

Trial Examination 2022

Question and Response Booklet

QCE Chemistry Units 1&2

Paper 2

Student's Name:		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

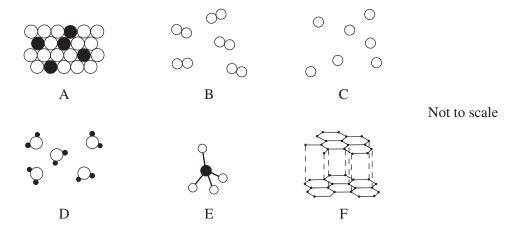
Section 1 (65 marks)

9 short response questions

Neap® Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions


- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (14 marks)

The diagrams A–F represent different types of models of various elements and compounds. Black circles represent different atoms to white circles. White circles do not represent the same atom in different diagrams.

dentify which three diagrams (A–F) represent elements. Explain your reasoning.	[2 marks]	
dentify the diagram (A–F) that represents a gas containing diatomic molecules and name he gas. Include the molecular formula of the gas in your response.	[2 marks]	
Identify the diagram (A–F) that represents a gas containing single atoms.	[1 mark]	
dentify the diagram (A–F) that represents graphite.	[1 mark]	
dentify the diagrams (A–F) that represent compounds.	[1 mark]	
A student thinks that diagrams D and E each represent one of the following. hydrogen bromide water ammonia methane		
dentify diagrams D and E.	[2 marks]	
)		
3		

i)	Draw a Lewis (electron dot) structure of hydrogen bromide. Show the outer shell electrons only.	[1 mark]
ii)	State the type of bonding in hydrogen bromide.	[1 mark]
Head	ma can buomida dissalvas in vistan to farm budushusmia said vibish is a stuong said	
iii)	rogen bromide dissolves in water to form hydrobromic acid, which is a strong acid. Define what is meant by a 'strong acid'.	[1 mark]
iv)	Describe a simple chemical test that could be conducted to show that hydrobromic	
	acid is a strong acid.	[1 mark]
v)	Determine the pH value of hydrobromic acid solution. Circle your response.	[1 mark]

pH 1 pH 4 pH 7 pH 10 pH 14

QUESTION 2 (2 marks)
Biofuels like ethanol are becoming a popular alternative to fossil fuels.
Propose TWO reasons for this.
QUESTION 3 (2 marks)
Identify the states of the stationary and mobile phases of high-performance liquid chromatography.
Stationary phase
Mobile phase

QUESTION 4 (5 marks)

Hydrogen halides are compounds of halogens bonded to hydrogen. The bond polarity of these compounds decreases down the group from hydrogen fluoride to hydrogen iodide.

The boiling points and bond energies of these compounds are shown in the table.

Hydrogen halide	HF	HCl	HBr	HI
Boiling point (°C)	19	-85	-67	-35
H–X bond energy (kJ mol ⁻¹)	562	431	366	299

i)	Explain why the boiling point of hydrogen fluoride is much higher than the other	
	hydrogen halides.	[2 m
ii)	Determine the reason for the boiling point trend from hydrogen chloride to hydrogen iodide.	[1 n

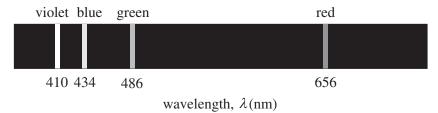
QUESTION 5 (10 marks)

Atomic absorption spectroscopy (AAS) is a spectroscopic technique that relies on the absorption of specific wavelengths from a flame to promote electrons within an atom to higher energy levels. It can measure minute traces of metal.

a) Electroplating is used in industry to improve an object's appearance and resistance to corrosion. Cadmium is a toxic metal and is used in electroplating. Water supplies in industrial areas where electroplating is conducted need to be monitored to ensure safe levels of cadmium are maintained. The table shows the absorbance of different cadmium concentrations.

