaps the cost of the
parent application being the only significant costs. The low cost is an incentive for
many users to develop their own software solutions.

Development is often completed within hours, at the very most a few days. The size
and complexity of these projects is such that they can be accomplished within a small

Software Development Approaches 143

Software Design and Development – The Preliminary Course

product. No formal attempt is made to document the solution. As the software is
normally for the exclusive use of the user-developer the need for documentation is
negligible.

Consider the following:

Fred is the Head of Mathematics at a high school. He wishes to store marks for each
Mathematics course under his contro. Af ter examining a number of commercially
available packages he decides to develop a system himself using a spreadsheet. As the
Mathematics faculty already owns a licence for Microsoft Excel it seems logical to
develop the system using this application.
Let us examine how Fred develops his mark book application.
He first creates a rough
sketch of how he would
like his final mark book to
appear. The sketch shows
the placement of labels,
data and formulas. As
Fred has some experience
using spreadsheets he
feels he’ll be able to
develop the formulas as
he enters them into Excel.
Fred now enters his
layout into Excel. He also
enters some sample data
to allow him to check the
correctness of each of the
formulas as he works. The
development process is
informal. Fred enters
formulas using trial and error. He progressively modifies his solution until it reaches a
useable stage. As a problem is encountered, Fred alters the spreadsheet, with the
assistance of manuals and help screens, until a satisfactory solution is found. He is
interested in correct calculations rather than creating a robust user-friendly product.
For example, Fred finds that errors occur in many places when one or more students
do not have marks entered for particular tasks. He could enter zeros for all these
marks, however this would mean the averages and standard deviations would be
incorrect. Eventually he discovers the ISERROR function. This allows his formulas to
identify these errors and deal with them using decision functions.
As the mark book is for Fred’s exclusive use, he doesn’t document his solution. This
will make it more difficult should he wish to alter the product in the future, however
from Fred’s point of view the time taken to document the solution outweighs any
future maintenance concerns. There is no need for Fred to consider copyright or
piracy concerns as the mark book is for his exclusive use.

GROUP TASK Discussion
If the development time and costs are minimal then why not develop all
products using the end user approach? Discuss.

Fig 3.11
Rough plan for Fred’s mark book spreadsheet.

144 Chapter 3

Software Design and Development –The Preliminary Course

The final mark book product
performs the processes Fred
requires in a way that suits his
individual requirements. As Fred
is both the user and the developer,
he can modify the product
precisely to suit his needs.

Initially, Fred built the weightings
for each task into the formulas
within the Total W column (see
Fig 3.12). Fred finds that this is
inconvenient as each course has
different weightings for each task.
He adds a new row under the Standard Deviation row where the weighting for each
task can be entered. He then alters the Total W formulas to refer to these percentages.
This modified spreadsheet is saved as a template that will be used in the future for all
new mark books. Unfortunately, he needs to copy and paste this row and the
associated formulas into each existing mark book.

The initial development of the mark book has taken Fred some 8 hours to complete
and has cost him nothing. He uses and modifies the template for a number of years.
Although his product is not as efficient and robust as it could be, it successfully fulfils
Fred’s needs.

GROUP TASK Discussion
Imagine Fred leaves the school and is subsequently replaced by another
Head of Mathematics. What difficulties may this new Head of
Mathematics experience in regard to Fred’s mark book application?
Discuss.

Fig 3.12
Fred’s completed mark book application.

GROUP TASK Discussion
Fred deliberately chose the end user approach for the development of the
mark book. Do you think this was a wise decision? Discuss advantages
and disadvantages.

GROUP TASK Discussion
A number of other department heads within the school are impressed
with Fred’s mark book. They wish to implement his system within their
own faculties Discuss any problems that may arise if this were to occur.

GROUP TASK Discussion
The Head of History gives a copy of Fred’s template to a teacher at
another school. Without Fred’s knowledge, the teacher posts the template
on the Internet where other teachers download and use the product. What
are the possible implications in terms of Fred’s intellectual property
rights? Discuss.

Software Development Approaches 145

Software Design and Development – The Preliminary Course

Recommend and justify a suitable software development approach or combination of
approaches for each of the following situations.

(a) Developing the software required to run a new model of mobile phone.

(b) Developing an application to automate the allocation of deliveries to drivers
within a small home delivery business that employs five truck drivers.

(c) Developing software for use by a company’s sales manager that produces various
graphs and charts from existing data to monitor the performance of the sales
team.

Suggested solutions

(a) The structured approach would be most suitable as the specific hardware
components are known in advance and requirements will not change over time.
Detailed requirements can be specified prior to development commencing. As
thousands of phones will be produced it is critical that the software perform as
efficiently and error free as is possible – these are characteristics of software
produced using the structured approach. Software modules are produced
specifically to suit the needs of the phone system and thorough testing of each
module (as well as the final solution) ensures a stable and high quality result.

(b) The RAD approach would be most suitable. This is a small business with just 5
truck drivers; hence the efficiency of the processing is not critical as there are
relatively small amounts of data. Furthermore given that this is a home based
business the structured approach would involve unwarranted extra cost and
development time. Using a RAD approach the user interface can be created
quickly using existing controls (this could be presented to the client as an initial
prototype). Using RAD the most significant programming task will be the
creation of the code to allocate and schedule each delivery – other tasks, such as
recording delivery details, can be accomplished by modifying existing modules.

(c) The charts and graphs could be produced within a spreadsheet application. This
would require the data to be imported into the spreadsheet and then charted. If the
sales manager has sufficient spreadsheet skills then they could create macros
within a spreadsheet to automate the processing – that is, the end user approach
would be used. Using the end user approach means that the sales manager can
alter the format and detail of the graphs and charts as required. If the sales
manager is not sufficiently skilled then a RAD prototyping approach would be
appropriate. The developer can then code the automation of the functions to
import the existing data and produce sample graphs – the sample graphs forming
the prototypes which are used to determine the sales manager’s requirements.
Each prototype being refined until they evolve into the final solution.

HSC style question:

146 Chapter 3

Software Design and Development –The Preliminary Course

SET 3B
1. Unstructured, informal development

with no documentation is often the
hallmark of which approach?
(A) The structured approach.
(B) The end user approach.
(C) The RAD approach.
(D) The agile approach.

2. Max is a programmer working for a
software development company. He is
given the task of developing a software
solution for a client. The client has a
limited budget and wishes to have the
product operational in the shortest
possible timeframe. Which approach
would Max most likely consider?
(A) The RAD approach.
(B) The end user approach.
(C) The structured approach.
(D) The prototyping approach.

3. The approach that is known as Rapid
Prototyping is the combination of which
other two approaches?
(A) End user and Prototyping.
(B) RAD and end user.
(C) Prototyping and structured.
(D) RAD and prototyping.

4. The style of development undertaken by
the end user approach may be
considered to be:
(A) formal.
(B) informal.
(C) very structured.
(D) strict.

5. The RAD approach aims to:
(A) reduce both development time and

development cost.
(B) teach programmers how to work

more efficiently.
(C) produce highly complex, large-

scale software products.
(D) None of the above.

6. Small scale projects are often
particularly suited to which approach?
(A) The RAD approach.
(B) The structured approach.
(C) The end user approach.
(D) The prototyping approach.

7. Which approach delivers working
versions of the software after each
iteration?
(A) RAD.
(B) Agile.
(C) Prototyping.
(D) Structured.

8. Barbara has decided that she would like
to develop a program that stores all the
details currently contained in her old
address book. She already has brought
the software to enable her to do this and
commences to develop the program at
home. This is an example of the:
(A) structured approach.
(B) end user approach.
(C) prototyping approach.
(D) RAD approach.

9. The approach that encourages the use of
existing code and already developed
modules is the:
(A) RAD approach.
(B) Structured approach.
(C) Prototyping approach.
(D) Agile approach.

10. The use of CASE tools is unlikely when
using:
(A) the structured approach.
(B) the end user approach.
(C) the RAD approach.
(D) the prototyping approach.

11. RAD has become recognised as an acceptable software development approach for a number of
reasons. Discuss some of these reasons.

12. RAD is not suitable for the development of all software projects. Describe aspects of potential
products that would make them unsuitable for development using RAD.

13. Do you think the end user approach is really software development? No real programming of
any significance need take place, so to call it software development is overstating its
significance. Discuss.

14. Strong communication is required between developers and users when the RAD approach is
used. Why is this so vital to the development process?

15. Both RAD and end user developed products often require code and in many cases complete
applications from other sources to execute. Discuss advantages and disadvantages that may
result.

Software Development Approaches 147

Software Design and Development – The Preliminary Course

CHAPTER 3 REVIEW
1. A prototype that is developed to assist in

determining the requirements and then is
discarded is best described as a(n):
(A) evolutionary prototype.
(B) concept prototype.
(C) progressional prototype.
(D) theory prototype.

2. With regards to the structured approach,
the process of breaking down the
solution into smaller, more manageable
modules is known as:
(A) ‘bottom-up’ design.
(B) ‘modular’ design.
(C) ‘top-down’ design.
(D) ‘structural’ design.

3. Herman is a programmer and for the
development of his product, he intends
to use various existing applications and
their associated tools. The approach(s)
that Herman is most likely to use is(are):
(A) The RAD or end user approach.
(B) The structured approach.
(C) The prototyping approach.
(D) The agile approach.

4. Jim is an end user and is part of the
development team formed by his
company to develop a new software
application for their workplace. After
using each successive version of the new
system, Jim and the team collaborate to
determine any new or changing
specifications. The development team is
most likely using which approach?
(A) Structured approach.
(B) End user approach.
(C) Prototyping approach.
(D) Agile approach.

5. Which approach is generally thought of
to be highest in terms of cost?
(A) The structured approach.
(B) The end user approach.
(C) The prototyping approach.
(D) The agile approach.

6. The designing of the structures that will
hold the data generally takes place at
which stage of development?
(A) Planning the solution.
(B) Defining the problem.
(C) Building the solution.
(D) Checking the solution.

7. Generally speaking, a product developed
using the RAD approach will be what,
compared to a similar product developed
using the structured approach?
(A) Smaller in size and more efficient.
(B) Larger in size and less efficient.
(C) Smaller in size and less efficient.
(D) Larger in size and more efficient.

8. The RAD approach differs to that of the
structured approach because:
(A) the RAD approach does not include

or complete any of the steps that
characterises the structured
approach .

(B) the RAD approach completes the
same steps as the structured
approach but not in the sequential
order of the structured approach.

(C) the RAD approach is more costly
and takes a great deal more time.

(D) the RAD approach does not differ
at all from the structured approach.

9. Which approach(s) produce multiple
operational versions of the software
during its development?
(A) Agile approach
(B) Prototyping approach
(C) End user approach.
(D) RAD and end user approach.

10. The historical approach to software
development has been which approach?
(A) The structured approach.
(B) The agile approach.
(C) The RAD approach.
(D) The prototyping approach.

148 Chapter 4

Software Design and Development –The Preliminary Course

 In this chapter you will learn to:
• determine the inputs and outputs required for a

particular problem
• produce an IPO diagram from a set of

specifications
• develop a systematic approach to the

development of software solutions
• document a proposed non-complex software

solution
– represent the flow of data through a system

using a context diagram
– represent a system using a data flow diagram

(DFD) to show its components and the data
transferred between them

– represent a system using a structure chart to
show the interrelationship between the
component modules

– represent a system using a systems flowchart
to show its component modules, files and
media

• interpret and use an ASCII table
• identify the maximum decimal value that can be

stored in a given number of bits
• recognise the impact of the use of an

inappropriate data type
• select the most appropriate data type for the

solution to a particular problem and discuss the
merit of the chosen type

• create a data dictionary which defines the data
appropriately

• identify control structures in an algorithm
• interpret and create algorithms represented in

both pseudocode and flowcharts that use standard
control structures

• detect logic errors in an algorithm by performing
a desk check

• gather solutions from a number of sources and
modify them to form an appropriate solution to a
specified problem

• represent code from different sources as an
algorithm to assist in understanding its purpose
and to assess its relevance in a proposed solution

• incorporate a stub for modules for which the
detail has not yet been developed

Which will make you more able to:
• describe and use appropriate data types
• describe the interactions between the elements of

a computer system
• describe the effects of program language

developments on current practices
• identify the issues relating to the use of software

solutions
• investigate a structured approach in the design

and implementation of a software solution
• use a variety of development approaches to

generate software solutions and distinguish
between these approaches

• use and develop documentation to communicate
software solutions to others.

In this chapter you will learn about:
Understanding the problem
• clarification of the specifications
• performance requirements
• identification of inputs and required outputs
• determining the steps that, when carried out, will

solve the problem
• Input Process Output (IPO) diagrams

Abstraction/refinement
• the top-down approach to solution development

– a system comprises all the programs in the suite
– a program comprises all of the modules

required to perform the required task
– a module is a group of subroutines that together

achieve a subtask
– a subroutine is a set of statements that performs

a single logical task

Data types
• data types used in solutions, including:

– integer
– string
– floating point/real
– Boolean

• integer representation in binary, decimal and
hexadecimal

• characters represented as numbers in binary,
decimal and hexadecimal

• limitations of particular data types
• data structures, including:

– one-dimensional array
– record

• use of records in sequential files

Structured algorithms
• control structures which form the basic building

blocks of all algorithms:
– sequence
– selection (binary, multiway)
– repetition (pre-test, post-test), including for

…next loops
– use of subroutines

• methods for representing algorithms:
– pseudocode
– flowcharts incorporating standard control

structures
• software structure

– use of a clear uncluttered mainline and
subroutines

– use of a modular approach
– use of stubs to represent incomplete modules

• use of standard algorithms, including:
– load an array and print its contents
– add the contents of an array of numbers

• checking the algorithm for errors
• benefits of using structured algorithms

– ease of development
– ease of understanding
– ease of modification

Defining and Understanding the Problem, and Planning and Designing Software Solutions 149

Software Design and Development – The Preliminary Course

 4
DEFINING AND UNDERSTANDING THE

PROBLEM, AND PLANNING AND
DESIGNING SOFTWARE SOLUTIONS

INTRODUCTION TO SOFTWARE DEVELOPMENT
In the previous chapter, we examined various approaches to software development.
We now examine the process of developing software solutions in more detail.
Although in a text such as this, it is convenient to examine each stage separately, it is
important to remember that this need not be the case when developing actual software
products. Software development is often a cyclical process. The requirements of the
problem will change over time. During development new ideas surface; the processes
and techniques used during development should cater to these needs.

The remainder of this text examines each stage
of the software development cycle. This chapter
examines defining and understanding the
problem, and planning and designing software
solutions. Chapter 5 discusses the implementing
phase, chapter 6 methods for testing and
evaluating software solutions and chapter 7 deals
with maintaining existing solutions. The final
chapter follows the development of a typical
project through each phase of its development.

Fig 4.1 describes the basic processes occurring
during each phase of the software development
cycle. From defining and understanding the
problem, planning and designing the solution,
then coding or implementing the solution.
Following implementation the solution is tested
and evaluated for correctness and to ensure that it
meets the original requirements. Software
products are seldom static; rather they are
continually modified and upgraded to meet new
or varied requirements. The maintenance of
software is simplified when the solution is well
documented.

 GROUP TASK Discussion
The phases of the software
development cycle are really the
logical steps used to solve most
problems. Describe how you would
build a dog kennel in terms of the
phases outlined in Fig 4.1. Fig 4.1

Phases of the software development cycle.

Defining and
understanding the problem
• Clarifying specifications
• Identifying inputs and outputs
• Determine steps to solve problem

Planning and designing
• Abstraction/refinement
• Data types and data structures
• Structured algorithms

Implementing
• Coding the solution in a

programming language
• Error detection and correction
• User interface development
• Documentation

Testing and evaluating
• Selecting and using test data
• Evaluation of the solution

Maintaining
• To meet new or changing

requirements
• Importance of documentation

150 Chapter 4

Software Design and Development –The Preliminary Course

DEFINING AND UNDERSTANDING THE PROBLEM
Defining the problem precisely is vital to the successful development of any product.
An intimate understanding of the nature and requirements of the problem must be
realised. Once an understanding of the problem is reached it is possible to consider the
inputs into and outputs from the system. The nature of the processing required to
transform these inputs into the outputs can then be developed.

There are many other questions and issues that should be addressed during this initial
phase. Some common questions follow:
• What needs does the solution hope to meet?
• Is it feasible to develop such a solution?
• What constraints exist?
• What resources are available?
• Does the development team possess the required skills?
• Are there other similar existing solutions?

In the HSC course, we examine many of these questions in more detail.

UNDERSTANDING THE PROBLEM

To thoroughly understand the problem involves time and researh. It is appropriate to
examine similar software solutions as well as non-computer based solutions. Time
spent with potential users and existing systems will greatly assist this process. Often
users will assume many aspects of a solution are understood because of their
familiarity with an existing system. It is the job of software developers to ensure both
formal and informal communication with users is maintained. In most cases these
communication channels will provide developers with a means of best understanding
the problem. Remember, the main advantage of the user-based approach to software
development is that the user is the developer and as such, the problem is thoroughly
understood. We must try to reach a similar understanding when developing products
using other software development approaches.
A list of requirements should be formulated. Such a list can be used to ensure your
understanding of the problem will meet the needs of your potential users. These
requirements can then be transformed into a more specific set of specifications under
which the final product can be evaluated. Often users will communicate their needs in
general and non-specific terms e.g. ‘I’d like to be able to print a daily sales summary’.
To meet this need requires a deep understanding of what they mean by a sales
summary. We must know what data they require, how it should be arranged and
summarised, the format of the report and where the source data is stored. Questions in
regard to the user interface must be considered. How will the command to print the
report be commenced? Is there already a suitable screen that could incorporate the
command? Users are often not concerned with such issues until the product is
operational. As developers these are important details essential to a complete
understanding of the problem.

GROUP TASK Discussion
The job of a system analyst is largely about answering many of the above
questions. Imagine you are a system analyst. What techniques could you
use to assist you in answering questions such as those listed above?
Discuss.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 151

Software Design and Development – The Preliminary Course

Consider the following:

You have been asked by a group of your friends to create a website where you can all
share your class notes and summaries. Many of you are in the same class for some
courses whilst others are in different classes with different teachers. It would be nice
if you could have access to the notes from other classes without duplicating those
from your own class.

IDENTIFICATION OF INPUTS AND REQUIRED OUTPUTS

Understanding the problem will enable a list of required outputs to be created.
Outputs are the result of processed input. For example, if a program outputs the
number of items purchased in a single week then this implies the required inputs into
the process. Each sale during the week is needed, also a range of dates and some input
to identify the item to be totalled.

Often inputs will be used by a number of processes resulting in a number of outputs.
Some outputs will themselves become the input into other processes. An
understanding of the inputs and outputs together with their relationships to each other
are vital to the accurate definition of the problem and provide a solid basis for
commencing the solution.

The input into a process is known as data and the output as information. The
processing occurring transforms the raw data into useful information. There are
various modelling techniques available that can be used to describe the data moving
through systems. Each technique aims to describe the system in a logical and
understandable manner. System flowcharts and data flow diagrams are two such
techniques that will be examined in some detail as part of the HSC course.

Context diagrams are level 0 data
flow diagrams used to show all the
external inputs and outputs to and
from a system. Each data item is
represented as an arrow or data flow
and is labelled with the name of the
data item. External entities from
which data is obtained (source) or
sent (sink) are represented as boxes.

GROUP TASK Discussion
In small groups brainstorm a list of needs that could be fulfilled by such a
system. Develop these needs into a list of requirements that precisely
describe the problem to be solved. Compare and discuss your results with
those from other groups.

Input
(Data) Output

(Information)

Process

Fig 4.2
A context diagram is used to show the external

inputs and outputs into and out of a system.

External
Entity

External
Entity

GROUP TASK Activity
Develop a context diagram to describe the inputs and outputs from an
EFTPOS machine. The processing performed by the EFTPOS machine
should be considered as the single central process.

152 Chapter 4

Software Design and Development –The Preliminary Course

DETERMINING THE STEPS THAT WILL SOLVE A PROBLEM

Once the inputs and outputs have been determined, the nature of the processing
required can be considered. Processing transforms the inputs into outputs. The steps
required to solve the problem are essentially a description of the processing that when
implemented, will fulfil the requirements. For example, making a cup of coffee
involves boiling the kettle, putting coffee in the cup, pouring in the boiling water,
stirring, then if required adding milk and/or sugar and finally stirring again. The
inputs are the boiling water, coffee, milk and sugar and the output is the cup of coffee.
The processing transforms the ingredient inputs into the output cup of coffee.

IPO diagrams or charts are
useful tools for describing
the steps that when carried
out will transform inputs
into outputs. There are
various methods for
constructing IPO diagrams.
For our present purpose the
table format is particularly
useful. This format allows
a step-by-step description
of the processing to be
described. The inputs into
the process are written
beside the step where they
are used. Similarly, as outputs are produced by a step they are written to the right. Fig
4.3 shows an IPO Diagram describing our coffee example. Tabular IPO diagrams are
commonly used as documentation for programmers. The programmer uses this
information to develop detailed algorithms and to then code the problem in a
programming language.

Determining the steps needed to make a cup of coffee is a relatively simple process.
For many problems the steps involved will be far from obvious. Even tasks that we
are able to perform efficiently and somewhat mechanically can prove difficult to
express as a series of unambiguous steps. At this stage, we are interested in
determining the general nature of the processing rather than the precise details. Later
in this chapter, we examine structured algorithms. Structured algorithms provide a
method of describing processing in a detailed and unambiguous manner in preparation
for coding in a programming language.

Some techniques that may be useful when determining the steps that will solve a
problem include:

• Consider a smaller version of the problem.

• Examine solutions to similar or related problems.

• Work through an example by hand using pen and paper.

• Break down the problem into smaller more manageable pieces.

• Brainstorm possibilities with others.

Input Process Output
Water Boil water in kettle
Coffee Add coffee to cup
 Pour boiling water in cup
 Stir
Milk If required add milk to cup
Sugar If required add sugar to cup
 Stir Cup of coffee

IPO Diagram
Making a cup of coffee

Fig 4.3
IPO Diagram describing the inputs, processing and

outputs required to make a cup of coffee.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 153

Software Design and Development – The Preliminary Course

Consider the following:

We all know how to add a list of numbers, however can we describe the steps
involved in a way that could be understood by someone who had no knowledge of
addition? Let us attempt this task.

For this scenario the inputs and output are obvious. The numbers are the inputs and
the sum is the output. There are also various other things we need to know. We must
know the basic addition number facts e.g. 4+5=9, 6+7=13, etc… We need an
understanding of place value; in decimal we have a units column, then to the left a
tens column, hundreds, thousands, etc… For our solution let us assume this
knowledge is understood.

To commence we could consider adding two 3-digit numbers. Say 456 + 789. As we
perform the addition on paper we write down each step.

1. Add units column.
2. Write unit part of answer below units column.
3. If result has a tens column component write this above the

tens column.
4. Add up the tens column including the carry.
5. Write units part of answer below the tens column.
6. If result has a tens component write it above the hundreds

column.
7. Add up the hundreds column including the carry.
8. Write answer below hundreds column.

We notice that much of what we do is repeated. If our steps are to work for very large
numbers, then it would be better if we could write a more general description where a
block of steps is repeated until we reach the left hand column containing digits. What
about lists of more than two numbers? How can we alter the steps to account for this
possibility?

GROUP TASK Activity
Rewrite the above steps in such a way that they will work for two numbers
of any length. Will your steps work if there are more than two numbers?
Alter your steps to ensure this is the case.

GROUP TASK Activity
Draw up an IPO diagram like the one in Fig 4.3 for your addition
problem. Swap IPO diagrams with other class members and try to
perform an addition using only the steps on their chart. Discuss your
results and refine your IPO diagram accordingly.

Fig 4.4
Consider a smaller

example.

154 Chapter 4

Software Design and Development –The Preliminary Course

PLANNING AND DESIGNING SOFTWARE SOLUTIONS
Thorough planning and design of software solutions is essential to the development of
quality software products. Planning the solution commences by considering the
complete problem. This general overview is then systematically broken down into
smaller pieces that include increasing amounts of detail. The
nature of the data required is determined and structures to hold
this data are designed. Eventually a method of solving each of
these component pieces of the solution is designed in the form
of an algorithm. Together these data structures and algorithms
combine to solve the larger problem.

There are numerous techniques and tools that are available to
assist developers during the planning and design phase.
Techniques for representing the hierarchy of modules that
make up the system and methods for describing algorithms
help developers solve the problem. They also provide
important documentation for other team members and future
maintenance personnel. Computer Aided Software
Engineering (CASE) tools are software applications used by
developers to streamline a multitude of development tasks -
from modelling the system, designing data structures, to
creating algorithms, assisting with code generation and finally
testing the solution.

In this section we examine firstly the abstraction/refinement process where the
problem is broken down into a series of solvable smaller problems. We then examine
data types; how they are represented within the computer together with their
limitations. Some simple data structures are considered which allow more efficient
access to the data within programs. Finally we consider the design of algorithms using
flowcharts and pseudocode. Remember that an algorithm is a method of solving a
problem using a series of unambiguous steps.

ABSTRACTION/REFINEMENT

Software development needs to be a precise and detailed process. However, most
problems encountered by developers are too large for the entire solution to be
comprehended with sufficient precision and detail. To overcome this situation, we
refine the problem by breaking it down into smaller, more manageable modules. This
is the process of top-down design. Each of these modules can then be considered as an
isolated problem. We can largely ignore
the big picture and consider the detail of
the smaller piece. This is the process of
abstraction. We separate part of the
problem and solve it in isolation. Once all
component parts have been solved they
are combined to solve the larger problem.

Abstraction
Taking away or separating part
of the solution so it may be
considered in isolation.

GROUP TASK Discussion
List any software tools with which you are familiar that could be classified
as CASE tools. Briefly describe the function of each tool.

Break problem
down into

manageable units.

Decide on data
types and design
data structures.

Design a method
of solving each

component piece.

Fig 4.5
Overview of the planning

and design phase.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 155

Software Design and Development – The Preliminary Course

There are many advantages of the abstraction process. It encourages developers to
create reusable modules of code. For example, a module that sorts a list of data can be
used in the future as part of the solution to a variety of different problems. Testing is
greatly simplified. As each module is small and self-contained it can be thoroughly
tested before being included in the total solution. As a consequence, checking the final
total solution is greatly simplified. Teams of developers are able to work on individual
modules in the knowledge that the work completed by others will not affect their own.
The top-down approach to solution development

Top-down design is the most common method of breaking a problem into smaller
units. The problem is progressively refined until each unit can be successfully
implemented as a subroutine of programming code. In many cases, the design will be
strictly hierarchical; each higher-level
subroutine accessing or calling one or
more lower-level subroutines. The process
of developing this hierarchy of
subroutines is known as stepwise
refinement. Each level or step is refined
into a series of lower- level subroutines.

Systems are also composed of a hierarchy of software elements (refer Fig 46). The
system includes a number of programs. Each program is implemented as a number of
modules. And each module is a group of related subroutines which together perform
related tasks. Subroutines are at the lowest level. Each subroutine implements a single
logical task. By combining related subroutines into modules, modules into programs
and programs into systems promotes reusability. Particular modules or even programs
can be reused as part of many software solutions.

Most programming languages include or provide access to a variety of different
libraries; these libraries are modules which perform common tasks. For example, a
module (or library of code) for drawing graphics contains subroutines for drawing
different shapes including different colours, line weights and fill styles. There is no
need for software developers to “reinvent the wheel”, rather they include and utilise
these existing modules within their own programs.

Top-down design
Progressively breaking a larger
problem into a series of smaller
easier to solve problems.

System

Program

Module

Subroutine Subroutine

Subroutine

Module

SubroutineSubroutine

Subroutine

Program

Module

SubroutineSubroutine

Subroutine

Module

SubroutineSubroutine

Subroutine
Fig 4.6

Software systems are composed of programs, which are composed of modules,
which are composed of subroutines.

156 Chapter 4

Software Design and Development –The Preliminary Course

Hierarchy charts are a simple method used to represent the top-down design of a
particular problem. Subroutines are often numbered to indicate their placement in the
hierarchy (refer Fig 47). Structure diagrams are similar to hierarchy charts but enable
the inclusion of more detailed information in regard to the order and nature of
processing. Data flow diagrams (DFDs) also model the top-down design but focus on
the movement of data rather than the detail of the processing performed.

Be aware that top-down design does not necessarily lead to the development of
reusable modules of coe. Often the design of subroutines reflects the particular needs
of the current problem. In the past software was often developed in isolation and
hence modules and subroutines where specific to the current problem. Today there is
an emphasis on developing more general and therefore reusable solutions. There has
also been a shift in thinking towards the use of externally developed modules or
libraries of code. The use of these generic modules is similar to the way most other
products are developed. For example, the majority of components used in a new
model of car are derived from generic components. The motor, air conditioning, tyres,
brakes and instruments are sourced from outside. These same components are often
used with minor alterations on a variety of vehicles.

Top-down design focuses on the processing required to solve a problem. We
commence with a set of inputs and move through a series of predetermined steps that
process these inputs into outputs. For many problems this should certainly be the
focus. For other problems the flow of data, the links between data, the maintainability
of the code or response times are of a higher priority. Be aware that there are other
different approaches to that of top-down design.

Consider the following:

Imagine you’ve decided to cook a special meal for your family. Let us develop a top-
down design to describe the processes involved in this venture.

Firstly, you must decide on the time and the date of the meal. You must then work out
the menu and obtain the ingredients. On the allocated day you must cook and serve
the meal. Fig 4.8 describes our solution so far.

Fig 4.7
Hierarchy charts describe top-down designs.

Main
Program

Subroutine
1

Subroutine
2

Subroutine
3

Sub
1.1

Sub
1.2

Sub
2.1

Sub
2.2

Sub
3.1

Sub
3.2

Sub
3.3

Sub
1.1.1

Sub
1.1.2

Sub
2.1.1

Sub
2.2.1

Sub
2.2.2

Sub
3.2.1

Sub
3.2.2

Sub
3.3.1

Sub
1.1.1.1

Sub
1.1.1.2

Sub
1.1.2.1

Sub
2.2.1.1

Sub
2.2.1.2

Sub
2.2.1.3

Sub
3.2.2.1

Sub
3.2.2.2

Sub
3.3.1.1

Sub
3.3.1.2

Defining and Understanding the Problem, and Planning and Designing Software Solutions 157

Software Design and Development – The Preliminary Course

We can now consider in isolation each
subroutine on level 1 of our hierarchy
chart. As we consider each subroutine
we ignore the larger problem – this is
the process of abstraction. Deciding on
the time and date involves questioning
each family member and then picking
the most appropriate time and date. We
are refining the problem using stepwise
refinement. Working out the menu includes considering the tastes of those who’ll
attend and then examining recipe books. Obtaining the ingredients may include
working out the quantities required, checking the pantry and then visiting various
shops. Cooking and serving the meal includes preparing the ingredients, cooking them
and finally serving to each family member.

Let us expand the preparation of the
ingredients branch of our hierarchy chart.
This may include rinsing the vegetables,
chopping the ingredients, measuring
quantities and mixing ingredients.
Chopping may further involve first
peeling vegetables and perhaps grating
and dicing.

Consider the following:

• A large multi-national software company specialises in the development and
marketing of software to the retail industry. One of their largest selling software
products is able to interface with various types of cash register and EFTPOS
terminals. Currently there is no standard in place for these communication links.
As a consequence, the company must develop a new software interface each time
new models of cash register or EFTPOS terminal become available.

• A web site developer works from home. He charges an hourly rate to design and
develop web sites for various clients. At present he has been in business for about
2 years and is finding that past clients are increasingly requesting modifications to
their original sites. Implementing these modifications is proving difficult and time
consuming.

• The Year 2000 bug was due to programs only considering and storing the last two
digits of the year e.g. 1931 was stored as just 31. The time spent examining
software products to ensure Year 2000 compliance was considerable. Perhaps the
most annoying aspect of the problem was that most products were found to be
compliant without the need for any modification.

Family
meal

Decide on time
and date

Work out
menu

Obtain
ingredients

Cook and
serve meal

Fig 4.8
Initial top-down design for preparing our family meal.

Fig 4.9
Preparing the ingredients refined and expanded.

Cook and
serve meal

Prepare the
ingredients

Cook
ingredients

Serve food
to family

Peel
vegetables

Grate and
dice

Rinse
vegetables

Chop the
ingredients

Measure
quantities

Mix
ingredients

GROUP TASK Activity
Expand each branch of the
initial hierarchy chart
shown in Fig 4.8. Add a
numbering system to your
completed chart.

158 Chapter 4

Software Design and Development –The Preliminary Course

SYSTEMS MODELLING TOOLS

A model of a system is a representation of that system designed to show the structure
and functionality of the system. Diagrams are particularly useful methods of
modelling because they are able to give a broad view whilst at the same time
conveying necessary detail. Accomplishing the same task in words is difficult. In
terms of software development, a model can be thought of as a plan which specifies
the design of the software. The model gives direction and specifications to the
builders of the product, in the same way as the plan for a house gives builders of the
house direction and specification in regard to the house’s design and erection.

Different types of modelling are applicable to different aspects of the system. System
flowcharts are used to represent the logic and movement of data between the system’s
components, including hardware, software and manual components. Dataflow
diagrams describe the flow of data to and from processes and storage elements.
Structure diagrams describe the top-down design and sequence of processing. IPO
diagrams explain how inputs are transformed into outputs by processing. Data
dictionaries describe the nature and type of the data used in a program. Screen designs
and concept prototypes are used to determine user requirements by simulating the
final product from the user’s perspective. Most projects will use a combination of
modelling techniques. We considered IPO diagrams in the previous section, in this
section we examine systems flowcharts, data flow diagrams (and context diagrams)
and structure charts.
Systems Flowcharts

Systems flowcharts are used to describe the logic and flow of data through a system.
They describe the interactions that occur between input, processing, output and
storage, as well as the nature of each of these components. Even manual processes can
be included on systems flowcharts. Generally, systems flowcharts are used at a higher
level than the other modelling techniques to show an overall view of the entire
system.

Although some of the symbols used on system flowcharts are the same as in algorithm
flowcharts, the design of system flowcharts is quite different. Flowcharts for
algorithms are designed to precisely show the logic of an algorithm, whereas system
flowcharts are not describing an algorithm but a system. Logic is only shown where
necessary to sensibly describe the flow between components.

Systems flowcharts have been in common use since the 1960s, hence some of the
symbols, such as the punched card symbol, are now outdated. Fig 4.10 details the
systems flowchart symbols specified for Software Design and Development. There
are many other symbols that can be used for specialised processes such as sorting and
merging data. In this course we use the process rectangle for all processing.

GROUP TASK Discussion
For each scenario above, discuss how top-down design, abstraction and
reusable modules simplify the process of modifying the software.

GROUP TASK Discussion
In many cases it is just simpler to throw out the old product and develop a
new one from scratch. Do you agree with this statement? Explain and
discuss your answer using the above scenarios as examples.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 159

Software Design and Development – The Preliminary Course

Consider the following:

The systems flowchart at right describes the
logic and flow of data for results from an
assessment task.

Firstly, the teacher marks the test, which is a
manual operation. These marks are entered
by hand into the teacher’s mark book. The
marks are entered into the computer, which
is an online input, and stored in the school
database. At the same time, the student
names are being retrieved from the school
database. Once all the marks have been
entered they are scaled and stored in the
school database. Finally, a printout of the
results is generated and students are given
their results.

This systems flowchart describes the path
taken by the marks through the system, from
their generation, when the teacher marks the
papers, through to the final scaled marks
being delivered to the students. The logic is
also described to make sense of the flow of
the data. Notice that the logic is from an
overall system viewpoint rather than just the
logic required to code the software part of
the solution. This systems flowchart is not
significantly different to one that would be
used to describe a completely manual
system. That is, the software is just one item
within the total system.

Input or
Output

Paper
Document

Multi Paper
Document

Online
Display

Online
Input

Disk
Drive

Process

Decision

Manual
Operation

Punched
Card

Magnetic
Tape

Telecommunications
Link

Fig 4.10
Components of System Flowcharts.

Teacher
marks
task

Teacher’s
mark book

Marks
entered School

database

Are all
marks

in?

Scale
marks

Teacher
printout

Students
given
results

No Yes

Fig 4.11
System flowchart for results

from an assessment task.

160 Chapter 4

Software Design and Development –The Preliminary Course

Consider the following:

The systems flowchart below describes a hotel’s information system. This model is
designed to describe the logic and flow of data through the hotel system for an
individual guest.

GROUP TASK Describe
The above system flowchart uses a number of symbols as part of its
construction. Describe in words what is occurring at each symbol on the
diagram.

Fig 4.12
System flowchart describing the flow of data for an individual guest in a hotel.

Reservation
entered

Arrival list
and registration

cards

Guest details
entered

Hotel
database

Create room
key card

Phone
system

Internet
system

Room
service

Cacuate
charge

Moie
system

Generate
final bill

Guest
bill

Payment
entered

Yes

Hotel
database

Guest
leaves

 Guest completes
registration card

 Key services
database

System selects
clean room

 Is payment by
credit card?

Bank system

 Guest selects
service?

Phone
exchange

Internet service
provider

Defining and Understanding the Problem, and Planning and Designing Software Solutions 161

Software Design and Development – The Preliminary Course

The above systems flowchart describes the information transfers occurring during a
guest’s stay in a hotel. A reservation is entered, and then at the start of each day an
arrival list and registration cards are printed. When the guest arrives, he or she
completes their registration card and the details are entered into the system. A room
and a key are allocated to the guest. If payment is to be made by credit card then the
bank’s system is contacted to ensure there are sufficient available funds. The guest
then is able to use a number of services whilst staying, namely the phone, movie or
Internet systems or room service. Charges for these services are recorded in the
hotel’s database. The phone and Internet systems involve telecommunication links to
outside systems. At checkout time, the final bill is generated from data stored in the
hotel’s database and presented to the guest. Finally, the bill is paid and the guest
leaves.

Data Flow Diagrams (DFDs)

Data flow diagrams describe the path data takes through a system. No attempt is made
to indicate the timing of events. Think of a DFD as a railroad map: it shows where the
train tracks are laid, but it does not give the timetables.

Let us now consider the syntax of DFDs: Data flows or vectors are used to join the
entities and processes within the model. They can be thought of as pipelines or
interfaces for data to flow between the other components of the DFD. A label is
placed on the vector or arrow to indicate the
nature of the data. The label used should be unique
within a given DFD. The origin of data input into
the system is known as a source. A destination for
data output from the system is known as a sink.
Both sources and sinks are external entities and
are designated using a square or rectangle symbol.
In some references, external entities are also
known as terminators as they describe starting and
ending points for the DFD. External entities are
often groups of people or other systems. Processes
are the actions that take place on the data within
the system to transform inputs into outputs. Processes are represented on data flow
diagrams as circles. All processes in a data flow diagram will have one or more data
flows coming in (inputs) and one or more data flows going out (outputs). Data stores
are repositories for data. They usually represent databases or files, however manual
storage such as filing cabinets or paper files may also be included. Data stores are
represented using open rectangles.

External
entity Process

Data flow
Data store

Fig 4.13
Symbols used on data flow diagrams.

GROUP TASK Discussion
Name any items on the above systems flowchart that could or should
have links to the hotel database but do not. Explain your answer.

GROUP TASK Discussion
Systems flowcharts are designed to display an overall view of a system.
Specific detail about each process is not required, also the logic need not
be as precise as that required for an algorithm. How useful is the above
hotel’s system flowchart for a software developer working on an upgrade
to the hotel’s database? Describe any information of use to the software
developer provided by this model.

162 Chapter 4

Software Design and Development –The Preliminary Course

Data flow diagrams are used both as a tool for system analysis and as a tool for
system desig. Modelling an existing system using a data flow diagram assists in
understanding the flow of information through a system and also helps the analyst to
separate processing into distinct units resulting in a better understanding of the
problem. Data flow diagrams are particularly useful modelling tools during system
design. Computer aided software engineering (CASE) tools are available to assist in
the creation of data flow diagrams. Many of these tools include data dictionary
functions that link to the data flows on the diagrams.

Usually, a context diagram is drawn first. A context diagram shows the entire system
as a single process with all the external inputs and outputs to and from any external
entities. Context diagrams are also called Level 0 data flow diagrams. Data stores
should not be shown on context diagrams. A series of data flow diagrams are
produced from the context diagram that progressively break the problem down into
lower-level modules. This top-down design technique is continued until the lower-
level processes are sufficiently detailed for them to be easily coded.

Consider the following:

The data flow diagram in Fig 4.14
describes the student administration
system at a local college.

The college receives enrolment forms
from students. The data on these
forms is used to create class lists,
which are sent to the staff. Courses
taken by students are recorded in the
student file. Staff set test papers,
which are used to generate results.
The results are stored in the student
file. Academic records are retrieved
from the student file and processed.
Graduating students receive a
transcript of their degree.

Each of the processes on the level 1
DFD in Fig 4.14 can be further
refined into a series of level 2 DFDs.
In Fig 4.15 the Examine 2 process has
been expanded to form a level 2 DFD.
Notice the numbering system for the
processes; 2.1, 2.2, etc. The processes
on the level 3 DFD for the Print exams
2.1 process would be numbered 2.1.1,
2.1.2, 2.1.3, etc. The inputs and
outputs to and from a process must be
identical at all times. In this
Examine 2 level 2 DFD example, Test
paper is the input and Results is the
output, just as they were on the
original level 1 DFD in Fig 4.14.

Examine
2

Graduate
3

Student fle

Student

Staff

Enrol
1

Enrolment
form

Class
lists

Course
taken

Test
paper

Resuts

Defining and Understanding the Problem, and Planning and Designing Software Solutions 163

Software Design and Development – The Preliminary Course

Consider the following:

A book reseller, who sells by mail order, is looking to computerise the functions
involved in filling orders. After analysing the current system, a series of data flow
diagrams are produced.

Firstly, a context diagram or level 0 DFD is created. The context diagram in Fig 416
above includes a single process with all the external entities to this process.

Further refinement results in a more detailed Level 1 data flow diagram (Fig 417).
Notice that the external inputs and outputs are still the same as on the original context
diagram above.

GROUP TASK Create
For the student administration data flow diagram shown above in Fig 4.14
create a context diagram. Remember context diagrams contain only one
process together with any external entities.

GROUP TASK Explanation
Explain, in words, the processing and flow of data occurring in the
Examine 2 DFD shown in Fig 415 above.

GROUP TASK Create
Develop a possible DFD for the Enrol 1 process shown above in Fig 4.14.
Include at least 3 processes on your diagram.

Fig 4.16
Context diagram for the book reseller problem.

Customer Fulfil
orders Invoice

Supplier
Delivery docket

Purchase order Order

Fig 4.17
Level 1 data flow diagram for the book reseller problem.

Enter
order

1

Check
stock level

2

Compile
order

3 Stock file

Item
details file

Invoice

Order

Item
details

Stock request

Stock
response

Purchase order

Delivery docket

Item detais,
Quantity

Item details,
Quantity

Delivered
item details,

Quantity

Reduced quantity

GROUP TASK Explanation
Explain, in words, the processing and flow of data occurring in the
context diagram shown in Fig 4.16 above.

164 Chapter 4

Software Design and Development –The Preliminary Course

Structure Charts

Structure charts (or diagrams) are used to model the hierarchy of subroutines
(processes) within a system, together with the sequence in which these subroutines
take place. Data movements between subroutines are included to improve the reader’s
understanding of the relationships between them. In terms of software development,
structure charts describe the top-down
design of the program together with the
order in which subroutines are called.
Because subroutines can be conditionally
called or repeatedly called from a higher-
level subroutine, decisions and repetitions
are also indicated on structure charts.

The primary function of a structure chart is to create a template in preparation for the
creation of the actual source code. Each subroutine shown on the structure chart will
be coded within the final program. For large software projects, structure charts may be
used to allocate tasks to individual programmers on the development team. Structure
charts are also useful tools for maintaining and upgrading software. Identifying
subroutines and modules that could potentially contain an error or that need upgrading
is made easier if a structure chart is available.

There are many recognised techniques for drawing structure chart type models and
many different names are used for these diagrams. Some common names include
structure diagram, function chart, call graph, call tree and hierarchy diagram. The
important common theme for all these
modelling techniques is that they attempt
to describe the top-down, hierarchical
design of a system. Some include an
indication of the sequence of execution
and methods for indicating decisions and
repetitions.

Let us now consider the symbols used in structure charts as they are to be drawn in
this course. Processes, which are usually subroutines and sometimes modules, are
drawn as rectangles. Lines drawn between processes are known as call lines or control
lines. They show the connections between processes. Each line represents a call to a
subroutine from the subroutine above.
Decisions about whether a call should be
made are indicated using a small diamond.
If a sub-task is to be called multiple times,
then a circular arrow to indicate this
repetition, is placed around the call line.
Data items passed between tasks are known
as parameters and are shown using a small
open circle with an arrow attached to
indicate the direction of the data movement
along the call line. A filled in circle with

Call
Causing the execution of a
subroutine (process) from
within another subroutine.

Control
The influence that causes tasks
to execute in their correct
sequence.

GROUP TASK Create
Create a table listing all the external entities, processes, data stores and
data flows for the above two data flow diagrams. For each item write a
brief description of its purpose and how it links to other items.

Module or
subroutine
(process) Repetition Decision

Parameter
(data movement)

Control
parameter

(flag)

Call
line

Fig 4.18
Symbols used in structure charts.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 165

Software Design and Development – The Preliminary Course

attached arrow is used to show a control parameter. Control parameters have an effect
on the order in which tasks are executed. Usually, a control parameter will be a flag.
Flags are data items used to indicate that a certain criterion has been met.

Structure charts can be read from top to bottom. Lower-levels represent subroutines
that are called from the subroutine above. Reading from left to right on a particular
level describes the order of execution of tasks. Sometimes a subroutine may be called
by more than one higher-level subroutine, because order of execution is from left to
right. It is necessary to include this subroutine each time it is called by a different
higher-level task.

Consider the following:

A business is invoiced for supplies from its vendors. The structure chart below models
the tasks involved in processing and paying these invoices.

There are two ways of interpreting the above structure diagram: left to right or top to
bottom. Reading from left to right on a particular level describes the sequence of
processing. Reading from top to bottom describes the top-down design of the system.

Reading along the first level from left to right, invoices are verified and then paid.
Moving down a level, the sequence of processes would be entering details, comparing
with purchase order, determining payment to make and generating a cheque. Reading
across the lowest level gives entering details, comparing with purchase order, check
date due, check available funds, convert amount to words and print cheque. Each of
these sequences makes sense; the lower the level the more detail is included.

Reading from the top indicates that the main program, called Process Invoices,
includes a repeated call to the Verify Invoice subroutine. The Verify Invoice subroutine
contains a call to the Enter Details subroutine and also to the Compare with Purchase
Order subroutine.

Process
Invoices

Pay
Invoice

Verify
Invice

Compare with
Purchase

Order

166 Chapter 4

Software Design and Development –The Preliminary Course

Let us now consider the parameters included on the above structure chart. These
parameters give an indication of the data movements between processes. The initial
input into this system is the Invoice details, which are presumably obtained from the
paper invoices received by the company. The final output is the Cheque details,
which are sent out of the system as printed cheques. Presumably, the cheques are
posted to the vendors. Notice that the external source and destinations are not
indicated on structure charts - remember they were included on DFDs.

Now we examine the Determine payments to make subroutine in detail. This routine
receives the payment details as input. Then the invoice date is sent with the call to the
Check date due subroutine. A control parameter is returned indicating if the date is
okay. The Check date due subroutine checks if the invoice is due for payment. If it
is, the Date OK flag is set to true; if not then the Date OK flag is set to false. A
decision is then made as to whether the Check available funds subroutine is called. If
the Date OK flag is false, the Check available funds routine is not called. The Check
available funds routine is called with the invoice amount sent as a parameter. A
control parameter is returned. If funds are available to pay the invoice, then the Funds
OK flag is set to true; if not then it is set to false. Control returns to the Determine
payments to make subroutine. This process checks the value of both the Date OK and
Funds OK control parameters or flags and sets the OK to pay flag appropriately. As
you can see, explaining this in words is difficult compared to the simplicity of design
of the structure chart. The structure chart also allows you to gain an overall view of
the program at a glance. This is not possible with written explanations.

Consider the following:

A software solution is required to simulate the card game Patience, which is also
known as Solitaire. To assist in understanding the game and designing a software
solution the structure chart in Fig 4.20 has been produced.

The general sequence of processing that occurs when playing a game of patience is as
follows. First the cards are dealt, then cards are played repeatedly and finally the
result of the game is displayed. These are the three processes (or subroutines) on the
first level of the Fig 4.20 structure chart.

GROUP TASK Discussion
Describe in words the processing and movement of data for the
Generate Cheque process.

GROUP TASK Discussion
Explain the difference between a parameter and a control parameter. Use
examples from the Process Invoices structure diagram above to illustrate
your response.

GROUP TASK Discussion
Expand the Compare wth Purchase Order process into another level on
the structure diagram. This process checks that the items ordered are the
same as those on the invoice and confirms that prices on both purchase
order and invoice are the same. Finally the totals are compared.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 167

Software Design and Development – The Preliminary Course

Further detail is specified in regard to playing a card; a card is either generated or
actioned. A card is generated from the remaining pack of cards. The program must
monitor which cards remain within the pack and then randomly choose one of these
cards. The details of the generated card are returned to the Play Card subroutine.
Actioning a card involves getting the details of the move from the user, checking if it
is a legal move and then if the move is OK the move is actually performed by the
software.

Notice that many subroutines on this structure chart do not require any inputs. For
example, at the start of the game the cards are dealt unconditionally. There are some
tasks that have input parameters but no data is returned to the calling task. For
example, the Perform Move task gets the move details but does not return any data to
the Action Card task.

Fig 4.20
Structure chart for the card game ‘Patience’.

Patience

Pay
Card

Dspay
Resut

Generate
Card

Action
Card

Show Win
Animation

Show Lose
Animation

Get user
input

Check if
legal

Perform
move

Result

Result

Card
Details

Move
Details Move

Details
Move
OK

Move
Details

Deal
Cards

GROUP TASK Discussion
Describe in words the processing and movement of data for the Action
Card process.

GROUP TASK Discussion
Why do you think the Result parameter is a control parameter? What do
you think is the purpose of this Result control parameter in the context of
the game?

GROUP TASK Discussion
Choose one of the low-level tasks on the above structure diagram and
expand this task into a lower level. Explain your diagram in words.

168 Chapter 4

Software Design and Development –The Preliminary Course

SET 4A
1. Context diagrams are used to show:

(A) the external inputs and outputs into
and out of a system.

(B) the data structures used in the
design of the system.

(C) the algorithms that have been
designed for the system.

(D) the top-down design of the system.
2. Inputs and outputs are also known as:

(A) data and processing.
(B) data and information.
(C) information and processing.
(D) none of the above.

3. The advantage(s) of the abstraction
process is (are):
(A) it encourages the development of

reusable modules of code.
(B) it simplifies the testing process.
(C) developers are assured that the

work of other members of the team
will not affect their own module
development.

(D) all of the above.
4. A useful tool used for describing the

steps that will transform the inputs into
outputs is:
(A) a context diagram.
(B) an IPO diagram.
(C) a hierarchy chart.
(D) the abstraction process.

5. A system modelling tool that describes
the sequence and top-down design of a
problem is known as:
(A) an IPO diagram.
(B) a DFD.
(C) a context diagram.
(D) a structure chart.

6. Considering a part of the solution by
separating or isolating it, is known as:
(A) modular design.
(B) top-down design.
(C) abstraction.
(D) hierarchy charting.

7. Ben is a system analyst, who after
spending time researching just what is
required of a proposed new system,
presents his recommendation to
management. Which phase of the
software development cycle has Ben
been involved with?
(A) Testing and evaluating.
(B) Defining and understanding the

problem.
(C) Implementing.
(D) Planning and designing.

8. In a DFD, the external entities from
which data is obtained are also known
as:
(A) sources.
(B) inputs.
(C) sinks.
(D) outputs.

9. Another name for a level 0 data flow
diagram is:
(A) an IPO diagram.
(B) a context diagram.
(C) an algorithm.
(D) a structure chart

10. Which system model shows the
movement of data between subroutines
with no specific detail of the order in
which subroutines execute?
(A) Structure chart
(B) IPO diagram
(C) DFD
(D) Context diagram

11. List and briefly describe each stage of the software development cycle.

12. Create an IPO diagram to describe the steps required to drive a car from point A to point B.

13. What is abstraction and stepwise refinement? Why is it so useful when developing software
products?

14. Create a structure chart to describe the general processes and decisions that are required to make
somebody a cup of coffee. Assume you are the computer and you do not know in advance if the
person has milk or sugar in their coffee.

15. Examine the functions within a typical mobile phone that are related to making and answering
phone calls. Create a series of data flow diagrams (DFDs) to describe this functionality.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 169

Software Design and Development – The Preliminary Course

DATA TYPES

Data items are the raw materials on which computer programs operate. These data
items must be stored in binary if they are to be manipulated by the instructions that
form the software progras. Each data item must be assigned a data type. The data
type determines how each of the data items will be represented in binary and what
kind of processing the software will be able to perform on them.

There are a number of data types that are used so frequently that most programming
languages include them as predefined parts of the language. These data types are
those that are used in everyday life. For example, we use whole numbers (integers) for
counting and performing arithmetic,
numbers with decimal points or real
numbers (floating point) for fractional
and large number computations and
words and sentences (strings) for all
forms of writing. We use yes/no or
true/false (Boolean) data to answer
questions and make decisions. Dates and
times are used to schedule our lives and
currency is used for purchasing. All
these data types are predefined in most
programming languages.

All data and instructions are stored in binary. We will firstly examine the
representation of numbers using the binary, decimal and hexadecimal systems. Then
we will examine many of the data types in Fig 4.21. We investigate how they are
represented in binary together with any of their limitations. Following our
examination of data types we consider a number of data structures. Data structures are
ways of combining multiple data items into some logical form, the aim being to
enable the program code to more efficiently access and hence manipulate the data.

Representing numbers in binary and hexadecimal

The number system we use every day is based on the number ten and is known as the
decimal system. This system has evolved as a consequence of us having ten fingers.
Computers are based on transistors. Like switches, they can either allow electrical
currents to flow or not flow. These two states are best represented using a number
system based on two - the binary system. Current flowing or present is represented as
a binary 1 and not flowing or not present as a binary 0. Similarly, storage devices
require only two different states to represent binary data.

Binary numbers are difficult for humans to comprehend. The hexadecimal system
assists us in this regard. The hexadecimal system is based on 16. As 16 is a power of
two the hexadecimal system provides a shorter method for representing binary with
minimal effort. For example, 8 binary digits (1 byte) can be represented using just 2
hexadecimal digits.

Data type Exaple dat items

nteger -5, 0, 34, -9245, 89
Floating point -5.045, 2.3×108, 6.874
Strng Frd, Yu3k, Egplant
Booean Ys, o, Tre False
Date 16/1/02, 25 Jan 2002

170 Chapter 4

Software Design and Development –The Preliminary Course

• Binary

In decimal each digit has a place value. The number 4305 can
be written in expanded form as (4 × 103) + (3 × 102) +(0 × 101)
+(5 × 100). The 4 has a place value of 1000, the 3 a place value
of 100, 0 a place value of 10 and 5 a place value of 1. This
system is based on powers of 10 so we require 10 digits,
namely 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

The binary system is based on the number 2, so we require
only 2 digits; 0 and 1. Each binary digit is known as a bit. The
place values are powers of 2. Moving from the right hand side
to the left, the place values increase by a factor of 2. For
example, the binary number 110101 could be written in
expanded form as (1 × 25) + (1 × 24) + (0 × 23) + (1 × 22) +
(0 × 21) + (1 × 20). This is the decimal equivalent of 32 + 16 +
0 + 4 + 0 + 1 which is 53.

Most microprocessors operate on multiples of 8 bits. 8 bits
make up a byte. It is common to include leading zeros at the
start of binary numbers to make up the remaining bits in each
byte. For example, 00110101 is the same as 110101 in the
same way as 0053 is the same as 53 in decimal. The place
value for each of the 8 bits in a byte is 27=128, 26=64, 25=32,
24=16, 23=8, 22=4, 21=2 and 20=1. Each byte is able to store
256 unique combinations of 1s and 0s representing the decimal
numbers 0 through to 255.

A single combination of bits will have a different meaning dependant on its context.
10101110 could represent a number, a character, a pixel within a graphic, a
controlling character to assist with communication or even an instruction for the CPU.
All data used by computers is ultimately a combination of bits. Software is the set of
instructions that describes how to make sense and process these bits.

Decimal Binary
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

250 11111010
251 11111011
252 11111100
253 11111101
254 11111110
255 11111111

Fig 4.22
Decimal and binary

equivalents.

GROUP TASK Activity
Choose 10 binary numbers containing no more than 8 bits. Convert each
of these numbers to their decimal equivalent.

GROUP TASK Activity
Most microprocessors process 16, 32 or 64 bits at a single time. This is
known as the processor’s word size. How many different bit combinations
are available using 16 bits, 32 bits and 64 bits?

GROUP TASK Activity
Counting in binary does not come naturally to us. We could all count from
1 to 255 in decimal but can you do it in binary? Try counting around the
class from 1 to 255 in binary.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 171

Software Design and Development – The Preliminary Course

• Hexadecimal
Hexadecimal is based on the number 16. Hex means 6
and dec means 10. In hexadecimal, each 8 bit byte is
represented using exactly 2 hexadecimal digits. This
greatly improves the readability of binary data for
humans.
As hexadecimal uses 16 as it’s base, we require 16
digits. Rather than invent 6 new symbols, the capital
letters A through to F are used to represent the numbers
10 to 15 respectively. Fig 4.23 shows these
hexadecimal digits alongside their decimal and binary
equivalents.
Each place value is a power of 16. For example, 38C in
hexadecimal can be written as (3 × 162) + (8 × 161) +
(12 × 160); notice that the hexadecimal digit C is
equivalent to the decimal number 12. The result in
decimal is (3 × 256) + (8 × 16) + (12 × 1) = 908.

Converting between binary and hexadecimal we consider groups of 4 bits at a time.
Often 4 bits are referred to as half a byte or a nibble. Each nibble corresponds to a
single hexadecimal digit. For example, converting the binary number 10110101 we
first split the number into nibbles. Each nibble is then converted to its corresponding
hexadecimal digit (refer Fig 4.23). In our example 1011 converts to the hexadecimal
digit B and 0101 to the digit 5. The result in hexadecimal is therefore B5. Converting
from hexadecimal back to binary involves the reverse operation.

