

Trial Examination 2021

Question and response booklet

QCE Physics Units 3&4

Paper 2

Student's Name:		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

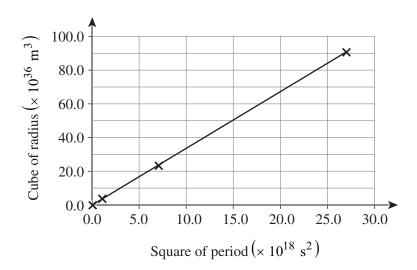
- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (45 marks)

• 9 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2021 QCE Physics Units 3&4 Written Examination.

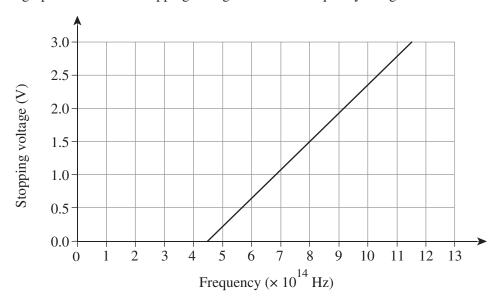
Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.


SECTION 1

Instructions

- Write using black or blue pen.
- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

QUESTION 1 (3 marks)


The graph below shows the cube of the orbital radius of the planets of the Sun, r^3 , plotted versus the square of their orbital periods, T^2 .

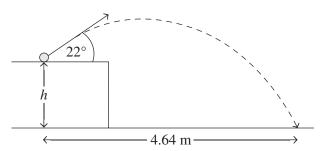
Use the graph to determine the mass of the Sun. Show your working. Express the solution using scientific notation.

QUESTION 2 (8 marks)

In a photoelectric effect experiment, incident light of varying frequencies was shone onto a metal target. The graph below shows stopping voltage versus the frequency of light for a metal.

a)	Use the concept of the photon to explain the results in the graph above for frequencies
	less than and greater than 4.5×10^{14} Hz. No calculations are required.

[5 marks]

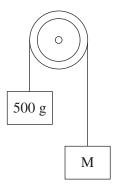

-		

Wha	at frequency of light corresponds to el	ectrons emitted with an energy of 2.4×10^{-19} J?	
Shov	w your working. Express the solution	using scientific notation.	[3 marks]
	Frequency =	Hz (to 1 decimal place)	

QUESTION 3 (6 marks)

The diagram below shows a projectile being launched from a height of h metres above ground and at an angle of 22° from the horizontal.

The projectile's total flight time is 1.00 second. It lands on the ground 4.64 m horizontally from the projection point.


Launch speed =	$m s^{-1}$ (to 1 decimal place)

b) Calculate the height, *h*, above ground from which the projectile was launched. Show your working. [3 marks]

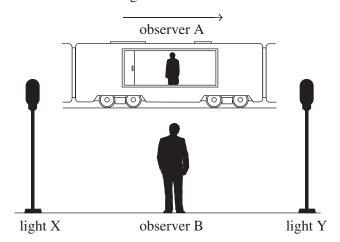
h = _____ m (to 1 decimal place)

QUESTION 4 (5 marks)

The diagram below shows two objects connected by a light, inextensible string that is positioned on a pulley. The mass of object M is unknown.

Object M accelerates downwards at 1.8 m s⁻².

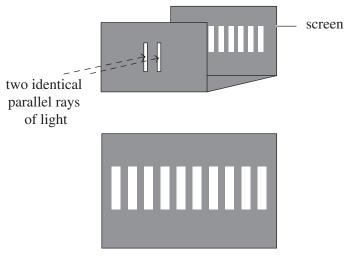
Describe how the tension in the string is related to the weight of object M.	[2 marks]
Determine the mass of object M. Show your working.	[3 marks]
Mass = g (to the nearest whole number	er)


QUESTION 5 (3 marks)

The diagram below shows a rectangular coil pulled at a constant speed to the right out of a magnetic field.

Explain how a current is induced in the coil as it leaves the field and identify the direction of the current as seen from the view of the diagram.

QUESTION 6 (6 marks)


The diagram below shows two people, observers A and B. Observer A stands stationary in a moving train carriage. Observer B stands stationary on the ground outside the train carriage, midway between lights X and Y. The train and observer A move to the right relative to observer B.

At the instant shown, observer B observes lights X and Y turning on simultaneously. Observer A observes light Y turning on before light X.

