

Trial Examination 2023

Question and Response Booklet

QCE Chemistry Units 1&2

Paper 2

Student's Name:		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (50 marks)

• 8 short response questions

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

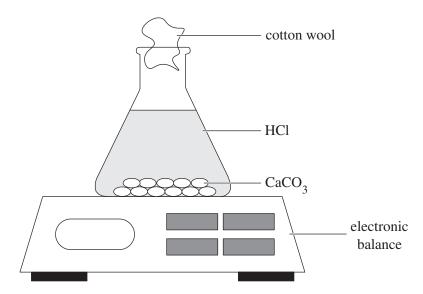
QUESTION 1 (5 marks)

The table shows the ionic radii, in picometres, of some main group elements. Where an element forms two ions, the ionic radius of the more common ion is shown.

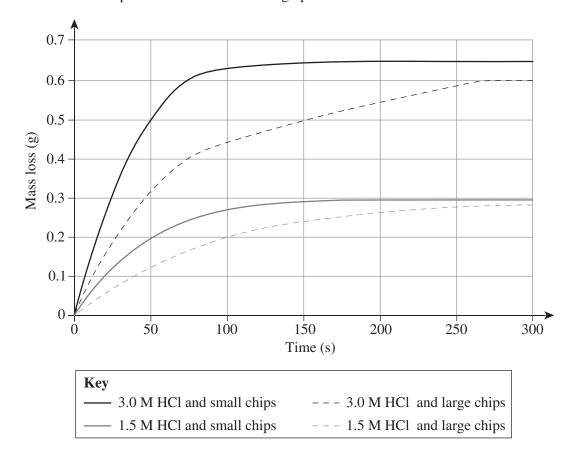
Li ⁺ 76	Be ²⁺ 45	B ³⁺ 27	C ⁴⁺ 16	N ³⁻ 146	O ²⁻ 140	F ⁻ 133
Na ⁺ 102	Mg ²⁺ 72	Al ³⁺ 53	Si ⁴⁺ 40	P ⁵⁺ 38	S ²⁻ 184	Cl ⁻ 181
K ⁺ 138	Ca ²⁺ 100	Ga ³⁺ 62	Ge ⁴⁺ 53	As ³⁺ 58	Se ²⁻ 198	Br ⁻ 196
Rb ⁺ 152	Sr ²⁺ 118	In ³⁺ 80	Sn ⁴⁺ 69	Sb ³⁺ 76	Te ²⁻ 221	I ⁻ 220
Cs ⁺ 167	Ba ²⁺ 135					

.)	Explain the trend in ionic radii down a group in the periodic table.	[2 marks]
)	Using the period 3 elements shown in the table, explain why anions are larger than cations in the same period.	[3 marks]
	Process	[]

QUESTION 2 (9 marks)


A series of experiments were conducted to investigate the rate of reaction between marble chips (CaCO₃) and hydrochloric acid (HCl). The reaction occurred according to the following equation.

$$2HCl(aq) + CaCO_3(s) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$


The investigation used two concentrations of the acid and two sizes of marble chips. Four experiments were conducted as follows.

Concentration of HCl (M)	Marble chip size
3.0	large
3.0	small
1.5	large
1.5	small

In each experiment, a flask containing the reactants was placed on an electronic balance. As the reaction proceeded, the mass loss of the flask's contents was recorded. The same mass of chips and volume of acid were used in each experiment. This set-up is shown in the diagram.

The results of the four experiments are shown in the graph.

a) On the graph, circle the 50-second time period on the curve during which the production of CO₂ is greatest out of all four experiments.

[1 mark]

b) Using the graph, describe the rate of mass loss in the experiment that used 3.0 M HCl and large marble chips. Refer to two points on the curve.

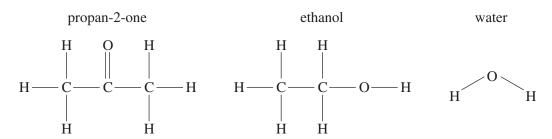
[2 marks]

refer to data in the graph.	[4 m
The rates of reaction could have been measured by collecting the CO ₂ produced in each experiment and then comparing the volumes collected.	
Identify two reasons why this method would have been less reliable.	[2 m

QUESTION 3 (6 marks)

A student performed two experiments, A and B, to test the solubility of various ionic compounds. The table shows the solutions that the student used. All the solutions had a concentration 1.00 M.