In mathematics, numbers in different bases are indicated using subscripts e.g. 5E816 or
11001012. On computers it is difficult to write subscripts. A variety of different
notations are used to specify hexadecimal numbers. One common notation uses a
leading ampersand (&H) to indicate base 16. For example, &H7A means 7A is a
hexadecimal number. Within URLs for accessing web pages the percent (%) sign is
often used. For example, often URLs will include %20 to replace space characters. In
the ASCII system the space character has a decimal code of 32, which in hexadecimal
is 20. Some programming languages use a leading hash (#) and others add a small h
after the number to indicate hexadecimal numbers. There are many other hexadecimal
notations.

Decimal Binary Hexadecimal
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Fig 4.23
Decimal, binary and

hexadecimal equivalents.

GROUP TASK Activity
Choose 10 binary numbers containing no more than 8 bits. Convert each
of these numbers to their hexadecimal equivalent.

GROUP TASK Activity
Choose 10 hexadecimal numbers containing no more than 2 digits.
Convert each of these numbers to their binary equivalent.

GROUP TASK Discussion
Why do you think hexadecimal is commonly used on computers but rarely
used for other purposes? Discuss.

172 Chapter 4

Software Design and Development –The Preliminary Course

COMMON DATA TYPES USED IN SOLUTIONS

In this section we examine a number of data types that are commonly used as part of
most software solutions. Each type has its own strengths and limitations. As a
consequence, it is important to select the most appropriate type for the circumstances
present in the particular problem. Computers are finite binary machines; there is a
limit to their storage and processing abilities. As software developers we must be
aware of these limitations.

Variables are containers for data items. Each variable used within a program must be
assigned a data type. In some languages the translator will determine and assign a data
type to a variable based on its context within the code. It is often preferable and more
efficient to manually assign each variable a data type rather than allow this to occur.

The data types described below are predefined in most programming languages.
Integer

Integers are whole numbers both negative and positive. For example, -3456, -1, 0,
903. If an integer data type is chosen then you must be absolutely certain that
fractional values will never be required or even stored as part of a computation.
Attempting to assign a fractional value to a variable of integer type will at best result
in the loss of the fractional part and at worst will cause a type mismatch error; either
occurrence is unsatisfactory.

Integers are stored using sequences of binary digits. Most languages contain a number
of integer data types which each use a different number of bytes. A 2 byte or 16 bit
integer is able to store whole numbers in the range -32768 to 32767. 4 bytes or 32 bits
can store integers within the range -2147483648 to 2147483647 and 8 byte (64 bit)
integers range from -9,223,372,036,854,775,808 up to 9,223,372,036,854,775,807.
Many languages also include a byte data type that predictably uses a single byte (8
bits) to store integers in the range -128 to 127. Attempting to assign a value outside
the allowable range will result in a type
mismatch error. As developers we must be
careful to ensure this situation never
occurs.

In most programming languages, the two’s
complement system is used so both
negative and positive integers can be
stored. The two’s complement system
integrates the sign (‘-‘ve or ‘+’ve) within
the coding system. Essentially the highest
order (LHS) bit is given a negative value.
So using 8 bit twos complement the
decimal integer -102 is represented as
10011010 as -128 + 16 + 8 + 2 = -102. This
system allows the computer to perform each of the four basic arithmetic operations
without regard for the sign of the number. Other coding systems require consideration
of the sign of each integer during computation.

Compared to floating point calculations, integer calculations are fast and perfectly
accurate. For these reasons it is preferable to use integer data types wherever possible.
Just be aware of their range and ensure that fractional values will never be required.

1000000000000000
(-3276810)

to
0111111111111111

(3276710)

10000000000000000000000000000000
(-214748364810)

to
01111111111111111111111111111111

(214748364710)

Fig 4.24
Range of 16 bit and 32 bit integer data types.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 173

Software Design and Development – The Preliminary Course

Floating point (real)

Floating point data types are used to store fractional and very large numbers. In
mathematics the real number system includes all such numbers. With computers, as in
mathematics, we cannot represent all numbers exactly. For example, in mathematics
we cannot write √2, ⅓ or π as precise decimal fractions. However, we can write them
as accurately as we wish e.g. ⅓ can be approximated as 0.3 or 0.333 or 0.3333333333.
Using computers and binary, similar problems occur. As a consequence the binary
representation used is not perfectly accurate. The more decimal places we use the
better the accuracy, however this involves larger and larger amounts of storage and
faster and faster processors. A compromise between accuracy and storage/speed must
be achieved.

The Institute of Electrical and Electronics Engineers (IEEE) has produced the 754
standard for representing binary floating point numbers. Most processors and
programming languages adhere to these standards. The single precision format uses
32 bits for each number and the double precision format uses 64 bits per number. The
IEEE 754 standard uses a system similar to scientific or standard notation; the
mantissa, exponent and sign of the number being encoded within each representation.
The single precision format uses 23 bits for the mantissa,
8 bits for the exponent and 1 for the sign with a decimal
range from approximately -3.4 × 1038 to 3.4 × 1038.
Double precision uses 52 bits for the mantissa, 11 for the
exponent and 1 for the sign, the decimal range being
approximately -10308 to 10308.

Performing arithmetic with floating
point numbers is difficult and
processor intensive. As a consequence,
most microprocessors contain a
floating point unit (FPU) that is
dedicated to performing these
operations. Early Intel 386 and 486
based machines used a separate chip
known as a maths coprocessor; these
days the FPU is integrated within the main processor’s circuitry. Software
applications involving repeated mathematical calculations are greatly improved using
the services of the FPU, e.g. games involving complex animation.

Most programming languages include a predefined single and double data type. These
types correspond to the IEEE 754 standard described above. Floating point data types
should only be used when the requirements give no other choice. When they are used,
be aware of their processing demands. Also carefully consider the consequences of
inaccuracies due to the approximate nature of floating point representations. Such
inaccuracies can easily become significant for repeated calculations on a single
variable and when very small numbers are added to large numbers.

GROUP TASK Activity
Examine the integer data types available within a common database
application. Create fields with each of these types. What is the range of
these data types? Discover the effect of entering a fractional value or a
value outside the allowable range.

-5.9402 × 1026

mantissa sign exponent

Fig 4.25
Floating point representations

use a system similar to scientific
or standard notation.

 Sign Exponent Mantissa
 1 110…0101 11011…0010011
Single 1 bit 8 bits 23 bits
Double 1 bit 11 bits 52 bits

Fig 4.26
The IEEE 754 Single and Double Precision
standards use 32 and 64 bits respectively.

174 Chapter 4

Software Design and Development –The Preliminary Course

String

String data types are used to store text data. For example, ‘cat’, ‘123abc’, ‘y<%2g’ or
‘Once upon a time’. Most programming languages provide predefined string data
types. Often a fixed length string and a dynamic length string are provided. The fixed
length string can hold up to a set number of characters whereas dynamic strings grow
in size as required. Other languages require programmers to define strings themselves
using sequences of characters; the character data type being predefined.

Regardless of the available data types, strings are ultimately stored as separate
characters. Each character is coded using a standard system. ASCII, EBCDIC, ANSI
and Unicode are some common examples. Many of these coding systems use a single
byte or less, to represent each character. The Unicode system uses up to 32 bits and is
designed to include all the possible characters and marks used in all the languages of
the world. The Unicode system incorporates the more widely understood ASCII
system. Regardless of the coding system used, each character is stored separately as a
unique pattern of bits.

Let us consider the ASCII system in some
detail. ASCII is an acronym for American
Standard Code for Information
Interchange. Each character is represented
using 7 bits. In binary, 7 bits provides 128
different combinations hence there are 128
characters in the standard ASCII character
set (see Fig 427 below).

The ASCII characters are grouped and ordered to facilitate the sorting and searching
process for programmers. The 10 digits are in order and come before the uppercase
alphabet, which comes before the lowercase alphabet. There are relationships between
upper and lower case characters. For example, uppercase ‘A’ has an ASCII code of
65, which in binary is 1000001. Lowercase ‘a’ occupies ASCII 97 which is 1100001
in binary. In fact all the lowercase characters are exactly 32 more than their uppercase
partner. Sorting without regard to case and converting between cases is simplified.

GROUP TASK Activity
Scientific calculators are dedicated computers. What is the range of values
that can be represented in scientific notation on your scientific calculator?
What is the smallest positive number possible? Write down some
calculations beyond the accuracy or range of your calculator.

GROUP TASK Activity
Examine the character based data types available in a database program
with which you are familiar. What are the size limitations for each of these
data types? What happens if an entry exceeds these limits?

ASCII
American Standard Code for
Information Interchange. A
coding system for characters
using 7 bits. Most other coding
systems incorporate ASCII.

GROUP TASK Activity
Investigate the data type used to represent numbers within a spreadsheet
application. Create various formulas to help determine the accuracy and
other limitations of the data type used. Determine the number of
significant figures that can be relied upon.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 175

Software Design and Development – The Preliminary Course

Consider the following:

The string of characters “KONK!” is entered into a computer. Assuming the eighth bit
of each byte is always zero the string is stored in binary as 01001011 01001111
01001110 01001011 00100001. Similarly the string “konk!” is stored as 01101011
01101111 01101110 01101011 00100001.

Char Dec Description Char Dec Description Char Dec Description
NUL 0 Null character + 43 Plus V 86
SOH 1 Start of header , 44 Comma W 87
STX 2 Start of text - 45 Hyphen X 88
ETX 3 End of text . 46 Period Y 89
EOT 4 End of transmission / 47 Forward slash Z 90
ENQ 5 Enquiry 0 48 [91
ACK 6 Acknowledge 1 49 \ 92 Backslash
BEL 7 Bell 2 50] 93
BS 8 Backspace 3 51 ^ 94 Caret
HT 9 Horizontal tab 4 52 _ 95 Underscore
LF 10 Line Feed 5 53 ` 96 Left quote
VT 11 Vertical tab 6 54 a 97
FF 12 Form Feed 7 55 b 98
CR 13 Carriage Return 8 56 c 99
SO 14 Shift Out 9 57 d 100
SI 15 Shift In : 58 Colon e 101
DLE 16 Data link escape ; 59 Semicolon f 102
DC1 17 Flow control < 60 Less than g 103
DC2 18 Flow control = 61 Equals sign h 104
DC3 19 Flow control > 62 Greater than i 105
DC4 20 Device control 4 ? 63 Question j 106
NAK 21 Neg. acknowledge @ 64 At-sign k 107
SYN 22 Synchronous idle A 65 l 108
ETB 23 End trans. block B 66 m 109
CAN 24 Cancel C 67 n 110
EM 25 End of medium D 68 o 111
SUB 26 Substitute E 69 p 112
ESC 27 Escape F 70 q 113
FS 28 File separator G 71 r 114
GS 29 Group separator H 72 s 115
RS 30 Record separator I 73 t 116
US 31 Unit separator J 74 u 117
SP 32 Space K 75 v 118
! 33 Exclamation mark L 76 w 119
" 34 Quotation mark M 77 x 120
35 Hash sign N 78 y 121
$ 36 Dollar sign O 79 z 122
% 37 Percent sign P 80 { 123
& 38 Ampersand Q 81 | 124 Vertical line
' 39 Closing single R 82 } 125
(40 Left parentheses S 83 ~ 126 Tilde
) 41 Right parentheses T 84 DEL 127 Delete
* 42 Asterisk U 85

Fig 4.27
The standard ASCII character set. Control characters use codes 0 through to 31.

Printable characters use the remaining codes from 32 to 127.

GROUP TASK Activity
Convert each byte into decimal and check your result against those shown
on the ASCII table in Fig 4.27.

176 Chapter 4

Software Design and Development –The Preliminary Course

Boolean

The Boolean data type is used to store logical data; the only possible data items being
either true or false (or yes or no). The term Boolean is derived from Boolean algebra
which was developed by mathematician George Boole. Boolean algebra is used to
describe logical propositions where the result must always be either true or false.
Other common names used by programming languages rather than Boolean include
logical, bit or simply Yes/No. In all cases, only two possible states are possible.

Each Boolean data item requires a single bit of storage, either a binary 1 or 0. It is
standard practice to use 0 to mean false and 1 to mean true. In reality, many
programming languages allow you to assign Boolean variables any value, however
any non-zeros are treated as 1s and hence represent the Boolean value true.

The Boolean data type is commonly used to store any data that can only have two
possible states. Examples include, Male or female, eligible or ineligible and on or off.
Checkboxes are screen elements used to gather and display Boolean data. Boolean
flags are variables often used within programs to signal that a section of code has or
has not been executed.

Consider the following:

The following data are often used and stored by software solutions:
• Phone numbers • Email addresses
• Gender • Total number of items
• Postcodes • Cost of products
• Date of birth • X, Y coordinates on a screen
• Time of day • Average of many integers

GROUP TASK Discussion
The processes occurring within the CPU are all based on logical decisions.
These decisions result in the output of sequences of 1s and 0s, therefore
all data is ultimately Boolean data. Do you agree? Discuss.

GROUP TASK Discussion
Although Boolean data is often thought of as true or false it can be used
to represent other data that has just two states. Make a list of at least 10
instances where the Boolean data type would be appropriate.

GROUP TASK Discussion
Examine the above two sets of binary numbers. How could ASCII assist
programmers to convert between upper and lowercase? Discuss using
KONK! as an example.

GROUP TASK Discussion
Recommend the most suitable data type for each of the above data
elements. Justify your answers.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 177

Software Design and Development – The Preliminary Course

(a) Convert the binary number 11001010 into hexadecimal and decimal.

(b) Compare and contrast the binary representation of string data with the
binary representation of integer data.

(c) In regard to examinations:
• They are written by teachers and printed
• Students sit the exams to answer questions
• Teachers mark the exams and the results are given to students

Draw a dataflow diagram to describe the above system using each of the above
dot points as individual processes.

Suggested solutions

(a) 11002 = 8 + 4 = 12 = C. 10102 = 8 + 2 = 10 = A. Therefore, 110010102 = CA16.
110010102 = 128 + 64 + 8 + 2 = 20210. Or, CA16.= (12 * 16) + 10 = 20210.

(b) String data is represented as a sequence of individual characters. A particular
character is represented using the same binary code each time it occurs within the
text. Integer data, on the other hand, represents complete numbers using a single
representation. For example each digit in the numeric value 123 is NOT
represented individually, rather the entire number is represented as a binary
number using the twos complement system. Integer data is represented this way
so it can be used to perform mathematical operations.

(c)

Write and
print

exams

Students
sit

exams

Teachers
mark

exams

Exam
questions

Exam papers

Completed
exams

Results Marks

Answers

Students

Teachers

HSC style question:

178 Chapter 4

Software Design and Development –The Preliminary Course

SET 4B
1. Boolean, Date, Integer and Floating

Point are examples of:
(A) data items.
(B) data types.
(C) strings.
(D) instructions.

2. If a stored result may be of a fractional
value, then which data type should be
assigned to the applicable variable?
(A) Floating point.
(B) Integer.
(C) Boolean.
(D) String.

3. Today, all computer data and
instructions are ultimately stored in:
(A) ASCII.
(B) hexadecimal.
(C) binary
(D) decimal.

4. The decimal equivalent of the binary
number 10001 is:
(A) 9.
(B) 17.
(C) 24.
(D) 65.

5. Which is the most accurate data type for
storing real numbers?
(A) double precision floating point
(B) single precision floating point
(C) Boolean
(D) 64 bit integers

6. Which data type is most commonly used
to store data that can only have two
possible states?
(A) Integer.
(B) Floating point.
(C) String.
(D) Boolean.

7. A value that is assigned outside of the
allowable range will most likely result
in:
(A) a type mismatch error.
(B) a null value.
(C) the correct result but represented as

a negative value.
(D) no error occurring.

8. The number 27B is probably an example
of:
(A) a hexadecimal number.
(B) a binary number.
(C) an octal number.
(D) a decimal number.

9. The most common coding system for
characters that uses 7 bits is known as:
(A) ANSI.
(B) EBCDIC.
(C) ASCII.
(D) Unicode.

10. Whole numbers are also known as:
(A) real numbers.
(B) floating point numbers.
(C) integers.
(D) none of the above.

11. Convert each of the following binary numbers into their decimal and hexadecimal equivalents.

(a) 01010101 (b) 11110111 (c) 10111010 (d) 01111110

12 Choose the best data type for each of the following. Justify your answers.

(a) The gender of clients in a database. (c) The number of items remaining on the shelf.
(b) The average of a set of exam results. (d) A doctor’s notes on patients.

13. Convert the word “Gouldian” into binary ASCII. (set the first bit of each byte to 0)

14. The following hexadecimal numbers represent ASCII characters.

49 20 6C 6F 76 65 20 41 53 43 49 49

What does it say?

15. Calculations involving money must be precise. Research how this is achieved when money is
often a fractional quantity.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 179

Software Design and Development – The Preliminary Course

DATA STRUCTURES
Data structures are arrangements of data items; the aim being to simplify access and
processing of the data. When designing data structures for particular problems it is
important to carefully consider the nature of the processing that will be required.
Well-designed data structures can significantly reduce the complexity of the
processing required. Conversely poor or inappropriate data structures can greatly
increase the processing required and reduce the software’s performance.
In the preliminary course we introduce three data structures: arrays, records and files.
These three structures can be combined in various ways to suit the data and
processing requirements of individual problems.
One-dimensional array
Arrays are used to store multiple data items where each data item is of the same data
type. Each element within the array has a unique index that is used to access the data
contained within the element. Structures similar to arrays are used extensively in non-
computing applications. For example, post office boxes (PO boxes). PO boxes are
numbered sequentially within each post office. These numbers are used as indexes
when locating a particular PO box. Each PO box is a storage container for mail. The
mail (data items) will change within a particular storage container but the container
and its index remain constant. The ordered and sequential nature of the PO box
numbers together with the boxes physical arrangement simplifies the sorting and
distribution of mail. In the case of PO boxes there is a single index, the PO box
number. In the HSC course we examine arrays that use multiple indexes, called multi-
dimensional arrays. At this stage we restrict our discussion to arrays with single
indexes, one-dimensional arrays.
Let us consider a typical array data structure. In Fig 4.28 the array element with an
index equal to 2 contains the data item ‘Cow’. Notice that each data element in Fig
4.28 is of the same data type (in this case
strings) and that there is an obvious
relationship between them (they are all
animal names). If we were to call our
example array Animals then the array
element with an index of 2 is specified as
Animals(2). At present Animals(2) contains
the data item ‘Cow’. Similarly Animals(1)
contains ‘Frog’ and Animals(4) contains ‘Cat’.
As arrays contain a distinct countable number of elements it makes sense to use whole
numbers (integers) as the index to arrays. In some programming languages the range
of the index may be altered to best suit the needs of the problem. For example, the
index may range from 0 to 9 resulting in ten array elements or it could range from -2
to 7 also resulting in ten array elements.
For simplicity it is common to commence
indexing at either zero or one. The index
is often called a subscript because of its
similarity to subscripts used in
mathematics. The term dimension is also
used synonymously with the term index.

So far we have accessed the contents of array elements using a constant value for the
index e.g. 2 or 3. The power of arrays is realised when we allow the index to change
resulting in access to a sequence of array elements. This is accomplished by using a

Frog

1

Cow

2

Dog

3

Cat

4

Bird

5

Fig 4.28
Each array element has a unique index.

Index Array
element

Data
item

Index
An integer value used to
denote a particular data item
held in an array. Often called a
dimension or subscript.

180 Chapter 4

Software Design and Development –The Preliminary Course

variable in place of the constant index value. For
example, consider again the Animals array in Fig 4.28.
If the variable Count ranges in value from 1 to 5 during
processing then Animals(Count) would access each of
the five animal names in sequence as shown in Fig 4.29.
Our code is generalised to process each element in the
array.

Consider the following:

A modification is required to the airline check-in system to increase security as a
consequence of the September 11, 2001 attacks on the USA. Currently passengers
show identification to obtain their seat allocation and boarding pass. No identification
is required as they board the aircraft. This makes it possible for passengers to
exchange boarding passes and sit in different seats and even on different aircraft to
those for which they hold a ticket.
The modification to the system involves flight personnel at the boarding gate entering
the seat number into a computer terminal. The terminal responds by displaying the
passenger’s name. The staff member must then check the name against that on the
passenger’s passport and ensure the passport photo is actually the passenger.
The software developer assigned this task decides
to use an array which is declared with the
identifier Seating. The index for each element of
the Seating array will be the seat number and the
data items stored in the array will be the passenger
names. At the check-in desk, passengers are
assigned seats. This process sets the array element
corresponding to the required seat to the
passenger’s name. For example,
Seating(23)=”Nerk Fred” means that Fred Nerk
will be sitting in seat number 23 on the aircraft. At
the boarding gate the flight personnel enter the
seat number from the boarding pass. The system
responds by displaying the passenger’s name. If
the seat is empty then no name is returned. The
passenger name displayed is compared to the
passenger’s passport and the passport photo
compared to the person to confirm their identity.

Seating(1) = “Broermann Kim”
Seating(2) = “”
Seating(3) = “Bradley Marlene”
Seating(4) = “Bradley John”
Seating(5) = “”
Seating(6) = “”
Seating(7) = “Eagle Nicholas”
Seating(8) = “Carrucan Lindsay”
Seating(9) = “Fendall Janine”
Seating(10) = “”
Seating(11) = “Davis Matthew”
Seating(12) = “Davis Kareena”
Seating(13) = “”
Seating(14) = “Fendall Brent”
Seating(15) = “Fendall Richard”

Fig 4.30
The Seating array for a 15 seat aircraft
after most passengers have checked in.

GROUP TASK Discussion
How does the above modification assist in improving security? Use
possible examples to assist in your explanation.

GROUP TASK Discussion
The index for the Seating array is itself meaningful data. Often this is not
the case. What attributes make the seat numbers appropriate for use as the
array’s index? Discuss.

Fig .29
Allowing the index to change

allows efficient access to
multiple array elements.

Anmals(Count)

Count is 1,
then 2,
then 3,
then 4,
then 5.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 181

Software Design and Development – The Preliminary Course

Consider the following:

1. 10,000 names need to be searched to find any duplicates.
2. Calculating the average of a set of test results.
3. Storing the personal details for an individual employee.
4. Storing the daily rainfall occurring over a number of years.
5. Inputting a list of numbers and outputting them in reverse order.
6. Preparing a family tree.

Record

A data structure containing data items that are related but not necessarily of the same
data type is called a record. Records are used extensively for database applications.
Generally individual records contain all the information about a particular entity (or
individual) within the database For exam ple, an address book contains details of
individual people. Each person is an entity
within the address book and has their own
record. The record may contain the
person’s surname, Christian name, date of
birth, gender, street address, suburb,
postcode, phone number, mobile number
and email address. Each of the data items
within each record is known as a field.

Each record of the same data type is made
up of the same fields. The data items held
within these fields will most likely be
different but the data type of like fields
must be the same. For example, the
surname field always holds strings
whereas the gender field always holds
Boolean data.

GROUP TASK Discussion
In which of the above scenarios would an array be of assistance? In each
case explain your reasons. If an array is appropriate describe its structure.

Fig 4.31
Microsoft Outlook includes an address book where

an individual’s details are stored as a record.

GROUP TASK Discussion
Records are different in many ways to arrays. Describe these differences.
Use examples to reinforce your response.

GROUP TASK Discussion
Records are used extensively as integral parts of many software
applications. List and describe some applications that use records.

182 Chapter 4

Software Design and Development –The Preliminary Course

Before a record structure can be used as a data type, its fields must be named and each
assigned a data type The record structure then becomes a user-defined data type that
can be used in the same way as the predefined included data types. We consider the
programming language statements used to perform these tasks in more detail in
Chapter 5. Once the structure of the record has been described we can create
individual records of that data type. These records can be manipulated as single data
items or each of their component fields can be manipulated individually.

Consider the following:

As part of the development of a computer game the programmer has determined the
need for a record data structure to hold information on each player and the level they
have achieved during play. Each level contains a number of screens. The records are
stored on disk and are examined at the start of a game so players may recommence
play at their current level and screen.

Each record contains three fields. Name, Level and Screen.
The record structure is assigned the data type PlayerRecord.
Fig 4.32 shows the code required to accomplish this task in
Visual Basic. A record with the data type PlayerRecord is
declared using the identifier Player. This record can be
processed as a complete unit or each of its component
fields can be accessed separately.

Within the program the disk file is
accessed and each record is read in
turn into Player. The Name field is
examined in search of a match with
the current player’s name, e.g. does
Player.Name = EnteredName. If they
do match then the entire record is retained for future use. Assuming that CurrentPlayer
is also of type PlayerRecord, the statement CurrentPlayer = Player would achieve this
aim. This statement copies the entire contents of Player into CurrentPlayer. If we just
wanted to copy the current level then the statement would be
CurrentPlayer.Level = Player.Level. A period ‘.’ is the standard notation used to
indicate what follows is a field within the record e.g. Player.Level means that Level is
a field within the Player record.

Structure PlayerRecord
 Name As String
 Level As Integer
 Screen As Integer
End Structure

Fig 4.32
Creating the user defined data

type called PlayerRecord.

GROUP TASK Discussion
Why is a record structure a better solution than an array for the above
scenario? Could one or more arrays have been used? Discuss.

GROUP TASK Activity
Create a list of 10 possible records that could be stored in a record of data
type PlayerRecord.

Fig 4.33
Example data that could be held in Player.

Player.Name = “Freddo”
Player.Level = 5
Player.Screen = 2

Player.Name = “Makka”
Player.Level = 3
Player.Screen = 4

Defining and Understanding the Problem, and Planning and Designing Software Solutions 183

Software Design and Development – The Preliminary Course

Sequential files
Files are used to permanently store data on secondary storage devices. Data can be
written to a file or read from a file. Different types of access to files suit different
requirements. Sequential files can only be accessed from start to finish. That is, to
read or write to the middle of a sequential file requires accessing all the data prior to
that position in the file. It is not possible to jump directly to a particular data item.
The operating system controls access to files. As a consequence, software applications
must work via the operating system when working with files. To commence using a
file the operating system needs to know the location and name of the file together with
information in regard to the method of access. Once work on the file is completed the
application notifies the operating system and the operating system closes the file.
A sequential file can be likened to an audio-
cassette. To play the fifth song on the cassette
requires fast forwarding through the first four
songs. You cannot record a song between the
fourth and fifth songs without overwriting
existing music. If you wish to record over the
fifth song you must be sure the new one is of
identical size to the old. If it is not then you
risk either overwriting part of song six or
having the end of the old song five left on the tape. However you can easily add (or
append) a new song to the end of the tape without affecting the existing songs.
Sequential files operate in a similar manner.
Sequential files are continuous streams of data (usually characters). The structure of
the data is not coded as part of the file. If the data within the file has some structure
then the software must understand this structure; the file itself does not contain this
information. Many languages contain statements that allow data to be written and read
a single character at a time, a data item at a time, record at a time or a line at a time.
Separators are inserted by the programming language to separate data items e.g.
commas or tabs. Carriage returns and/or line feed characters are added after each line.
Most programming languages include an end of file (EOF) function, which returns the
Boolean value True when the end of a file has been reached. This function can be
used to ensure errors do not occur due to programs attempting to read past the last
character. Programmers often add sentinel values within files to indicate the end of a
sequence of data items e.g. “ZZZ” or 9999999.

Consider the following:

It is possible to open most files sequentially. Most
word processors allow you to do this by stipulating
that the file is a text file. Unfortunately the result
often appears to be gibberish. Fig 4.35 shows part
of a jpeg image file opened as a text file in
Microsoft Word.

Song , Song2, Sng 3, Song 4…

Fig 4.34
Data on audio-cassettes are stored

sequentially.

Fig 4.35
Part of a jpeg file opened as a text file.

GROUP TASK Discussion
Using your knowledge of sequential files and ASCII text, explain why the
file in Fig 4.24 appears as gibberish. Discuss.

184 Chapter 4

Software Design and Development –The Preliminary Course

Consider the following:

As part of a program a sequential file is used. The requirements of a particular module
mean that new data needs to be inserted at the start of the file. To perform this process
the program performs the following steps:
1. Create a new file.
2. Add the new data to this new file.
3. Open the existing file.
4. Read a character from the existing file.
5. Write this character to the new file.
6. Repeat the above two steps until the end of the existing file is reached.
7. Close both files.
8. Delete the original existing file.
9. Rename the new file to the name of the old file.

Consider the following:

An existing sequential file contains the text for a Shakespeare essay
you are working on in English. A friend notices that you have
incorrectly spelt Shakespeare as Shakespear throughout the essay.
Being a keen Software Design and Development student, you decide
to correct the problem using your knowledge of sequential file
techniques.

GROUP TASK Discussion
From the user’s point of view it would seem that data could be added to
the front of the sequential file. Explain why the user may think this is the
case.

GROUP TASK Activity
Work through the above steps on paper using some sample data. In your
own words explain how these steps achieve their purpose.

GROUP TASK Discussion
Develop a series of steps that could be used to accomplish the above task.
Remember you can only add or append data to the end of a sequential file.

GROUP TASK Activity
Create, on paper, a sample file containing the misspelt word a number of
times. Work through your steps developed above to ensure each of the
errors has been corrected.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 185

Software Design and Development – The Preliminary Course

DATA DICTIONARY

When developing a software solution to a problem, it is vital that all variable names
or identifiers are carefully documented. This ensures that all members of the
development team are aware of identifiers that have been used, their data type and
the scope of usage. A data dictionary is the repository where this information is held.
Data dictionary functions are available
with most software development CASE
tools. If the data dictionary is an integral
part of the development environment then
confusion due to duplicate identifiers can
be eliminated. For smaller development
projects, the data dictionary is often
maintained on paper with the assistance
of a database or word processor.

A data dictionary should include a thorough description of each variable used by the
program and each field in each database and file used or accessed by the program. A
separate data dictionary is created for each module, database and file used by the
program. Commonly a data dictionary will be a table containing columns for:
• Identifier name (or field name)
• Data type (including the data

structure if applicable)
• Length (Number of characters

or decimal places if applicable)
• Scope of the variable
• Purpose or description

The exact columns used will be
determined by the nature of the
data used in the application. The
example data dictionary at right
(Fig 436), displays a sub-form to
allow entry of information specific to the particular data type of the current field.
This data dictionary describes a table in a relational database. It includes an icon of a
key to indicate the primary key field in the table.

The screen shown in Fig 437 is part of a data
flow diagram CASE tool. This screen allows
the modification of the attributes of each data
item used in the data flow diagram. As data
flows are added to the diagrams the data
items are automatically added to the data
dictionary. Clicking on the ‘Edit Data Item’
button opens a screen allowing entry of
details describing specific data items, such as
data type, range, and a description of the data
item’s purpose.

Scope
The extent to which a variable
is available for use. Global
variables are available for use
by all subroutines. Local
variables are available to an
individual subroutine.

Fig 4.36
A data dictionary from MS-Access, a popular

relational database system.

Fig 4.37
Data dictionary screen from the

Axiomsys CASE tool.

186 Chapter 4

Software Design and Development –The Preliminary Course

Consider the following:

The data dictionary below describes all the identifiers used in the Convert Amount to
Words module from the Invoicing System structure diagram shown in Fig 4.19.

The programmer created this data dictionary whilst developing the source code. Data
dictionaries are stored, along with other documentation, to assist in future
maintenance and upgrading of the software product.

Name Data Type Length Scope Purpose

AmountInWords String 255 char Function Name
Global

Returns the currency amount in
words.

Amount Numeric Real 2dec. pl.) Local Input parameter.

TempDigit Numeric Integer Local Stores each digit as it is extracted
from Amount.

DigitWord(19) Array of strings 10 char Local The word associated with each
digit, e.g. DigitWord(5)=”five”.

TenPowerWord(9) Array of strings 10 char Local Word for each power of ten, e.g.
TenPowerWord(3)=”thirty”

Ten3Word(4) Array of strings 10 char Local Word for each 3rd power of ten,
e.g. Ten3Word(2)=”million”

PlaceCounter Numeric Integer Local Counter incremented for each
digit in Amount.

TempResult String 255 char Local Stores the amount in words during
processing.

Fig 4.38
Data dictionary for the ‘Convert Amount to Words’ module.

GROUP TASK Discussion
How could a data dictionary, such as the one above, be of assistance to
future maintenance personnel?

GROUP TASK Discussion
Explain the relationship between structure diagrams, IPO charts and data
dictionaries. Use the above data dictionary as an example to illustrate your
answer.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 187

Software Design and Development – The Preliminary Course

SET 4C
1. A record can best be described as:

(A) a data structure containing
unrelated data items.

(B) a data structure containing related
data items all of the same data
type.

(C) a data structure containing related
data items but not necessarily of
the same data type.

(D) a data structure containing
unrelated data items but all of the
same data type.

2. A dimension or subscript is another
name for:
(A) an index.
(B) a data item.
(C) an array.
(D) a record.

3. What is often added within a file to
indicate the end of a sequence of data
items?
(A) EOF function.
(B) Sentinel values.
(C) Boolean values.
(D) A carriage return.

4. A one-dimensional array has how many
indexes?
(A) One.
(B) Two.
(C) Multiple.
(D) None.

5. Each data item within a record is
individually known as:
(A) an array.
(B) a file.
(C) an element.
(D) a field.

6. Arrays, records and files are
examples of:
(A) data indexes.
(B) data types.
(C) data items.
(D) data structures.

7. Adam is developing a product and has
decided to use a record structure in one
of the modules. What must Adam do
first to ensure it can be used as a user
defined data type?
(A) He must name every field and

assign each a data type.
(B) He does not need to name them,

just assign each field a data type.
(C) He must name them but he does

not need to assign each a
data type.

(D) He cannot create a user defined
data type.

8. A file that can only be accessed from
start to finish is a:
(A) serial file.
(B) sequential file.
(C) random access file.
(D) direct access file.

9. Arrays are used to:
(A) store multiple items of the same

data type.
(B) store multiple items of differing

data types.
(C) store a single data item.
(D) none of the above.

10. File access is controlled by:
(A) the browser.
(B) the application software.
(C) the operating system.
(D) the FP Unit.

11. Select a data structure for each of the following. Justify your responses.

 (a) Gathering the responses to a questionnaire. (c) A set of exam marks.
(b) Storing the output from a word processor. (d) Details of products sold in a shop.

12. Describe the essential differences between an array and a record.

13. Arrays can greatly simplify access to multiple data items. Do you agree? Explain your response.

14. Sequential files can be used to store records and arrays, however there are access restrictions.
Describe these restrictions.

15. Create an IPO diagram to describe how a data item can be inserted into the middle of a
sequential file.

188 Chapter 4

Software Design and Development –The Preliminary Course

STRUCTURED ALGORITHMS
An algorithm is a method of solving a problem. The algorithm describes the
processing steps necessary to transform the inputs into the outputs. This occurs within
a finite amount of time. Algorithms are used to assist in the solution of all types of
problems not just computer-based problems. For example, a recipe is an algorithm
describing the preparation and cooking steps required to create a meal. In most cases,
recipe books call this the ‘method. The met hod is a sequence of steps that transform
the ingredients (input) into the meal (output).

We use algorithms subconsciously. For example, each morning you go through a
sequence of decisions and steps to prepare and travel to school. When searching for a
lost article we try various techniques; we may try retracing our steps, looking in
obvious places, asking other family members, etc… These are all valid methods of
solving the problem; in essence you are using algorithms. The algorithm is not the
solution but the method used to arrive at the solution. This chapter is about bringing
algorithms out of the subconscious and presenting them in such a way that others can
understand them. To do this requires us to be able to clearly and logically describe
algorithms we devise. There are various methods of algorithm description, in this
course we consider two, pseudocode and flowcharts.

Consider the following:

Each morning most high school students need to make decisions about their day. The
steps taking place may include the following:

1. Wake up
2. If you are sick then stay in bed.
3. If it is a school day then continue otherwise stay in bed.
4. Get out of bed.
5. Have a shower.
6. Get dressed in school uniform.
7. Eat breakfast.
8. Pack school bag.
9. If mum is home then scab a lift otherwise catch bus to school.

There are problems with the above steps if we work through them in the precise order
indicated. If you are sick, then step 2 directs you to stay in bed. We then reach step
three, which indicates that on school days we must complete the steps that follow.
This seems to contradict step 2’s direction. This algorithm has three exit points, at
steps 2, 3 and 9. It would be better if we could restructure our algorithm to have a
single exit. Structured algorithms require a single exit point and, as we shall see, this
is always possible.

GROUP TASK Activity
Can you rewrite the steps 1 to 9 from above in such a way that there is
only one exit point from the algorithm? Ensure that your new algorithm
performs the tasks in the manner intended in the original.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 189

Software Design and Development – The Preliminary Course

METHODS FOR REPRESENTING ALGORITHMS

There are many standard methods for representing algorithms. Using standard
methods of algorithm description assists in the process of developing algorithms and
allows others to understand the algorithms created. In this course, we examine two
methods; pseudocode and flowcharts. By adhering to the rules of pseudocode and
flowcharts the process of coding is simplified.

Pseudocode is an English-like algorithm
description language. Keywords are used in
pairs to indicate the start and finish of each
control structure. These keywords are written in
capitals to make them stand out. Between each
pair of keywords, statements are indented to
further emphasise each control structure.
Flowcharts use rectangles for processes,
parallelograms for input and output and
diamonds for decisions. These components are
connected with flow lines. Although it is
possible to draw flow lines in any direction
there are standard constructs for each of the standard control
structures used for structured algorithms. When using
flowcharts we must be careful to use only recognised control
structures. It is possible to draw flowcharts that cannot be
implemented in programming code.

Pseudocode and flowcharts are used to represent exactly the
same thing. For example, Fig 4.39 and Fig 4.40 represent
exactly the same algorithms. Which one is used, is purely
personal preference. Some would argue that pseudocode is
easier as it is closer to programming code. Others feel
flowcharts are more visual and hence easier to construct and
understand. In this course, it is necessary to be comfortable
writing and reading both pseudocode and flowcharts.

The wording of each process used is not part of the algorithm
description method. For some algorithms, maths symbols may
be appropriate, for others English phrases are more suitable.
For example, Count = 1 or Set Count to 1. It is common
practice to be consistent within each algorithm. The aim is to
write algorithms that can be easily understood and are
logically correct.

BEGIN

Set Count to 1

Set Product to
Number × Count

Yes

No Is
Number > Count

?

Get Number

Display Product

Increment Count

END

Fig 4.40
Sample algorithm expressed

using a flowchart.

BEGIN MAINPROGRAM
 Get Number
 Set Count to 1
 WHILE Number > Count
 Set Product to Number × Count
 Display Product
 Increment Count
 ENDWHILE
END MAINPROGRAM

Fig 4.39
Sample algorithm using pseudocode.

GROUP TASK Discussion
Compare the pseudocode and flowchart shown in Fig 4.39 and Fig 4.40.
Can you see how both algorithms are describing the same method of
solution? Discuss.

GROUP TASK Discussion
What problem do you think is being solved by the algorithms in Fig 4.39
and Fig 4.40? Describe, in words, the operation of the algorithms that lead
to the solution of this problem.

190 Chapter 4

Software Design and Development –The Preliminary Course

CONTROL STRUCTURES

Structured algorithms are built using control structures. This process is known as
structured programming. Control structures determine the direction or order in which
statements within an algorithm are executed. Control is the influence that directs the
flow of execution. Control structures are standard constructs used when creating
structured algorithms.
The theory behind structured programming is that all problems can be solved using
just three different control structures; sequence, selection and iteration. This theory
has never been definitively proven however no problem has ever been found that
cannot be solved using structured techniques. All imperative and procedural
programming languages include statements allowing the implementation of each of
these control structures as part of software solutions. Structured programming
techniques are used to create the majority of software developed in the world today.
Although only the three control structures; sequence, selection and iteration are
required, a fourth, the use of subroutines or subprograms, is desirable when using top-
down design development techniques. Let us examine each of these control structures
in detail:
Sequence

In structured programming the order of processing is
important. Each process must be performed in the correct
order for the solution to be realised. Sequence is the control
structure that ensures each process occurs in the correct
order. For example, when getting dressed you must put
your socks on before your shoes.
There are programming languages where the sequence of
processing is not significant. Consider a spreadsheet;
formulas are entered into cells with little need to consider
the order in which these formulas will be evaluated. In
Prolog a set of facts and rules are interrogated to reach
conclusions. The order of events is not a significant
consideration.
When using pseudocode each process is written one under the other. Similarly on
flowcharts the order of processing moves from top to bottom. Each process is
completed before the next is commenced. A single process that is out of order will
most likely effect the operation of the entire algorithm.

Consider the following:

To back a car out of a garage requires the following steps: start the car, open the
garage door, get in the car, release the hand brake, engage reverse gear, press
accelerator, check review mirror, unlock car and place foot on brake.

Process 1

Process 1

Process 1

Process 1

Process 1
Process 2
Process 3
Process 4

Fig 4.41
Sequence expressed in

pseudocode and as a flowchart.

GROUP TASK Activity
The steps above are obviously not in the correct sequence. Rewrite these
steps in the correct sequence first as a flowchart and then in pseudocode.
Is there only one possible sequence? Discuss.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 191

Software Design and Development – The Preliminary Course

Consider the following:

Many software solutions require that the contents of two variables need to be
swapped. A precise sequence of events must be adhered to if this process is to occur
correctly. The four flowchart segments below are attempting to swap the data item in
Num1 with the data item in Num2.

Selection
Selection is the control structure that allows decisions to be made between different
alternative paths. Different paths are executed in response to the outcome of some
condition. Once the processes along this path are complete processing continues with
the statement following the selection control structure.
• Binary selection
In binary selection there are two
alternatives, one being selected if
the condition is true and the other if
the condition is false. The condition
results in a Boolean value, either
true or false. Often one branch will
not involve any additional
processes, rather its purpose is to
avoid execution of the processes
present on the alternate branch. Fig
4.43 shows the syntax used to
represent binary selection using
pseudocode and flowcharts.

GROUP TASK Discussion
Some of the algorithms above correctly perform the swap while others do
not. Identify the correct and incorrect algorithms. Explain your response
for each algorithm.

GROUP TASK Discussion
The sequence of steps is vital to the success of the swap algorithm.
Describe situations where sequence is not so vital to an algorithm’s
success. Discuss.

Yes No Condition
?

Process 1

IF Condition THEN
 Process 1
ENDIF

Yes No Condition
?

Process 1 Process 2

IF Condition THEN
 Process 1
ELSE
 Process 2
ENDIF

Fig 4.43
Binary selection using flowcharts and pseudocode.

Num1 = Num2

Num2 = Num1

Num1 = Num2

Temp = Num1

Num2 = Temp

Num1 = Num2

Temp = Num2

Num2 = Temp

Num2 = Num1

Temp = Num2

Num1 = Temp

Num2 = Num1

Num1 = Temp

Temp = Num1

Algorithm A Algorithm B Algorithm C Algorithm D Algorithm E
Fig 4.42

Possible swap algorithms.

192 Chapter 4

Software Design and Development –The Preliminary Course

Yes No Height > 135
?

You can’t ride

Get Weight, Height

 Weight < 40
?

You can ride You can’t ride

No Yes

When using binary selection, the condition can be expressed as a statement e.g.
Number > 2 in which case the result is either True or False. It can also be expressed as
a question e.g. Is Number > 2? in which case the answer is either Yes or No. In either
case, it is important on flowcharts to label each branch appropriately using Yes/No or
True/False. In this text we prefer to use questions combined with Yes and No.

Consider the following:

Under current Australian law you must
be 18 years of age to vote. An algorithm
to determine if someone can vote is
described in Fig 4.44 as a flowchart and
in pseudocode.

Consider the following:

To ride on the roller coaster at an amusement park you must weigh at least 40
kilograms and be taller than 135cm. Fig 4.45 describes two different algorithms. The
first uses pseudocode and the second, a flowchart.

Get Age
IF Age ≥ 18 THEN
 You can vote
ELSE
 You can’t vote
ENDIF

Fig 4.44
Algorithm to decide if someone can vote.

Yes No Age ≥ 18
?

You can voteYou can’t vote

Get Age

GROUP TASK Activity
There are many different ways of writing the above algorithm so it
correctly achieves its purpose. Describe using both pseudocode and a
flowchart some alternative algorithms.

GROUP TASK Discussion
The flowchart shown in Fig 4.44 uses the three symbols. Describe the
purpose of each symbol in terms of making flowcharts more
understandable. Discuss.

Get Weight, Height
IF Weight ≥ 40 THEN
 IF Height > 135 THEN
 You can ride
 ELSE
 You can’t ride
 ENDIF
ELSE
 You can’t ride
ENDIF

Fig 4.45
Two different algorithms for the roller coaster problem.

GROUP TASK Activity
Rewrite the first algorithm as an equivalent flowchart. Rewrite the second
algorithm in its equivalent pseudocode. Which solution do you think is the
best? Discuss your answer.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 193

Software Design and Development – The Preliminary Course

• Multiway selection

Multiway selection caters for situations where more than two alternative paths are
required. The first choice encountered that makes the expression true causes control to
branch to that respective path. Multiway or multiple selection statements can be
implemented using multiple binary selection statements. Multiway selection
statements are not a necessary part of structured algorithms however in many
instances they greatly reduce the length and complexity of the solution.

The Otherwise choice is a default should none of the available choices make the
expression true. It can be likened to the No or Else part of the binary selection
structure. It is not necessary to include the Otherwise choice in all algorithms.

Consider the following:

A triathlon is being organised. As part of the administration of the event, a software
application is developed to sort the entrants into their respective levels. Competitors
who are 12 years old or younger are juniors, 15 years or under are intermediate,
younger than 18 are seniors. Competitors who are 35 years or older compete in the
veteran level and the remaining competitors are placed in the open level. An
algorithm for this aspect of the software product has been developed:

CASEWHERE Expression is
 Choice A : Process 1
 Choice B : Process 2
 Choice C : Process 3
 Choice D : Process 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 Otherwise : Process n
ENDCASE

Fig 4.46
Multiway selection expressed using pseudocode and as a flowchart.

 Expression

Process 4 Process 3 Process 1 Process 2 Process n

Choice A Choice B Choice C Choice D Otherwise

CASEWHERE Age is
 ≤ 12 : Junior
 ≤ 15 : Intermediate
 < 18 : Senior
 ≥ 35 : Veteran
 Otherwise : Open
ENDCASE

Fig 4.47
Algorithm segment to sort triathlon entrants into levels.

 Age is

Veteran Senior Junior Intermediate Open

≤ 12 ≤ 15 < 18 ≥ 35 Otherwise

GROUP TASK Activity
The algorithm above has been created using multiway selection. Rewrite
the algorithm using only binary selection structures. Do this as a flowchart
and then in pseudocode.

194 Chapter 4

Software Design and Development –The Preliminary Course

Iteration (or Repetition)

Iteration is the repetition of a sequence of steps. A termination condition is used either
at the start or at the end of the sequence to stop the repetition. Iteration is often called
looping as control passes from the last statement in the sequence back to the first
forming a loop. The processes within the loop structure are known as the body of the
loop.

Program runtime errors are often a consequence of poor
iteration structures where the termination condition is never
met. This results in the appearance, to the user that the computer
has frozen. In actuality it is processing at full speed but is stuck
in an infinite loop.

Iteration is what makes computers such powerful calculating
machines. Their ability to repeat instructions continually at
incredible speeds makes the software applications we use each
day possible. For example, the animation sequences in computer
games, the screen redrawing millions of colours some 70 times
per second, and weather forecasting applications processing vast
amounts of data.

There are two main types of iteration; pre-test where the termination condition is at
the start of the loop and post-test where the termination condition follows the body of
the loop. A third structure known as a counting loop or for…next loop is a special
case of the pre-test loop that is used so often that it is included in most programming
languages.
• Pre-test iteration

Pre-test iteration is the most commonly used form of
repetition. Because the termination condition comes before
the body of the loop it is possible that the processes within
the loop will not be executed at all. For this reason, pre-test
loops are also known as guarded loops, the condition
guards the entrance to the loop. Most algorithms require
the possibility of not entering the loop if all possibilities
are to be taken into account.

With pre-test loops the repetition continues whilst the
condition remains true. It is when the condition becomes
false that the repetition terminates. As a consequence, it is
essential that the processing occurring within the loop
alters the contents of variables that form the condition. If
this does not occur the loop will continue infinitely.

The pseudocode implementation of pre-test iteration uses
the keyword pair WHILE and ENDWHILE. The initial WHILE is
followed by a condition, which must remain true for the repetition to continue.
ENDWHILE signifies the end of the loop and that control should return to the WHILE
statement. On flowcharts, the ENDWHILE keyword is replaced by a flow line
connecting back to above the condition. This flow line requires an arrow as it directs
control in an upward direction rather than the normal downwards direction.

Yes

No Condition
?

Process

Fig 4.49
Pre-test iteration using

pseudocode and as a flowchart.

WHILE Condition
 Process
ENDWHILE

Process

Process

Process

Fig 4.48
Iteration is the control
structure that repeats

sequences of code.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 195

Software Design and Development – The Preliminary Course

Consider the following:

To sharpen a pencil you continue turning the sharpener whilst the pencil is not sharp.
Fig 4.50 shows this algorithm expressed in pseudocode and as a flowchart. The use of
pre-test iteration means that if the pencil is already sharp we don’t ever turn the
sharpener.

• Post-test iteration

Post-test iteration is where the termination condition
follows the body of the loop. This means that the processes
within the body of the loop are always executed at least
once. For this reason post-test loops are also called
unguarded loops. When using a post-test loop you must be
absolutely certain that under all circumstances the
processes within the loop should occur at least once.

Checking user input is a common situation where a post-
test loop is appropriate. The body of the loop gets input
from the user. The termination condition checks that the
input is reasonable. If it is not then further input is
requested. If the input is successfully validated then the
loop is terminated.

Consider the representations shown in Fig 4.51. On the
flowchart control enters the body of the loop from above.
The processes within the loop are executed then the
condition is checked. If the condition is true the loop terminates, if not then control
returns to the top of the loop. In pseudocode the keyword REPEAT is synonymous with
the arrow on the flowchart leading back up to the top of the loop. Effectively the word
REPEAT is merely a marker indicating the top of the loop. Similarly, UNTIL indicates the
end of the iteration and has the same meaning as the decision diamond on the
flowchart. Remember, both the pseudocode and the flowchart are representing exactly
the same control structure.

Yes

No Pencil blunt
?

Turn the sharpener

Fig 4.50
Sharpening a pencil using pre-test iteration.

WHILE Pencil is blunt
 Turn the sharpener
ENDWHILE

GROUP TASK Discussion
Pre-test iteration continues whilst the condition is true. The condition is
contained within a decision diamond. What makes this decision different
to that used for binary selection? Discuss.

Yes

No
 Condition

?

Process

Fig 4.51
Post-test iteration using

pseudocode and as a flowchart.

REPEAT
 Process
UNTIL Condition

196 Chapter 4

Software Design and Development –The Preliminary Course

GROUP TASK Discussion
Describe, in words, how the algorithm
in Fig 4.53 effectively validates the
number of copies input.

Consider the following:

User input is a common cause of errors. It
is difficult to completely control the actions
of users. As a consequence it is necessary
to validate their input to ensure it is
acceptable.
Consider the text box on a print dialogue
(Fig 4.52) that is used to obtain the number
of copies the user wishes to print.
Obviously a positive integer is required,
however what happens if a letter, word or
fractional value is entered? As developers
we must deal with such situations if we are
to produce quality software products.
We could stop users entering numbers
directly into the text box and insist they use the up
or down arrows to select a value. This would work,
however it is rather inconvenient if you wish to
print say 10 or 20 copies. A preferable solution is
to validate the data after it has been input. Fig 4.53
shows a possible algorithm to achieve this
validation.

Consider the following:

The above validation example could have been implemented
using a pre-test loop. Fig 4.54 describes a possible algorithm
that accomplishes this task.

Fig 4.52
Print dialogue from Microsoft Word.

Fig 4.53
Post-test iteration used to validate input.

REPEAT
 Get Copies
UNTIL Copies is a positive integer

Yes

No
 Is

Copies a positive
integer

?

Get Copies

GROUP TASK Discussion
The condition used to validate the input does not really include sufficient
detail. Which type of tests are required to check that the input is indeed a
positive integer? Discuss.

Fig 4.54
Pre-test iteration used

to validate input.

Yes

No Is Copies
NOT a positive

integer
?

Get Copies

Get Copies
GROUP TASK Discussion
Two input statements are used in the pre-test
algorithm. Why is this necessary? Is there a way of
rewriting the algorithm using a single input? Discuss.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 197

Software Design and Development – The Preliminary Course

• Counting or FOR…NEXT loops.
Counting loops are a special case of pre-test iteration. These loops are used when we
wish to repeat a sequence of processes a set number of times or we wish repetition to
occur whilst a value is incrementing within the limits of two values. For example, if
we require a variable to take the values 1, 2, 3, 4, 5… 100 then a counting or
FOR…NEXT loop is the most convenient structure to use. In most programming
languages it is possible to alter the magnitude of each increment (or step) to produce
sequences such as 10, 9, 8, 7, … 0 or even -1, -0.5, 0, 0.5, 1, 1.5… 10. The
incrementing value, called the loop counter, changes by a set amount (the step) each
time the body of the loop has been executed. Counting loops are so often required that
most programming languages include them as a standard construct.
Strictly speaking, we do not require a specific method for representing counting loops
using our two methods of algorithm description, as the pre-test iteration control
structure can be used to more accurately describe the logic. However for convenience,
the FOR…NEXT keywords can be used in pseudocode. If a flowchart is being used then
the explicit logic of the loop should be shown.

The pseudocode in Fig 4.55 represents a counting iteration structure. During the first
iteration, the loop counter holds the initial value. During the second iteration the loop
counter is equal to the initial value plus the step value. Subsequent iteration increment
the loop counter by the step value. The loop terminates once the loop counter reaches
a value greater than the final value if the step value is positive. If the step value is
negative, then the loop terminates once the loop counter is less than the final value. Be
careful when using fractional step values, as the approximate nature of floating point
representations can cause the loop to terminate earlier or later than expected.

Consider the following:

Develop an algorithm that displays the first 10
multiples of a number entered. For example, if the
user enters 3 then the algorithm should display 3,
6, 9, 12, 15, 18, 21, 24, 27 and 30. A possible
solution is described in Fig 4.56. Notice that the
STEP part of the pseudocode is not required when
the step value is 1.

GROUP TASK Practical activity
We have stated that FOR…NEXT loops are special cases of pre-test
iteration. Perhaps this is not really the case. Using a programming language
with which you are familiar, write statements to ensure that it’s FOR…NEXT
structure does in fact implement pre-test iteration. Discuss your findings.

FOR LoopCounter = InitialValue TO FinalValue STEP StepValue
 Process
NEXT LoopCounter

Fig 4.55
Suggested syntax for representing counting loops in pseudocode.

Get Number
FOR Count = 1 TO 10
 Multiple = Count × Number
 Display Multiple
NEXT Count

Fig 4.56
Algorithm to display the first 10

multiples of a number.

198 Chapter 4

Software Design and Development –The Preliminary Course

Consider the following:

The logic is clearer if we write algorithms that include counting loops using pre-test
iteration structures rather than the FOR…NEXT pseudocode keyword pairs, however
this does require a little more effort.

Suppose a problem requires a loop that outputs the even numbers
from 2 to 100. Let us develop this algorithm using pseudocode
and a counting loop, pre-test pseudocode and finally as a
flowchart. Each of these algorithms is logically identically, it is
the method used to describe them that is different.

The FOR statement in the FOR…NEXT version includes setting the initial value of the
loop together with the decision. This corresponds to the first two lines of the pre-test
pseudocode version. The NEXT Count statement corresponds to the last two lines of
the second version. The flowchart is a precise copy of the second pseudocode with
minor changes to the wording of some statements.

There is a difference in the way counting loops are implemented in some
programming languages that is not immediately obvious. When the loops within the
second and third algorithms above terminate, Count will have a value of 101. In most
programming languages, this is also the case when the first algorithm is implemented.
Unfortunately it is not always the case. Sometimes Count will be undefined, and
sometimes it will be the final value given in the FOR statement. It is important to
understand the intricacies of the FOR…NEXT implementation in the programming
language you are using.

FOR Count = 2 TO 100 STEP 2
 Display Count
NEXT Count

Count = 2
WHILE Count ≤ 100
 Display Count
 Count = Count + 2
ENDWHILE

Fig 4.57
Identical algorithms describing a method of displaying the even numbers from 2 to 100.

Yes

No Is
Count ≤ 100

?

Display Count

Set Count to 2

Add 2 to Count

GROUP TASK Discussion
Study each of the algorithms in Fig 4.57. Describe how each of these
algorithms operates to perform the stated task.

GROUP TASK Activity
Describe how each of the above algorithms could be changed to display
the following sets of numbers:
1, 2, 3, 4, 5,…50.
100, 95, 90, 85,… 0.
-45, -35, -25,… 45.
0.1, 0.3, 0.5, 0.7,… 5.1

Defining and Understanding the Problem, and Planning and Designing Software Solutions 199

Software Design and Development – The Preliminary Course

SET 4D

1. What is the control structure that
allows decisions to be made between
alternative paths?
(A) Sequence.
(B) Iteration.
(C) Selection.
(D) Subroutines.

2. The most commonly used form of
repetition is:
(A) pre-test iteration.
(B) post-test iteration.
(C) iteration.
(D) none of the above.

3. Keywords used in pairs, are a
characteristic of which method of
representing an algorithm?
(A) Flowcharts.
(B) Context diagrams.
(C) Pseudocode.
(D) None of the above.

4. Which shape is used on flowcharts to
represent input and output?
(A) Rectangles.
(B) Diamonds.
(C) Squares.
(D) Parallelograms

5. When using binary selection, how many
alternatives are there?
(A) One.
(B) Two.
(C) Eight.
(D) Sixteen.

6. What determines the direction or order
in which statements within an algorithm
are executed?
(A) Subroutines.
(B) Control structures.
(C) Parameters
(D) Variables.

7. Kate is a SDD student who has been
given the task of representing the same
algorithm using two different methods.
Which two common methods for doing
this, are examined in this course?
(A) NS diagrams and structured

English.
(B) Pascal and Cobol.
(C) Context diagrams and decision

trees.
(D) Pseudocode and flowcharts.

8. Post-test loops are also known as:
(A) counting loops.
(B) guarded loops.
(C) unguarded loops.
(D) none of the above.

9. Which shape is used on flowcharts to
represent decisions?
(A) Diamonds.
(B) Squares.
(C) Rectangles.
(D) Circles.

10. What is the control structure that ensures
that each process is executed in the
correct order?
(A) Iteration.
(B) Sequence.
(C) Selection.
(D) Pre-test iteration.

11. What is an algorithm and why are they so important when designing software solutions?

12. What is structured programming? Discuss.

13. Explain the operation of each of the three fundamental control structures. Use examples of each
as part of your explanation.

14. Create an algorithm that calculates the average of a series of numbers.

15. Create an algorithm that describes the operation of a light that can be turned on or off using
either of two switches.