Cadmium concentration (mg L ⁻¹)	Absorbance
0.00	0.00
1.00	0.04
2.00	0.08
3.00	0.12
4.00	0.16
5.00	0.20
6.00	0.24

i) Use the data in the table to draw a graph of absorbance versus cadmium concentration. [1 mark]


11)	Using your graph from 5ai), determine the cadmium concentration in a water sample	
	with an absorbance of 0.180.	[1 mark]

b) A naturally occurring sample of cerium, Ce, contains four isotopes. Data for three of the isotopes is shown in the table.

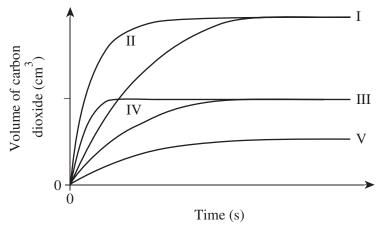
Isotope	¹³⁶ Ce	¹³⁸ Ce	¹⁴⁰ Ce	¹⁴² Ce
Relative isotopic mass	135.91	137.91	139.91	?
Percentage abundance (%)	0.19	0.25	88.45	?

	Percentage abundance (%)	0.19	0.25	88.45	?	
The relati	ive atomic mass of the sample is	140.12.				
Use the d	ata to calculate the relative isoto	pic mass o	f ¹⁴² Ce. S	how your v	working.	[3 marks]
re	elative isotopic mass =			(to two de	cimal places)	

c) The emission spectrum of atomic hydrogen in the visible region is known as the Balmer series. An illustration of the series is shown.

Explain why the spectrum appears as a pattern of coloured lines, rather than a continuous spectrum like a rainbow, and identify the transition that produces the green line.	[5 marks]

QUESTION 6 (11 marks)


The flow chart shows a series of reactions.

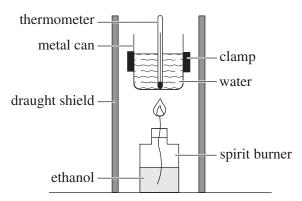
$$\begin{array}{c} \text{HCl(aq)} \xrightarrow{Mg(s)} \textbf{A}(\text{aq}) + \textbf{B}(\text{g}) \\ \\ \text{Reagent } \textbf{X} \text{ (aq)} \\ \\ \text{MgCO}_3(\text{s}) + \text{HNO}_3(\text{aq}) & \longrightarrow \textbf{C}(\text{aq}) + \text{H}_2\textbf{O}(\text{l}) + \textbf{D}(\text{g}) \end{array}$$

Wri	te the molecular formulas of A – D and identify reagent X .	[5 marks]
A _		
В _		
C _		
D _		
X _		
i)	Write a balanced chemical equation for the reaction between HCl and Mg.	[2 marks]
ii)	Write a net ionic equation for the reaction between HNO ₃ and MgCO ₃ .	[2 marks]
iii)	Write a net ionic equation for the reaction between A and X .	[2 marks]

QUESTION 7 (8 marks)

A series of experiments was performed to investigate the rate of reaction between calcium carbonate (marble chips) and nitric acid. The data obtained is shown in the graph.

Curve I was produced by the reaction of excess marble chips with $100~{\rm cm}^3$ of $1.0~{\rm mol~dm}^{-3}$ nitric acid at $20^{\circ}{\rm C}$.

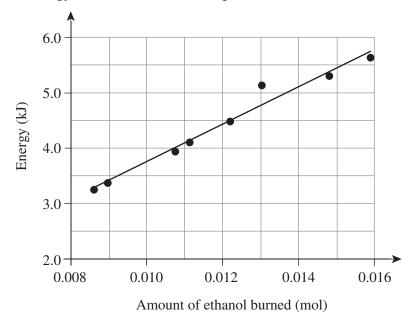

For each of the following reactions, identify the curve that was produced and explain the factor(s) that were responsible for the difference from curve I.

that are the same size	[2 m
the reaction of $50~{\rm cm}^3$ of $1.0~{\rm mol~dm}^{-3}$ nitric acid at $60^{\circ}{\rm C}$ with excess marble chips that are the same size	[2 m

the reaction of 100 cm ³ of 1.0 mol dm ⁻³ nitric acid at 20°C with excess powdered marble	: [2 mar

QUESTION 8 (8 marks)

A student carried out a series of experiments to determine the enthalpy of combustion of ethanol, C_2H_5OH . She used the apparatus shown in the diagram.


