

Trial Examination 2022

Question and Response Booklet

QCE Physics Units 1&2

Paper 2

Student's Name: _____

Teacher's Name:		
-----------------	--	--

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

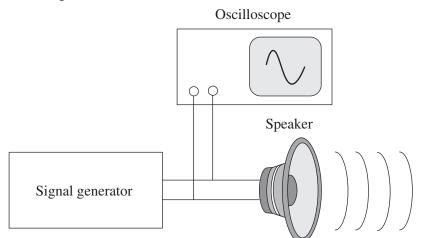
Section 1 (45 marks)

9 short response questions

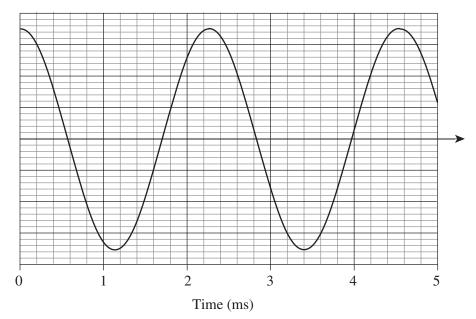
Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions


- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

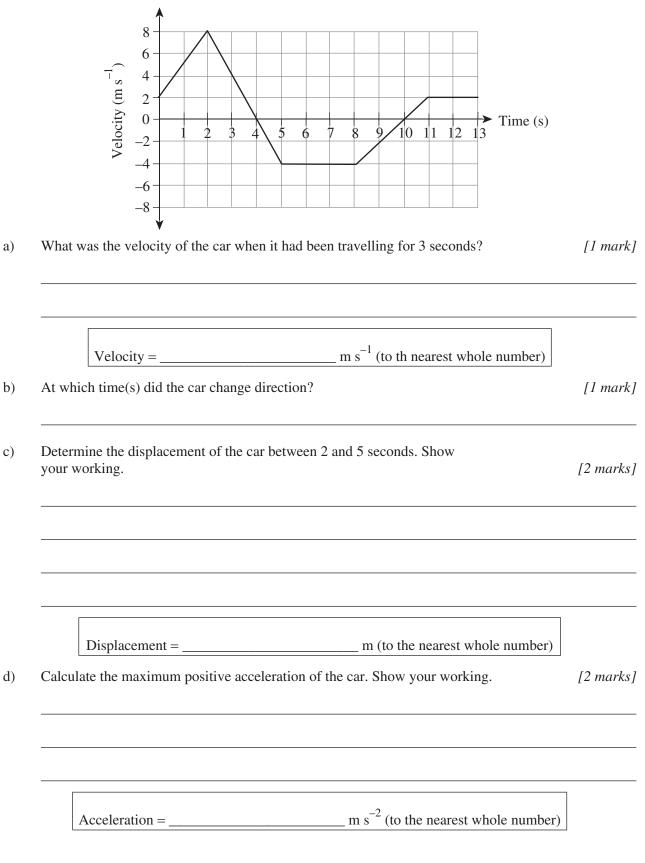

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (4 marks)

A signal generator was used to create a wave signal that was sent to an audio speaker. An oscilloscope, an instrument that generates a graph of electrical wave signals, was connected to the wires going to the speaker, as shown in the diagram.

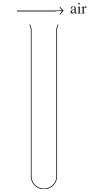
The graph shown was displayed on the oscilloscope screen.

a) Determine the period of the wave signal.


[1 mark]

Period = _____ m s⁻¹ (to 1 decimal place)

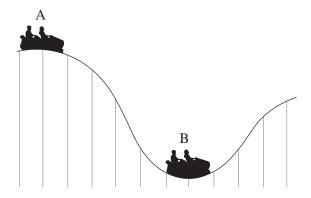
	Determine the frequency of the wave signal.	
	Frequency = Hz (to the nearest whole nu	mber)
~		
	that the speed of sound in air is 346 m s ^{-1} , calculate the wavelength soundwave emitted by the speaker.	[2 ma
	· · ·	[2 ma
	· · ·	[2 ma
	· · ·	[2 ma


QUESTION 2 (6 marks)

The graph shown represents the motion of a car over 13 seconds.

QUESTION 3 (4 marks)

A physics student finds that she can create a 481 Hz sound by blowing air across the top of a test tube, as shown in the diagram.



Assuming the sound the student is making is the first mode of vibration, calculate the length of the test tube that the student is using.

