

Trial Examination 2022

Question and Response Booklet

QCE Chemistry Units 1&2

Paper 1

Student's Name:		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (25 marks)

25 multiple choice questions

Section 2 (35 marks)

• 8 short response questions

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

- Choose the best answer for Questions 1–25.
- This section has 25 questions and is worth 25 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	A	В	С	D
Example:				

	A	В	С	D
1.		\bigcirc		\bigcirc
2.		\bigcirc		\bigcirc
3.		\bigcirc		\bigcirc
4.		\bigcirc		\bigcirc
5.		\bigcirc		\bigcirc
1. 2. 3. 4. 5. 6. 7. 8. 9.		\bigcirc		\bigcirc
7.		\bigcirc		\bigcirc
8.		\bigcirc		\bigcirc
9.		\bigcirc		\bigcirc
10.		\bigcirc		\bigcirc
11. 12.		\bigcirc		\bigcirc
12.		\bigcirc		\bigcirc
13.		\bigcirc		\bigcirc
14.		\bigcirc		\bigcirc
15.		\bigcirc	\circ	
16.		\bigcirc		\bigcirc
17.		\bigcirc		\bigcirc
18.		\bigcirc		\bigcirc
19.		\bigcirc		\bigcirc
20.		\bigcirc	\circ	
21.		\bigcirc		\bigcirc
21. 22. 23. 24.	A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B O O O O O O O O O O O O O O O O O O O	c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D
23.		\bigcirc	\bigcirc	\bigcirc
24.		\bigcirc	\bigcirc	\bigcirc
25.		\bigcirc		\bigcirc

SECTION 2

Instructions

- Write using black or blue pen.
- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has eight questions and is worth 35 marks.

QUESTION 26	(4 marks)
--------------------	-----------

a)	Writ	te the full electron configurations of the following using spdf notation.	
	i)	aluminium atom	[1 mark]
	ii)	iron atom	[1 mark]
	iii)	ion with a 2+ charge and the same electron configuration as krypton	[1 mark]
b)	Iden	tify the ion in 26aiii).	[1 mark]

QUESTION 27 (5 marks)

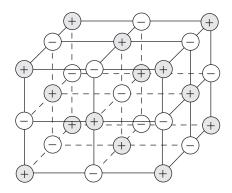
Chlorofluorocarbons (CFCs) were widely used as propellants and refrigerants until their usage was linked to ozone destruction in the upper atmosphere.

A particular CFC was found to have the following elemental composition by mass.

Element	Percentage (%)
С	17.8
Н	1.50
Cl	52.6
F	28.1

its molecular mass was found to be 155.	
Use the data to determine the empirical formula and molecular formula of the CFC.	

QUI	ESTION 28 (3 marks)
Hyd	rogen fluoride is formed by reacting hydrogen gas and fluorine gas according to the following equation.
	$H-H(g)+F-F(g) \rightarrow 2H-F(g)$
Calc	rulate the energy change of this reaction. Show your working.
	energy change =kJ mol ⁻¹
_	ESTION 29 (3 marks) unknown solution is thought to contain copper(II) ions.
a)	Propose a chemical test that could confirm the presence of these ions. [1 mark]
b)	Describe what would be observed during the test proposed in 29a). [1 mark]


Write the ionic equation for the reaction that occurs during the test proposed in 29a).

[1 mark]

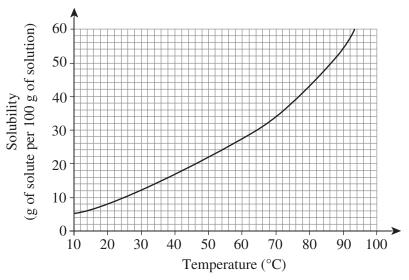
c)

QUESTION 30 (7 marks)

The diagram illustrates the structure of part of a sodium chloride crystal. The positive and negative circles represent the sodium and chloride ions.

Deduce why sodium chloride has a high melting point of 801°C.	[1 mark
Explain why sodium chloride conducts electricity when melted, but not when it is a solid.	[2 marks
Explain why sodium chloride dissolves in water but not in petrol (octane).	[4 marks

OUESTION	31	(5 marks)
OULDITOR		


Argon is a noble gas	s that makes up almost 1	% of the atmosphere. It ex	ists as single atoms.

	two assumptions that can be made about argon based on the kinetic theory of gases.	[2 n
State	the number of atoms that are present in 1 mol of argon.	[1]
	ght bulb, a thin filament of tungsten glows white hot from its resistance electrical current.	

