

Trial Examination 2021

Question and response booklet

QCE Chemistry Units 1&2

Paper 2

Student's Name:		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

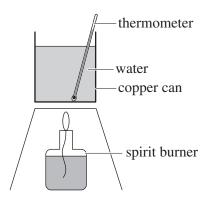
Section 1 (65 marks)

7 short response questions

Neap® Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions


- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (11 marks)

A student performed a calorimetric experiment to find the molar heat of combustion ($kJ mol^{-1}$) of ethanol (CH_3CH_2OH). Their experimental set-up and results are shown below. The student also noted there was soot on the bottom of the copper can after the experiment.

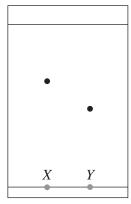
Initial mass of burner + ethanol (g)	120.04 ± 0.01
Final mass of burner + ethanol (g)	119.61 ± 0.01
Mass of water (g)	175 ± 2
Initial temperature of water (°C)	22.0 ± 0.5
Final temperature of water (°C)	32.5 ± 0.5

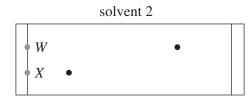
Calculate the experimental molar h	neat of combustion of ethanol. Show your working.	[5 mark
		1
MHC =	kI mol ⁻¹ (to three significant figures)	

Calculate the absolute uncertainty in the ans	swer to a). Show your working.	[4 marks
Absolute uncertainty =	kJ (to three significant figur	res)
The accepted value for the molar heat of con	mbustion of ethanol is 1360 kI mol ⁻¹	
dentify two reasons why the experimental v		[2 marks
		1=

QUESTION 2 (9 marks)

Chromatography can be used to separate and identify components of a mixture.


a) A mixture of trichloromethane and carbon dioxide was separated using gas chromatography. The carrier gas was nitrogen and the column was packed with silica gel, shown in the diagram below.


of the mixture will leave the column first.	[5 marks]

b) Analyse the chromatograms and $R_{\rm f}$ values shown below to determine the identity of amino acid X. Show all working and reasoning.

[4 marks]

Amino acid	R _f in solvent 1	R _f in solvent 2
alanine	0.64	0.57
arginine	0.17	0.81
histidine	0.65	0.20
leucine	0.89	0.48
methionine	0.66	0.39
proline	0.80	0.19
serine	0.20	0.22
tryptophan	0.44	0.63

QUESTION 3 (9 marks)

The reaction between sodium thiosulfate and hydrochloric acid can be used to examine the effect of different factors on the rate of reaction.

$$\mathrm{Na_2S_2O_3(aq)} + 2\mathrm{HCl(aq)} \rightarrow \mathrm{S(s)} + \mathrm{SO_2(g)} + \mathrm{H_2O(l)} + 2\mathrm{NaCl(aq)}$$

A small cross is drawn on a piece of paper and then a test tube containing the reactants is placed over it. As the reaction proceeds, the mixture becomes cloudy and obscures the cross.

the reactants were cooled to 10°C before mixing.	en [4]
A . 1 150 T COZOMNI CO	ed
A student mixed 5.0 mL of 0.30 M $\rm Na_2S_2O_3$ with 4.0 mL of 0.70 M HCl and retrieve 0.039 g of precipitate.	
A student mixed 5.0 mL of 0.30 M Na ₂ S ₂ O ₃ with 4.0 mL of 0.70 M HCl and retrieved 0.039 g of precipitate. Calculate the experimental yield, showing all working.	
0.039 g of precipitate.	[5]
0.039 g of precipitate.	

QUESTION 4 (10 marks)

- a) A number of trends can be observed in the structure and properties of elements.
 - i) Determine the missing values from the table below.

[2 marks]

Element	Protons	Shielding electrons	Effective nuclear charge
nitrogen	7	2	5
magnesium	12		2
phosphorus	15	10	

nhoenhori	ne increase in atomic radius for the elements nitrogen (71 × us $(109 \times 10^{-12} \text{ m})$ and magnesium $(140 \times 10^{-12} \text{ m})$.	(10 III), [5 m
phosphore	is $(109 \times 10^{\circ})$ iii) and magnesium $(140 \times 10^{\circ})$ iii).	[3 m

b) The table shows the successive ionisation energies for aluminium.

