

Trial Examination 2021

Question and response booklet

QCE Physics Units 3&4

Paper 1

Student's Name: _____

Teacher's Name:			
-----------------	--	--	--

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (20 marks)

20 multiple choice questions

Section 2 (25 marks)

• 6 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2021 QCE Physics Units 3&4 Written Examination.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

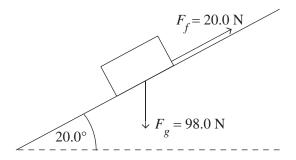
- Choose the best answer for Questions 1–20.
- This section has 20 questions and is worth 20 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	А	В	С	D
Example:		\bigcirc	\bigcirc	\bigcirc

	Α	В	С	D
1.				
1. 2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4. 5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
17.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
19.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20.	\bigcirc	\bigcirc	\bigcirc	\bigcirc

SECTION 2

•

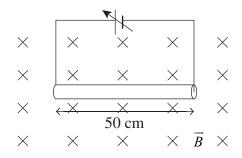

Instructions

- Write using black or blue pen.
 - If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has 6 questions and is worth 25 marks.

Question 21 (2 marks) Define the term *antiparticle*.

QUESTION 22 (5 marks)

The diagram below shows an object, initially at rest, on an inclined plane.



Calculate the distance the object will slide in 3.0 s once it is released from rest. Show your working.

Distance travelled = _____ m (to 1 decimal place)

QUESTION 23 (4 marks)

The diagram below shows a conductor in a circuit with an electric current passing through it. The circuit is immersed vertically in a magnetic field and is stationary. B = 0.30 T and I = 2.0 A.

Use the information provided to calculate the mass of the conductor. Show your working.

Mass = ______kg (to 2 decimal places)

QUESTION 24 (5 marks)

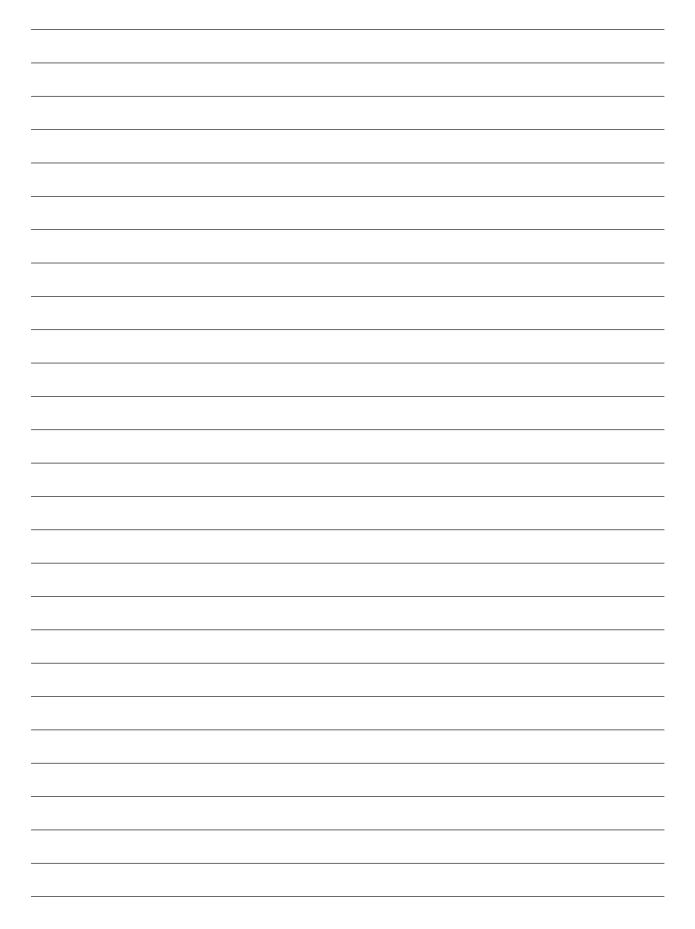
A satellite orbits the Earth with a period of 12 hours.

What is the radius of the orbit of the satellite? Show your working. Express the solution using scientific notation.

