

Trial Examination 2022

Question and Response Booklet

QCE Chemistry Units 3&4

Paper 2

Student's Name: _____

Teacher's Name:			
-----------------	--	--	--

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (65 marks)

8 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2022 QCE Chemistry Units 3&4 Written Examination.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (8 marks)

The mass and infrared spectra for an alcohol are shown.

Mass spectrum

Infrared spectrum

a) Analyse both spectra to deduce the structural formula of the alcohol. Explain your reasoning.

b) The diagram shows an ester that was synthesised.

Determine whether the alcohol deduced in 1a) was or was not used to synthesise the ester. Explain your reasoning.

[2 marks]

[6 marks]

QUESTION 2 (8 marks)

The diagram shows two electrochemical cells. The concentrations of Ag^+ , Ni^{2+} , Fe^{2+} and Cu^{2+} are all 1 M.

a) Refer to the standard electrode potentials to deduce the direction of flow of electrons between the cells. Explain your reasoning.

[6 marks]

QUESTION 3 (8 marks)

A scientist wished to separate the amino acids alanine, aspartic acid and lysine.

The diagrams show a paper chromatogram of a mixture of the amino acids and the result of an electrophoresis experiment using the same mixture in a buffer with a pH of 6.1.

a) In the paper chromatogram, alanine is separated from the other amino acids by a large distance and there is poor separation between lysine and aspartic acid.
 Explain why this occurs.

[3 marks]

b) Explain why there is good separation between lysine and aspartic acid in the electrophoresis experiment. Include diagrams in your response. [3 marks]

c) Explain why alanine hardly moved in the electrophoresis experiment. Include a diagram in your response. [2 marks]

QUESTION 4 (9 marks)

Polymers are usually formed by joining smaller units (monomers) together. Three monomers are shown.

a) Draw and name the polymer formed by joining many tetrafluoroethylene units together. [2 marks]

IUPAC name _____

When adipic acid and hexamethylene diamine are joined, they form the polymer nylon 6,6.

b) Draw the polymer formed by joining many adipic acid and hexamethylene diamine units together. [1 mark]

c) Complete the table below to compare the polymers from 4a) and 4b).

[4 marks]

Monomer(s)	Type of reaction to form polymer	Does the polymer formed have alternating units?
tetrafluoroethylene		
adipic acid and hexamethylene diamine		

l)	i)	What does '6,6' in the name nylon 6,6 indicate?	[1 mark]
	ii)	Propose why nylon 6,6 forms strong fibres. Refer to intermolecular forces in your response.	[1 mark]

QUESTION 5 (7 marks)

Aspirin (acetylsalicylic acid, $C_9H_8O_4$) can be prepared through two different reactions. The reactions are shown.

Reaction 2

Reaction 1

A researcher wants to use 100 g of salicylic acid to produce aspirin. He is trying to decide which reaction is better to use. He has 50 g each of ethanoic anhydride and ethanoic acid.
 Calculate the mass of aspirin that each reaction would produce and state the limiting

reagent for each reaction. Show your working.	[6 marks]
ass of aspirin produced by reaction 1 =	g (to two decimal places)
ass of aspirin produced by reaction 2 =	g (to two decimal places)
Reaction 1 is usually used to produce aspirin despite have than reaction 2.	ing a lower atom economy
Identify why this is.	[1 mark]

b)

QUESTION 6 (11 marks)

The diagram shows an experiment set-up that was used to investigate the relative strengths of acids and bases in aqueous solution. The power supply was connected to two graphite electrodes.

The brightness of the light bulb and relative electrical conductance for each solution are recorded in the table.