QUESTION 7 (3 marks)

The diagram below shows the set-up of Young's double slit experiment.

pattern on screen

scribe how the wave model of light accounts for the pattern on the screen.				

QUESTION 8	(6 marks)
-------------------	-----------

A proton travels at 0.95c for a time of 1.75×10^{-7} s as measured by a physicist standing stationary near the proton beam line.

Expres	ss the solution in scientific notation.	rame of reference? Show your working.	[4 m
	Distance -	m (to 1 decimal place)	
	Distance =	m (to 1 decimal place)	
	nine the momentum of the proton. Sl fic notation.	how your working. Express the solution using	[2 m

QUESTION 9 (5 marks)

The diagram below shows a coil of wire immersed in a magnetic field. The length of the coil is 6.0 cm, the width of the coil is 4.0 cm, B = 0.20 T and n = 20 turns.

$$ec{B} imes im$$

The coil is removed from the field after 2.0 seconds.

Magnetic flux = Wb (to 1 decimal place) Calculate the average electromotive force induced in the coil as it is removed from the field. Show your working. Express the solution using scientific notation. [3]	ne the magnetic flux through the coil before it is removed from our working. Express the solution using scientific notation.	the field.	[2 mar
Calculate the average electromotive force induced in the coil as it is removed from			
Calculate the average electromotive force induced in the coil as it is removed from			
Calculate the average electromotive force induced in the coil as it is removed from			
Calculate the average electromotive force induced in the coil as it is removed from			
Calculate the average electromotive force induced in the coil as it is removed from			
Calculate the average electromotive force induced in the coil as it is removed from			
Calculate the average electromotive force induced in the coil as it is removed from			
	Magnetic flux = Wb (to 1 dec	eimal place)	
			[3 ma.
Electromotive force = V (to 1 decimal place)			

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES Write the question number you are responding to.				

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

Trial Examination 2021

Formula and data booklet

QCE Physics Units 3&4

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data
Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times 100$

Percentage error (%) =	measured value – true value	×100
r creentage error (70) =	true value	\ 100

Heating processes		
$T_{\rm K} = T_{\rm C} + 273$	Q = mL	
$Q = mc\Delta T$	$\Delta U = Q + W$	
$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1} \%$		

Ionising radiation and nuclear reactions		
$N = N_0 \left(\frac{1}{2}\right)^n$	$\Delta E = \Delta mc^2$	

Electrical circuits		
$I = \frac{q}{t}$	$P = I^2 R$	
$V = \frac{W}{q}$	$V_t = V_1 + V_2 + \dots V_n$	
$P = \frac{W}{t}$	$R_t = R_1 + R_2 + \dots R_n$	
$R = \frac{V}{I}$	$I_t = I_1 + I_2 + \dots I_n$	
P = VI	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	

Linear motion and force		
v = u + at	$W = \Delta E$	
$s = ut + \frac{1}{2}at^2$	W = Fs	
$v^2 = u^2 + 2as$	$E_{\mathbf{k}} = \frac{1}{2} m v^2$	
$a = \frac{F_{\text{net}}}{m}$	$\Delta E_{\rm p} = mg\Delta h$	
p = mv	$\sum \frac{1}{2} m v_{\text{before}}^2 = \sum \frac{1}{2} m v_{\text{after}}^2$	
$\sum mv_{\text{before}} = \sum mv_{\text{after}}$		

Waves	
$v = f \lambda$	$L = (2n-1)\frac{\lambda}{4}$
$f = \frac{1}{T}$	$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_1}{n_2}$
$L = n\frac{\lambda}{2}$	$I \propto \frac{1}{r^2}$

Gravity and motion	
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$
$s_y = \frac{1}{2}gt^2 + u_y t$	$a_{\rm C} = \frac{v^2}{r}$
$v_y^2 = 2gs_y + u_y^2$	$F_{\text{net}} = \frac{mv^2}{r}$
$v_x = u_x$	$F = \frac{GMm}{r^2}$
$S_{x} = u_{x}t$	$g = \frac{F}{m} = \frac{GM}{r^2}$
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$

Electromagnetism	
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA \cos \theta$
$V = \frac{\Delta U}{q}$	$emf = -\frac{n\Delta(BA_{\perp})}{\Delta t}$
$B = \frac{\mu_0 I}{2\pi r}$	$\mathrm{emf} = -n\frac{\Delta\phi}{\Delta t}$
$B = \mu_0 nI$	$I_{p}V_{p} = I_{s}V_{s}$
$F = BIL \sin \theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$