The ethanol in the spirit burner was burned to heat a known mass of water in the metal can. The student recorded the data obtained in the table below.

Experiment number	Mass of ethanol burned (g)	Temperature change (°C)	Mass of water heated (g)	Amount of ethanol burned (mol)	Energy transferred to the water (kJ)
1	0.390	19.5	40.0		
2	0.490	23.6	40.0		
3	0.510	24.5	40.0		
4	0.560	26.9	40.0		
5	0.730	33.6	40.0		
6	0.600	31.1	40.0		
7	0.410	20.3	40.0		
8	0.680	31.7	40.0		

a) Complete the table above. Give your answers correct to three significant figures.

[4 marks]

The graph shows the energy transferred to the water against the amount of ethanol burned.

b) Identify the experiment that produced the most anomalous result.

[1 mark]

c) The accepted value for the enthalpy of combustion of ethanol under standard conditions is $-1370 \text{ kJ mol}^{-1}$.

Explain why is this value is negative.

[1 mark]

d) The table shows the masses of ethanol and water used in experiment 1, and the maximum errors in a single reading.

	Mass measured (g)	Maximum error in a single reading (g)
Ethanol burned	0.390	0.010
Water heated	40.0	0.10

Calculate the maximum percentage error in the measurement of each mass used in experiment 1.

[1 mark]

maximum percentage error (ethanol) = _______ % (to two decimal places)

maximum percentage error (water) = _______ % (to two decimal places)

e)	Another student repeated the same series of experiments under the same conditions. He obtained a value of -612 kJ mol ⁻¹ for the enthalpy of combustion of ethanol, which is different to the accepted value of -1370 kJ mol ⁻¹ .	
	Suggest one reason why there is a difference between the student's calculated value and the accepted value.	[1 mark]

QUESTION 9 (5 marks)

Cassiterite is an ore of tin that contains tin(IV) oxide, SnO_2 . The percentage of tin(IV) oxide in cassiterite can be determined by titration with potassium iodide, KI, solution using a suitable indicator. The ionic equation for this reaction is as follows.

$$\operatorname{Sn}^{4+}(aq) + 2\operatorname{I}^{-}(aq) \rightarrow \operatorname{Sn}^{2+}(aq) + \operatorname{I}_{2}(aq)$$

A 9.00 g sample of cassiterite was reacted with excess hydrochloric acid to produce $\mathrm{Sn}^{4+}(aq)$. The mixture was filtered and the filtrate made up to 200 mL with distilled water in a volumetric flask.

A 20.00 mL sample of this solution required 36.70 mL of 0.250 mol $\rm L^{-1}$ potassium iodide for complete reaction.

Calc	culate the amount of I used.	[1
	amount = mol (to three significant figures)	
Calc	culate the amount of Sn ⁴⁺ in the 20.00 mL solution sample.	[1
	amount = mol (to three significant figures)	
Calc	culate the amount of Sn ⁴⁺ in the 200 mL volumetric flask.	[1
	amount = mol (to three significant figures)	
i)	amount = mol (to three significant figures) Calculate the mass of tin(IV) oxide in the 9.00 g cassiterite sample.	[1
i)		[1
i)		[1
i)	Calculate the mass of tin(IV) oxide in the 9.00 g cassiterite sample.	[1
	Calculate the mass of tin(IV) oxide in the 9.00 g cassiterite sample. mass = g (to three significant figures)	

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES
Write the question number you are responding to.

Write the question number you are responding to.	ADDITIONAL PAGE FOR STUDENT RESPONSES
	Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES
Write the question number you are responding to.