Solution (0.1 M)	Light bulb brightness	Relative electrical conductance	pK _a	рК _b
ethanoic acid (CH ₃ COOH)	dim	4.2	4.74	_
hydrochloric acid (HCl)	very bright	11.7	-5.90	_
nitric acid (HNO ₃)	bright	6.8	-1.37	_
sulfuric acid (H_2SO_4)	bright	8.8	-2.00	_
hydroiodic acid (HI)			-9.30	_
sodium hydroxide (NaOH)	very bright	10.6	_	-0.56
methylamine (CH ₃ NH ₂)		3.1	_	3.34
ammonia (NH ₃)		4.2	_	4.75

a) Complete the table above by indicating the brightness of the bulbs and estimating the relative electrical conductance of HI.

[4 marks]

b) i) Identify which acid has the lowest pH. Explain your reasoning. [2 marks]

ii)	Determine the strongest base in terms of degree of ionisation at equilibrium in aqueous solution. Explain your reasoning.	[2 marks]
Desc	ribe the relationship between the concentration of hydrogen ions (H^{\dagger}) electrical	
condu	activity and light bulb brightness.	[1 mark]
An un condu	nknown solution, which was thought to be an acid, was tested. The relative electrical actance of the solution was recorded as 5.2.	
Dedu	ce the nature of the acid. Explain your reasoning.	[2 marks]

QUESTION 7 (7 marks)

a) The dissociation constant, K_a , of hypochlorous acid (HOCl) is 3.0×10^{-8} . The conjugate base of HOCl is the hypochlorite ion (OCl⁻).

Show that the dissociation constant, $K_{\rm b}$, of OCl⁻ is 3.3×10^{-7} . Assume that the temperature is 25°C. [2 marks]

b) The K_b of OCl⁻ as stated in 7a) is the equilibrium constant (K_c) for the following equation.

$$OCl^{-}(aq) + H_2O(l) \rightleftharpoons HOCl(aq) + OH^{-}(aq)$$

Calculate the pH of a 0.20 M solution of HOCl. Assume that the temperature is 25°C. Show your working and state any assumptions made.

[5 marks]

pH = _____ (to two decimal places)

QUESTION 8 (7 marks)

Fehling's solution is a deep blue alkaline solution containing a complex of the Cu^{2+} ion. It can be used as a test to detect the presence of glucose in urine, differentiating between the presence of aldehydes and ketones in carbohydrates according to the following equation.

$RCHO(aq) + 2Cu^{2+}(aq) + 5OH^{-} \rightarrow RCOO^{-}(aq) + Cu_2O(s) + 3H_2O(l)$

When a reducing sugar is present, the reaction produces a brick-red coloured precipitate of the $Cu^+(I)$ oxide. The following experiment was set up to test four solutions. Fehling's solution was added to each solution and the solutions were then heated. The observations are recorded in the table.

Solution tested	Observation
glucose	The solution darkened slightly, changing to a brown colour.
sucrose	The solution remained blue.
sucrose and citric acid	The solution changed to a very dark blue with a precipitate starting to form.
starch	The solution remained blue.
) i) State why the	glucose solution reacted with Fehling's solution [1 ma

- ii) State why the sucrose solution did not react with Fehling's solution. [1 mark]

b)

c) If the sucrose solution had been hydrolysed before the Fehling's solution was added to it, predict whether a change would have been observed. [1 mark]
d) Infer why a change was observed in the reaction that used the sucrose and citric acid solution. [1 mark]