Electron	1st	2nd	3rd	4th	5th	6th	7th	8th
Ionisation energy (kJ mol ⁻¹)	578	1817	2745		14842	18379	23 326	27 464

Predict and justify the value for the fourth ionisation energy.	[3 mark	

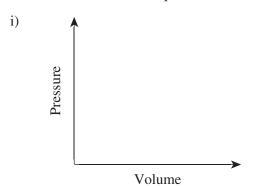
QUESTION 5 (6 marks)

Eight unknown substances were put through a series of tests, as summarised in the table below. The 'hammer' test consisted of striking the substance with a hammer, and if there was no change, then the substance was struck again with more force.

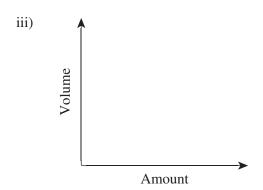
	Melting/boiling 'Hammer' test Solubility in		Co	nductivi	luctivity*	
Substance	points (°C)	(number of strikes, result)	water	(s)	(1)	(aq)
1	114/184	1, crumbled	none	0	0	_
2	801/1465	2, shattered	soluble	0	2	3
3	-114/-45	_	soluble	_	0	0
4	1085/2562	2, dented	none	10	7	_
5	sublimes at 3642	3, shattered	none	8	_	_
6	48/375	1, flattened	none	0	0	_
7	1710/2230	4, cracked	none	0	0	_
8	328/1749	1, dented	none	9	6	_

^{*}Conductivity is measured on an arbitrary scale.

Identify a metallic substance from the table.	[1 mark]
Infer whether substance 6 is MgO or $C_{20}H_{42}$.	[1 mark]
Analyse the data to classify substance 2 as covalent molecular, covalent network, ionic or metallic. Show your reasoning.	[4 marks]


QUESTION 6 (9 marks)

The physical properties and behaviour of gases can be explained by the kinetic theory of gases.


ii)

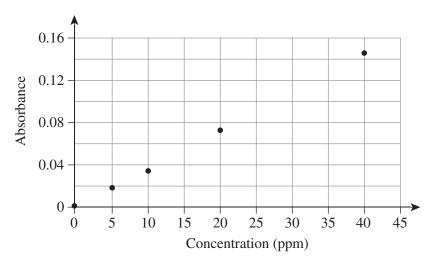
a) Sketch the ideal relationship between each pair of variables on the axes below.

[3 marks]

Temperature (K)

b) Calculate the number of molecules in 58.2 L hydrogen at standard temperature and pressure (STP). Show your working.

[2 marks]


Number of molecules = _____

	e the volume occupied by 0.20 kg of argon gas at -20.0°C and 180 kPa. our working.	[3 mai
•		-
	Volume = L (to two significant figures)	
Gases do	not exhibit ideal behaviour at extremely low temperatures or high pressures.	
	a reason for this deviation in behaviour.	[1 m

QUESTION 7 (11 marks)

Compare atomic emission spectroscopy (AES) and flame tests.	[5 marks

b) Atomic absorption spectroscopy (AAS) can be used to determine the amount of analyte in a sample of soil. A series of standard solutions of Fe²⁺ ions were analysed, as shown on the graph below.

A 3.27 g sample of garden soil was treated with dilute acid to free the iron for analysis. The treated sample was filtered and the resulting solution made up to 250.0 mL. This soil solution was analysed using AAS and produced an absorbance of 0.105.

i) Determine the concentration of Fe²⁺ in the soil solution in ppm. Show your working on the graph above.