QUESTION 32 (3 marks)

A solid was purified using a technique called recrystallisation. This involved dissolving the impure solid in a minimum amount of hot water and then allowing the solution to cool so that crystals of pure solid were formed.

The solubility curve for the pure solid is shown.

a)	Use the solubility curve to calculate the mass of pure solid that would form from cooling	
	100 g of solution from 90°C to 20°C. Show your working.	[2 marks]

b) If a greater amount of hot water was used to dissolve the impure solid, predict the effect this would have on the mass obtained in 32a). [1 mark]

QUESTION 33 (5 marks)

Calcium and barium are group 2 metals. They both react with water according to the following equation, where M represents either metal.

$$M(s) + 2H_2O(l) \rightarrow M(OH)_2(aq) + H_2(g)$$

A student added 5 g of calcium to water in a conical flask and collected the hydrogen gas produced in a syringe. They repeated the experiment using 5 g of barium under the same temperature and pressure conditions. They were surprised to see that the volume of gas produced by the reaction using barium was less than that produced by the reaction using calcium.

Deduce why the reaction using barium produced a lower volume of gas.	[1 mark]
The student observed one other difference between the reactions.	
Identify and explain the difference.	[2 marks]
The student did not label the flasks containing the two solutions.	
Propose a test they could perform to distinguish between the two solutions.	[2 marks]

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES
Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES	
Write the question number you are responding to.	

ADDITIONAL PAGE FOR STUDENT RESPONSES
Write the question number you are responding to.

Trial Examination 2022

Formula and Data Booklet

QCE Chemistry Units 1&2

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data

Absolute uncertainty of the mean $\Delta \overline{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$

Percentrage error (%) = $\left| \frac{\text{measured value} - \text{true value}}{\text{true value}} \right| \times 100$

Chemical reactions – reactants, products and energy change

 $\Delta H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\Delta H = \Sigma (bonds broken) - \Sigma (bonds formed)$

 $Q = mc\Delta T$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$

 $A_{r} = \frac{\text{(isotopic mass} \times \% abundance) + \text{(isotopic mass} \times \% abundance)}}{100}$

Moles (n) = $\frac{\text{number of particles } (N)}{\text{Avogadro's constant } (N_A)}$

 $Moles = \frac{\text{mass of substance}(m)}{\text{molar mass}(M)}$

Intermolecular forces and gas

PV = nRT

Aqueous solutions and acidity

Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$

 $c_1V_1=c_2V_2$

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Physical constants and unit conversions	
Absolute zero	$0 \text{ K} = -273^{\circ}\text{C}$
Atomic mass unit	1 amu = 1.66×10^{-27} kg
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
Standard temperature and pressure (STP)	273 K and 100 kPa
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$

LIST OF ELEMENTS

Name	Atomic no.	Symbol
Hydrogen	1	Н
Helium	2	Не
Lithium	3	Li
Beryllium	4	Be
Boron	5	В
Carbon	6	С
Nitrogen	7	N
Oxygen	8	О
Fluorine	9	F
Neon	10	Ne
Sodium	11	Na
Magnesium	12	Mg
Aluminium	13	Al
Silicon	14	Si
Phosphorus	15	P
Sulfur	16	S
Chlorine	17	Cl
Argon	18	Ar
Potassium	19	K
Calcium	20	Ca
Scandium	21	Sc
Titanium	22	Ti
Vanadium	23	V
Chromium	24	Cr
Manganese	25	Mn
Iron	26	Fe
Cobalt	27	Со
Nickel	28	Ni
Copper	29	Cu
Zinc	30	Zn
Gallium	31	Ga
Germanium	32	Ge
Arsenic	33	As
Selenium	34	Se
Bromine	35	Br

Name	Atomic no.	Symbol					
Krypton	36	Kr					
Rubidium	37	Rb					
Strontium	38	Sr					
Yttrium	39	Y					
Zirconium	40	Zr					
Niobium	41	Nb					
Molybdenum	42	Mo					
Technetium	43	Тс					
Ruthenium	44	Ru					
Rhodium	45	Rh					
Palladium	46	Pd					
Silver	47	Ag					
Cadmium	48	Cd					
Indium	49	In					
Tin	50	Sn					
Antimony	51	Sb					
Tellerium	52	Те					
Iodine	53	Ι					
Xenon	54	Xe					
Cesium	55	Cs					
Barium	56	Ba					
Lanthanum	57	La					
Cerium	58	Ce					
Praseodymium	59	Pr					
Neodymium	60	Nd					
Promethium	61	Pm					
Samarium	62	Sm					
Europium	63	Eu					
Gadolinium	64	Gd					
Terbium	65	Tb					
Dysprosium	66	Dy					
Holmium	67	Но					
Erbium	68	Er					
Thulium	69	Tm					
Ytterbium	70	Yb					