END OF PAPER

Trial Examination 2022

Formula and Data Booklet

QCE Chemistry Units 3&4

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data
Absolute uncertainty of the mean $\Delta \overline{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$
Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$
Percentrage error (%) = $\left \frac{\text{measured value} - \text{true value}}{\text{true value}} \right \times 100$
Chemical reactions – reactants, products and energy change
$\Delta H = H_{(\text{products})} - H_{(\text{reactants})}$
$\Delta H = \sum (\text{bonds broken}) - \sum (\text{bonds formed})$
$Q = mc\Delta T$
Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$
Aqueous solutions and acidity
Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$
Chemical equilibrium systems
$K_{\rm c} = \frac{\left[C\right]^{\rm c}}{\left[A\right]^{\rm a}} \frac{\left[D\right]^{\rm d}}{\left[B\right]^{\rm b}}$ for the reaction: ${\rm aA} + {\rm bB} \rightleftharpoons {\rm cC} + {\rm dD}$
$K_{\rm w} = \left[{\rm H}^+ \right] \left[{\rm O} {\rm H}^- \right]$
$pH = -\log_{10}[H^+]$
$pOH = -\log_{10} \left[OH^{-} \right]$
$K_{\rm w} = K_{\rm a} \times K_{\rm b}$
$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[A^{-}\right]}{\left[HA\right]}$
$K_{\rm b} = \frac{\left[\mathrm{BH^{+}}\right]\left[\mathrm{OH^{-}}\right]}{\left[\mathrm{B}\right]}$

Physical constants and unit conversions	
Absolute zero	$0 \text{ K} = -273^{\circ}\text{C}$
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
Ionic product constant for water (at 298 K)	$K_{\rm w} = 1.00 \times 10^{-14} \ {\rm mol}^2 \ {\rm dm}^{-6}$
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
Standard temperature and pressure (STP)	273 K and 100 kPa
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

LIST OF ELEMENTS

Name	Atomic no.	Symbol		Name	Name Atomic no.
Hydrogen	1	Н	Krypt	on	on 36
elium	2	He	Rubidium		37
ithium	3	Li	Strontium		38
Beryllium	4	Be	Yttrium		39
Boron	5	В	Zirconium		40
Carbon	6	С	Niobium		41
Nitrogen	7	N	Molybdenum		42
Oxygen	8	0	Technetium		43
Fluorine	9	F	Ruthenium		44
Neon	10	Ne	Rhodium	I	45
Sodium	11	Na	Palladium		46
Magnesium	12	Mg	Silver		47
Aluminium	13	Al	Cadmium		48
Silicon	14	Si	Indium		49
Phosphorus	15	Р	Tin	4	50
Sulfur	16	S	Antimony	4	51
Chlorine	17	Cl	Tellerium		52
Argon	18	Ar	Iodine		53
Potassium	19	K	Xenon		54
Calcium	20	Ca	Cesium		55
Scandium	21	Sc	Barium		56
Titanium	22	Ti	Lanthanum		57
Vanadium	23	V	Cerium	4	58
Chromium	24	Cr	Praseodymium	5	59
Manganese	25	Mn	Neodymium	6	0
Iron	26	Fe	Promethium	6	l
Cobalt	27	Со	Samarium	62	
Nickel	28	Ni	Europium	63	
Copper	29	Cu	Gadolinium	64	
Zinc	30	Zn	Terbium	65	
Gallium	31	Ga	Dysprosium	66	
Germanium	32	Ge	Holmium	67	
Arsenic	33	As	Erbium	68	
Selenium	34	Se	Thulium	69	
Bromine	35	Br	Ytterbium	70	
-				Ľ	

Name	Atomic no.	Symbol
Lutetium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Hg
Thallium	81	Tl
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Ро
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Ра
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

LIST OF ELEMENTS (CONTINUED)