[2 marks]

ii)	The required iron content of garden soil is 0.50-5.0 % m/m.			
	Assuming the soil solution has a density of 1.0 g mL^{-1} , calculate the concentration of iron in the sample of garden soil and hence comment on its suitability. Show all			
	working and reasoning.	[4 marks]		

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

Trial Examination 2021

Formula and data booklet

QCE Chemistry Units 1&2

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data

Absolute uncertainty of the mean $\Delta \overline{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$

Percentrage error (%) = $\left| \frac{\text{measured value} - \text{true value}}{\text{true value}} \right| \times 100$

Chemical reactions – reactants, products and energy change

 $\Delta H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\Delta H = \Sigma (bonds broken) - \Sigma (bonds formed)$

 $Q = mc\Delta T$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$

 $A_{r} = \frac{\left(isotopic \ mass \times \% \ abundance\right) + \left(isotopic \ mass \times \% \ abundance\right)}{100}$

Moles (n) = $\frac{\text{number of particles } (N)}{\text{Avogadro's constant } (N_A)}$

 $Moles = \frac{\text{mass of substance}(m)}{\text{molar mass}(M)}$

Intermolecular forces and gas

PV = nRT

Aqueous solutions and acidity

Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$

 $c_1V_1=c_2V_2$

TEQChem1&2_FB_2021

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Physical constants and unit conversions		
Absolute zero	$0 \text{ K} = -273^{\circ}\text{C}$	
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$	
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$	
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$	
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$	
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$	
Standard temperature and pressure (STP)	273 K and 100 kPa	
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$	

LIST OF ELEMENTS

Name	Atomic no.	Symbol
Hydrogen	1	Н
Helium	2	Не
Lithium	3	Li
Beryllium	4	Be
Boron	5	В
Carbon	6	С
Nitrogen	7	N
Oxygen	8	О
Fluorine	9	F
Neon	10	Ne
Sodium	11	Na
Magnesium	12	Mg
Aluminium	13	Al
Silicon	14	Si
Phosphorus	15	P
Sulfur	16	S
Chlorine	17	Cl
Argon	18	Ar
Potassium	19	K
Calcium	20	Ca
Scandium	21	Sc
Titanium	22	Ti
Vanadium	23	V
Chromium	24	Cr
Manganese	25	Mn
Iron	26	Fe
Cobalt	27	Со
Nickel	28	Ni
Copper	29	Cu
Zinc	30	Zn
Gallium	31	Ga
Germanium	32	Ge
Arsenic	33	As
Selenium	34	Se
Bromine	35	Br

Name	Atomic no.	Symbol
Krypton	36	Kr
Rubidium	37	Rb
Strontium	38	Sr
Yttrium	39	Y
Zirconium	40	Zr
Niobium	41	Nb
Molybdenum	42	Mo
Technetium	43	Тс
Ruthenium	44	Ru
Rhodium	45	Rh
Palladium	46	Pd
Silver	47	Ag
Cadmium	48	Cd
Indium	49	In
Tin	50	Sn
Antimony	51	Sb
Tellerium	52	Те
Iodine	53	I
Xenon	54	Xe
Cesium	55	Cs
Barium	56	Ba
Lanthanum	57	La
Cerium	58	Ce
Praseodymium	59	Pr
Neodymium	60	Nd
Promethium	61	Pm
Samarium	62	Sm
Europium	63	Eu
Gadolinium	64	Gd
Terbium	65	Tb
Dysprosium	66	Dy
Holmium	67	Но
Erbium	68	Er
Thulium	69	Tm
Ytterbium	70	Yb

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol		
Lutetium	71	Lu		
Hafnium	72	Hf		
Tantalum	73	Та		
Tungsten	74	W		
Rhenium	75	Re		
Osmium	76	Os		
Iridium	77	Ir		
Platinum	78	Pt		
Gold	79	Au		
Mercury	80	Hg		
Thallium	81	Tl		
Lead	82	Pb		
Bismuth	83	Bi		
Polonium	84	Po		
Astatine	85	At		
Radon	86	Rn		
Francium	87	Fr		
Radium	88	Ra		
Actinium	89	Ac		
Thorium	90	Th		
Protactinium	91	Pa		
Uranium	92	U		
Neptunium	93	Np		
Plutonium	94	Pu		