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol
Lutetium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Hg
Thallium	81	Tl
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Po
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Pa
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

Name	Atomic no.	Symbol
Americium	95	Am
Curium	96	Cm
Berkelium	97	Bk
Californium	98	Cf
Einsteinium	99	Es
Fermium	100	Fm
Mendelevium	101	Md
Nobelium	102	No
Lawrencium	103	Lr
Rutherfordium	104	Rf
Dubnium	105	Db
Seaborgium	106	Sg
Bohrium	107	Bh
Hassium	108	Hs
Meitnerium	109	Mt
Darmstadtium	110	Ds
Roentgenium	111	Rg
Copernicium	112	Cn
Nihonium	113	Nh
Flerovium	114	Fl
Moscovium	115	Mc
Livermorium	116	Lv
Tennessine	117	Ts
Oganesson	118	Og

	He 4.00	10	Ne	18	_	92	36	7	83.80	24	ته	131.29	98		(222.0)	118	6	4)		71		Lu 174.97		103	_	2.1)
18	He		Ne		Ar	39.95		Y	83.		Xe	131	_	Ru	(22)		0g	(29				174			۲	(262.1)
	17	6	┸ 19:00	17	5	35.45	35	Br	79.90	53	_	126.90	85	At	(210.0)	117	L	(294)		02	\	173.05		102	No	(259.1)
	16	8	O 16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116	۲۸	(293)		80	3 E	168.93		101	Σ	(258.1)
	15	7	S 14.01	15	۵	30.97	33	As	74.92	51	Sp	121.76	83	<u>.</u>	208.98	115	Mc	(288)		O	ŗ	L.1 167.26		100	Fm	(252.1)
	14	9	C 15.01	14	Si	28.09	32	Ge	72.63	20	Sn	118.71	82	Pb	207.2	114	正	(289)		73	5	164 .93		66	Es	(252.1)
	13	D	a 10.8	13	A	26.98	31	Ga	69.72	49	드	114.82	81	F	204.38	113	Z L	(284)		g	2	162.50		86	Ç	(252.1)
						12	30	Zu	65.38	48	P _O	112.41	80	Hď	200.59	112	ü	(282)		r.	3 -	158.93		97	æ	(249.1)
S						=	29	Cu	63.55	47	Aq	107.87	79	Au	196.97	111	Rg	(272)		79	5	1 57.25		96	Cm	(244.1)
ELEMEN						10	28	Z	58.69	46	Pd	106.42	78	Ŧ	195.08	110	Ds	(281)		23	3 :	Eu 151.96		95	Am	(241.1)
E OF THE		ımber	symbol relative atomic mass*			6	27	Ç	58.93	45	R	102.91	77	<u></u>	192.22	109	Mt	(268)		63	2 6	150.36		94	Pu	(239.1)
RIODIC TABLE OF THE ELEMENTS		atomic number	relative a	1		80	26	Fe	55.85	44	Bu	101.07	9/	08	190.23	108	Hs	(265.1)		19	2	(146.9)		93	S	(237.0)
PERIOD	KEY	=	1.01			7	25	Δn	54.94	43	J C	(98.91)	75	Re	186.21	107	Bh	(264.1)		G	2	144.24		92	-	238.0
						9	24	Ç	52.00	42	Mo	95.95	74	≥	183.84	106	Sg	(263.1)		20	3	140.91		91	Pa	231.0
						2	23	>	50.94	41	S	92.91	73	Б	180.95	105	Op O	(262.1)		αĽ	3	140.12		90	드	232.0
						4	22	ï	47.87	40	Zr	91.22	72	¥	178.49	104	Rŧ	(261.1)	1	Lanthanoids	· -	138.91	Actinoids	88	Ac	(227.0)
						က	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids			_ ۔ ۔ ۔ ۔ ۔		↑ 				
	2	4	Be	12	Mg	24.31	20	Ca	40.08	38	S	87.62	99	Ba	137.33	88		(226.1)				J				
	T 10:1	က		1	Na	22.99	19	¥	39.10	37	Rb	85.47	55	Cs	132.91	87	Ţ	(223.0)								

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.