18	He ³⁷		Ne ¹⁰ ⁶²	Ar ¹⁸	Kr ³⁶ 116	Xe ⁵⁴	
l		17	60 60 133 (1-)	Cl¹⁷	Br³⁵ 117 196 (1–)	136 220 (1-)	
		16	0 64 140 (2-)	S ¹⁶ 104 184 (2–)	Se³⁴ 118 198 (2–)	Te ⁵² 137 221 (2–)	
		15	N 71 146 (3-)	P 15 109 38 (5 +)	AS ³³ 120 58 (3+) 46 (5+)	Sb⁵¹ 140 76 (3+)	•
		14	C 75 16 (4+)	Si ¹⁴ 114 40 (4+)	Ge³² 120 53 (4 +) 272 (4-)	Sn⁵⁰ 140 69 (4+)	
0	5	13	B 84 27 (3+)	Al ¹³ 53 (3+)	Ga ¹²³ ¹²³ ^{62 (3+)}	In 49 142 80 (3+)	•
				12	Zn ³⁰ 120 74 (2+)	Cd⁴⁸ 140 95 (2 +)	
				11	Cu²⁹ 122 77 (1+) 73 (2+)	Ag ⁴⁷ 136 115 (1 +)	
DII DE CE			2 m	10	N17 117 69 (2+) 60 (3+)	Pd⁴⁶ 130 86 (2+)	
		number	radius (10 ⁻¹⁾ of ion	G	C0 ²⁷ 118 74 (2+) 61 (3+)	Rh ¹³⁴ ¹³⁴ ^{67 (3+)}	
		3 atomic	symbol atomic charge	ω	Fe ²⁶ 124 78 (2 +) 64 (3 +)	Bu ¹³⁶ 136 62 (4 +)	
ATON	KEY	-	m) 76 (1 +	7	Mn²⁵ 129 83 (2+) 64 (3+)	${{T_{C}^{43}}^{43}}_{65(4+)}$	onvention 1–1
			adius (10 ⁻¹² r	Q	${{cr}_{{130}}^{24}}$	B5 (4+)	ng to IUPAC cr
			ionic ra	ى ي	V 144 79 (2+) 54 (5+)	${{\sf Nb}^{41}_{156}}_{64 (5+)}$	nbered accordi
				4	Ti 22 148 86 (2+) 61 (4+)	Zr⁴⁰ 164 72 (4+)	Groups are num
				ę	Sc ¹⁵⁹ 75 (3+)	Y ¹⁷⁶ 90 (3+)	
		2	Be 99 45 (2+)	Mg ¹² 140 72 (2+)	Ca ²⁰ 174 100 (2+)	Sr³⁸ 190 118 (2 +)	Ba ⁵⁶ 206 135 (2+)
-	H	(-1) 802	Li 3 130 76 (1+)	Na¹¹ 160 102 (1 +)	K ¹⁹ 200 138 (1+)	Rb ²¹⁵ ²¹⁵ ^{152 (1+)}	Cs ²³⁸ ²³⁸ 167 (1 +)

Copyright © 2022 Neap Education Pty Ltd

7

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	S	_	S	i	S	s	i	i	S
ammonium	S	S	S	S	S	S	—	S	S
barium	S	i	S	S	S	S	S	i	i
calcium	S	i	S	р	S	S	р	i	р
cobalt(II)	S	i	S	i	S	S	i	i	S
copper(II)	S	—	S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	S	—	S	i	S	S	i	i	S
lead(II)	р	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S	_	S
magnesium	S	i	S	i	S	S	i	р	S
manganese(II)	S	i	S	i	S	S	i	р	S
potassium	S	S	S	S	S	S	S	S	S
silver	i	i	i	i	i	s	i	i	р
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	S	i	S	S	i	i	S

SOLUBILITY OF SELECTED COMPOUNDS AT 298 K

Key

Abbreviation	Explanation
S	soluble in water (solubility greater than 10 g L^{-1})
р	partially soluble in water (solubility between 1 and 10 g L^{-1})
i	insoluble in water (solubility less than 1 g L^{-1})
_	no data

AVERAGE BOND ENTHALPIES AT 298 K

Single bonds

		$\Delta H (\mathrm{kJ}\mathrm{mol}^{-1})$								
	Н	С	Ν	0	F	S	Cl	Br	Ι	
Н	436									
С	414	346								
N	391	286	158							
0	463	358	214	144						
F	567	492	278	191	159					
S	364	289			327	266				
Cl	431	324	192	206	255	271	242			
Br	366	285		201	249	218	219	193		
Ι	298	228		201	280		211	178	151	

Multiple bonds

Bond	$\Delta H (\text{kJ mol}^{-1})$
C=C	614
C≡C	839
C=N	615
C≡N	890
C=0	804
N=N	470
N≡N	945
0=0	498