Experiment	Solution 1	Solution 2
A	copper sulfate	sodium hydroxide
В	iron(II) chloride	potassium nitrate


	For each experiment, deduce if a precipitate did or did not form. Provide a reason for each.	[2 marks]
I	Experiment A:	
I	Experiment B:	
•	Write an ionic equation for the reaction where a precipitate formed.	[2 marks]
-	in a third experiment, the student mixed silver nitrate solution with potassium carbonate.	
	Γhey incorrectly predicted that a precipitate would form.	
I	Propose why a precipitate did not form.	[2 marks]
-		
_		

QUESTION 4 (4 marks)

Two experiments were conducted to separate food dyes. Two solvents were used: propan-2-one with water, and ethanol with water. The results of the experiments are shown in the table.

	Experiment 1 (solvent: propan-2-one and water)		Experiment 2 (solvent: ethanol and water)	
	Distance travelled in the mobile phase (cm)	\mathbf{R}_{f}	Distance travelled in the mobile phase (cm)	\mathbf{R}_{f}
Solvent front	4.7	_	4.9	_
Green dye	2.9	0.62	4.8	0.98
Red dye	1.3	0.28	3.7	0.76
Yellow dye	4.0	0.85	0.8	0.16
Blue dye	2.9	0.62	2.6	0.53
Purple dye	3.1	0.66	1.4	0.29

The structures of the solvent molecules are shown.

- a) Which component showed the largest difference between experiment 1 and experiment 2? [1 mark]
- b) Identify whether propan-2-one or ethanol is more polar. Explain your reasoning. [2 marks]

c) Why did the experimenter mix the propan-2-one and ethanol with water? [1 mark]

OUESTION 5 (7	marks)
---------------	--------

The exothermic reaction of octane burning in oxygen occurs according to the following equation.

$$2 {\rm C_8 H_{18}(g)} + 25 {\rm O_2(g)} \rightarrow 16 {\rm CO_2(g)} + 18 {\rm H_2O(l)}$$

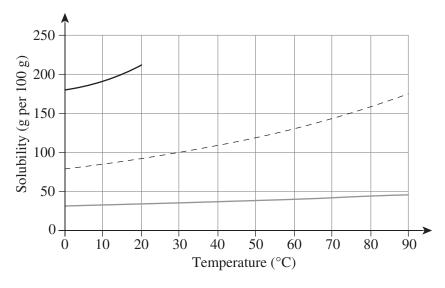
nducted at 150° C a s of C_8H_{18} that is re	nd produces 47.0 L of CO ₂ .	
Mass =	_ g (to three significant figures)	

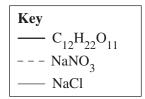
QUESTION 6 (6 marks)

A polystyrene cup was used in an experiment to measure the enthalpy change (ΔH) of the acid–base reaction shown.

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

In the polystyrene cup, 20.0 mL of water containing 0.034 mol of HCl was added to 20.0 mL of water containing 0.034 mol of NaOH at room temperature. When the reaction was complete, the temperature of the cup's contents was 31.0° C.


The following is assumed.


- Room temperature is 25.0°C.
- The density of the solutions was the same as that of water, 1.00 g mL^{-1} .
- The final volume of the cup's contents was equal to the sum of the reacting solutions' volumes.

Calculate the ΔH of the reaction.	[6 n	iarks)
$\Delta H = $	kJ mol ⁻¹ (to three significant figures)	

QUESTION 7 (6 marks)

The graph shows the solubility of three substances – sucrose $(C_{12}H_{22}O_{11})$, sodium nitrate $(NaNO_3)$ and salt (NaCl) – in water at various temperatures.

a) Identify the substance that is most soluble in water at room temperature (25°C).

[1 mark]

b) Describe how the solubility of NaNO $_3$ changes as the temperature increases from 0°C to 90°C.

[1 mark]

c) Deduce which of the three substances is the most polar. Explain your reasoning.

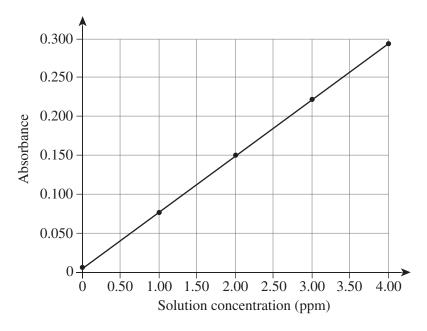
[2 marks]

d) Approximately 180 g of $C_{12}H_{22}O_{11}$ will dissolve at 0°C.

