

Trial Examination 2023

Question and Response Booklet

QCE Chemistry Units 3&4

Paper 2

Student's Name:		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Planning paper will not be marked.

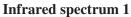
Section 1 (50 marks)

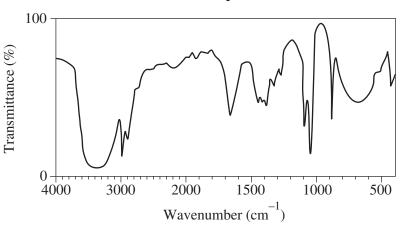
7 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2023 QCE Chemistry Units 3&4 Written Examination.

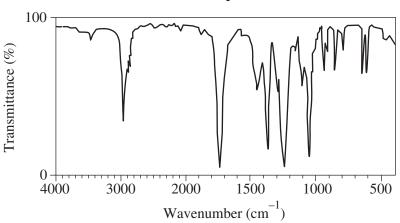
SECTION 1

Instructions

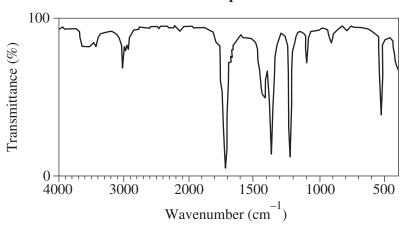

- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.


DO NOT WRITE ON THIS PAGE

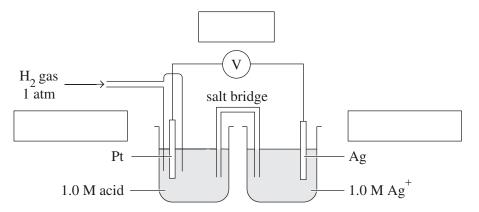
THIS PAGE WILL NOT BE MARKED


QUESTION 1 (7 marks)

The infrared spectra of an alcohol, an ester and a ketone are as shown.



Infrared spectrum 2


Infrared spectrum 3

nass spectrum s	shown is	for a co	mpoun	d prod	iced via t	he reactio	n between	ethanol and et	hanoic a
]	Mass spe	ctrum			
120				4	3				
Relative abundance									
abun 60									
lative			20		45	61	70		
\frac{1}{2} \frac{1}{2} \frac{1}{2}	13	2	729— 11.	42	1		-70 73	88	
	10	20	30	40	50 m/z	60	70	80 90	
Identify two fo	eatures o	of the ma	iss spec	trum t			ound to be	identified	[2 m
racinity two r			iss spec		iai onasi	o the comp		idoniiiiod.	12
Draw the struc	ctural for	rmula of	the con	npoun	d and dec	uce its IU	PAC name		[2 m

QUESTION 2 (11 marks)

Consider the galvanic cell shown.

a) On the diagram, label the following:

Oxidation: __

- the electrode where oxidation occurs
- the electrode where reduction occurs
- the direction of electron flow through the external circuit [3 marks]
- b) i) Write the balanced half-equations for the reactions at the oxidation and reduction electrodes.

[2 marks]

Reduction:			

ii) Calculate the cell potential (E°) . [2 marks]

 $E^{\circ} =$ ______ V (to two decimal places)

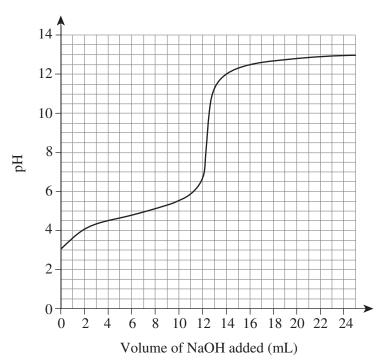
Explain why ions move through the salt bridge and the direction(s) in which they move through the salt bridge.	[2 mark
Silver nitrate solution was used in one of the half-cells.	
Determine how the cell potential would change if solid sodium chloride were added to the silver nitrate solution. Explain your reasoning using the balanced redox equation.	[2 mark