200 Chapter 4

Software Design and Development –The Preliminary Course

SOFTWARE STRUCTURE
Earlier in this chapter we examined the concepts of abstraction and refinement. These
concepts are implemented using top-down design. The top-down design, in turn,
determines the structure of the software. We can model this structure using structure
charts or dataflow diagrams. In this section we examine how algorithms are
influenced by and represented when using top-down design. How do we indicate the
position of a module or subroutine within the top-down design? Furthermore, how do
we specify the parameters required by these modules to allow them to be reusable
self-contained units?
Subroutines
Software developed using top-down design is comprised of a series of subroutines.
Subroutines are also called subprograms or procedures. The terms subroutine and
subprogram imply a lower level process whereas the term procedure refers to its
sequence of statements. The highest level routine is known as the main program. The
main program contains calls to lower level
subroutines. In turn these subroutines call lower
level subroutines and so on.
When using pseudocode, a call to a subroutine is
indicated by underlining the process (see Fig 4.58).
The underline tells the reader that there is more
detail in regard to this process elsewhere.
Furthermore, the subroutine found elsewhere will
have the same name as the underlined words. The
keywords BEGIN…END together with the underlined
name of the routine are used to enclose the
processing of the subroutine.
When representing algorithms using pseudocode the
main program is enclosed within the keywords
BEGIN MAINPROGRAM… END MAINPROGRAM.

When representing algorithms using
flowcharts a call to a subroutine is
indicated using additional vertical bars
on either side of the process box (see Fig
4.59). The start of the main program
commences with the word BEGIN in a
box with rounded sides and ends with a
similar box containing the word END.
Some references use the words start and
stop in preference to begin and end. The
commencement and termination of a
subroutine is similarly indicated with the
addition of the subroutine’s name within
each symbol.

BEGIN MAINPROGRAM
 Process 1
 Process 2
 Process 3
END MAINPROGRAM

BEGIN Process 1
 Do something
 Do something else
END Process 1

BEGIN Process 3
 Do whatever
 Do whatever else
END Process 3

Fig 4.58
Subroutine names are underlined

when using pseudocode.

Process 2

Process 1

Process 3

BEGIN

END

BEGIN Process 1

Do something else

Do something

END Process 1

BEGIN Process 3

Do whatever else

Do whatever

END Process 3

Fig 4.59
Calls to subroutines are indicated using

additional vertical lines. Rounded boxes are used
at the start and end of every routine.

GROUP TASK Discussion
Fig 4.58 and Fig 4.59 describe the same algorithm. They also describe the
top-down design of software. Discuss how these methods of indicating
subroutines assist developers during the top-down design process.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 201

Software Design and Development – The Preliminary Course

Modularity
Modularity refers to the ability to reuse modules as a result of their independent
nature. A module, in the broader sense of the word, refers to a self-contained unit. For
example, the anti-lock brake system used on cars can be thought of as a module. It can
be used on a variety of different makes and models of car. The car company need not
understand the details of the operation of the anti-lock
brake module. The module can be treated by the car
company as a black box where only the required inputs
and resulting outputs need to be known. In terms of
software development, modules are groups or libraries
of related subroutines designed so they can be reused
both within the same application and in other
applications.
Testing software products developed using self-contained modules is simplified. The
operation of each module can be thoroughly tested in isolation to the total application.
When the module is added to the project we can be reasonably sure that the module
will not cause any problems. It is considered good practice to develop all subroutines
using modularity principles regardless of whether they are ever likely to be reused.
Earlier in this chapter we discussed abstraction, modularity is closely related to
abstraction. Abstraction involves taking away part of the problem for consideration in
isolation. Modularity principles ensure this part remains a self-contained unit.
Because modules are designed to be reused as part of the solution to different
problems the source of their inputs and the destination of their outputs will change.
We must have a way of communicating the inputs to and outputs from subroutines in
such a way that these channels can easily be reused. We use parameters to provide
this interface.
• Parameters
Parameters provide the interface between different subroutines within a software
product These are the same parameters specif ied on structure charts and used as data
flows on dataflow diagrams. They allow subroutines to access and alter the data items
held in variables. These variables may be simple data types or they may be complex
data structures. Higher level subroutines call lower level subroutines using actual
parameters. Actual parameters are real variables that contain data. Formal parameters
are used within subroutines. Formal parameters are effectively replaced by actual
parameters whilst the subprogram is executing.
Let us consider how parameters are represented
when using pseudocode and flowcharts. In both
cases, the list of parameters to be sent and
returned from the subroutine is included within
a bracketed list. The order in which the
parameters are listed is significant; it determines
their destination when they arrive at the
subroutine. In Fig 4.61 the actual parameter First
in the call to the subroutine Biggest corresponds
to the formal parameter Item1 within the
subprogram. Similarly, the actual parameter
Second corresponds to the formal parameter
Item2 in the subprogram.

INPUTS BLACK
BOX

OUTPUTS

Fig 4.60
Modularity allows modules
to be reused as black boxes.

Fig 4.61
Using parameters in pseudocode.

BEGIN MAINPROGRAM
 Get First
 Get Second
 Bggest (First, Second, Result)
 Display Result
END MAINPROGRAM

BEGIN Bggest (Item1,Item2, Big)
 IF Item1 > Item2 THEN
 Big = Item1
 ELSE
 Big = Item2
 ENDIF
END Bggest

202 Chapter 4

Software Design and Development –The Preliminary Course

The process of communicating via parameters is known as passing. In our Biggest
example (Fig 4.61 and 4.62) the actual parameter First is passed to the formal
parameter Item1 in the Biggest subprogram.
In reality, the variable First is an
identifier pointing to a specific
address in memory. First can be
passed to Item1 in one of two ways,
either “by reference” or “by value”:
1. When passing “by reference” a

pointer to the address in memory
of First is sent to the formal
parameter Item1. In this case no
new memory location is created
rather Item1 will point to the
memory location received from
the actual parameter First. Whilst the Biggest subroutine is executing, each reference
to Item1 causes the memory location associated with the formal parameter First to
be accessed. It is often helpful to think of each occurrence of the identifier Item1
being replaced by the identifier First whilst the subroutine is active. If the Biggest
subroutine altered the value of Item1 during processing then the value of First in the
main program will also change. This makes sense as both Item1 and First are merely
different names for exactly the same memory location. In summary, passing by
reference passes data in both directions – both to and from subroutines. In the
Biggest subroutine the variable Big must be passed by reference as this is the
variable that returns the output back to the calling routine.

2. When passing “by value” a copy of the value held in the variable First is sent rather
than the memory address. This means there is no connection between
corresponding parameters, such as First and Item1, during the processing of the
Biggest subroutine. The Biggest subroutine must create memory locations for each
of its parameters and store the received values in these locations. More
significantly the value of the original formal parameter is not altered during
execution of the called subroutine. In summary, passing by value only passes data
into subroutines. In many current programming languages passing by value is the
default behaviour. This prevents changes to variables in calling subroutines from
being changed unintentionally.

To further confuse the issue, in most programming languages the identifier associated
with many data structures (such as arrays) store pointers to the memory address of the
data structure. Therefore regardless of whether an array is passed “by reference” or
“by value” to a subroutine it is the address of the location of the array in memory that
is passed. This means the values within the actual array elements can be altered by the
subroutine.
Many program languages, such as Java for example, pass all parameters by value. To
return a value from a subroutine requires use of the RETURN keyword. In this case
each subroutine is a function. And all subroutine calls are function calls. Fig 4.63
shows how such calls are specified in pseudocode and flowcharts. Functions receive
one or more inputs and return a single output. Each unique set of inputs will always
return the same output. However, different sets of inputs may well produce the same
outputs. This behaviour is the same as functions in maths. For example, in Fig 4.63
inputs of 3,4 always return 4, however inputs of 4,2 will also always return 4.

Fig 4.62
Using parameters in flowcharts.

Get First

Biggest
(First, Second, Result)

BEGIN

END

Get Second

Display Result

BEGIN
Biggest (Item1, Item2, Big)

END Biggest

Big = Item1

Is
Item1>Item2

?

Big = Item2

Yes No

Defining and Understanding the Problem, and Planning and Designing Software Solutions 203

Software Design and Development – The Preliminary Course

Consider the following:

Imagine you work part time at the local library. Often you have the task of locating
books for the librarian. The librarian gives you a list containing the call numbers of
each required book. You then go to the shelves and retrieve these books.
This is similar to the way a call where parameters are passed by reference works. You
are playing the part of the subprogram and the librarian is the main program. The
shelves are memory areas containing the data (the books). The call numbers represent
the actual locations of the books; the actual parameters. There is only a single book
with a unique call number. You receive the list of call numbers and use them as
formal parameters. Whether you or the librarian find a particular book it remains the
same book.
Now imagine the librarian wishes you to comment on a newspaper article. She makes
a photocopy of the original article and hands it to you. You then take the photocopy to
your desk and as you read you highlight significant words and ideas. You then write
down your comments on a piece of paper, hand them to the librarian and toss the
photocopy of the article in the bin.
This is like passing by value. Again the librarian is playing the part of the main
program and you are playing the subroutine role. The article is passed by value
meaning a copy of the data is passed rather than a link to the original. Clearly your
highlighting will not appear on the original newspaper article as it is merely a copy of
the original. Also, tossing the photocopy in the bin has no effect on the original. The
return value is your comments which you (the subroutine) hand back to the librarian
(the main program).

Fig 4.63
Using RETURN to pass values back in pseudocode and flowcharts.

BEGIN MAINPROGRAM
 Get First
 Get Second
 Resut = iggest (First, Second)
 Display Result
END MAINPROGRAM

BEGIN Bggest (Item1,Item2)
 IF Item1 > Item2 THEN
 Big = Item1
 ELSE
 Big = Item2
 ENDIF
 RETURN Big
END Bggest

Get First

Result =
Biggest (First, Second)

BEGIN

END

Get Second

Display Result

BEGIN
Biggest (Item1, Item2)

END Biggest

Big = Item1

Is
Item1>Item2

?

Big = Item2

Yes No

RETURN Big

GROUP TASK Activity
Act out the above library scenario. Pause as the drama unfolds to discuss
how each component and process compares and assists your
understanding of calling subroutines with parameters.

GROUP TASK Discussion
The use of parameters is central to the programming process. Most
commands, functions and even operators included within programming
languages use parameters. Discuss using examples.

204 Chapter 4

Software Design and Development –The Preliminary Course

STANDARD ALGORITHMS
Often similar problems are encountered as part of the solution to many problems.
Rather than continually reinvent the wheel, there are many standard algorithms that
are used in these circumstances. In life we commonly use standard algorithms. For
example, in primary school you learnt how to perform long multiplication using a
specific method or algoritm. Imagine if your primary school teacher insisted that you
discover and create an algorithm for multiplication on your own. Perhaps eventually
you would work it out, however it is unlikely your algorithm would be as easy to use
as the one you now use. No doubt you have added modifications to the originally
taught multiplication algorithm. Perhaps you just add a zero when multiplying by ten
or you halve and add a zero when multiplying by five. Standard algorithms can be
altered to suit the requirements of the current problem.
We shall examine standard algorithms for loading and printing arrays, adding the
contents of an array of numbers, and processing records from sequential files. In the
HSC course, we examine further algorithms that assist us to search and sort data.
Loading and printing arrays
Loading an array means storing data items in each element of the array. Printing an
array is the process of displaying each data item stored in the array. Both these
processes are similar, as each and every element of the array must be accessed.
Loading an array (see Fig 4.64) could be done using an
assignment statement for each element. This may be acceptable
when the array contains a small number of elements, however it
becomes tedious once the number of elements exceeds ten or so
and becomes extremely cumbersome when hundreds or even
thousands of elements are involved. A more general solution is
required.
As each element in the array is normally filled one after the other
we can use a variable that increments as the index. An iteration
control structure surrounding this statement causes each element
of the array to be accessed sequentially. Various possibilities
exist for the termination condition for the loop. If the number of
data items is known precisely then a counting loop could be used.
If not then a sentinel value (say “ZZZ” or 999) could be used as
an indicator that there is no more data to be loaded (see Fig 4.65).
Let us consider the algorithm in Fig 4.65 more
closely. We first set the index for the array to
its starting value. In most cases arrays are
indexed from 0, as is the case in our
pseudocode. We then get the first data item
from the user and temporarily store it in the
variable DataItem. We then check the loop’s
termination condition before entering the body
of the loop. If the initial data item was the
sentinel value, we would never enter or execute
the body of the loop. If we had chosen a post-
test iteration structure we would be forced to process the first data item, in other
words the sentinel value would always be stored in the array. This may or may not be
desirable depending on the problem. The body of the loop stores the data item in the
array element Item(Index). Index is then incremented, meaning 1 is added to the

BEGIN LoadArray
 Set Index to 0
 Get DataItem
 WHILE DataItem is not the sentinel
 Store DataItem in Item(Index)
 Increment Index
 Get DataItem
 ENDWHILE
END LoadArray

Fig 4.65
Algorithm to load data into an array.

BEGIN LoadArray
 Get Item(0)
 Get Item(1)
 Get Item(2)
 Get Item(3)
 Get Item(4)
 Get Item(5)
 Get Item(6)
 Get Item(7)
 Get Item(8)
 Get Item(9)
END LoadArray

Fig 4.64
Tedious algorithm to

load data into an
array.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 205

Software Design and Development – The Preliminary Course

existing value of Index. So if we have just loaded ‘sausage’ into Item(5) then Index
contains the value 5 and Item(5) contains the string ‘sausage’. When Index is
incremented its value now becomes 6 in preparation for the next data item to be
loaded. This process continues until the sentinel value is encountered.
Note that the value of Index is incremented after each array element is loaded. As a
consequence, the algorithm ends with Index equal to the next vacant array element. It
may seem appropriate to reduce this value by 1 However as the ar ray is indexed from
0, this value actually reflects the precise number of elements loaded into the array,
which is often useful. It is also quite common to append further elements to the end of
an array in which case, the value of Index is best left as is.

Printing or displaying the contents of an array is a similar process to loading an array.
Rather than reading or getting data, we are printing or displaying the data. If we know
the precise number of items in the array then the process is further simplified (see
Fig 466). If a sentinel value is stored in the array to indicate the end of the data items
then we must be careful not to print or display the sentinel (see Fig 467).

GROUP TASK Discussion
The algorithm described in Fig 465 uses two get statements. Can you
rewrite the algorithm using a single get? The result of the processing must
be identical to the original in all circumstances.

GROUP TASK Activity
Rewrite the algorithm in Fig 4.65 using a post-test iteration control
structure. Ensure that the sentinel value is read into the last array element.

BEGIN PrintArray
 Set Index to 0
 WHILE Index < NumItems
 Display Item(Index)
 Increment Index
 ENDWHILE
END PrintArray

Fig 4.66
Algorithm to print or display the

data in an array when the
number of items is known.

BEGIN PrintArray
 Set Index to 0
 WHILE Item(Index) is not the sentinel
 Display Item(Index)
 Increment Index
 ENDWHILE
END PrintArray

Fig 4.67
Algorithm to print or display the data in
an array when the last item is a sentinel.

GROUP TASK Discussion
In the above algorithms we displayed the array elements directly whereas
when loading the array we read each data item into a temporary variable
first and later stored it in the array. Why did we do this? Is it always
necessary to use a temporary variable when loading an array? Discuss.

GROUP TASK Activity
Rewrite the above algorithms as equivalent flowcharts. Now redraw your
flowcharts using post-test loops.

206 Chapter 4

Software Design and Development –The Preliminary Course

Add the contents of an array of numbers
Summing each of the elements in an array of numbers is a common task. For example,
finding the total sales each month, calculating averages or determining the number of
website hits. The general idea is to iterate through the entire array of data items.
During each iteration we add the value of the current array item to the total. We must
be careful to avoid any array elements that do not contain data such as sentinel values
or extra array elements that have not been loaded with data. It is important to ensure
the algorithm works as expected when the array is empty or only contains the sentinel
value.

Processing using sequential files
Earlier in this chapter we discussed sequential files as data structures. These files
contain sequences of characters, including control characters. To read a particular
character requires reading all preceding characters. Normally all data is stored in the
file as a series of tightly packed characters. For example, the integer -34 would be
stored as the three characters -, 3 and 4. Most languages include predefined statements
that can simplify reading and writing to files. Commonly, these statements allow us to
read and write single characters, fields or complete lines of text.
To use a sequential file to store records requires software developers to design the
precise format of the file so each record can be stored logically. Two techniques are
commonly used. Either use separators between fields and records or specify the
precise length of each field and record. The second
technique is used by most programming languages
when using random access files; we discuss random
access files in the HSC course. The first technique is
common when using sequential files and is therefore
the technique we shall examine in some detail. As
we are dealing with records that are comprised of
fields, we would use a statement that reads and
writes fields rather than characters or lines of text.
Normally a specific character is used to separate
fields. This separator is often called a delimiter. The
most common characters used are commas or tabs

Smith→John→8.35→29→4¶
Graham→Mary→8.95→31→1¶
Watson→Freda→7.25→19→0¶
Wilson→Martin→10.5→35→2¶
Thomson→John→9.15→30→4¶
Gardner→Jill→6.5→36→10¶
Smith→Margaret→5.35→17→0¶
Milton→Max→10.35→34→6¶

(→ tab) (¶ carriage return)
Fig 4.70

A typical sequential file of records
as it would appear when opened

in a word processor.

BEGIN SumArrayContents
 Index = 0
 Total = 0
 WHILE Index < NumItems
 Total = Total + Item(Index)
 Index = Index + 1
 ENDWHILE
 Display “Sum = “ Total
END SumArrayContents

Fig 4.68
Algorithm to sum the contents of

an array of numbers when the
number of items is known.

BEGIN SumArrayContents
 Index = 0
 Total = 0
 WHILE Item(Index) is not the sentinel
 Total = Total + Item(Index)
 Index = Index + 1
 ENDWHILE
 Display “Sum = “ Total
END SumArrayContents

Fig 4.69
Algorithm to sum the contents of an
array of numbers when the last item

is a sentinel.

GROUP TASK Discussion
Explain what occurs in the above algorithms if the array does not contain
any data. Can you write algorithms using either post-test or FOR...NEXT
that result in the same output. Discuss.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 207

Software Design and Development – The Preliminary Course

(ASCII code 9). Similarly, a character is used to separate each
record. Normally a carriage return (ASCII code 13) or carriage
return and linefeed are used. The use of tabs (or commas) and
carriage returns as delimiters, allow us to view files using a
simple text or word processor and have them appear formatted.
Most programming languages include an end of file (EOF)
function that can be used to ensure we do not read past the end of
a file. It is possible to include a sentinel record that uses dummy
values at the end of the file. A check for the sentinel value is used
to prevent reading past the end of the file.
Before reading the contents of a file we must open the file. When
reading a file we are inputting data from the file, hence we open
the file for input. When writing to a file the file is opened for
output. We then loop around once for each record until we reach
the end of the file. The body of the loop reads each field in turn
and performs the required processing on the record. Once we
have completed our reading the file is closed. Fig 4.71 describes
an algorithm that performs this processing. For particular
problems the ‘Read each field’ statement would contain a list of
each of the fields into which the data is to be read. For example, if the file shown in
Fig 4.70 were used then the line may be:
Read Detail.Surname, Detail.CName, Detail.PayRate, Detail.Hrs, Detail.Otime from ThisFile

In this case a record has been declared with the identifier Detail. A dot is used to
reference each field within the Detail record. The “Process Record” subroutine would
likely calculate the pay due to each employee. This information could then be stored
in a new sequential file.
Sequential files can also be used to store the elements in arrays. This allows the
contents of an array to be saved and retrieved for later use.

No

Fig 4.71
Reading a sequential

file of records.

BEGIN

Read each field
Yes

Process
Record

END

Open TheFile for input

Close TheFile

 Not end
of file?

GROUP TASK Activity
Rewrite the algorithm in Fig 4.71 so that it will in fact read the file in Fig
4.70. Also calculate each employee’s pay and write each name and pay to a
new sequential file. Assume overtime is paid at 1½ the normal pay rate.

GROUP TASK Activity
Create an algorithm that gets a sequence of numeric inputs from the user,
writes them to a sequential file and then reads the file and outputs the total
of the numbers.

BEGIN CreateFileFromArray
 Index = 0
 Open TheFile for output
 WHILE Index < NumItems
 Write TheFile from Item(Index)
 Index = Index + 1
 ENDWHILE
 Close TheFile
END CreateFileFromArray

Fig 4.72
Algorithm to create a file from

an array of data items.

BEGIN ReadFileIntoArray
 Index = 0
 Open TheFile for input
 WHILE NOT EOF(TheFile)
 Read Item(Index) from TheFile
 Index = Index + 1
 ENDWHILE
 Close TheFile
END ReadFileIntoArray

Fig 4.73
Algorithm to read a file of data items

into an array.

208 Chapter 4

Software Design and Development –The Preliminary Course

CHECKING ALGORITHMS FOR ERRORS
The main purpose of creating algorithms is to explain the logic of the solution.
Therefore checking algorithms is primarily about checking the correctness of the logic.
Checking doesn’t just take place once an algorithm has been completed, rather it is an
ongoing process occurring during the algorithm’s development. The primary technique
for checking algorithms is known as desk checking. As the name implies, a desk check
is the process of working through an algorithm using pencil and paper. Test data where
the expected outputs are known, provide the inputs for the desk check. In Chapter 6 we
examine the creation of test data and desk checking in detail.
To be sure an algorithm performs correctly for all expected inputs
requires that all paths through the algorithm be tested. Test data
should be designed to accomplish this aim. This can often be a
laborious task when there are many selection statements and loops.
For example, an algorithm with 4 binary selections will have a
total of 16 unique possible paths requiring up to 16 sets of test data
and 16 desk checks. Many algorithms have far more unique paths
than this Iterations can also grea tly increase the time required to
desk check an algorithm. Most errors occur either as an iteration
commences or as it terminates; be careful as loops start and end.
Another common source of logic errors is within decisions
themselves. The use of incorrect logical operators being the most
common e.g. using > instead of ≥. Be sure to test these boundary
conditions carefully by including test data items that equal the
boundary value.
Algorithms need not include detail in regard to validation of
unexpected inputs, this is primarily a task undertaken when building the solution in
code. It is not necessary to check algorithms respond correctly to unexpected inputs. For
example, if you expect a particular input into an algorithm to be an integer then it is not
necessary to check the algorithm works when strings or fractions are input.

Consider the following:

To illustrate the creation of test data and the desk checking
process consider the algorithm in Fig 4.75. This algorithm
is designed to find the average of a set of numbers. The
process terminates when a negative number is entered.
We require at least two sets of test data; one to test the
normal situation where the body of the loop is executed and
another to test when the loop’s termination condition is
immediately false. We should also test using the boundary
value zero; this could be included within the first set of test
data. Say we use the test data set 34, 0, 65, 40, 85, -1 and
the test data set containing just -1.

Fig 4.74
One of sixteen unique

paths through this
algorithm.

BEGIN MAINPROGRAM
 Input Number
 Sum = 0
 Tally = 0
 WHILE Number ≥ 0
 Sum = Sum + Number
 Tally = Tally + 1
 Input Number
 ENDWHILE
 Average = Sum/Tally
 Print Average
ENDMAINPROGRAM

Fig 4.75
Algorithm to calculate the

average of a set of numbers.

GROUP TASK Discussion
Do you think the two test data sets are sufficient to ensure the correct
operation of this algorithm? Discuss.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 209

Software Design and Development – The Preliminary Course

Before commencing the desk check we calculate the expected output from each test
data set. Our first set should output the average of 34, 0, 65, 40 and 85. As 34 + 0 + 65
+ 40 = 224, the average should be 224 ÷ 5 = 448 The second data set contains just a
negative value so a sensible result would be an output of 0 or no output at all.
We now commence the desk check. A table is
drawn by hand with a column for each variable
used within the algorithm and an additional
column for output (see Fig 476). The current
contents of each variable are written under the
appropriate identifier. As the contents of a
variable changes the new data is written under
the previous item. It is common practice to
horizontally align data items assigned within
each iteration.
Essentially, the desk check is completed by
stepping statement by statement through the
algorithm. When an input is required the next
test data item is used. The first test data set
results in the same output as was expected. The second causes a division by zero
error. We need to adjust our algorithm to overcome this problem. Once the algorithm
has been edited both desk checks need to be completed again as it is possible that the
alterations may solve one problem but cause other problems.

Consider the following:

Earlier in this chapter, we considered an
algorithm to determine if people are able to ride
on a roller coaster. The algorithm is reproduced
at right. We wish to thoroughly check the
operation of this algorithm using sufficient sets
of test data together with a series of desk
checks.

Fig 4.76
Desk check for the average algorithm.

GROUP TASK Activity
Alter the algorithm to overcome the division by zero problem. Now
perform the desk checks again using your altered algorithm.

GROUP TASK Activity
Design appropriate pairs of test
data and state the expected output
for each. Give reasons why each
test data pair is included.

GROUP TASK Activity
Perform a desk check of the
algorithm using each of your test
data pairs.

Fig 4.77
Algorithm to determine if a person

can ride the roller coaster.

Yes No Height > 135
?

You can’t ride

Get Weight, Height

 Weight < 40
?

You can ride You can’t ride

Begin

End

No Yes

210 Chapter 4

Software Design and Development –The Preliminary Course

SET 4E
1. In terms of software structure, what

provides the interface between different
subroutines?
(A) Indexes.
(B) Parameters.
(C) Subroutines.
(D) algorithms.

2. A primary technique for checking
algorithms is known as:
(A) desk checking.
(B) peer checking.
(C) black box checking.
(D) white box checking.

3. The process of communicating via
parameters is known as:
(A) parsing.
(B) swapping.
(C) passing.
(D) none of the above.

4. The ability to reuse modules is best
described as:
(A) black boxing.
(B) modularity.
(C) abstraction.
(D) top-down design.

5. In regards to a sequential file, what is
the term given to the character that is
used to separate fields?
(A) Delimiter.
(B) Sentinel value.
(C) Comma.
(D) Tab.

6. In pseudocode, how is a call to a
subroutine indicated?
(A) The process is in capital letters.
(B) The process is italicised.
(C) The process is underlined.
(D) The process is preceded by a #

symbol.

7. In most programming languages, what is
used to ensure reading does not continue
past the end of the file?
(A) A delimiter.
(B) Sentinel value.
(C) EOF function.
(D) Carriage return.

8. Subprogram has a similar meaning to:
(A) lower level process.
(B) module.
(C) subroutine.
(D) all of the above.

9. In both pseudocode and flowcharts,
parameters are represented by:
(A) a bracketed list.
(B) an underlined list.
(C) an italicised list.
(D) capital letters.

10. An algorithm with 5 binary selections
could have as many as _____ unique
possible paths?
(A) 5.
(B) 16.
(C) 54.
(D) 32.

11. Problems can be solved without using subroutines. So, why do we use them? Discuss.

12. Discuss aspects of designs that increase the reusability of code modules.

13. Parameters provide the interface between different modules. What is a parameter
and how do they enable data to be shared?

Defining and Understanding the Problem, and Planning and Designing Software Solutions 211

Software Design and Development – The Preliminary Course

 Consider the following flowchart when answering questions 14 and 15.

14. Design a set of test data for the above flowchart.

15. Perform a desk check of the flowchart using your test data.

Yes

No Count ≤
NumResults

?

Get Mark

Get NumResults

Set Count to 1

212 Chapter 4

Software Design and Development –The Preliminary Course

RSA security is a company that produces encryption and decryption software
products RSA’s encryption is based on pairs of prime numbers. A prime number is an
integer that only has 1 and itself as factors, for example 7 is a prime number as its
only pair of factors is 1 and 7. However 8 is not a prime, as 2 and 4 are factors in
addition to 1 and 8.

To monitor the security of RSA’s encryption techniques they run a number of
competitions. The data reproduced below is from their RSA-640 factoring
competition. The aim is to determine the two prime numbers whose product is the
competition number shown below. This competition number contains 193 decimal
digits and the sum of these digits is 806. Furthermore if this number were converted to
binary it would contain 640 binary digits, hence the competition name RSA-640.
There are numerous competitions, the largest being RSA-2048 where the prize money
is $200,000.

Name: RSA-640
Prize: $20,000
Digits: 193
Digit Sum: 806
Competition number:
31074182404900437213507500358885679300373460228427275457201619
48823206440518081504556346829671723286782437916272838033415471
07310850191954852900733772482278352574238645401469173660247765
2346609

The following algorithm is an attempt to solve the above problem:

BEGIN RSA_Solution
 Get CompNum
 CheckNmDigits
 CheckiitSum
 PossibleFactor = 2
 REPEAT
 IsPrime = CheckIfPrime(PossibleFactor)
 IF IsPrime THEN
 OtherFactor = CompNum/PossibleFactor
 IF OtherFactor is an Integer THEN
 IsPrime = CheckIfPrime(OtherFactor)
 IF IsPrime THEN
 Display PossibleFactor, OtherFactor
 ENDIF
 ENDIF
 ENDIF
 Increment PossibleFactor
 UNTIL IsPrime
END RSA_Solution

HSC style question:

Defining and Understanding the Problem, and Planning and Designing Software Solutions 213

Software Design and Development – The Preliminary Course

(a) The above algorithm checks if OtherFactor is an integer, however there is no
check to ensure PossbleFactor is an integer. Why is this? Discuss.

(b) When building this solution a problem will emerge in regard to representing some
of the variables using standard data types. Identify and describe the problem.

(c) Perform a desk check of the algorithm using 18 as the input. You may assume all
calls to subroutines are performed correctly.

(d) There is a logic error within the algorithm. Identify the error and describe its
effect on the operation of the algorithm.

(e) Design an algorithm for the CheckIfPrime routine. You may assume that the
variables PossbleFactor and OtherFactor are integers.

Suggested solutions

(a) PossibleFactor must be an integer. It starts with a value of 2 and is incremented
each time through the loop, hence it remains an integer. OtherFactor is the result
of a division and hence will rarely be an integer, hence a check is needed.

(b) The competition number is well outside the range of any standard data type. If
CompNum was a long integer it could not hold the competition number, in fact a
640 bit integer type is needed not a 32 bit integer type. A floating point type is
not appropriate as the representation must be exact and so too must calculations
based on this representation. Similar problems would occur with PossibleFactor
and OtherFactor.

(c)

(d) The use of IsPrime for the PossibleFactor and OtherFactor prime checks, as well
as for the loop termination condition cause problems. This means that if
PossibleFactor is a prime and OtherFactor is not an integer then the loop will exit.
Using the RSA-640 competition number the loop would end after a single
iteration as PossibleFactor is a prime (2) and OtherFactor will end in .5. (2 marks)

(e) BEGIN CheckIfPrime (Num)
 Check = True
 Count = 2
 WHILE Count <= square root of Num AND Check
 IF Num/Count is an integer THEN
 Check = False
 ENDIF
 Increment Count
 ENDWHILE
 RETURN Check

END

CompNum PossibleFactor IsPrime OtherFactor
18 2

3

4
5
6

T
F
T
F
F
T

9

6

3.6

214 Chapter 4

Software Design and Development –The Preliminary Course

CHAPTER 4 REVIEW
1. Selecting data types and data structures

generally falls under which phase of the
software development cycle?
(A) Defining the problem.
(B) Planning the solution.
(C) Building the solution.
(D) Checking the solution.

2. Floating point data types are used to
store which type of data?
(A) Strings.
(B) Whole numbers.
(C) Fractional and very large numbers.
(D) Integers.

3. In flowcharts, rectangles are used for
representing:
(A) processes.
(B) decisions.
(C) input and output.
(D) subroutines.

4. A step-by-step list of the processing that
will take place is usually represented
with what?
(A) A structure chart.
(B) An IPO chart.
(C) A context diagram.
(D) A data flow diagram.

5. A structured algorithm can BEST be
described as:
(A) a method that provides a solution

to a problem.
(B) a method detailing a series of

unambiguous steps that provides a
solution to a problem.

(C) a sequence of steps that transforms
inputs into outputs.

(D) any method that gives the correct
result.

6. A Boolean data type is used to store
which type of data?
(A) Dates and Times.
(B) Currency.
(C) Logical.
(D) Integer.

7. The control structure that repeats
sequences of code is known as what?
(A) Iteration.
(B) Sequence.
(C) Selection.
(D) Subroutines.

8. Two modelling techniques that are used
to describe the flow of data moving
through the system are:
(A) Context diagrams and algorithms.
(B) Data flow diagrams and system

flowcharts.
(C) Hierarchy charts and IPO charts.
(D) Abstraction and refinement.

9. Coding in a programming language
occurs during which phase of the
software development cycle?
(A) Testing and evaluating
(B) Maintaining
(C) Implementing
(D) Planning and designing

10. Which control structure caters for
situations where more than two
alternative paths are required?
(A) Repetition
(B) Binary selection
(C) Multiway selection
(D) Sequence

11. Different data types have different limitations. Describe limitations that exist when using
integer, floating point and string data types.

12. In this chapter, we discussed three data structures, namely arrays, records and sequential files.
Briefly describe the nature of each of these st ructures together with an example of where each
would be used.

Defining and Understanding the Problem, and Planning and Designing Software Solutions 215

Software Design and Development – The Preliminary Course

BEGIN ChangeArray (Item(), NumItems)
 Get DateItem
 Get Command
 CASEWHERE Command is
 Add : AppendItem (Item(), NumItems, DateItem)
 Delete : RemoveItem (Item(), NumItems, DataItem)
 Change : AlterItem (Item (), NumItems, DataItem)
 ENDCASE

END ChangeArray

BEGIN AppendItem (Array(), Count, Item)
 Add 1 to Count
 Set Array(Count) to Item
 END ApendItem

BEGIN RemoveItem (Array(), NumItems, DelItem)
 FindIndex (Array(), NumItems, DelItem, Index)
 IF Index ≥ 0 THEN
 Set Array(Index) to Array(NumItems)
 Decrement NumItems
 ELSE
 Display “Can’t delete as item does not exist”
 ENDIF
 END Remove Item

Consider the algorithm that follows, when answering questions 13, 14 and 15.

BEGIN AlterItem (Array(), Count, Original)

 Fndndex (Array(), Count, Original, Index)
 IF Index ≥ 0 THEN
 Get ChangeItem
 Set Array(Index) to ChangeItem
 ELSE
 Display “Can’t change as item does not exist”

 ENDIF
 END AlterItem

13. Construct a structure chart to describe the top-down design of the ChangeArray sub-program.

14. There is no algorithm for the FndIndex subroutine. Create this algorithm in pseudocode.

15. Perform a desk check of the algorithm using the following sets of test data:

 Desk, Delete Table, Change, Door Goose, Add

Duck, Delete Goose, Change, Bird

(Assume the initial array is indexed from 0 and contains the items Desk, Table, Chair, Plate and
Cutlery). Describe any problems you encounter.

216 Chapter 5

Software Design and Development –The Preliminary Course

 In this chapter you will learn to:
• verify the syntax of a command using metalanguage

statements
• specify syntax using meta-language statements
• use meta-language statements to develop syntactically correct

code
• generate appropriate source code by:

– using appropriate data types and data structures
– using a programming environment to generate and execute

code
– coding an algorithm into the chosen programming language

• trace the output of a given code fragment and modify it
appropriately

• systematically eliminate syntax errors so that a program can
be executed

• run, correct and extend existing code
• test a program with boundary values to detect possible runtime

errors
• detect and correct logic errors in program code by using a

systematic error detection and correction process
• develop standard modules or subroutines for reuse
• create solutions to problems using existing code with minimal

change or additions
• develop code that makes use of common modules or subroutines
• differentiate between the scope of local and global variables
• develop code that makes appropriate use of global and local

variables
• develop code that calls common modules and passes

parameters appropriately
• incorporate functions into modules or subroutines
• make use of procedures
• develop solutions that include appropriate user interfaces
• evaluate the effectiveness of interfaces used in commercially

available software
• develop an appropriate storyboard for a specified problem
• design screens incorporating good design and ergonomic features
• incorporate current relevant interface elements into software

solutions
• produce documentation for different audiences
• produce source code which is well documented and therefore

easy to read, understand and maintain
• fully document a solution that has been developed in the

classroom
• create a data dictionary to define the data (including variables,

arrays and records) used in a developed solution
• use a range of application packages to develop the various

types of documentation to fully document a solution
• interpret code and documentation prepared by others
• assess the effectiveness of online help available in software

packages

Which will make you more able to:
• describe and use appropriate data types
• describe the interactions between the elements of a computer

system
• identify the issues relating to the use of software solutions
• investigate a structured approach in the design and

implementation of a software solution
• use a variety of development approaches to generate software

solutions and distinguish between these approaches
• use and develop documentation to communicate software

solutions to others
• describe the skills involved in software development
• communicate with appropriate personnel throughout the

software development process
• design and construct software solutions with appropriate

interfaces.

In this chapter you will learn about:
Coding in an approved programming language
• meta-languages, including EBNF and Railroad diagrams
• language syntax specified through meta-languages in manuals

and help documentation
• the syntax used to represent the control structures, including:

– sequence, selection (binary, multiway), repetition (pre-test,
post-test, for…next loops), and use of subroutines or
procedures

– combinations of these
• the syntax used to define and use a range of data types and data

structures, including integer, string, floating point/real, Boolean,
one-dimensional array and records

Developing source code
• converting algorithms into source code using syntactically

correct statements
Error detection and correction techniques
• types of coding errors, including syntax errors, runtime errors

and logic errors
• stubs used to check the flow of execution or used to replace

subroutines/modules during testing to check if that section of
the code is the cause of an error

• flags used to check if a section of code has been executed or can
be used as part of the logic of a solution or as an error detection
process

• debugging output statements
– additional print statements in the code for use in the

debugging process
– used to identify which sections of the code have been

executed and used to interrogate variable contents at a
particular point in the execution of a program

Commonly executed sections of code
• reusable code

– standard logic, such as a login process, data validation,
conversion between date formats or to replace multiple
occurrences of the same code

• combining code from different sources, copying and pasting
into code and calling modules or subroutines

• making the same data available to different modules using
global variables and parameter passing

• use of functions and procedures
User interface development
• the need for consultation with users and/ or managers
• use of storyboard to show the general design of each interface

and show navigation between interfaces
• effective user interfaces, including:

– factors affecting readability
– use of white space
– effective prompts
– judicious use of colour and graphics
– grouping of information
– unambiguous and non-threatening error messages
– legibility of tet, including justif ication, font type (serif vs

sans serif) font siz, f ont style and text colour
– navigation
– recognition of relevant social and ethical issues
– consistency
– appropriate language for the intended audience

Documentation
• types of documentation

– documentation for developers and documentation for users
• internal documentation including meaningful variable names

(intrinsic), readability of code, comments, white space and
indentation

• online help, such as context sensitive help and help files

Implementing Software Solutions 217

Software Design and Development – The Preliminary Course

5
IMPLEMENTING

 SOFTWARE SOLUTIONS

Implementing the software solution refers to coding in a programming language.
During this stage the planning and design undertaken in the previous stage is put into
practice. This includes producing the source code and creating the user interface. A
variety of integrated development environments (IDEs) are available to assist. Fig 5.1
shows the popular open source Netbeans IDE commonly used by Java and PHP
programmers and Microsoft’s Visual Studio IDE used to develop code using
Microsoft’s “.NET” family of programming languages.

We commence the chapter by
examining the syntax of programming
languages. The syntax of a language is
the way the language is formed and the
rules governing its formation.
Metalanguages are languages used to
describe the syntax of other languages.
We use metalanguages to describe the
syntax used for each of the standard
control structures and each of the data
types and data structures introduced in
the previous chapter.

A coded solution in a high-level
language is known as source code. The
creation of source code involves
continuous testing to minimise and
eliminate errors. There are various error
detection and correction techniques.
We examine many of the more
commonly used of these techniques.
Thankfully, modern integrated
development environments (IDEs)
provide many tools to automate this
debugging process.

Often reusable modules of code are
included as part of new software products. We examine the process of combining
code and modules from different sources. We also discuss considerations when
creating code that will or may be reused as part of future solutions. In particular, we
consider the sharing or passing of data between different subroutines.

The user interface is often the most important part of a new software product. No
matter how perfect and efficient the processing, products with poor user interfaces
seldom survive in the market place. We examine aspects of successful user interfaces
together with methods for evaluating their effectiveness.

Fig 5.1
Netbeans and Microsoft Visual Studio
integrated development environments.

218 Chapter 5

Software Design and Development –The Preliminary Course

Finally, we consider types of documentation that should be produced as part of the
implementing phase. This includes documentation to assist the potential users of the
completed application as well as documentation to describe the source code to
developers.

CODING IN A PROGRAMMING LANGUAGE
The process of coding data types, data structures and algorithms in a programming
language requires knowledge and understanding of the way in which the language
implements each of these components.
METALANGUAGES

Metalanguages are used to describe the syntax of programming languages. In the
previous chapter we examined the three control structures used to solve problems;
namely sequence, selection and iteration. These same three control structures are
required to describe the syntax of programming languags. For exam ple, an identifier,
in many languages, must commence with a letter and is then followed optionally by a
sequence of letters and digits This exam ple includes all three control structures.
Sequence – a letter is followed by other characters. Selection – the second (and
subsequent) character is either a letter or a digit. Repetition – multiple characters
follow the first letter. When studying algorithms we also examined techniques for
representing subroutines or lower-level processes; similar structures are included
within metalanguages. For example, a digit is further specified as one of the
characters 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

We shall examine two metalanguages -
EBNF (Extended Backus-Naur Form)
and railroad diagrams. Fig 5.2 shows an
identifier and a digit described using
railroad diagrams and using EBNF. Each
technique is describing exactly the same
thing; it is the method of description used
that is different.

EBNF is an extension of the original
BNF developed by John Backus in the
1950s to describe the syntax of ALGOL.
At this time it was known as Backus
Normal Form. Later, Peter Naur when
describing a subsequent version of
ALGOL, modified BNF and hence the word normal was replaced with Naur, resulting
in the current BNF meaning - Backus-Naur Form. EBNF or Extended Backus-Naur
Form, as the name implies, adds further extensions to BNF, in particular, the addition
of symbols for repetition and grouping of elements. EBNF is a text-based
metalanguag. It can be readily produced using standard characters. Railroad
diagrams, on the other hand, are graphical. Elements are connected using flowlines in
a similar manner to algorithmic flowcharts. In many references, railroad diagrams are
known as syntax diagrams or syntax structure diagrams.

Letter

Letter

Digit

Identifier

Implementing Software Solutions 219

Software Design and Development – The Preliminary Course

Railroad diagrams

Railroad diagrams are so named because the flowlines can be
thought of as railroad tracks and the symbols as stations. When
interpreting a railroad diagram we commence by moving from
left to right, we then follow only those tracks that could be used
by a train. As we pass through a station, its contents are used as
the characters to form the syntax of the programming language.
Each railroad diagram should have a single entry point and a
single exit point.

Rectangles are used for elements that will be further defined
elsewhere. These are known as non-terminal symbols and can be
likened to subroutines used during top-down design. Circles or
rounded rectangles are used for terminal elements. Terminal
elements are often called literals as they are used exactly as they
appear.

Let us consider how sequence, selection and iteration are represented using railroad
diagrams. The order in which elements are placed determines the sequence. Be aware
that diagrams that use more than one line or contain loops will have flowlines from
right to left. In these cases, elements must also be
sequenced from right to left rather than left to
right. In Fig 5.5 the second line has elements
arranged from right to left. Assuming Cat is an
Animal, sat is a Verb and mat is an Object, ‘The
cat sat on the mat’ is correct whereas ‘The cat
sat mat the on’ is not.

Selection is represented using a series of branches. Normally branches are drawn
horizontally and parallel to each other. Branches should leave the main line at a single
point and rejoin the main line at a single point. The railroad diagram describing a
Digit in Fig 5.2 is an example of this Notice the main flow continues in a straight line
through the selection structure.

Iterations or repetition is represented using flowlines that loop
back to a prior point on the diagram. Repetitions that are
optional, that is zero or more iterations, should have no
elements on the main flowline. Conversely, repetitions
requiring one or more iterations should have their elements on
the main flowline. Fig .6 shows the description of a list where
elements appear on both the mainline and the loop flowline.
Unlike flowcharts used to describe algorithms this is allowable
on railroad diagrams.

The above description of railroad diagrams should be used for this course. However
many references use different rules for the construction of railroad diagrams. Some
use arrows on flowlines, some use capitals for terminating elements and lower case
for non-terminating elements. There are many other permutations in common usage.
The techniques used in this course are just one such construction method.

Fig 5.3
Flowlines on railroad

diagrams are like
railway tracks.

Digit

PRINT ;

Fig 5.4
Digit is defined

elsewhere. PRINT
and ; are used as is.

The Animal

on the

Verb

Object

Fig 5.5
Elements on railroad diagrams are not

always sequenced from left to right.

Item
List

Fig 5.6
A list is comprised of
items separated by

hash symbols.

220 Chapter 5

Software Design and Development –The Preliminary Course

Consider the following:

Winston is a fictitious programming language. Fig 57 describes some of the
statements and elements of Winston. Winston is a simple language that only operates
on integers; this is the only data type available.

Fig 5.7
Railroad diagrams describing some of the syntax of the fictitious language Winston.

UCase

LCase

Digit

Identifier

0

1

2

3

4

5

6

7

8

9

Digit

A

B

C

D

E

F

G

H

J

UCase

a

b

c

d

LCase

+

-

*

/

Operator

Dgt
Constant -

Set Ideifier

Assgnment

to Constant

Ideifier

Operator

Start
Program

Statement Stop

!

Statement

Input

Output

Assgnment

When

Pretest

Posttest

Ideifier
Condition

=

<

>

<=

>=

<>

Ideifier

Constant

and

or

GROUP TASK Discussion
Describe the railroad diagrams above in terms of their top-down design.
Construct a hierarchy chart to assist your description.

GROUP TASK Activity
Create five legitimate assignment statements in the programming language
called Winston. Check the statements created by your peers.

GROUP TASK Discussion
Are the following legitimate conditions in the Winston language?
Abcd = +99 BAD >= bad
A < B and B < C Eb1 < Eb2 or Eb2 = 1
Bad = -45 56 = A3 and A2 < 0.5

Implementing Software Solutions 221

Software Design and Development – The Preliminary Course

Winston implements each of the three control structures required for structured
programming. Selection is implemented using statements commencing with the
keyword When. The When statement is used for both binary and multiple selection.
Consider the example Winston selection statements that follow:
When (F=4, Set A3 to F) Set A3 to 0

When (Jab>20, Set Bb4 to Bb4 + 1) (Jab>0, Set Bb4 to 0)

When (H1>2, Set H1 to 0) (H1=1, Set Fab to 1) (H1=2, Set Fab to 0) Set Fab to 2
The first statement means if F is 4 then A3 is assigned the value held in F, else A3 is set
to 0. The second and third examples implement multiple selection. Brackets are used
to contain each case. Each case includes the condition and the statement to be
executed. The statement after the final bracket, if used, is executed if none of the
conditions are found to be true. For binary selection, this is equivalent to the
pseudocode Else clause and for multiple selection it is equivalent to the Otherwise
clause.

Implementing program statements based on algorithms involves careful attention to
the detail of the chosen programming language. One minor syntactical error results in
a program that will not execute at all. Metalanguage descriptions, such as railroad
diagrams, provide the required detail. Consider the following algorithm written in
pseudocode. Many of the identifiers, keywords and statements used in pseudocode are
different to those used in Winston. However, the logic of this algorithm can be
precisely implemented in Winston as well as in almost any real programming
language.

The following algorithm gets two numbers. If the first number is smaller then it
displays the sum. If not then it displays the difference.

BEGINMAINPROGRAM
 Get First, Second
 IF First < Second THEN
 Result = First + Second
 ELSE
 Result = First – Second
 ENDIF
 Display Result
END MAINPROGRAM

GROUP TASK Activity
Construct a possible railroad diagram for the Winston When statement.
Ensure each of the examples above work with your diagram.

GROUP TASK Activity
The Winston Input and Output statements are simple. The keyword, either
Input or Output is followed by an identifier. Construct a Winston program
to correctly implement the above pseudocode.

222 Chapter 5

Software Design and Development –The Preliminary Course

EBNF (Extended Backus-Naur Form)
As is the case with railroad diagrams, EBNF has terminal and non-terminal elements.
The non-terminal elements are further defined elsewhere. Terminal elements are
written as they should appear in the programming language whereas non-terminal
elements are enclosed between less than and greater than signs. For example, <Digit>
is non-terminal whereas Cat is a terminal or literal element.
When we examined railroad diagrams we wrote the name of the element being
defined at the start of the diagram. In EBNF we use a single equals sign to mean ‘is
defined as’. For example, Thing = <This> <That> in EBNF is read as ‘a Thing is defined
as a This followed by a That.
Selection in EBNF is indicated using a vertical
line. For example, A|B|C means either A or B or
C. In Fig 5.8 a Widget is either a <Woogle> or the
literal characters GOO or the literal characters
MOO. Optional elements in EBNF are enclosed
within square brackets. For example, let’s say a
Molly is a Cat followed optionally by a Dog. In
EBNF we write Molly = <Cat> [<Dog>].
Repetition is indicated in EBNF using parentheses {}. Elements contained within
parentheses are repeated zero or moretimes. If an item is to be repeated one or more
times then this must be stipulated by writing the item prior to the repetition. For
example, if a Critty is a sequence of one or more A’s then in EBNF this would be
specified as Critty = A {A}. The first A ensures a Critty has at least one A.
EBNF allows the use of brackets to group elements and avoid possible ambiguity. For
example, Wobit = <Floop> | <Gloop> <Bloop> is not clear. Is the final Bloop always
required or is it part of the selection and only follows a Gloop? The use of brackets
removes this ambiguity. Assuming a Bloop must always be at the end of a Wobit the
EBNF definition would be written Wobit = (<Floop> | <Gloop>) <Bloop>.

Consider the following:

Earlier we examined the fictitious programming language called Winston. We used
railroad diagrams to describe aspects of Winston’s syntax (see Fig 5.7). Let us now
consider the equivalent descriptions using EBNF. The use of spaces are purely to
make the descriptions more readable.
EBNF
Digit = 0|1|2|3|4|5|6|7|8|9
LCase = a|b|c|d
UCase = A|B|C|D|E|F|G|H|I|J
Operator = +|-|*|/
Logical =|<|>|<=|>=|<>
Constant = [-] <Digit>{<Digit>}
Identifier = <UCase>{<LCase>|<Digit>}
Assignment = Set <Identifier> to <Constant>|<Identifier>
 {<Operator>(<Constant>|<Identifier>)}
Condition = <Identifier> <Logical> (<Identifier>|<Constant>)
 {(and|or) <Identifier> <Logical> (<Identifier>|<Constant>)}
Statement = <Input>|<Output>|<Assignment>|<When>|<Pretest>|<Posttest>
Program = Start <Statement> {! <Statement>} Stop

Widget = <Woogle>|GOO|MOO
Woogle = WOO|ZOO|KOO

Fig 5.8
In EBNF a Widget is defined as either
a Woogle, GOO or MOO. A Woogle

could be WOO, ZOO or KOO.

Implementing Software Solutions 223

Software Design and Development – The Preliminary Course

The following program has been written in Winston. It uses the Input, Output and
When statements we considered earlier.
Start
Input J1
Input J2
When (J1 = J2, Set A3 to 0), (J1<J2, Set A3 to –1), Set A3 to 1
Output A3
Stop

Consider the following:

Winston contains two iteration statements; Pretest and Posttest. Following are EBNF
descriptions for each of these statements together with an example of each. Note that
spaces and new lines are not significant in Winston, they are used to make the code
more readable.
Pretest = Whilst <Condition> is True <Statement> {! <Statement>} Cease

Posttest = Do <Statement> {! <Statement>} Awaiting <Condition>

Examples: Whilst Abc=2 is True Input B1 Cease

 Do
 Set C to C + 1 !
 Input A
 Awaiting C=10

GROUP TASK Activity
Create a number of Condition and Assignment statements using the
EBNF descriptions above. Check the correctness of your creations using
the railroad diagrams in Fig 5.7.

GROUP TASK Discussion
The program does not execute. Use the EBNF descriptions to identify the
errors. Alter the code so it should execute correctly.

GROUP TASK Activity
Create EBNF descriptions for the Input, Output and When statements.
Test your descriptions using the Winston program above.

GROUP TASK Activity
Write an algorithm that outputs the first 20 positive integers. Code your
algorithm into a Winston program.

GROUP TASK Activity
Convert the Winston Pretest and Postest EBNF descriptions into their
equivalent railroad diagrams. Check your diagrams using the two examples
given above.

224 Chapter 5

Software Design and Development –The Preliminary Course

The following metalanguage definitions describe part of a particular programming
language.

Digit = 0|1|2|3|4|5|6|7|8|9

Letter = a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

Operator = <|>|+|-|*|/

(a) Write down THREE significantly different examples of a valid expression in
this language.

(b) Construct EBNF definitions equivalent to the Constant, Idetifier and Expression
railroad diagrams above.

(c) Following are two examples of valid procedures in the above programming
language.

(i) Write a procedure in this programming language that adds up the first ten
positive integers.

(ii) Construct a series of metalanguage definitions to extent the initial
metalanguage definitions to include the syntax used in the above
examples. You may use EBNF and/or railroad diagrams.

HSC style question:

Letter

Dgt

Letter
Identifier

Dgt
Constant

Constant

Operator

Expression

Identifier

PROC aa
cd = 0;
START ab AT 4 ADD 1
 cd = ab * cd;
 cd = cd + 1
END ab AT 12;
SHOW cd

PROC pd3s
cd = 0;
km = 10;
fg = 3;
START ab AT 20 SUBTRACT 3
 cd = cd - fg;
 SHOW cd;
 km = km - fg
END ab AT 12;
SHOW km

Implementing Software Solutions 225

Software Design and Development – The Preliminary Course

Suggested solutions

(a) aa
ab2c – 5 < sd
123 * ff5f5 / 234

(b) Constant = <Digit> {<Digit>}
Identifier = <Letter> <Letter> {<Digit> <Letter>}
ConIdent = <Constant>|<Identifier>
Expression = <ConIdent> {<Operator> <ConIdent>}

(c) (i) PROC xx
sm = 0;
START ct AT 1 ADD 1
 sm = sm + ct
END ct AT 10

 (ii) Using EBNF:
Assignment = <Identifier> = <Expression>
Output = SHOW <Identifier>
Loop = START <Identifier> AT <Constant> ADD|SUBTRACT <Constant>
<Statements> END <Identifier> AT <Constant>
Statement = <Assignment>|<Output>|<Loop>
Statements = <Statement> {; <Statement>}
Procedure = PROC <Identifier> <Statements>

Or using railroad diagrams:

Identifier
Output

SHOW

Identifier
Assignment

Expression =

Constant
Loop

START Identifier AT SUBTRACT

ADD

Constant

Identifier Statements END AT Constant

Statement
Output

Loop

Assignment

Statements
Statement

;

Identifier
Procedure

PROC Statements

226 Chapter 5

Software Design and Development –The Preliminary Course

SET 5A
1. The iteration structure where the

statements in the body of the loop are
always executed is called:
(A) pre-test.
(B) recursion.
(C) post-test.
(D) looping.

2. Railroad diagrams are an example of:
(A) Extended Backus-Naur Form
(B) Backus-Naur Form.
(C) a metalanguage.
(D) a system flow chart.

3. Name two text-based metalanguages
that are referred to in this text.
(A) EBNF and railroad diagrams.
(B) BNF and railroad diagrams.
(C) BNF and EBNF.
(D) Syntax diagrams and syntax

structure diagrams.
4. With regard to railroad diagrams, what

is another term given to terminal
elements?
(A) Literals.
(B) Facts.
(C) Truths.
(D) Symbols.

5. How is the selection control structure
indicated in EBNF?
(A) A horizontal line.
(B) A vertical line.
(C) A square bracket.
(D) A curly bracket.

6. The syntax of a programming language
is described using:
(A) a metalanguage.
(B) a data structure.
(C) an algorithm.
(D) a data type.

7. High-level language code is referred
to as:
(A) syntactical code.
(B) source code.
(C) compiled code.
(D) lexical code.

8. With regard to railroad diagram
construction for this course, which shape
is used for elements that are further
defined in another place?
(A) Rectangles.
(B) Squares.
(C) Circles.
(D) Rounded rectangles.

9. With regard to the EBNF metalanguage,
the symbol = means:
(A) ‘is not defined’
(B) ‘is defined as’
(C) ‘is defined elsewhere’
(D) ‘is equal to’

10. A Drull is defined in EBNF as follows:
Drull = (A | B) {[C] D}

Which of the following is an example of
a Drull?
(A) ABCD
(B) BCCD
(C) ADDC
(D) BCDD

11. What is a metalanguage and how can metalanguages be of assistance to programmers?

12. In Australia, an address is made up of a number followed by a street name, then a street type
(e.g. St, Ave, Cres, Rd, Pl), then a suburb or town and finally a 4 digit postcode. Describe an
address using a railroad diagram.

13. Write an EBNF description for the pseudocode pre-test iteration structure. Assume that
identifier, digit and statement have been previously defined with the usual meaning.

14. Are each of the following, valid Winston statements? Explain any errors.
 (a) Do Set A to A+2! Awaiting A = 20

(b) When (X=10,A=1) A = 0
(c) Whilst A1<10 Set A1toA1+1! Output A1 Cease

15. Write a Winston program that displays all the multiples of a number that are less than 100.

Implementing Software Solutions 227

Software Design and Development – The Preliminary Course

CODING ALGORITHMS AND DATA TYPES

Source code is built using algorithms and data types. The source code created,
implements the solution in a language so that it can be translated into machine
executable form. In this section we examine the creation of source code using Visual
Basic, Java and Pascal. Visual Basic is an event driven language where subroutines
are executed in response to a certain event occurring For exam ple, clicking on a
command button causes execution of the subroutine attached to the command button’s
click event. Although there are event driven versions of Pascal, such as Delphi, in this
text we shall concentrate on standard sequential Pascal.
Statements used to define and use data types

Before a variable can be used within program code it must be defined and declared.
This process involves giving the variable a name, or identifier, and describing its data
type and/or data structure. The identifier is then used to refer to the data item
throughout the source code. Identifiers are also used for subroutine and function
names. To make source code more readable, we use meaningful identifiers e.g.
Average rather than A. In most languages
identifiers must commence with a letter
followed by a series of letters, digits and
underscore characters. Keywords or
reserved words that are used as part of the
syntax of the language cannot be used as
identifiers. There may be other
requirements unique to individual
programming languages.

There are two steps to consider when defining and declaring variables for use within
programs:
1. Data structures are defined, these are known as user defined data types. This is

unnecessary for simple data types that are included in the language. The standard
data types available will differ from language to language. Visual Basic uses the
keyword Structure and Pascal uses the keyword TYPE to commence this process.
This step does not create any variables rather it provides a pattern or description of
the data structure in preparation for its creation.

