

Trial Examination 2021

**Question and response booklet** 

# **QCE General Mathematics Units 3&4**

Paper 1

Student's Name: \_\_\_\_\_

Teacher's Name: \_\_\_\_\_

# Time allowed

- Perusal time 5 minutes
- Working time 90 minutes

#### **General instructions**

- Answer all questions in this question and response booklet.
- QCAA-approved scientific calculator permitted.
- Formula sheet provided.
- Planning paper will not be marked.

#### Section 1 (20 marks)

20 multiple choice questions

## Section 2 (40 marks)

• 8 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2021 QCE General Mathematics Units 3&4 Written Examination.

Neap<sup>®</sup> Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

# **SECTION 1**

#### Instructions

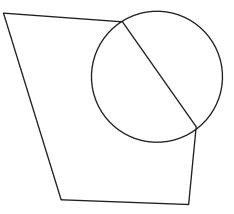
- Choose the best answer for Questions 1–20.
- This section has 20 questions and is worth 20 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

|          | А | В          | С          | D          |
|----------|---|------------|------------|------------|
| Example: |   | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

|          | Α                                       | В                                       | С          | D                                       |
|----------|-----------------------------------------|-----------------------------------------|------------|-----------------------------------------|
| 1.       |                                         |                                         |            |                                         |
| 1.<br>2. | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 3.       | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 4.<br>5. | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 5.       | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 6.       | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 7.       | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 8.       | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 9.       | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 10.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 11.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 12.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 13.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 14.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 15.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 16.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 17.      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 18.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 19.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |
| 20.      | $\bigcirc$                              | $\bigcirc$                              | $\bigcirc$ | $\bigcirc$                              |

# **SECTION 2**

#### Instructions


- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this booklet.
  - On the additional pages, write the question number you are responding to.
  - Cancel any incorrect response by ruling a single diagonal line through your work.
  - Write the page number of your alternative/additional response, i.e. See page ...
  - If you do not do this, your original response will be marked.
- This section has eight questions and is worth 40 marks.

## DO NOTE WRITE ON THIS PAGE

## THIS PAGE WILL NOT BE MARKED

# QUESTION 21 (3 marks)

A planar graph is shown below.



- a) Identify the number of faces in the planar graph. [1 mark]
- b) Use Euler's formula to evaluate the reasonableness of your solution to 21a). [2 marks]

# **QUESTION 22** (7 marks)

A doctor wants to open an annuity account with a lump sum of \$57000 and deposit monthly payments of \$2400 for 6 years. The account has a fixed interest rate of 3.62% p.a.

| Calculate the future value of the lump sum after 6 years.                                                                                             | [3 marks] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
| Calculate the future value of the monthly deposit payments after 6 years.                                                                             | [2 marks] |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |
| Calculate the total amount the doctor will have accumulated in the annuity account after 6 years. Express your answers correct to two decimal places. | [2 marks  |
|                                                                                                                                                       | [         |
|                                                                                                                                                       |           |
|                                                                                                                                                       |           |

# QUESTION 23 (5 marks)

A survey was conducted on dogs of different sizes (small and large) and whether or not they barked. The following information was taken from the survey.

- The total number of large dogs is 25.
- The number of small dogs that bark is 5.
- The total number of dogs that do not bark is 35.
- The number of small dogs that do not bark is 15.
- a) Using the information above, complete the table below.

[4 marks]

|            | Barks | Does not bark | Total |
|------------|-------|---------------|-------|
| Small dogs |       |               |       |
| Large dogs |       |               |       |
| Total      |       |               |       |

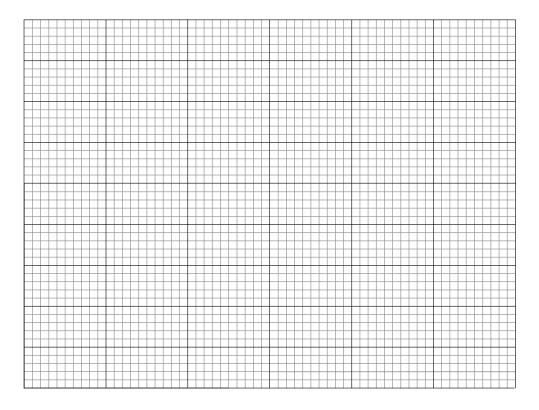
b) Calculate the percentage of large dogs that bark.