Name	Atomic no.	Symbol
Americium	95	Am
Curium	96	Cm
Berkelium	97	Bk
Californium	98	Cf
Einsteinium	99	Es
Fermium	100	Fm
Mendelevium	101	Md
Nobelium	102	No
Lawrencium	103	Lr
Rutherfordium	104	Rf
Dubnium	105	Db
Seaborgium	106	Sg
Bohrium	107	Bh
Hassium	108	Hs
Meitnerium	109	Mt
Darmstadtium	110	Ds
Roentgenium	111	Rg
Copernicium	112	Cn
Nihonium	113	Nh
Flerovium	114	Fl
Moscovium	115	Mc
Livermorium	116	Lv
Tennessine	117	Ts
Oganesson	118	Og

18 Z He 2	17 4.00	8 9 10	19.00 20.18	16 17 18	5	35.45 39.95	34 35 36	Ā	79.90 83.80	52 53 54	- Xe	126.90	84 85 86	At Rn	(210.0) (222.0)	117 118	Ts Og	(294) (294)		G r	n '	Yb Lu 173.05 174.97		102 103	7	
	15 16	7	14.01 16.00	15		30.97 32.06	33		74.92 78.97	51	Sb Te	121.76 127.60	83	Bi Po	208.98 (210.0)	115 116		(288) (293)			ا 8 ا	Er Im	4	100 101	ū	_
	14		10.81	13 14		26.98 28.09	31 32		69.72 72.63	49 50	In Sn	114.82 118.71	81 82	TI Pb	204.38 207.2	13		(284) (289)			<u> </u>	Dy H0		86	r Fe	
						12	29 30		65.38	47 48	Cq	112.41	79 80	Hg	200.59	1 112		(285) (60	- 1		26 96	R	
ELEMENTS						10 11	28		58.69 63.55	46 4	Pd Ag	106.42 107.87	78 7	Pt Au	195.08 196.97	110 111	Ds Rg	(281) (272)			63	Eu Gd	_	95	Λm	_
RIODIC TABLE OF THE ELEMENTS	atomic number	symbol	relative atomic mass*			6	26 27		58.93	44 45	Rh		77 97	<u>_</u>	3 192.22	108 109	_	(268)			<u> </u>	SE 150.36	\perp	93 94	P	
PERIODIC TA	-	sku -				7 8	25	Mn Fe	54.94 55.85	3	Tc Ru		75	Re Os	186.21 190.23	107		(264.1) (265.1)			٠ ء .	Nd Pm 144.24 (146.9)		92		
						9	23 24		1 52.00	41 42	Mo		73 74	>	183.84)5		(263.1)			28	Pr 2 140.91	_	90 91	Б	
						4 5	22		47.87 50.94	40	Zr Nb		72	Hf Ta	178.49 180.95	04		(261.1) (262.1)	:	Lanthanoids), 'G	La Ce		88	Λr Th	
		4		12	6	31 3	20 21		18 44.96	38 39	<u>ر</u>	52 88.91	56 57-71		.33	88 89-103	Actinoids	.1)	-			^ - - - - - - -				
		<u>3</u>	6.94 9.01	11	Na Mg		19		39.10 40.08	37	Rb Sr		55	Cs Ba	132.91 137.33	87	Fr Ra	(223.0) (226.1)								

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.