Special relativity	
$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	$p_{v} = \frac{m_{0}v}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$
$L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	$\Delta E = \Delta m c^2$

Quantum theory	
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$
E = hf	$n\lambda = 2\pi r$
$E_k = hf - W$	$mvr = \frac{nh}{2\pi}$
$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$	

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Heating processes	
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 \text{J kg}^{-1}$
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 \rm J kg^{-1}$
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 \rm J kg^{-1} K^{-1}$
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 \rm J kg^{-1} K^{-1}$

Ionising radiation and nuclear reactions	
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \mathrm{kg}$
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \mathrm{kg}$
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \mathrm{kg}$
Speed of light in a vacuum	$c = 3 \times 10^8 \mathrm{m s}^{-1}$

Electrical circuits	
Charge on an electron	$e = -1.60 \times 10^{-19} \mathrm{C}$

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25°C	$v_{\rm s} = 346 \text{ m s}^{-1}$

Gravity and motion	
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Mass of the Earth	$m_{\rm E} = 5.97 \times 10^{24} \rm kg$

Electromagnetism	
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} TA^{-1} m$

Quantum theory	
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$
Planck's constant	$h = 6.626 \times 10^{-34} \mathrm{J s}$
Rydberg's constant	$R = 1.097 \times 10^7 \mathrm{m}^{-1}$

SCIENTIFIC NOTATION

Ratio to basic unit	Prefix	Abbreviation						
10^{-18}	atto	a						
10^{-15}	femto	f						
10^{-12}	pico	p						
10 ⁻⁹	nano	n						
10^{-6}	micro	μ						
$ \begin{array}{r} 10^{-3} \\ 10^{-2} \\ 10^{-1} \end{array} $	milli	m						
10^{-2}	centi	c						
10^{-1}	deci	d						
10	deca	da						
10^2	hecto	h						
10 ³	kilo	k						
10 ⁶	mega	M						
109	giga	G						
10 ¹²	tera	Т						

LIST OF ELEMENTS

Name	Atomic no.	Symbol								
Hydrogen	1	Н								
Helium	2	Не								
Lithium	3	Li								
Beryllium	4	Be								
Boron	5	В								
Carbon	6	С								
Nitrogen	7	N								
Oxygen	8	0								
Fluorine	9	F								
Neon	10	Ne								
Sodium	11	Na								
Magnesium	12	Mg								
Aluminium	13	Al								
Silicon	14	Si								
Phosphorus	15	P								
Sulfur	16	S								
Chlorine	17	Cl								
Argon	18	Ar								
Potassium	19	K								
Calcium	20	Ca								
Scandium	21	Sc								
Titanium	22	Ti								
Vanadium	23	V								
Chromium	24	Cr								
Manganese	25	Mn								
Iron	26	Fe								
Cobalt	27	Со								
Nickel	28	Ni								
Copper	29	Cu								
Zinc	30	Zn								
Gallium	31	Ga								
Germanium	32	Ge								
Arsenic	33	As								
Selenium	34	Se								
Bromine	35	Br								

Name	Atomic no.	Symbol							
Krypton	36	Kr							
Rubidium	37	Rb							
Strontium	38	Sr							
Yttrium	39	Y							
Zirconium	40	Zr							
Niobium	41	Nb							
Molybdenum	42	Мо							
Technetium	43	Тс							
Ruthenium	44	Ru							
Rhodium	45	Rh							
Palladium	46	Pd							
Silver	47	Ag							
Cadmium	48	Cd							
Indium	49	In							
Tin	50	Sn							
Antimony	51	Sb							
Tellurium	52	Те							
Iodine	53	Ι							
Xenon	54	Xe							
Cesium	55	Cs							
Barium	56	Ba							
Lanthanum	57	La							
Cerium	58	Ce							
Praseodymium	59	Pr							
Neodymium	60	Nd							
Promethium	61	Pm							
Samarium	62	Sm							
Europium	63	Eu							
Gadolinium	64	Gd							
Terbium	65	Tb							
Dysprosium	66	Dy							
Holmium	67	Но							
Erbium	68	Er							
Thulium	69	Tm							
Ytterbium	70	Yb							