Trial Examination 2022

Formula and Data Booklet

QCE Chemistry Units 1&2

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data

Absolute uncertainty of the mean $\Delta \overline{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$

Percentrage error (%) = $\left| \frac{\text{measured value} - \text{true value}}{\text{true value}} \right| \times 100$

Chemical reactions – reactants, products and energy change

 $\Delta H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\Delta H = \Sigma (bonds broken) - \Sigma (bonds formed)$

 $Q = mc\Delta T$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$

 $A_{r} = \frac{\text{(isotopic mass} \times \% abundance) + \text{(isotopic mass} \times \% abundance)}}{100}$

Moles (n) = $\frac{\text{number of particles } (N)}{\text{Avogadro's constant } (N_A)}$

 $Moles = \frac{\text{mass of substance}(m)}{\text{molar mass}(M)}$

Intermolecular forces and gas

PV = nRT

Aqueous solutions and acidity

Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$

 $c_1V_1=c_2V_2$

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Physical constants and unit conversions			
Absolute zero	$0 \text{ K} = -273^{\circ}\text{C}$		
Atomic mass unit	1 amu = 1.66×10^{-27} kg		
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$		
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$		
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$		
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$		
Standard temperature and pressure (STP)	273 K and 100 kPa		
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$		

LIST OF ELEMENTS

Name	Atomic no.	Symbol
Hydrogen	1	Н
Helium	2	Не
Lithium	3	Li
Beryllium	4	Be
Boron	5	В
Carbon	6	С
Nitrogen	7	N
Oxygen	8	О
Fluorine	9	F
Neon	10	Ne
Sodium	11	Na
Magnesium	12	Mg
Aluminium	13	Al
Silicon	14	Si
Phosphorus	15	P
Sulfur	16	S
Chlorine	17	Cl
Argon	18	Ar
Potassium	19	K
Calcium	20	Ca
Scandium	21	Sc
Titanium	22	Ti
Vanadium	23	V
Chromium	24	Cr
Manganese	25	Mn
Iron	26	Fe
Cobalt	27	Со
Nickel	28	Ni
Copper	29	Cu
Zinc	30	Zn
Gallium	31	Ga
Germanium	32	Ge
Arsenic	33	As
Selenium	34	Se
Bromine	35	Br

Name	Atomic no.	Symbol
Krypton	36	Kr
Rubidium	37	Rb
Strontium	38	Sr
Yttrium	39	Y
Zirconium	40	Zr
Niobium	41	Nb
Molybdenum	42	Mo
Technetium	43	Тс
Ruthenium	44	Ru
Rhodium	45	Rh
Palladium	46	Pd
Silver	47	Ag
Cadmium	48	Cd
Indium	49	In
Tin	50	Sn
Antimony	51	Sb
Tellerium	52	Те
Iodine	53	Ι
Xenon	54	Xe
Cesium	55	Cs
Barium	56	Ba
Lanthanum	57	La
Cerium	58	Ce
Praseodymium	59	Pr
Neodymium	60	Nd
Promethium	61	Pm
Samarium	62	Sm
Europium	63	Eu
Gadolinium	64	Gd
Terbium	65	Tb
Dysprosium	66	Dy
Holmium	67	Но
Erbium	68	Er
Thulium	69	Tm
Ytterbium	70	Yb

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol				
Lutetium	71	Lu				
Hafnium	72	Hf				
Tantalum	73	Та				
Tungsten	74	W				
Rhenium	75	Re				
Osmium	76	Os				
Iridium	77	Ir				
Platinum	78	Pt				
Gold	79	Au				
Mercury	80	Hg				
Thallium	81	Tl				
Lead	82	Pb				
Bismuth	83	Bi				
Polonium	84	Po				
Astatine	85	At				
Radon	86	Rn				
Francium	87	Fr				
Radium	88	Ra				
Actinium	89	Ac				
Thorium	90	Th				
Protactinium	91	Pa				
Uranium	92	U				
Neptunium	93	Np				
Plutonium	94	Pu				

Name	Atomic no.	Symbol			
Americium	95	Am			
Curium	96	Cm			
Berkelium	97	Bk			
Californium	98	Cf			
Einsteinium	99	Es			
Fermium	100	Fm			
Mendelevium	101	Md			
Nobelium	102	No			
Lawrencium	103	Lr			
Rutherfordium	104	Rf			
Dubnium	105	Db			
Seaborgium	106	Sg			
Bohrium	107	Bh			
Hassium	108	Hs			
Meitnerium	109	Mt			
Darmstadtium	110	Ds			
Roentgenium	111	Rg			
Copernicium	112	Cn			
Nihonium	113	Nh			
Flerovium	114	Fl			
Moscovium	115	Mc			
Livermorium	116	Lv			
Tennessine	117	Ts			
Oganesson	118	Og			