[2		10	18	36	24	7
18	He			Ar 101	Kr	Xe 136	
		17	F 9 60 133 (1–)	C17	Br 117 1196 (1–)	136 220 (1-)	
		16	64 140 (2-)	S 16 104 184 (2-)	Se 118 198 (2-)	Te 137 221 (2-)	
		15	N 7 71 71 146 (3-)		AS 120 58 (3+) 46 (5+)		
		14	C 75 75 16 (4+)	Si 14 114 40 (4+)	Ge 120 53 (4+) 272 (4-)		
	0	13	B 84 84 27 (3+)	Al 13	Ga 123 62 (3+)	142 80 (3+)	
EMENT				12	Zn 120 74 (2+)	Cd ⁴⁸ 140 95 (2+)	
Ertene				Ξ	Cu 29 122 77 (1+) 73 (2+)	-	
II DE CEI	DMIC AND IONIC RADII OF SELECTED ELEMENTS EY atomic number symbol atomic radius (10 ⁻¹² m) charge of ion			10	Ni ²⁸ 117 69 (2+) 60 (3+)		
UNIC DAD		umber	symbol atomic radius (10 ⁻¹² m) charge of ion	o	Co 118 74 (2+) 61 (3+)		
		3 atomic number	symbol atomic radius charge of ion	∞	Fe 124 78 (2+) 64 (3+)	Ru 136 62 (4+)	
MOTA	KE KE	-	130 76 (1+)	7	Mn 129 83 (2+) 64 (3+)	Tc 138 65 (4+)	vention 1–18.
			ionic radius (10 ^{–12} m)	9	Cr 130 62 (3+) 44 (6+)	M0 148 65 (4+)	Groups are numbered according to IUPAC convention 1–18.
			ionic rad	വ	V 23 144 79 (2+) 54 (5+)	Nb 156 64 (5+)	nered according
				4	Ti 22 148 148 86 (2+) 61 (4+)	Zr 164 72 (4+)	roups are num
				ო	Sc 159 75 (3+)	Y 39	
		2	Be 99 45 (2+)	Mg ¹² 140 72 (2+)	Ca 174 100 (2+)	Sr 38 190 118 (2+)	Ba 206 135 (2+)
1	H 32	708 (1-)	Li 3 130 76 (1+)	Na 160 102 (1+)	K 19 200 138 (1+)	Rb 215 (1+)	Cs 238 238 167 (1+)

18	He ²	2379	Ne 10	2087	Ar 18	1527	K r ³⁶	2.9 1357	Xe ⁵⁴	2.6					
		17	6 6	4.0 1687	CI ₁₇		l .	3.0	- 53	2.7					
		16	∞	3.4 1320 1	S 16		Se ³⁴		Te ⁵²						
		15	_ Z	3.0 1407	P 15	2.2	As		Sb ⁵¹		-				
		14	و ن ن		Si 14			2.0	Su						
		13	. 2	807	AI ¹³	1.6 584	Ga ³¹	1.8	In 49	1.8 565					
NOIL						12	Zn ₃₀		Cd ⁴⁸						
ECTRONEGATIVITIES AND FIRST IONISATION	o				1	Cu ²⁹	1.9 752	47	1.9						
IND FIRS	ELEMEN7 ELEMEN7 ELEMEN7			ERGIES OF SELECTED ELEMENTS (EY atomic number symbol electronegativity first ionisation enthalpies (kJ mol ⁻¹)				es (kJ mol ⁻¹		10	Ni ²⁸		Pd ⁴⁶	2.2	_
IVITIES A		3	uniber gativity	ation enthalp		6	C_0^{27}	1.9 765	Rh ⁴⁵						
RONEGAT	IES UF S		1 symbol symbol electronegativity	first ionis		œ	Fe ²⁶	1.8	Ru ⁴⁴	2.2					
ELECTI		KEY	= 5.2	1318		7	Mn ²⁵	1.6 724	43	1.9	vention 1–18				
						9	Cr ²⁴	1.7	Mo ⁴²	2.2	To IIIPAC con				
						2	V 23	1.6	Nb ⁴¹	1.6	Grains are numbered according to IIIPAC convention				
						4	Ti ²²	1.5	Zr ⁴⁰	1.3	Trouns are num				
						က	Sc ²¹	1.4	γ 39	1.2					
		2	Be 4	906	Mg ¹²	1.3		1.0 596	Sr ³⁸	1.0 556	Ba 56 0.9				
-	=	2.2 1318		1.U 526	Na ¹¹	0.9 502	K 19	0.8 425	Rb ³⁷	0.8	Cs 55 0.8 382				

