

Trial Examination 2021

Question and response booklet

QCE Physics Units 1&2

Paper 1

Student's Name: _____

Teacher's Name:			
-----------------	--	--	--

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (20 marks)

• 20 multiple choice questions

Section 2 (25 marks)

• 7 short response questions

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

- Choose the best answer for Questions 1–20.
- This section has 20 questions and is worth 20 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	А	В	С	D
Example:	\bullet	\bigcirc	\bigcirc	\bigcirc

	А	В	С	D
1.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
17.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
19.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20.	\bigcirc	\bigcirc	\bigcirc	\bigcirc

SECTION 2

•

Instructions

- Write using black or blue pen.
 - If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has seven questions and is worth 25 marks.

QUESTION 21 (4 marks)

A current flows out of the 12.0 V cell in the parallel circuit shown below.

a) Determine the total parallel resistance (R_t) . Show your working.

[2 marks]

Total resistance $R_t = _ \Omega$ (to 2 decimal places)

b) Determine which resistor has the greater current flowing through it. Show your working. [2 marks]

Resistor with greater current = _____

QUESTION 22 (4 marks)

A 71.46 g piece of metal is heated by being placed in boiling water, which has a temperature of 100.0°C.

The piece of metal is then placed in a polystyrene cup that contains 98.69 mL of water of temperature 25.2°C. No thermal energy passes to the cup. The final temperature of the water and the metal is 30.0°C. Calculate the specific heat capacity of the metal. Show your working.

Specific heat capacity = _____ J kg⁻¹ K⁻¹ (to 2 decimal places)

QUESTION 23 (3 marks)

The graph below shows the binding energy per nucleon against the number of nucleons for some elements.

Use one element shown in the graph as an example of fusion and another element shown in the graph as an example of fission to explain why more energy is released per nucleon during nuclear fusion than during nuclear fission.

QUESTION 24 (3 marks)

A bus is initially at rest on a road, then starts moving forward. The following graph shows how the velocity of the bus changes over time.

Determine the displacement of the bus after 20 seconds. Show your working.

Displacement = _____ m (to the nearest whole number)

QUESTION 25 (3 marks)

Thomas Young conducted experiments about the diffraction and interference of light. Explain how Young's double slit experiment supports the wave model of light.

QUESTION 26 (4 marks)

The graph below shows how the kinetic energy of a 10.0 kg object changes over time.

a) Determine the rate at which the object's energy changed during the last 6 seconds of its journey. Show your working.

[2 marks]

Rate of change = _____ J s⁻¹ (to 1 decimal place) b) Calculate the total work done from 4 seconds to 14 seconds. Show your working. [2 marks] Total work done = _____ J (to the nearest whole number)

QUESTION 27 (4 marks)

Car A has a mass 1200 kg and car B has a mass of 800 kg. Car A is travelling at 16.66 m s⁻¹ when it collides with car B, which is stationary. As a result of the collision, car B is pushed forward with a velocity of 11 m s⁻¹.

Determine the velocity of car A after the collision. Show your working.

END OF PAPER

Trial Examination 2021

Formula and data booklet

QCE Physics Units 1&2

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data		
Percentage uncertainty	$(\%) = \frac{\text{absolute uncertainty}}{\text{measurement}} \times$	100
Percentage error (%) =	measured value – true value true value	×100

Heating processes		
$T_{\rm K} = T_{\rm C} + 273$	Q = mL	
$Q = mc\Delta T$	$\Delta U = Q + W$	
$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1}\%$		

Ionising radiation and nuclear reactions		
$N = N_0 \left(\frac{1}{2}\right)^n$	$\Delta E = \Delta m c^2$	

Electrical circuits		
$I = \frac{q}{t}$	$P = I^2 R$	
$V = \frac{W}{q}$	$V_t = V_1 + V_2 + \dots V_n$	
$P = \frac{W}{t}$	$R_t = R_1 + R_2 + \dots R_n$	
$R = \frac{V}{I}$	$I_t = I_1 + I_2 + \dots I_n$	
P = VI	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	

Linear motion and force		
v = u + at	$W = \Delta E$	
$s = ut + \frac{1}{2}at^2$	W = Fs	
$v^2 = u^2 + 2as$	$E_{\rm k} = \frac{1}{2}mv^2$	
$a = \frac{F_{\text{net}}}{m}$	$\Delta E_{\rm p} = mg\Delta h$	
p = mv	$\sum \frac{1}{2}mv_{\text{before}}^2 = \sum \frac{1}{2}mv_{\text{after}}^2$	
$\sum mv_{\text{before}} = \sum mv_{\text{after}}$		