QUESTION 3 (5 marks)

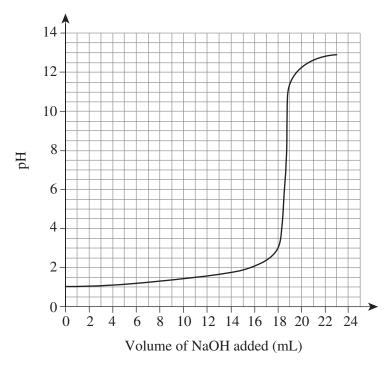
The structural formula shown is a peptide composed of three amino acids.

a)	On the structural formula, circle the bonds between the amino acids.	[1 mark]

- b) Deduce the names of the amino acids in the peptide from left to right.


 Explain your reasoning for each amino acid.

 [3 marks]
- c) Identify the peptide using the symbols of the amino acids deduced in 3b). [1 mark]


QUESTION 4 (8 marks)

The titration curves shown were produced from two titration experiments. In one experiment, ethanoic acid solution ($\mathrm{CH_3COOH}$) was titrated against 0.1 mol L^{-1} sodium hydroxide solution (NaOH). In the other experiment, hydrochloric acid solution (HCl) was titrated against the same NaOH solution. In both experiments, the NaOH solution was added to the acid solution, which was in a conical flask, via a burette. The pH of each mixture was measured using a pH meter placed in the conical flask.

Titration 1

Titration 2

QCE_Chem34_P2_QB_2023

CH ₃ 0	COOH has a dissociation constant (K_a) of 1.8×10^{-5} , a p K_a of 4.76 and was considered to eximately 0.1 mol L ⁻¹ .	be
a)	Deduce which acid solution was used in used in each titration. Explain your reasoning.	[2 marks]
	Titration 1:	
	Titration 2:	
b)	The initial pH of the acid solution in titration 1 was 3.0.	
	Show how this can be determined using calculations.	[3 marks]
c)	Explain why titration 1 has a greater equivalence point than titration 2.	[2 marks]

d) The use of methyl red or phenolphthalein was considered for both titrations. Data about the indicators are shown in the table.

Name	pK _a	pH range of colour change	Colour change (acidic to basic)
Methyl red	5.1	4.4–6.2	pink to yellow
Phenolphthalein	9.6	8.3–10.0	colourless to pink

Explain why phenolphthalein would have been preferred.	[1 mark]

QUESTION 5 (7 marks)

The ammonia that is used to make fertiliser is manufactured using the Haber process. The process involves the use of a catalyst and is shown by the following equation.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \quad \Delta H = -92 \text{ kJ mol}^{-1}$$

Sulfuric acid is manufactured using the contact process, which is a complex series of reactions represented by the following equations.

Step 1.
$$S(s) + O_2(g) \rightarrow SO_2(g)$$
 $\Delta H = -297 \text{ kJ mol}^{-1}$

Step 2.
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ mol}^{-1}$

Step 3.
$$SO_3(g) + H_2SO_4(1) \rightarrow H_2S_2O_7(1)$$

Step 4.
$$H_2S_2O_7(1) + H_2O(1) \rightarrow 2H_2SO_4(1)$$

An i	fron catalyst, obtained from iron oxide (Fe_3O_4), is used in the Haber process.	
An i	fron catalyst, obtained from iron oxide (Fe_3O_4), is used in the Haber process. State why the iron catalyst is finely ground when used in this process.	[1 m
i)	State why the iron catalyst is finely ground when used in this process.	[1 m
		[1 m.

Unlike the Haber process, the contact process has four steps.

In the table, explain the factors of the contact process shown.