	He 4.00	10	Ne	18	_	92	36	7	83.80	24	ته	131.29	98	_	(222.0)	118	6	4)		71		Lu 174.97		103	_	2.1)
18	He		Ne		Ar	39.95		Y	83.		Xe	131	_	Ru	(22)		0g	(29				174			۲	(262.1)
	17	6	≖ 19:00	11	ວ	35.45	35	Br	79.90	53	_	126.90	85	At	(210.0)	117	L	(294)		02	\	173.05		102	No	(259.1)
	16	8	O 16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116	۲۸	(293)		80	3 E	168.93		101	Σ	(258.1)
	15	7	S 14.01	15	۵	30.97	33	As	74.92	51	Sp	121.76	83	<u>.</u>	208.98	115	Mc	(288)		O	ŗ	L.1 167.26		100	Fm	(252.1)
	14	9	C 15.01	14	Si	28.09	32	Ge	72.63	20	Sn	118.71	82	Pb	207.2	114	正	(289)		73	5	164 .93		66	Es	(252.1)
	13	D	a 10.8	13	A	26.98	31	Ga	69.72	49	드	114.82	81	F	204.38	113	Z L	(284)		g	2	162.50		86	Ç	(252.1)
						12	30	Zu	65.38	48	P _O	112.41	80	Hď	200.59	112	C C	(282)		r.	3 -	158.93		97	æ	(249.1)
S						=	29	Cu	63.55	47	Aq	107.87	79	Au	196.97	111	Rg	(272)		79	5	1 57.25		96	Cm	(244.1)
ELEMEN						10	28	Z	58.69	46	Pd	106.42	78	Ŧ	195.08	110	Ds	(281)		23	3 :	Eu 151.96		95	Am	(241.1)
E OF THE		ımber	symbol relative atomic mass*			6	27	Ç	58.93	45	R	102.91	77	<u></u>	192.22	109	Mt	(268)		63	2 6	150.36		94	Pu	(239.1)
RIODIC TABLE OF THE ELEMENTS		atomic number	relative a	1		80	26	Fe	55.85	44	Bu	101.07	9/	08	190.23	108	Hs	(265.1)		19	2	(146.9)		93	S	(237.0)
PERIOD	KEY	=	1.01			7	25	Z Z	54.94	43	J C	(98.91)	75	Re	186.21	107	Bh	(264.1)		G	2	144.24		92	-	238.0
						9	24	Ç	52.00	42	Mo	95.95	74	≥	183.84	106	Sg	(263.1)		20	3	140.91		91	Pa	231.0
						2	23	>	50.94	41	S	92.91	73	Б	180.95	105	Op O	(262.1)		αĽ	3	140.12		90	드	232.0
						4	22	ï	47.87	40	Zr	91.22	72	¥	178.49	104	Rŧ	(261.1)	1	Lanthanoids	· -	138.91	Actinoids	88	Ac	(227.0)
						က	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids			_ ۔ ۔ ۔ ۔ ۔		↑ 				
	2	4	Be	12	Mg	24.31	20	Ca	40.08	38	S	87.62	99	Ba	137.33	88		(226.1)				J				
-	T 10:1	က		1	Na	22.99	19	¥	39.10	37	Rb	85.47	55	Cs	132.91	87	Ţ	(223.0)								

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.