At 0° C, 250 g of $C_{12}H_{22}O_{11}$ is added to water.

Determine whether the solution is unsaturated, saturated or supersaturated.

Explain your reasoning.


[2 marks]

QUESTION 8 (7 marks)

A particular brand of energy drink contains iron and has the same density as water, 1.00 g mL^{-1} .

The absorptions of a diluted sample of the drink and several standard solutions containing iron were measured using atomic absorption spectroscopy (AAS). The absorption values recorded are shown in the table and graph.

Solution concentration (ppm)	Absorbance
0.00	0.010
1.00	0.080
2.00	0.150
3.00	0.220
4.00	0.290
sample	0.190

a)	State the ma	in advantage	of AAS.
----	--------------	--------------	---------

[1 mark]

b) Determine the concentration of iron in the sample.

[1 mark]

Concentration = _____ ppm (to two decimal places)

	Concentration		nous (to true desired place	(6.
	Concentration =		_ ppm (to two decimal place	es)
The drink	is sold in cans that have	a volume of 200 i	mL.	
Calculate	the mass of iron in one ca	an of the drink.		[2 marks]
	Mass =		g (to two decimal places)	
	Mass =		g (to two decimal places)	
The recon			g (to two decimal places) nen aged 19 years and over is	s 8.00 mg per day.
		RDI) of iron for n	nen aged 19 years and over is	s 8.00 mg per day. [2 marks]
	nmended dietary intake (I	RDI) of iron for n	nen aged 19 years and over is	
	nmended dietary intake (I	RDI) of iron for n	nen aged 19 years and over is	
	nmended dietary intake (I	RDI) of iron for n	nen aged 19 years and over is	
	nmended dietary intake (I	RDI) of iron for n	nen aged 19 years and over is	
	nmended dietary intake (I	RDI) of iron for n	nen aged 19 years and over is	
	nmended dietary intake (I	RDI) of iron for n	nen aged 19 years and over is	

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES
Write the question number you are responding to.

ADDITIONAL PAGE F				
Write the question number	r you are respondi	ng to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES	
Vrite the question number you are responding to.	

Trial Examination 2023

Formula and Data Booklet

QCE Chemistry Units 1&2

Neap® Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data

Absolute uncertainty of the mean $\Delta \overline{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$

Percentrage error (%) = $\left| \frac{\text{measured value} - \text{true value}}{\text{true value}} \right| \times 100$

Chemical reactions – reactants, products and energy change

 $\Delta H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\Delta H = \Sigma (bonds broken) - \Sigma (bonds formed)$

 $Q = mc\Delta T$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$

 $A_{r} = \frac{\left(\text{isotopic mass} \times \% \text{ abundance}\right) + \left(\text{isotopic mass} \times \frac{}{\%} \text{ abundance}\right)}{100}$

Moles (n) = $\frac{\text{number of particles } (N)}{\text{Avogadro's constant } (N_A)}$

 $Moles = \frac{\text{mass of substance}(m)}{\text{molar mass}(M)}$

Intermolecular forces and gas

PV = nRT

Aqueous solutions and acidity

Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$

 $c_1V_1=c_2V_2$

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Physical constants and unit conversions	
Absolute zero	$0 \text{ K} = -273^{\circ}\text{C}$
Atomic mass unit	1 amu = 1.66×10^{-27} kg
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
Standard temperature and pressure (STP)	273 K and 100 kPa
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$

LIST OF ELEMENTS

Name	Atomic no.	Symbol
Hydrogen	1	Н
Helium	2	Не
Lithium	3	Li
Beryllium	4	Be
Boron	5	В
Carbon	6	С
Nitrogen	7	N
Oxygen	8	О
Fluorine	9	F
Neon	10	Ne
Sodium	11	Na
Magnesium	12	Mg
Aluminium	13	Al
Silicon	14	Si
Phosphorus	15	P
Sulfur	16	S
Chlorine	17	Cl
Argon	18	Ar
Potassium	19	K
Calcium	20	Ca
Scandium	21	Sc
Titanium	22	Ti
Vanadium	23	V
Chromium	24	Cr
Manganese	25	Mn
Iron	26	Fe
Cobalt	27	Со
Nickel	28	Ni
Copper	29	Cu
Zinc	30	Zn
Gallium	31	Ga
Germanium	32	Ge
Arsenic	33	As
Selenium	34	Se
Bromine	35	Br