[2 marks]

Factor	Explanation
In step 1 (S(s) + O ₂ (g) \rightarrow SO ₂ (g), $\Delta H = -297 \text{ kJ mol}^{-1}$), excess oxygen is not used. The sulfur to oxygen ratio is kept at 1 : 1.	
Step 2 (2SO ₂ (g) + O ₂ (g) \rightleftharpoons 2SO ₃ (g), $\Delta H = -196 \text{ kJ mol}^{-1}$) is the most crucial step to control.	

c)

OUESTION 6 (6 marks)

In a titration, a 60 mL solution of 0.10 M calcium hydroxide $(Ca(OH)_2)$ was mixed with a 50 mL solution of 0.10 M nitric acid (HNO_3) . A second titration was then performed where 0.050 M sulfuric acid solution (H_2SO_4) was added to neutralise the mixture.

Determine the vol	lume of H ₂ SO ₄ req	uired to neutralis	e the mixture durin	ng the second titra	tion.
In your response,	include balanced c	chemical equation	s for both reactions	S.	
	Г				
	Volume =		mL (to three sig	nificant figures)	

QUESTION 7 (6 marks)

The transition metal vanadium (V) can exist in several oxidation states, as shown in the table.

Oxidation state of vanadium	Formula of ion	Colour of ion
+4	VO ²⁺ (aq)	blue
+3	V ³⁺ (aq)	green
+2	V ²⁺ (aq)	purple

The equations for the ion changes are shown in the table below.

Change	Equation	E°
blue to green	$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow V^{3+}(aq) + H_2O(1)$	+0.34
green to purple	$V^{3+}(aq) + e^{-} \rightarrow V^{2+}(aq)$	-0.26

In an experiment, samples of the metals zinc (Zn) and tin (Sn) are each added to an acidified solution containing VO^{2+} ions.

Determine whether each metal would cause the colour of the solution to change from blue to purple. Explain your reasoning for each metal using cell potential (E°) values and calculations.			

QCE Chemistry Units 3&4 Trial Examination Paper 2 Question and Response Booklet

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES Write the question number you are responding to.			
_			

ADDITIONAL PAGE FOR STUDENT RESPONSES			
Write the question number you are responding to.			
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		

Trial Examination 2023

Formula and Data Booklet

QCE Chemistry Units 3&4

Neap® Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data

Absolute uncertainty of the mean $\Delta \overline{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$

Percentrage error (%) = $\left| \frac{\text{measured value - true value}}{\text{true value}} \right| \times 100$

Chemical reactions – reactants, products and energy change

 $\Delta H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\Delta H = \sum (\text{bonds broken}) - \sum (\text{bonds formed})$

 $Q = mc\Delta T$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$

Aqueous solutions and acidity

Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$

Chemical equilibrium systems

 $K_{c} = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$ for the reaction: $aA + bB \iff cC + dD$

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-]$$

$$pH = -\log_{10}\left[H^+\right]$$

$$pOH = -\log_{10} [OH^{-}]$$

$$K_{\rm w} = K_{\rm a} \times K_{\rm b}$$

$$K_{\rm a} = \frac{\left[{\rm H_3O}^+\right]\left[{\rm A}^-\right]}{\left[{\rm HA}\right]}$$

$$K_{\rm b} = \frac{\left[{\rm BH}^+\right]\left[{\rm OH}^-\right]}{\left[{\rm B}\right]}$$

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Physical constants and unit conversions		
Absolute zero	$0 \text{ K} = -273^{\circ}\text{C}$	
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$	
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$	
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$	
Ionic product constant for water (at 298 K)	$K_{\rm w} = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$	
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$	
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$	
Standard temperature and pressure (STP)	273 K and 100 kPa	
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$	

LIST OF ELEMENTS

Name	Atomic no.	Symbol
Hydrogen	1	Н
Helium	2	Не
Lithium	3	Li
Beryllium	4	Be
Boron	5	В
Carbon	6	С
Nitrogen	7	N
Oxygen	8	О
Fluorine	9	F
Neon	10	Ne
Sodium	11	Na
Magnesium	12	Mg
Aluminium	13	Al
Silicon	14	Si
Phosphorus	15	P
Sulfur	16	S
Chlorine	17	Cl
Argon	18	Ar
Potassium	19	K
Calcium	20	Ca
Scandium	21	Sc
Titanium	22	Ti
Vanadium	23	V
Chromium	24	Cr
Manganese	25	Mn
Iron	26	Fe
Cobalt	27	Со
Nickel	28	Ni
Copper	29	Cu
Zinc	30	Zn
Gallium	31	Ga
Germanium	32	Ge
Arsenic	33	As
Selenium	34	Se
Bromine	35	Br