18	He ²	37		Ne ¹⁰	62		Ar	101		Kr ³⁶	116		Xe ⁵⁴	136				
l			17	6 "	60 133 (1–)	ŗ	_ 	100		35 Br			- P3	136	(-1) 022			
			16	° 0	64 140 (2–)		S			Se ³⁴			Te ⁵²	137	221 (2-)			
			15	N 7	71 146 (3–)	Ļ	<u>ရ</u> မ	109	38 (5+)	As 33	120	46 (5+)	Sb ⁵¹	140	/6 (3+)			
			14	ں و	75 16 (4+)		Si			Ge 32	120	272 (4–)						
v	9		13	B	84 27 (3+)		Al	124	53 (3+)	Ga ³¹	123	(C) 30	In 49	142	80 (3+)			
DMIC AND IONIC BADII DE SEI ECTED EI EMENTS			·						12	Zn ³⁰	120	. 71 + /	Cd ⁴⁸	140	95 (2+)			
I ECTED I	רכורם								1	C u ²⁹				136	_			
OII OF SE	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, m)					10	Ni ²⁸	117	(3+)						
			atomic number	symbol atomic radius (10 ⁻¹² m)	ot ion				6	\mathbf{Co}^{27}			Rh ⁴⁵					
			3 atomic		charge of 10n				80	Fe 26	124	64 (3+)	Ru ⁴⁴	136	62 (4 +)			ĸ.
ATOM		KEY	-		/6 (1+)				7	M_n^{25}	129	64 (3+)		138				onvention 1–18.
					ı OL) snip				9	\mathbf{Cr}^{24}	130	44 (6+)	M_0^{42}	148	65 (4+)			ng to IUPAC co
					ionic ra				5	V 23	144 79 (2±)	54 (5+)	Nb ⁴¹	156	64 (5 +)			Groups are numbered according to IUPAC convention 1
									4	Ti ²²	148	61 (4+)	Zr ⁴⁰	164	/2 (4+)			Groups are nur
									က	Sc ²¹	159		γ 39	176	90 (3+)			_
_			2	Be 4	99 45 (2+)		Mg	140		Ca ²⁰			Sr 38		118 (2+)	Ba 56	_	
_	=	32 208 (1–)		Li ³	130 76 (1+)		Na 11	160	102 (1+)	K 19	200		Rb ³⁷	215	152 (1+)	Cs 55	238	

18	He ²	2379	Ne ¹⁰	2087	Ar 18	1527	K r ³⁶	2.9 1357	Xe ⁵⁴	2.6				
		17	6 4.0	1687	CI ₁₇	3.2 1257	Br 35	3.0 1146	- 53	2.7 1015	-			
		16	3.4	1320	S 16	2.6 1006	Se ³⁴	2.6 947	Te ⁵²	2.1 876	-			
		15	7 8.0	1407	p 15	2.2 1018	As		Sp ₅₁	2.1	-			
		14	6	1093	Si ¹⁴	1.9 793	Ge ³²	2.0	Sn	2.0 715				
		13		807	AI ¹³	1.6 584	Ga ³¹	1.8 585	In 49	1.8 565	-			
ATION						12	2n ₃₀	1.7 913	Cd ⁴⁸	1.7 874	-			
CTRONEGATIVITIES AND FIRST IONISATION	2	atomic number symbol	-	_		Ξ		1.9 752	Ag ⁴⁷	1.9 737	-			
AND FIRE			· · · · · · · · · · · · · · · · · · ·	symbol electronegativity first ionisation enthalpies (kJ mol ⁻¹ ,	electronegativity first ionisation enthalpies (kJ mol	isation enthalpies (kJ mol		10	Ni ²⁸	1.9 743	Pd ⁴⁶			
TIVITIES	בוברובו		number negativity					6	\mathbf{Co}^{27}		Rh ⁴⁵	2.3 726		
RONEGA	FRGIES UF SELECTED ELEIMENTS		atomic I symbol electron				œ	Fe ²⁶	1.8 766	Ru ⁴⁴	2.2 717		~	
		KEY	2.2	1318		7	Mn^{25}	1.6 724	Tc ⁴³	1.9 708		nvention 1–18		
						9	Cr ²⁴	1.7 659	Mo ⁴²	2.2 691		Groups are numbered according to IUPAC convention 1–18.		
								2	V 23	1.6 656	Nb ⁴¹	1.6 670		nbered accordi
						4	Ti ²²	1.5 664	Zr ⁴⁰	1.3 666		Groups are nun		
						က	Sc ²¹	1.4 637	γ 39	1.2 606				
		2	Be 4	906	Mg^{12}	1.3 744	\mathbf{Ca}^{20}		Sr ³⁸	1.0 556	Ba ⁵⁶	0.9 509		
-	H	2.2 1318	3	526	Na ¹¹	0.9 502	19 K 19	0.8 425	Rb ³⁷	0.8 409	Cs ₅₅	382		