Radius of the orbit = _____ km (to 2 decimal places)

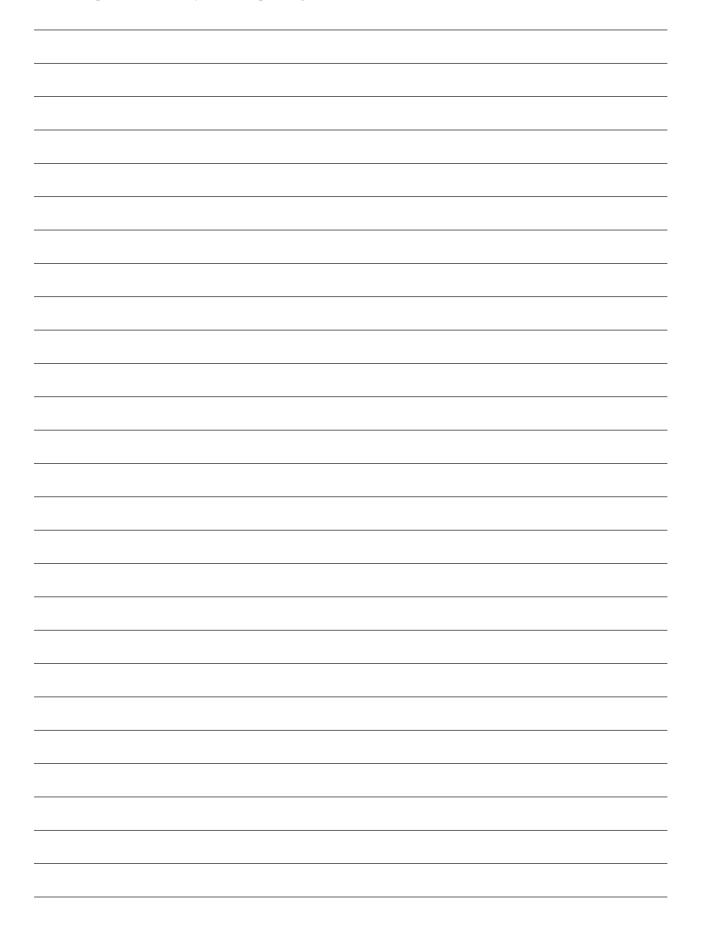
QUESTION 25 (5 marks)

In a hydrogen atom, an electron transits from the n = 2 level to the n = 5 level.


Calculate the frequency of the light absorbed by the electron. Show your working. Express the solution using scientific notation.

Frequency = _____ Hz (to 1 decimal place)

QUESTION 26 (4 marks)


Describe how the limitations of the Rutherford model of the atom were addressed by the Bohr model of the atom.

END OF PAPER

Trial Examination 2021

Formula and data booklet

QCE Physics Units 3&4

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data
Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times 100$
Percentage error (%) = $\left \frac{\text{measured value} - \text{true value}}{\text{true value}} \right \times 100$

Heating processes		
$T_{\rm K} = T_{\rm C} + 273$	Q = mL	
$Q = mc\Delta T$	$\Delta U = Q + W$	
$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1}\%$		

Ionising radiation and nuclear reactions		
$N = N_0 \left(\frac{1}{2}\right)^n$	$\Delta E = \Delta m c^2$	

Electrical circuits	
$I = \frac{q}{t}$	$P = I^2 R$
$V = \frac{W}{q}$	$V_t = V_1 + V_2 + \dots V_n$
$P = \frac{W}{t}$	$R_t = R_1 + R_2 + \dots R_n$
$R = \frac{V}{I}$	$I_t = I_1 + I_2 + \dots I_n$
P = VI	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$

Linear motion and force	
v = u + at	$W = \Delta E$
$s = ut + \frac{1}{2}at^2$	W = Fs
$v^2 = u^2 + 2as$	$E_{\rm k} = \frac{1}{2}mv^2$
$a = \frac{F_{\text{net}}}{m}$	$\Delta E_{\rm p} = mg\Delta h$
p = mv	$\sum \frac{1}{2}mv_{\text{before}}^2 = \sum \frac{1}{2}mv_{\text{after}}^2$
$\sum mv_{\text{before}} = \sum mv_{\text{after}}$	

Waves		
$v = f \lambda$	$L = (2n-1)\frac{\lambda}{4}$	
$f = \frac{1}{T}$	$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_1}{n_2}$	
$L = n \frac{\lambda}{2}$	$I \propto \frac{1}{r^2}$	