REACTIVITY SERIES OF METALS

Element	Reactivity
Κ	most reactive
Na	
Li	
Ва	
Sr	
Ca	
Mg	
Al	
C*	
Mn	
Zn	
Cr	
Fe	
Cd	
Со	
Ni	
Sn	
Pb	
H ₂ *	
Sb	
Bi	
Cu	
Hg	
Ag	
Au	
Pt	least reactive

* Carbon (C) and hydrogen gas (H₂) added for comparison

STANDARD ELECTRODE POTENTIALS AT 298 K

Oxidised species \rightleftharpoons Reduced species	E ° (V)
$\text{Li}^+(\text{aq}) + e^- \rightleftharpoons \text{Li}(s)$	-3.04
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.94
$Ba^{2+}(aq) + 2e^{-} \rightleftharpoons Ba(s)$	-2.91
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.36
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.68
$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$	-1.18
$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.24
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	0.00
$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$	+0.16
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightleftharpoons SO_2(aq) + 2H_2O(1)$	+0.16
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$\operatorname{Cu}^+(\operatorname{aq}) + \operatorname{e}^- \rightleftharpoons \operatorname{Cu}(\operatorname{s})$	+0.52
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$Ag^+(aq) + e^- \rightleftharpoons Ag(s)$	+0.80
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.08
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l)$	+1.23
$\operatorname{Cl}_2(g) + 2e^- \rightleftharpoons 2\operatorname{Cl}^-(aq)$	+1.36
$\operatorname{Cr}_{2}O_{7}^{2-}(\operatorname{aq}) + 14\operatorname{H}^{+}(\operatorname{aq}) + 6\operatorname{e}^{-} \rightleftharpoons 2\operatorname{Cr}^{3+}(\operatorname{aq}) + 7\operatorname{H}_{2}O(1)$	+1.36
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_2O(l)$	+1.51
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.89

GLUCOSE AND FRUCTOSE: STRAIGHT CHAIN AND $\alpha\text{-}RING$ forms

straight chain D-glucose

 α -D-glucose

straight chain D-fructose

 α -D-fructose

COMMON AMINO ACIDS

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Alanine (Ala)	Н О Н ₂ N-С-С-ОН СН ₃	6.1	Arginine (Arg)	$\begin{array}{c} H & O \\ I & \parallel \\ H_2 N - C - C - O H \\ I \\ C H_2 \\ I \\ C = N H \\ I \\ N H_2 \end{array}$	10.7
Asparagine (Asn)	$H_{2}N - C - C - OH$ $H_{2}N - C - C - OH$ CH_{2} CH_{2} $C = O$ NH_{2}	5.4	Aspartic acid (Asp)	$H = O \\ H_2 N - C - C - O H \\ H_2 N - C - C - O H \\ H_2 C - O H \\ C H_2 \\ C = O \\ O H \\ O H$	3.0
Cysteine (Cys)	$\begin{array}{c} H & O \\ I & \parallel \\ H_2 N - C - C - O H \\ I \\ C H_2 \\ S H \end{array}$	5.1	Glutamic acid (Glu)	$\begin{array}{c} H & O \\ I & \\ H_2 N - C - C - O H \\ I \\ C H_2 \\ C H_2 \\ C H_2 \\ C = O \\ I \\ O H \end{array}$	3.2
Glutamine (Gln)	$H_{2}N - C - C - OH$ $H_{2}N - C - C - OH$ $H_{2}N - C - C - OH$ CH_{2}	5.7	Glycine (Gly)	$H_{2}N - C - C - OH$	6.1