SOLUBILITY OF SELECTED COMPOUNDS AT 298 K

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	S	_	S	i	S	S	i	i	S
ammonium	S	S	S	S	S	S	_	S	S
barium	S	i	S	S	S	S	S	i	i
calcium	S	i	S	p	S	S	p	i	p
cobalt(II)	S	i	S	i	S	S	i	i	S
copper(II)	S	_	S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	S	_	S	i	S	S	i	i	S
lead(II)	p	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S	_	S
magnesium	S	i	S	i	S	S	i	p	S
manganese(II)	S	i	S	i	S	S	i	p	S
potassium	S	S	S	S	S	S	S	S	S
silver	i	i	i	i	i	S	i	i	p
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	S	i	S	S	i	i	S

Key

Abbreviation	Explanation
S	soluble in water (solubility greater than 10 g L^{-1})
p	partially soluble in water (solubility between 1 and 10 g L^{-1})
i	insoluble in water (solubility less than 1 g L ⁻¹)
_	no data

AVERAGE BOND ENTHALPIES AT 298 K

Single bonds

	$\Delta H (\text{kJ mol}^{-1})$								
	Н	C	N	О	F	S	Cl	Br	I
Н	436								
C	414	346							
N	391	286	158						
О	463	358	214	144					
F	567	492	278	191	159				
S	364	289			327	266			
Cl	431	324	192	206	255	271	242		
Br	366	285		201	249	218	219	193	
I	298	228		201	280		211	178	151

Multiple bonds

Bond	$\Delta H (kJ \text{ mol}^{-1})$
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N=N	470
N≡N	945
O=O	498

REACTIVITY SERIES OF METALS

Element	Reactivity
K	most reactive
Na	
Li	
Ba	
Sr	
Ca	
Mg	
Al	
C*	
Mn	
Zn	
Cr	
Fe	
Cd	
Со	
Ni	
Sn	
Pb	
H ₂ *	
Sb	
Bi	
Cu	
Hg	
Ag	
Au	
Pt	least reactive

^{*} Carbon (C) and hydrogen gas (H₂) added for comparison

ACID-BASE INDICATORS

Name	pKa	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1–4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8-5.4	yellow to blue
Methyl red	5.1	4.4-6.2	pink to yellow
Bromothymol blue	7.0	6.0-7.6	yellow to blue
Phenol red	7.9	6.8-8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

FORMULAS AND CHARGES FOR COMMON POLYATOMIC IONS

Anions				
acetate (ethanoate)	CH ₃ COO ⁻ or C ₂ H ₃ O ₂ ⁻			
carbonate	CO ₃ ²⁻			
chlorate	ClO ₃			
chlorite	ClO ₂			
chromate	CrO ₄ ²⁻			
citrate	C ₆ H ₅ O ₇ ³⁻			
cyanide	CN ⁻			
dichromate	Cr ₂ O ₇ ²⁻			
dihydrogen phosphate	H ₂ PO ₄			
hypochlorite	ClO ⁻			
hydrogen carbonate	HCO ₃			
hydrogen sulfate	HSO ₄			
hydrogen phosphate	HPO ₄ ²⁻			
hydroxide	OH ⁻			
nitrate	NO ₃			
nitrite	NO ₂			
perchlorate	ClO ₄			
permanganate	MnO ₄			
peroxide	O ₂ ²⁻			
phosphate	PO ₄ ³⁻			
sulfate	SO ₄ ²⁻ SO ₃ ²⁻			
sulfite	SO ₃ ²⁻			
thiosulfate	S ₂ O ₃ ²⁻			

Cations				
ammonium	NH ₄ ⁺			
hydronium	H ₃ O ⁺			

REFERENCES

Aylward, G and Findlay, T 2008, *SI Chemical Data*, 5th ed, John Wiley & Sons, Brisbane. Haynes, WM (ed) 2016, *CRC Handbook of Chemistry and Physics*, 97th ed, CRC Press, Boca Raton, US.