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol							
Lutetium	71	Lu							
Hafnium	72	Hf							
Tantalum	73	Та							
Tungsten	74	W							
Rhenium	75	Re							
Osmium	76	Os							
Iridium	77	Ir							
Platinum	78	Pt							
Gold	79	Au							
Mercury	80	Hg							
Thallium	81	Tl							
Lead	82	Pb							
Bismuth	83	Bi							
Polonium	84	Po							
Astatine	85	At							
Radon	86	Rn							
Francium	87	Fr							
Radium	88	Ra							
Actinium	89	Ac							
Thorium	90	Th							
Protactinium	91	Pa							
Uranium	92	U							
Neptunium	93	Np							
Plutonium	94	Pu							

Name	Atomic no.	Symbol							
Americium	95	Am							
Curium	96	Cm							
Berkelium	97	Bk							
Californium	98	Cf							
Einsteinium	99	Es							
Fermium	100	Fm							
Mendelevium	101	Md							
Nobelium	102	No							
Lawrencium	103	Lr							
Rutherfordium	104	Rf							
Dubnium	105	Db							
Seaborgium	106	Sg							
Bohrium	107	Bh							
Hassium	108	Hs							
Meitnerium	109	Mt							
Darmstadtium	110	Ds							
Roentgenium	111	Rg							
Copernicium	112	Cn							
Nihonium	113	Nh							
Flerovium	114	Fl							
Moscovium	115	Mc							
Livermorium	116	Lv							
Tennessine	117	Ts							
Oganesson	118	Og							

18	He	4.00	10	Ne	20.18	18	Ar	39.95	36	7	83.80	54	Xe	131.29	98	Ru	(222.0)	118	0	(294)		i	71		174.97		103	Ļ	(262.1)
		17	6	ш	19.00	17	5	35.45	35	Ŗ	79.90	53	_	126.90	85	At	(210.0)	117	L	(294)		1	70	Λb	173.05		102	No	(259.1)
		16	∞	0	16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116	^	(293)			69	E	168.93		101	Μ	(258.1)
		15	7	2	14.01	15	_	30.97	33	As	74.92	51	Sb	121.76	83	<u>.</u>	208.98	115	Σ	(288)			89	ъ Ш	167.26		100	Fm	(252.1)
		14	9	ں	12.01	14	Si	28.09	32	Ge	72.63	20	Sn	118.71	82	Pb	207.2	114	Ξ	(289)			67	H	164.93		66	Es	(252.1)
		13	5	മ	10.81	13	A	26.98	31	Сa	69.72	49	드	114.82	81	F	204.38	113	Z	(284)			99	Ò	162.50		86	Çţ	(252.1)
		1				ı		12	30	Zn	65.38	48	Cd	112.41	80	H	200.59	112	Ç	(282)			69	q L	158.93		97	BK	(249.1)
ITS								1	29	ŋ	63.55	47	Ag	107.87	79	Αu	196.97	111	Rg	(272)			64	P9	157.25		96	Cm	(244.1)
ELEMEN				*	SSBI			10	28	Z	58.69	46	Pd	106.42	78	F	195.08	110	Ds	(281)			63	I	151.96		95	Am	(241.1)
E OF THI		mhor			relative atomic mass			6	27	Ç	58.93	45	Rh	102.91	77	_	192.22	109	Ĭ	(268)			62	Sm	150.36		94	Pu	(239.1)
ODIC TABLE OF THE ELEMENTS		4 stomic number	atomic	Symbol	Leia			80	26	Fe	55.85	44	Bu	101.07	76	08	190.23	108	Hs	(265.1)				Pm	(146.9)		93	N	(237.0)
PERIO	2	NET	-	– (0.1			7	25	<u> </u>	54.94	43	٦ _C	(98.91)	75	Re	186.21	107	Bh	(264.1)			09	Z	144.24		92	-	238.0
								9	24	Ç	52.00	42	ω	95.95	74	>	183.84	106	Sg	(263.1)			29	Pr	140.91		91	Pa	231.0
								2	23	>	50.94	41	Sp	92.91	73	Та	180.95	105	Op	(262.1)			28	Çe	140.12		06	Th	232.0
								4	22	ï	47.87	40	Zr	91.22	72	¥	178.49		Rŧ	(261.1)	:	Lanthanoids	22	Гa	138.91	Actinoids	88	Ac	(227.0)
								က	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids	_	 	 		↑					_
		2	4	Be	9.01	12	Σ	24.31	20	Ca	40.08	38	Sr	87.62	99	Ва	137.33	88	Ra	(226.1)									
-	=	1.01	က	=	6.94	11	Na	22.99	19	¥	39.10	37	Вр	85.47	55	Cs	132.91	87	ቷ	(223.0)									

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.