Gravity and motion	
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$
$s_y = \frac{1}{2}gt^2 + u_y t$	$a_{\rm C} = \frac{v^2}{r}$
$v_y^2 = 2gs_y + u_y^2$	$F_{\rm net} = \frac{mv^2}{r}$
$v_x = u_x$	$F = \frac{GMm}{r^2}$
$s_x = u_x t$	$g = \frac{F}{m} = \frac{GM}{r^2}$
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$

Electromagnetism	
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA \cos \theta$
$V = \frac{\Delta U}{q}$	$\mathrm{emf} = -\frac{n\Delta(BA_{\perp})}{\Delta t}$
$B = \frac{\mu_0 I}{2\pi r}$	$\operatorname{emf} = -n \frac{\Delta \phi}{\Delta t}$
$B = \mu_0 nI$	$I_{\rm p}V_{\rm p} = I_{\rm s}V_{\rm s}$
$F = BIL\sin\theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$

Special relativity	
$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	$p_{v} = \frac{m_{0}v}{\sqrt{\left(1 - \frac{v^{2}}{c^{2}}\right)}}$
$L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	$\Delta E = \Delta m c^2$

Quantum theory	
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$
E = hf	$n\lambda = 2\pi r$
$E_k = hf - W$	$mvr = \frac{nh}{2\pi}$
$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$	

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Heating processes	
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 {\rm J \ kg}^{-1}$
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 {\rm J \ kg}^{-1}$
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 {\rm J kg}^{-1} {\rm K}^{-1}$
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 {\rm J kg^{-1} K^{-1}}$
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 {\rm J kg}^{-1} {\rm K}^{-1}$

Ionising radiation and nuclear reactions	
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \mathrm{kg}$
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \rm kg$
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \rm kg$
Speed of light in a vacuum	$c = 3 \times 10^8 \text{ m s}^{-1}$

Electrical circuits	
Charge on an electron	$e = -1.60 \times 10^{-19} \text{ C}$

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25°C	$v_{\rm s} = 346 {\rm m s}^{-1}$

Gravity and motion	
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Mass of the Earth	$m_{\rm E} = 5.97 \times 10^{24} \rm kg$

Electromagnetism	
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} T A^{-1} m$

Quantum theory	
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$
Rydberg's constant	$R = 1.097 \times 10^7 \mathrm{m}^{-1}$

SCIENTIFIC NOTATION

Ratio to basic unit	Prefix	Abbreviation
10 ⁻¹⁸	atto	a
10 ⁻¹⁵	femto	f
10 ⁻¹²	pico	р
10 ⁻⁹	nano	n
10^{-6}	micro	μ
10 ⁻³	milli	m
10 ⁻²	centi	с
10 ⁻¹	deci	d
10	deca	da
10 ²	hecto	h
10 ³	kilo	k
10 ⁶	mega	М
109	giga	G
10 ¹²	tera	Т

lame	Atomic no.	Symbol	Name	Atomic no.	Sym
Hydrogen	1	Н	Krypton	36	Kr
Helium	2	Не	Rubidium	37	Rb
Lithium	3	Li	Strontium	38	Sr
Beryllium	4	Be	Yttrium	39	Y
Boron	5	В	Zirconium	40	Zr
Carbon	6	С	Niobium	41	Nb
Nitrogen	7	N	Molybdenum	42	Мо
Oxygen	8	0	Technetium	43	Тс
Fluorine	9	F	Ruthenium	44	Ru
Neon	10	Ne	Rhodium	45	Rh
Sodium	11	Na	Palladium	46	Pd
Magnesium	12	Mg	Silver	47	Ag
Aluminium	13	Al	Cadmium	48	Cd
Silicon	14	Si	Indium	49	In
Phosphorus	15	Р	Tin	50	Sn
Sulfur	16	S	Antimony	51	Sb
Chlorine	17	Cl	Tellurium	52	Те
Argon	18	Ar	Iodine	53	Ι
Potassium	19	K	Xenon	54	Xe
Calcium	20	Ca	Cesium	55	Cs
Scandium	21	Sc	Barium	56	Ba
Titanium	22	Ti	Lanthanum	57	La
Vanadium	23	V	Cerium	58	Ce
Chromium	24	Cr	Praseodymium	59	Pr
Manganese	25	Mn	Neodymium	60	Nd
Iron	26	Fe	Promethium	61	Pm
Cobalt	27	Со	Samarium	62	Sm
Nickel	28	Ni	Europium	63	Eu
Copper	29	Cu	Gadolinium	64	Gd
Zinc	30	Zn	Terbium	65	Tb
Gallium	31	Ga	Dysprosium	66	Dy
Germanium	32	Ge	Holmium	67	Но
Arsenic	33	As	Erbium	68	Er
Selenium	34	Se	Thulium	69	Tm
Bromine	35	Br	Ytterbium	70	Yb