Name	Atomic no.	Symbol
Krypton	36	Kr
Rubidium	37	Rb
Strontium	38	Sr
Yttrium	39	Y
Zirconium	40	Zr
Niobium	41	Nb
Molybdenum	42	Mo
Technetium	43	Тс
Ruthenium	44	Ru
Rhodium	45	Rh
Palladium	46	Pd
Silver	47	Ag
Cadmium	48	Cd
Indium	49	In
Tin	50	Sn
Antimony	51	Sb
Tellerium	52	Te
Iodine	53	I
Xenon	54	Xe
Cesium	55	Cs
Barium	56	Ba
Lanthanum	57	La
Cerium	58	Ce
Praseodymium	59	Pr
Neodymium	60	Nd
Promethium	61	Pm
Samarium	62	Sm
Europium	63	Eu
Gadolinium	64	Gd
Terbium	65	Tb
Dysprosium	66	Dy
Holmium	67	Но
Erbium	68	Er
Thulium	69	Tm
Ytterbium	70	Yb

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol
Lutetium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Нg
Thallium	81	Tl
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Po
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Pa
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

Name	Atomic no.	Symbol
Americium	95	Am
Curium	96	Cm
Berkelium	97	Bk
Californium	98	Cf
Einsteinium	99	Es
Fermium	100	Fm
Mendelevium	101	Md
Nobelium	102	No
Lawrencium	103	Lr
Rutherfordium	104	Rf
Dubnium	105	Db
Seaborgium	106	Sg
Bohrium	107	Bh
Hassium	108	Hs
Meitnerium	109	Mt
Darmstadtium	110	Ds
Roentgenium	111	Rg
Copernicium	112	Cn
Nihonium	113	Nh
Flerovium	114	Fl
Moscovium	115	Мс
Livermorium	116	Lv
Tennessine	117	Ts
Oganesson	118	Og