2. Variables of the required type or structure are declared. An instant of the
particular data type or structure is created and assigned an identifier. Variables can
be declared using predefined data types or user defined data types. In Visual Basic
the Dim (short for dimension) statement is generally used to declare variables.
These variables are local to the subroutine in which they are declared and only
exist whilst the subroutine executes. Identifiers (including the name of
subroutines) can also be declared using either the Public or Private keyword.
Identifiers declared as Public can be accessed by outside subroutines, whilst
Private (which is equivalent to Dim) restricts access to the routine in which the
variable is declared. The extent to which a variable can be access within a
program is known as the scope of the variable. In Pascal a section commencing

Identifier
The name given to a variable,
subroutine or function. In
most languages identifiers are
comprised of letters, digits and
the underscore character. They
must commence with a letter.

GROUP TASK Activity
Create a railroad diagram to describe the rules governing a typical
identifier. Assume that letter and digit have been previously defined.

228 Chapter 5

Software Design and Development –The Preliminary Course

with VAR is used to declare variables. The location of the VAR block is used to
determine the scope of the declared variables.
Constants are declared. These are data items that are required in various places
throughout the code. Once declared, their value never changes. It is more efficient
to create constants for commonly used values e.g. a constant called GST may be
declared with a value of 0.1. If GST changes from 10% then only the initial
declaration needs to be altered. The keyword CONST is used in both Visual Basic
and Pascal to declare constants.

Consider the following:

The data storage requirements for a
program are described using a data
dictionary. A small sample of a
typical data dictionary is shown in
Fig 5.9. This data dictionary forms
part of the documentation for a
teacher’s mark book program that is
currently under development.
At this point, we are not interested
in the detail of the processing that
will occur, rather we wish to define
and declare each identifier. Let us
examine the statements required to
define and declare each identifier in
firstly Visual Basic .NET and then
in Pascal.
• Visual Basic .NET
The Visual Basic online reference uses its own metalanguage to describe each
component of the language. Following is a simplified EBNF description for the syntax
of the Visual Basic .NET Structure and Dim statements used in this text.
AccessModifier = Dim | Public | Private

Identifier = <Letter> { <Letter>|<Digit>|_ }

DimStatement = <AccessModifier> <Identifier> [“(“<PositiveInteger>”)”] As <Type>

StructureStatement = <AccessModifier> Structure <Identifier>
<DimStatement>
{ <DimStatement> }

End Structure

The Type non-terminal element above can be any of the available types included
within Visual Basic (String, Integer, Double, Boolean, etc.) or it can be a user defined
type that has been declared using a Structure statement.

The description of the DimStatement above indicates that arrays can be declared
directly without using the StructureStatement. To declare an array the identifier is
followed by the upper bound in brackets, such as Private MyArray(4) As String to
declare a string array called MyArray with 5 elements (subscript 0 to 4). However,
record data structures require definition using a StructureStatement and then
declaration using a DimStatement.

Identifier Data Type Purpose

Count Integer Loop counter

Mark Array of
Integers

Stores up to 500 marks.
Each Mark is from 0 to 100.

Finished Boolean Indicates the end of
processing.

Student Record Contains Surname, FirstName
and Mark fields

MaxStud Record Same as Student

Surname String Field in Student record

FirstName String Field in Student record

Mark Integer Field in Student record

 Fig 5.9
Sample data dictionary.

Implementing Software Solutions 229

Software Design and Development – The Preliminary Course

Let us now define and declare each of the identifiers in the data dictionary in Fig 5.9.
Public Structure StudRecord
 Public Surname As String
 Public FirstName As String
 Public Mark As Integer
End Structure

Dim Count As Integer
Dim Mark(500) As Integer
Dim Finished As Boolean
Dim Student As StudRecord
Dim MaxStud As StudRecord

The Structure statement has been used to define a new user-defined data type called
StudRecord. StudRecord can now be used to declare particular variables of that type.
For example, Student is of type StudRecord, hence it contains the fields
Student.Surname, Student.FirstName and Student.Mark.

• Pascal

In Pascal, programs commence with the declaration of any constants, followed by the
definitions of any user-defined data types and then the declaration of the actual
variables used by the program. The code that performs the actual processing follows
the variable declaration section.

GROUP TASK Discussion
Imagine our program required 30 student records rather than a single
record. Given that StudRecord is now a data type, how could the
declaration of 30 such records best be accomplished?

GROUP TASK Discussion
Fig 5.10 above shows typical syntax diagrams for the TYPE and VAR
sections in the Pascal language. Discuss the differences and similarities
between the metalanguage used above and the railroad diagrams specified
for use in this course.

TYPE identifier = type ;

VAR dentifier : type

Fig 5.10
Simplified syntax diagrams for the TYPE and VAR sections within Pascal programs.

Notice the similarity to the railroad diagrams examined in this course.

field list
dentifier : type

range
.. integer integer

type
simple type

user defined type

ARRAY [range type OF

RECORD field list END

PACKED

230 Chapter 5

Software Design and Development –The Preliminary Course

Let us now define and declare the identifiers described in Fig 5.9 using the Pascal
language. In standard Pascal, no predefined string data type exists, rather strings must
be defined as arrays of characters. The keyword PACKED tells the computer to put as
many components as possible into each place in memoy. When used to define strings
the resulting array variables can be accessed as a single data item. Say we assume that
surnames and first names have a maximum of 20 characters, we must therefore define
an array capable of holding up to 20 characters. We then utilise this user-defined type
to declare the Surname and FirstName fields of our record data type. The technique
used to declare each of the other identifiers is similar to that used in Visual Basic.
TYPE
 NameString = PACKED ARRAY[1..20] OF Char;
 MarkArray = ARRAY[1..500] OF Integer;
 StudRecord = RECORD
 Surname : NameString;
 FirstName : NameString;
 Mark : Integer
 END;

VAR
 Count : Integer;
 Mark : MarkArray;
 Finished : Boolean;
 Student : StudRecord;
 MaxStud : StudRecord;
In Pascal, arrays should be created as user-defined data types. The identifiers
associated with these definitions can then be used to define further user-defined data
types or they can be used to declare variables. Once a user-defined type has been
defined, it is used in the VAR section in exactly the same manner as the simple pre-
defined data types.

The syntax or railroad diagrams in Fig 5.10 have been simplified. There are other
options available in standard Pascal and many more available in different
implementations of Pascal. For example, a text file can be defined in the TYPE section.
Say we wished to have a file containing multiple student records. At the end of the
TYPE section we could write StudFileType = FILE OF StudRecord; To declare a file of
type StudFileType we add the line StudentFile : StudFileType; to the VAR section. We
now have a structure that can store multiple student records sequentially.

In Pascal, spaces and carriage returns have no effect on the source code, rather semi-
colons are used to separate statements. The translator, usually a compiler, ignores all
spaces and carriage returns. The TYPE and VAR sections above could have been written
as follows:
TYPE NameString = PACKED ARRAY[1..20] OF Char; MarkArray = ARRAY[1..500] OF
Integer; StudRecord = RECORD Surname : NameString; FirstName : NameString; Mark :
Integer END; VAR Count : Integer; Mark : MarkArray; Finished : Boolean; Student :
StudRecord; MaxStud : StudRecord;

GROUP TASK Discussion
Why do you think spaces and carriage returns are used if they have no
effect on the performance of the source code?

Implementing Software Solutions 231

Software Design and Development – The Preliminary Course

Statements used to code algorithms, including the control structures

Algorithms are written in such a way that they could be implemented in a range of
programming languages. Different programming languages will include many varied
and unique features. However all programming languages will include input, output
and assignment statements together with statements for implementing each of the
control structures. In this section we again consider examples using Visual Basic
.NET and standard Pascal statements.
• Input

Input statements are used to obtain data and store it in some variable. The source of
the data may be the keyboard, a file or some other peripheral device. For our current
explanation let us first consider input originating from the keyboard.

In standard Pascal the read or readln statement is used. Actually, these are not really
statements, rather they are procedures or subroutines that are so often used that they
are included within the language. Following the read or readln keywords is a list of
one or more identifiers enclosed within brackets. For example, read(Mark) or
readln(Surname,FirstName). The read version takes only the next data item input
whereas the readln version takes a complete line of input.

In Visual Basic, there is a Read
and ReadLine statement that uses
a similar syntax to the above
Pascal read and readln
statements. Specifically VB uses
Console.ReadLine to obtain a
string of characters from the user
via the console or command line
interface. For example the code
MyVar = Console.ReadLine will
store the data entered by the user
into the variable MyVar.
Commonly in VB a graphical
user interface and an event
driven approach is used. When
coding event driven programs it
is more likely that controls on the user interface will be used to obtain input. The data
entered can then be accessed by examining the value stored in the appropriate
property. For example, the Text property of a text box contains the data entered into
that control. Similarly the Checked property of a check box will be either True or
False to indicate the current state of the check box. Later in this chapter we examine
elements of the user interface in more detail.

Input from sequential files is accomplished using the read statement in Pascal and the
Input statement in Visual Basic. An additional parameter is required to identify the
file to be accessed. In Pascal, the file or files to be used must be specified in the
program’s header section. To obtain input from the file the Reset statement is used
prior to any read statements. In Visual Basic the FileOpen command is used to
associate a particular file with a unique file number and prepare the file for access.
This file number is then used as the first parameter of the input statement. The
following extract of Visual Basic code reads the first line of data from the file
c:\text.txt into the variable TempData.

Fig 5.11
In Visual Basic, user input into text boxes is accessed via

the text property. Similarly the state of option or radio
buttons can be accessed using their checked property.

232 Chapter 5

Software Design and Development –The Preliminary Course

FileOpen (123, “C:\Test.txt”, OpenMode.Input)
Input (123, TempData)
FileClose(123)

The above code shows the three essential steps required when either reading or
writing to files. We first open the file which includes indicating its name and location
together with how the file will be accessed. We then read or write the data from or to
the file. Finally we close the file so the system can perform clean up tasks and release
the file for use by other processes.
• Output

Output statements are used to send data to devices. This could be the monitor, a
printer, a file or almost any other output device. In most languages the syntax of
output statements is similar to that used for input, only the keyword being different.

In Pascal the write and writeln statements, or more correctly procedures, are used.
These statements are followed by one or more variables and/or constants. Each item is
separated by commas and the list is enclosed within brackets. For example,
writeln(‘The average score is ‘,Average) results in the screen output The average
score is 61, assuming Average currently holds the value 61. If the first parameter used
indicates a file, then the file receives the data rather than the screen. When outputting
to a file the Rewrite statement is used rather than the Reset statement used for input.

In Visual Basic .NET, properties of controls are altered in code using assignment
statements. We’ll see how this is done when we consider assignment statements
below. In this case the programming language updates the screen to reflect the change
to the control’s content.

The command Console.WriteLine is used to send output to the console (command line
interface). For example Console.WriteLine(“Your name is “ & UserName) will cause
Your name is Fred to be displayed on the command line (assuming the variable
UserName contains Fred). Console.WriteLine causes the cursor to move to the next
line whilst Console.Write leaves the cursor at the end of the current line. Console.Write
is often used to provide a prompt prior to obtaining input from the user. The following
Visual Basic code uses the command line to request the user’s name and then outputs
“Hello “ followed by the name entered.
Dim UserName as string
Console.Write(“Enter your name: ”)
UserName = Console.ReadLine
Console.WriteLine(“Hello “ & UserName)

To output to a sequential file, we use the WriteLine statement in a similar fashion to
our use of the Input statement used for reading from sequential files. The following
code fragment writes the contents of the variable TempData into the file c:\Test.txt.
FileOpen (123, “C:\Test.txt”, OpenMode.Output)
WriteLine (123, TempData)
FileClose(123)

When opening a sequential file for output any existing file is overwritten with the new
data. It is often advisable to first check if the file already exists. In Visual Basic .NET
the command System.IO.File.Exists(FilePath) returns true if the file specified by FilePath
exists and false if it does not exist.

In most languages, including Pascal and Visual Basic, it is not possible to read (input)
and write to a file concurrently. Rather the file must be prepared for either input,
output or append. Append is used to add data to the end of an existing file.

Implementing Software Solutions 233

Software Design and Development – The Preliminary Course

Fig 5.12
Railroad diagram for the Visual Basic

assignment statement.

Identifier Expression =
Assignment

• Assignment

Assignment statements are used to set the
value of variables (and properties). In
most languages the variable on the left is
set to the result of the expression on the
right of the assignment symbol. In Pascal,
a colon and equal sign are used as the
assignment symbol. In Visual Basic .NET an equal sign is used. Equal signs can be
misleading; assignment is not the same as equivalence. Consider the statement Count
= Count + 1. Mathematically this is not possible, in other words it is always logically
false. There is no possible value for Count
that makes this statement true. However, as
a Visual Basic assignment statement, it
works! We should read the statement as
Count is set to Count plus 1. The contents of
Count, is obtained, one is added and the
result is stored in Count.

The expression on the right side of assignment statements must always evaluate to a
value of a compatible data type as the identifier on the left. For example, an
expression that evaluates to an integer can be assigned to a floating point variable.
However, a string cannot be assigned to a variable of integer type.

• Sequence
Sequence is the control structure that ensures each
process is executed in the correct order. In most
programming languages sequence is implemented by
writing statements in their correct order; each statement
being separated by some character. In Visual Basic a
carriage return (new line) is used as the separator and in
Pascal a semicolon is used.
In sequential languages the order in which statements are written determines a unique
order of processing. As programmers we know all the possible paths of execution.
Event-driven languages require special consideration. There will most likely be a
large number of possible sequences in which processing could occur.
• Selection
Most programming languages implement binary
selection using statements similar to that used in
pseudocode. In Pascal the ENDIF used in pseudocode is
unnecessary as the semicolon at the end of the
statement is sufficient. In Visual Basic End If is used to
complete the binary selection statement. Most
languages also include an optional ElseIf clause. The use
of ElseIf is logically the same as nesting If statements
within each other.

Assignment
The process of storing the
value of an expression in a
variable.

GROUP TASK Activity
Create a program that gets two numbers and outputs their product and
sum. Perform this task in at least two different programming languages.

Sequence
Statement

;

Fig 5.13
In Pascal statements are
separated by semicolons.

If <Condition> THEN
 <Statements>
{ElseIf <Condition> THEN
 <Statements>}
{Else
 <Statements>}
End If Fig 5.14

Visual Basic’s If statement
includes optional ElseIf clauses.

234 Chapter 5

Software Design and Development –The Preliminary Course

Multiple selection in Visual Basic is implemented using the Select Case statement.
The expression at the beginning of the statement is evaluated. Each case is then
examined in turn until a match is found. If no match is found then the statements
following the Case Else clause are evaluated. Multiple selection statements perform
slightly differently to If statements containing multiple ElseIf clauses. A different
condition is evaluated for each ElseIf clause whereas a single expression is evaluated
for a complete Select Case statement.
In Pascal the CASE statement implements multiple
selection. The syntax is almost identical to the
pseudocode CASEWHERE structure. Fig 5.15 shows an
example of multiple selection implemented in Pascal
and also in Visual Basic. In both cases the otherwise
clause is optional. In most situations it is advisable to
use an otherwise clause to deal with any unexpected
possibilities.

• Repetition
There are two types of repetition - pre-test and post-test. We considered each of these
in chapter 4 when developing algorithms. A third structure, counting loops, are so
often used that they are also implemented in most languages. Care should be taken
when using loops within event-driven programs. Quite often a procedure needs to
execute after each input from the user. In a sequential environment a loop may be
used to repeatedly obtain these inputs. In an event-driven environment no such loop is
required as the user initiates each individual input that triggers an event resulting in
execution of the required processing.
Pre-test repetition is implemented in Visual Basic and Pascal using the WHILE
statement. The condition following the keyword WHILE must be true for an iteration to
occur. In Pascal, the condition is followed by the word
DO and like most other Pascal statements a semi-colon
is used to signify the end of the iteration structure. If
multiple statements form the body of the loop then in
Pascal they are enclosed within the keywords BEGIN
and END. In Visual Basic the keywords End While are
used at the end of the loop much like in Pseudocode.
Post-test repetition is implemented in Pascal using an
almost identical syntax to that used in Pseudocode. The
keyword REPEAT commences the iteration structure.
The loop concludes using the keyword UNTIL followed by a condition. The body of the
loop always executes once and continues to execute until the condition is true.

CASE Grade OF
 ‘A’, ‘B’ : Write(‘Great Work’);
 ‘C’ : Write(‘Satisfactory’);
 ‘D’, ‘E’ : Write(‘Poor’);
 OTHERWISE : Write(‘Fail’)
END

Select Case Grade
 Case “A”, “B”
 txtResult.Text = “Great Work”
 Case “C”
 txtResult.Text = “Satisfactory”
 Case “D”, “E”
 txtResult.Text = “Poor”
 Case Else
 txtResult.Text = “Fail”
End Select

Fig 5.15
Multiple selection example in firstly,

Pascal and then in Visual Basic.

GROUP TASK Discussion
Surely multiple selection statements are
really unnecessary. Why do you think most
languages include such statements?

GROUP TASK Activity
Write and execute a program to implement
the code in Fig 5.15. Do this using firstly
multiple selection and then using nested IF
statements.

While <Condition>
 {<Statement>}
End While

Do
 {<Statement>}
Loop Until <Condition>

Fig 5.16
Visual Basic’s implementation of
pre-test and post-test iteration.

Implementing Software Solutions 235

Software Design and Development – The Preliminary Course

In Visual Basic there are a number of alternative iteration structures. The one that
most closely reflects the post-test iteration used in our algorithms is the Do…Loop
Until Condition structure. Essentially the word repeat has been replaced by the
keyword Do and Loop Until replaces the word UNTIL used in Pseudocode.
Counting loops, which are really pre-test structures, are implemented in both Visual
Basic and Pascal using the keyword FOR followed by the loop counter and its limits.
In Visual Basic NEXT followed optionally by the loop counter is used at the end of the
loop.

Consider the following:

A program is required to display a brief animation sequence.
Visual Basic .NET is being used to develop this program and a
digital camera will be used to take the pictures used by the
program. Essentially each picture is loaded into a picture box.
After a period of time it is replaced by the next picture in the
sequence. An algorithm describing this process is shown in Fig
5.17. picName is the path to the photos including the first part of
each file’s name. picCount is the number of the photo currently
being displayed. For example, the photos may be stored in
c:\photos\ and have the names DCP_001, DCP_002, DCP003,
DCP_004,… DCP_0052. In this case, picName would be
c:\photos\DCP_00, NumPics would be 52 and picCount would
range from 1 to 52.

A user interface, which in this case is a single form, is created in
Visual Basic (refer Fig 5.18). The form contains two text boxes
for the inputs, a picture box to hold the photos as they are
displayed and a command button to activate the animation.
Labels are used to prompt and instruct the user. In Visual Basic,
these are all called controls and are drawn on the form using the
mouse.

Examining the Visual Basic online help
indicates we need to set the
ImageLocation of the picture box, then
call the picture boxes Load method to
display each photo. As most digital
cameras store photos as .jpg files we
code our program using this extension.

Fig 5.19 shows the Visual Basic code
that is activated when the command
button is clicked. Notice that we first
declare each identifier to be used
within our cmdOK_Clck procedure.
picCount and numPics are Integer data
types and picName is a string. We then
get the picName and numPics by
reading the text property of the

Fig 5.17
Algorithm for the

Animator application.

Yes

No picCount <=
numPics?

Load picture
number picCount

Get numPics

Get picName

picCount = 1

Add 1 to picCount

Begin

End

Pause for 150
milliseconds

Fig 5.18
Possible screen design for Animator.

236 Chapter 5

Software Design and Development –The Preliminary Course

appropriate text boxes. As numPics must be a number we use the Val (short for value)
function to convert the text within the text box into a number. The pre-test while loop
repeats once for each photo. The body of the loop displays the picture and then
increments picCount. During initial testing it was found that the photo did not update
correctly, hence the need to Refresh the picture box after loading each new image.

Private Sub cmdOK_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Handles cmdOK.Click

 Dim picCount As Integer
 Dim numPics As Integer
 Dim picName As String

 picName = txtPicName.Text
 numPics = Val(txtNumPics.Text)
 picCount = 1

 While picCount <= numPics

 'load and display the next image
 picMain.ImageLocation = picName & picCount & ".jpg"
 picMain.Load()
 picMain.Refresh()

 'pause for 150 milliseconds
 System.Threading.Thread.Sleep(150)

 picCount = picCount + 1

 End While

 End Sub
 Fig 5.19

Visual Basic .NET code for the Animator application.

GROUP TASK Discussion
There are four significant controls on the user interface in Fig 5.18. With
reference to the code above identify the name and describe the purpose of
each of these controls.

GROUP TASK Discussion
The code in Fig 5.19 is far from perfect. There are many situations that
could or will cause errors. Describe some of these error situations? How
could these errors be corrected or avoided? Discuss.

GROUP TASK Discussion
The first line of code in Fig 519 includes a variety of keywords and other
features that we have not discussed within the text. This additional code
was automatically generated by the Visual Basic IDE (Integrated
Development Environment). Research and describe the purposed (in
simple terms) of the parameters and handles keyword within the first line
of the code.

Implementing Software Solutions 237

Software Design and Development – The Preliminary Course

Consider the following:

A program is required to find all the factors of a number. The factors are to be stored
in an array and the number of factors found is to be displayed. An algorithm has been
developed and is currently being coded in Pascal.

The algorithm above in Fig 5.20 describes
a possible solution to this problem. The
equivalent solution coded in Pascal is
shown at right. The mod operator, used in
the code, returns the remainder after
division. In this example, the remainder
after Number is divided by PossibleFactor.
If this remainder is zero then PossbleFactor
is indeed a factor of Number. Although not
required, the code also displays each factor
as it is found.

BEGIN MAINPROGRAM
 Set PossibleFactor to 1
 Set FactorNum to 0
 Get Number
 WHILE PossibleFactor < Number
 IF Number / PossibleFactor is an Integer THEN
 Increment FactorNum
 Set Factor(FactorNum) to PossibleFactor
 ENDIF
 Increment PossibleFactor
 ENDWHILE
 Display FactorNum
END MAINPROGRAM

Fig 5.20
Pseudocode algorithm for the factor problem.

program FactorFinder (input,output);

type
FactorType=array[1..1000] of integer;

var
PossibleFactor,FactorNum,Number : integer;
Factor:FactorType;

begin
PossibleFactor:=1;
FactorNum:=0;
writeln('FACTOR FINDER')
write('Enter a number: ');
readln(Number);
while PossibleFactor<Number do
 begin
 if Number mod PossibleFactor = 0 then
 begin
 FactorNum:=FactorNum+1;
 Factor[FactorNum]:=PossibleFactor;
 writeln(Factor[FactorNum],' is a factor')
 end;
 PossibleFactor:=PossibleFactor+1
 end;
write('There are a total of ', FactorNum)
writeln(' factors.');
read(Number)
end. Fig 5.21

Pascal implementation of the factor problem.

GROUP TASK Activity
There is at least one error in the above program. Perform a desk check of
the code to assist in determining this error.

GROUP TASK Discussion
A prime number is a number that has only one and itself as factors. How
could the program be modified to also display if a number is prime?

GROUP TASK Discussion
At present the program finds the factors of a single number and then
terminates. How could the program be modified so it continues to process
further numbers until the user indicates they have finished?

238 Chapter 5

Software Design and Development –The Preliminary Course

Consider the following:

A program is required to determine performance bands based on student results. An
initial sequential file called marks.txt contains a record for each student which
includes their surname, first name and their mark. The program is to create a new
sequential file called performance.txt which will contain all the original data plus an
extra field containing the student’s performance band. If a mark is not within the
range 0 to 100 then a performance band of 0 is to be generated. A sample of each file
is reproduced in Fig 5.22 below.

The following algorithm attempts to solve this problem.
BEGIN CalculateBands
 Open marks.txt for input
 Open performance.txt for output
 WHILE NOT EOF marks.txt
 Get student.surname, student.firstName, student.mark
 student.performance = PerformanceBand(student.mark)
 Write performance.txt from student.surname, student.firstName,
 student.mark, student.performance
 END WHILE
 Close marks.txt
 Close performance.txt
END CalculateBands

BEGIN PerformanceBand (result)
 CASEWHERE result is
 <0 : performance=0
 0 to 49.5 : performance = 1
 <100 : performance = Int((result -50)/10) + 2
 100 : performance = 6
 OTHERWISE : performance = 0
 END CASE
 RETURN performance
END PerformanceBand

The Int function calculates the whole number part of a decimal; it does not round the
decimal to the nearest whole number. The PerformanceBand algorithm is a function,
hence the use of the RETURN keyword to indicate the data that the function returns to
the higher level calling subroutine.

Fig 5.22
Sample files for performance band program.

Implementing Software Solutions 239

Software Design and Development – The Preliminary Course

The above algorithms have been coded in Visual Basic .NET.
Module Performance

 Public Structure StudentRecord
 Public surname As String
 Public firstName As String
 Public mark As Double
 Public performance As Integer
 End Structure

 Sub Main()
 Dim student As StudentRecord
 FileOpen(1, "c:\marks.txt", OpenMode.Input)
 FileOpen(2, "c:\performance.txt", OpenMode.Output)
 While Not EOF(1)
 Input(1, student.surname)
 Input(1, student.firstName)
 Input(1, student.mark)

 student.performance = PerformanceBand(student.mark)

 WriteLine(2, student.surname, student.firstName, student.mark,
student.performance)
 End While
 FileClose(1, 2)
 End Sub

 Function PerformanceBand(ByVal result As Double) As Integer
 Dim performance As Integer
 Select Case result
 Case Is < 0
 performance = 0
 Case 0 To 49.5
 performance = 1
 Case Is < 100
 performance = Int((result - 50) / 10) + 2
 Case Is = 100
 performance = 6
 Case Else
 performance = 0
 End Select
 Return performance
 End Function
End Module

GROUP TASK Discussion
Perform a desk check of the PerformanceBand algorithm using the data
shown in the above marks.txt file.

GROUP TASK Discussion
Compare the above Visual Basic code with the algorithms on the previous
page. Note and explain any differences. Code the algorithms in your
choice of programming language.

240 Chapter 5

Software Design and Development –The Preliminary Course

SET 5B
1. The process of storing the value of an

expression in a variable is known as:
(A) assignment.
(B) declaration.
(C) identification.
(D) iteration.

2. Output statements are used for achieving
what?
(A) Obtaining data.
(B) Sending data.
(C) Setting variables.
(D) Implementing control structures.

3. The name given to a variable, process or
function is known as a(n):
(A) identifier.
(B) assignment.
(C) declaration.
(D) definition.

4. A constant can best be described as:
(A) a data item that is required in more

than one place throughout the code
and once declared, never changes
its value.

(B) a data item, that never changes its
value but is only required in one
place in the code.

(C) a data item that is required in more
than one place throughout the code
and once declared, can have
multiple values.

(D) None of the above.
5. Is it always necessary to define data

structures as user-defined data types?
(A) Only if it uses a constant.
(B) No, only for those data types that

are not included in the language.
(C) Yes, even for those data types that

are included in the language.
(D) Only if it uses a constant and that

constant changes value.

6. Input statements are used for achieving
what?
(A) Implementing control structures.
(B) Obtaining data.
(C) Sending data.
(D) Setting variables.

7. Before a variable can be used within
program code, it must first be:
(A) defined and declared.
(B) translated into machine code.
(C) defined as a control structure.
(D) identified by a keyword of the

language that is being used.

8. In most programming languages, an
identifier must begin with:
(A) a $ (dollar) symbol.
(B) a # (hash) symbol
(C) a letter.
(D) an _ (underscore) character.

9. Variables can be declared:
(A) using only predefined data

 types.
(B) using only user-defined data

 types.
(C) using both predefined or user-

defined data types.
(D) Variables are not generally

declared.

10. In most languages, is it possible to
concurrently read and write to a file?
(A) Yes.
(B) No.
(C) Only if the input/output statements

have been written using the
ReadIn/Write statement

(D) Only if the file is stored on a
read/write storage device.

11. Some variables can be declared directly whereas others must have their structure defined first.
Why is this the case? Explain using examples.

12. What is a data dictionary and what is its purpose?

13. Research a programming language you have never used. Give an example of an assignment,
selection and iteration statement in this language.

14. The value of declared constants cannot be changed. What then, is the point of using declared
constants?

15. Code the factor algorithm (see Fig 5.20) in a language with which you are familiar. Print out a
copy of the source code.

Implementing Software Solutions 241

Software Design and Development – The Preliminary Course

ERROR DETECTION AND CORRECTION TECHNIQUES
Errors can occur at all stages of software development. In most cases the earlier the
error occurred in the development cycle the more difficult it will be to correct. For
example, if a misunderstanding or oversight happens when defining and
understanding the problem and it is not detected until the implementing stage, this
will be more time consuming and costly to correct than a problem that first occurs
during the implementing stage. It is vital to foster and maintain communication with
all parties involved in the software’s development, including the end-users.
Regardless of the time spent planning and documenting solutions, errors will occur
and must be corrected. In this section we examine errors that occur when
implementing or coding software in programming languages.

There are essentially three types of errors that can occur at the coding stage: syntax
errors, runtime errors and logic errors. Syntax errors are simple to detect and correct.
Runtime and logic errors can be more difficult to detect and correct. The next chapter
on testing and evaluating software solutions examines techniques for detecting
possible errors throughout the development cycle. In this section we concentrate on
detecting and correcting errors during coding. In reality, the actual correction of the
error is often a straightforward process. The more difficult task is to isolate the source
of the error. In the Preliminary course, we examine three commonly used techniques:
stubs, flags and debugging output statements. There are many other techniques
available, some of which we shall consider in the HSC course.

TYPES OF CODING ERRORS

Before we commence examining techniques for correcting coding errors, we need to
understand the different types of errors that commonly occur. Remember we are
discussing coding errors. There are other sources of errors, which are not caused by
faulty code.
Syntax Errors

Syntax errors, as the name suggests, result when source code statements do not adhere
to the rules of the programming language. All syntax errors will be detected as the
source code is translated into object code. The translator, normally an interpreter or a
compiler, is unable to understand code that contains one or more syntax errors.

In chapter 2, we discussed the
translation process as being
comprised of three main steps:
lexical analysis, syntactical analysis
and code generation. Lexical
analysis ensures each element of the
source code is a legitimate part of
the language. Syntactical analysis
ensures these elements are combined
to form correct statements. The
metalanguages examined earlier in
this chapter define the rules used

GROUP TASK Discussion
Errors occurring earlier in the software development cycle are usually
more costly to correct as time goes on. Why is this so? Discuss.

Fig 5.23
Visual Basic checks the syntax of
statements as they are entered.

242 Chapter 5

Software Design and Development –The Preliminary Course

during lexical and syntactical analysis. Errors encountered during lexical and
syntactical analysis are collectively called syntax errors.

The editors that form part of most modern programming environments perform an
analysis of the syntax of each statement as it is entered. Often different coloured text
is used to visually differentiate between keywords, identifiers, operators and
comments. This greatly reduces the number of syntax errors encountered during
translation. However, these editors cannot find all such errors. It is not possible for
them to know in advance the code that is yet to be entered. This is particularly the
case with many of the control structures. For example, a missing ENDIF cannot be
determined by an editor as it cannot determine where the ENDIF should be placed.
During translation, the entire code is available and consequently the error can be
determined.

Consider the following:

Earlier in the chapter we created a
fictitious language called Winston. Fig
5.24 is the source code for a program
written in Winston. This code contains
a number of syntax errors.

Runtime Errors

Runtime errors occur when for some reason the computer is unable to continue
executing instructions. We have all encountered runtime errors at some stage. For
example, in Windows the all too familiar blue screen of death is the result of a
runtime error causing the operating system to crash. Runtime errors can be caused by
either hardware or software faults. The complexity of modern computer systems
makes it almost inevitable that runtime errors will occur. To counteract this reality
most systems, and programming languages, provide methods of dealing with errors
when they occur. Visual Basic .NET, C++, Java and many other languages generate
“exceptions” to allow programmers to catch and deal gracefully with many runtime
errors. An exception is essentially a type of runtime error; disk overflows, invalid
input, poor path name, and so on, are examples of common exceptions which should
be handled Essentially the programmer writes subroutines called “exception
handlers” which are executed when an exception of a particular type occurs. The
exception handler attempts to resolve the issue and resume execution. If the error
means execution cannot continue then the exception handler can at least save any data
and exit the program gracefully with a meaningful message.

It is possible to predict the nature of likely runtime errors and deal with them within
the code itself. We have already seen some examples of this. For instance, when using
files we should check the file exists before we begin reading and we can check inputs
to ensure they are within the expected range before we begin processing. For example,
the PerformanceBand function (page 239) dealt with negative and greater than 100
marks by generating a 0.

Start
 Input Dad
 Input Mum
 Set A to Dad + Mum
 Set A to A/2
 When (A<Mum, Set B to Dad), Set B to Mum
 Output A
 Output B ‘ is an older age’
Stop

Fig 5.24
Source code for a short program written

using the fictitious language Winston.

GROUP TASK Activity
Find and correct each
syntax error in Fig 5.24.

Implementing Software Solutions 243

Software Design and Development – The Preliminary Course

Let us consider common runtime errors within the programs we write. Runtime errors
cannot easily be anticipated or detected until the code is executing. Runtime and logic
errors are not mutually exclusive; many logic errors will result in a runtime error.
Possible causes of runtime errors include:

• Mathematical calculations that cannot be evaluated. For example, division by
zero, attempting to find the square root of negative numbers and finding the tan
ratio of 90 degrees. These problems often occur when unexpected data is entered.

• Inaccuracies due to non-exact floating point representations. For example, in
single precision floating point 0.9999999 multiplied by 2 gives the result 2 rather
than 1.9999998. In double precision floating point, we need to go to 14 decimal
places before such errors occur. If a selection or iteration statement was based on
such results, it is likely that incorrect sections of code would execute.

• Data that is out of the range of the identifier’s data type. For example, 16 bit
integers have a range from -32768 to 32767. Calculations with results outside this
range will result in a runtime error. Attempts to assign values to array elements
outside the range of the index will also cause a runtime error.

• Infinite calls to subroutines. Often the result of unintentional recursive calls.
Functions and procedures that include calls to themselves can easily result in an
attempt to make infinite calls resulting in stack overflow runtime errors.

Logic Errors

Logic errors occur when programs do not correctly work as anticipated. The program
may continue to execute, albeit incorrectly. For example, a loop may repeat fewer
times than required, resulting in some data not being processed. The program contains
a logic error yet the program still executes, it just doesn’t achieve its purpose
correctly. Often a logic error is the cause of a runtime error that halts execution. For
example, a program that calculates averages may cause a division by zero error if no
data is input. The logic within the code is incorrect which results in a runtime error.

Logic errors are the most difficult errors to correct. A mistake in a single line of code
can manifest itself in often unexpected ways. Identifying the precise source of the
error can prove to be a laborious task Of ten logic errors result from poor planning
and design. Time spent ensuring the correctness of algorithms and system models will
greatly reduce the number of logic errors encountered. Isolating the cause of a logic
error can be accomplished using similar techniques to those used to check algorithms.
Remember, algorithms are descriptions of the logic of the solution. Mistakes made
when developing algorithms manifest themselves as logic errors in the final source
code.

GROUP TASK Activity
Deliberately write code that will cause a runtime error. Use exception
handling or some other technique to catch and recover from this error.

GROUP TASK Discussion
There are mathematical methods that can be used to prove the correctness
of many algorithms, however the time required to create such proofs
means it is an unreasonable task for even a small algorithm. For large
applications mathematical proofs are impractical. Research and discuss
practical strategies used to determine the correctness of large applications.

244 Chapter 5

Software Design and Development –The Preliminary Course

Consider the following:

A Visual Basic procedure has been written to tally up the number of A, B, C, D and
Es stored in an array. The procedure does not work correctly yet no runtime errors
occur. The results are almost correct the first time the procedure is called, however
strange things seem to occur if subsequent calls
are made from the same routine.

The input data for the procedure is the Grades
array that is passed as a parameter to the
procedure. This array contains up to 50 grades
and is indexed from 0 to 49. The Total array is
used to pass the results back to the calling
routine. Total(0) holds the number of As, Total(1)
the number of Bs, and so on.

DEBUGGING TECHNIQUES

Errors or defects that cause software to malfunction in some way are called bugs.
Debugging is the process of identifying and correcting bugs. In this section we
consider some commonly used techniques used to assist in the debugging process.
The use of stubs, flags and debugging output statements are techniques allowing
programmers to isolate the source of
errors within source code. There are many
other techniques, as well as many software
tools, available to programmers. In the
HSC course we examine many more of
these techniques and tools.
Stubs

As each higher-level subroutine is coded, it requires testing and debugging. Routines
that call lower-level routines are difficult to test until these lower-level routines are
coded. Stubs are used to alleviate this problem. A stub is a small routine that takes the
place of a yet to be written subroutine or is substituted for an existing subroutine when
attempting to locate the cause of an error.

Stubs allow the flow of execution to be checked before lower level subroutines are
coded. They can also be used to temporarily replace subroutines when attempting to
locate the source of an error. It is difficult to isolate the precise subroutine which is
causing an error. It is often helpful to systematically replace each called subroutine
with a simple stub which is known to return valid output.

Often a stub will set the value of appropriate variables or simply return valid output
and then end. Sometimes an output statement may be included within a stub to
indicate that a call has taken place. No real processing takes place within the stub, its
purpose is to allow testing of the calling routine or to assist the debugging process.

GROUP TASK Discussion
Examine the code in Fig 5.25. There
are a number of logic errors. Find
these errors and suggest methods
for correcting each error.

Bug
An error or defect in software
or hardware that causes a
program to malfunction.

Public Sub TallyGrades(
 ByVal Grades() As String,
 ByVal Total() As Integer)
Dim Count As Integer
For Count = 1 To 49
 Select Case Grades(Count)
 Case "A": Total(0) = Total(0) + 1
 Case "B": Total(1) = Total(1) + 1
 Case "C": Total(2) = Total(1) + 1
 Case "D": Total(3) = Total(3) + 1
 Case Else: Total(4) = Total(4) + 1
 End Select
Next Count
End Sub

Fig 5.25
Visual Basic procedure to tally grades.

(Including errors)

Implementing Software Solutions 245

Software Design and Development – The Preliminary Course

Consider the following:

The simple structure chart in Fig 526
describes the top-down design for a new
software application. The main program
will be coded first followed by the DoThis
and DoThat routines. In other words the
higher- level modules are coded first
followed by the lower-level modules. This
makes it difficult to test each module as it
is coded.

When the main program is being coded,
two stubs are written to take the place of
the DoThis and DoThat subroutines.
Similarly when the DoThis routine is being
written, stubs are created to take the place
of the GetIt and SortIt subroutines.

Flags

A flag is a Boolean variable used to check if a section of code has been executed.
Normally the flag is initialised to false and then set to true if the section of code is
executed. By examining the value of the flag, the programmer can determine the
execution path through the code. Knowing the execution path is of great assistance
when diagnosing the source of bugs For exam ple, when attempting to find the source
of an error the statement setting the flag to true can be systematically moved through
the code. If the flag is false then we are not following the execution path correctly,
conversely if it is true then we are.

Often a flag will be used to confirm that a particular condition has been met. When
debugging the programmer may suspect that say, a value becomes negative when it
should not. A statement can be added to the code that sets a flag variable should this
occur. For example, the Pascal statement TestFlag:= Average < 0 sets TestFlag to True
if Average is negative. If Average is not negative then TestFlag is set to False.

Flags are not only used for debugging, they can form part of the logic of the solution.
Often execution of particular sections of code depends on whether a certain condition
has been met. Flag variables provide a mechanism for communicating this
information to other parts of the program. For example, in the HSC course we
examine a number of algorithms for sorting data. A flag is used to signal that the data
is now sorted. As a consequence, the sort can end and execution can continue to other
sections of code.

Fig 5.26
The top-down design for a fictitious program.

Main
Program

DoThis
1

DoThat
2

GetIt
1.1

SortIt
1.2

FindIt
2.1

MixIt
2.2

GrabIt
1.1.1

CheckIt
1.1.2

GetInput
2.1.1

Shuffle
2.2.1

ReHash
2.2.2

GROUP TASK Discussion
It is normal to code software from the top down. Why do you think this is
a more common method than coding from the bottom up? Discuss.

GROUP TASK Discussion
Why bother creating stubs? Surely it would be better to code the entire
project and then test and debug the total solution. Do you agree? Discuss.

246 Chapter 5

Software Design and Development –The Preliminary Course

Debugging Output Statements
Output statements can be strategically placed within the code to indicate execution
has passed through that point. They can also be used to display the contents of
variables at particular points in the code. These statements are removed once the
source code has been tested and the bugs removed.
Often errors originating much earlier in the execution path do not surface until later in
the code. By strategically displaying the contents of variables at crucial points, the
source of many bugs can be determined.
Debugging output statements are particularly useful to display the result of processes
that are normally hidden from the user. For example, when reading data from a disk
file it is helpful during development to include an output statement to display each
data item obtained from the file immediately after it has been read. This allows the
programmer to view the raw data prior to processing.
Output statements are often used as part of a stub. A simple output statement
confirming that a call to a subroutine has occurred in many cases is the stub. Output
statements can also be used in conjunction with flags to alert the programmer that
some condition has been met.

Consider the following:

Fig 527 shows a simple screen and Visual Basic procedure used to test and debug the
TallyGrades procedure described in Fig 5.25. This code essentially opens a file and
loads the grades into an array. The TallyGrades procedure is called and then the results
are output. This code is known as a driver, its purpose is to test a lower- level routine.

GROUP TASK Discussion
Slips of paper are used as bookmarks to flag certain pages. Flags are used
by ships to communicate simple messages. White flags are carried as a sign
of peaceful intentions. Discuss the similarities between these types of flags
and the Boolean flags described above.

Fig 5.27
Example of a driver used for debugging.

Private Sub cmdOK_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles cmdOK.Click

 Dim Grade(50) As String
 Dim Total(4) As Integer
 Dim c As Integer

 FileOpen(1, "c:\grades.txt", OpenMode.Input)

 c = 0
 While Not EOF(1) And c <= 50
 Input(1, Grade(c))
 txtInput.Text = txtInput.Text & Grade(c)
 c = c + 1
 End While

 TallyGrades(Grade, Total)

 For c = 0 To 4
 txtOutput.Text = txtOutput.Text & " " & Total(c)
 Next

 FileClose(1)

 End Sub

Implementing Software Solutions 247

Software Design and Development – The Preliminary Course

Automated debugging tools

Most modern programming environments provide a variety of automated debugging
tools to assist programmers locate and correct errors in their code. Common tools
include breakpoints, single line stepping and setting watch expressions.

Breakpoints halt execution and allow the contents of variables at that point to be
interrogated and even changed. Single line stepping causes execution to halt after each
line of code is executed. A single key press causes the next line to execute. Watch
expressions can be used to display the contents of variables during execution. They
can also cause execution to halt when a certain condition becomes true.

Automated debugging tools can often be used instead of flags and debugging output
statements. They can also provide a means for performing an automated desk check of
the source code.

GROUP TASK Activity
Examine the automated debugging tools available in a programming
environment with which you are familiar. List and describe each of the
available tools.

GROUP TASK Discussion
How does the code in Fig 527 help to simplify the testing and debugging
of the TallyGrades procedure? Discuss.

GROUP TASK Discussion
There are three essential controls on the form shown in Fig 5.27. Can you
work out the name and purpose of each of these controls?

Fig 5.28
Debugging in Visua Basic .NET

248 Chapter 5

Software Design and Development –The Preliminary Course

SET 5C
1. The common name given to a defect in

software or hardware that causes a
program to malfunction is called a:
(A) runtime error.
(B) fatal error.
(C) blue screen of death.
(D) bug.

2. What can a programmer use to test a
routine that relies on a yet to be written
lower-level routine?
(A) A flag.
(B) A stub.
(C) A breakpoint.
(D) A watch expression.

3. Which debugging tool allows the
contents of variables to be displayed
while execution takes place?
(A) Watch expressions.
(B) Breakpoints.
(C) Flags.
(D) Stubs.

4. When the computer is unable to
continue executing instructions, what is
the error that has occurred?
(A) Syntax error.
(B) Logic error.
(C) Runtime error.
(D) Operating system error.

5. The translation process comprises of
which three main steps?
(A) Lexical analysis, syntactical

analysis and code generation.
(B) Lexical analysis, syntactical

analysis and runtime error analysis.
(C) Lexical analysis, logic error

analysis and syntactical analysis.
(D) Lexical analysis, logic error

analysis and code generation.

6. A Boolean variable that is used to check
if a section of code has been executed is
called a:
(A) flag.
(B) stub.
(C) pause statement.
(D) signal.

7. Which debugging tool allows the
content of variables to be interrogated
by halting execution?
(A) Stubs.
(B) Breakpoints.
(C) Flags.
(D) Watch expressions.

8. Other than breakpoints, what other
technique could a programmer use to
display the content of variables at
various stages of execution?
(A) Flags.
(B) Drivers.
(C) Stubs.
(D) Output statements.

9. When the rules of a programming
language have been violated, which
error is most likely to occur?
(A) Syntax error.
(B) Runtime error.
(C) Operating system error.
(D) Logic error.

10. If a program continues successfully
through execution however, the results
are not as they are anticipated, what type
of error has most likely occurred?
(A) Logic error.
(B) Runtime error.
(C) Syntax error.
(D) Lexical error.

11. Runtime and logic errors are not mutually exclusive. What in the world does this mean?
Find out and then give an example of an error that illustrates the meaning.

12. In the text, we discussed stubs in detail and we also discussed briefly, a new type of driver.
Stubs and drivers are similar but not the same. Describe the similarities and differences.

13. Debugging output statements can be used in various ways with other debugging techniques.
Describe at least two such uses.

14. Why is it that syntax errors are never encountered when using commercially produced software
products?

15. In the text, the Pascal statement TestFlag:= Average < 0 was used in connection with setting
flags. Explain how this statement works.

Implementing Software Solutions 249

Software Design and Development – The Preliminary Course

COMMONLY EXECUTED SECTIONS OF CODE
Most programmers create and maintain their own library of source code. When new
projects are being developed much of this code can be reused. In chapter 4, we
discussed modularity as a method used to enhance the reusability of code. If modules
are developed as self-contained units, then little or no modification will be required to
reuse them in new projects.

There are also commercial, open
source and public domain libraries
where modules can be obtained. For
example, many languages are able to
use Active X controls and other .COM
components. These components are
available as compiled units (often
dynamic linked libraries or DLLs) that
provide enhanced capabilities to a
variety of programming languages.
Many programmers maintain a library
of such components and controls for
future use. There are currently many
companies who specialise in the
development and distribution of such
components.

In this section, we consider the development of some standard routines suitable for
inclusion in a library of code. We also consider methods of including and using code
and modules from different sources within new projects. This includes adding the
code to the project, calling the code and also sharing and passing data to and from
different modules.
DEVELOPING STANDARD SUBROUTINES FOR REUSE

When developing code for reuse, it is important to consider a more generic case than
the one presented for the current project. Standard routines will be more useful if they
solve a more generic case of the problem rather than the precise current problem. For
example, a routine written to sort the data in an array would be more useful if it could
sort both numerical and string data in either ascending or descending order.

If a routine can be written that requires no modification then we can thoroughly test
the module when first developed and then use it with confidence in future software
projects. More generic solutions are likely to require minimal changes to work within
new projects.

Consider data validation:

Data validation is a process used by most software. Without a robust data validation
routine, user input will often be the cause of runtime errors. It makes sense to develop
standard routines to perform this process.

It is common practice to obtain user input as string data. The string is then analysed
according to the validation rules appropriate to the particular variable and context. If
the data is appropriate then no visible action takes place. On the other hand, if the data
is out of the required range or is of the wrong type some corrective action is required.

Fig 5.29
Extra controls and other components can be added

and used within Visual Basic .NET.

250 Chapter 5

Software Design and Development –The Preliminary Course

Let us develop a Visual Basic routine for validating non-negative integers. The
following general requirements have been formulated:
• User input is to be in string form presumably via a text box control. This string

forms the input to the validation routine.
• If the user enters any digits these will become the input. For example, a3&9.4

should be returned by the routine as 394.
• The routine should also ensure the integer is within a specified range. For

example, if the input was a mark out of 100 then the range would be from 0 to
100.

• Any input that is inappropriate should result in a message box being displayed
with an appropriate message. In this case the routine should return a default value.

An algorithm is first developed using pseudocode. This algorithm is reproduced
below in Fig 5.30.

This algorithm is then coded as a Visual Basic function (see Fig 5.32). The function
uses four parameters: the input string, the minimum value, the maximum value and
the default value. Functions are used where a single value is returned, in this case the
validated integer.

The Visual Basic code in Fig 5.32 on the next page uses a number of features and
built-in methods (or functions). The lines commencing with three single quotes are
used to document the function using XML code. Within the Visual Basic IDE typing
three single quotes on the line before a subroutine causes an XML template to be
automatically generated. This template can then be completed to summarise the
purpose of the subroutine and each of its parameters. When calling the subroutine
these comments appear as part of Visual Basic’s intellisense system (refer Fig 5.31).
Many languages include similar features, such as Java’s JavaDoc system. These

GROUP TASK Activity
Examine the input screens from a number of applications. Try entering
inappropriate data on these screens and observe the feedback, if any,
generated by the software’s validation routines.

BEGIN ValidateInteger(InputString,Min,Max,Default)
WHILE more characters in InputString
 IF current character is a digit THEN
 Add the character to StringInteger
 ENDIF
 Move to next character in InputString
ENDWHILE
Set ValidInt to value of StringInteger
IF StringInteger is empty OR ValidInt is not within Min to Max THEN
 Set ValidInt to Default
 Display message box prompt
ENDIF
RETURN ValidInt

END ValidateInteger Fig 5.30
Pseudocode for the integer validation problem.

GROUP TASK Discussion
Examine the algorithm above. Describe in words the generic nature of the
processing taking place to meet the stated requirements.

Implementing Software Solutions 251

Software Design and Development – The Preliminary Course

systems greatly improve the ability of code to be reused. In most cases it is
unnecessary to examine the original source code as the comments provide sufficient
information.

The Length function is a method which returns the number of characters in a string.
The Substring method is used to extract part of a string. The first parameter in this
function is the index of the first character to be extracted and the second is the length
of the string to be extracted. Predictably, the IsDigit method returns true if the character
is a valid digit and false if it is not and CInt converts the final string into an integer
data type.
''' <summary>
''' Converts a string to a non-negative integer using all digits present within the
string. If the result is not within the range Min to Max the default value is returned.
''' </summary>
''' <param name="InputString">The string to convert</param>
''' <param name="Min">The smallest acceptable integer</param>
''' <param name="Max">The largest acceptable integer</param>
''' <param name="DefaultValue">Return value if the integer is not in the range Min
to Max</param>
''' <returns>Returns an integer</returns>
''' <remarks>Written By Sam Davis 3/2/2011</remarks>

Public Function ValidateInteger(ByVal InputString As String,
 ByVal Min As Integer,
 ByVal Max As Integer,
 ByVal DefaultValue As Integer) As Integer

 Dim StringInteger As String = ""
 Dim TempChar As Char
 Dim Counter As Integer
 Dim ValidInt As Integer

 'Consider each character in turn looking for digits
 For Counter = 0 To InputString.Length - 1
 TempChar = InputString.Substring(Counter, 1)
 If Char.IsDigit(TempChar) Then
 StringInteger = StringInteger & TempChar
 End If
 Next Counter

 'Convert string to integer
 ValidInt = CInt(StringInteger)

 'Check for digits and that number is within the required range
 If StringInteger = "" Or ValidInt < Min Or ValidInt > Max Then
 ValidInt = DefaultValue
 MsgBox("A number from " & Min & " to " & Max & " is required.")
 End If

 Return ValidInt

 End Function
 Fig 5.32

Visual Basic code for the integer validation problem.

Fig 5.31
Visual Basic’s intellisense shows XML comments as you enter code.

252 Chapter 5

Software Design and Development –The Preliminary Course

The VaidateInteger function requires extensive testing before being included in a
library of code. To perform this testing, a program is required that calls the new
function. This driver program would then be used to test the function with various test
data sets.

Consider login processes

Login processes are used to authenticate users. Authentication is the process of
identifying a user using known information. For most software applications a
username and password is used. The password is a secret string of characters that only
the system and of course the user should know. Therefore the password can be used to
authenticate that the user is who they claim to be during the login process.

Let us create a login subroutine in Visual Basic that is suitable for reuse and meets the
following requirements.

1. Displays a form to get the username and password from the user.
2. Accesses usernames and encrypted passwords from a text file.
3. Stored passwords are encrypted using a one way hash algorithm such as SHA

(Secure Hash Algorithm) so access to the text file does not reveal passwords.
4. Is a function which returns a Boolean value – true if the user has been successfully

authenticated and false if they have not.

First we design the login screen using two
textboxes and two buttons. For the
password textbox we don’t wish the
characters typed to be echoed on the
screen. In Visual Basic textboxes have a
PasswordChar property, which we set to *
so that a * appears for each character typed.
Form properties are set so that the OK
button is the AcceptButton and the
CancelButton is (predictably) the cancel
button. Further properties are adjusted to
produce the screen in Fig 5.33.

GROUP TASK Discussion
A number of minor changes have been made to implement the
VaidateInteger algorithm in Visual Basic. Describe these changes.

GROUP TASK Activity
Design a suitable screen that could form the basis of a suitable testing
program. Describe the nature of the test data sets required to ensure the
correct operation of the function.

Fig 5.33
Screen design for VB login form.

GROUP TASK Activity
Produce the form in Fig 5.33 using the IDE of a programming language
such as Visual Basic .NET.

Implementing Software Solutions 253

Software Design and Development – The Preliminary Course

Visual Basic code for the OK and Cancel button click events follows.
Public Class Login
 Public UserOK As Boolean = False

 Private Sub OK_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles OK.Click

 Dim UserName As String = "", Password As String = ""
 Dim SHAPassword As String
 Dim fullPath As String = Application.CommonAppDataPath & "\users.txt"

 'Assume login will fail
 UserOK = False

 If System.IO.File.Exists(fullPath) Then

 'Authenticate the user
 SHAPassword = getSHA(PasswordTextBox.Text)
 FileOpen(1, fullPath, OpenMode.Input)
 While Not (EOF(1) Or UserOK)
 Input(1, UserName)
 Input(1, Password)
 UserOK = (UserName = UsernameTextBox.Text)
 And (Password = SHAPassword)
 End While
 FileClose(1)

 'close the form if user is authenticated
 If UserOK Then
 Me.Close()
 Else
 MsgBox("Incorrect User name / Password combination")
 End If

 Else
 MsgBox("Users.txt does NOT exist. Unable to login.")
 Me.Close()
 End If

 End Sub

 Private Sub Cancel_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Cancel.Click
 UserOK = False
 Me.Close()
 End Sub
End Class

GROUP TASK Activity
Based on the above Visual Basic source code, produce a simplified
pseudocode algorithm for the OK button’s click event.

GROUP TASK Discussion
The system never stores the raw user passwords. How is this achieved and
how does this help to secure the login process? Discuss.

GROUP TASK Discussion
Explain the operation of the following line of code
UserOK = (UserName = UsernameTextBox.Text) And (Password = SHAPassword)

254 Chapter 5

Software Design and Development –The Preliminary Course

The final Authenticate function below opens the form as a dialog, which means the
form must close before execution continues. This means the Return value UserOK is
not produced until the form closes.
Module modLogin
 Public Function Authenticate() As Boolean
 Dim frm As New Login
 frm.ShowDialog()
 Return frm.UserOK
 End Function

The following getSHA function is used to encrypt strings using the secure hash
algorithm. This function is called within the OK button’s click event to encrypt the
password entered by the user so it can be compared to the encrypted passwords within
the file users.txt.
 Public Function getSHA(ByVal strToHash As String) As String

 Dim SHA As New Security.Cryptography.SHA1CryptoServiceProvider
 Dim bytesToHash() As Byte = System.Text.Encoding.ASCII.GetBytes(strToHash)
 Dim strResult As String = ""

 bytesToHash = SHA.ComputeHash(bytesToHash)

 For Each b As Byte In bytesToHash
 strResult += b.ToString("x2")
 Next

 Return strResult

 End Function

End Module

A sample users.txt file is reproduced in Fig 5.34 to assist with testing. The raw
passwords were “abcd”, “dcba” and “1234” respectively.

Consider conversion between date/time formats

In Visual Basic .NET and many other languages dates are stored as double precision
floating point numbers. The whole number part represents the number of days since
30/12/1899. The decimal portion represents the fraction of a day that has elapsed, so
0.5 represents midday for example. Dates are delimited using hash “#” symbols and
must use the American month, day then year convention followed by the time. For
example, 3pm on the 5th February, 2011 is expressed as #2/5/2011 3:00:00 PM#.

Fig 5.34
Sample users.txt file.

GROUP TASK Activity
Using a programming language, confirm 30/12/1899 is day 0. Investigate
how dates can be formatted, including formatting based on location.

Implementing Software Solutions 255

Software Design and Development – The Preliminary Course

COMBINING CODE FROM DIFFERENT SOURCES

The simplest method of combining code from an outside source is to use the operating
system’s clipboard to copy and paste the code. This technique works well for source
code that is written in the same version of the same language. Changes are likely to be
required if the code originates from a different version of the language. Remember,
whenever changes are made, the code will require thorough testing to ensure its
correctness is maintained.

Before a module of code can be called or used within a software project, it must be
known to the programming environment. Different techniques are used depending on
the nature of the code or module to be used. Once the code has been added to the
project, its functions and procedures can be called in a similar way to subroutines
written from scratch.

If source code has been copied and pasted then it becomes part of the source code for
the total project and can be used as if it had just been written. Many modern
programming environments allow modules of source code to be stored in single
library files. These files can be imported into the current project. The functions and
procedures within these modules are then available to the programmer. During
translation these subroutines are compiled and included within the project’s
executable files.

Most modern programming environments allow the inclusion of external modules of
code. These modules can be in the form of compiled files such as dynamic link
libraries, objects or new controls. Or the modules can be files containing source code.
They extend the capabilities of the programming language. For example, Visual Basic
controls can be written and compiled into separate files. These files can then be
referenced and used in any Visual Basic application. Any external compiled modules
used within the new application will need to be distributed with the new application
unless you are sure each user’s machine will already have the required files.

Different programming environments will use different commands for using compiled
modules. In all cases, the location, name of the component and the details of its
parameters will need to be communicated to the programming environment. The
format of these files includes all the properties, methods and events relevant to the
component. Often this declaration occurs at the start of the project’s main program.
Once the components have been added they can then be called and used within the
source code.

When using code from other sources, the intellectual property rights of the author
should be considered. Often code and modules are sold together with a licence
permitting distribution and use within new applications. In most cases, a copyright
notice acknowledging the source of the code or module must accompany the new
application. In any case, it is unethical to use code created by others without first
ensuring their intellectual property rights are upheld and any licensing requirements
are fulfilled.