LIST OF ELEMENTS

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol
etium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Hg
Thallium	81	T1
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Ро
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Ра
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

18 2	He 4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	86	Rn	(222.0)	118	00	94)		71		174.97		103	L	(262.1)]
-	T 4	6	2		17	4		35	¥		53	×		85	~		117		(2;		70				102			
	17		ш.	19.00		IJ	35.45		Br	79.90		_	126.90		At	(210.0)		Ts	(294)			γb	173.05		1(No	(259.1)	
	16	œ	0	16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116	۲ ۲	(293)		69	Tm	168.93		101	Μd	(258.1)	
	15	7	2	14.01	15	٩	30.97	33	As	74.92	51	Sb	121.76	83	Bi	208.98	115	Mc	(288)		89	Er 8	167.26		100	Fm	(252.1)	
	14	9	പ	12.01	14	Si	28.09	32	Ge	72.63	50	Sn	118.71	82	Pb	207.2	114	Ш	(289)		67	Ho	164.93		66	Es	(252.1)	
	13	2	8	10.81	13	AI	26.98	31	Ga	69.72	49	L	114.82	81	F	204.38	113	ЧN	(284)		yy	Dv	162.50		98	Ç	(252.1)	
							12	30	Zn	65.38	48	Cd	112.41	80	Hq	200.59	112	Cn	(285)		95	Tb	158.93		97	Bk	(249.1)	
JIC TABLE OF THE ELEMENTS						Ţ	11	29	Cu	63.55	47	Aa	107.87	79	Au	196.97	111	Ba	(272)		64	Gd	157.25		96	Cm	(244.1)	
			*	2			10	28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(281)		63	Eu	151.96		95	Am	(241.1)	
OF THE E		Iner	rolativa atomic mass*				6	27	Co	58.93	45	Bh	102.91	77	L	192.22	109	Mt	(268)		63	Sm	150.36		94	Pu		
) TABLE		atomic number evenhol	oymuu ralativa	ופומרו אפ			8	25 26	Fe	55.85	44	Bu	-	76	0s	190.23	107 108	Hs)		61				93	Np		
PERIODIC	KEY	-					7		Mn		43	Lc		75	Be	186.21 1		Bh		-	U9				92		238.0 (2	Groups are numbered according to IUPAC convention 1–18. *Voluce in brooteet according to According to Accord
	L						9	24	C C		42	Mo		74	×	183.84 18	106	Sq			59		1		91	Pa	231.0 2	Groups are numbered according to IUPAC convention 1–18. *VAluns is benchester as for the instance with the lownest half
							9	23	-		41			73			105				58	2			06			scording to IL
							2	2	>	50.94		Nb	92.91	2	Ta	180.95		Db	(262.1)	2		Ce	140.12			ЧT	232.0	umbered ac
							4	22	i	47.87	40	Zr	91.22	72	Ħf	178.49	104	Bf	(261.1)	anthanoide	57	La	138.91	Actinoids	89	Ac	(227.0)	Groups are n
							ę	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids	_			+ + + -				1 ر		-
	2	4	Be	9.01	12	Ma	24.31	20	Ca	40.08	38	Sr	87.62	56	Ba	137.33	88	Ba	(226.1)									
-	H ^{10.1}	e		6.94	11	Na	22.99	19	×	39.10	37	Bb	85.47	55	Cs	132.91	87	Fr	23.0)									

Copyright © 2021 Neap Education Pty Ltd

9