[1 mark]

# **QUESTION 24** (5 marks)

The table below shows information collected regarding the length of time owning a car and the amount of money spent on the car.

| Mean of length of time owning a car $(\overline{x})$      | 8.5 years  |
|-----------------------------------------------------------|------------|
| Mean of money spent on the car $(\overline{y})$           | \$12300    |
| Standard deviation of length of time owning a car $(s_x)$ | 2.37 years |
| Standard deviation of money spent on the car $(s_y)$      | \$1893     |
| Correlation coefficient $(r)$                             | 0.79       |


Using the information above, calculate the equation of the least-squares regression line y = a + bx.

# **QUESTION 25** (5 marks)

An electric car is purchased for \$66000 and depreciates in value by \$1200 every year.

- a) Write a recurrence relation to model this scenario. [1 mark]
- c) Draw a graph of the depreciation of the car's value over the first 6 years. Include an appropriate scale for each axis.

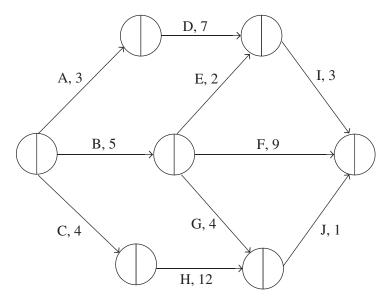
[2 marks]



# **QUESTION 26** (6 marks)

The approximate coordinates of Perth, Australia, are  $(31^{\circ}57'S, 115^{\circ}52'E)$ . The approximate coordinates of South Africa are  $(31^{\circ}57'S, 22^{\circ}56'E)$ .

| Calculate the distance between Perth and South Africa to the nearest kilometre.  | [3 marks] |
|----------------------------------------------------------------------------------|-----------|
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
| The approximate coordinates of Greece are $(39^{\circ}4'N, 22^{\circ}56'E)$ .    |           |
| Calculate the distance between South Africa and Greece to the nearest kilometre. | [3 marks] |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |


# QUESTION 27 (6 marks)

A shop sells furniture over one week and records the number of items it sells per day as shown in the table below.

|                    | Monday        | Tuesday        | Wednesday         | Thursday       | Friday         | Saturday    | Sunday  |
|--------------------|---------------|----------------|-------------------|----------------|----------------|-------------|---------|
| Items sold         | 121           | 110            | 153               | 179            | 280            | 410         | 350     |
| Calcula            | te the weekly | y average.     |                   |                |                |             | [1 mari |
| Calcula<br>decimal |               | al index for e | each day. Expre   | ess your answe | ers correct to | o three     | [3 mark |
|                    |               |                |                   |                |                |             |         |
|                    |               |                |                   |                |                |             |         |
|                    |               |                |                   |                |                |             |         |
|                    |               |                |                   |                |                |             |         |
| Evaluat            | e the reasona | ableness of th | ne seasonal indio | ces that you h | ave calculat   | ed in 27b). | [2 mar  |
|                    |               |                |                   |                |                |             |         |
|                    |               |                |                   |                |                |             |         |
|                    |               |                |                   |                |                |             |         |

# **QUESTION 28** (3 marks)

The network diagram below illustrates the time taken, in minutes, to complete 10 different steps, labelled A–J. These steps represent all the steps required to bake a cake.



- a) Fill in the spaces in the network diagram above using forward and backward scanning. [1 mark]
- b) Identify the critical path.
- c) Determine the minimum completion time to bake a cake. [1 mark]

## **END OF PAPER**

[1 mark]

# ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.



## ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.



# ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.





Trial Examination 2021

**Formula sheet** 

# **QCE General Mathematics Units 3&4**

Neap<sup>®</sup> Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

| Mensuration                         |                                                                   |                             |               |                                      |  |
|-------------------------------------|-------------------------------------------------------------------|-----------------------------|---------------|--------------------------------------|--|
| circumference<br>of a circle        | $C = 2\pi r$                                                      | area of a cire              | cle           | $A = \pi r^2$                        |  |
| area of a<br>parallelogram          | A = bh                                                            | area of a tra               | pezium        | $A = \frac{1}{2}(a+b)h$              |  |
| area of a triangle                  | $A = \frac{1}{2}bh$                                               | total surface<br>of a cone  | area          | $S = \pi r s + \pi r^2$              |  |
| total surface area<br>of a cylinder | $S = 2\pi r h + 2\pi r^2$                                         | surface area<br>of a sphere |               | $S = 4\pi r^2$                       |  |
| volume of a cone                    | $V = \frac{1}{3}\pi r^2 h$                                        | volume of a                 | cylinder      | $V = \pi r^2 h$                      |  |
| volume of a prism                   | V = Ah                                                            | volume of a                 | pyramid       | $V = \frac{1}{3}Ah$                  |  |
| volume of a sphere                  | $V = \frac{4}{3}\pi r^3$                                          |                             |               |                                      |  |
| Heron's rule                        | $A = \sqrt{s(s-a)(s-b)(s-c)}, \text{ where } s = \frac{a+b+c}{2}$ |                             |               |                                      |  |
| Earth geometry                      | $D = 111.2 \times \text{angular distant}$                         | nce                         | D = 111.2  co | $\cos\theta \times angular distance$ |  |

| Finance                                              |                                                                                              |                                         |                                       |                                                         |
|------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------|
| simple interest                                      | I = Pin                                                                                      | compound i                              | nterest                               | $A = P\left(1 + i\right)^n$                             |
| effective annual rate of interest                    | $i_{\text{effective}} = \left(1 + \frac{i}{n}\right)^n - 1$                                  | dividend yie                            | ld                                    | $\frac{\text{dividend}}{\text{share price}} \times 100$ |
| price to earnings<br>ratio (of a share)              | $P/E \text{ ratio} = \frac{\text{market price per share}}{\text{annual earnings per share}}$ |                                         |                                       |                                                         |
| recurrence relation<br>for reducing<br>balance loans | $A_{n+1} = rA_n - R$                                                                         | recurrence i<br>for compour<br>interest |                                       | $A_{n+1} = rA_n$                                        |
| recurrence relation<br>for annuities                 | $A_{n+1} = rA_n + d$                                                                         |                                         |                                       |                                                         |
| annuities                                            | $A = M\left(\frac{\left(1+i\right)^n - 1}{i}\right)$                                         |                                         | $A = M\left(\frac{1-(n+1)}{n}\right)$ | $\frac{(1+i)^{-n}}{i}$                                  |

| Sequences           |                       |
|---------------------|-----------------------|
| arithmetic sequence | $t_n = t_1 + (n-1)d$  |
| geometric sequence  | $t_n = t_1 r^{(n-1)}$ |

| Networks and matrices |               |  |
|-----------------------|---------------|--|
| Euler's formula       | v + f - e = 2 |  |

| Trigonometry         |                                                          |                                                          |                                                        |
|----------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| Pythagoras' theorem  | $c^2 = a^2 + b^2$                                        |                                                          |                                                        |
| trigonometric ratios | $\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ | $\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}$ | $\tan\theta = \frac{\text{opposite}}{\text{adjacent}}$ |
| cosine rule          | $c^2 = a^2 + b^2 - 2ab\cos C$                            |                                                          | <u>.</u>                                               |
| sine rule            | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ |                                                          |                                                        |
| area of a triangle   | area = $\frac{1}{2}bc\sin A$                             |                                                          |                                                        |

| Statistics                     |                                                                                                                      |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------|
| mean                           | $\overline{x} = \frac{\sum x_i}{n}$                                                                                  |
| median                         | $\left(\frac{n+1}{2}\right)^{\text{th}}$ data value                                                                  |
| least-squares line (slope)     | $b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = r \frac{s_y}{s_x}$          |
| least-squares line (intercept) | $a = \overline{y} - b\overline{x}$                                                                                   |
| correlation coefficient (r)    | $r = \frac{1}{n-1} \sum \left( \frac{x_i - \overline{x}}{s_x} \right) \left( \frac{y_i - \overline{y}}{s_y} \right)$ |
| standard deviation             | $s = \sqrt{\frac{\Sigma (x_i - \overline{x})^2}{n - 1}}$                                                             |
| outliers (identifying)         | $Q_1 - 1.5 \times IQR \le x \le Q_3 + 1.5 \times IQR$                                                                |