	He 4.00	10	Ne	18	_	92	36	7	83.80	24	ته	131.29	98		(222.0)	118	6	4)		71		Lu 174.97		103	_	2.1)
18	He		Ne		Ar	39.95		Y	83.		Xe	131	_	Ru	(22)		0g	(29				174			۲	(262.1)
	17	6	≖ 19:00	11	ວ	35.45	35	Br	79.90	53	_	126.90	85	At	(210.0)	117	L	(294)		02	\	173.05		102	No	(259.1)
	16	8	O 16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116	۲۸	(293)		80	3 E	168.93		101	Σ	(258.1)
	15	7	S 14.01	15	۵	30.97	33	As	74.92	51	Sp	121.76	83	<u>.</u>	208.98	115	Mc	(288)		O	ŗ	L.1 167.26		100	Fm	(252.1)
	14	9	C 15.01	14	Si	28.09	32	Ge	72.63	20	Sn	118.71	82	Pb	207.2	114	正	(289)		73	5	164 .93		66	Es	(252.1)
	13	D	a 10.	13	A	26.98	31	Ga	69.72	49	드	114.82	81	F	204.38	113	Z L	(284)		g	2	162.50		86	Ç	(252.1)
						12	30	Zu	65.38	48	P _O	112.41	80	Hď	200.59	112	C C	(282)		r.	3 -	158.93		97	æ	(249.1)
S						=	29	Cu	63.55	47	Aq	107.87	79	Au	196.97	111	Rg	(272)		79	5	1 57.25		96	Cm	(244.1)
ELEMEN						10	28	Z	58.69	46	Pd	106.42	78	Ŧ	195.08	110	Ds	(281)		23	3 :	Eu 151.96		95	Am	(241.1)
E OF THE		ımber	symbol relative atomic mass*			6	27	Ç	58.93	45	R	102.91	77	<u></u>	192.22	109	Mt	(268)		63	2 6	150.36		94	Pu	(239.1)
RIODIC TABLE OF THE ELEMENTS		atomic number	relative a	1		80	26	Fe	55.85	44	Bu	101.07	9/	08	190.23	108	Hs	(265.1)		19	2	(146.9)		93	S	(237.0)
PERIOD	KEY	=	1.01			7	25	Z Z	54.94	43	J C	(98.91)	75	Re	186.21	107	Bh	(264.1)		G	2	144.24		92	-	238.0
						9	24	Ç	52.00	42	Mo	95.95	74	≥	183.84	106	Sg	(263.1)		20	3	140.91		91	Pa	231.0
						2	23	>	50.94	41	S	92.91	73	Б	180.95	105	Op O	(262.1)		αĽ	3	140.12		90	드	232.0
						4	22	ï	47.87	40	Zr	91.22	72	¥	178.49	104	Rŧ	(261.1)	7	Lanthanoids	· -	138.91	Actinoids	88	Ac	(227.0)
						က	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids			_ ۔ ۔ ۔ ۔ ۔		↑ 				
	2	4	Be	12	Mg	24.31	20	Ca	40.08	38	S	87.62	99	Ba	137.33	88		(226.1)				J				
	T 10:1	က		1	Na	22.99	19	¥	39.10	37	Rb	85.47	55	Cs	132.91	87	Ţ	(223.0)								

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.

18	He ²	37		Ne 10	62		Ar	101		Kr ³⁶	116		Xe ⁵⁴	136				
l			17	6 "	60 133 (1–)	ŗ	_ 	100		35 Br			- P3	136	(-1) 022			
			16	° 0	64 140 (2–)		S			Se ³⁴			Te ⁵²	137	221 (2-)			
			15	N 7	71 146 (3–)	Ļ	<u>ရ</u> မ	109	38 (5+)	As 33	120	46 (5+)	Sb ⁵¹	140	/6 (3+)			
			14	ں و	75 16 (4+)		Si			Ge 32	120	272 (4–)						
v	9		13	B	84 27 (3+)		Al	124	53 (3+)	Ga ³¹	123	(C) 30	In 49	142	80 (3+)			
DMIC AND IONIC BADII DE SEI ECTED EI EMENTS			·						12	Zn ³⁰	120	1. 71 + 7	Cd ⁴⁸	140	95 (2+)			
I ECTED I	רכורם								1	C u ²⁹				136	_			
DII DE CE	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, m)					10	Ni ²⁸	117	(3+)						
			atomic number	symbol atomic radius (10 ⁻¹² m)	ot ion				6	\mathbf{Co}^{27}			Rh ⁴⁵					
			3 atomic		charge of ion				80	Fe 26	124	64 (3+)	Ru ⁴⁴	136	62 (4 +)			ĸ.
MUL		KEY	-		/6 (1+)				7	M_n^{25}	129	64 (3+)		138				onvention 1–18.
					ı OL) snip				9	\mathbf{Cr}^{24}	130	44 (6+)	M_0^{42}	148	65 (4+)			ng to IUPAC co
					ionic ra				5	V 23	144 79 (2±)	54 (5+)	Nb ⁴¹	156	64 (5 +)			Groups are numbered according to IUPAC convention 1
									4	Ti ²²	148	61 (4+)	Zr ⁴⁰	164	/2 (4+)			Groups are nur
									က	Sc ²¹	159		γ 39	176	90 (3+)			_
_			2	Be 4	99 45 (2+)	,	Mg	140		Ca ²⁰			Sr 38		118 (2+)	Ba 56	_	
_	=	32 208 (1–)		Li ³	130 76 (1+)		Na 11	160	102 (1+)	K 19	200		Rb ³⁷	215	152 (1+)	Cs 55	238	