Waves	
$v = f \lambda$	$L = (2n-1)\frac{\lambda}{4}$
$f = \frac{1}{T}$	$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_1}{n_2}$
$L = n\frac{\lambda}{2}$	$I \propto \frac{1}{r^2}$

Gravity and motion		
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$	
$s_y = \frac{1}{2}gt^2 + u_y t$	$a_{\rm C} = \frac{v^2}{r}$	
$v_y^2 = 2gs_y + u_y^2$	$F_{\rm net} = \frac{mv^2}{r}$	
$v_x = u_x$	$F = \frac{GMm}{r^2}$	
$s_x = u_x t$	$g = \frac{F}{m} = \frac{GM}{r^2}$	
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$	

Electromagnetism		
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$	
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA \cos \theta$	
$V = \frac{\Delta U}{q}$	$\mathrm{emf} = -\frac{n\Delta(BA_{\perp})}{\Delta t}$	
$B = \frac{\mu_0 I}{2\pi r}$	$\operatorname{emf} = -n \frac{\Delta \phi}{\Delta t}$	
$B = \mu_0 nI$	$I_{\rm p}V_{\rm p} = I_{\rm s}V_{\rm s}$	
$F = BIL\sin\theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$	

Special relativity		
$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	$p_{v} = \frac{m_{0}v}{\sqrt{\left(1 - \frac{v^{2}}{c^{2}}\right)}}$	
$L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	$\Delta E = \Delta m c^2$	

Quantum theory		
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$	
E = hf	$n\lambda = 2\pi r$	
$E_k = hf - W$	$mvr = \frac{nh}{2\pi}$	
$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$		

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Heating processes	
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 {\rm J \ kg}^{-1}$
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 {\rm J \ kg}^{-1}$
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 {\rm J kg^{-1} K^{-1}}$
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 {\rm J kg^{-1} K^{-1}}$
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 {\rm J kg}^{-1} {\rm K}^{-1}$

Ionising radiation and nuclear reactions			
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$		
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$		
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \mathrm{kg}$		
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$		
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \rm kg$		
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \rm kg$		
Speed of light in a vacuum	$c = 3 \times 10^8 \text{ m s}^{-1}$		

Electrical circuits	
Charge on an electron	$e = -1.60 \times 10^{-19} \text{ C}$

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25°C	$v_{\rm s} = 346 {\rm m s}^{-1}$

Gravity and motion				
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$			
Mass of the Earth	$m_{\rm E} = 5.97 \times 10^{24} \rm kg$			

Electromagnetism			
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$		
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} T A^{-1} m$		

Quantum theory			
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$		
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$		
Rydberg's constant	$R = 1.097 \times 10^7 \mathrm{m}^{-1}$		

SCIENTIFIC NOTATION

Ratio to basic unit	Prefix	Abbreviation
10 ⁻¹⁸	atto	a
10 ⁻¹⁵	femto	f
10 ⁻¹²	pico	р
10 ⁻⁹	nano	n
10 ⁻⁶	micro	μ
10 ⁻³	milli	m
10 ⁻²	centi	с
10 ⁻¹	deci	d
10	deca	da
10^{2}	hecto	h
10 ³	kilo	k
10 ⁶	mega	М
109	giga	G
10 ¹²	tera	Т

Name	Atomic no.	Symbol	ľ	Name	Name Atomic no.
Hydrogen	1	Н	Kry	pton	pton 36
Ielium	2	Не	Rubidium		37
ithium	3	Li	Strontium		38
Beryllium	4	Be	Yttrium		39
Boron	5	В	Zirconium		40
Carbon	6	С	Niobium		41
Nitrogen	7	N	Molybdenum		42
Oxygen	8	0	Technetium		43
Fluorine	9	F	Ruthenium		44
Neon	10	Ne	Rhodium		45
Sodium	11	Na	Palladium	1	46
Magnesium	12	Mg	Silver	ĺ	47
Aluminium	13	Al	Cadmium	Ì	48
Silicon	14	Si	Indium	Ì	49
Phosphorus	15	Р	Tin	Ì	50
Sulfur	16	S	Antimony		51
Chlorine	17	Cl	Tellerium	T	52
Argon	18	Ar	Iodine	T	53
Potassium	19	K	Xenon	Ì	54
Calcium	20	Ca	Cesium	Ì	55
Scandium	21	Sc	Barium	T	56
Titanium	22	Ti	Lanthanum		57
Vanadium	23	V	Cerium	4	58
Chromium	24	Cr	Praseodymium	5	59
Manganese	25	Mn	Neodymium	6	0
Iron	26	Fe	Promethium	61	-
Cobalt	27	Со	Samarium	62	
Nickel	28	Ni	Europium	63	
Copper	29	Cu	Gadolinium	64	
Zinc	30	Zn	Terbium	65	
Gallium	31	Ga	Dysprosium	66	
Germanium	32	Ge	Holmium	67	
Arsenic	33	As	Erbium	68	
Selenium	34	Se	Thulium	69	
Bromine	35	Br	Ytterbium	70	