GROUP TASK Investigation
For at least two different programming languages, investigate how external
modules of code can be added so their subroutines can be called from
your source code.

256 Chapter 5

Software Design and Development –The Preliminary Course

Calling modules or subroutines

Modules added to software projects will contain one or more subroutines. These
subroutines can be either procedures or functions. In most languages the syntax used
to call or execute subroutines written from scratch, and subroutines included from
outside sources, is similar or in most cases identical. However, there are differences in
the way a procedure call and a function call are implemented within the source code
of all languages.
• Procedure calls

The name given to a procedure is a special
kind of identifier. This identifier does not
have a data type, rather it is used by the
programming language to locate the
subprogram within the source code. In
most languages, the use of a procedure’s
identifier causes control to execute the
associated procedure. In essence, the procedure’s name, together with any parameters,
is the statement used to execute the procedure. For example, if a Visual Basic
procedure has been written called DoThis it can be called using the statement Call
DoThis or more simply by the statement DoThis.
• Function calls

Functions are similar in most respects to procedures. However, the identifier used to
name a function also has a data type. This data type defines the type of data that will
be returned by the function. Functions should be designed to return a single data item
via this return vale. This is why they are called functions. In mathematics, a function
is defined to be a relationship where each set of inputs returns a single unique output.
Subroutines written as functions should adhere to this definition. Unfortunately many
programming languages do not enforce this rule. Function calls form part of
expressions. For example, 5 + Cos(34) is an expression that calls the Cosine function
using the value 34 as its parameter. The result is returned via the Cos identifier.

MAKING THE SAME DATA AVAILABLE TO DIFFERENT SUBROUTINES
AND MODULES

There are two methods of sharing the data held in variables between subroutines in a
software project. Firstly, the variable can be made available for access by the
subroutine or module. This involves altering the scope of the variable so it is shared
directly by the subroutines. Global variables are an extreme example where the
variable can be accessed directly by all parts of the program. Secondly, the data can
be passed to the subroutine via parameters. In chapter 4, we discussed the concept of
parameters. Parameters are not variables, rather they are identifiers used to
communicate data between subroutines within software. Wherever possible it is
preferable to use parameters. Use of global variables makes it difficult to debug code
and even more difficult to develop subroutines suitable for reuse.

GROUP TASK Activity
Many commands included within programming languages are themselves
subroutines. Consider some of the commands included in a language with
which you are familiar. Describe each as either a procedure or a function.
Compare your descriptions with other students.

Call
To invoke a routine in a
programming language. Calling
a routine consists of specifying
the routine name and,
optionally, parameters.

Implementing Software Solutions 257

Software Design and Development – The Preliminary Course

• Sharing variables by altering their scope

The scope of an identifier is all the places within the program from which the
identifier can be accessed. The idea of scope relates to all identifiers not just those
associated with variables. For our current purposes let us restrict our discussion to
variables.

Local variables can only be accessed by
the subroutines in which they are declared.
In this case other subroutines are unable to
directly access these variables. To these
other modules the variables simply do not
exist. An instance of the local variable is
created as the subroutine begins execution and is destroyed once the subroutine ends.
If a subroutine is being called numerous times then its local variables will be created
and destroyed numerous times.

Global variables, on the other hand, are available to other modules within the project.
They are created as the program starts and are only destroyed when the program
finally ends. It is normally considered bad practice to use global variables, however
there are some exceptional circumstances where the use of global variables is
convenient. When global variables are used extensively in larger projects, it becomes
difficult to track how and where they are altered. Also, the use of global variables
within projects makes it difficult to reuse subroutines and modules in other projects.
They do however provide a simple mechanism for sharing variables between
subroutines and modules.

Consider the following:

Different programming languages have different ways for determining the scope of
variables In Visual Basic you must explicitly declare variables as Public if you wish
to use them globally. The scope rules for Pascal are more implicit. Let us consider
Pascal’s scope rules in more detail.

Pascal programs are made up of blocks of code, each
block generally being a procedure or function. Other
blocks can also nest within these. The scope of a
Pascal identifier includes all the statements that are
within the block following its declaration. This
includes any nested blocks within the block where the
identifier was declared. Consequently, identifiers
declared higher in the programs nested hierarchy will
have a larger scope than those declared lower in the
nested hierarchy. The only global variables are those
declared in the main program’s block.

So what happens if the same name is used for multiple
identifiers within the same block? In Pascal, the most
local identifier declaration using that name is used.
Higher-level identifiers of the same name are not
available to that block of code.

Scope
The extent or range of
operation of an identifier.
Where in a program, a given
identifier may be accessed.

PROGRAM Sample…
var This:Integer; . . .
 PROCEDURE Level1Sub1…
 var That: Integer; . . .
 PROCEDURE Level2Sub1…
 var Thing: Integer; . . .
 PROCEDURE Level3Sub1…
 var That:Integer; . . .
 PROCEDURE Level1Sub2…
 var That: Integer; . . .

Fig 5.35
In Pascal the scope of a variable
is determined by the procedure

in which it is declared.

258 Chapter 5

Software Design and Development –The Preliminary Course

• Parameter passing
The term ‘parameter passing’ can be misleading. In most cases the variable used as a
parameter is not passed, rather a copy of the data held in the variable or the address in
memory of the variable is passed. This is known as passing “by value” or passing “by
reference” respectively. We discussed “by value” and “by reference” in Chapter 4
(page 202). This is a difficult concept, so it would be worthwhile reviewing this
material.
The most common and best way to share data between different subroutines is
through the use of parameters. The use of parameters, rather than global variables,
greatly assists in the development of reusable self-contained modules. In fact, global
variables should not be used in modules that will be included in libraries of code,
particularly if these modules are to be distributed and used by others.
Consider the use of compiled modules of code. In these circumstances, there is no
simple way of knowing the memory address of variables used by a particular
subroutine. We have no alternative but to use parameters to communicate data to the
subroutine In fact, we do not even know or require the names of the identifiers used
in the original source code, we just need to know their order and data type. For
example, a square root function is available as a built-in function in most languages.
There is no need for us to know the name of the identifier used as the parameter,
rather we just need to know that it is a number and that the function will return a
number.

Consider the following:

In most cases data is passed to subroutines “by value”. This requires a new local
variable to be created by the called subroutine to store this data for the life of the call.
For strings, integers and other standard data types the called subroutine is unable to
alter the original data. However, when data structures (including arrays) are passed
“by value”, the value passed is commonly a pointer to the original data structure in
memory. Therefore the called subroutine creates a pointer variable which enables
access to the original data structure and the data items it contains. Therefore the called
subroutine is able to alter the original data items.

GROUP TASK Discussion
Examine the diagrammatic representation of a typical Pascal program
shown in Fig 5.35. Describe the scope of each variable used within this
diagram. Pay particular attention to the three declarations that use the
identifier That.

GROUP TASK Discussion
In the above section, the use of global variables was fairly strongly
discouraged in favour of using parameters. Make up a list of reasons why
this is the case. Discuss your answers.

GROUP TASK Discussion
Problems can occur when it is unclear whether a called subroutine will
alter the original values held in actual parameter variables. Discuss likely
issues that could occur.

Implementing Software Solutions 259

Software Design and Development – The Preliminary Course

SET 5D
1. What is generally considered to be the

most common and best way to pass
variables between modules?
(A) The use of parameters.
(B) The use of sharing variables.
(C) The use of function calls.
(D) The use of procedure calls.

2. Variables that are available to all other
modules within the software project are
referred to as:
(A) actual parameters.
(B) global parameters.
(C) function variables.
(D) global variables.

3. What is the name given to a subroutine
when its identifier has a data type and a
value of this type is returned to the
calling subroutine?
(A) A procedure.
(B) A function.
(C) A call.
(D) A variable.

4. With regards to variables, what is meant
by the term ‘Scope’?
(A) The extent or range of operation.
(B) A call that specifies the routine to

be executed.
(C) Where in a program, a given

identifier may be accessed.
(D) Both A and C.

5. When developing code for reuse, it is
important to develop generic code
because:
(A) It will then be suitable for inclusion

in a library of code.
(B) It will have been thoroughly tested

at time of creation and therefore
should only need minimal, if any
modification for use in a new
project.

(C) Programming time is saved.
(D) All of the above.

6. To invoke a subroutine in a
programming language is known by
what term?
(A) Process.
(B) Parse.
(C) Pass.
(D) Call.

7. A subroutine can either be a:
(A) procedure or function.
(B) procedure or parameter.
(C) function or variable.
(D) parameter or variable.

8. Routines suitable for inclusion in a
library of code should:
(A) use global variables.
(B) use parameters.
(C) call other modules.
(D) always be compiled.

9. What is normally used to communicate
data to subroutines?
(A) Local variables.
(B) Global variables.
(C) All variables.
(D) Parameters.

10. Which of the following statements is
correct?
(A) A global variable is available to

other subroutines and is destroyed
only when the program ends.

(B) A global variable is available to
other subroutines and is created
and destroyed each time a
subroutine calls it.

(C) A global variable is available only
to a single subroutine but is
destroyed only when the program
ends.

(D) A global variable is available to
other subroutines and is never
destroyed to ensure its availability.

11. Dynamic Link Libraries, Active X controls and the Windows API are all compiled modules
of code. What advantages and disadvantages does this have for software developers?

12. How can altering the scope of a variable, be used to allow other modules access to required
data items. Discuss.

13. Procedures and functions are different types of subroutines. What is the difference between
the two in terms of how they are called by higher-level routines? Discuss.

260 Chapter 5

Software Design and Development –The Preliminary Course

14. Express the following Visual Basic code as an algorithm using a flowchart.

15. What do you think is the purpose of the above code? Is the code suitable for inclusion in a library
of code? Justify your response.

Public Sub RandomLines(ByVal frm As Form, ByVal Numlines As Integer)

 Dim blackPen As Pen = Pens.Black
 Dim firstPoint As New Point(0, 0)
 Dim secondPoint As New Point(0, 0)
 Dim frmGraphics As System.Drawing.Graphics = frm.CreateGraphics()
 Dim currentLine As Integer = 0

 Randomize()

 While currentLine < Numlines
 secondPoint.X = Int(frm.Width * Rnd())
 secondPoint.Y = Int((frm.Height) * Rnd())
 frmGraphics.DrawLine(blackPen, firstPoint, secondPoint)
 firstPoint = secondPoint
 currentLine = currentLine + 1
 End While

 End Sub

Implementing Software Solutions 261

Software Design and Development – The Preliminary Course

USER INTERFACE DEVELOPMENT
The user interface is all the screens, elements and actions that allow users to
communicate with software. User interfaces should be intuitive, forgiving and
consistent in their design. Processes that take some time to complete should provide
feedback to the user. The design of the user interface to most users is the most
significant consideration when purchasing and continuing to use a software product.
Software developers must recognise this when developing new products.

DIFFERENT PERSPECTIVES OF USERS AND DEVELOPERS

Users often evaluate software primarily on the merits of its user interface. This is
natural and to be expected. After all, the user interface is their method of
communicating with the program. Users do not need to understand the processing
going on behind the scenes. For example,
when we print a document from a word
processor we don’t consider the vast
amounts of processing occurring. The
word processor must convert the
document to a form that can be understood
by the printer’s driver. The driver must
then turn this data into a form the printer
understands and progressively send it to
the printer. From the user’s perspective the
document just prints, with perhaps some
feedback displayed on the screen.

Developers view software from a different
perspective. They must be aware of the
underlying processes occurring. Most of
the work involved in developing software
concerns the correct planning, design and
implementation of these processes. It is natural and right that developers concentrate
on such matters. However, the user interface cannot be ignored if software products
are to be a success for their users. The development team must include users as
integral and important resources when developing software. This is particularly
crucial when designing and creating the user interface.

CONSULTATION WITH USERS AND/OR MANAGERS

The user interface is for the use of users. Therefore, users must have input into its
design and development. In chapter 3, we examined a number of software
development approaches; the more recent approaches aim to ensure user consultation
is ongoing and integral to the development process. Regardless of the software
development approach being used, consultation with users in regard to the design and
functionality of the user interface is crucial. Consider a developer creating an interface
for a new peripheral device. The developer must know every detail of the commands
and processes available within this device. The software has to interface as flawlessly
as is possible with the peripheral. The same applies to the user interface, only we can’t
just pick up a technical manual! Software developers must have a detailed
understanding of user’s requirements if the software is to operate as flawlessly as
possible. Consultation with users aims to achieve this detailed understanding.

User

Developer

Fig 5.36
Users and developers view software

from different perspectives.

262 Chapter 5

Software Design and Development –The Preliminary Course

A number of tools and techniques are available to ensure consultation with users
results in user interfaces that meet the needs of users. Some tools and techniques
include:
• Observation – observing users onsite is perhaps the most useful technique for

obtaining accurate information in regard to user’s needs. This is particularly so in
regard to determining work routines and flows.

• Storyboards – Shows the general design of each form within the interface together
with how users navigate between forms within the interface.

• Prototypes – User needs are better expressed when they have a concrete model on
which to comment. Prototypes of the user interface are invaluable in this regard.

• Questionnaires or surveys – questionnaires and surveys should include both
structured and unstructured questions. Often more honest answers are obtained if
the survey is anonymous.

• Meetings – meetings are generally fairly structured. Therefore they are
particularly useful for resolving issues in a short time. Often decisions must be
made about directions in which to proceed, meetings are great for this purpose.

EFFECTIVE USER INTERFACES
Effective user interfaces meet the needs of users. Many of these needs will be specific
to the current project being developed, others relate to more general aspects of good
effective user interface design.
In this section we examine a number of general points that should be considered when
developing effective user interfaces. For convenience these points have been grouped
under subheadings Be aware that each aspect of the user interface will affect other
aspects of the interface. For example, poor grouping of information will likely lead to
more error messages. These error messages must be legible and make appropriate use
of white space.
• Factors affecting readability

 use of white space
 judicious use of colour and graphics
 grouping of information
 legibility of text

• Prompts and messages
 effective prompts
 unambiguous and non-threatening error messages
 provision of feedback

• Consistency of design (see chapter 1, pages 25-32)
• Social and ethical issues (see chapter 1, in particular pages 35-39)

GROUP TASK Discussion
Observation, prototypes, questionnaires/surveys and meetings are useful
in different ways. Their usefulness is dependant largely on the nature of
the software project and the number of potential users. Think up scenarios
where each tool/technique would be particularly suitable. Discuss.

GROUP TASK Discussion
Surely the primary task of the user interface is to gather data and display
information. If the user interface does this then it will be effective.
Do you agree or disagree? Debate both sides.

Implementing Software Solutions 263

Software Design and Development – The Preliminary Course

Factors affecting readability

Readability is the ease with which a user
can read and understand the written word.
There are many scientific measures
commonly used by authors, editors and
publishers to assess the readability of
documents. Most of these measures are
based on the length of words, sentences and
paragraphs. In terms of user interface design these
measures are of limited assistance. It is rare to use full
sentences, let alone paragraphs on a user interface.
However, they do indicate that shorter more common
words increase the readability of text.

Factors that are relatively minor, yet vital
considerations for traditional paper-based documents,
can have major effects on the readability of user
interfaces The user interf ace’s aim is to achieve
intuitive understanding in an instant. Users should be
able to take in the entire screen and intuitively deduce
the purpose of each screen element and its
relationship to those elements around it.

Let us consider some factors affecting the user’s
ability to achieve this intuitive understanding:
• Use of white space

We see white space all the time, yet often we are unaware of it. It is the portion of the
user interface that isn’t there! White space is the area on the screen that is not used by
screen elements. However, white space is a vital component on all user interfaces.
White space need not be white. In the case of graphical user interfaces it is often grey
and on command-based interfaces it is commonly black White space should be a
neutral colour that does not attract or draw the user’s attention.

White space breaks up the screen into
sections. It draws the user’s eye to
important elements and highlights these
elements. Consider the two magazine
advertisements in Fig 5.38. Clearly the
one on the right, uses large areas of
white space to focus the reader’s eyes
on the shirt box and hence the Cold
Power logo. In comparison, the
advertisement on the left does not
clearly direct the reader to one
particular element of the design.
Although these are extreme examples,
they do clearly illustrate the importance
of white space.

Readability
The ease with which the
written word can be read and
understood.

Fig 5.37
Microsoft Word provides readability

statistics. These measures are of
little use when assessing the

effectiveness of user interfaces.

Fig 5.38
The use of white space in advertising. Example
Magazine advertisements from the March 2002

Australian Women’s Weekly.

264 Chapter 5

Software Design and Development –The Preliminary Course

• Judicious use of colour and graphics

Effective user interfaces use colour and graphics to achieve some specific purpose. It
is common practice to use blue text for hyperlinks and red to signal some potential
danger or problem. Use of coloured text can be extremely distracting for users.
Although the colours chosen may look appealing to the developer, it is likely that
many users will not agree. Different display devices show colours differently,
combinations that are readable on one display may be next to impossible to read on
other displays. Use coloured text sparingly and only where it has some purpose or
message to deliver.

Graphics used as icons should deliver a clear message to the user as to their purpose.
Effective icons communicate their purpose more quickly than the equivalent text.
However the reverse is also true, poor icons confuse users. If the meaning of an icon
is not immediately clear then text should be used.

The use of colour and graphics for purely aesthetic purposes should generally be
avoided. Aesthetic elements that are attractive at first sight quickly become dreary and
distractive for frequent users of the software. If used, then an option should be
included to turn these elements off.

Consider the following:

The icons used on the toolbar in Fig 5.39 are supposed to improve the
readability of this portion of the user interface. Unfortunately, the
purpose of many of the icons used is unclear.

• Grouping of information

It makes sense to logically group related items together. This allows users to, at a
glance, internalise the overall purpose of the screen. They can then focus on the
required elements more efficiently. Users are then able to learn and build up a mental
picture of the application and its user interface.

Developers must group screen elements according to the user’s perspective. Ask
yourself – ‘what tasks the user is trying to perform by accessing this screen?’ Often
each of these tasks will determine the grouping of screen elements. The grouping of
elements on the screen may not reflect the structure of the code behind the screen.
Remember, the user is unaware of your program code’s structure. To them the user
interface is the application.

Grouping normally is accomplished using frames or borders. These can be used in
conjunction with a label. The label should concisely communicate the nature and
purpose of the elements within the frae. If there are too many elements on a screen
then a command button can be used to open a further screen displaying less
commonly used elements.

Fig 5.39
Sample icons

GROUP TASK Discussion
Examine each icon on the toolbar in Fig 5.39. Discuss each
icon’s possible purpose. Do you think the purpose of each
icon is clear? Discuss.

Implementing Software Solutions 265

Software Design and Development – The Preliminary Course

It is a good idea to show all possible elements that are on the screen; any inactive
elements should be dimmed rather than hidden from view. Elements that seem to
appear from nowhere surprise users, rather than enhancing the screen’s readability.
Showing all screen elements gives the user an overall picture of all the available
possibilities, further enhancing their mental picture of the application as a whole.

Readability is improved when an accurate mental picture of a program’s structure is
efficiently and accurately created within the user’s mind. The logical grouping of
screen elements is crucial if this is to occur.

Consider the following:

Parramatta Education Centre, the
publisher of this text, also writes
software to computerise various
processes that are necessary to
successfully operate a school. Fig
540 shows a screen from one of
their reporting packages.

This screen is used to set-up each
course prior to reports being
written by teachers. Various
methods of grouping elements are
used. For example, frames are
used around groups of radio
buttons and groups of check
boxes. Lines are used to group
each major task on the screen.

• Legibility of text

Legibility of text refers to the user’s ability to make out each word and or character on
the user interfac. Primarily, the font used and how it is justified or aligned on the
screen, influences legibility. Different fonts and methods of justification are suited to
different uses. We need to understand how legibility is affected by our choice and use
of fonts and justification.

A font is a complete set of characters that are of the same
design. Each font is a particular example of a typeface.
For example, Arial is a typeface and 10 point bold Arial
is a font. 12 point italic Arial is another font that uses the
Arial typeface. Therefore, each font possesses a series of
properties; it uses a typeface e.g. Arial, a typestyle e.g.
italic or bold and a size e.g. 10 point or 12 point.

Fig 5.40
Add/Edit Courses screen from a school’s reporting
application. This application was developed using

MS-Access and Visual Basic using a RAD approach.

GROUP TASK Discussion
Can you quickly understand the purpose of the screen in Fig 540 and each
of its elements? Discuss how grouping of the screen’s elements assists in
improving the readability of this screen.

10 point Bold Arial
12 point Italic Arial
14 point normal Arial

Fig 5.41
Three different fonts that all

use the Arial typeface.

266 Chapter 5

Software Design and Development –The Preliminary Course

Fonts can also be classified as either serif or sans serif fonts. Serifs are the little ticks
or blobs attached to each end of the curves and lines that make up each character.
Sans serif means, in French, no serifs. Hence sans serif fonts have no serifs and serif
fonts do. Before the advent of the printing press, scribes
used quills. It was very difficult to start and end a stroke
neatly and squarely consequently serifs came into being.
When the printing press was invented each character in a
font was cast in lead. This casting occurred in a foundry.
The word foundry is the source of the word fount, which
was later shortened to font It was now possible to create
fonts of any design, including sans serif fonts.

So how do fonts affect legibility and as a consequence the readability of text? It
depends on where the font is to be used. Written documents generally use serif fonts
for the main body of the document and sans serif fonts for headings. Research has
shown that serifs help the reader to more efficiently make out the shape of each
character. They also assist in keeping the eye tracking across each line. The smaller
the font then the more significant this becomes. Printed documentation and user
manuals should reflect this research.

What about user interfaces? The resolution of a printed document is quite different to
that of a computer monitor. Most books are printed using a resolution of at least 1200
dots per inch; monitors have a resolution of around 70 dots per inch. Command based
systems often have a far lower resolution than this. Unfortunately
this low resolution can often blur the serifs resulting in lowered
legibility. Simple sans serif fonts are not affected to the same
degree. Fig 5.43 shows an enlarged view of the letter ‘d’ as
viewed on a typical monitor. The simpler shape of the sans serif
version on the right makes it more legible. Remember, it is the
simpler curves and lines that make the font more readable. A
fancy sans serif font may be less legible than a basic serif font.

Modern GUI operating systems include settings where fonts can be specified for
particular components of the user interface. This allows individual users the ability to
customise fonts to suit their own personal needs. This is particularly important for
those users with sight problems. Software developers should use these settings within
their applications rather than forcing particular fonts on users.

The number of different fonts used on a single screen should be kept to a minimum.
Remember even altering size or style results in a different font. Different fonts should
only be used to convey meaning. Perhaps hints or informational items could be in
italics whereas the rest of the screen uses a normal font. The extensive use of fancy
fonts is generally unwise. The use of fancy fonts should be limited to headings where
they are really performing an advertising function.

d serifs d no
serifs

Fig 5.42
A serif font on the left and a
sans serif font on the right.

Fig 5.43
Serifs are blurred on
computer monitors.

GROUP TASK Activity
Change the operating system settings to alter the fonts used by the system.
Assess the effect of different fonts in terms of their affect on the legibility
of the user interface.

Implementing Software Solutions 267

Software Design and Development – The Preliminary Course

Justification is how text is aligned to the margins. Left
justified text is tight against the left margin. Similarly
right justified text is tight against the right margin. Full
justification means the text is spread evenly between
both margins. Centred means the text is equidistant
from both margin. Many word processors use the term
alignment in preference to the term justification.

Most documents, including this book, are fully
justified. Fully justified documents look more
symmetrical and more importantly assist the reader to
maintain their current position. As all text begins and
ends at the same point it is easier for the brain to scan
each line.

User interfaces rarely use multiple lines of text.
However, they often contain lists of labels and other screen elements. In general all
lists should be left justified. It is easier to absorb a list of items when each commences
at the same point. Centred text should only be used for headings or for specialised
elements such as command buttons. Right justification is used for numbers. This
ensures the decimal points line up directly underneath each other.

Consider the following:

An input screen is required to gather and display client information. The fields to be
included on this screen include: surname, first name, sex, street address, suburb,
postcode, phone number, fax number, mobile number and email address. Two screen
designs that formed part of the first and second prototypes have been created and are
shown in Fig 5.45.

This text is left justified. This text is
left justifid. This text is left
justified. This text is left jusified.

This text is right justfied. This text
is right justifid. This text is right

justified. This text is right jutified.

This text is full justified. This text is
full justifie. This text is full
justified. This text is full jusified.

This text is centred. This text is
centre. This text is entred. This

text is cented. This text s centred.

Fig 5.44
Justification is how text is

aligned to the margins.

Fig 5.45
Two screen designs for gathering and displaying client information.

GROUP TASK Activity
Both the screen designs above have good and bad points. Discuss the
merits of each design. Create a new screen design that incorporates the
good features of each of the above designs.

268 Chapter 5

Software Design and Development –The Preliminary Course

Prompts and messages

The words used in both prompts and messages must be understandable from the point
of view of the user. Prompts and messages aim to communicate their message in the
most efficient and effective manner. Users are generally quite intolerant of computers,
they expect to be in charge of the machine rather than have the machine control them.
This is a reasonable situation; after all, the computer is just a machine. The text used
in prompts and messages should take this into account. The use of threatening or
condescending messages is certainly not appropriate. It is also poor form to attempt to
humanise the computer by using pleases and thankyous. Keep prompts and messages
straightforward and to the point.
• Effective prompts

A prompt is a reminder or a cue as to what is required. For example, most stage
productions have prompters standing in the wings. Their job is to prompt the actors
using cues should any of them forget their lines. Prompts on user interfaces perform a
similar task for users rather than actors. They
must be concise yet they should accurately
communicate their message.

A prompt is not the place to teach users about the
details of the program. Neither is it necessary or
desirable to embellish the wording of prompts.
Consider the two prompts in Fig 5.46. The top
one sounds nice and fuzzy and friendly when
first read. What if you had to read it many times during each day? Suddenly the fuzzy
and friendly becomes irritating and annoying. Obviously you need to enter a guess, if
you didn’t then why is there a text box containing a flashing cursor. The bottom
prompt in Fig 546 communicates the same message and is far less likely to irritate
anyone.

Prompts are the main method of communicating with users. Most screen elements
contain or are linked to prompts. Without them it would be impossible for users to
understand and use software. It is well worth spending time considering the words
used to ensure they correctly communicate the desired message.

Some general guidelines for developing prompts are:
• Use verbs or doing words if choosing that screen element activates some process

or action. Often verbs are used on menus e.g. file, edit, print or format. The
implication being that choosing one of these items will lead to some action being
performed.

• If the prompt is merely used to gather data of some sort then the prompt should be
a noun that describes the data e.g. Surname rather than Enter surname.

• It is common practice to use an ellipsis (…) after prompts that open new windows.
The ellipsis also signifies that the item does not directly activate a process.

Fig 5.46
Prompts should accurately and concisely

communicate a single simple message.

GROUP TASK Activity
Open a new document in a word processor. Examine each of the menus
and dialogues available in this word processor paying close attention to the
prompts used. Type up a list of all the prompts, together with a short
description of their purpose.

Implementing Software Solutions 269

Software Design and Development – The Preliminary Course

• Unambiguous and non-threatening error messages

Messages are used to provide further information. Error messages are used to inform
the user of some problem that has occurred. There are different types of errors that
can occur and this should be reflected in the error message displayed. For example, a
data validation error requires quite a different message to a runtime error that halts
execution. In all cases the language used in error messages should clearly
communicate the nature of the error in a concise and non-threatening way.

Error messages should identify the
error and also provide some solution
in a non-threatening way. Fig 547 is
an error message from a school’s
reporting system. The error has been
identified i.e. the comment number
was not in the database, and two
possible solutions are suggested. The
user is given the option to add the new comment directly or return and use a different
comment. Notice that no blame is assigned to the user. The message states the
problem without laying blame. If the message had read You entered comment
number 1234 which does not exist… then the user could feel threatened, the
implication being that they have stuffed up.

If the error is one that cannot be resolved, then this should be stated. For example, A
fatal error has occurred and the application will be shut down. The error has been
identified as a fatal one and the only solution is for the application to be terminated.

Often icons are used to indicate the severity of the error.
Using these icons inappropriately is a common problem
found in many applications. For example, Microsoft
Photo Editor displays the error message shown in Fig
5.48 if the user enters a width that is out of range. This is
not a critical error, rather it is a minor validation error.
The use of the critical warning icon leads the user to
expect the application to halt. In fact, no runtime error is
generated and the application continues to operate flawlessly. An information icon,
such as the one used in Fig 547 would have been more appropriate. The error
message as it stands is ambiguous, the user is unsure of its meaning.
• Provision of feedback

Feedback to users is crucial and should appear to be instantaneous. Feedback is
required after the user initiates any action. The user should never be left wondering
whether their actions have been successful.

In most cases, feedback is provided intuitively as the processing results in some
obvious change to the interface or data. Some examples include, clicking on a check
box resulting in a visual change, when a command button is clicked it appears to
depress and entering data into a field causing the focus to move to the next field.
Other processes occur in the background and take some time to complete. If a process
takes longer than a second (0.1 second is preferable), then additional feedback is
needed. Most users will tolerate waiting if they are confident that processing is
occurring. If they are unsure, then they are likely to abort the application in the belief
that an error has occurred.

Fig 5.47
Error messages should identify the error and

suggest some possible solution.

Fig 5.48
Inappropriate use of warning
symbols leads to ambiguity.

270 Chapter 5

Software Design and Development –The Preliminary Course

The type of feedback required depends on the nature of the
processing occurring. If the user can continue working whilst the
process continues then the feedback can be subtler. For example, in
most word processors a document can be printed in the background.
In this case the feedback (Fig 5.49) does not interrupt the user.

Processes that require the user to wait require more
obvious feedback. This feedback should provide an
indication of the total time the process is likely to
take and the time remaining. Often a window is used
displaying a progress bar. Most installation or set-up
programs provide this type of feedback. GUI
operating systems use different icons for the mouse
pointer as feedback. An hourglass is commonly used
to inform the user that processing is occurring.

Consistency of design

The most important aspect of user interface design is consistency. Consistency within
the application’s screens and consistency between applications. In chapter 1, (see
pages 26) we considered consistency of the user interface in regard to ergonomics.
Consistent user interfaces are easier to learn and are therefore easier to use. Skills
learnt using other applications can be reused. The result being a more ergonomically
sound application.

Each of the items examined in this section should be used consistently. Readability is
greatly increased when user interfaces make consistent use of white space, colour,
graphics, grouping and text. Prompts and messages should be consistent. Users should
be able to predict the result of their actions. Consistency of user interface design
promotes this ability in users.

Social and ethical issues

In chapter 1, we examined social and ethical issues in detail. From the user’s
perspective, the user interface is the most vital component of most new software
products. Thus, many of the issues in chapter 1 relate to user interface design.
Developers have a responsibility to ensure social and ethical issues are considered and
dealt with during the design and development of the user interface.

Fig 5.49
Subtle feedback

in MS-Word.

Fig 5.50
Progress bars provide feedback

for processes that take some
time to complete.

GROUP TASK Activity
Examine the different types of feedback provided by a number of
applications. Make a list of all the different techniques you discover.

GROUP TASK Activity
Revise chapter 1, pages 25-39. These pages deal with social and ethical
issues relevant to the design of the user interface. Create a summary or
outline of the important points from these pages.

GROUP TASK Activity
Examine a number of applications in regard to the consistency of their
user interface. List any items of inconsistency that you find.

Implementing Software Solutions 271

Software Design and Development – The Preliminary Course

A page setup screen for a graphics application is required to gather the following
information:

• The size of the left, right, top and bottom margins.
• Page orientation – either landscape or portrait.
• The printer to which the document will be sent.
• The final printed size of the graphic.

(a) Design a user interface for this page setup screen.

(b) Explain how the software could ensure that the data entered is appropriate.
Suggested Solutions
(a)

(b) The paper size can be determined directly from the printer driver. If the user

enters margin or graphic sizes that will not fit then these values are automatically
adjusted to fit the page size. The value just entered is retained wherever possible
and the other values are altered and reflected within the preview frame. Inputs
such as negative numbers or alphabetic characters simply cannot be entered.
These techniques mean that it should never be necessary to generate error
messages.

HSC style question:

272 Chapter 5

Software Design and Development –The Preliminary Course

SET 5E
1. When a complete set of characters are

said to be of the same design, together
they are referred to as what?
(A) A serifed font.
(B) A typeface.
(C) A typestyle.
(D) A font.

2. The most important aspect of the design
of a user interface is:
(A) readability.
(B) white space.
(C) consistency..
(D) legibility.

3. The little ticks or blobs attached to the
ends of the curves or lines that make up
a character are called:
(A) serifs.
(B) sans serifs.
(C) founts.
(D) stylisers.

4. A reminder or cue of what is required of
the user is known as a:
(A) ellipsis.
(B) message.
(C) trigger.
(D) prompt.

5. Lists of screen elements should
generally be:
(A) left justified.
(B) right justified.
(C) centred.
(D) fully justified.

6. Of the four terms listed below, which
refers to the way text is aligned to
margins?
(A) Equidistant.
(B) Justification.
(C) Centred.
(D) Readability.

7. The ease with which the written word
can be understood is referred to as:
(A) readability.
(B) interpretation.
(C) legibility.
(D) unambiguousness.

8. The ease with which the user can
identify each character is referred to as:
(A) readability.
(B) legibility.
(C) typefacing.
(D) typestyling.

9. Which justification looks the most
symmetrical?
(A) Left justification.
(B) Right justification.
(C) Centred justification.
(D) Full justification.

10. For a user interface to be effective it
must:
(A) show the user all the processing

going on in the background.
(B) meet the needs of the user.
(C) have lots of icons because users

prefer pictures to words.
(D) have lots of colour so it will not be

so boring to use.

11. Users and developers view software quite differently. Discuss the implications of this, in terms
of user interface development.

12. The Internet is now used to make voice calls. A new product is under development that will
allow users to enter an Internet address (IP address) to talk to people. This causes a tune to play
on the receiving person’s computer. Once they respond to this tune, the voice conversation can
commence. Initial investigations have shown that a single screen is preferred for the products
user interface Create a screen design for this product.

13. Various factors affect the readability of the user interface. List and describe at least 4 such
factors.

Implementing Software Solutions 273

Software Design and Development – The HSC Course

Use the following screen designs when answering questions 14 and 15.

14. Evaluate each of the above screens in terms of their effectiveness.

15. Redesign the screens to rectify any problems that you identified in question 14.

274 Chapter 5

Software Design and Development –The Preliminary Course

DOCUMENTATION
There are essentially two unique audiences who will use documentation: developers
and users. In this section, we first consider the documentation needs of each of these
groups. We then examine internal documentation. Internal documentation is contained
within the source code and is for the use of programmers and other developers who
may wish to later understand the code. Online help is an important form of
documentation for users. It forms part of the source code and is thus part of building a
software solution. We examine different methods for including online help within
software products.

DOCUMENTATION FOR DEVELOPERS

Documentation of software solutions should be ongoing throughout the software
development cycle. Each stage of development produces various forms of
documentation for developers. Each should be retained and updated to reflect changes
made during development. This documentation will prove invaluable when
modifications to the original product are required.

In the preliminary course, we have already touched on a number of different types of
documentation used by developers. In the defining and understanding stage, we
considered the development of a list of specifications and requirements for the project.
We used techniques to create models of the system such as systems flowcharts,
dataflow diagrams, IPO charts and structure charts. In the design stage data
dictionaries and algorithms were created. The source code itself is perhaps the most
vital form of documentation. It must be as readable as possible. Other items of
documentation include test data and the associated results.
The test data created to ensure the correct operation of
algorithms will be reused to test that the source code
performs as intended. Future maintenance programmers will
also reuse test data to confirm the correctness of their
modifications. In the HSC course we further expand and
formalise many of these techniques and tools. Each forms an
important part of the documentation for both current and
future developers.

Documentation developed in one stage of the software
development cycle provides information for the next stage.
For example, the requirements are developed into a top-down
design for the project. This top-down design is then used as
the framework for developing algorithms. These algorithms
describe the logic required when coding the solution in a
programming language. Each form of documentation should
be retained even after the project has been completed and
implemented. Future maintenance and modifications to the
product to either correct errors or to add new functionality are
greatly simplified when the original documentation is
available and accurate.

GROUP TASK Activity
Make a list of all the types of documentation examined so far in this
course. Write a brief description describing the purpose of each.

Fig 5.51
Documentation from one

stage provides
information for the
subsequent stages.

Defining and
understanding the

problem

Planning and designing
software solutions

Implementing software

solutions

Testing and evaluating

software solutions

Maintaining software

solutions

Implementing Software Solutions 275

Software Design and Development – The Preliminary Course

Let us examine documentation of the source code itself. This is known as internal
documentation and is vital if our code is to be read and understood.
Internal Documentation

Internal documentation is for the use of developers. It is designed to make the
programming code readable. Understanding source code written by others is often a
difficult and time-consuming task. After a period of time it is even difficult to quickly
understand your own code. Internal documentation aims to alleviate this situation. The
use of internal documentation has no effect on the translation process; it is purely for
the benefit of programmers.

Although we have not formally discussed source code documentation, we have
nevertheless been using it throughout this chapter. The use of meaningful identifiers
was first introduced when writing algorithms. We continued this practice when
writing programming code. For example, using the identifier Average rather than A or
txtSurname rather than S. Similarly, when writing pseudocode we indented within
each control structure. The practice was continued when coding solutions.

The use of identifier names that describe their purpose is often called intrinsic
documentation. Intrinsic means ‘belonging to or part of’, meaningful identifiers are
functional parts of the code, hence the term intrinsic documentation.

Other internal documentation we’ve used includes comments and white space within
the source code. Comments are used to describe the purpose of the code or to explain
the logic of unusual or difficult to understand processes. Comments can also be used
to record details in regard to the programmers name and when the code was written. If
the code is later modified then further comments would be added to update this
information. Blank lines are used to provide white space between logical blocks of
code. White space visually separates the code making it more readable.

Consider the following:

Earlier in this chapter, we developed a function for validating integers. The Visual
Basic code is reproduced below – first without internal documentation and then with
internal documentation. Both these implementations perform exactly the same task, in
fact, once compiled they would be identical in all respects.

Fig 5.52
Visual Basic code for the integer validation problem shown without documentation.

Public Function ValidateInteger(ByVal I As String, ByVal M1 As Integer, ByVal M2 As
Integer, ByVal D As Integer) As Integer
 Dim S As String = "", T As Char, C As Integer, V As Integer
 For C = 0 To I.Length - 1
 T = I.Substring(C, 1)
 If Char.IsDigit(T) Then S = S & T
 Next
 V = CInt(S)
 If S = "" Or V < M1 Or V > M2 Then
 V = D
 MsgBox("A number from " & M1 & " to " & M2 & " is required.")
 End If
 Return V
 End Function

276 Chapter 5

Software Design and Development –The Preliminary Course

''' <summary>
''' Converts a string to a non-negative integer using all digits present within the
string. If the result is not within the range Min to Max the default value is returned.
''' </summary>
''' <param name="InputString">The string to convert</param>
''' <param name="Min">The smallest acceptable integer</param>
''' <param name="Max">The largest acceptable integer</param>
''' <param name="DefaultValue">Return value if the integer is not in the range Min
to Max</param>
''' <returns>Returns an integer</returns>
''' <remarks>Written By Sam Davis 3/2/2011</remarks>

Public Function ValidateInteger(ByVal InputString As String,
 ByVal Min As Integer,
 ByVal Max As Integer,
 ByVal DefaultValue As Integer) As Integer

 Dim StringInteger As String = ""
 Dim TempChar As Char
 Dim Counter As Integer
 Dim ValidInt As Integer

 'Consider each character in turn looking for digits
 For Counter = 0 To InputString.Length - 1
 TempChar = InputString.Substring(Counter, 1)
 If Char.IsDigit(TempChar) Then
 StringInteger = StringInteger & TempChar
 End If
 Next Counter

 'Convert string to integer
 ValidInt = CInt(StringInteger)

 'Check for digits and that number is within the required range
 If StringInteger = "" Or ValidInt < Min Or ValidInt > Max Then
 ValidInt = DefaultValue
 MsgBox("A number from " & Min & " to " & Max & " is required.")
 End If

 Return ValidInt

 End Function
 Fig 5.53

Visual Basic code for the integer validation problem shown with documentation.

GROUP TASK Discussion
How can it be that the code in Fig 552 performs identically to the code in
Fig 5.53? Discuss.

GROUP TASK Activity
Identify each type of internal documentation included in Fig 5.53. How
does each of these affect the readability of the code?

GROUP TASK Activity
Create a data dictionary to define the data used in the Fig 5.53 version of
the above ValidateInteger function.

Implementing Software Solutions 277

Software Design and Development – The Preliminary Course

DOCUMENTATION FOR USERS

Most forms of user documentation are designed to teach users about the operation of
some aspect of the software product. Possible user documentation includes installation
guides, user manuals, reference manuals and tutorials. Traditionally these have been
provided in printed form. It is now more common for these to be stored and accessed
electronically. In many cases, they are linked to the application’s online help system.
This allows users to quickly access help information relevant to the area in which they
are currently working.

The provision of online help is part of building a software solution in a programming
language. Many languages provide various facilities to assist programmers with this
task. Let us consider types of online help and how it can be included within the source
code of projects.

Online help
Most commercial applications provide online help. Online help is provided as an
integral part of these applications. The major advantage of online help compared to
printed documentation is that it can be context sensitive. The user is presented with
help associated with the task currently being completed.
Online help can be provided in a number of ways.
Most GUI operating systems provide applications
that automate the display of help topics. They also
specify standards for help systems to encourage
consistency between applications and the operating
system. Utilising such facilities means that users
are likely to be familiar with the format and
functionality available within the help system.
The major help system for most applications is like
an online reference and user manual combined into
one. Reference manuals contain items in
alphabetical order whereas user manuals generally
are arranged in a logical sequence of topics. Online
systems allow these manuals to be combined into
one. The contents view displaying like a user manual and the
index being used like a reference manual. Many applications
also include online tutorials and wizards to lead and teach users
new or unfamiliar tasks.
Another common type of help is the use of tool tips and what’s
this or balloon help. Tool tips are small windows containing a
brief description of the current screen element. These windows
popup when the user holds the mouse pointer over a screen
element for longer than a second. Once the user moves the mouse pointer off the
element the window closes. Balloon and What’s this help requires the user to actively
select the option Once selected, the user can click on elements and a short description
of the function of the element is displayed.

GROUP TASK Activity
Examine a number of applications installed on your school or home
computer. What forms of printed and electronic documentation is
provided with these products?

Fig 5.55
Tool tips provide brief
descriptions of screen

elements.

Fig 5.54
A help screen from Winfax Pro

showing contents and index options.

278 Chapter 5

Software Design and Development –The Preliminary Course

Consider the flowchart algorithm for a subroutine:

(a) (i) What is the purpose of the algorithm?

(ii) Suggest more meaningful names for each of
the identifiers A, B, C, D and E.

(b) The use of meaningful variable names is one
feature that improves the maintainability of source
code. Identify and describe THREE other features
that improve the maintainability of source code.

Suggested Solutions

(a) (i) The algorithm calculates and displays the
average of all elements indexed from 1 to
1000 within the array D.

 (ii) A – CalcAverage, B – Count, C – Sum, D –
arrNumbers, E – Average.

(b) Use of white space to visually split different
logical blocks of code. This greatly improves
readability for future programmers.

Comments in code to explain what the code does.
This makes understanding the code simpler for
future maintenance programmers. Comments
should also be added to indicate when and who
made changes.

Indent statements within control structures to visually separate them from the
control structure statements. This greatly simplifies understanding of the source
code as programmers can see the overall logic at a glance.

Always using standard sequence, selection and iteration control structures. This
makes the code much easier to follow and understand. If unconditional jumps and
other non-standard structures are used then following the logic becomes difficult.
Standard control structures allow maintenance programmers to more easily
comprehend the logic.

Each subroutine should solve a single well defined problem within the larger
problem. When modifying and testing a program it is much easier to comprehend
the processing when a single well defined task is accomplished within each
subroutine.

GROUP TASK Activity
Examine the tools available to assist in the provision of online help within
a programming environment with which you are familiar. Try them out!

HSC style question:

BEGIN A

END A

B = 0
C = 0

B = B + 1

C = C + D(B)

E = C/B

Display E

Yes

No
B < 1000

Implementing Software Solutions 279

Software Design and Development – The Preliminary Course

CHAPTER 5 REVIEW
1. Which debugging tool causes execution

to halt after each line of code has been
executed?
(A) Watch expressions.
(B) Breakpoints.
(C) Single line stepping.
(D) Stubs.

2. Of the four forms of documentation
listed below, which is considered to be
internal documentation?
(A) Tutorial.
(B) Installation guide.
(C) Online help.
(D) Comments within the source code.

3. Of the metalanguages referred to in this
text, which one requires an element to
be included twice if it is required one or
more times?
(A) Both EBNF and railroad diagrams.
(B) EBNF.
(C) Railroad diagrams.
(D) None of the above.

4. A mathematical calculation that cannot
be evaluated, will most likely result in
which kind of error(s)?
(A) Runtime error.
(B) Lexical error.
(C) Syntax error.
(D) All of the above.

5. Dataflow diagrams, IPO charts and
structure charts are all forms of
documentation for whom?
(A) The developers.
(B) The users.
(C) Future maintenance programmers.
(D) Both (A) and (C).

6. Identifier names that describe their
purpose are often referred to as what
type of documentation?
(A) Source code documentation.
(B) Internal documentation.
(C) Intrinsic documentation.
(D) Reference manual documentation.

7. With regards to the EBNF
metalanguage, what is used to indicate
the selection control structure?
(A) A vertical line.
(B) A horizontal line.
(C) A double quote.
(D) Square brackets.

8. Which form of user documentation is
usually arranged in alphabetical order?
(A) User manual.
(B) Tutorial.
(C) Reference guide.
(D) Installation manual.

9. With regards to railroad diagram
construction for this course, the
selection control structure is represented
how?
(A) Using a series of branches.
(B) Using flowlines.
(C) Using rectangles.
(D) Using circles.

10. An online wizard is what form of
documentation?
(A) User documentation.
(B) Internal documentation
(C) Intrinsic documentation.
(D) Source code documentation.

11. Create an EBNF production and also a railroad diagram to describe the syntax of the
pseudocode CASEWHERE structure.

12. Explain the steps required to use a record data structure within a program.

13. Explain how stubs, flags and debugging output statements, can assist with correcting errors
in code.

14. What qualities are necessary in a code module if it is to be included within a library of code?

15. List and briefly describe as many types of documentation as you can. Indicate items designed for
users and items designed for developers.

280 Chapter 6

Software Design and Development –The Preliminary Course

 In this chapter you will learn to:
• determine the expected result given test data

• compare the actual output from a piece of code with
the expected output from test data to detect logic
errors

• create a set of appropriate test data and use it to
verify the logic in a solution

• perform a desk check by producing a table showing
the changes to the content of variables as the
algorithm or code is stepped through manually

• critically evaluate their work and that of their peers

• share good aspects of their solutions and the
solutions of others

Which will make you more able to:
• identify the issues relating to the use of software

solutions

• investigate a structured approach in the design and
implementation of a software solution

• use and justify the need for appropriate project
management techniques

• use and develop documentation to communicate
software solutions to others

• describe the skills involved in software development

• communicate with appropriate personnel throughout
the software development process

• design and construct software solutions with
appropriate interfaces

In this chapter you will learn about:
Testing the solution

• the selection of appropriate test data, including:
– data that test all the pathways through the algorithm
– data that test boundary conditions ‘at’, ‘above’ and

‘below’ values upon which decisions are based
– data where the required answer is known
– data which is outside the expected values

• the need for thorough test data

• testing both algorithms and coded solutions with test data
such as:
– desk checking an algorithm
– stepping through a coded solution line by line

• peer checking

• structured walk through

Evaluating the solution

• comparing different solutions to the same problem
– different interpretations of the design specifications
– the advantages and disadvantages of different approaches

to a solution

• checking the solution to see if it meets the original design
specifications

• the importance and use of user feedback

• the importance of checking that social and ethical
perspectives have been appropriately addressed

Testing and Evaluating Software Solutions 281

Software Design and Development – The Preliminary Course

 6
TESTING AND EVALUATING

 SOFTWARE SOLUTIONS

The testing and evaluation of software solutions occurs throughout the software
development cycle. Design specifications are checked against requirements,
algorithms are tested for correctness and efficiency, source code is tested as it is
created and the final product is tested in a variety of live environments. These are just
some of the aspects of testing and evaluating software prior to its release. We have
already examined a number of techniques used for testing and evaluating software as
it is developed. In this chapter, we formalise these and introduce a number of others.
Software products undergo formal system testing prior to their distribution and
installation. This testing occurs after the product has been coded. For large
commercial products, specialist teams dedicated to the testing process undertake
system testing. Its purpose is to ensure the software performs its functions correctly
and achieves its objectives under real conditions. System-level testing involves the
use of large file sizes, different types of transactions, large volumes of data as well as
checking the interface between the product and other software and hardware. It aims
to detect errors and problems rather than to identify their source and correct them.
System-level testing uses black box testing techniques. The inputs are compared to the
expected outputs with no detailed knowledge of the
processing. Errors and problems found would be
sent back to the developers for correction. In the
HSC course, we examine system-level testing in
detail.
In the preliminary course, we restrict our discussion
to testing and evaluating the software itself rather
than the total system. The remainder of this chapter
is concerned with checking algorithms and source
code - testing they work correctly and efficiently
and evaluating them to ensure they meet the original
design specifications. We are interested in not just
detecting errors but in identifying their cause which
allows us to correct them. Therefore, we use white box testing techniques. White box
testing involves examining the detail of each process as it occurs. To accomplish these
tests first requires the creation of appropriate and thorough test data. The test data is
then used to verify the logic of the solution. We then discuss methods for evaluating
the design of software solutions. What are the advantages and disadvantages of
different interpretations and approaches used as part of the solution? Finally, we
discuss the need to evaluate the implemented solution against the original design
specifications. This includes user feedback and consideration of social and ethical
issues.

GROUP TASK Discussion
Why do you think black box techniques are used for system-level testing
and white box techniques for algorithm and source code testing? Discuss.

Fig .1
Crucial questions when testing and

evaluating software solutions.

282 Chapter 6

Software Design and Development –The Preliminary Course

TEST DATA FOR CHECKING ALGORITHMS AND CODE
Test data is made up of sets of inputs. Each test data set is input into either the
algorithm or the coded solution and the processing and outputs are observed.
Remember in this chapter we are concerned with checking algorithms and code rather
than system-level issues. Therefore the creation of test data sets, aims to ensure that
all processes are thoroughly checked and verified. To do this efficiently requires an
intimate knowledge of the underlying logic within the algorithm or code. The test data
should be thorough but it should also be efficient. There is little point including
multiple test data sets that check identical scenarios. Similarly, it is more efficient to
choose test data where the expected outputs are available or can be readily calculated.
As we are interested in checking the logic of algorithms and source code, each set of
test data will be designed to check some particular processing scenario. To do this
effectively requires that we know the expected outputs for each test data set. Also
there should be a reason for the inclusion of each test data set; each set should have a
purpose The results of our tests can then be compared with the expected results.
Inconsistencies between the actual and expected outputs highlighting errors for further
examination. As the purpose of the test data causing the error is known then
identifying the source of the error is simplified.

Consider the following:

Parramatta Education Centre develops and distributes a software product for
estimating ATARs. The ATAR Estimator uses statistics from the previous five HSC
examinations to calculate these estimates. If a set of courses and HSC marks is
entered then the software calculates the ATAR a student who achieved those results
would have attained in each of the five preceding years. The theory being that if there
is little difference between each
of these five results it is unlikely
the ATAR would change
significantly for the current year.
To verify the correctness of the
product a large number of test
data sets are required. These data
sets are provided voluntarily to
Parramatta Education Centre
anonymously by a number of
schools. Unfortunately schools
are not informed of the ATARs
their students achieve. However
many schools contact students to
obtain their ATAR.

GROUP TASK Discussion
Describe the nature of the test data sets and expected outcomes used to
test this product. The expected outcomes for each set of data are not
always accurate particularly for lower UAIs. Explain why this may be the
case? What effects could this have on the testing process? How could
these effects be minimised?

Fig 6.2
Screen from the UAI/ATAR Estimator Version 13.0

developed by Parramatta Education Centre.

Testing and Evaluating Software Solutions 283

Software Design and Development – The Preliminary Course

THE SELECTION OF APPROPRIATE TEST DATA
Test data sets should be selected to test different processing scenarios. These different
scenarios are designed to ensure every statement is executed (statement coverage
testing) and every boundary condition is tested (decision coverage testing).
Furthermore, the order in which statements are executed will affect the processing
therefore every path through the algorithm or code must be executed by our test data
if we are to be sure of its correctness; this is known as path coverage testing. Of
course we must also know the expected output for each set of test data if we are to
accurately assess the results of our analysis.
Statement, decision and path coverage tests are not mutually exclusive, in fact path
coverage testing always includes statement coverage testing. For this reason we need
not consider statement coverage testing in detail. Be aware that it is used to
significantly reduce the number of test cases; albeit with reduced effectiveness.
Actually statement coverage tests are more often used to find code that can never be
executed rather than to test the code’s correctness. Many large software products that
have been revised over numerous years can contain large amounts of redundant code.
Let us now consider path and decision coverage testing in more detail:

Testing all pathways through the algorithm or code
To be confident about the correctness of our code requires
testing each and every possible execution path. This process is
known as path coverage testing. It requires a unique set of test
data for each possible path; Fig 6.3 shows a single path
through a typical algorithm. Each binary selection statement
creates two possible paths; if our code contains two binary
selection statements we would have a maximum of four
possible paths. A module of code containing five binary
selections would have a maximum of thirty two paths. The
number of test data sets required increases exponentially for
each extra condition within the code. At first glance we would
say it doubles for each extra condition; however nested control
structures reduce this situation somewhat. For example a
binary selection containing one other nested binary selection
actually has three possible paths rather than four.
Even in small software products the number of paths can soon
run into the hundreds or even thousands. Large products can
often require millions of sets of test data. Repetition structures
often have an unknown number of paths so in reality the
number would be far greater than even this! Fortunately, there
are testing CASE tools available to assist when creating test
data and checking code. When checking algorithms the situation is more difficult.
Compromises are often made to reduce the number of test data sets required. The best
way to reduce the total number of pathways is to test each subroutine independently.
If subroutines have been written as self contained units then each can be tested in the
knowledge that it does not effect the processing within other subroutines. The top-
down design of the program can be used as a template when designing testing
procedures. Bottom-up testing involves testing the lowest level subroutines first and
progressively working upwards to the main program. A small driver routine is created
to call the subroutine currently being tested. Top-down testing commences with the

Fig 6.3
The grey line indicates a

single execution path
through this algorithm.

284 Chapter 6

Software Design and Development –The Preliminary Course

main program and works down through the hierarchy to the lowest level modules. A
stub is required to take the place of each lower level subroutine.
It is normal practice to check post-test iterations using data that causes the body to
execute once and more than once. For pre-test repetition, data should be included to
cause the body of the loop to execute zero and more than zero times.

Testing boundary conditions
Selection and repetition control structures use the results of conditions to determine
their actions. These conditions, if incorrect, are likely to result in major errors. For
this reason all conditions require close examination during testing. We should ensure
each condition is checked using test data above, below and equal to any values upon
which decisions are based. This is known as decision coverage testing. For example,
the condition Counter < 2 should be tested using a value greater than 2, less than 2 and
equal to two.
The situation becomes more complicated as the complexity of the condition increases.
Many conditions contain logical or and and operators and others are based on values
that are calculated by previous processes. In these cases, it is often appropriate to test
the condition in isolation from the rest of the algorithm or code. Once its correctness
has been established it can be included in the code with confidence.
Fortunately, the sets of test data designed to check each pathway through the
algorithm will also check the upper and lower values of each condition. This leaves
the task of testing the precise values on which decisions rest. Additional test data sets
should be added to the path coverage data sets to ensure this occurs.

Consider the following:

In chapter 5, we developed a function for validating integers; the algorithm is
reproduced below in Fig 6.4. Let us develop a set of test data that performs both path
and decision coverage testing of this algorithm. Remember we are testing the
algorithm for correctness, this does not ensure it meets the original design
specifications nor does it ensure it operates efficiently. Later in this chapter, we
examine methods for evaluating these issues.
There are four inputs into this function; InputString, Min, Max and Default and a single
output; ValidateInteger. Each test data set therefore requires four values together with
a single expected output. The documentation detailing our test data sets should also
include a reason for each set’s inclusion.
The algorithm contains a single repetition and two binary selection statements. Three
conditions in all, so there will be a maximum of eight (23) possible execution paths to
test. Because of the repetition, it is possible for a single set of test data to check more
than one path so it is likely that less than eight sets of test data will be needed to
perform our path coverage tests.

GROUP TASK Discussion
The flowchart above in Fig 6.3 contains three binary selections and two
repetition control structures. Identify each of these control structures.
Determine the number of execution paths through this algorithm.

Testing and Evaluating Software Solutions 285

Software Design and Development – The Preliminary Course

Let us examine each of the eight paths and determine which should be possible and
which should not be possible:

 Loop
condition
(initially)

First
selection
condition

Second
selection
condition

Should this path be possible?

1 True True True Yes. Should occur when InputString contains sets of digits
that are outside the Min to Max range.

2 True True False Yes. This is the most common occurrence. The InputString
contains digits within the range.

3 True False Tue Yes. Should occur when InputString contains no valid digits.

4 True False False No. If no valid digits are within the input string then
StringInteger should be empty.

5 False True True
Yes. However, the first selection is irrelevant as the body of
the loop is not executed at all (this is also the case for the
remaining paths). This occurs when InputString is Null.

6 False True False No. If InputString is Null then StringInteger should be empty.
Errors in this regard would be picked up by case 5 above.

7 False False True Logically the same as path 5.

8 False False False Logically the sameas path 6.

Examining the above table reveals that we have six possible paths, namely paths 1, 2,
3, 4, 5 and 6. However, only four of these six paths should ever be executed if our
algorithm operates correctly. Paths 3 and 4 both require similar inputs containing no
valid digits and paths 5 and 6 both require InputString to be Null. We therefore require
four sets of test data to perform our path coverage test.

Possible test data to cover these paths could be:

Test data Expected output

Reason for inclusion
InputString Min Max Default ValidInt

9a3 0 10 -1 -1 Digits are outside the Min to Ma range. (Path 1)

9a3 0 100 -1 93 Digits are within the Min to Max range. (Path 2)

abc 0 10 -1 -1 No valid digits in InputStrig. (Paths 3 ad 4).

Null 0 10 -1 -1 No loop iterations. (Paths 5 to 8)

Fig 6.4
Pseudocode for the integer validation problem.