18	He ²	2379	Ne ¹⁰	2087	Ar 18	1527	K r ³⁶	2.9 1357	Xe ⁵⁴	2.6		
		17	9	1687	CI ₁₇	3.2 1257	35 Br	3.0 1146	1 53	2.7	-	
		16	3.4	1320	S 16	2.6 1006	Se ³⁴	2.6 947	Te ⁵²	2.1 876	-	
		15	N 3.0	1407	P 15	2.2 1018	As		Sb ⁵¹	2.1	-	
		14	6	1093	Si ¹⁴	1.9 793	Ge ³²	2.0	Sn	2.0 715		
		13		807	AI ¹³	1.6 584	Ga ³¹	1.8	In 49	1.8	-	
ATION						12	$2n^{30}$	1.7 913	Cd ⁴⁸	1.7 874	-	
CTRONEGATIVITIES AND FIRST IONISATION	2		<u>-</u>	_		Ξ	\mathbf{Cu}^{29}		Ag ⁴⁷	1.9 737	-	
AND FIR				ipies (KJ mol		10	Ni ²⁸	1.9 743	Pd ⁴⁶		-	
TIVITIES	ברברו בר	, chan	symbol electronegativity	Tirst ionisation enthalpies (KJ mol		6	\mathbf{Co}^{27}		Rh ⁴⁵	2.3 726		
CTRONEGATIVITIES AND FIRST I		, ime	symbol electronegativi	TIINST 100		œ	Fe ²⁶	1.8 766	Ru ⁴⁴	2.2 717		~
ELECT		KEY	2.2	1318		7	Mn^{25}	1.6 724	Tc ⁴³	1.9 708		Groups are numbered according to IUPAC convention 1–18.
						9	Cr^{24}	1.7 659	Mo ⁴²	2.2 691		ng to IUPAC co
						2	V 23	1.6 656	Nb ⁴¹	1.6 670		nbered accordi
						4	Ti^{22}	1.5 664	Zr ⁴⁰	1.3 666		Groups are nun
						က	Sc^{21}	1.4 637	γ 39	1.2 606		
		2	Be 4	906	Mg^{12}	1.3 744	\mathbf{Ca}^{20}		Sr ³⁸	1.0 556	Ba ⁵⁶	0.9
-	=	2.2 1318	L 3	526	Na ¹¹	0.9 502	K 19	0.8	Rb ³⁷	0.8	Cs ₅₅	0.8 382

SOLUBILITY OF SELECTED COMPOUNDS AT 298 K

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	S	_	S	i	S	S	i	i	S
ammonium	S	S	S	S	S	S	_	S	S
barium	S	i	S	S	S	S	S	i	i
calcium	S	i	S	p	s	s	р	i	p
cobalt(II)	S	i	S	i	S	S	i	i	S
copper(II)	S	_	S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	S	_	S	i	S	S	i	i	S
lead(II)	p	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S	_	S
magnesium	S	i	S	i	S	S	i	p	S
manganese(II)	S	i	S	i	S	S	i	p	S
potassium	S	S	S	S	S	S	S	S	S
silver	i	i	i	i	i	S	i	i	p
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	S	i	S	S	i	i	S

Key

Abbreviation	Explanation
S	soluble in water (solubility greater than 10 g L^{-1})
p	partially soluble in water (solubility between 1 and 10 g L^{-1})
i	insoluble in water (solubility less than 1 g L ⁻¹)
_	no data

AVERAGE BOND ENTHALPIES AT 298 K

Single bonds

		$\Delta H (kJ \text{ mol}^{-1})$											
	Н	C	N	О	F	S	Cl	Br	I				
Н	436												
C	414	346											
N	391	286	158										
О	463	358	214	144									
F	567	492	278	191	159								
S	364	289			327	266							
Cl	431	324	192	206	255	271	242						
Br	366	285		201	249	218	219	193					
I	298	228		201	280		211	178	151				