Name	Atomic no.	Symbol	
Krypton	36	Kr	
Rubidium	37	Rb	
Strontium	38	Sr	
Yttrium	39	Y	
Zirconium	40	Zr	
Niobium	41	Nb	
Molybdenum	42	Mo	
Technetium	43	Тс	
Ruthenium	44	Ru	
Rhodium	45	Rh	
Palladium	46	Pd	
Silver	47	Ag	
Cadmium	48	Cd	
Indium	49	In	
Tin	50	Sn	
Antimony	51	Sb	
Tellerium	52	Te	
Iodine	53	I	
Xenon	54	Xe	
Cesium	55	Cs	
Barium	56	Ba	
Lanthanum	57	La	
Cerium	58	Ce	
Praseodymium	59	Pr	
Neodymium	60	Nd	
Promethium	61	Pm	
Samarium	62	Sm	
Europium	63	Eu	
Gadolinium	64	Gd	
Terbium	65	Tb	
Dysprosium	66	Dy	
Holmium	67	Но	
Erbium	68	Er	
Thulium	69	Tm	
Ytterbium	70	Yb	

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol
Lutetium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Нg
Thallium	81	Tl
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Po
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Pa
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

Name	Atomic no.	Symbol
Americium	95	Am
Curium	96	Cm
Berkelium	97	Bk
Californium	98	Cf
Einsteinium	99	Es
Fermium	100	Fm
Mendelevium	101	Md
Nobelium	102	No
Lawrencium	103	Lr
Rutherfordium	104	Rf
Dubnium	105	Db
Seaborgium	106	Sg
Bohrium	107	Bh
Hassium	108	Hs
Meitnerium	109	Mt
Darmstadtium	110	Ds
Roentgenium	111	Rg
Copernicium	112	Cn
Nihonium	113	Nh
Flerovium	114	Fl
Moscovium	115	Mc
Livermorium	116	Lv
Tennessine	117	Ts
Oganesson	118	Og

-						PERIO	IL TARI	E OF THE	PERIODIC TARIE OF THE EI EMENTS	S _L						Į.	18
-							מלי סול	5		2							2
L 0:1	2					KEY	Г					13	14	15	16	17	10
33	4					:	1 atomic number	umber				S	9	7	8	6	10
=	Be					T	symbol		š			Ω	S	2	0	ш	Ne
6.94	9.01					1.01	relative	relative atomic mass*	k			10.81	12.01	14.01	16.00	19.00	20.18
1	12										1	13	14	15	16	17	18
Na	Mg											A	Si	_	S	5	Ar
22.99	24.31	က	4	2	9	7	œ	6	10	1	12	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	j	>	ວັ	Z Z	Fe	Ç	Z	Ca	Zu	Ga	Ge	As	Se	Ŗ	¥
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
Rb	Sr	>	Zr	N	Mo	٦ ۲	Ru	묎	Pd	Aq	5	_	Sn	Sb	Te	_	Xe
85.47	87.62	88.91	91.22	92.91	95.95	(98.91)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57-71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85	98
Cs	Ba	Lanthanoids	Ŧ	Та	>	Re	08	<u>`</u>	Ŧ	Au	Hg	F	Pb	<u>B</u>	Po	At	Ru
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(210.0)	(210.0)	(222.0)
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Ŧ	Ва	Actinoids	Æ	Op	Sg		Hs	Ĕ	Ds	Rg	ű	Z Z	正	Μc	^	Z	0g
(223.0)	(226.1)		(261.1)	(262.1)	(263.1)	(264.1)	(265.1)	(268)	(281)	(272)	(282)	(284)	(289)	(288)	(293)	(294)	(294)
			Lanthanoids														
			22	28	29	09	61	62	63	64	65	99	67	99	69	70	71
		^ - + -	La	Çe	Ą	Ę	Pm	Sm	ш	Pg	q L	D	유	ш	E	Λþ	n T
			138.91	140.12	140.91	144.24	(146.9)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
			Actinoids														
			88	90	91	92	93	94	95	96	97	86	66	100	101	102	103
		 	Ac	느	Ра	_	N	Pu	Am	Cm	B	Ç	Es	Fm	β	No	Ļ
			(227.0)	232.0	231.0	238.0	(237.0)	(239.1)	(241.1)	(244.1)	(249.1)	(252.1)	(252.1)	(252.1)	(258.1)	(259.1)	(262.1)

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.