LIST OF ELEMENTS

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol	Name	Atomic no.	Symbol
Lutetium	71	Lu	Americium	95	Am
Hafnium	72	Hf	Curium	96	Cm
Tantalum	73	Та	Berkelium	97	Bk
Tungsten	74	W	Californium	98	Cf
Rhenium	75	Re	Einsteinium	99	Es
Osmium	76	Os	Fermium	100	Fm
Iridium	77	Ir	Mendelevium	101	Md
Platinum	78	Pt	Nobelium	102	No
Gold	79	Au	Lawrencium	103	Lr
Mercury	80	Hg	Rutherfordium	104	Rf
Thallium	81	T1	Dubnium	105	Db
Lead	82	Pb	Seaborgium	106	Sg
Bismuth	83	Bi	Bohrium	107	Bh
Polonium	84	Ро	Hassium	108	Hs
Astatine	85	At	Meitnerium	109	Mt
Radon	86	Rn	Darmstadtium	110	Ds
Francium	87	Fr	Roentgenium	111	Rg
Radium	88	Ra	Copernicium	112	Cn
Actinium	89	Ac	Nihonium	113	Nh
Thorium	90	Th	Flerovium	114	Fl
Protactinium	91	Pa	Moscovium	115	Mc
Uranium	92	U	Livermorium	116	Lv
Neptunium	93	Np	Tennessine	117	Ts
Plutonium	94	Pu	Oganesson	118	Og

-						PERIOD	IC TABL	E OF THE	ELEMEN	TS							18
																	^z He
1.01	2					KEY	ſ					13	14	15	16	17	4.00
c.	4					•-	1 atomic nu	umber				2	9	2		6	10
	Be					Ŧ	symbol		ž			8	່ວ	2	0	LL	Ne
6.94	9.01					1.01	relati	ive atomic m	ass			10.81	12.01	14.01	16.00	19.00	20.18
11	12										1	13	14	15	16	17	18
Na	Mg											AI	Si	٩.	S	IJ	Ar
22.99	24.31	ę	4	5	9	7	8	6	10	11	12	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	ī	>	ۍ	Mn	Fe	ۍ د	Z	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	7	Zr	Nb	Mo	Γc	Bu	Rh	Pq	Ag	Cd	u	Sn	Sb	Te	_	Xe
85.47	87.62	88.91	91.22	92.91	95.95	(98.91)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lanthanoids	Ħ	Ta	3	Be	0s	<u> </u>	Pt	Au	Hg	F	Pb	:B	Po	At	Rn
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(210.0)	(210.0)	(222.0)
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
F	Ba	Actinoids	Bf	Db	Sg	Bh	Hs	Мt	Ds	Rg	Cn	ЧN	Ξ	Mc	۲v	Ts	00
(223.0)	(226.1)		(261.1)	(262.1)	(263.1)	(264.1)	(265.1)	(268)	(281)	(272)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
		 	anthanoids	I		-	I				1					1	I
			57	58	59	60	61	62	63	64	65	99	67	68	69	70	71
			La	Ce C	P	Zq	Pm	Sm	Eu	þÐ	qL	DV	Ho	Ъ	E	٨b	Lu
			138.91	140.12	140.91	144.24	(146.9)	150.36	151.96	d2./d1	158.93	162.50	164.93	167.26	168.93	cU.S.1	1/4.9/
		+	\ctinoids														
			89	90	91	92	93	94	96	96	97	98	66	100	101	102	103
		↑ 	Ac	Ч	Pa	D	ΔD	Pu	Am	Cm	Bk	Ç	Es	Fm	βd	No	Ļ
			(227.0)	232.0	231.0	238.0	(237.0)	(239.1)	(241.1)	(244.1)	(249.1)	(252.1)	(252.1)	(252.1)	(258.1)	(259.1)	(262.1)
		2	Troune are annual	inibao a coordini	n to IIIDAC con	vontion 1_18											
		J *	Values in brack	tets are for the	וט וטר אט גטו isotope with t	he longest half	-life.										

Copyright © 2021 Neap Education Pty Ltd

TEQPhys12_FB_2021

9