Multiple bonds

Bond	$\Delta H (kJ \text{ mol}^{-1})$
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N=N	470
N≡N	945
O=O	498

REACTIVITY SERIES OF METALS

Element	Reactivity	
K	most reactive	
Na		
Li		
Ba		
Sr		
Ca		
Mg		
Al		
C*		
Mn		
Zn		
Cr		
Fe		
Cd		
Со		
Ni		
Sn		
Pb		
H ₂ *		
Sb		
Bi		
Cu		
Hg		
Ag		
Au		
Pt	least reactive	

^{*} Carbon (C) and hydrogen gas (H₂) added for comparison

STANDARD ELECTRODE POTENTIALS AT 298 K

Oxidised species Reduced species	$E^{\circ}\left(\mathrm{V}\right)$
$\operatorname{Li}^{+}(\operatorname{aq}) + \operatorname{e}^{-} \rightleftharpoons \operatorname{Li}(\operatorname{s})$	-3.04
$K^{+}(aq) + e^{-} \rightleftharpoons K(s)$	-2.94
$Ba^{2+}(aq) + 2e^{-} \rightleftharpoons Ba(s)$	-2.91
$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Ca}(\operatorname{s})$	-2.87
$Na^{+}(aq) + e^{-} \rightleftharpoons Na(s)$	-2.71
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.36
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.68
$\operatorname{Mn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Mn}(\operatorname{s})$	-1.18
$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Zn}(\operatorname{s})$	-0.76
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.24
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(\operatorname{s})$	-0.14
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$	0.00
$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$	+0.16
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightleftharpoons SO_2(aq) + 2H_2O(1)$	+0.16
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s)$	+0.52
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.08
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14\text{H}^+(\text{aq}) + 6\text{e}^- \rightleftharpoons 2\text{Cr}^{3+}(\text{aq}) + 7\text{H}_2\text{O}(1)$	+1.36
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(1)$	+1.51
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.89

GLUCOSE AND FRUCTOSE: STRAIGHT CHAIN AND lpha-ring forms

$$\begin{array}{c} \text{CHO} \\ \text{H}-\text{C}-\text{OH} \\ \text{HO}-\text{C}-\text{H} \\ \text{H}-\text{C}-\text{OH} \\ \text{H}-\text{C}-\text{OH} \\ \text{CH}_2\text{OH} \end{array} = \begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \end{array} \rightarrow \begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \end{array} \rightarrow \begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \end{array}$$

straight chain D-glucose

 α -D-glucose

$$\begin{array}{c} CH_2OH \\ C=O \\ HO-C-H \\ H-C-OH \\ H-C-OH \\ CH_2OH \end{array} = \begin{array}{c} HOH_2C \\ OH \\ OH \\ OH \end{array} = \begin{array}{c} OH \\ CH_2OH \\ OH \\ OH \end{array} = \begin{array}{c} OH \\ OH \\ OH \\ OH \end{array}$$

straight chain D-fructose

 α -D-fructose

COMMON AMINO ACIDS

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
	Н О Н ₂ N—С—С—ОН СН ₃		Arginine (Arg)	H O	10.7
Asparagine (Asn)	Н О Н ₂ N-С-С-ОН СН ₂ С=О NH ₂	5.4	Aspartic acid (Asp)	Н О II H ₂ N-С-С-ОН CH ₂ C=O OH	3.0
Cysteine (Cys)	H O H ₂ N-C-C-OH CH ₂ SH	5.1	Glutamic acid (Glu)	H O H ₂ N-C-C-OH CH ₂ CH ₂ C=O OH	3.2
Glutamine (Gln)	H O	5.7	Glycine (Gly)	Н О II Н ₂ N—С—С—ОН Н	6.1

COMMON AMINO ACIDS (continued)