BEGIN ValidateInteger(InputString,Min,Max,Default)
WHILE more characters in InputString
 IF current character is a digit THEN

286 Chapter 6

Software Design and Development –The Preliminary Course

We now have test data to perform path coverage testing. Let us now consider the
creation of further test data to perform decision coverage testing. There are three
decisions to consider - the loop’s terminating condition and the two conditions within
the binary selection statements.
• Loop condition- there are only two possibilities here. Either there are more

characters or there are not. Our existing test data includes both these possibilities.
• First selection condition- characters are either digits or they are not digits. Again,

our existing test data contains characters that are and characters that are not digits.
• Second selection condition- expanding this condition yields three sub conditions.

We do not currently have test data for each of these conditions.
As our existing test data covers the loop and first selection condition we need only
consider the second selection condition in detail. This condition contains four
identifiers - StringInteger, ValidInt, Min and Max. The first sub-condition, StringInteger
is empty, requires a specific single value to evaluate to true. The second part of the
condition is more involved; the value held in
ValidInt must not lie within the range Min to Max,
in other words, it must be outside this range. The
most likely mathematical interpretation of this
being ValidInt must be less than Min or greater than
Max.
We can use a decision tree to graphically depict
this second selection condition (see Fig 6.5). The
tree shows four possible methods of obtaining a
result – three of these results being True and one
being False. We need to design test data for each
of these branches as well as data that matches the
precise values within the condition.
We already have test data that should result in
St ingInteger being empty (InputString set to Null or abc) and not empty (InputString
set to 9a3). We also have test data that results in ValidInt being greater than Max
(InputString set to 9a3 when Min is 0 and Max is 10) and ValidInt lying between Min
and Max (InputString set to 9a3 when Min is 0 and Max is 100). We require a test data
set to check when ValidInt is less than Min; say InputString set to 9a3 when Min is set to
100 and Max is set to 200.
We also require test data sets to check the precise values within the condition.
St ingInteger equal to empty has already been dealt with; we require test data to check
when ValidInt is equal to Min and again when it is equal to Max. We could use an
InputString of 9a3 with Min being 93 and Max being 100 to ensure the Min part of the
condition is correct. In addition, we could use an InputString of 9a3 with Min being 0
and Max being 93 to ensure the Max part of the condition is correct.

StringInteger is empty

ValidInt > Max

ValidInt < Min True

T F

T F

T F

True

True False

Fig 6.5
Decision tree for the second

selection condition.

GROUP TASK Activity
Copy and complete the test data table from the previous page so it
includes the extra decision coverage test data. Expand the reason for
inclusion column to include decision coverage test reasons.

GROUP TASK Discussion
The test data created above will not detect all errors. What type of errors
will not be detected? Discuss.

Testing and Evaluating Software Solutions 287

Software Design and Development – The Preliminary Course

TESTING ALGORITHMS AND CODED SOLUTIONS USING TEST DATA
Once a thorough series of test data has been created it needs to be used to check the
correctness of the algorithm or code. Each test data set is used as the inputs into the
code. The results from the tests are then compared to the expected results. Any
inconsistencies arising indicate errors that require further investigation. In many
cases, errors are highlighted during the testing process. These errors can be corrected
immediately and the full set of tests recommenced. For large projects where testing is
undertaken by specialists, a test report would be returned to the developers who in
turn make the corrections. This process cycle continues until the test results confirm
the code’s correctness.
If we are checking an algorithm then a manual desk check is performed. For coded
solutions, most programming environments allow developers to step through each line
of code as it is executed. This is essentially an automated desk check. Let us consider
each of these techniques.

Desk checking an algorithm

Desk checking is a manual process. As the name suggests it is carried out using pen
and paper sitting, presumably, at a desk. Each statement in the algorithm is evaluated
by hand and the results written on a table. The table contains a column for each
identifier used within the algorithm. As the value in an identifier changes the new
value is written beneath the previous value. In this way, a full record of all the
changes that have occurred is maintained.

Usually values altered within a single iteration are written on a single row. This assists
reading back through the table should an error occur. Often a repetition will contain a
large number of iterations, this can become tedious. It is acceptable to detail the first
few iterations and then skip forward to consider the last few iterations as in the large
majority of cases errors will occur at the start or end of loops. A horizontal line is
drawn once the end of the algorithm is reached and prior to the next set of test data
being applied to a new desk check.

Data types such as arrays and records require special consideration. The elements of
an array can be given their own column if this is practical. It is also possible to have a
column for the array index beside the array’s identifier column. This technique makes
it possible to determine which element of the array is being accessed, however it is
difficult to see the changes occurring to particular elements.

Each record requires a separate column for each of its fields. This can become tedious
when a number of records with a number of fields are being used. It is acceptable to
just detail the values held in the fields relevant to the processing occurring. For
example, the desk check of an algorithm that calculates statistics based on employees
sick days need not detail the employee’s name, phone number or other details, rather
it can just detail the field containing each employee’s number of sick days.

GROUP TASK Activity
The testing process is cyclical. The code is checked using the test data then
any errors are corrected. The code is again tested and further corrected.
The cycle continues until no errors are detected. Create a flowchart that
describes this cycle.

288 Chapter 6

Software Design and Development –The Preliminary Course

Consider the following:

Let us complete a desk check of the ValidateInteger algorithm (see Fig 6.4) using the
path coverage test data created in the previous section. There are six identifiers used
explicitly in the algorithm, however the current character being examined is implicit
within the logic so we have seven in total. In this case, the output is via the
ValidateInteger function call – ValidInt is returned by the function call. A message
box is displayed when an error is detected. Therefore, our desk check table requires
seven columns for identifiers and an
output column for the message box.
Remember, we are desk checking an
algorithm so it is the correctness of
the logic that is being examined
rather than the fine details required
within the source code. Fig 66
shows the result of the desk check
performed using the four test data
sets created to perform the path
coverage tests.

Stepping through a coded solution
Most programming environments
(IDEs) provide a method of stepping
line-by-line through code. This allows
programmers to examine the contents
of identifiers and follow the execution
path precisely. Stepping through a
coded solution is essentially an
automated desk check of the code.
Most IDEs provide a window where the
current contents of each identifier is
shown and updated as execution
progresses. It is usually possible to alter
the value of identifiers and even make
corrections to the code before execution
is recommenced.

Fig 6.6
Sample desk check of the ValidateInteger algorithm.

GROUP TASK Discussion
A problem occurs when InputString is Null. Identify the cause of the
problem and suggest a solution.

GROUP TASK Activity
The table in Fig 6.6 uses the path coverage test data. Complete the desk
check using the decision coverage test data.

GROUP TASK Activity
Examine the stepping tools available in a programming environment with
which you are familiar. Use these tools to step through a coded solution.

Fig 6.7
Stepping through the ValidateInteger function in

Visual Basic .NET. The ‘Locals’ window shows the
current value of each identifier.

Testing and Evaluating Software Solutions 289

Software Design and Development – The Preliminary Course

The following algorithm rotates the names within an array of 5 names so that each
name moves up one place and the first name becomes the new last name.

BEGIN RotateArray
 Index = 0
 First = Name(0)
 WHILE Index < 4
 Name(Index) = Name(Index+1)
 Increment Index
 ENDWHILE
 Name(4) = First
END RotateArray

(a) Complete a desk check of the above RotateArray algorithm assuming the data
shown in the first row of the table below has already been loaded into the array.

ndex First Name(0) Name(1) Name(2) Name(3) Name(4)
 Fred Mary John Amy Ann

(b) Modify the RotateArray algorithm so that it operates with any size array and is
also able to rotate elements by a variable number of places.

Your modified algorithm is to use two parameters - Size and Rotation. For
example, the call RotateArray(100, 6) means the array contains 100 elements that
will be rotated such that all elements move up 6 places. Assume the Name array
has been declared globally and is indexed from 0 to Size - 1.

Suggested Solutions

(a) ndex First Name(0) Name(1) Name(2) Name(3) Name(4)

 Fred Mary John Amy Ann
 0 Fred Mary
 1 John
 2 Amy
 3 Ann
 4
 Fred

HSC style question:

290 Chapter 6

Software Design and Development –The Preliminary Course

(b) It is anticipated that each of the following solutions would be awarded full marks.
The following solution improves the efficiency of the processing as it moves
items directly into their final location in the array, however it does not deal with
negative Rotation values or Rotation values greater than the size of the array.

BEGIN RotateArray(Size, Rotation)
 Declare TempArray(0 to Rotation): String
 FOR index = 0 to Rotation – 1
 TempArray(index) = Name(index)
 NEXT index
 FOR index = 0 to (Size – Rotation – 1)
 Name(index) = Name(index + Rotation)
 NEXT index
 Count = 0
 FOR index = (Size – Rotation) to (Size – 1)
 Name(index) = TempArray(count)
 Increment count
 NEXT index
END RotateArray

OR…

The following solution deals with negative Rotation values and Rotation values
greater than the Size of the array. For example, the call RotateArray(10,-16) first
converts –16 into the equivalent Rotation value of 4, as 10 + -16 MOD 10 = 10 –
6 = 4. The actual rotation processing is less efficient (compared to the previous
solution) as it moves items up one place at a time using the same strategy as the
original algorithm - essentially a loop has been placed around the original
algorithm.

BEGIN RotateArray(Size, Rotation)
 IF Rotation < 0 THEN
 Rotation = Size + Rotation MOD Size
 ELSE
 Rotation = Rotation MOD Size
 ENDIF
 FOR Count = 1 TO Rotation
 Index = 0
 First = Name(0)
 WHILE Index < Size - 1
 Name(Index) = Name(Index+1)
 Increment Index
 ENDWHILE
 Name(Size - 1) = First
 NEXT Count
END RotateArray

OR…

An even better solution could combine the features of both the above solutions
and might also include initial checks to ensure/convert the inputs into integers.

Note:
Rotation MOD Size
is equivalent to
Rotation – (INT(Rotation/Size)*Size)

GROUP TASK Activity
Perform desk checks of the above solutions to part (b) to confirm that
they correctly perform the required processing.

Testing and Evaluating Software Solutions 291

Software Design and Development – The Preliminary Course

SET 6A
1. Test data is comprised of:

(A) a set of outputs.
(B) a set of inputs.
(C) a set of both inputs and outputs.
(D) different algorithms.

2. When each statement in an algorithm is
evaluated by hand and results written
into a table, this is known as what?
(A) Peer checking.
(B) Stepping through.
(C) Desk checking.
(D) Structured walk through.

3. Which type of testing primarily uses
white box techniques?
(A) System-level testing.
(B) Source code testing.
(C) Algorithm testing.
(D) Both (B) and (C).

4. The type of testing which tests the order
in which statements are executed is
known as:
(A) Statement coverage testing.
(B) Path coverage testing.
(C) Decision coverage testing.
(D) Black box testing.

5. When performing a desk check on an
algorithm, what is commonly used to
indicate that the end of the algorithm has
been reached?
(A) A horizontal line.
(B) The tester’s signature.
(C) A special identifier.
(D) Whatever the tester feels like.

6. What is the name of the testing that tests
every boundary condition?
(A) Statement coverage testing.
(B) Decision coverage testing.
(C) Path coverage testing.
(D) Control structure testing.

7. Which type of testing primarily uses
black box techniques?
(A) System-level testing.
(B) Algorithm testing.
(C) Source code testing.
(D) All types of testing.

8. The testing that ensures that every
statement is executed is known as:
(A) Statement coverage testing.
(B) Path coverage testing.
(C) Decision coverage testing.
(D) System-level testing.

9. A graphical depiction of the possible
outcomes of a condition is known as:
(A) an execution path.
(B) a boundary tree.
(C) a desk check.
(D) a decision tree.

10. The examination of the detail of each
process as it occurs is characteristic of:
(A) Black box testing.
(B) White box testing.
(C) System-level testing.
(D) Statement coverage testing.

11. Describe the purpose of statement coverage, path coverage and decision coverage testing.
Why are these described as white box testing techniques?

12. Draw a decision tree for the condition: A<0 AND (B=5 OR C>2)
Design test data for this condition.

292 Chapter 6

Software Design and Development –The Preliminary Course

The following algorithm has been written to control the temperature of an oven. Use this
algorithm to answer questions 13, 14, and 15.

13. How many unique paths are there through this algorithm?

14. Design a set of test data to perform path and decision coverage testing.

15. Perform desk checks of the algorithm using your test data.

BEGIN ControlTemp
 Get Temp
 REPEAT
 Get CurrentTemp from Sensor
 IF CurrentTemp ≥ Temp THEN
 Turnoff heat element
 ELSE
 IF CurrentTemp < Temp –5 THEN
 Turnon heat element
 ENDIF
 ENDIF
 Wait 1 minute
 UNTIL Power is turned off

END ControlTemp

Testing and Evaluating Software Solutions 293

Software Design and Development – The Preliminary Course

EVALUATING THE SOLUTION
There are many different ways of interpreting and approaching the design of software
solution. Most problems can be solved in various ways using different strategies;
some approaches are better than others. We need to compare these differences and
evaluate their advantages and disadvantages. We then examine a number of
techniques available to assist in this evaluation process.

COMPARING DIFFERENT SOLUTIONS TO THE SAME PROBLEM

In this section, we concentrate on comparing different algorithms and source code
solutions that aim to solve the same problem. Design specifications can be interpreted
in a variety of ways by different developers. Algorithms and source code created to
solve the same problem will differ according to the approach used by the particular
developer. We need to examine the advantages and disadvantages of different
solutions.

Different interpretations of the design specifications

Design specifications aim to formalise the
requirements that must be fulfilled. However,
different developers will interpret these specifications
in different ways. For example, consider the design of
a bridge: different structural engineers are likely to
create quite different bridge designs. Each design
may equally fulfil the design specifications; it is the
manner in which these specifications have been
interpreted and implemented that is different. The
Sydney Harbour and Golden Gate bridges both fulfil
similar design specifications yet these specifications
have been interpreted in quite different ways.

Software development involves many creative
aspects. This is particularly obvious in regard to the
design of the user interface, however it is also true for
algorithm and source code development. It is natural
for different people to interpret the same
specifications in different ways. For example, the
design specifications for a module may require the
input of a date by the user. The date could be collected as a complete string or it could
be collected in pieces as year, month and day. In the first case, the entire string must
be validated and in the second case, each component would be validated once entered.
Both interpretations fulfil the design specifications in different ways.

Fig 6.8
The Sydney Harbour and Golden

Gate bridges are examples of
different interpretations of design

specifications.

GROUP TASK Activity
Examine a number of different word processors. Make a list of functions
that appear to fulfil the same design specifications but have been
interpreted differently. Indicate which interpretation you preferred and
state why you preferred this interpretation.

294 Chapter 6

Software Design and Development –The Preliminary Course

Advantages and disadvantages of different approaches to reaching the solution

Even if the design specifications are interpreted in the same way, it is likely that
different developers will create quite different solutions. Most problems can be solved
in an almost infinite number of ways. In this section, we are concerned with
evaluating what makes one approach better than another when each approach solves
the problem.

We are interested in assessing the elegance and efficiency of different solutions.
Elegance is a somewhat subjective term. It refers to solutions that are superior,
cleverer or more refined. Elegant solutions will also be more readable, both in terms
of the code itself and its related documentation. Unfortunately, there are no hard and
fast rules; each approach needs to be critically examined, however a number of
guiding questions may assist in this process:

• Is it a generic solution? Generic solutions are easier to modify if specifications
change in the future Furthermore, they are easier to reuse as part of other
applications.

• Can it be understood? Algorithms and code that are difficult to understand will be
difficult to test and maintain. The code itself should be understandable but it
should also be suitably documented.

• Is it efficient? Inefficient solutions require more processing resources and thus
execute more slowly. Solutions should solve the problem in the best possible way.

• Is it self-contained? The solution should solve the problem without affecting other
code. As a consequence, testing and reusing the module will be easier.

Consider the following:

Currently the Higher School Certificate uses performance bands as an indication of
the level of achievement attained in each course. HSC examinations are marked in
such a way that a specific range of marks relates to a particular performance band.
There are six performance bands for each course; band 1 being the lowest level of
achievement and band 6 being the highest.

A school is currently updating its reports to include
performance bands. The reporting software is written in
Microsoft Access using Visual Basic for Applications. A
function is under development that converts the HSC
mark achieved in a course to its respective performance
band according to the table shown in Fig 6.9. The
function takes the mark and unit value of the course and
returns the corresponding performance band.

HSC mark
(out of 100)

Performance
band

0 – 49 1
50 – 59 2
60 – 69 3
70 – 79 4
80 – 89 5

90 – 100 6

Fig 6.9
Table for converting HSC marks

to performance bands.

GROUP TASK Discussion
Surely, any solution that fulfils all its design specifications is an excellent
solution. There really is no point analysing and evaluating such a solution
any further.
Do you agree? Discuss.

Testing and Evaluating Software Solutions 295

Software Design and Development – The Preliminary Course

Ted, Mary and Alice are students in the school’s software design and development
class. Each has created a function that achieves the specifications. Their solutions are
reproduced below:

 Public Function PerfBand(Mark As Integer, Unit As Integer) As Integer
Dim PMark As Integer, Band As Integer
PMark = Mark *2 / Unit
If PMark < 50 Then
 Band = 1
ElseIf PMark < 60 Then
 Band = 2
ElseIf PMark < 70 Then
 Band = 3
ElseIf PMark < 80 Then
 Band = 4
ElseIf PMark < 90 Then
 Band = 5
Else
 Band = 6
End If
PerfBand = Band
End Function

Public Function PerfBand(Mark As Integer, UnitValue As Integer) As Integer
Dim Percent As Integer, Band As Integer
'Convert to a mark out of 100
Percent = Mark / (UnitValue * 50) * 100
'Convert to a performance band
Select Case Percent
 Case Is >= 90: Band = 6
 Case Is >= 80: Band = 5
 Case Is >= 70: Band = 4
 Case Is >= 60: Band = 3
 Case Is >= 50: Band = 2
 Case Is >= 0: Band = 1
 Case Else: Band = 0
End Select
'Return performance band
PerfBand = Band
End Function

Public Function PerfBand(Mark As Variant, Unit As Variant) As Integer
On Error GoTo InputError
'Calculate performance band
PerfBand = Int(((Mark * 2 / Unit) - 30) / 10)
'Above line can result in -3 to 0. These should all be 1.
If PerfBand < 1 Then PerfBand = 1
'Also full marks results in a band 7. This should be 6.
If PerfBand > 6 Then PerfBand = 6
Exit Function
'Return a zero for all problems encountered
InputError:
PerfBand = 0
End Function

GROUP TASK Discussion
Make up a list of advantages and disadvantages apparent in each of the
above solutions. Whose solution should be used within the school’s report
package or should aspects of each solution be used? Discuss.

296 Chapter 6

Software Design and Development –The Preliminary Course

TECHNIQUES FOR EVALUATING DESIGN

How do we go about evaluating the design of a software solution? There are a number
of techniques available to assist in this process including peer checking, structured
walk throughs and desk checks. Although each of these techniques can be used to test
the correctness of algorithms and code, in this section we are concerned with ensuring
the code is well designed. These techniques include other interested parties in the
evaluation process. Often personnel who are somewhat removed from the detail of the
development process are better able to assess the design of a solution from an
unbiased perspective.
Peer checking

Peer checking is normally an informal process. Colleagues at the same level within
the company examine and comment on the work of their peers. A strong team
atmosphere is required if peer checking is to be successful. Colleagues should feel
able to make constructive criticisms without fear of their comments being seen as
negative. On the other hand, the developer should feel able to refute any criticisms
and to logically debate the merits of their work. This is the primary advantage of peer
checking; it enables and encourages the natural flow of ideas between members of the
development team. Structures where a superior
performs the checking do not encourage this
transfer of ideas; the superior often dominates
the process.

There are a number of ways in which peer
checking can be implemented. Some software
development companies have formal systems
in place whereby developers must check and
formally endorse the work of their peers. Most
companies encourage peer checking through
the creation of teams. The responsibility for the
completion of a module of code rests with the
team rather than with an individual. In this way, each team member has a
responsibility to ensure the quality of the team’s efforts. Consequently, peer checking
evolves as a natural consequence of team formation rather than as a structure imposed
from above.

Structured walk through

Structured walk throughs, as the name suggests, are more formal than peer checks.
The developer or team of developers present their work to a group of interested
parties. This group may include representatives from management, marketing and
potential users, with the aim being to present the software and formally work through
its functionality. The developers walk the group step-by-step through each aspect of
the program. As the walk through continues, comments are written down for future
consideration. No attempt is made to correct or justify aspects of the product; the aim
being to receive feedback on the product as it stands.

Fig 6.10
Peer checking is more successful when

developers work together as a team.

GROUP TASK Discussion
Some companies insist that peers check and endorse each other’s work
whilst others prefer to allow peer checking to be a more informal process.
What are the advantages and disadvantages of each approach? Discuss.

Testing and Evaluating Software Solutions 297

Software Design and Development – The Preliminary Course

Structured walk throughs are normally undertaken
as formal meetings. Each person in attendance at a
structured walk through should be given all
relevant documentation prior to the meeting. This
allows them to have an overall view and feel for
the product and its design. The walk through itself
should be a demonstration of the product and its
design. Comments can either be made verbally or
may be restricted to written comments. In either
case, a response to comments should not occur
during the walk through, rather at a later time
when they can be considered carefully.

Structured walk throughs can be used to evaluate the design at different levels. Their
aim is to explain in a structured manner the operation of some part of the design and
development process and to obtain feedback from interested parties. They may be
used to walk through an algorithm created for a specific module within a product or
they may be used to evaluate the final product once it has been implemented in code.
In fact, most aspects of the software design and development process can be evaluated
using structured walk throughs.

Desk checking

Previously in this chapter, we examined desk
checking as a technique for checking the
correctness of software solutions using test data.
Desk checking is also a useful technique for
evaluating the design of algorithms and code. The
process of manually working through a solution
one statement at a time is a sure way of realising
the efficiency and elegance of the solution. As a
consequence, recommendations and constructive
criticisms can be made in regard to the products
design.

Personnel, other than the code’s developer, would be the best people to perform desk
checks that aim to evaluate the design rather than the correctness of the solution.
These personnel require expertise in algorithm or code design if their evaluation is to
be relevant; the most likely candidates being other developers who possess the
technical skills but are not intimately involved in the products design. Because of the
intensive and detailed nature of desk checking they are best performed in isolation by
individuals.

Fig 6.11
Structured walk throughs are normally

undertaken as formal meetings.

Fig 6.12
Desk checks are generally completed

by individuals.

GROUP TASK Discussion
Why do you think comments and suggestions should be collected but not
responded to until after the walk through is complete? Surely it would be
better to discuss any issues during the walk through. Discuss.

GROUP TASK Discussion
Desk checks are normally undertaken by individuals whereas peer checks
and structured walk throughs often involve a number of personnel. Why
do you think this is the case? Discuss.

298 Chapter 6

Software Design and Development –The Preliminary Course

EVALUATION OF THE FINAL SOLUTION
The final solution in this context refers to the total software product once it has been
coded in some programming language. We are concerned with evaluating the
software against its original design specifications. Although the processes within the
product may operate correctly and be well designed, they may not achieve the
requirements or meet all the design specifications.
It is also important to obtain user feedback in regard to the operation of the software
as a whole. User feedback should be obtained and acted upon throughout the
development process, however it is particularly vital once the source code has been
completed. We also need to consider various social and ethical issues. For example,
can users alter the screen fonts and colours, can the product be used with or without a
pointing device, and is the language used consistent and appropriate for the intended
audience.
Remember, we are evaluating the software rather than the total system. We are
interesting in addressing issues within the source code that require modification prior
to the commencement of system-level testing.
CHECKING THE SOLUTION MEETS THE ORIGINAL REQUIREMENTS
The main aim of any new software solution is to meet its original requirements and
design specifications. Evaluating software against these specifications should be
integral to all aspects of the design and development process. However, it is an
essential task once the software has been implemented or built in a programming
language.
The original design specifications include requirements for the particular application
together with specifications in regard to documentation required, screen design and
code design. In essence, these specifications describe what the software should do
together with how it should be done. Evaluation of the design specifications will
therefore ensure the product realises its requirements and that those involved in the
design process have maintained standards in regard to how the requirements have
been achieved.
When defining and understanding the problem, a set of requirements was formulated.
These requirements should have been written in such a way that they could easily be
evaluated. For example, a requirement such as ‘overdue accounts are to be generated
every 7 days’ can easily be evaluated as being achieved or not achieved whereas
‘follow up is required for unpaid accounts’ is not specific and is therefore difficult to
evaluate Each requirement should be checked against the software to ensure it has
been included and achieved.
Design specifications in regard to the development process need to be evaluated to
ensure those involved have complied. Evaluation of documentation and checks that it
accurately reflects the product are needed. Similar analysis of the user interface and
the source code is required to make sure the developers have adhered to the stated
specifications. This should be a reflective process rather than a disciplinary one,
where the formation of recommendations for future projects is the main focus.

GROUP TASK Discussion
Evaluation of the implemented solution is from two different
perspectives. One examines the success of the actual project and the other
considers the success of the design and development process. Explain
each of these perspectives and describe how they differ.

Testing and Evaluating Software Solutions 299

Software Design and Development – The Preliminary Course

USER FEEDBACK

Software is written for users, if it does not meet their needs then it will not be a
success. Therefore, user feedback should always be valued and considered. Many
software products meet their requirements and design specifications, however they are
not well accepted by users. For example, consider the number of different photo
editing software products available; only a few are widely used. What makes one
product a commercial success and other similar products commercial failures is
largely to do with their acceptance by users. We discussed the development of user
interfaces in chapter 5; user feedback aims to evaluate the success of our decisions.

User feedback can be obtained using pre-release versions of the product. The users
selected should possess various levels of expertise dependant on the nature of the
product. Users should be encouraged to complete tasks using the new product and
evaluate its effectiveness in terms of their own needs.

The feedback from users can take a number of forms. Written questionnaires are
appropriate where specific items require evaluation, however they can restrict the
process unnecessarily to those items within the questionnaire. Informal observation is
often useful in determining the useability of the product. For example, evaluating a
user’s ability to intuitively activate and complete functions is clear during
observation. In chapter 5, we discussed a number of other techniques available to
obtain user feedback.

SOCIAL AND ETHICAL PERSPECTIVE

We are interested in evaluating the success of the software product from a social and
ethical perspective Some of these issues involve legal responsibility whereas others
should be considered to ensure the integrity of the product.

Some questions relevant to this social and ethical perspective include:

• Does the design of the software exclude some users?

• Is the product ergonomically sound?

• Does the product use code from other sources?

• Have the intellectual property rights of all involved been considered and upheld?

Questions such as these require attention and must be addressed during the evaluation
process. Software developers have a responsibility to ensure the answers to such
questions are addressed.

GROUP TASK Activity
In chapter 5, we examined the development of user interfaces. Revise this
section of chapter 5. With this information in mind, describe methods that
could be appropriately used to evaluate the success of the implemented
user interface.

GROUP TASK Activity/Discussion
Chapter 1 of this text dealt with social and ethical issues related to
software design and development. Expand on the four questions above
using information from chapter 1. Discuss your responses.

300 Chapter 6

Software Design and Development –The Preliminary Course

A wholesaler charges customers for their products based on a percentage increase on
the product’s cost price. Different customers are charged a different percentage
increase based on a variety of different factors. For example, large account customers
are charged a 20% increase whilst a retail customer who walks in off the street is
charged a 50% increase.

A subroutine is being developed to calculate the price charged to customers for each
type of product purchased. The routine has three inputs; the cost price for one of the
products, the number of units purchased and the percentage increase. The cost price is
always in cents, so a cost price of $2.35 is sent to the function as 235. The percentage
increase is also an integer, so a 20% increase is sent to the function as 20. The
subroutine returns the sell price in cents rounded down to the nearest cent. However,
-1 is to be returned if the sell price is not greater than the total cost price.

Jack and Jill have both written algorithms for this subroutine.

BEGIN CalcSellPrice(CostPrice, Units, PIncrease, SellPrice)
 IF CostPrice>0 AND Units>0 AND PIncrease>0 THEN
 SellPrice = INT(CostPrice * Units * (100 + PIncrease) / 100)
 ELSE
 SellPrice = -1
 ENDIF
END CalcSellPrice

BEGIN CalcSellPrice(CostPrice, Units, PIncrease, SellPrice)
 UnitIncrease = INT(CostPrice * PIncrease / 100)
 SellPrice = (CostPrice + UnitIncrease) * Units
 IF SellPrice <= CostPrice * Units THEN
 SellPrice = -1
 ENDIF
END CalcSellPrice

Note: The INT function rounds a number down to the nearest whole number.
For example, INT(3.7) returns 3 and INT(-3.7) returns -4

(a) Calculate the SellPrice returned by both algorithms from the call
CalcSellPrice(15, 100, 20, SellPrice)

(b) Calculate the SellPrice returned by both algorithms from the call
CalcSellPrice(8, 100, 20, SellPrice)

(c) The CalcSellPrice subroutine will be called many times from many routines within
the final program. Marg, who is Jack and Jill’s team leader, performs a peer
check of both algorithms. She prefers one algorithm over the other, however she
is uneasy with the value -1 being returned.

(i) Compare Jack and Jill’s algorithms and recommend one of the algorithms.

(ii) Explain why Marg is uneasy with the value -1 being returned by the
subroutine. Propose an alternative strategy to resolve Marg’s uneasiness.

Jack’s
algorithm

Jill’s
algorithm

HSC style question:

Testing and Evaluating Software Solutions 301

Software Design and Development – The Preliminary Course

Suggested Solutions

(a) Jack’s algorithm:
SellPrice = INT(15 * 100* 120) / 100 = 1800

Jill’s algorithm:
UnitIncrease = INT(15 * 20 / 100) = 3
SellPrice = (15 + 3) * 100 = 1800

(b) Jack’s algorithm:
SellPrice = INT(8 * 100* 120) / 100 = 960

Jill’s algorithm:
UnitIncrease = INT(8 * 20 / 100) = INT(1.6) = 1
SellPrice = (8 + 1) * 100 = 900

(c) (i) The two algorithms clearly take a different approach, and can produce
different values for the Selling Price even though they both appear to meet
the requirements given in the question.

There are a variety of valid differences, some of which include:

Jack’s algorithm checks for any zero (or lower) value before doing any
processing and exits immediately, whereas Jill’s approach performs the
calculations before checking for an unreasonable value. This wastes
processing time unnecessarily.

Jack’s algorithm takes the integer value of the result of the cost price by the
number of units by the percentage increase giving a higher value of the
selling price, whereas Jill’s algorithm takes the integer value of the
percentage increase times the cost price first (for one unit only), and then
applies this increase to the number of units. Hence, in Jill’s algorithm the
rounding down to the nearest cent occurs for each unit sold, whilst Jack
rounds the final total for all units down to the nearest cent. Jill’s algorithm
can therefore produce a lower resultant selling price. From the perspective of
the company, it is in their interest to have a higher selling price so they make
more profit.

Jack’s algorithm is therefore preferred over Jill’s algorithm.

(c) (ii) The value -1 is used to signify an error condition (or inappropriate value) due
to a negative value for the cost price, number of units or percentage increase.
This would give rise to a selling price lower than the cost price, clearly an
inappropriate result.

If this is signalled by setting the selling price to -1, there is the possibility of
confusion if this selling price is inadvertently printed or used in further
processes (particularly by subsequent maintenance programmers). Potentially
customers would be charged -1 cents for such products!

A much better approach would be to generate an error (exception) or use a
separate variable, say ErrorFlag, which is passed back to the calling routine.
The purpose is much clearer to those reading the source code and there is no
possibility of an inappropriate value in the SellPrice variable.

302 Chapter 6

Software Design and Development –The Preliminary Course

SET 6B
1. Of the techniques listed below, which is

considered to be the most informal
method of evaluation?
(A) Desk checking.
(B) Peer checking.
(C) Structured walk through.
(D) User feedback.

2. A team of developers present their work
and formally demonstrate the
functionality to a group. This is known
as what type of evaluation technique?
(A) Peer checking.
(B) Desk checking.
(C) User feedback.
(D) Structured walk through.

3. Victor is a programmer and has
completed a software development
project that includes some modules of
code that were written by someone else.
He has advertised himself as the sole
author of the product. What has Victor
violated with regard to the other
programmer?
(A) The other programmer’s

intellectual property rights.
(B) The other programmer’s civil

liberties.
(C) The other programmer’s human

rights.
(D) He is not in violation of anything.

4. Pre-release versions of a software
product can be used to obtain what?
(A) Peer feedback.
(B) Colleague feedback.
(C) User feedback.
(D) Marketplace domination.

5. Which requirement listed below, cannot
be easily evaluated?
(A) Backup of the data must be

performed every 4 hours.
(B) Any account that is past 30 days

old must be marked as being
Overdue and the client contacted.

(C) All clients in the database must be
contacted by email at least once
every three months.

(D) All new clients that have been
entered in the database in the last
two months must by followed up to
ensure they are receiving
satisfactory service.

6. What is the primary purpose of design
specifications?
(A) They ensure that the written code

will be easy to understand.
(B) They ensure that the solution will

be generic in nature.
(C) They ensure that the solution is

developed in the most efficient
manner.

(D) They formalise the requirements
that need to be fulfilled.

7. When a solution is superior, cleverer and
more refined, it is referred to as being
what type of solution?
(A) An elegant solution.
(B) A stylish solution.
(C) A chic solution.
(D) A neat solution.

8. The difference between peer checking
and desk checking is:
(A) Desk checking is the process of

working through the code by hand.
Peer checking is the process of
analysing and checking code that
has been written by another team
member.

(B) Peer checking is the process of
working through the code by hand.
Desk checking is the process of
analysing and checking code that
has been written by another team
member.

(C) Peer checking is only performed by
large software development
companies, whereas desk checking
is performed by all software
development companies.

(D) There is no difference.

9. When developing a solution, by using
language appropriate to the intended
audience of a software product, the
developer is being mindful of:
(A) the social and ethical perspective.
(B) the design specification

perspective.
(C) the interface from the user

perspective
(D) All of the above.

10. Informal observation is a form of:
(A) user feedback.
(B) peer checking.
(C) desk checking.
(D) structured walk through.

Testing and Evaluating Software Solutions 303

Software Design and Development – The Preliminary Course

11. Obtaining feedback from users and other interested parties is vital when evaluating the
 design of software. Describe techniques that can be used to obtain this feedback.

12. Evaluation of software includes checking that the documentation is correct. Describe different
types of documentation that should be evaluated.

13. The intellectual property rights of all involved in the design and development of a software
product, require consideration. Make up a list of possible people or companies who need to
be considered as part of the process.

14. If two functions both successfully solve the same problem, then how can one be reasonably
selected in preference to the other? Discuss.

15. Different makes and models of cars have different characteristics, yet they all essentially perform
the same function. What criteria would you use to assess the elegance of one car against another?

No doubt, your criterion is different to the criteria of your classmates. Discuss problems this
situation presents to those involved in the evaluation of different designs.

304 Chapter 6

Software Design and Development –The Preliminary Course

CHAPTER 6 REVIEW
1. The type of testing whereby the inputs

and expected outputs are known, but the
processes that are occurring are not
known, is called what type of testing?
(A) White box testing.
(B) System-level testing.
(C) Black box testing.
(D) Structural testing.

2. Harry is involved in the testing of a
software product and intends to utilise
large files, different types of transactions
as well as a large volume of test data.
What type of testing is Harry most likely
to be doing?
(A) Open box testing.
(B) White box testing.
(C) System-level testing.
(D) Structural testing.

3. The aim of a structured walk through
can best be described as:
(A) an explanation given in a structured

manner, of the operation of parts of
the design and development
process to gain useful feedback.

(B) showing management how far the
development team has got with the
new software project.

(C) an evaluation of the overall design
of the project.

(D) a chance for various levels of
people in the organization to have
their say about the new project.

4. Path coverage testing always includes
what other type of testing?
(A) Boundary condition testing.
(B) Decision coverage testing.
(C) Statement coverage testing.
(D) No other testing type.

5. A test data set is used to test:
(A) the coded solution only.
(B) the algorithms only.
(C) both the code and the algorithms.
(D) either the code or the algorithm.

6. Some techniques that could be employed
to gain user feedback include:
(A) formal meetings, questionnaires

and peer checks.
(B) prototypes, informal meetings and

desk checks.
(C) questionnaires, meetings and

prototypes.
(D) meetings, prototypes and alpha

testing.

7. What is the maximum number of paths
that a subroutine containing five binary
selections could have?
(A) 32
(B) 5
(C) 16
(D) 8

8. Testing of software solutions occurs:
(A) at the end of the software

development process.
(B) throughout the software

development process.
(C) only when the source code has

been written.
(D) when end users get to look at the

finished product.

9. Barbara has been given the task of
checking an algorithm. Which technique
would Barbara most likely use?
(A) Desk check.
(B) Peer check.
(C) Open box testing.
(D) Structural testing.

10. Desk checking an algorithm is primarily
checking for what?
(A) The naming conventions used.
(B) The syntax of the source code.
(C) The correctness of the logic.
(D) All of the above.

11. Describe considerations when designing test data to ensure the logic of an algorithm is correct.

12. Desk checking can be a laborious task. Describe tools available to assist when desk checking
source code.

Testing and Evaluating Software Solutions 305

Software Design and Development – The Preliminary Course

13. Devise a set of suitable questions that should be considered when comparing two solutions
to the same problem.

14. What is a structured walk through? How could a software developer who works alone from
home, use a structured walk through? Discuss.

15. This chapter is about testing and evaluating software solutions, however we have not covered
checks for all possible problems that could arise.

Make up a list of problems or errors that we have tested for and make up a second list of
problems or errors that we have not discussed.

(Hopefully in the HSC course, we will cover your second list satisfactorily)

306 Chapter 7

Software Design and Development –The Preliminary Course

 In this chapter you will learn to:
• identify and describe features in code that allow it to

be easily maintained

• create solutions that are easy to maintain

• convert a fragment of source code into its equivalent
algorithm

• define the purpose of the code to be maintained

• modify code to meet changed requirements

• provide appropriate acknowledgement of the code of
other programmers that has been incorporated as part
of the maintenance process

• assess the compatibility of code to be included in the
source code of an existing solution

Which will make you more able to:
• describe and use appropriate data types

• describe the effects of program language
developments on current practices

• identify the issues relating to the use of software
solutions

• analyse a given problem in order to generate a
computer-based solution

• investigate a structured approach in the design and
implementation of a software solution

• use a variety of development approaches to generate
software solutions and distinguish between these
approaches

• use and justify the need for appropriate project
management techniques

• use and develop documentation to communicate
software solutions to others

• describe the skills involved in software development

• communicate with appropriate personnel throughout
the software development process

• design and construct software solutions with
appropriate interfaces.

In this chapter you will learn about:
Reasons for maintaining code

• changing user requirements

• upgrading the user interface

• changes in the data to be processed

• introduction of new hardware or software

• changing organisational focus

• changes in government requirements

• poorly implemented code

Features in source code that improve its maintainability,
including:

• use of variables instead of literal constants

• use of meaningful variable names

• explanatory comments in the code

• use of standard control structures with appropriate
indentation

• appropriate use of white space to improve legibility of the
source code

• a clear and uncluttered mainline

• one logical task per subroutine

• meaningful names for subroutines and modules

Understanding source code

• reading original documentation in order to understand code
– documentation for the user (including user manuals)
– documentation for developers

• reading original algorithms to identify:
– inputs
– the type and purpose of variables used
– processes
– outputs

• creating algorithms for source code when they are not
available to aid in understanding
– identify the control structures that have been used
– understand how variables have been used

Inclusion of code from other sources

• copyright issues

• compatibility of code

Maintaining Software Solutions 307

Software Design and Development – The Preliminary Course

7
MAINTAINING

 SOFTWARE SOLUTIONS

The majority of software solutions are regularly upgraded as requirements change and
as errors are found that require correction In f act, most software developers are
engaged to maintain existing software products. This maintenance involves
continuous modification of the code. Modifications should be completed using similar
techniques to those used to design and develop new software. Each stage should be
carefully documented and testing should be ongoing. The difference between
developing a software product from
scratch and modifying an existing product
is largely about understanding the
operation of the existing product. This
chapter aims to examine how this
understanding can best be achieved and
facilitated.
It is vital that source code and its accompanying documentation is written in such a
way as to facilitate the job of modifying the code. Maintainability is a measure of how
easily code can be understood and modified by future developers. The task of
maintenance programmers is greatly simplified when the code is well structured and
well documented.
In this chapter, we first consider various reasons for maintenance coding. A number of
social and ethical issues are discussed. We then examine features within the source
code and its accompanying documentation that improve its maintainability. Finally,
we consider the task of understanding existing solutions to enable their effective
modification.

Consider the following:

Imagine your company has purchased the intellectual property rights for an existing
software product. The source code is now owned by your company and can be
modified as you require. Unfortunately, there is no documentation accompanying the
code and the code is written in a language that is not familiar to you or any of your
current employees.
The product has a customer base of some 1000 users. An urgent upgrade of the
product is required to meet the changing needs of these users. In addition, the upgrade
is likely to make a significant amount of money so it will be a worthwhile exercise!

GROUP TASK Discussion
Discuss problems this scenario suggests. How could each of these
problems be solved so the product can be upgraded now as well as in the
future?

Maintainability
A measure of the ease with
which source code can be
understood and modified.

308 Chapter 7

Software Design and Development –The Preliminary Course

REASONS FOR MAINTAINING CODE
Maintenance of software solutions is required for a variety of reasons. Many are to do
with adding new functionality, others are to take advantage of evolving technologies
and some are to improve poor aspects of the existing solution. Personnel involved in
the maintenance of software must respond if their products are to remain viable in the
market place.
Possible reasons for maintenance coding include:
• changing user requirements.
• upgrading the user interface.
• changes in the data to be processed.
• introduction of new hardware or software.
• changing organisational focus.
• changes in government requirements.
• poorly implemented code.
There is, of course, some overlap between each of the items listed above. For
example, a change in government requirements will most likely change the user’s
requirements. Similarly a new operating system (software) may introduce new user
interface standards resulting in a likely upgrade of the user interface. Let us consider
each of these reasons together with an example scenario where each could apply:

CHANGING USER REQUIREMENTS
Perhaps the most common reason for modifying code is to include new functionality
due to changes in users’ requirements. As users are the final clients for all software
solutions it makes sense that they are the most likely source of changed requirements.
These changes range from minor modifications to enhancement of existing
functionality, to the addition of completely new functions.

Consider the following:

Each year a software company develops an
upgrade for their dentist surgery
administration package. Prior to the
development of the upgrade, a questionnaire,
requesting suggestions for inclusion, is
distributed to all dental practices using the
package. Each of these suggestions are
prioritised and finally a list of changes to be
included in the upgrade is formulated.
The table in Fig 7.1 lists the most common
suggestions for the current upgrade. The
software company must now prioritise these
items and decide which should be included.

Request Freq-
uency Notes

Ability to bill more
than one person for
a single service.

15

Occurs when
separated parents are
sharing the cost of
treatment.

Need to be able to
assign two patients
the same
appointment.

20

Often family groups
come in for checkups.
Reasonable work
around is currently
being used.

Appointment
reminders need to
be generated at any
time.

12
Currently they are
generated either 7 or
14 days in advance.

Ability to assign an
appointment prior
to obtaining patient
details.

34
Often new patients
make appointments by
phone.

Wish to maintain a
list of standard
items ordered.

13
Currently each order
must be entered from
scratch.

Fig 7.1

Table of user requests for the dental
administration software upgrade.

GROUP TASK Discussion
Prioritise the list of requests in
Fig 7.1. Compare and discuss
your reasoning with the class.

Maintaining Software Solutions 309

Software Design and Development – The Preliminary Course

UPGRADING THE USER INTERFACE
The user interface is the communication medium between software and users. As a
consequence, the user interface is often the most significant influence on the ongoing
success of a software product. Even small inconsistencies and minor omissions can
prove irritating for users who must interact with the software on a regular basis.
Changes to the user interface can cause problems for users skilled in the use of the
existing product. Care must be taken to maintain consistency between subsequent
versions of software products. It is generally preferable for user interfaces to evolve
without significantly altering their structure.
Today most user interfaces are a reflection of the GUI-based platform on which they
run. This is great in terms of consistency between software products and the operating
system, however it does mean that user interfaces often require upgrading once a new
version of the operating system is released. Products that do not conform with new
operating system standards for user interface design will quickly lose market share to
their competitors.

Consider the following:

Ulead is a software development company that writes and distributes a photo-editing
product called iPhoto Plus. Fig 7.2 shows a screen shot from version 4.0 of this
product. The product was originally written to run under MS-Windows 95.

The user interface for iPhoto Plus,
although incorporating a number of
Windows features, has its own look and
feel. For example, the toolbar on the left
hand side of the screen alters the toolbar
displayed at the top of the screen.
Clicking on a toolbar at the top of the
screen either activates that function or
opens a popup menu containing further
items for selection. Some items on the
graphical toolbars are repeated as menu
items whereas other are not.

The software company wishes to develop
a new version of the product. There is
some disagreement in regard to the
retention or removal of the toolbars.

Fig 7.2
Ulead’s Iphoto Plus Version 4.0 photo editing

software uses non-standard toolbars.

GROUP TASK Discussion
Why do you think there may be disagreement in regard to retaining or
removing the toolbars as they appear on the current user interface? What
do you think? Discuss.

GROUP TASK Discussion
The developer’s of popular GUI operating systems have too much control
over the design of user interfaces for other products. Do you agree with
this statement? Debate both sides.

310 Chapter 7

Software Design and Development –The Preliminary Course

CHANGES IN THE DATA TO BE PROCESSED

Modifications to software are often required when the structure or format of the input
data changes. Perhaps new fields within records are needed or maybe the range of
acceptable values for a variable have changed. For example, the widespread use of
mobile phones means that most applications that store peoples details now require a
field for storing mobile phone numbers. All NSW postcodes used to commence with a
two, this is no longer the case, many NSW postcodes now begin with a one.
Validation routines for postcodes required alteration to accept this change.

Changes to the data often occurs when software uses the output from other
applications as its input If the out put from the other product changes then
modifications will be required to ensure this data can still be accessed or imported.
For example, a website extracts information from a Microsoft Access database. If
Microsoft alters the format or structure of their Access files then the website will
require modification to allow it to continue to extract data from the updated Access
files.

Consider the following:

During the late 1990s telephone numbers throughout Australia where modified so that
each local number now has eight digits and each area code has two digits. Previously,
local numbers had six or seven digits and area
codes had two or three digits. Furthermore, the
area code, in the majority of cases, now
indicates the state. The conversion process
took a number of years to implement.
Fortunately the Australian Communications
Authority released a strict timetable so other
interested parties could alter their records
accordingly as the conversion took place. Fig
7.3 shows an extract from this timetable; notice
that it also includes detail in regard to the digits
to be added and their placement within the
existing numbers.

Software applications that import and/or store
telephone numbers required modification to
accommodate these changes. Firstly, a function
was needed to progressively convert old
numbers as the conversion took place.
Secondly, the validation of phone numbers as
they are entered required changes.

GROUP TASK Discussion
The above scenario presented unique problems for software developers.
Describe some of these problems and suggest methods that could have
been used to ensure the correct and timely conversion of the data within
their software products.

Fig 7.3
Extract from the Australian

Communication Authority’s timetable for
the conversion of telephone numbers.

Maintaining Software Solutions 311

Software Design and Development – The Preliminary Course

INTRODUCTION OF NEW HARDWARE OR SOFTWARE

Hardware and software are intimately linked. New CPUs, storage devices and
peripherals alter the way in which software operates. Similarly, many software
applications rely on the services of other software; the most obvious example being
the operating system. Fortunately, it is in the interest of both hardware and software
developers to create products that are backwards compatible. For example, most early
MS-DOS applications will execute successfully on todays modern CPUs.

Although older applications may work successfully they will not take advantage of
any new features available. Software developers must therefore modify their products
if they wish them to utilise these features. For example, many modern CPUs have
larger instruction sets and multiple processors compared to their predecessors;
therefore applications wishing to take advantage of these features must be modified.

New versions of operating systems will have an impact on applications. The most
obvious impact, from the user’s point of view, will be possible changes to the
graphical user interface. Other changes that influence applications include alterations
in the way memory is allocated to loaded applications, methods for accessing and
communicating with peripherals and the modification of the application programmers
interface. Developers have a responsibility to test their products with new versions of
operating systems to ensure they continue to execute successfully.

Consider the following:

A particular application has been in use for 10 years. During this time it has been
upgraded regularly and currently version 7 is being distributed. The product runs on
Apple Macintosh machines, however for the past few years a growing demand has
emerged to use the product on Windows based machines.

CHANGING ORGANISATIONAL FOCUS

Organisations change and evolve over time, some grow, others change their way of
operating and many diversify into other related industries. Software applications often
require modification to cater to these changes. For example, most small businesses
commence operations as either a single person or perhaps as a partnership. At this
time many operations are performed manually. As the business grows it is natural for
its functions to be progressively automated.

Custom-designed solutions often require continual modification. This is particularly
true of software used by large companies, banks and government departments. Most
of these large organisations have a staff of software developers who spend much of
their time maintaining the application to reflect changes in the organisation’s focus.

GROUP TASK Discussion
This is a common problem encountered by many software developers.
Why is it not possible to easily create a version for another operating
system? Discuss the nature of the changes required to modify the
application so it will execute on Window’s machines.

312 Chapter 7

Software Design and Development –The Preliminary Course

Consider the following:

A small family-owned furniture manufacturer currently has a single retail showroom
at the front of their factory. The company specialises in the manufacture of custom-
designed furniture for the higher end of the market. Business is progressing so well
that they intend opening two new showrooms and extending the production at their
factory.

The business uses a custom-designed software package that has served them well for a
number of years. This package allows the entry of specifications and concept
diagrams for each piece of furniture together with the usual ordering and invoicing
functions. It also schedules the manufacture and delivery of pieces whilst customers
are ordering. The company prides itself on being able to deliver its products on time,
every time.

CHANGES IN GOVERNMENT REQUIREMENTS

Government legislation covers many areas that can affect software applications. As
legislation and laws are changed by government these software applications must be
modified to comply. Different legislation and laws will apply to different software
products, however common areas affecting many software products include those
dealing with taxation, privacy and security. A common requirement is that all
transactions should leave an audit trail. This allows the source and path taken by data
to be retraced should a problem be detected.

Consider the following:

The ability to use credit cards to pay for goods online has now become common
place. As a consequence, a number of security and privacy issues have arisen. Most
governments around the world have laws governing the use and secure transmission
of credit card numbers. Banks have responded by implementing various systems to
safeguard these numbers. For example, in Australia credit card numbers cannot be
stored on a merchant’s computer system that has access to the Internet without a
thorough audit of the computer system being completed by the bank. Software that
stores or manipulates credit card numbers online must therefore comply with the
bank’s requirements.

GROUP TASK Discussion
There are various challenges involved in modifying the software
application discussed above. List and describe some of the modifications
to the software that will be required.

GROUP TASK Discussion
Many smaller retail websites outsource their credit card transactions to
specialists rather than modify their sites to include this facility. Why do
you think this occurs? Discuss the advantages and disadvantages of this
approach.

Maintaining Software Solutions 313

Software Design and Development – The Preliminary Course

POORLY IMPLEMENTED CODE

Testing and evaluating software solutions aims to ensure that software applications
are bug free and perform their tasks efficiently. Unfortunately this is not a perfect
process and problems can and do occur once products have been distributed. Even
large scale, widely distributed products are seldom, if ever free, of problems.
Maintenance of the code is required to correct these problems as they are discovered.

In the past, software products were developed with an expected life span of only a few
years. Many of these products have remained in use for periods far exceeding this
expectation. Modern techniques now used may not have applied when these products
were first developed. For example, the use of modularisation and encapsulation. By
modern standards these products are poorly implemented. Although modification to
improve the code is desirable; often the process is hampered by the difficulties
involved in understanding the code.

INCLUSION OF CODE FROM OTHER SOURCES
Perhaps the most significant ethical issue to be considered when modifying software
concerns intellectual property and copyrights. Modifications to software can
somewhat blur the ownership of these rights. Modifying a product should only be
undertaken with the consent of the owner of the product’s intellectual property rights.
Remember, source code is covered by copyright unless the author has specifically in
writing given up these rights.

Plagiarism is the act of copying or
imitating the work of another and claiming
it to be your own. Just because you have
modified a piece of software, this does not
give you the right to claim the entire
product as your own work. Even products
where copyright does not apply should
include recognition of all those whose work it includes. For example, the music of
many classical composers is now in the public domain and copyright does not apply.
If I were to make modifications to say, one of Mozart’s operas and then claim the
entire opera as my own original work I would be ostracized. This would be a blatant
case of plagiarism.

New code added to an existing solution must be compatible with the existing code. It
should conform to the design specifications of the original code. Items such as code
comments, identifer naming conventions, resusability and testing protocols are some
areas that should be considered. All new code, whether written from scratch or
obtained from outside sources should be thoroughly tested before inclusion in the
final product.

GROUP TASK Discussion
Why do you think many software applications have lasted longer than
expected? Surely it would be better to dispose of them and produce new
applications from scratch. Discuss.

Plagiarism
Copying or imitating the work
of another and claiming it to be
your own.

GROUP TASK Activity
Revisit chapter 1 of the text. Make a list of any social and ethical issues
you consider require particular attention when maintaining software.

314 Chapter 7

Software Design and Development –The Preliminary Course

(a) Designing a solution using one logical task per subroutine eases the job of future

maintenance programmers.

Discuss the various reasons why the maintenance effort will be reduced using this
approach.

(b) As a new programmer on a programming team developing software for a large
organisation, you have been advised not to use literal constants in your code.

Using a relevant example, demonstrate your understanding of a literal constant,
and explain why it is not appropriate in terms of future maintenance of your code.

Suggested Solutions

(a) This approach makes it easier for a person other than the original programmer to
be able to read and follow the source code. It is broken into easily understandable
‘chunks’ where routines that do not need to be understood in detail can be
ignored by the maintenance programmer.

This approach also makes it easier to locate a specific logical task. The job of
maintenance requires that the maintenance programmer identify which part of the
code needs to be changed, and this makes it easier to locate that part of the code.

It also means that testing the changed code should be easier. A driver could be
written to test just the changed routine, or a dummy stub could be used to test that
the remaining code still works after the changes have been made.

(b) A literal constant is the use of an actual value embedded in the source code. Thus,
a program calculating how many days there are in a term could say Days = 10 * 5,
assuming that there are 10 weeks in the term and 5 school days a week. Both 10
and 5 are considered here as literal constants.

The problem arises when later on, we wish to change this value, perhaps when
the government legislates that all schools will have 9 week terms, or that the
school week will consist of only 4 days. The maintenance programmer would
have to read through the source code in detail, locating every occurrence of the
value 10 as it refers to the number of weeks in a term, and changing it to 9 (and
similarly for the days in the week from 5 to 4).

The alternative is to include assignment or constant statements at the start of the
routine or module, saying
 WeeksInTerm = 10
 DaysInWeek = 5
In this way, the maintenance programmer only has to change this one line to
 WeeksInTerm = 9
and every statement such as
 Days = WeeksInTerm * DaysInWeek
will automatically reflect the new value. When meaningful identifiers, such as
WeeksInTerm are used it also easier for the maintenance programmer to follow the
logic of the code compared to the use of literal constants.

HSC style question:

Maintaining Software Solutions 315

Software Design and Development – The Preliminary Course

SET 7A
1. A measure of the ease with which source

code can be modified and understood is
referred to as:
(A) maintenance.
(B) modularity.
(C) maintainability.
(D) standardisation.

2. Claiming that a piece of work is your
own when it is in fact the creation of
someone else is called:
(A) plagiarism.
(B) larceny.
(C) embezzlement.
(D) appropriation.

3. When the user interface is modified,
care must be taken to ensure what?
(A) The original documentation must

not be changed.
(B) The structure of the interface is

changed completely from the
original, so users are aware that the
product has been modified.

(C) None of the original functionality
should be included, because this
will only confuse users.

(D) Consistency is maintained across
various versions of the product.

4. Intellectual property can best be
described as:
(A) the fruits of mental labour.
(B) a software application.
(C) material goods.
(D) a thought or an idea.

5. The term backward compatible means:
(A) the ability of a new system to

operate in harmony with an older
system.

(B) the ability of an older system to
operate in harmony with a new
system.

(C) the ability of a system to operate
under different operating systems.

(D) the ability of users to operate both
old and new systems concurrently.

6. Software solutions may be required to
be modified for which reason(s) listed?
(A) user’s have new and different

requirements.
(B) changes have been made in the

organisation that need to be
reflected in the software solution.

(C) changes have been made to
government legislation that need
reflecting in the software.

(D) All of the above are valid reasons.

7. The medium that enables users to
communicate with the software is
referred to by what name?
(A) The user interface.
(B) The user protocol.
(C) The operating system.
(D) The platform.

8. Changes made to the structure or format
of input data will most likely result in:
(A) the software not requiring any

modification.
(B) the need for the software to be

modified accordingly.
(C) modification of the user interface

only.
(D) modification of the operating

system.

9. The operation of software may be
altered by the introduction of:
(A) new CPU’s.
(B) different storage devices.
(C) different peripherals.
(D) All of the above.

10. Maintenance of software solutions is
necessary to:
(A) correct known bugs.
(B) add additional requested

functionality.
(C) keep up with new technologies.
(D) All of the above.

11. New versions of software products should not include major changes to the user interface.
Do you agree? Justify your answer.

12. New hardware products should retain all the functionality of their predecessors. Why is
this the case? What implications does this have for software developers?

13. Changes in governmental requirements can mean changes are needed in software products.
Who should bear the cost of these changes? Justify your response.

14. Many software products have outlasted their life expectancy by 10, 20, even 30 years.
Suggest reasons why this has occurred. What are the consequences for those involved in
the maintenance of these products?

15. There are a variety of reasons for maintaining software. List and describe at least 5 of these.

316 Chapter 7

Software Design and Development –The Preliminary Course

FEATURES IN SOURCE CODE THAT IMPROVE ITS
MAINTAINABILITY
Maintainable code will be easier to understand and as a result will be easier to modify.
In chapter 5, we considered internal documentation of source code; this documentation is
essential to understanding existing code. Furthermore, in chapter 4, we discussed software
structure and in particular modularity and top-down design; software that embodies these
ideas is easier to understand, modify and test. In this section, we revisit many of these ideas
in the context of maintaining software solutions.
USE OF VARIABLES OR CONSTANTS INSTEAD OF LITERAL
CONSTANTS

Constants, as the name suggests, are values that do not change and more importantly,
we do not want them to change. For example, in mathematics pi (π) is the ratio of the
circumference of a circle to its diameter; the result is always the same regardless of
the size of the circle. We cannot alter the value of pi; it remains constant.