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Histidine (His)	$H O H O H H_2 N - C - C - O H$	7.6	Isoleucine (Ile)	$H O H H_2 N - C - C - C - OH H_2 N - C - C - OH H_3 H_2 CH_2 CH_2 CH_3 H_3 H_3 CH_3 H_3 H_3 H_3 H_3 H_3 H_3 H_3 H_3 H_3 $	6.0
Leucine (Leu)	$H_{2}N - C - C - OH$	6.0	Lysine (Lys)	$\begin{array}{c} H & O \\ I & H \\ H_2 N - C - C - O H \\ I \\ C H_2 \\ H_2 \\ N H_2 \end{array}$	9.7
Methionine (Met)	$H O H O H H_2N - C - C - OH$	5.7	Phenylalanine (Phe)	$H_{2}N - C - C - OH$	5.7
Proline (Pro)	О С—ОН HN	6.3	Serine (Ser)	$\begin{array}{c} H & O \\ I & \parallel \\ H_2 N - C - C - O H \\ I \\ C H_2 \\ O H \end{array}$	5.7

COMMON AMINO ACIDS (continued)

COMMON AMINO ACIDS (continued)

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Threonine (Thr)	Н О Н ₂ N—С—С—ОН СНОН СН ₃	5.6	Tryptophan (Trp)	$H_{2}N - C - C - OH$	5.9
Tyrosine (Tyr)	$H_{2}N - C - C - OH$	5.7	Valine (Val)	$H_{2}N - C - C - OH$ $H_{2}N - C - C - OH$ $CHCH_{3}$ CH_{3}	6.0

Name	рКа	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1-4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8–5.4	yellow to blue
Methyl red	5.1	4.4-6.2	pink to yellow
Bromothymol blue	7.0	6.0-7.6	yellow to blue
Phenol red	7.9	6.8-8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

ACID-BASE INDICATORS

INFRARED DATA

The table below shows the characteristic range of infrared absorption due to stretching in organic molecules.

Bond	Organic molecules	Wavelength (cm ⁻¹)
C–I	iodoalkanes	490–620
C–Br	bromoalkanes	500-600
C–Cl	chloroalkanes	600-800
C–F	fluoroalkanes	1000–1400
С–О	alcohol, ester	1050–1410
C=C	alkenes	1620–1680
С=О	aldehydes, carboxylic acid, ester, ketones	1700–1750
C≡C	alkynes	2100-2260
О–Н	carboxylic acids (hydrogen-bonded)	2500-3000
С–Н	alkanes, alkenes, alkynes, aldehydes, amides	2720–3100
О–Н	alcohol (hydrogen-bonded)	3200–3600
N–H	amines	3300-3500

FORMULAS AND CHARGES FOR COMMON POLYATOMIC IONS

Anions		Ca
acetate (ethanoate)	$CH_3COO^- \text{ or } C_2H_3O_2^-$	ammonium
carbonate	CO ₃ ^{2–}	hydronium
chlorate	ClO ₃	
chlorite	ClO ₂	
chromate	CrO ₄ ^{2–}	
citrate	$C_{6}H_{5}O_{7}^{3-}$	
cyanide	CN ⁻	
dichromate	Cr ₂ O ₇ ^{2–}	
dihydrogen phosphate	H ₂ PO ₄ ⁻	
hypochlorite	C10 ⁻	
hydrogen carbonate	HCO ₃ ⁻	
hydrogen sulfate	HSO ₄ ⁻	
hydrogen phosphate	HPO ₄ ²⁻	
hydroxide	OH_	
nitrate	NO ₃ ⁻	
nitrite	NO ₂ ⁻	
perchlorate	ClO ₄	
permanganate	MnO ₄ ⁻	
peroxide	02 ²⁻	
phosphate	PO ₄ ^{3–}	
sulfate	SO ₄ ^{2–}	
sulfite	SO3 ²⁻	
thiosulfate	S ₂ O ₃ ²⁻	

REFERENCES

Aylward, G and Findlay, T 2008, *SI Chemical Data*, 5th ed, John Wiley & Sons, Brisbane. Haynes, WM (ed) 2016, *CRC Handbook of Chemistry and Physics*, 97th ed, CRC Press, Boca Raton, US.