SOLUBILITY OF SELECTED COMPOUNDS AT 298 K

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	S	_	S	i	S	S	i	i	S
ammonium	S	S	S	S	S	S	_	S	S
barium	S	i	S	S	S	S	S	i	i
calcium	S	i	S	p	S	S	p	i	p
cobalt(II)	S	i	S	i	S	S	i	i	S
copper(II)	S	_	S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	S	_	S	i	S	S	i	i	S
lead(II)	p	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S	_	S
magnesium	S	i	S	i	S	S	i	p	S
manganese(II)	S	i	S	i	S	S	i	p	S
potassium	S	S	S	S	S	S	S	S	S
silver	i	i	i	i	i	S	i	i	p
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	S	i	S	S	i	i	S

Key

Abbreviation	Explanation				
S	soluble in water (solubility greater than 10 g L ⁻¹)				
p	partially soluble in water (solubility between 1 and 10 g L ⁻¹)				
i	insoluble in water (solubility less than 1 g L ⁻¹)				
_	no data				

AVERAGE BOND ENTHALPIES AT 298 K

Single bonds

		$\Delta H (\text{kJ mol}^{-1})$							
	Н	C	N	О	F	S	Cl	Br	I
Н	436								
C	414	346							
N	391	286	158						
О	463	358	214	144					
F	567	492	278	191	159				
S	364	289			327	266			
Cl	431	324	192	206	255	271	242		
Br	366	285		201	249	218	219	193	
I	298	228		201	280		211	178	151

Multiple bonds

Bond	$\Delta H (kJ \text{ mol}^{-1})$
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N=N	470
N≡N	945
O=O	498

REACTIVITY SERIES OF METALS

Element	Reactivity
K	most reactive
Na	
Li	
Ba	
Sr	
Ca	
Mg	
Al	
C*	
Mn	
Zn	
Cr	
Fe	
Cd	
Со	
Ni	
Sn	
Pb	
H ₂ *	
Sb	
Bi	
Cu	
Hg	
Ag	
Au	
Pt	least reactive

^{*} Carbon (C) and hydrogen gas (H₂) added for comparison

ACID-BASE INDICATORS

Name	pKa	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1-4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8-5.4	yellow to blue
Methyl red	5.1	4.4-6.2	pink to yellow
Bromothymol blue	7.0	6.0-7.6	yellow to blue
Phenol red	7.9	6.8-8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

FORMULAS AND CHARGES FOR COMMON POLYATOMIC IONS

An	ions
acetate (ethanoate)	CH ₃ COO ⁻ or C ₂ H ₃ O ₂ ⁻
carbonate	CO ₃ ²⁻
chlorate	ClO ₃
chlorite	ClO ₂
chromate	CrO ₄ ²⁻
citrate	$C_6 H_5 O_7^{3-}$
cyanide	CN ⁻
dichromate	Cr ₂ O ₇ ²⁻
dihydrogen phosphate	$\mathrm{H_2PO_4}^-$
hypochlorite	ClO ⁻
hydrogen carbonate	HCO ₃
hydrogen sulfate	HSO ₄
hydrogen phosphate	HPO ₄ ²⁻
hydroxide	OH_
nitrate	NO ₃
nitrite	NO ₂
perchlorate	ClO ₄
permanganate	MnO ₄
peroxide	O ₂ ²⁻
phosphate	PO ₄ ³⁻
sulfate	SO 2-
sulfite	SO_3^{2-} $S_2O_3^{2-}$
thiosulfate	S ₂ O ₃ ²⁻

Cations	
ammonium	NH ₄ ⁺
hydronium	H ₃ O ⁺

REFERENCES

Aylward, G and Findlay, T 2008, *SI Chemical Data*, 5th ed, John Wiley & Sons, Brisbane. Haynes, WM (ed) 2016, *CRC Handbook of Chemistry and Physics*, 97th ed, CRC Press, Boca Raton, US.