Literal constants are particular values, such as 45 or ‘abcd’. If a literal constant is used
many times throughout a program, each usage is independent. This means that if the
value of the literal constant requires modification then all occurrences will need to be
manually changed. For example, currently the GST rate in Australia is 10%, however
this is likely to change in the future. If the literal value 10 has been used throughout
the source code then a change to a GST rate of 12% would require modifying each
and every occurrence. We cannot just blindly do a search and replace, as we can never
be certain that each and every occurrence of the literal constant 10 refers to the GST
rate. We must manually examine each 10 we find.

Programmers overcame this problem by assigning literal constants to variables. In our
GST example, we could create a variable using the identifier GST_RATE and assign
it the value 10 at the start of our code. When the GST rate changes we need only
modify this initial assignment statement. One problem remains; what if our code
inadvertently alters the value held in the variable? For this reason, most modern
languages include the facility to declare constants. Constants are given a value when
they are declared and this value cannot be altered within the code.

The use of meaningful identifiers for
constants greatly enhances the readability of
code. Many programming languages include
a large number of predefined constants that
are used as parameters within the language’s
functions. For example, in Microsoft Access
the OpenReport method includes a parameter called acView that determines whether
the report should be opened in design view, printed immediately or previewed on the
screen. These three options correspond to the values 0, 1 and 2 respectively, however
it is more intuitive to use the intrinsic constants acViewDesign, acViewNormal and
acViewPreview.

DoCmd.OpenReport “Invoice”, 2

Maintaining Software Solutions 317

Software Design and Development – The Preliminary Course

MEANINGFUL NAMES FOR VARIABLES, SUBROUTINES AND MODULES

The use of meaningful variable names greatly increases the readability and hence the
maintainability of source code. In fact, meaningful identifiers should not be restricted
to variables; they should be used for subroutines (procedures and functions) as well as
for constants and modules. For example, Average:= Sum/NumElements is intuitively
easier to understand than A:=B/C. Code that uses meaningful identifiers is said to be
self-documenting.
EXPLANATORY COMMENTS IN THE CODE

Comments within the source code should
explain what the code does rather than how
it does it. Comments that describe the
detail of the processing will be incorrect if
the processing is altered; remember these
comments are for programmers who
presumably are able to read the code. For
example, a comment that says ‘We loop
around adding each element in the array to
the total’ is unnecessarily describing the
processing; a better comment would be
‘Sum the elements within the array’.
Having said this, it is reasonable to use
comments to describe processes that are
particularly difficult to understand.

Comments should also be used to document changes made to code. It is usual to
include the programmer’s name and the date and nature of the changes made. In this
way, the source code itself becomes a record of the software’s evolution.

USE OF STANDARD CONTROL STRUCTURES

Standard control structures include sequence, decision and repetition in each of their
various recommended forms (see chapter 4 for full descriptions). Programmers should
only ever use these standard structures. It is possible to design code that uses non-
standard control structures; for example, having more than one exit from a loop or
exiting from within the body of a loop. This should never be done as it makes source
code difficult to follow and understand. No problem has ever been found that cannot
be solved using the standard control structures, so there will always be a way of
redesigning algorithms and code without the use of non-standard control structures.

Unfortunately, there are many older programming texts that include non-standard
control structures as valid programming techniques. This is particularly the case with
repetitions but can also occur with decisions. Be particularly careful when using
flowcharts; it is easy to draw them using non-standard structures. Remember, only the
standard control structures should ever be used. When writing pseudocode and source
code statements within a decision or repetition control structure the statements should
be indented to improve legibility.

‘Sum the elements within the array
For Count = 0 to MaxIndex
 Total = Total + Results(Count)
Next Count

‘We loop around adding each element
‘in the array to the total. Count is the index
’for the array and MaxIndex is the largest
’index used.
For Count = 0 to MaxIndex
 ‘Add the current array element to the total
 Total = Total + Results(Count)
‘Move to the next array index
Next Count
 Fig 7.5

Comments should explain what the code
does rather than how it does it.

GROUP TASK Discussion
Examine both the code segments in Fig 7.5. Identify the types of
documentation in each. Do you agree that the comments in the second
code segment are largely unnecessary? Discuss.

318 Chapter 7

Software Design and Development –The Preliminary Course

Consider the following:

Non-standard control structures
have been used to write many
software applications in the past. It
is possible to draw flowcharts that
do not use standard control
structures, however the resulting
source code will be difficult to
follow and consequently difficult
to maintain.

Fig 76 shows three examples of
flowcharts that use non-standard
control structures. Don’t ever do
this!

APPROPRIATE USE OF WHITE SPACE WITHIN SOURCE CODE

Legibility of source code is critical for maintenance programmers. Including blank
lines between subroutines and between significant processing within subroutines
greatly improves legibility.

Many languages allow multiple source code statements to be aggregated onto a single
line. This is poor programming practice as it unnecessarily clutters the code and hence
reduces legibility. Some programmers try to be clever by writing complex lines of
code, such as including multiple function calls within a single statement (refer Fig
77) for example. It is far better to expand the code over multiple lines to improve
legibility.

Yes

No Condition
?

Process 2

Process 1

Sample 1

Yes No Condition 1
?

Process 2

Process 1
 Condition 2

?

No

Yes

Sample 2

Fig 7.6
Sample flowcharts that use non-standard control

structures. Don’t ever do this!

 Expression

Process 4 Process 3 Process 1 Process 2

Choice A Choice B Choice C Otherwse

Sample 3

GROUP TASK Discussion
Examine each of the
flowcharts at right and
explain why the control
structure used is incorrect.

GROUP TASK Activity
Redraw each of the
flowcharts using only
standard control structures.

‘Single apparently “clever” line
FinalBand = CalcPerfBand(CalcScaleMark(CalcRawMark(StudentID,ClassID),CourseID))

‘Multiple “legible” lines that perform identical processing
RawMark = CalcRawMark(StudentID, ClassID)
ScaleMark = (RawMark, CourseID)
FinalBand = CalcPerfBand(ScaleMark)

Fig 7.7
Sample “clever” line of code and more legible multiple lines of code.

Maintaining Software Solutions 319

Software Design and Development – The Preliminary Course

A CLEAR AND UNCLUTTERED MAINLINE

The mainline or mainprogram of a software solution should include minimal actual
processing. The mainline of many programs will essentially be a series of calls to
subroutines. In terms of maintaining software solutions the mainline can be of great
assistance in determining the top-down design of the program. For this reason, a clear
and uncluttered mainline is preferred.
ONE LOGICAL TASK PER SUBROUTINE

Subroutines that accomplish a single logical task increase the maintainability of the
product. The longer the subroutine is, the more difficult it will be to understand, test
and subsequently maintain. In addition, single task subroutines will prove to be more
useful when developing other software product. Short routines that accomplish single
well-defined tasks are generally easier to understand, test, reuse and consequently
maintain.

UNDERSTANDING SOURCE CODE
The major difference between developing software from scratch and maintaining
existing solutions is the need to understand the existing solution. This is perhaps the
most difficult aspect of maintaining software. We have already discussed reasons why
code may need modification and we have examined features that improve the
maintainability of code; we now consider the difficult task of actually making sense
and understanding the code.
Original documentation is the only source of information that is available to assist
developers with the task of interpretation. We have already examined documentation
within the source code, we now consider the use of other types of documentation.
Algorithms are perhaps the most useful means for gaining an understanding of the
logic of a solution; and as such, we shall consider them separately to the other forms
of documentation.
READING ORIGINAL DOCUMENTATION TO UNDERSTAND CODE

Documentation falls within two broad categories: documentation written for users and
documentation written for software developers. Each can assist maintenance
developers with their task of interpreting existing software solutions.
Documentation for the user
Before modifying a software product, it is important that the developers understand
the operation of the existing product from the user’s perspective. Maintenance
developers should be familiar with using the product. User documentation can be of
great assistance in this regard. The modifications to be made must work seamlessly
with all the existing functionality.
Types of user documentation includes:
• installation guides
• user manuals

GROUP TASK Discussion
Clear and uncluttered mainlines as well as subroutines that accomplish
single tasks are a consequence of abstraction, refinement and top-down
design. Do you agree? How do abstraction, refinement and top-down
design assist maintenance programmers? Discuss.

320 Chapter 7

Software Design and Development –The Preliminary Course

Fig 7.8
Screen shots of the existing and updated

save dialogues.

• reference manuals
• online help
• tutorials
Apart from assisting developers understand the product, the user documentation itself
will require modification to reflect the changes made to the product.
Documentation for software developers
The source code itself is the most crucial piece of documentation when modifying
software solutions; we have examined source code documentation in detail in the
previous section. Other forms of technical documentation, that were produced during
the product’s design and development, will also be of assistance when attempting to
understand and interpret code in preparation for modification.
Types of technical documentation in addition to the source code include:
• requirements
• design specifications
• system models eg. system flowcharts, data flow diagrams, structure charts
• IPO charts
• data dictionaries
• algorithms
• screen designs and storyboards
As all these forms of technical documentation were crucial to the original
development of the product, it makes sense that the information they contain will be
of assistance to those wishing to modify the product. For example, structure charts
provide an overview of the top down design of the software. Data dictionaries explain
the data type and size of each identifier used in the code. This information is crucial
when attempting to interpret and understand source code.

During the maintenance process, all original documentation should be updated to
reflect the changes. Future developers will need to interpret the code that implements
the modifications.

Consider the following:

Imagine you have been assigned the task of modifying
an existing software product to enable it to open, save
and close files more effectively. Currently the program
uses it’s own dialogue to perform this process. The
modification aims to use a standard Windows dialogue
for both the open and save functions.

Fig 7.8 shows the existing save dialogue
together with the expected look of the updated
dialogue. The open dialogues are similar apart
from the word save being replaced by open.

The documentation available from the original
product includes a structure chart (without
parameters), data dictionary, the source code, an
online user manual and, of course, the existing
final product. The source code is written in
Visual Basic.

Maintaining Software Solutions 321

Software Design and Development – The Preliminary Course

Examining the functionality of the existing product reveals a number of problems
associated with the open and save functions:
• If the close cross is used to exit the program, the user is not prompted to save any

changes they may have made.
• Exiting the program using the normal file exit command, prompts the user to save

even if no changes have been made to the file.
• Choosing the open command, when a file is already open, closes the open file

without prompting the user to save.
The online user manual is context sensitive; it explains that only a single file can be
open at a time. None of the documentation refers to the three problems mentioned
above.

Your next task is to interpret
the existing code to determine
where the modifications are
required. Examining the
structure chart should assist in
identifying the procedures and
functions that will require
modification. A copy of the
original structure chart without
parameters is reproduced in
Fig 7.9. It seems clear that the
Get file name and also the
Confirm operation subroutines
are highly likely candidates for
modification to include the use
of the standard dialogue.

The data dictionary can then be examined to
understand how each variable has been used.
Data dictionaries describe each identifier, its
data type and a description of its purpose; a
great help when interpreting code. Fig 7.10
shows a portion of the data dictionary. The
ChangeFlag identifier appears to determine
whether the file has been changed. The
problems we identified when using the
product, indicate that it is not being used or
perhaps set correctly.

The source code itself can now be read with
some knowledge of the program’s structure
and variables. Finally, the code to be altered
can be identified and then the modifications
can be implemented and tested.

GROUP TASK Activity
Examine an application with which you are familiar. How many different
ways are there to access each of the save and open dialogues? Do any of
the above situations arise in the application you examined?

Identifier Data type Description

Word() Array of
strings Holds the file data

FileName String Path and filename

TempChar Character Character to be
inserted or deleted

ChangeFlag Boolean True after insert or
remove operations.

WordCt Integer Number of words

CharCt Integer Number of characters

ParaCt Integer Number of
paragraphs

Fig 7.10
Portion of the data dictionary.

Fig 7.9
Structure charts and other models can assist

developers interpret existing software solutions.

Main
program

File
operation

Edit
operation

Calculate
statistics

Get file
name

Confirm
operation

Insert
character

Remove
character

Delete control
characters

Character
count

Word
count

Paragraph
count

Load word
array

322 Chapter 7

Software Design and Development –The Preliminary Course

READING ORIGINAL ALGORITHMS

Algorithms describe the logic of solutions, thus they provide an invaluable tool when
attempting to understand existing software solutions. The inputs, types of variables
used, processes used and also the outputs can all be determined by analysing existing
algorithms.

Many modifications to software involve altering the logic of code. As algorithms are
the prime method of documenting the logic, it makes sense to make the modifications
to the algorithms themselves. The modified algorithm is then implemented within the
source code.

Consider the following:

An existing program is used to determine the type of triangle formed when the length
of all three sides is known. A problem with this program is encountered; it is possible
for three lengths to be entered that cannot form a triangle. The existing program does
not deal with this possibility.

The original algorithm is shown
in Fig 7.11. Let us analyse this
algorithm and then attempt
modifications to correct the
problem identified.

The inputs into the algorithm are
clearly the lengths of the three
sides, namely SideA, SideB and
SideC. Presumably, these are
numeric values. The output is via
the variable called Result. As the
assignment statements assign
words to this variable, it must be
of data type string. The processing involves the use of nested binary selection control

GROUP TASK Discussion
Examine the structure chart and data dictionary in Fig 7.9 and Fig 7.10.
Using these two pieces of documentation, attempt to explain the purpose
of this application. As part of your explanation, discuss the processing
likely to be taking place in each subroutine on the structure chart.

GROUP TASK Discussion
The new open and save dialogues use screens and functions from a
dynamic link library. What consequences for users may result from the use
of such a library file? What are the social and ethical issues that should be
considered in relation to the use of this DLL? Discuss.

GROUP TASK Discussion
How could the ChangeFlag identifier be used to correct the three
problems identified in relation to the use of the open and save dialogues?

BEGIN
 Get SideA, SideB, SideC
 IF SideA=SideB and SideB=SideC THEN
 Set Result to Equilateral
 ELSE
 IF SideA=SideB or SideB=SideC or SideC=SideA THEN
 Set Result to Isosceles
 ELSE
 Set Result to Scalene
 ENDIF
 ENDIF
 Display Result
END Fig 7.11

Pseudocode to determine types of triangles.

Maintaining Software Solutions 323

Software Design and Development – The Preliminary Course

structures. These selection statements are used to determine firstly, if the triangle is
equilateral, meaning all sides are the same length. Secondly, to determine if it is an
isosceles, meaning two sides are of equal length. Lastly, any triangles that are neither
equilateral nor isosceles must be scalene, meaning all the sides differ in length.

However, this is not correct; sets of lengths that are not all equal may not form a
triangle at all. For example, lengths of 5, 5, and 12 may at first appear to form an
isosceles triangle. In fact, no such triangle is possible, as the third length of 12,
exceeds the sum of the other two lengths.

CREATING ALGORITHMS FROM SOURCE CODE
In many instances, the original algorithms will not be available for use. It is often
beneficial to create an algorithm based on the processing within the source code. This
can be done so the program can be better understood or it may be required to facilitate
coding the program in a different programming language. In any case, the act of
creating the algorithm is a worthwhile method of understanding the logic of the source
code.
There are two main steps involved in the process of interpreting source code into
algorithms: identifying each of the control structures and understanding how the
variables have been used. Other forms of documentation can assist in this process. For
example, system models give an overall view of the processing and data dictionaries
provide information about data structures and data types.
Identifying control structures
If the original code has been written using structured programming techniques then
identifying each control structure should be a relatively straightforward process. Code
that does not use standard control structures will be more difficult to interpret. Often it
is useful to draw a flowchart rather than pseudocode when non-standard control
structures are used. It is not possible to represent non-standard structures in
pseudocode, whereas it is possible when using flowcharts. Once the logic of the
existing solution is understood, the flowchart can be modified to include only standard
control structures.
Understanding the variables that have been used
When we first commenced designing software solutions, we learnt that programs are a
combination of data structures and algorithms. Fortunately, the nature of data
structures, and therefore variables, can be determined from the source code. In most
languages it is necessary to define and declare all identifiers prior to their use in code.
And we need to understand the structure and data type of each variable if we are to
correctly represent the processing in our algorithms.
We also require an understanding of the purpose of each variable and how the
processing achieves this purpose, if we are to accurately translate the source code
back into an algorithm. Often the name of each identifier will provide a clue and the
logic determined when identifying the control structures will also assist.

GROUP TASK Activity
Modify the algorithm in Fig 7.11 so that it corrects the problem discussed
above. Code the algorithm in a language of your choice and test it to
ensure its correctness.

324 Chapter 7

Software Design and Development –The Preliminary Course

Consider the following:

The code shown in Fig 7.12 is written in an old
version of BASIC. In this version of BASIC, line
numbers are used to determine the order of
processing. The code does correctly find all the
prime numbers from 1 up to 1000, with one minor
error; it doesn’t find the prime number 2. The
prime numbers are stored in the array called
PrimeArray. This code is actually a subroutine; the
return command in line 90 sends control back to
the statement following the subroutine call.
By modern structured programming standards, the
code is a nightmare. There are goto statements
everywhere and thus the flow of control is very difficult to
follow. Nevertheless, let us try and create a flowchart to
represent this mess.

To create the flowchart, we first sequence each statement
and place it within an appropriate symbol: rectangles for
processes, diamonds for decisions and parallelograms for
inputs and outputs The flow of control goes from top to
bottom through each of these symbols reflecting the order
of the line numbers within the original source code.
Finally, we add flow lines from each decision to the
appropriate place on the flowchart. Fig 7.13 shows the
completed flowchart.

The completed flowchart more clearly shows the flow of
control through the program. If we are to modify this
algorithm so it adheres to the rules of structured
programming, we need to alter its structure. Notice that
their appears to be two loops, both of which seem to be
close to post-test repetitions. Actually the outside one is
perfectly fine. The inside loop however, has two exit points
occuring when Result = Int(Result) and when Counter <
Prime is false. This requires correction. It appears that the
decision Result = Int(Result) actually behaves like a binary
selection structure as well as the termination condition for
the inside loop. This situation requires modification.

The variables used in the program have not had their data
type explicitly declared. In many older versions of BASIC,
it was not necessary to declare variables, rather variables
were implicitly declared dependant on the last character of

5 Rem Finding primes
10 Dim PrimeArray(500)
20 Prime = 1
25 Index = 0
30 Counter = 2
40 Result = Prime / Counter
45 If Result = Int(Result) Then GoTo 80
50 Counter = Counter + 1
60 If Counter < Prime Then GoTo 40
70 Print Prime & " is a prime"
75 PrimeArray(Index) = Prime
77 Index = Index + 1
80 Prime = Prime + 1
90 If Prime > 1000 Then Return
100 GoTo 30

Fig 7.12
Old BASIC code for finding primes.

Yes

No

Prime=1

Index=0

Counter=2

Result=Prime/Counter

 Result =
Int(Result)

?

Counter = Counter+1

 Counter
< Prime

?

Display Prime

PrimeArray(Index) = Prime

Index = Index + 1

Prime = Prime + 1

 Prime
> 1000

?

BEGIN

END

No

Yes

Yes

No

Fig 7.13
The code from Fig 7.12

represented as a flowchart.

GROUP TASK Activity
Perform a desk check of the code in Fig 7.12.
Comment on the difficulties encountered
following the flow of control through the
program.

Maintaining Software Solutions 325

Software Design and Development – The Preliminary Course

the identifier. For example, % signs meant integer, $ sign meant string and all others
meant floating point. The variables in this program are therefore, unnecessarily, of
floating point data type. We can surmise from the code and algorithm that Prime,
Index and Counter would be better as integers, that Result needs to be of type real or
floating point, and that PrimeArray should be an array of integers.

Refer to the following algorithms when answering the questions that follow.

1 BEGIN CreateRandomArray(HighIndex)
2 Count = 0
3 WHILE Count < HighIndex
4 Count = Count + 1
5 MyArr(Count) = Count
6 ENDWHILE
7 RandomiseArray(HighIndex, MyArr)
8 END CreateRandomArray

9 BEGN RandmiseArray (High, MyArr)
10 Count = High
11 WHILE Count >= 1
12 RandomIndex = INT(High * RND) + 1
13 Temp = MyArr(RandomIndex)
14 MyArr(RandomIndex) = MyArr(Count)
15 MyArr(Count) = Temp
16 Count = Count - 1
17 ENDWHILE
18 END RanomiseArray

Note:

• The INT function returns the whole number or integer part of a number, for
example INT(3.66) = 3.

• The RND function generates a different random number from 0 to 0.999999 each
time it is encountered.

GROUP TASK Activity
Redraw the flowchart in Fig 7.13 using only standard control structures.
Ensure your algorithm correctly identifies 2 as a prime number. You may
use either pseudocode or a flowchart.

GROUP TASK Activity
Code your correctly structured algorithm as a procedure or function in
some programming language. Your code should use parameters to
interface with its calling routine.

HSC style question:

326 Chapter 7

Software Design and Development –The Preliminary Course

(a) Describe the purpose of each of the following lines in the algorithms.

(i) Lines 2 to 6

(ii) Lines 13 to 15

(b) Complete a desk check of the algorithms using the call CreateRandomArray(5) as
follows.

(i) Complete a desk check of the CreateRandomArray algorithm using a table
with columns as follows:

Hghndex Count MyArr(1) MyArr(2) MyArr(3) MyArr(4) MyArr(5)

(ii) Complete a desk check of the RandomiseArray algorithm using the following
table headings and assuming the RND function produces the numbers 0.2, 0.9,
0.7, 0.6 and 0.5 in turn.

Hgh Count Random
Index Temp MyArr(1) MyArr(2) MyArr(3) MyArr(4) MyArr(5)

(c) An alternative CreateRandomArray algorithm that achieves the same purpose as
the previous version is reproduced below.

1 BEGIN CreateRandomArray(HighIndex)
2 Count = 1
3 WHILE Count <= HighIndex
4 Exists = False
5 REPEAT
6 Temp = INT(HighIndex * RND) + 1
7 Index = 1
8 WHILE Index < Count
9 IF MyArr(Index) = Temp THEN
10 Exists = True
11 ENDIF
12 Index = Index + 1
13 ENDWHILE
14 UNTIL Exists = False
15 MyArr(Count) = Temp
16 Count = Count + 1
17 ENDWHILE
18 END CreateRandomArray

Compare and contrast the logic and likely performance of these two different
CreateRandomArray algorithms.

Suggested Solutions

(a) (i) Sets the contents of each array element equal to its index. For example,
MyArr(1) is set to 1, MyArr(2) is set to 2 and so on.

(ii) Swaps the contents of the array element MyArr(RandomIndex) with the
contents of MyArr(Count).

Maintaining Software Solutions 327

Software Design and Development – The Preliminary Course

(ii) Hgh Count Random

Index Temp MyArr(1) MyArr(2) MyArr(3) MyArr(4) MyArr(5)

 5 5 2 2 5 2
 4 5 2 2 4
 3 4 2 2 3
 2 4 3 3 5
 1 3 2 2 1
 0

(c) The original version is much more efficient as it iterates through the array just

twice – once in the CreateRandomArray subroutine and once again in the call to
the RandomArray subroutine. The second version contains three nested loops,
furthermore the inner loop contains a selection. The inner loop checks if the
random number already exists in the array, if it does then the whole iteration
process continues after a new random has been generated. For large arrays it will
take many iterations to generate the last element. The worst case being to
generate the last element as all other elements already exist. For example,
consider generating the last element of an array with 1000 elements. Only one
number will not exist, say 567. This requires the middle loop to spin around until
it randomly generates 567. Each time it doesn’t generate 567 the inner loop will
spin around 999 times looking for an existing match – very inefficient.

(b) (i) Hghndex Count MyArr(1) MyArr(2) MyArr(3) MyArr(4) MyArr(5)
 5 0
 1 1
 2 2
 3 3
 4 4
 5 5

GROUP TASK Activity
Code the above two algorithms in a programming language. Test each
coded routine using larger and larger values for HighIndex. Comment on
your results.

GROUP TASK Research
Big-O notation is a mathematical system for approximating the time
complexity of algorithms. In the above question the first algorithm is of
order n (often written O(n)) and the second algorithm is of order n3
(written O(n3). Research Big-O notation to confirm that the algorithms are
O(n) and O(n3) respectively.

GROUP TASK Activity
Describe the logic underpinning the processing performed by each of the
above algorithms. Demonstrate the general strategy of each approach
using slips of paper and a list of random values.

328 Chapter 7

Software Design and Development –The Preliminary Course

CHAPTER 7 REVIEW
1. A constant can best be described as:

(A) a value that changes its contents.
(B) a meaningful identifier.
(C) a value that does not change.
(D) something that has been predefined

in a programming language.
2. Non-standard control structures should:

(A) only be used when creating
flowcharts.

(B) only be used when creating
pseudocode.

(C) be used when creating both
flowcharts and pseudocode.

(D) never be used at all.
3. What is the name of the documentation

that describes identifiers, the data type
given to the identifier together with a
description of its purpose?
(A) IPO chart.
(B) Data dictionary.
(C) Structure chart.
(D) Data flow diagram.

4. What is the principal method for
documenting the logic of a software
program?
(A) Data dictionaries.
(B) Context diagrams.
(C) Data flow diagrams.
(D) Algorithms.

5. Jasmine is a programmer working for a
large software development company.
She has been given the task of
identifying the procedures and functions
of a particular program that her
company has undertaken to modify for
its client base. Which form of technical
documentation would be the most useful
for Jasmine to examine, to assist her in
identifying those procedures and
functions that need to undergo
modification?
(A) IPO chart.
(B) Context diagram.
(C) Structure chart.
(D) Algorithms.

6. Comments within the source code
should generally perform what function?
(A) They should explain what the code

does rather than how it does it.
(B) They should explain how the code

does it rather than what it does.
(C) They should explain what the code

does as well as how it does it.
(D) They shouldn’t explain anything –

they are only quick notes for the
programmer so he/she doesn’t
forget where they are up to.

7. Data dictionaries, IPO charts and data
flow diagrams are examples of:
(A) technical documentation.
(B) user documentation.
(C) reference manuals.
(D) internal documentation.

8. The two main steps involved in the
process of interpreting source code into
algorithms are:
(A) identifying each of the control

structures and then understanding
how the parameters have been
used.

(B) identifying each of the control
structures and then understanding
how the variables have been used.

(C) identifying each of the standard
control structures and then
identifying each of the non-
standard control structures.

(D) identifying and then representing
both the standard and non-standard
control structures into pseudocode.

9. What is the name given to the technical
documentation that gives an overall
view of a system?
(A) System model.
(B) Data dictionary.
(C) IPO chart.
(D) Decision tree.

10. User documentation often consists of:
(A) installation guides.
(B) online help.
(C) tutorials.
(D) All of the above.

Maintaining Software Solutions 329

Software Design and Development – The Preliminary Course

11. Describe features within the source code that enhance its maintainability.

12. Documentation of all kinds can greatly assist the job of maintenance programmers. This is
obviously true for technical documentation. Is it also true of user manual, online help and other
forms of user documentation? Justify your response.

13. In most languages, constants can be declared whose value cannot be changed within the code.
Why would this be useful? Explain in terms of modifying the code.

Consider the following Visual Basic .NET code when answering questions 14 and 15.

14. Comment on the documentation within the above code. Can you determine the purpose of
the RunAway function?

15. Convert the above Visual Basic function into an algorithm. (Use either a flowchart or
pseudocode)

Public Sub RunAway(ByVal X As Single,
 ByVal Y As Single,
 ByVal Distance As Integer)

 'Me being the current form and cmdMove a button on this form
 If Y > Me.cmdMove.Top - 100 And Y < Me.cmdMove.Top + Distance
 + Me.cmdMove.Height Then

 'Horizontally in line
 Me.cmdMove.Top = (Me.Height - Me.cmdMove.Height - 400) * Rnd

 If X > Me.cmdMove.Left - 100 And X < Me.cmdMove.Left + Distance
 + Me.cmdMove.Width Then

 'also vertically in line
 Me.cmdMove.Left = (Me.Width - Me.cmdMove.Width) * Rnd

 End If

 End If

End Sub

330 Chapter 8

Software Design and Development –The Preliminary Course

 In this chapter you will learn to:
• use appropriate project management techniques
• create and use Gantt charts and logbooks
• devis, document and im plement an appropriate

backup strategy that incorporates relevant version
numbers

• prepare suitable documentation to accompany
software solutions

• use appropriate application packages in creating
documentation to support a software solution

• create appropriate systems documentation for a
variety of programming tasks

• apply the steps in the software development cycle
when developing solutions

• produce a working solution from an algorithm
derived from a set of specifications

• effectively test a solution
• update a solution incorporating new requirements
• address relevant social and ethical issues in your

software solutions

Which will make you more able to:
• describe and use appropriate data types
• describe the interactions between the elements of a

computer system
• identify the issues relating to the use of software

solutions
• analyse a given problem in order to generate a

computer-based solution
• investigate a structured approach in the design and

implementation of a software solution
• use a variety of development approaches to generate

software solutions and distinguish between these
approaches

• use and justify the need for appropriate project
management techniques

• use and develop documentation to communicate
software solutions to others

• communicate with appropriate personnel throughout
the software development process

• design and construct software solutions with
appropriate interfaces.

In this chapter you will learn about:
Project management
• identifying tasks
• identifying required programs, modules and subroutines
• Gantt charts
• logbooks

– regular record of progress
– record of major milestones and stumbling blocks

• allocating resources
• regular backup with version numbers
• responding to difficulties

– reference to documentation such as manuals
– discussion with peers and experts
– reporting problems to management

• evaluating the solution
– throughout the process
– on completion

Documenting software solutions
• IPO diagrams
• context diagrams
• data flow diagrams (DFDs)
• storyboards
• structure charts
• system flowcharts
• data dictionaries
• Gantt charts
• logbooks
• algorithms
• user documentation including manuals and online help
Developing software solutions
• defining and understanding the problem

– preparation of initial documentation
• planning and designing

– identification of a suitable development approach
– design of appropriate algorithms
– identification and incorporation of appropriate existing

algorithms
– determination of appropriate data structures
– identification of relevant subroutines
– design of test data and expected output
– desk check of algorithms
– identification of existing code that can be used

• implementing
– coding the solution in an appropriate language
– testing using test data
– documenting the solution, including:

- algorithms
- test data and expected output
- data dictionary
- user documentation

• testing and evaluating
– testing of the solution using test data
– evaluating the implemented solution

• maintaining
– modifying the solution to meet original or changed

specifications
Social and ethical issues related to software solutions
• intellectual property
• ergonomics issues
• inclusivity and accessibility
• privacy

Developing Software Solutions 331

Software Design and Development – The Preliminary Course

 8
DEVELOPING

 SOFTWARE SOLUTIONS

Learning to design and develop software solutions is the aim of this course. In this
chapter, we work through this process using a sample project. Remember, there are
many possible development approaches and many different techniques that could be
used as part of the creation of a software product. We will be using just some of these
throughout this chapter. Projects you develop may lend themselves to different
approaches and techniques.
One area we have not yet examined in detail is the overall project management of the
design and development process. This is a vital aspect if tasks are to be completed on
time and resources are to be available when required.
Project management tasks to consider include:
• Identification of tasks – what needs to be done to complete the project?
• Allocation of resources – do we have the personnel, hardware, software, etc…

available to complete the tasks when required?
• Documentation – what documentation will be kept, including project management

documents such as Gantt charts and log books?
• Regular backup – what techniques and strategies are required to ensure the safety

and security of work in progress? How will different versions of the software be
retained during development?

• Response to difficulties – it is almost inevitable that problems will occur.
Programming language manuals and access to peers and other experts are
invaluable resources. How will we deal with and overcome difficulties we will
inevitably encounter?

• Regular reporting – who needs to be kept informed of the project’s progress and
how will this be achieved?

• Evaluation – how will the success of the project and the development process be
evaluated both during development and after completion?

Project management is about ensuring projects are completed on time and that they
achieve their objectives. Commercial software development teams would be assigned
a project manager whose task is to coordinate the overall design and development
process. These managers require high-level communication and time-management
skills. They must be able to adapt to change, motivate people and resolve conflicts.
Their job is to focus all personnel and resources on the accomplishment of the
project’s goals.

GROUP TASK Discussion
Examine each of the above bulleted points. Create a list of items that
should be considered when answering each of these questions. Share and
discuss your responses with the class.

332 Chapter 8

Software Design and Development –The Preliminary Course

DEVELOPING SOFTWARE SOLUTIONS
In the real world, software developers are presented with problems to solve. In our
case, we must first decide on the type and nature of the project we wish to produce. It
is important to select a project that will be useful and that can be realistically
achieved. Often this is not an easy task and it may be necessary to examine a number
of possibilities in detail before making the final decision.
During the creation of your software project, it is worthwhile maintaining a process
diary or logbook. Use this as you would a normal diary; write down details of the
design and development process as it unfolds. This logbook will prove invaluable
when it comes time to evaluate the project after completion.
SAMPLE PROJECT
For the purpose of this chapter, we shall develop a software application to automate
the operation of various household devices. There are hardware modules available
that transmit and receive messages using the power cabling within the walls of the
house using the X10 protocol. The aim of this project is to control these modules
enabling different devices to be switched on and off in various sequences and at
various times.
The most useful devices to control are those
that would normally have their own
individual timers and those devices where
switching them manually is inconvenient
because of the location of the switch.
Examples include pool filters, garden lights,
watering systems and perhaps inside lamps
for when children wake in the night. The
system includes motion sensors that can be
used to activate home security systems or
just to switch other devices on or off. For
example, for deaf people, a motion sensor
could be used to detect someone entering
the property and cause the lights in the
house to flash on and off.
In the USA and across many other countries, there are various implementations of this
‘smart home’ concept; a number of these are available in Australia. Some applications
include: automated video surveillance, the ability to control devices in the home using
a mobile phone or the internet, and multifunction remotes that control music and
video systems as well as lights and other household appliances. Each of these systems
can be integrated to further enhance the system’s functionality. For example, if you
are away from home and an intruder is detected by the video surveillance system you
could have your house dial your mobile phone and then email you video footage of
the intrusion. Furthermore, you could then call the house and turn on the sprinklers,
turn the stereo on at full volume and flash all the lights in the house on and off.

Fig 8.1
View of a backyard showing various devices

that could be controlled using our project and
X10 hardware modules.

GROUP TASK Activity
Research the ‘smart home’ concept using the Internet. Make a list of all
the devices and applications you find. Which do you think are the most
useful? Discuss your findings with the class.

Developing Software Solutions 333

Software Design and Development – The Preliminary Course

DEFINING AND UNDERSTANDING THE PROBLEM
Before the design of our project can commence, we need to define and understand the
problem precisely. What exactly is it that we hope to achieve, in other words what are
our requirements? We also need to be confident that these requirements are
achievable. To do this requires some detailed research in regard to the X10 protocol
and its related hardware.
Firstly let us reconstruct our problem as a set of requirements:
• The software will be able to switch devices attached to the mains power on and off

using the X10 protocol.
• Devices can be manually turned on or off using the application’s main screen.
• The software can automatically turn devices on and off at preset times each day.
• Messages received from motion sensors can be used to turn on or off other

devices. Different devices can be switched depending on the preset times.
• Timing and other settings are to be stored in a file. Different files can be used for

different sequences.
• The software is to run on a Windows platform.
• All devices that are on should be highlighted on the main screen.
A brief overview of X10 is in order. Firstly, each hardware module is either a receiver
or a transmitter or both. Receivers detect X10 commands on the power lines and
transmitters place X10 commands on the power lines. The power lines within the
house being the communication medium for the transfer of instructions. There is no
need for special wiring, X10 uses the existing power cables, this is the main
advantage of X10 over other systems.
Each X10 hardware module has its own two character address
comprising; a house code from A to P, and a unit code, from 1 to
16. This gives a total of 16 times 16 or 256 possible unique
addresses. These addresses are set manually on each device using a
small screwdriver during installation (see Fig 8.2). For example, the
garden lights may be A1 and the pool filter A2. To turn on the pool
filter requires the transmission of a message to turn A2 on. The
module attached to the filter’s power point responds by switching
on the power.
Let us now examine some X10 hardware modules and
consider some of the detail of their operation. The most vital
module is the computer interface module (CM11), this
module recieves instructions via the computer’s serial port
and converts them to X10 messages, which in turn are
transmitted down the existing power cables within the house.
This interface also detects X10 messages on the power cable
and transmits them back to the computer’s serial port.
Without this hardware module our project would be
impossible to implement. The unit also has its own memory,
battery backup and clock, we will not use these features in
our project. Rather our application will need to be running at
all times and will use the computer’s clock to determine the
timing of events.

Fig 8.3
The CM11 computer

interface module
attaches to one of the

computer’s serial ports.

Fig 8.2
An X10 module set

to house code A
and unit code 8.

334 Chapter 8

Software Design and Development –The Preliminary Course

Each device to be controlled requires either an X10 appliance
module, X10 lamp module or an X10 universal module.
Appliance modules are designed for higher power consumption
applications where as lamp modules contain a built-in dimmer
function. For our project we will not utilise the dimmer function.
The universal module is used to switch low voltage devices on
and off. Each of these modules are receivers only, they are able
to turn on devices or turn off devices in response to X10
messages containing their address.

Both lamp and appliance modules are available as plug-in units
or units that are hardwired. The plug-in units simply plug into an
existing power point and then the appliance or lamp to be
controlled is plugged into the X10 module.
Hardwired units can take the place of a power point
or can be installed behind an existing power point.
Hardwired modules should only be installed by
qualified electricians. Universal modules plug into
an existing power point and incorporate low voltage
input and output connections.

There are various sensors available that transmit
X10 messages. For our purposes, let us consider a
wireless motion sensor and its related receiver.
Motion sensors also have an X10 address, when
motion is detected they transmit a radio frequency
(RF) message containing their address together with an on signal. This message is
received by an RF transceiver module. The transceiver then transmits the message
over the power line. After a motion sensor sends an on message it waits a preset
period of time. If no motion has been detected during this time, an off message is sent.
Multiple motion sensors can transmit to a single transceiver, in fact the transceiver
can receive RF signals from a variety of different types of wireless devices. The
transceiver is both a receiver and also a transmitter; it receives RF messages from
wireless devices and it transmits these RF messages onto the power lines.

A typical scenario where a motion sensor may be
used in conjunction with our project could be: as you
walk out the back door of your house, the motion
sensor with address B1 detects your movement. It
sends an on message to the transceiver which in turn
transmits a B1 on message over the power lines. This
message is received by the CM11 computer interface
and sent to the serial port of the computer. The
software responds by say, sending messages to turn
on A1 and A4, which may be the garden and pool
lights. These messages reach the CM11 unit via the
serial port where they are transmitted across the
powerlines. The X10 module wired to the garden
light responds to the A1 on message and the garden light turns on, similarly the A4 on
message causes the pool light to turn on. If no motion is detected for a period of time,
the motion sensor would transmit a B1 off message resulting in units A1 and A4
being turned off.

Fig 8.4
An X10 plug-in
lamp module.

Fig 8.5
Lamp and appliance modules can
be hardwired by an electrician.

Fig 8.6
An X10 motion sensor and
associated RF transceiver.

Developing Software Solutions 335

Software Design and Development – The Preliminary Course

IDENTIFICATION OF INPUTS, PROCESSES AND OUTPUTS

Let us first create a list of inputs into our software, together with a list of outputs.
These lists should give us an indication of the processing required to transform the
inputs into the outputs. We can then construct a high-level model of our software
describing the general nature of the processing.

Inputs include:
• X10 commands from the serial port.
• Current time from the computer’s clock.
• Timer settings from stored files.
• User input of manual on and off commands.
• User input to create or edit timer setting files.

Outputs include:
• X10 commands sent to the serial port.
• Timer setting files saved to disk.
• Display of the status of each device.

Examining and considering the above inputs and outputs a number of relatively
independent high-level processes emerge:
• Creation, editing and saving of timer setting files.
• Display of current status of all devices.
• Manually turning devices on or off.
• Implementing timer setting files.

Creation,

editing and
saving of

timer setting
files

Display of
current

status of all
devices.

Imple-
menting

timer setting
files. Manually

turning
devices on

or off.

User

Serial
port

Disk
files

Computer
clock

settings

timer settings file

timer
settings file

timer
settings file

time

on/off
details

X10
commands

X10
commands

X10
commands

on/off
details

on/off
inputs

Fig 8.7
Dataflow diagram (DFD) for the X10 device control project.

GROUP TASK Discussion
Examine the above dataflow diagram. Describe the flow of data and the
general nature of the processing described on this diagram.

336 Chapter 8

Software Design and Development –The Preliminary Course

Let us now develop a series of IPO diagrams to further assist our understanding of the
problem. At this stage, we need not concern ourselves too much with the detail of how
the processing will occur rather our purpose is to understand what processing will be
required. We create an IPO diagram for each process identified on the DFD.

Analysis of the processing during the creation of the above IPO diagrams raises a
number of issues:
• a number of the IPO diagrams contain similar or identical processes. Perhaps at

the implementation stage these should be implemented as single subroutines.
• We need to carefully consider the design of suitable data structures to make

accessing the timer and other settings as efficient as possible. This includes the
structure of the saved files.

• In regard to the ‘Implementing timer settings’ files IPO diagram, it seems there
are two relatively independent processes occurring; implementing settings based
on the current time and implementing X10 commands originating from sensors.
Perhaps, it would be better to separate these two processes.

Input Process Output
On or off
command

Send command to
serial port

X10
command

 Change status of
device

 Refresh device status
display on main screen Status details

IPO DIAGRAM
Manually turning devices on or off

IPO DIAGRAM
Display of current status of all devices

Input Process Output

List of
devices

Format and display
each address and
description..

List of
devices on
main screen

Status of
each device

Refresh status of each
device on main screen.

Status of each
device on
main screen

IPO DIAGRAM
Implementing timer setting files

Input Process Output
Current time
from
computer’s
clock

Update time every
minute.

 Check timer settings
for each device

X10
command
from serial
port

Receive X10
commands as they
are detected

 Check sensor exists
and is active

Refresh status of
each device on main
screen.

Status of each
device on main
screen

 Send appropriate
X10 commands(s)

X10 commands
to serial port

IPO DIAGRAM
Creation, editing and saving of timer setting files

Input Process Output
file name and
location from
user

Create new file or
open existing file.

Various settings
from user

Add new devices or
edit existing devices
and settings

 Save edited file Timer
settings file

Fig 8.8
Preliminary IPO diagrams (or charts) for the X10 device control project.

GROUP TASK Discussion
Examine the above IPO diagrams in conjunction with the above
comments. Discuss the issues above and brainstorm possible solutions.

Developing Software Solutions 337

Software Design and Development – The Preliminary Course

IDENTIFYING A SUITABLE DEVELOPMENT APPROACH

We need to decide on a software development approach. Do we use a structured,
prototyping, rapid application development (RAD) or end user approach? After some
thought we decide on a cross between the prototyping and RAD approaches. The plan
is to create a prototype of the user interface based on our understanding of the
problem. This prototype will initially contain no real processing, that is, it will not
actually receive or transmit X10 commands. The aim being to first design and develop
a user interface that can be evaluated by potential users. As the development
progresses each subsequent prototype will have added functionality. As we have
experience using Visual Basic we will build our solution using this language. Visual
Basic is particularly suited to RAD as it allows various components to be integrated
into a single software solution.

Before continuing with the actual planning of the project let us briefly consider the
stages and timing of our design and development process. We create a general
overview of the projected nature of each of our prototypes:
• Prototype 1. – Initial storyboard of screen designs and creation of user interface.

The only processing being the ability to open screens and close them from the
appropriate places.

• Protoype 2. – Inclusion of file creation, editing and save functionality. Also
modifications to the user interface to reflect evaluation of prototype 1.

• Prototype 3. – Add ability to manually turn devices on and off. Also modifications
due to evaluation of prototype 2.

• Prototype 4. – Acting on timer settings. Sending messages to turn devices on and
off once the computer clock reaches the required time. Also modifications due to
the evaluation of prototype 3.

• Prototype 5 – Acting on X10 commands from sensors. This prototype includes all
the functionality of the final product. Also modifications due to the evaluation of
prototype 4.

• Final modifications. – Modifications are made in response to the evaluation of
prototype 5. We also need to thoroughly test the final solution and create setup
files for distribution.

• Documentation – Create user documentation and ensure all development
documentation is correct.

We need to ensure that our project is completed within the available timeframe; let’s
just assume we have three months or about fourteen weeks to complete the project. To
facilitate this process we create a Gantt chart (see Fig 8.9). Gantt charts are graphs
designed to ensure each task that forms part of a project is sequenced correctly and is
allocated an appropriate amount of time. Before finalising the Gantt chart, we should
also ensure required resources will be available when needed.

GROUP TASK Discussion
Do you think the use of a rapid prototyping software development
approach is suitable for this project? Justify your response.

338 Chapter 8

Software Design and Development –The Preliminary Course

Fig 8.10
Initial design for the main screen.

PROTOTYPE 1
Initial storyboard of screen designs and creation of user interface. The only
processing being the ability to open screens and close them from the appropriate
places.

We first develop a series of screen designs on paper. After much thought, and many
trashed designs, we decide on a series of designs. The first prototype requires three
screens: the main screen, the edit devices screen and the edit sensor commands screen.

Time (weeks)

Prototype 1

Prototype 2

Prototype 3

Prototype 4

Final modifications

Documentation

0 3 2 4 5 6 7 8 9 10 11 12 13 14 15 1

Development

Evaluation

Fig 8.9
Gantt chart for the X10 device control project’s development.

GROUP TASK Discussion
Examine the above Gantt chart. How will this chart assist during the
development process? Why do you think so much time is spent on
evaluation? How can the next prototype be commenced before the
previous one has finished being evaluated? Discuss.

Developing Software Solutions 339

Software Design and Development – The Preliminary Course

The screens accessed from the file menu will use standard MS-Windows dialogs,
similarly for the help screens. These screens will be added in subseqsequent
prototypes as the need arises. Let us consider the operation of each of the three
screens included in this prototype.

The main screen (see Fig 8.10) contains drop down menus to access functions. All
devices are listed on the screen together with their current status. Clicking once on a
description selects that device. If you then choose the Edit option on the Device menu
the Edit Device screen opens with the details of the selected device displayed. Double
clicking a description also opens the Edit Device screen for that device. Clicking on
the status of a device toggles the device on and off. On will be displayed in green and
Off in red as a further visual indicator. Sensor devices can have a status of Active or
Inactive based on their timer settings. At the bottom of the screen, the last X10
command sent or received is displayed together with the time it occurred. The current
time is displayed in the right hand bottom corner.

The edit device screen is used to set the details for each device (see Fig 8.11). It is
essentially a data input screen. If the sensor check box is selected then the Edit
Commands command button becomes active and the timing labels change to Active
from and Active to. Clicking on the Edit Commands button will then open the Edit
Sensor Commands screen. The timing settings for recievers cause them to turn on or
off at the specified times. The timing settings for transmitters (sensors) cause the
commands specified on the Edit Sensor Commands screen to become active between
the specified times. Often users will wish different commands to take place at
different times in response to sensors. For example, at night time we may wish the
garden lights and fountain to switch on whereas during the day only the fountain
should turn on. The user would create two devices using the same sensor to
implement such a scenario.

The Edit Device screen, and also the Edit Sensor Commands screen, should be modal.
This, in effect, means they must be closed before the user can return to the parent
screen.

Fig 8.11
Initial design for the edit device screen.

340 Chapter 8

Software Design and Development –The Preliminary Course

The Edit Sensor Commands screen lists all devices that are not sensors. It is used to
specify the commands to be sent when a sensor message is received. For example, the
data on the screen in Fig 8.12 means when the backyard sensor with address B1
transmits an on command the fountain will turn on and the lawn sprinklers will turn
off, when the sensor tranmits an off command the fountain will turn off. Note that this
will only occur between the times specified on the Edit Device screen.

We now need to build our user interface in Visual Basic. The device lists on both the
main screen and the edit sensor commands screen are best implemented using a grid
control. Other controls used include forms, menus, text boxes, labels, command
buttons and a status bar for the bottom of the main screen. Each control’s name
commences with a three character mnemonic to indicate its type.

Fig 8.12
Initial design for the edit sensor command screen.

GROUP TASK Discussion
Examine the above screen designs. Can you suggest any modifications that
may improve their useability? Discuss.

Fig 8.13
The main screen implemented in Visual Basic. Each control’s name commences

with a three character mnemonic eg. the screen is called frmMainScreen

grdStatusGrid

mnuAddNew

mnuEdit

stbCommandTime

frmMainScreen

Developing Software Solutions 341

Software Design and Development – The Preliminary Course

The screen shots in Fig 8.14 show the
completed user interface and in
particular they show the changes
resulting when the value of the sensor
check box is altered. This is really the
only significant piece of processing
that requires some thought. Fig 8.15
shows the Visual Basic .NET
procedure created for this purpose.
When reading this code, be aware that
when a check box is checked it’s
Checked property is true and when it
is not checked this property is false.
Other code is written to open and close forms from the appropriate places. Both the
Edit Device and Edit Commands screens are opened as dialogs using the ShowDialog
method – this ensures users must complete editing before returning to the main
screen. The main screen also requires properties to be set appropriately to alter the
size of the grid should the user resize the window. These settings maintain the status
column at a constant width whilst the device column grows and shrinks to fit.
The completed prototype is compiled into an executable file and distributed via email
to a number of friends for evaluation. At this stage, we are primarily interested in their
ability to intuitively understand the operation of the user interface, however they are
asked to comment on any errors they encounter.

Private Sub SensorInput()
 cmdEditCommands.Enabled =
 chkSensor.Checked
 If chkSensor.Checked Then
 lblOn.Text = "Active from:"
 lblOff.Text = "Active to:"
 Else
 lblOn.Text = "On at:"
 lblOff.Text = "Off at:"
 End If
End Sub Fig 8.15

Procedure to alter aspects of the Edit Device screen
when the value of the sensor check box is altered.

Fig 8.14
EditDevice and EditCommands screens for the X10 controller project.

Note the changes dependent on the sensor check box.

Clicking on Edit
Commands button
opens the Edit
Commands screen

342 Chapter 8

Software Design and Development –The Preliminary Course

PROTOTYPE 2
Inclusion of file creation, editing and save functionality. Also modifications to the
user interface to reflect evaluation of prototype 1.

Before we can create, edit or save a settings file we must determine the data structures
to use within the code. We can then work out a method for arranging and then storing
this data to a disk file.

Let us list the data items required for each device to be controlled by our project:
• Description – a text description of the device eg. Pool light.
• X10 Address – two or three characters, the house code being a letter from A-P, the

remainder being characters representing the unit number from 1 to 16 eg. A14.
• Sensor – Boolean, either the device is a sensor or it is not eg. True or False.
• Time On 1 – four digits representing time in 24 hour format eg. 1430.
• Time Off 1 – same as Time On 1.
• Time On 2 – same as Time On 1.
• Time Off 2 – same as Time On 1.

For each sensor, we also require data in regard to which devices should be turned on
or off when the sensor turns on and similarly for when the sensor turns off:
• Sensor identifier – so we know which sensor this data applies to.
• Sensor message – Boolean value indicating whether this data applies when the

sensor turns on or when the sensor turns off.
• Device identifier – some method of identifying the device to be turned on or off.
• Device command – Boolean value indicating whether to turn the device on or turn

the device off.

There is no data item that uniquely identifies a particular device, however we need
one to use as the sensor and device identifier in the above structure. The simplest
solution is to add an extra field specifically for this purpose. We can use an integer
that is incremented for each new device.

Let us examine some sample data to assist our understanding. We then create a type
declaration to define each data structure in Visual Basic .NET.

Consider sample data on each device:
Description X10

Address
Sensor Time

On 1
Time
Off 1

Time
On 2

Time
Off 2

Device
Identifier

Garden Lights A1 False 1800 2200 0500 0630 1
Pool Filter A2 False 2300 0400 2
Fountain A3 False 3
Pool Light A4 False 4
Backyard Sensor Day B1 True 0700 1730 5
Backyard Sensor Night B1 True 1730 2300 0400 0700 6

GROUP TASK Activity
Identify and suggest names for each of the controls used on the Edit
Devices and Edit Sensor Commands screens.

GROUP TASK Discussion
To make the screens open and close in the appropriate places requires
statements to be executed in response to particular events. Identify the
events and controls where these statements must be located.

Developing Software Solutions 343

Software Design and Development – The Preliminary Course

This data could be implemented as an array of records. To reflect the sample data
above each record would require eight fields. However it may be more efficient to
combine the time on and off fields into an array containing four elements. Splitting
the X10 address into House and Unit code will likely assist data entry and validation.
In addition we will require a field to store the current status of each device (either On
or off) whilst the program run. Each record would therefore have seven fields, one of
them being the time array which will contain four elements. Note that devices need
not have any timer settings entered, however all other fields must contain data.

In Visual Basic .NET, these user defined type definitions are best placed within a
module so they can be used throughout the application. If we use the Public keyword
then we can use our data
structures to declare instances
of these data types anywhere
within our code.
Fig 816 is the code used to
define the DeviceRecord data
structure in Visual Basic .NET.
We will later use this definition
to create an array of these
records for storing each device.
We now consider the structure
to store the commands resulting from a sensor command (refer Fig 817). A separate
record is used for each command that will be transmitted when a sensor’s message is
received Again, we will require an array of these records. Some sample data is
reproduced in the table below:

We now need to consider the processing required to build the solution in Visual Basic
using the above data structures. Some issues that need to be considered.
1. Data entered on the Edit Device screen needs to be stored in the appropriate

position within the device data structure. To do this, we need to track the number
of devices currently stored.

2. Data held in the device data structure should be reflected on the main screen. The
grdStatusGrid on the main screen (refer Fig 8.13) is a DataGridView .NET
component. This component can be bound to a data source (such as our device
data structure) to manage updating of the display to reflect the current data.

GROUP TASK Discussion
Examine the Visual Basic code in Fig 816 and 817 in conjunction with
the sample data in the tables. What are the links between data held in these
two structures? Discuss using examples from the sample data.

Sensor
Identifier

Sensor
Message

Device
Identifier

Device
Command

6 On 1 On
6 On 3 On
6 On 4 On
6 Off 1 Off
6 Off 3 Off
5 On 3 On
5 Off 3 Off

'Structure for storing sensor commands
Public Structure SensorRecord
 Public SensorID As Integer 'matches the sensor’s ID
 Public SensorMessage As Boolean 'On or Off
 Public DeviceID As Integer 'not the ID of a sensor
 Public DeviceCommand As Boolean 'On or Off
End Structure

Fig 8.17
Visual Basic .NET definition for the

SensorRecord data structure.

'Structure for storing each X10 device
 Public Structure DeviceRecord
 Public Description As String 'Name of device
 Public House As String 'A-P
 Public Unit As String '1-16
 Public Sensor As Boolean 'True if it is a sensor
 Public ID As Integer 'must be unique
 Public Time() As String '24 hour time 0001 to 2400
 Public Status as String ‘On or Off
End Structure

Fig 8.16
Definition of the DeviceRecord data structure.

344 Chapter 8

Software Design and Development –The Preliminary Course

3. File operations should use MS-Windows dialogs. .NET components called the
OpenFileDialog and SaveFileDialog are available to simplify this process.

4. Save function must write the entire contents of both device and sensor command
data structures to a file.

5. Open command needs to first remove data in memory before reading the data
from the file into the device and sensor command data structures.

6. Need to determine if data in memory has been saved. We don’t want to open an
existing file whilst unsaved data is loaded, similarly when exiting the program and
creating new files.

Let us create an algorithm for the first
item in our list (see Fig 8.18). This
algorithm includes the identifier
DeviceCount, this variable is used to
store the number of records that are
currently held in the Device array.
This identifier would be used in many
places throughout the project, so we
declare it as a global variable.
Similarly for the IDCount identifier.
This variable is used to uniquely
identify each record in the Device
array.

Two processes in Fig 8.18 require
further detail; the ValidInputs function
and refreshing the main screen to
reflect data changes. Refreshing the
main screen will be required whenever
data is changed and fulfils the second
item on our list above. Initially we
code the ValidInputs function as a
simple stub which always returns true.

Consider the second item on our list, namely, refreshing the main screen. Essentially
we need to load the grid on the main screen with the current device data held in the
Device array. After testing we find the .NET DataGridView component includes a
DataSource property which when set to the Device data structure causes the grid to
be refreshed with the current data. In our application, the statement
grdStatusGrid.DataSource = Device effectively causes the grid to display the current
data. Edits to the DeviceRecord structure were also needed to change the fields we
wish to display to properties, for example, Public Property Description As String rather
than Public Description As String. Similar edits are made to the House, Unit and Status
fields within the DeviceRecord structure defined in Fig 8.16.

GROUP TASK Discussion
We have not considered the format of the data files. Discuss the data
items that need to be saved and possible formats for this data.

BEGIN StoreDevice

Developing Software Solutions 345

Software Design and Development – The Preliminary Course

The StoreDevice subroutine will be executed each time the user clicks on the OK
button on the EditDevice screen (refer Fig 8.14). In summary the StoreDevice routine
updates the Device array with edits to existing records and creates a new record for
any new devices entered by the user.

We now create algorithms and code to save the data to a file and open files previously
created. Source code to open an existing file is reproduced in Fig 8.19 and Fig 8.20.

Public Sub OpenFile()
 Dim FileName As String
 Dim FileNum As Integer
 Dim Count As Integer, C As Integer

 'first check for existing data and see if it is wanted
 If CheckExisting Then 'data exists
 Exit Sub
 End If

 OpenFileDialog1.Filter = "X10 Settings (*.x10)|*.X10"
 OpenFileDialog1.FileName = ""
 OpenFileDialog1.ShowDialog()
 FileName = OpenFileDialog1.FileName
 If FileName = "" Then Exit Sub

 'adjust the main screen caption to include the file name
 Me.Text = "X10 Controller (" & FileName & ")"

 'open the file for reading
 FileNum = FreeFile
 FileOpen(FileNum, FileName, OpenMode.Input)

 'read the data for each device
 Input(FileNum, DeviceCount)
 Input(FileNum, IDCount)
 ReDim Device(DeviceCount)
 For Count = 0 To DeviceCount - 1
 Input(FileNum, Device(Count).Description)
 Input(FileNum, Device(Count).House)
 Input(FileNum, Device(Count).Unit)
 Input(FileNum, Device(Count).Sensor)
 Input(FileNum, Device(Count).ID)
 ReDim Device(Count).Time(3)
 For C = 0 To 3
 Input(FileNum, Device(Count).Time(C))
 Next
 Device(Count).Status = "Off"
 Next

 'read the data for each sensor command
 Input(FileNum, SensorCommandCount)
 ReDim SensorCommand(SensorCommandCount)
 For Count = 0 To SensorCommandCount - 1
 Input(FileNum, SensorCommand(Count).SensorID)
 Input(FileNum, SensorCommand(Count).SensorMessage)
 Input(FileNum, SensorCommand(Count).DeviceID)
 Input(FileNum, SensorCommand(Count).DeviceCommand)
 Next

 ‘close the file
 FileClose(FileNum)

 'resetting datasource causes refresh of grid
 grdStatusGrid.DataSource = Device

End Sub Fig 8.19
Source code for OpenFile subroutine in Visual Basic .NET

346 Chapter 8

Software Design and Development –The Preliminary Course

Assume we have completed the requirements for prototype 2 (essentially the 6 steps
on pages 343-344). We now need to consider changes in response to our evaluation of
prototype 1. Most of the comments were in regard to validating data entry on the
EditDevice screen. These issues are corrected as part of the ValidInputs function we
previously wrote as a simple stub. This function is called before the data on the
EditDevice screen is stored in the Device data structure (refer StoreDevice algorithm
in Fig 8.18).