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Histidine (His)	Н О Н ₂ N—С—С—ОН СН ₂ NH	7.6	Isoleucine (Ile)	H O H ₂ N-C-C-OH CHCH ₃ CH ₂ CH ₃	6.0
Leucine (Leu)	H O	6.0	Lysine (Lys)	$\begin{array}{c} H & O \\ I & \\ H_2N-C-C-C-OH \\ I & \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ I & \\ NH_2 \end{array}$	9.7
Methionine (Met)	H O	5.7	Phenylalanine (Phe)	H O	5.7
Proline (Pro)	O C-OH HN	6.3	Serine (Ser)	Н О Н ₂ N—С—С—ОН СН ₂ ОН	5.7

COMMON AMINO ACIDS (continued)

Common name (symbol)	Structural formula	pH of isoelectric point
Threonine (Thr)	H O H ₂ N-C-C-OH CHOH CH ₃	5.6
Tyrosine (Tyr)	$\begin{array}{c} H & O \\ I & \parallel \\ H_2N-C-C-OH \\ I & CH_2 \\ \hline OH \end{array}$	5.7

Common name (symbol)	Structural formula	pH of isoelectric point
Tryptophan (Trp)	H O H ₂ N-C-C-OH CH ₂	5.9
Valine (Val)	H O H ₂ N-C-C-OH CHCH ₃ CH ₃	6.0

ACID-BASE INDICATORS

Name	pK _a	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1-4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8–5.4	yellow to blue
Methyl red	5.1	4.4-6.2	pink to yellow
Bromothymol blue	7.0	6.0-7.6	yellow to blue
Phenol red	7.9	6.8-8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

INFRARED DATA

The table below shows the characteristic range of infrared absorption due to stretching in organic molecules.

Bond	Organic molecules	Wavelength (cm ⁻¹)
C–I	iodoalkanes	490–620
C–Br	bromoalkanes	500-600
C-Cl	chloroalkanes	600–800
C-F	fluoroalkanes	1000–1400
С-О	alcohol, ester	1050–1410
C=C	alkenes	1620–1680
C=O	aldehydes, carboxylic acid, ester, ketones	1700–1750
C≡C	alkynes	2100–2260
О–Н	carboxylic acids (hydrogen-bonded)	2500–3000
С–Н	alkanes, alkenes, alkynes, aldehydes, amides	2720–3100
О–Н	alcohol (hydrogen-bonded)	3200–3600
N-H	amines	3300–3500

FORMULAS AND CHARGES FOR COMMON POLYATOMIC IONS

Anions			
acetate (ethanoate)	CH ₃ COO ⁻ or C ₂ H ₃ O ₂ ⁻		
carbonate	CO ₃ ²⁻		
chlorate	ClO ₃		
chlorite	ClO ₂		
chromate	CrO ₄ ²⁻		
citrate	C ₆ H ₅ O ₇ ³⁻		
cyanide	CN ⁻		
dichromate	Cr ₂ O ₇ ²⁻		
dihydrogen phosphate	$H_2PO_4^-$		
hypochlorite	ClO ⁻		
hydrogen carbonate	HCO ₃		
hydrogen sulfate	HSO ₄		
hydrogen phosphate	HPO ₄ ²⁻		
hydroxide	OH_		
nitrate	NO ₃		
nitrite	NO ₂		
perchlorate	ClO ₄		
permanganate	MnO ₄		
peroxide	O ₂ ²⁻		
phosphate	PO ₄ ³⁻		
sulfate	SO ²⁻		
sulfite	SO_{3}^{2-} $S_{2}O_{3}^{2-}$		
thiosulfate	S ₂ O ₃ ²⁻		

Cations		
ammonium	NH ₄ ⁺	
hydronium	H_3O^+	

REFERENCES

Aylward, G and Findlay, T 2008, *SI Chemical Data*, 5th ed, John Wiley & Sons, Brisbane. Haynes, WM (ed) 2016, *CRC Handbook of Chemistry and Physics*, 97th ed, CRC Press, Boca Raton, US.