18	He ²		Ne 10	Ar 18	Kr 36	Xe 136	
L		17	60 60 133 (1-)	CL 170 100 181 (1-)	Br 35	136 220 (1-)	
		16	64 140 (2-)	S 16 104 184 (2-)	Se 118 (2-)	Te 137 221 (2-)	
		15	N 7	P 15 109 38 (5+)	AS 120 58 (3+) 46 (5+)		
		14	C 6	Si 14 114 40 (4+)	Ge 120 53 (4+)		
v	,	13	84 27 (3+)	Al ¹³ 124 53 (3+)	Ga 123 62 (3+)	142 80 (3+)	
DMIC AND IONIC BADII OF SEI ECTED EI EMENTS					2n 30 120 74 (2+)	Cd ⁴⁸ 140 95 (2+)	
ECTEN				;	Cu 29		
ALL DE SE	5		Ê	ç	Ni 28 117 69 (2+)	Pd ⁴⁶ 130 86 (2+)	
		atomic number	symbol atomic radius (10 ⁻¹² m) charge of ion	c	Co 27 118 74 (2+) 61 (3+)		
		3 atomic		c	Fe 26 124 124 78 (2+) 64 (3+)	Ru 136 62 (4+)	
MOTA		=	130 n) 76 (1+)	r	Mn 25 129 83 (2+)	Tc ⁴³ 138 65 (4+)	onvention 1–18.
			ionic radius (10 ^{–12} m)	c	Cr 130 62 (3+)	M042 148 65 (4+)	ng to IUPAC co
			ionic ra	ι	5 23 144 144 79 (2+)	Nb 156 (5+)	nbered accordi
					Ti 22 148 86 (2+) 61 (4+)	Zr 40 164 72 (4+)	Groups are numbered according to IUPAC convention 1
					Sc 159 75 (3+)	Y 39 176 90 (3+)	
_		2	Be 4 99 45 (2+)	Mg 140 72 (2+)	Ca 174 100 (2+)	Sr 38 190 118 (2+)	Ba 206 135 (2+)
-	H 32	208 (1–)	Li 3	Na 160 102 (1+)	K 19 200 138 (1+)	Rb 215 152 (1+)	Cs 238 167 (1+)

18	He ²	2379	Ne ¹⁰	2087	Ar 18	1527	K r ³⁶	2.9 1357	Xe ⁵⁴	2.6		
		17	6 0.4	1687	CI ₁₇	3.2 1257	Br 35	3.0 1146	- 53	2.7 1015	-	
		16	3.4	1320	S 16	2.6 1006	Se ³⁴	2.6 947	Te ⁵²	2.1 876	-	
		15	7 3.0	1407	p 15	2.2 1018	As		Sp ₅₁	2.1	-	
		14	6	1093	Si ¹⁴	1.9 793	Ge ³²	2.0	Sn	2.0 715		
		13		807	AI ¹³	1.6 584	Ga ³¹	1.8 585	In 49	1.8 565	-	
ATION						12	2n ₃₀	1.7 913	Cd ⁴⁸	1.7 874	-	
CTRONEGATIVITIES AND FIRST IONISATION	2		-	_		Ξ		1.9 752	Ag ⁴⁷	1.9 737	-	
AND FIRE			`- - - -	electronegativity first ionisation enthalpies (kJ mol ⁻¹ ,		10	Ni ²⁸	1.9 743	Pd ⁴⁶			
TIVITIES	בוברובו	atomic number symbol electronegativity	electronegativity first ionisation enth		6	$\mathbf{C_0}^{27}$		Rh ⁴⁵	2.3 726			
RONEGA	FRGIES UF SELECTED ELEIMENTS	1	symbol electror	TILIST 100		œ	Fe ²⁶	1.8 766	Ru ⁴⁴	2.2 717		~
		KEY	2.2	1318		7	Mn^{25}	1.6 724	Tc ⁴³	1.9 708		nvention 1–18
						9	Cr ²⁴	1.7 659	Mo ⁴²	2.2 691		Groups are numbered according to IUPAC convention 1–18.
						2	V 23	1.6 656	Nb ⁴¹	1.6 670		nbered accordi
						4	Ti ²²	1.5 664	Zr ⁴⁰	1.3 666		Groups are nun
						က	Sc ²¹	1.4 637	γ 39	1.2 606		
		2	Be 4	906	Mg^{12}	1.3 744	\mathbf{Ca}^{20}		Sr ³⁸	1.0 556	Ba ⁵⁶	0.9 509
-	H	2.2 1318	3	526	Na ¹¹	0.9 502	19 K 19	0.8 425	Rb ³⁷	0.8 409	Cs ₅₅	382