Examining the input areas on the EditDevice screen (Fig 8.14), a number of possible
user input errors need to be checked by the ValidInputs function:
1. Description – a blank description is not appropriate.
2 House code – must be a single upper case letter from A through to P.
3. Unit code – must be an integer from 1 to 16.
4. Timing – 24 hour time so must be in the range 0001 to 2400. The third digit

represents the ten’s column for minutes and therefore cannot be greater than 5.

GROUP TASK Discussion
Examine the OpenFile source code in Fig 8.19. Describe the structure of
the files that are opened (and saved) by the program.

Public Function CheckExisting() As Boolean
 Dim msgResult As Integer
 Dim Check As Boolean = False

 If DeviceCount > 0 Then 'data exists
 msgResult = MsgBox("Only one file can be open at a time." & vbCrLf &
 "Unsaved changes will be lost." & vbCrLf &
 "Do you want to continue?", vbOKCancel + vbExclamation, "Open File")
 If msgResult = vbOK Then
 NewFile()
 Else
 Check = True
 End If
 End If

 Return Check

End Function

Public Sub NewFile()
 ReDim Device(0)
 ReDim SensorCommand(0)
 DeviceCount = 0
 SensorCommandCount = 0
 grdStatusGrid.DataSource = Device
 Me.Text = "X10 Controller"
End Sub Fig 8.20

Source code for CheckExisting and NewFile subroutines.

GROUP TASK Discussion
Why do you think the CheckExisting and NewFile subroutines in Fig 8.20
are written as separate subroutines rather than their statements being
included directly within the OpenFile subroutine? Discuss.

GROUP TASK Activity
Create a structure chart for the OpenFile, CheckExisting and NewFile
subroutines shown in Fig 819 and Fig 8.20.

Developing Software Solutions 347

Software Design and Development – The Preliminary Course

PROTOTYPE 3
Add ability to manually turn devices on and off. Also modifications due to
evaluation of prototype 2.

Our software must be able to transmit X10 commands, in a suitable format, to the
computer’s serial port. It must also be able to understand X10 commands received
from the serial port. It seems we will require detailed technical knowledge of the X10
protocol to achieve this communication. More to the point we require detailed
knowledge in regard to the format of commands used and sent from the CM11
computer interface. This could be a
rather time consuming and highly
technical process.

There are many commercial
software products that already use
the CM11 computer interface.
Many of these products include
Active X, or similar controls, that
can be used by Visual Basic.
HomeSeer Technologies, who were
previously Keware technologies, is
a software development company
that produces and markets a
number of ‘smart home’ software
products. Fortunately, for us, they
have made their CM11 Active X
control available for free personal
use.

We download the Active X control from the Internet, run the setup program, and then
include a reference to the control in our Visual Basic project. The X10 control is now
ready for use.

The X10 control is added to the
main screen of our project. The
user guide accompanying the
control indicates our code should
first set the communication port
and then initialise the CM11
computer interface (see Fig
8.22). The exec method is used
to transmit messages and the
x10event will allow our project

GROUP TASK Discussion
Suggest reasons why HomeSeer would decide to allow people to use their
Active X CM11 control free of charge. Discuss both advantages and
disadvantages for HomeSeer that may result from this decision.

GROUP TASK Activity
Design an algorithm for the ValidInputs function. Ensure your algorithm
detects the four possible user input errors outlined above.

Fig 8.21
Adding a reference to the CM11 Active X control from

the current Visual Basic project.

The control is very easy to use and contains 3 properties 5 methods
and 1 event.
To get started, first initialize the control.

1. Set the comport property to the Com Port your CM11A is
connected to. The default is 2, but on some computers the
CM11A maybe connected to Com Port 1.

2. Then invoke the init method. The init() method returns the
status. 0 indicates OK and other values indicate error
conditions you need to handle.

3. Invoke the exec method to send X10 commands.
When the module detects X10 commands, it invokes the event
x10event.

Fig 8.22
Extract from the HomeSeer Active X user guide.

348 Chapter 8

Software Design and Development –The Preliminary Course

to receive messages. For prototype 3 we need to just transmit messages to receiving
X10 devices, so for the time being we need only concern ourselves with the exec
method. Examining the documentation for the X10 control reveals the format of the
exec method:
controlname.Exec (housecode as String, devicecode as String, command as Integer)

The housecode is from A to P, devicecode from 1 to 16 and command from 0 to
15. The only commands relevant to our project are the on and off commands which
correspond to values of 2 and 3 respectively. For example, the statement
exec(“A”,”1”,2) would cause the device with address A2 to turn on.
Let us now consider the processing required to allow us to manually turn devices on
and off. Remember this will occur when the user double clicks on the status of a
device on the main screen.
1. We need to determine the serial port (comport property of the X10 Active X

control) where the CM11 computer interface is connected. We then initialise this
port as the program loads.

2. When the user double clicks on the status of a device:
• the status message changes from off to on, and the colour of the text changes

from red to green, and vice versa.
• the Status field for the device is changed in the Device array.
• a message is displayed in the status bar at the bottom of the screen
• the appropriate exec command is sent to the X10 Active X control.

Let us consider the first item on our
list. It would be nice if the user had
the option to connect or not connect
to the CM11 unit. This would allow
the program to simulate operation
where a CM11 unit was not
available. Furthermore it would be
good if the program could search the
serial ports to find the location of the
CM11 unit automatically.
We decide to implement this
initialisation of the CM11 unit using
a separate form which opens over the
top of the main screen when the
program is first launched. Assume the form and its
opening functionality have already been implemented in
Visual Basic. If the user selects OK the code attempts to
initialise the CM11 interface from serial port 1 through
to port 4. Fig 8.23 shows an initial view of the project,
including this form, and Fig 8.24 shows the form after
the user clicks OK and initialisation of the CM11 fails
and then again after a successful initialisation.
The code controlling this processing is reproduced in
Fig 8.25. As indicated in the code, the form is called
frmInitialise and contains three labels named lblQuestion,
lblMessage and lblSuccess, together with two buttons
named cmdOK and cmdCancel.

Fig 8.23
The initial view when the X10 project is first executed.

Fig 8.24
CM11 connection failure and

success screens.

Developing Software Solutions 349

Software Design and Development – The Preliminary Course

Public Class frmInitialise

 Public CM11Linked As Boolean = False

 Private Sub cmdOK_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Handles cmdOK.Click
 If CM11Linked Then
 'OK button closes the form
 Me.Close()
 Else
 'Try to connect to CM11
 InitialiseCM11()
 End If
 End Sub

 Public Sub InitialiseCM11()
 Dim TempComPort As Integer = 1
 Dim msg As String = ""

 Me.lblQuestion.Text = "Attempting to connect to the CM11 computer interface..."
 Me.cmdOK.Enabled = False
 Me.cmdCancel.Enabled = False
 Me.lblMessage.Text = ""
 Me.lblSuccess.Text = ""

 'Attempt to initialise the CM11 interface
 'try comports 1 to 4
 While TempComPort < 5 And Not CM11Linked
 msg = msg & "Trying to connect to COM" & TempComPort
 Me.lblMessage.Text = msg
 frmMainScreen.Axcontrolcm1.comport = TempComPort
 If frmMainScreen.Axcontrolcm1.Init = 0 Then
 msg = msg & "...Success" & vbCrLf
 frmMainScreen.tsslX10Message.Text = "CM11 computer interface initialised on COM" &
 TempComPort
 CM11Linked = True
 Else
 msg = msg & "...Fail" & vbCrLf
 End If
 Me.lblMessage.Text = msg
 TempComPort = TempComPort + 1
 End While

 'Deal with success or failure
 If CM11Linked Then
 'Success
 Me.lblSuccess.ForeColor = Color.Green
 Me.lblSuccess.Text = "Success"
 Else
 'Fail
 Me.lblSuccess.ForeColor = Color.Red
 Me.lblSuccess.Text = "Fail"
 Me.lblQuestion.Text = "Try to connect again?"
 frmMainScreen.tsslX10Message.Text = "CM11 computer interface not initialised"
 Me.cmdCancel.Enabled = True
 End If

 Me.cmdOK.Enabled = True

 End Sub
End Class

GROUP TASK Discussion
Analyse the above Fig 825 source code to determine how the two screens
shown in Fig 8.24 were produced.

Fig 8.25
Visual Basic .NET code to initialise the CM11 interface.

350 Chapter 8

Software Design and Development –The Preliminary Course

The second item on the above list involves actually responding to manual inputs from
the user and sending the appropriate X10 message. We write an algorithm, as a
flowchart, to describe the logic that should occur in response to the user double
clicking on a device’s status within the main screen’s grid. This algorithm is then built
as a procedure in Visual Basic.

The above procedure is executed when the
double click event for the grid on the main
screen occurs. When the program is
executed we find it would be more intuitive
if the RespondToManual subroutine only
executed when the status for a device is
double clicked. For the description, house
and unit columns it would be more user
friendly to open the Edit Device screen for
that device. We alter the code
appropriately. Another problem emerges:
double clicks cannot be initiated using the
keyboard. Using the keyboard there is no
way to manually turn devices on or off.

Fig 8.27
Typical screen shot of Prototype 3 in action.

Public Sub RespondToManual()

 Dim Command As Short
 Dim msg As String
 Dim Index As Integer = grdStatusGrid.CurrentRow.Index

 'if device is on then turn it off and vice versa
 If Device(Index).Status = "On" Then
 Device(Index).Status = "Off"
 grdStatusGrid.CurrentCell.Style.ForeColor = Color.Red
 Command = 2
 Else
 Device(Index).Status = "On"
 grdStatusGrid.CurrentCell.Style.ForeColor = Color.Green
 Command = 3
 End If

 'place message in status bar
 msg = Device(Index).Description & " turned " & Device(Index).Status
 & " at " & Format(TimeOfDay, "HHmm")
 tsslX10Message.Text = msg

 'send command to CM11 interface
 Axcontrolcm1.Exec(Device(Index).House, Device(Index).Unit,
 Command)
End Sub

BEGIN
RespondToManual

Set Index to current
row of grid

Set Device(Index)
.Status to “Off”

Set Device(Index)
.Status to “On”

Change colour on
grid to red “Off”

Change colour on
grid to green “On”

Set Command to 3 Set Command to 2

Place message
in status bar

Send Command to
address

Device(Index).House,
Device(Index).Unit

END
RespondToManual

 Is
Device(Index)
.Status = “On”

?

Yes No

Fig 8.26
Algorithm and Visual Basic procedure to respond to manual user inputs.

GROUP TASK Activity
Analyse the flowchart and Visual Basic code above. Explain how each
element of the flowchart has been built in Visual Basic .NET.

Developing Software Solutions 351

Software Design and Development – The Preliminary Course

The requirements for prototype 3 have largely been completed. However, before we
commence work on prototype 4 we must first consider the results from the evaluation
of prototype 2. A number of issues have arisen, the most significant being problems
relating to the lack of warnings when data is to be lost. For example, if the program is
exited using the close button in the top right hand corner, there is no warning given
under any circumstance; the program just ends. Although these problems are crucial,
our time constraints mean that we must leave their solution to a later prototype.

PROTOTYPE 4

Prototype 4 sends X10 commands
to devices as a result of the timer
settings for each non-sensor
device. A timer control is used to
implement this process in Visual
Basic.

Timer controls generate a timer
event at preset intervals of time. In
our project we need to check our
time settings every minute so we
set the timer control’s interval
property to 60000; meaning the
timer event will fire repeatedly
each time 1 minute or 60000
milliseconds has elapsed.

The code to actually turn the
devices on or off is executed each
time this timer event occurs. Our code needs to scan through each time setting in the
Device array looking for times that are equal to the computer clock’s current time. In
most cases, no such time will be found, however, when a match is found the code
must respond by sending the appropriate exec command to the CM11 interface.

However, if the device is a sensor then no command should be sent, rather its Status
field should be altered accordingly. Inactive sensor devices should have a Status field
equal to “Off” and active one’s equal to “On”.

GROUP TASK Discussion
Suggest modifications that could be made to the project to allow use of
the keyboard to manually turn devices on or off. Discuss your suggestions.

GROUP TASK Discussion
Do you understand the difference between sensor devices and other
devices? Why do we talk about sensor devices being active and inactive
where as other devices are on or off? Discuss.

GROUP TASK Activity
Create an algorithm to be implemented when each timer event occurs.
Remember to alter the status of each device and to display a message in
the status bar when an X10 command is sent.

Fig 8.28
The interval property for the timer control determines the

period of time in milliseconds between timer events.

352 Chapter 8

Software Design and Development –The Preliminary Course

PROTOTYPE 5
This is the final prototype, it adds the ability of the project to respond to X10
messages transmitted by sensors. The Active X control, we added to the project as
part of prototype 3, has an event called X10event, this event fires each time an X10
command is detected on the power line by the CM11 computer interface. The
parameters included as part of this
event include the sensor’s X10
address as well as the command
detected. The code required for
prototype 5 will execute in
response to each X10event.
The pseudocode shown in Fig 8.29
describes much of the logic
required to respond to each
X10event. The identifier called
DeviceCount is a global variable
that tracks the number of records
held in the zero indexed Device
array.

FINAL MODIFICATIONS AND DOCUMENTATION
The bulk of the effort spent on final modifications does not really involve modifying
the project at all! Most of the time is spent checking the solution. This is carried out
by a number of friends who have purchased X10 equipment as well as other friends
who use the project as a simulation.
Most of the problems encountered are hardware issues; many people found that
interference on the powerlines at times blocked or scrambled the X10 signals.
Unfortunately, X10 devices do not send feedback so it is impossible to confirm that a
device actually received and responded to a command. One possible solution is to
send each command multiple times with a delay between each. Fortunately the motion
sensors already do this; they continue to send “On” commands at preset intervals
whilst movement is being detected.
The user documentation is largely in the form of online help screens. We intend
distributing the product free of charge using the Internet so printed documentation is
not produced. Some users experienced difficulty understanding the difference
between sensors and other devices. Perhaps there is a more natural way of
implementing this concept, however, for the time being we ensure our online help is
quite detailed in this regard.

BEGIN RespondToSensor (Adress, Command)
 Index = 0
 WHILE Index < DeviceCount
 IF Address of Device(Index) = Address THEN
 IF Device(Index).Status = “On” THEN
 DeviceID = Device(Index).ID
 TransmitSensorCommands(DeviceID, Command)
 ENDIF
 ENDIF
 Add 1 to Index
 ENDWHILE
END RespondToSensor

Fig 8.29
Algorithm for responding to X10 events

originating from sensors.

GROUP TASK Discussion
Describe the processing occurring in the RespondToSensor algorithm in
Fig 8.29. The X10event returns the address as a single parameter. What
problem does this create and is this problem dealt with in the above
algorithm? Discuss.

GROUP TASK Discussion
The set-up program and executables are compressed into a single
installation file as we intend distributing the product freely over the
Internet. What social and ethical issues should we consider before we
commence distribution of our product? Discuss.

Developing Software Solutions 353

Software Design and Development – The Preliminary Course

A “family tree” software application is being developed.

The application uses two files to store all the names and genders of each family
member, together with information in regard to parent–child relationships.

Example files used by the application are reproduced below:

This stored information is then processed to generate further information for a
specified individual, namely lists of their:

• parents
• children
• brothers
• sisters
• grandparents
• grandchildren

Question continues on the next page.

HSC style question:

• aunts
• uncles
• cousins
• nieces
• nephews

FamNames.txt
Nerk,Sam,M,1
Nerk,Aileen,F,2
Nerk,Peter,M,3
Smith,Cathy,F,5
Nerk,Matthew,M,7
Nerk,Janine,F,21
Martin,Marion,F,22
Nerk,Louise,F,8
Nerk,Melissa,F,9
Nerk,Kim,F,10
Nerk,Luke,M,11
Smith,Greg,M,12
Smith,Marta,F,17
Smith,Isaac,M,18
Nerk,Eliza,F,19
Nerk,Henry,M,20
Nerk,Karina,F,28

ParentChild.txt
1,8
1,9
1,10
1,11
2,1
2,5
2,7
3,1
3,5
3,7
12,17
12,18
5,17
5,18
7,19
7,20
28,19
28,20
22,8
22,9
22,10
27,21
21,11

354 Chapter 8

Software Design and Development –The Preliminary Course

(a) The user interface has been designed and is reproduced below:

Analyse the above user interface in terms of the appropriateness of the screen
elements used and the apparent relationships between them.

(b) Algorithms have been written to load each of the two files:
BEGIN LoadFamNames
 Open file FamNames.txt for Input
 Index=0
 WHILE NOT end of file FamNames.txt
 Read FamNames(Index).Surname
 Read FamNames(Index).CName
 Read FamNames(Index).Gender
 Read FamNames(Index).ID
 Add 1 to Index
 ENDWHILE
 NumNames= Index - 1
 Close file FamNames.txt
END LoadFamNames

BEGIN LoadParentChild
 Open file ParentChild.txt for Input
 Index=0
 WHILE NOT end of file ParentChild.txt
 Read ParentChild(0,Index)
 Read ParentChild(1,Index)
 Add 1 to Index
 ENDWHILE
 NumParentChild= Index - 1
 Close file ParentChild.txt
END LoadParentChild

(i) Describe the data structure FamNames and the data structure ParentChild.

(ii) Construct an algorithm for a subroutine called PersonName to which a
person’s ID is passed and their name is returned. For example, using the
sample file data an ID of 8 would return Nerk, Louise.

(You may assume the FamNames data structure has already been loaded
with data using the LoadFamNames subroutine above).

Developing Software Solutions 355

Software Design and Development – The Preliminary Course

(iii) Identify where the subroutine PersonName would be useful within the
context of the whole application.

(c) Construct an algorithm for a subroutine called Children.

A call to the Children subroutine includes a person’s ID as a parameter. The
subroutine returns an array (arrChildren) containing the ID of each of the person’s
children.

For example, Karina Nerk’s ID is 28, hence calling the Children subroutine with
an ID of 28 returns an array with arrChildren(0)=19 and arrChildren(1)=20.

(You may assume the ParentChild data structure has already been loaded with
data using the LoadParentChild subroutine from part (b)).

(d) The following series of algorithms relate to finding an individual’s brothers and
make use of the Children subroutine you have just designed in part (c).

A call to the Brothers subroutine includes a person’s ID. The subroutine returns
an array (arrBrothers) containing the ID of each of the person’s brothers.

BEGIN Brothers(ID)
 arrSbngs = Slings(ID)
 Count=0
 FOR Index = 0 TO last index in arrSiblings
 IF IsMale(arrSiblings(Index)) THEN
 arrBrothers(Count)=arrSiblings(Index)
 Increment Count
 ENDIF
 NEXT Index
 RETURN arrBrothers
END Brothers

BEGN Sbngs (ID)
 arrParents = Parents(ID)
 Count = 0
 FOR Index = 0 TO last index in arrParents
 arrChildren = Children(arrParents(Index))
 FOR Index2 = 0 TO last index in arrChildren
 IF arrChildren(Index2) ≠ ID AND
 NotInArray(arrChildren(Index2),arrSiblings)) THEN
 arrSiblings(Count) = arrChildren(Index2)
 Increment Count
 ENDIF
 NEXT Index2
 NEXT Index
 RETURN arrSiblings
END Sbngs

(i) Outline, in words, the logic occurring in the above algorithms to determine a
person’s brothers.

356 Chapter 8

Software Design and Development –The Preliminary Course

(ii) Copy and complete the following structure diagram to reflect the algorithms
on the previous page.

Suggested solutions
(a) The Name drop down combo box is an appropriate choice as it enables all the

names present in the FamNames file to be available using a minimum of screen
space. In addition it is self-validating as only names present in the file can be
selected, and it requires minimum keying, which is ergonomically better for the
user.
The use of radio buttons for the available Relationships restricts users to selecting
just one relationship yet all available relationships can be seen. A list box would
also have been a reasonable control, would require less space and would simplify
the adding extra relationships in the future.
The results text box, that includes scroll bars, is suitable for the output. It is of
sufficient size to include most names yet the scroll bars allow longer names (or a
large number of results) to be viewed.
Each time the content of the Name box is altered the Results of the currently
selected Relationship would be used to determine the Results. Similarly when a
different Relationship is selected the current Name would be used to determine
the Results. In essence changes to either the Name or Relationship data are
reflected immediately in the Results.

(b) (i) FamNames is an array of records. Each record contains a field for the
person’s surname, Christian name and ID. The Surname and CName fields
would be strings and the ID field would be an Integer data type.
ParentChild is a two dimensional array of integers. The first index has just
two values – either 0 or 1. The 0’th element is used to store the parent’s ID
and the 1’st element is used for storing the child’s ID. The two elements are
used to define the relationship between each parent and one of their their
children

Note: In the preliminary course one dimensional arrays and records are specified
within the syllabus, however in the HSC course arrays of records and multi-
dimensional arrays are included.
(ii) BEGIN PersonName(ID)

PName = ""
Index = 0
WHILE Index <= NumNames
 IF FamNames(Index).ID = ID THEN
 PName = FamNames(Index).Surname & ", " & FamNames(Index).CName
 Index = NumNames
 ENDIF
 Index = Index + 1
 ENDWHILE
 RETURN PName
END PersonName

Brothers

ID arrBrothers

Developing Software Solutions 357

Software Design and Development – The Preliminary Course

 (iii) The subroutine would be used to display the final results in the results list
box. All subroutines return an array of IDs and each of these IDs needs to be
converted to the person’s actual name prior to display.

(c) BEGIN Children(ParentID)
 Count = 0
 Index = 0
 WHILE Index <= NumParentChild
 IF ParentChild(0, Index) = ParentID THEN
 arrChildren(Count) = ParentChild(1, Index)
 Increment Count
 ENDIF
 Increment Index
 ENDWHILE
 RETURN arrChildren
END Children

(d) (i) First all siblings of the person are determined. This involves finding the
person’s parents and then determining all the children of each parent in turn.
Whenever a child has been found the algorithm ensures the original person is
excluded and also that no entry is included more than once. All siblings are
returned to the Brothers routine. The siblings are then examined in turn to
determine if they are male – only the males being retained in the array
arrBrother.

(ii)

Note: The above HSC style question would form a complete 20 mark question
within a typical HSC or Trial HSC examination. Although this is a Preliminary
course textbook, it is worthwhile becoming familiar with the depth of questions
and answers that will be required during your HSC year.

ID arrBrothers

Brothers

Siblings IsMale

Parents
Children NotInArray

ID

arrParents

ParentID arrChildren

ChildrenID

arrSiblings

NotInArray

SiblingID
IsMale ID

arrSiblings

358 Chapter 8

Software Design and Development –The Preliminary Course

CHAPTER 8 REVIEW
1. Project management tasks include all of

the following EXCEPT:
(A) Identifying tasks.
(B) Creating system models.
(C) Backup strategies.
(D) Allocation of resources.

2. A diagram that describes the source and
movement of data through the system is
called a:
(A) IPO diagram.
(B) flowchart.
(C) dataflow diagram.
(D) screen design.

3. Products that are progressively
developed in response to feedback, are
using which approach to software
development?
(A) Structured approach.
(B) Prototyping approach.
(C) RAD approach.
(D) End user approach.

4. A graphical technique that is useful
when sequencing and allocating times to
development tasks is called:
(A) a log book.
(B) a decision tree.
(C) a dataflow diagram.
(D) a Gantt chart.

5. The screen designs should primarily
reflect:
(A) the standards prescribed by the

operating system developers.
(B) the users view of the processing.
(C) the developers view of the

processing.
(D) the underlying data structures.

6. Programming languages that execute
routines only when some occurrence is
detected are known as:
(A) object oriented languages.
(B) sequential languages.
(C) event driven languages.
(D) declarative languages.

7. Validation is the process of ensuring
data entered is:
(A) precise and accurate.
(B) of the correct type.
(C) within an expected range.
(D) Both (B) and (C).

8. Initialisation is used to:
(A) set the value of variables prior to

processing.
(B) ensure the value of variables

cannot be changed.
(C) make sure variables cannot be

assigned incorrect values.
(D) validate the contents of variables.

9. CASE tools are used to:
(A) enter source code.
(B) ensure the correctness of

requirements.
(C) automate many software

development tasks.
(D) encourage teamwork in

development teams.

10. When code is used from outside sources,
intellectual property rights:
(A) need not be considered if the

product is freeware.
(B) can be ignored when the code is in

the public domain.
(C) should always be considered and at

least acknowledged.
(D) only needs to be respected when

the product is sold commercially.

Social and Ethical Issues 359

Software Design and Development – The Preliminary Course

For each item within each of the following questions, create a ‘plan of attack’ that you can follow
during the completion of your project. This plan can be used as an outline for the creation of your
project Your project need not address all the items listed below; however you should consider each
during the development of your project’s plan.

11. Project management
• identifying tasks
• identifying required programs, modules and subroutines
• Gantt charts
• logbooks

– regular record of progress
– record of major milestones and stumbling blocks

• allocating resources
• regular backup with version numbers
• responding to difficulties

– reference to documentation such as manuals
– discussion with peers and experts
– reporting problems to management

• evaluating the solution
– throughout the process
– on completion

12. Documenting software solutions
• IPO diagrams
• context diagrams
• data flow diagrams (DFDs)
• storyboards
• structure charts
• system flowcharts

13. Developing software solutions - Defining and Understanding, and Planning and Designing
• defining and understanding the problem

– preparation of initial documentation
• planning and designing

– identification of a suitable development approach
– design of appropriate algorithms
– identification and incorporation of appropriate existing algorithms
– determination of appropriate data structures
– identification of relevant subroutines
– design of test data and expected output
– desk check of algorithms
– identification of existing code that can be used

14. Developing software solutions - Implementing, Testing and Evaluating and Maintaining
• implementing

– coding the solution in an appropriate language
– testing using test data
– documenting the solution, including:
- algorithms
- test data and expected output
- data dictionary
- user documentation

• testing and evaluating
– testing of the solution using test data
– evaluating the implemented solution

• maintaining
– modifying the solution to meet original or changed specifications

15. Social and ethical issues related to software solutions
• intellectual property
• ergonomics issues
• inclusivity and accessibility
• privacy

• data dictionaries
• Gantt charts
• logbooks
• algorithms
• user documentation including manuals and online help

360 Glossary

Software Design and Development –The Preliminary Course

GLOSSARY

absolute
address

This is the number given to identify a particular storage location in the computer's
memory. The name given to an address in which the location is a unique number.

abstraction
The hiding of detail by the presentation of a more general instance. In the
programming environment, an example of this is the use of a subroutine, rather than
the inclusion of detailed code.

agile Quick thinking, co-ordinated, active and lean. Adapts well to changing situations.

algorithm A series of unambiguous instructions or procedural steps that will result in the
solution to a specific problem within a finite time.

ALU Arithmetic and logic unit. The part of the central processing unit capable of
mathematical and logical operations.

analog
computer A computer that uses data in analog rather than digital form.

application
software

Software that performs a specialised task. Software applied to the solution of a
problem.

array A data structure in which a collection of data items of the same type can be treated
as a single entity. Individual data items are identified by an index or subscript.

ASCII Acronym for American Standard Code for Information Interchange. The standard
ASCII character set uses 128 characters represented by 7 bits.

assembler A piece of software that changes a program written in assembly language into
machine language.

assignment The process of storing the value of an expression in a variable.

backup A copy, on disk or tape, of software or data that is made by the user to guard against
accidental loss.

Backus-Naur
form

A metalanguage used to define the syntax of a programming language. Named after
its two authors. Abbreviated to BNF. Can also be abbreviated to EBNF

bias Having an inclination towards one view rather than another.

binary digit A digit in the binary number system. Commonly called a "bit".

binary number
system The number system in which the base is two. It uses the digits 0 and 1.

binary
selection

A control structure in which a choice between two alternatives is made based upon
the truth or falsity of a condition. Usually implemented as an IF-THEN-ELSE
structure.

bit A contraction of binary digit. It is either a zero or a one.

BNF Abbreviation for Backus-Naur form.

Boolean
algebra

A set of rules, laws and theorems by which logical operations can be expressed and
solved.

Boolean
operator

An operator that acts upon Boolean variables and values. The list of these operators
includes AND, OR and NOT.

Boolean
variable

A variable that can only have two possible states – either 0 or 1. Usually thought of
as either False or True.

Glossary 361

Software Design and Development – The Preliminary Course

boundary The delineation between a system and its environment.

browser Software used to access pages on the world wide web.

bug An error or defect in software or hardware that causes a program to malfunction.

call Causing the execution of a subroutine (process) from within another subroutine.

CASE tools Computer Aided Software Engineering- a range of software that is used to assist the
developer with a variety of tasks required as part of the development process.

CASEWHERE
A control structure in which the decision as to which of a group of statements or
instructions is to be executed depends upon the value of the selection variable. Only
one of the possible alternatives is executed in any pass.

cathode ray
tube The picture tube in a monitor or VDU.

CD ROM Acronym for compact disk read only memory. A medium for storing digital data
based on the technology of the compact disk audio disk.

central
processing unit

Abbreviated to CPU. The CPU retrieves, decodes, interprets and executes
instructions. The CPU, which is incorporated in an integrated circuit, can be
described as comprising of the control unit, arithmetic and logic unit and temporary
memory.

character
printer

An output device that produces fully formed characters contained on a ball, wheel,
chain or drum.

CLI Acronym for command line interface.

Command
Line Interface

A text based interace. Commonly the user is presented with a prompt where
commands are entered.

compilation Translating the entire source code into executable code. The resulting executable
code can be executed many times without the services of the compiler.

computer
system

A configuration of hardware and software functioning together, processing data to
achieve a purpose.

control
The function of one of the logical elements of the computer system. Control of the
system may be carried out by any or all of the hardware, software, procedures and
personnel of the system.

control
structure

One of three basic structures (sequence, selection and repetition), which control the
logic flow of an algorithm or program. Subroutines are a fourth control structure
used to implement top-down design.

copyright The sole legal right to produce or reproduce a literary, dramatic, musical or artistic
work, now extended to include software.

counting loop A repetition control structure which repeats a set number of times. Also known as a
FOR NEXT loop.

CPU Abbreviation for central processing unit.

CRT Abbreviation for cathode ray tube.

DASD Abbreviation for direct access storage device.

data
The plural of datum. Often used as a collective noun accompanied by a singular

362 Glossary

Software Design and Development –The Preliminary Course

data dictionary
A comprehensive description of each identifier used in a program. This commonly
includes: name, number of characters (size), data type, number of decimal places (if
applicable) and a description of the purpose of each variable.

data flow
diagram

(DFD)
A modelling tool describing the data and the path data takes through a system.

data type The data type of an identifier determines how data items will be represented within
the computer.

debugging The process of finding and eliminating logic and syntax errors in a program or
algorithm.

debugging
output

statement
An output statement used to assist in the location and isolation of an error.

decimal A number expressed using the base 10 system.

declarative
language

A classification of programming languages in which the language constructs
represent relations and the emphasis is on what will be the output of a program
rather than on how the output is achieved. A classification within the non-procedural
languages.

design

The third phase of the system development cycle in which decisions are made on
how the new system will be organised. The plan of the new system includes the
overall organisation envisaged together with the detailed requirements of input,
processing and output.

desk checking Checking the validity of an algorithm by working through the written version of the
algorithm using test data. Usually performed by hand.

developers Persons who takes part in the production of a computer-based system. Examples
include analysts, project leaders, programmers, technical writers etc.

direct access
storage device Any secondary storage device on which the data may be accessed in any order.

disk drive
A device that writes data to, or reads data from, a magnetic disk. It contains a
mechanism for spinning the disk and for moving read/write heads over the surface
of the disk.

disk platter A circular piece of metal or glass, coated with a thin layer of magnetic material on
which electronically transmitted data may be stored. Used within hard disk drives.

diskette
A disk made of flexible plastic and covered with iron oxide particles. Generally
used with a microcomputer. The common sizes of disks are 9 cm (3.5 inches) or 13
cm (5.25 inches) diameter.

documentation Descriptions of source code, a software package, the hardware configuration, the
tasks it can perform and/or the way in which it is used.

dumb terminal A terminal that carries out no local processing of the software. It transmits
characters typed at the keyboard and displays information received on the screen.

Dvorak
A keyboard layout named after its designer. It was designed to enhance the speed
and ease of typing by placing the most frequently used keys on the home row under
the stronger fingers.

EBCDIC Acronym for extended binary coded decimal interchange code.

EBNF Abbreviation for extended Backus-Naur form.

Glossary 363

Software Design and Development – The Preliminary Course

end user
approach

A process in which an application is developed by users who have knowledge of a
relevant software package and can customize it to meet their needs.

end users People who use the computer system. They are usually employees and customers.

EOF Acronym for end of file. Many programming languages include an EOF function,
which returns true when the end of the file has been reached.

ergonomics The study of the relationship between people and their working environment.

ethical A set of moral principles accepted by society as a standard against which individual
behaviour can be judged.

extended
Backus-Naur

form

An extended and modified form of the BNF metalanguage for the definition of the
syntax of a programming language. Abbreviated to EBNF.

fetch-execute
cycle

The cycle of events, which a computer carries out to process an instruction. During
the fetch part of the cycle, the address of the next instruction is used to access the
memory and the contents of that location are placed into a register. During the
execution part of the cycle , the instruction in the register is decoded and carried out.

file A block of data comprising a related set of records that may be written to a storage
device.

file server A computer dedicated to the function of storing and retrieving files on a network.

flag A variable used in a program (usually in the development or debugging stages) to
indicate the result of a proess, or that the process was executed.

floating point
representation

The internal representation of numbers in which each number is stored as two sets
of digits, one holding the mantissa and the other holding the exponent. The value of
the exponent causes the decimal (binary) point to float until it rests in the final,
correct place. Compared with fixed point representation, this method allows a much
wider range of numbers that the computer can manipulate, but the operation is
relatively slower.

floating point
unit

Part of the CPU dedicated to the processing of floating point numbers. Often
abbreviated to FPU. Older CPU designs had separate FPUs known as maths
coprocessors.

floppy disk
"Also known as a diskette. A disk made of flexible plastic and covered with iron
oxide particles. Generally used with a microcomputer. The common sizes are 9 cm
(3.5"") or 13 cm (5.25"") diameter."

flowchart A pictorial method of describing a system in which the various steps are represented
by symbols.

font In typography, the word is used to describe all the characters in a tray of type that
possess the same type face, type size, type style and stroke weight.

freeware Software that is covered by copyright, however, copies can be made, distributed and
altered. Modified products must also be freeware.

Gantt chart A chart showing timelines for different stages of a systems development project.

global variable A variable declared so that it can be accessed from all parts of the program. Global
variables exist for the life of the program.

graphical user
interface

A method of presentation employed by a developer presenting the information
(usually the screen design) in a graphical format.

GUI An acronym for Graphical User Interface

hard disk A type of disk in which the platters are made from metal and the mechanism is
sealed inside a container.

364 Glossary

Software Design and Development –The Preliminary Course

hardware The physical units that make up a computer or any device working with the
computer.

hexadecimal A number system that uses sixteen as its base. Because it requires sixteen symbols,
the letters A to F are used as digits to represent the decimal numbers 10 to 15.

hierarchy
chart A graphical representation of the top-down design of a software product.

high-level
language

A computer programming language in which each instruction or statement
corresponds to several machine code instructions. It allows users to write in a
notation with which they are relatively familiar.

identifier
The name given to a variable, process or function. In most languages, identifiers are
comprised of letters, digits and the underscore character. They must commence
with a letter.

IF-THEN-
ELSE

A control structure in which the decision as to which of a pair of statements or
instructions is to be executed depends upon the truth or falsity of a condition. Only
one of the possible alternatives is executed in any pass.

inclusivity A recognition of equal access.

index An intege value, used to denote a particular data item held in an array. Often called
a dimension or subscript.

input
The process of transferring data or program instructions from the environment into
the computer’s memory using some peripheral device. Sometimes used to denote
the data itself, sometimes to denote the signal applied to a circuit or device.

integer
One of the (infinite) set of the positive and negative whole numbers including zero.
In any computer applicaion, the range of allowable values is determined by the
number of bytes used and the way in which the hardware represents integers.

intellectual
property Property resulting from the fruits of mental labour.

interpretation Translates source code one line at a time. After each line has been translated it is
immediately executed.

IPO diagram
IPO diagrams (or charts) describe the data entering a process, the nature of the
processing performed and the resulting information leaving the process. Also known
as IPO charts.

iteration A single repetition of a sequence of steps.

laser Acronym for light amplification by stimulated emission of light.

Licence
Agreement

A signed agreement between the manufacturer and the purchaser of software that
gives the purchaser the right to use the software.

local variable A variable that can only be accessed by the subroutine in which it was declared.
Local variables only exist whilst the subroutine executes.

logic error

An error in the logic of the program that causes incorrect actions to be taken. Can
normally only be detected by the programmer during the testing and debugging of
the program when carefully selected test data is used as input to see that the program
generates the known result.

logical process A process involving the use of Boolean algebra in which the results can be
represented in a truth table.

Glossary 365

Software Design and Development – The Preliminary Course

macro

A term generally used to denote a routine, which is a set of instructions or a list of
keyboard commands, stored in a file that can be executed by entering a few keys
from the keyboard. They are used to save time and reduce the chance of keyboard
errors

maintainability A measure of ease with which source code can be understood and modified.

maintenance
Part of the operation and evaluation phase of the system development cycle. The
process where all required adjustments or corrections are carried out as a result of
the continuing evaluation of the system.

malware Malicious software that deliberately causes some undesired result. Malware includes
viruses, adware, spyware, Trojans and worms.

metadata Data describing data.

metalanguage A means of specifying the syntax of each of the valid commands in a given
language.

module Performs a complete portion of a larger task and consists of one or more
subroutines.

mouse A mechanical or optical input device used to move a pointer on a screen.

multi-way
selection

A control structure in which a choice between two or more alternatives is made
based upon the value of an expression. Usually implemented as a CASEWHERE
structure.

network A system that allows a number of computers and their peripheral devices to be
connected over a distance.

octal A number system in which the base is eight, and which uses the eight digits 0-7.

open source Source code is developed collaboratively and is available to all to modify and
redistribute. Modified products must also be released as open source.

output The process of transferring data or information from the computer’s memory to the
environment using some peripheral device.

passing
(parameters)

"Communicating data to and from subroutines using parameters. Parameters can be
passed ""by reference"" or ""by value""."

peer checking A process whereby programmers not involved with the original design, are asked to
check the logic of an algorithm.

peripheral
device Any I/O device connected to the CPU of a computer.

personnel One of the components of a computer-based system. The people employed to work
with that system.

plagiarism Copying or imitating the work of another and claiming it to be your own. A
violation of copyright.

post-test
iteration

A repetition control structure where the terminating condition is checked after the
body of the loop executes. Aslo known as an unguarded loop.

pre-test
iteration

A repetition control structure where the terminating condition is checked prior to
entering the body of the loop. Also known as a guarded loop.

primary
storage

Primary storage is often referred to as main memory or more simple memory.
Includes the registers within the CPU, cache, physical RAM, ROM and virtual
memory.

print server A computer dedicated to the function of printing on a network.

366 Glossary

Software Design and Development –The Preliminary Course

processing The function that transforms inputs into outputs. Executing an instruction or series
of instructions.

programming
language

A language used to create, store, recall and edit instructions used to control the
operation of a computer.

prototype An enactable model or mock-up of a software system that enables evaluation of
features and functions in an operational scenario.

pseudocode One method of algorithm description involving the use of English. Although similar
to many high-level languages, it does not observe the same very strict syntax rules.

public domain Software that is available for use, due to the copyright holder relinquishing all rights
to the software.

railroad
diagram

A graphical metalanguage used to describe the syntax of another language.
Comprised of flowlines connecting terminal and non-terminal symbols.

RAM Abbreviation for random access memory

random access
memory

Abbreviated to RAM. It is the primary memory, and is used to contain both data and
instructions (programs) generated by the user. Data may be read from or written to
this type of memory. Most technologies used for this memory make it a volatile
memory.

rapid
application

development
(RAD)

A process in which a programmer makes use of software packages to quickly build
applications to meet the users' needs. Abbreviated to RAD.

record A collection of facts about an entity in a database. A record comprises one or more
related fields.

register A group of fast access memory cells within the CPU. They are used by the CPU for
the temporary storage of data or instructions.

repetition Another word for itrations. A control st ructure causing statements to execute
multiple times.

response time
(speed)

The amount of time elapsing between the transmission of a command and the
receipt of some response from the computer.

reverse
engineering

The process of analysing an existing system to identify its components and their
interrelationships, to allow the creation of a similar system.

RSI An acronym for Repetitive Strain Injury - its cause being identified by excessive use
of a computer keyboard.

runtime error

An error, which occurs when the object code is executed. It may be the result of a
logic error, an undefined arithmetic operation such as division by zero, or an
overflow error which occurs when a result is computed which cannot be correctly
stored in the

scope The extent or range of operation of an identifier. Where in a program, a given
identifier may be accessed.

search engine A program designed to locate files, documents and more specifically web pages on
the Internet.

secondary
storage

Permanent or non-volatile storage. Examples include hard disks, CD-ROMs, tapes
and floppy disks.

selection Selection is the control structure that allows decisions to be made between different
alternative execution paths.

sentinel value A dummy value inserted to indicate the end of a sequence of data items.

Glossary 367

Software Design and Development – The Preliminary Course

sequence Sequence is the control structure that ensures each process occurs in the correct
order.

sequential file Files that can only be accessed from start to finish. Data within a sequential file is
stored as a continuous stream.

shareware
Shareware is software that is covered by copyright but is distributed freely. A
licence must be purchased to continue using the software beyond a trial period.
Distributing software as shareware is largely a marketing decision.

social Friendly companionship. Living together in harmony rather than isolation.

software A sequence of detailed instructions used to direct the operation of a computer.
Generally categorised as either application or system (which includes utility).

source code The original high-level language program written by the computer programmer.

Spider A program that automatically fetches web page data for inclusion in search engines.
The spider follows links on web pages to direct its exploration.

statement In programming, an expression or generalised instruction written in the language of
the source program.

storage The function that reads, writes and retains data.

string A term often used to describe a sequence of characters treated as a single entity.

structure chart A model of the top-down design of a program. Includes the sequence in which
subroutines execute together with the data movements between subroutines.

structured
programming

A programming technique characterised by the whole being broken down into
small, independent modules, each of which has a single entry and exit point.

stub

An incomplete procedure or function, which has the same name and interface as the
final form but is much simpler. Usually only contains an output statement to
indicate that the procedure or function was called, together with any essential
statements to ensure that related procedures and functions can work correctly. Used
in testing the implementation of a program.

subprogram Synonym for subroutine.

subroutine

A self-contained section of programming code, which can be incorporated into a
complete program. Can becalled from any point in the program and usually returns
to the instruction immediately following the call to the subroutine. Has only one
entry and exit point. Functions and procedures are subroutines.

syntax The rules governing the way in which elements of a programming language may be
combined to form legal statements.

syntax error An error resulting from an illegal statement in a program's source code. The
translator cannot continue once an error of this type is encountered.

system
software

System software is used to manage and control the resources of the system.
Operating systems are the most common form of system software.

temporary
storage

Storage that is used to hold data for a relatively short time. It often uses a volatile
storage medium.

terminal A device at which data may be input to or output from a system. VDUs, together
with their keyboars, are of ten known as terminals.

testing
The process in which data identified during the design of a program is provided as
input to the program in order to test all possible decisions, ensure that all statements
are executed, and that the solution provided is correct in all cases tested.

368 Glossary

Software Design and Development –The Preliminary Course

top-down
design

In programming, this implements stepwise refinement. An approach to program
design that progressively breaks a large problem into a series of smaller, easier to
solve problems. This leads to the creation of modules and subroutines, thus reducing
the programming complexity.

user friendly Software that meets the needs o users. User friendly software is intuitive, consistent
and easily learnt.

user interface The screens and connections between screens that allow the user to communicate
with software.

validation A check carried out by the computer to ensure that only data conforming to certain
rules is accepted for input to the program.

value One of the data types used in a spreadsheet. They can be in the form of number,
currency, date, percentage etc.

variable The symbolic name of an addressed, stored entity in a program that is referred to for
later processing.

virus A type of malware that is able to copy itself either within a single system or to other
systems.

walk through
The presentation of the software project by the developer or team of developers, to
interested parties with the aim being to work through the software and its
functionality. More formal than peer checking.

web browser Software for locating, accessing and displaying web pages. They are able to display
graphics, text and other multimedia items.

Index 369

Software Design and Development – The Preliminary Course

INDEX

abstraction, 154
accessibility, 39
ADC (analog to digital converter), 58, 62, 63
agile approach, 128
agile, 128
algorithm, 188, 189, 221, 227, 250, 322, 324, 344
Alto, 5
ALU, 94, 118
Apple computer, 5
application software, 105
ARPANET, 6
array, 179, 204, 205, 206, 230
ASCII, 174, 175
assembler, 108, 109
assignment, 233
authenticate, 254
backup, 18
balloon help, 277
barcode, 57
batch job scheduling, 104
binary digit, 170
binary number system, 170
binary selection, 191, 233
BNF, 218
Boolean variable, 176, 245
brainstorming, 43
breakpoint, 247
browser, 7
bug, 244
cache, 81, 85, 96
call, 164, 200, 256
capacitor, 81
CASE tools, 138, 185, 283
cathode ray tube, 67, 68
CAV (constant angular velocity), 88
CCD (charge coupled device), 58, 62
CD (compact disk), 86
CD ROM, 86
central processing unit, 77, 80, 120
CERN, 7
CLI, 4, 102
CLV (constant linear velocity), 88, 89
CM11, 333, 347
collimator lens, 89, 90
Command Line Interface, 4, 102
comments (source code), 317

communication skills, 41
compilation, 114
condenser microphone, 61
consistency, 26, 262, 270
constant, 316
context diagram, 151, 163
control structure, 190, 231, 317, 323
control unit, 94, 118
control, 94, 164
copyright, 19, 313
COTS (customised off-the-shelf) package, 105
counting loop, 197
CPU, 77, 94, 95, 118, 120
creative commons licence, 20
creativity, 42
critical path analysis, 43
CRT, 67, 68
cultural background, 35
DAC (digital to analog converter), 63, 77
data dictionary, 185
data flow diagram (DFD), 161, 162, 163, 335
data projector, 71
data structure, 179, 227, 228
data type, 169, 227
data validation, 249
data, 310
debugging output statement, 246
debugging, 244
decision coverage testing, 283
decision tree, 286
declarative language, 108, 112
defining and understanding the problem, 150
defragmentation, 103
desk checking, 208, 239, 287, 297
developers, 331
developing software solutions, 331
diffraction grating, 89
Digital Equipment Company, 7
disability, 38
disk platter, 84
display adapter, 65
DLP projector, 72
DMD (digital micromirror device), 72
documentation, 250, 274, 307, 319, 352
dot pitch, 69
dpi (dots per inch), 69

370 Index

Software Design and Development –The Preliminary Course

DRAM (dynamic RAM), 81
DSP (digital signal processor), 62, 77
DVD (digital versatile disk), 86
DVI (digital visual interface), 65
Dvorak, 54
dynamic microphone, 61
EBNF, 218, 222
economic background, 36
EFTPOS (electronic funds transfer point of sale), 59
electron beam, 68
email, 6
embedded licence installation count, 104
emulation, 104
end user approach, 142
ENIAC, 94
EOF, 183
ergonomics, 3, 25
error messages, 269
ethical, 3, 270, 299
evaluation, 281, 298
event driven, 112
expected outputs, 282
Facebook, 11
feedback, 269
fetch-execute cycle, 118, 119
file compression, 103
flag, 245
flash memory, 92
flatbed scanner, 58
floating point representation, 173, 254
floating point unit, 96
flowchart, 189, 200
font, 265
freeware, 19
FTP, 8
function, 52, 239, 250, 256
Gantt chart, 338
gender, 37
global variable, 256, 257
GLV (grating light valve), 72
GNU general purpose licence (GPL), 20
Google, 9, 130
Gopher, 9
graphical user interface, 4, 102, 266, 309
GUI, 4, 102, 266, 309
hard disk, 84, 120
hard magnetic material, 83
hardware, 49, 52, 311
HDMI (high definition multimedia interface), 65

hexadecimal, 171
hierarchy chart, 156
high-level language, 108, 110
identifier, 227, 228, 316
implementing, 217
inclusivity, 35
index, 179
inkjet printer, 74
input, 52, 231
integer, 172
intellectual property, 3, 17, 255, 307, 313
internal documentation, 275
internet, 6, 23
interpretation, 114
IPO diagram, 152, 336
iteration, 194
keyboard, 53
land, 87, 89
laser printer, 73
laser, 57, 86, 89, 91
LCD monitor, 66
LCOS (liquid crystal on silicon), 71
legibility, 265
liability, 18
Licence Agreement, 17, 22
LinkedIn, 11
liquid crystal, 66
literal constant, 316
loading arrays, 204
local variable, 257
logbook, 332
logic error, 243, 322
login, 252
Lotus 1-2-3, 12
machine language, 108, 109, 118
Macintosh, 5
magnetic storage, 82
mainline, 319
maintainability, 307
malware, 104
MEM (micro-electromechanical), 72
metadata, 10
metalanguage, 218
micron, 87
microphone, 61
Microsoft, 5, 130
module, 155, 217, 255, 256, 258
Moore's Law, 94
Mosaic, 7

Index 371

Software Design and Development – The Preliminary Course

mouse, 55
MR (magneto-resistance), 82, 84
multimedia, 13
multi-way selection, 193, 234
MySpace, 11
national privacy principles, 40
neon, 70
Netbeans, 217
Netscape, 8
off-the-shelf package, 105
online help, 277
open source, 19
operating system, 99
optical storage, 86
output, 65, 232
parameter, 161, 164, 201, 258
Pascal, 229
passing (parameters), 202, 258
path coverage testing, 283
PCIe, 65
peer checking, 296
peripheral device, 120
PHP, 115
piezo crystal, 75, 76
pit, 87, 89
plagiarism, 313
planning and designing software solutions, 154
plasma, 70
polarizing, 66
post-test iteration, 195, 235
presentation software, 13
pre-test iteration, 194, 234
primary storage, 80
printer, 73
printing arrays, 204
privacy, 40
problem solving, 43
procedure, 256
processing, 94
program, 155
programming language, 108
project management, 331
prompt, 268
prototype, 131, 337
prototyping approach, 131`
pseudocode, 189, 200
public domain, 19
quality, 36
railroad diagram, 218, 219, 229

RAM, 118
random access memory, 80, 81, 85, 118, 119, 120
rapid application development (RAD), 138, 337
read/write heads, 84
readability, 262, 263
record, 181, 205, 206, 230, 343, 354
recordable optical disk, 90
refinement, 154
refresh rate, 68
register, 95, 118
repetition, 194, 234
requirements, 150, 293, 298, 308, 312, 333
response time (speed), 31
reusable, 217, 249, 258
reverse engineering, 18
rewriteable optical disk, 90, 91
RFID (radio frequency identification), 59
ROM (read only memory), 80,
runtime error, 242
S.T.A.I.R., 43
sans serif, 266
scan code, 54
scanner, 57
scope, 185, 257
screen camera, 14
screen resolution, 69
screen, 65
search engine, 8
secondary storage, 82
sector (HDD), 84
selection, 191, 233
sensor, 334
sentinel value, 183
sequence, 190, 233
sequential file, 183, 206, 207, 231, 232, 238, 342,
345, 354
sequential, 112
serif, 266
shareware, 19
single line stepping, 247, 288
site licence, 20
slideshow, 13
social networking applications, 11
social, 3, 270, 299
soft magnetic material, 83
software development cycle, 149
software, 99, 311
sound card, 61, 76, 77
source code, 114, 217, 307, 323
speaker, 76, 78

372 Index

Software Design and Development –The Preliminary Course

Spider, 9
spindle motor, 84
spreadsheet, 12
SRAM (static RAM), 81
SSD (solid state drive), 93
standard algorithms, 204
statement coverage testing, 283
stepper motor, 75
storage, 80
storyboard, 338
string, 174
structure chart, 156, 164, 165, 245, 321
structured approach, 124
structured programming, 188, 190
structured walk through, 296
stub, 244
subprogram, 155
subroutine, 155, 200, 249, 256, 350
syntax error, 241
syntax, 217
system analyst, 124
system, 155
systems flowchart, 158, 159, 160
team, 42
test data, 208, 282, 287
testing, 208, 281
TFT (thin film transistor), 67
thermal inkjet printer, 75
tool tip, 277
top-down design, 127, 154, 155, 156
track, 84, 86
tracking beam, 89
transistor, 81, 96
translation, 114
understanding the problem, 150
UNIX, 7
user friendly, 25
user interface, 25, 102, 217, 261, 262, 309, 338, 340
utilities, 99
validation, 284, 310
variable, 227, 316
video card, 65
virus, 103
VisiCalc, 12
Visual Studio, 217
von Neumann, 94
VRAM (video random access memory), 65
warranty, 18
watch expression, 247

web browser, 7
white space, 263, 318
X10, 332
xenon, 70
Xerox, 5
XML, 250
Yahoo, 9, 130

Student notes 373

Software Design and Development – The Preliminary Course

STUDENT NOTES

374 Student notes

Software Design and Development –The Preliminary Course

	Contents
	Acknowledgements
	To the teacher
	To the student
	1. Social and Ethical Issues
	Evolution of software applications
	Command line and graphical user interface (GUI)
	Internet applications
	Spreadsheets and presentation software

	Set 1A
	Intellectual property
	Software licence agreements
	Events that have led to the need for software licence agreements
	Sources of code and license conditions that apply

	Set 1B
	Social context of software design
	Ergonomics
	Ergonomic issues regarding software design

	Set 1C
	Inclusivity
	Privacy
	Required skills in software design and development

	Chapter 1 review

	2. Hardware and software
	Elements of a computer system
	Hardware
	The function and operation of hardware within a computer system
	Input
	Keyboard
	Mouse
	Scanner
	Radio frequency identification (RFID)
	Microphone (and sound card)

	Set 2A
	Output
	Screens
	LCD based monitors
	CRT based monitors
	Plasma screens

	Data projectors
	Printers
	Laser printers
	Inkjet printers

	Speakers (and sound card)

	Set 2B
	Storage
	Primary storage
	Secondary storage
	Magnetic storage
	Optical storage
	Flash memory

	Processing and control
	Set 2C
	Software
	Operating system and utilities
	Utilities

	Application software

	Set 2D
	Programming languages
	Generations of programming languages
	Event driven versus sequential approach
	The need for translation

	Set 2E
	The relationship between hardware and software
	How does the hardware process software instructions? (The fetch-execute cycle)
	What occurs when an application is first initiated and run?
	What are the hardware requirements for software?

	Chapter 2 review

	3. Software Development Approaches
	Structured approach
	Agile approach
	Prototyping approach
	Set 3A
	Rapid application development (RAD) approach
	End user approach
	Set 3B
	Chapter 3 review

	4. Defining and understanding the problem, and planning and designing software solutions
	Introduction to software development
	Defining and understanding the problem
	Understanding the problem
	Identification of inputs and required outputs
	Determining the steps that will solve a problem

	Planning and designing software solutions
	Abstraction/refinement
	Systems modelling tools
	Systems flowcharts
	Data flow diagrams (DFDs)
	Structure charts

	Set 4A
	Data types
	Representing numbers in binary and hexadecimal

	Common data types used in solutions
	Integer
	Floating point (real)
	String
	Boolean

	Set 4B
	Data structures
	One-dimensional array
	Record
	Sequential files

	Data dictionary
	Set 4C
	Structured algorithms
	Methods for representing algorithms
	Control structures

	Set 4D
	Software structure
	Subroutines
	Modularity

	Standard algorithms
	Loading and printing arrays
	Add the contents of an array of numbers
	Processing using sequential files

	Checking algorithms for errors
	Set 4E
	Chapter 4 review

	5. Implementing software solutions
	Coding in a programming language
	Metalanguages

	Set 5A
	Coding algorithms and data types
	Statements used to define and use data types
	Statements used to code algorithms, including control structures

	Set 5B
	Error detection and correction techniques
	Types of coding errors
	Syntax errors
	Runtime errors
	Logic errors

	Debugging techniques
	Stubs
	Flags
	Debugging output statements
	Automated debugging tools

	Set 5C
	Commonly executed sections of code
	Developing standard subroutines for reuse
	Combining code from different sources
	Calling modules or subroutines

	Making the same data available to different subroutines and modules
	Sharing variables by altering their scope
	Parameter passing

	Set 5D
	User interface development
	Different perspectives of users and developers
	Consultation with users and/or managers
	Effective user interfaces
	Factors affecting readability
	Prompts and messages
	Consistency of design

	Set 5E
	Documentation
	Documentation for developers
	Documentation for users

	Chapter 5 review

	6. Testing and evaluating software solutions
	Test data for checking algorithms and code
	The selection of appropriate test data
	Testing algorithms and coded solutions using test data
	Desk checking an algorithm
	Stepping through a coded solution

	Set 6A
	Evaluating the solution
	Comparing different solutions to the same problem
	Techniques for evaluating design
	Peer checking
	Structured walk through
	Desk checking

	Evaluation of the final solution
	Checking the solution meets the original requirements
	User feedback
	Social and ethical perspective

	Set 6B
	Chapter 6 review

	7. Maintaining software solutions
	Reasons for maintaining code
	Changing user requirements
	Upgrading the user interface
	Changes in the data to be processed
	Introduction of new hardware or software
	Changing organisational focus
	Changes in government requirements
	Poorly implemented code

	Inclusion of code from other sources
	Set 7A
	Features in source code that improve its maintainability
	Use of variables or constants instead of literal constants
	Meaningful names for variables, subroutines and modules
	Explanatory comments in the code
	Use of standard control structures
	Appropriate use of white space within source code
	A clear and uncluttered mainline
	One logical task per subroutine

	Understanding source code
	Reading original documentation to understand code
	Reading original algorithms
	Creating algorithms from source code

	Chapter 7 review

	8. Developing software solutions
	Sample project
	Defining and understanding the problem
	Identification of inputs, processes and outputs
	Identifying a suitable development approach
	Prototype 1
	Prototype 2
	Prototype 3
	Prototype 4
	Prototype 5
	Final modifications and documentation

	Chapter 8 review

	Glossary
	Index