18	He ²	37		Ne 10	62		Ar	101		Kr ³⁶	116		Xe ⁵⁴	136				
l			17	6 "	60 133 (1–)	ŗ	_ 	100		35 Br			- P3	136	(-1) 022			
			16	° 0	64 140 (2–)		S			Se ³⁴			Te ⁵²	137	221 (2-)			
			15	N 7	71 146 (3–)	Ļ	<u>ရ</u> မ	109	38 (5+)	As 33	120	46 (5+)	Sb ⁵¹	140	/6 (3+)			
			14	ں و	75 16 (4+)		Si 14			Ge 32	120	272 (4–)						
v	9		13	B	84 27 (3+)		Al	124	53 (3+)	Ga ³¹	123	(C) 30	In 49	142	80 (3+)			
DMIC AND IONIC BADII DE SEI ECTED EI EMENTS			·						12	Zn ³⁰	120	. 71 + /	Cd ⁴⁸	140	95 (2+)			
I ECTED I	רכורם								1	C u ²⁹				136	_			
DII DE CE	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, m)					10	Ni ²⁸	117	(3+)						
			atomic number	symbol atomic radius (10 ⁻¹² m)	ot ion				6	\mathbf{Co}^{27}			Rh ⁴⁵					
			3 atomic		charge of 10n				80	Fe 26	124	64 (3+)	Ru ⁴⁴	136	62 (4 +)			ĸ.
MUL		KEY	-		/6 (1+)				7	M_n^{25}	129	64 (3+)		138				onvention 1–18.
					ı OL) snip				9	\mathbf{Cr}^{24}	130	44 (6+)	M_0^{42}	148	65 (4+)			ng to IUPAC co
					ionic ra				5	V 23	144 79 (2±)	54 (5+)	Nb ⁴¹	156	64 (5 +)			Groups are numbered according to IUPAC convention 1
									4	Ti ²²	148	61 (4+)	Zr ⁴⁰	164	/2 (4+)			Groups are nur
									က	Sc ²¹	159		γ 39	176	90 (3+)			_
_			2	Be 4	99 45 (2+)	,	Mg	140		Ca ²⁰			Sr 38		118 (2+)	Ba 56	_	
_	=	32 208 (1–)		Li ³	130 76 (1+)		Na 11	160	102 (1+)	K 19	200		Rb ³⁷	215	152 (1+)	Cs 55	238	

18	He ²	2379	Ne ¹⁰	2087	Ar 18	1527	K r ³⁶	2.9 1357	Xe ⁵⁴	2.6		
		17	9	1687	CI ₁₇	3.2 1257	35 Br	3.0 1146	- 53	2.7	-	
		16	3.4	1320	S 16	2.6 1006	Se ³⁴	2.6 947	Te ⁵²	2.1 876	-	
		15	N 3.0	1407	P 15	2.2 1018	As		Sb ⁵¹	2.1	-	
		14	6	1093	Si ¹⁴	1.9 793	Ge ³²	2.0	Sn	2.0 715		
		13		807	AI ¹³	1.6 584	Ga ³¹	1.8	In 49	1.8	-	
ATION						12	$2n^{30}$	1.7 913	Cd ⁴⁸	1.7 874	-	
CTRONEGATIVITIES AND FIRST IONISATION	2		<u>-</u>	_		Ξ	\mathbf{Cu}^{29}		Ag ⁴⁷	1.9 737	-	
AND FIR				ipies (KJ mol		10	Ni ²⁸	1.9 743	Pd ⁴⁶		-	
TIVITIES	ברברו בר	, chan	symbol electronegativity	Tirst ionisation enthalpies (KJ mol		6	\mathbf{Co}^{27}		Rh ⁴⁵	2.3 726		
CTRONEGATIVITIES AND FIRST I		, ime	symbol electronegativi	TIINST 100		œ	Fe ²⁶	1.8 766	Ru ⁴⁴	2.2 717		~
ELECT		KEY	2.2	1318		7	Mn^{25}	1.6 724	Tc ⁴³	1.9 708		Groups are numbered according to IUPAC convention 1–18.
						9	Cr^{24}	1.7 659	Mo ⁴²	2.2 691		ng to IUPAC co
						2	V 23	1.6 656	Nb ⁴¹	1.6 670		nbered accordi
						4	Ti^{22}	1.5 664	Zr ⁴⁰	1.3 666		Groups are nun
						က	Sc^{21}	1.4 637	γ 39	1.2 606		
		2	Be 4	906	Mg^{12}	1.3 744	\mathbf{Ca}^{20}		Sr ³⁸	1.0 556	Ba ⁵⁶	0.9
-	=	2.2 1318	L 3	526	Na ¹¹	0.9 502	19 K 19	0.8	Rb ³⁷	0.8	Cs ₅₅	0.8 382