SOLUBILITY OF SELECTED COMPOUNDS AT 298 K

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	S	_	S	i	S	S	i	i	S
ammonium	S	S	S	S	S	S	_	S	S
barium	S	i	S	S	S	S	S	i	i
calcium	S	i	S	p	S	S	p	i	p
cobalt(II)	S	i	S	i	S	S	i	i	S
copper(II)	S	_	S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	S	_	S	i	S	S	i	i	S
lead(II)	p	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S	_	S
magnesium	S	i	S	i	S	S	i	p	S
manganese(II)	S	i	S	i	S	S	i	p	S
potassium	S	S	S	S	S	S	S	S	S
silver	i	i	i	i	i	S	i	i	p
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	S	i	S	S	i	i	S

Key

Abbreviation	Explanation
S	soluble in water (solubility greater than 10 g L^{-1})
p	partially soluble in water (solubility between 1 and 10 g L^{-1})
i	insoluble in water (solubility less than 1 g L ⁻¹)
_	no data

AVERAGE BOND ENTHALPIES AT 298 K

Single bonds

		$\Delta H (kJ \text{ mol}^{-1})$							
	Н	C	N	О	F	S	Cl	Br	I
Н	436								
C	414	346							
N	391	286	158						
О	463	358	214	144					
F	567	492	278	191	159				
S	364	289			327	266			
Cl	431	324	192	206	255	271	242		
Br	366	285		201	249	218	219	193	
I	298	228		201	280		211	178	151

Multiple bonds

Bond	$\Delta H (kJ \text{ mol}^{-1})$
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N=N	470
N≡N	945
O=O	498

REACTIVITY SERIES OF METALS

Element	Reactivity
K	most reactive
Na	
Li	
Ba	
Sr	
Ca	
Mg	
Al	
C*	
Mn	
Zn	
Cr	
Fe	
Cd	
Со	
Ni	
Sn	
Pb	
H ₂ *	
Sb	
Bi	
Cu	
Hg	
Ag	
Au	
Pt	least reactive

^{*} Carbon (C) and hydrogen gas (H₂) added for comparison

ACID-BASE INDICATORS

Name	pK _a	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1-4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8-5.4	yellow to blue
Methyl red	5.1	4.4-6.2	pink to yellow
Bromothymol blue	7.0	6.0-7.6	yellow to blue
Phenol red	7.9	6.8-8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

FORMULAS AND CHARGES FOR COMMON POLYATOMIC IONS

Anions				
acetate (ethanoate)	CH ₃ COO or C ₂ H ₃ O ₂			
carbonate	CO ₃ ²⁻			
chlorate	ClO ₃			
chlorite	ClO ₂			
chromate	CrO ₄ ²⁻			
citrate	C ₆ H ₅ O ₇ ³⁻			
cyanide	CN ⁻			
dichromate	Cr ₂ O ₇ ²⁻			
dihydrogen phosphate	$\mathrm{H_2PO_4}^-$			
hypochlorite	ClO ⁻			
hydrogen carbonate	HCO ₃			
hydrogen sulfate	HSO ₄			
hydrogen phosphate	HPO ₄ ²⁻			
hydroxide	OH_			
nitrate	NO ₃			
nitrite	NO ₂			
perchlorate	ClO ₄			
permanganate	MnO ₄			
peroxide	O ₂ ²⁻			
phosphate	PO ₄ ³⁻			
sulfate	SO 2-			
sulfite	SO_3^{2-} $S_2O_3^{2-}$			
thiosulfate	S ₂ O ₃ ²⁻			

Cations				
ammonium	NH ₄ ⁺			
hydronium	H_3O^+			

REFERENCES

Aylward, G and Findlay, T 2008, *SI Chemical Data*, 5th ed, John Wiley & Sons, Brisbane. Haynes, WM (ed) 2016, *CRC Handbook of Chemistry and Physics*, 97th ed, CRC Press, Boca Raton, US.