SOLUBILITY OF SELECTED COMPOUNDS AT 298 K

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	S	_	S	i	S	S	i	i	S
ammonium	S	S	S	S	S	S	_	S	S
barium	S	i	S	S	S	S	s	i	i
calcium	S	i	S	p	S	S	p	i	p
cobalt(II)	S	i	S	i	S	S	i	i	S
copper(II)	S	_	S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	S	_	S	i	S	S	i	i	S
lead(II)	p	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S	_	S
magnesium	S	i	S	i	S	S	i	p	S
manganese(II)	S	i	S	i	S	S	i	p	S
potassium	S	S	S	S	S	S	S	S	S
silver	i	i	i	i	i	S	i	i	p
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	S	i	S	S	i	i	S

Key

Abbreviation	Explanation
S	soluble in water (solubility greater than 10 g L^{-1})
p	partially soluble in water (solubility between 1 and 10 g L^{-1})
i	insoluble in water (solubility less than 1 g L ⁻¹)
_	no data

AVERAGE BOND ENTHALPIES AT 298 K

Single bonds

		$\Delta H (\text{kJ mol}^{-1})$											
	Н	C	N	О	F	S	Cl	Br	I				
Н	436												
C	414	346											
N	391	286	158										
О	463	358	214	144									
F	567	492	278	191	159								
S	364	289			327	266							
Cl	431	324	192	206	255	271	242						
Br	366	285		201	249	218	219	193					
I	298	228		201	280		211	178	151				

Multiple bonds

Bond	$\Delta H (kJ \text{ mol}^{-1})$
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N=N	470
N≡N	945
O=O	498

REACTIVITY SERIES OF METALS

Element	Reactivity
K	most reactive
Na	
Li	
Ba	
Sr	
Ca	
Mg	
Al	
C*	
Mn	
Zn	
Cr	
Fe	
Cd	
Со	
Ni	
Sn	
Pb	
H ₂ *	
Sb	
Bi	
Cu	
Hg	
Ag	
Au	
Pt	least reactive

^{*} Carbon (C) and hydrogen gas (H₂) added for comparison

ACID-BASE INDICATORS

Name	pKa	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1-4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8-5.4	yellow to blue
Methyl red	5.1	4.4-6.2	pink to yellow
Bromothymol blue	7.0	6.0-7.6	yellow to blue
Phenol red	7.9	6.8-8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

FORMULAS AND CHARGES FOR COMMON POLYATOMIC IONS

Anions	
acetate (ethanoate)	CH ₃ COO ⁻ or C ₂ H ₃ O ₂ ⁻
carbonate	CO ₃ ²⁻
chlorate	ClO ₃
chlorite	ClO ₂
chromate	CrO ₄ ²⁻
citrate	C ₆ H ₅ O ₇ ³⁻
cyanide	CN ⁻
dichromate	Cr ₂ O ₇ ²⁻
dihydrogen phosphate	H ₂ PO ₄
hypochlorite	ClO ⁻
hydrogen carbonate	HCO ₃
hydrogen sulfate	HSO ₄
hydrogen phosphate	HPO ₄ ²⁻
hydroxide	OH ⁻
nitrate	NO ₃
nitrite	NO ₂
perchlorate	ClO ₄
permanganate	MnO ₄
peroxide	O ₂ ²⁻
phosphate	PO ₄ ³⁻
sulfate	SO ₄ ²⁻ SO ₃ ²⁻
sulfite	SO ₃ ²⁻
thiosulfate	S ₂ O ₃ ²⁻

Cations	
ammonium	NH ₄ ⁺
hydronium	H ₃ O ⁺

REFERENCES

Aylward, G and Findlay, T 2008, *SI Chemical Data*, 5th ed, John Wiley & Sons, Brisbane. Haynes, WM (ed) 2016, *CRC Handbook of Chemistry and Physics*, 97th ed, CRC Press, Boca Raton, US.