Length = _____ cm (to the nearest whole number)

QUESTION 4 (7 marks)

A 250 kg rollercoaster car is at point A on a track, as shown in the diagram, and is moving at a velocity of 1.20 m s^{-1} to the right. Point A is 12.5 m above the ground. The rollercoaster rolls down the slope of the track, propelled only by gravity, to point B. Point B is 1.0 m above the ground.

a) Explain how the law of conservation of energy applies to this scenario.

b) Calculate the total mechanical energy of the rollercoaster at point A. Use the ground as your reference for potential energy. Show your working. [2 marks]

_____kJ (to 1 decimal place) Energy =___

[2 marks]

Г

c) Calculate the velocity of the rollercoaster at point B. Assume that any energy losses due to friction and air resistance are negligible. [3 m

[3 marks]

Velocity =	$_$ m s ⁻¹ (to 1 decimal place)
------------	---

QUESTION 5 (7 marks)

The transmutation equation shown represents the nuclear fission of uranium-233.

$$^{233}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{137}_{54}$ Xe + $^{94}_{38}$ Sr + $^{1}_{0}$ n + energy

a) Define *nuclear fission*.

b) Explain why the three neutrons produced in this reaction are significant to the usefulness of uranium-233 as a fuel for nuclear reactors.

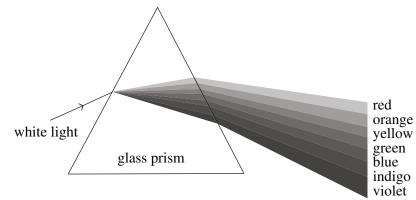
[2 marks]

[1 mark]

c) Consider the data shown in the table.

Particle	Mass (AMU)
neutron	1.008664
uranium-233	233.039634
xenon-137	136.911557
strontium-94	93.915355

Use the data in the table to calculate the amount of energy released from the fission of a single uranium-233 atom. Give your answer in scientific notation.

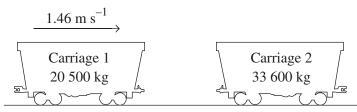

[4 marks]

Energy = _____

_____ J (to 3 significant figures)

QUESTION 6 (3 marks)

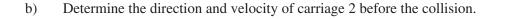
A glass prism is shown in the diagram.


Use the wave model of light to explain how a glass prism disperses a ray of white light into its constituent colours.


QUESTION 7 (5 marks)

The following diagram shows the position of two railway carriages before and after a collision. Before the collision, carriage 1 is moving to the right at a velocity of 1.46 m s^{-1} and carriage 2 is moving at an unknown velocity.

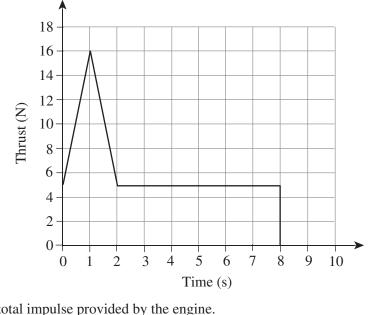
After the collision, the carriages join together and move with a velocity of 0.28 m s⁻¹ to the right.

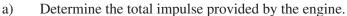


Before collision

After collision

a) State the condition that must be true for momentum to be conserved during a collision. [1 mark]




```
Velocity = \_ m s<sup>-1</sup> (to 2 decimal places)
Direction = \_
```

[4 marks]

QUESTION 8 (4 marks)

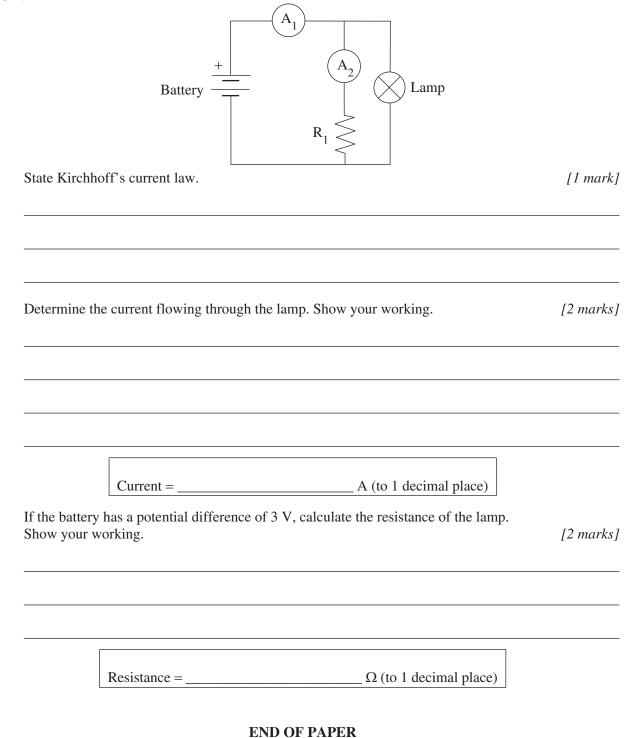
The graph shows the thrust curve for the engine of a model rocket car.

[2 marks]

_____N s (to the nearest whole number) Impulse =b) The engine was used to horizontally accelerate the rocket car, which has a mass of 1.23 kg and was initially at rest.

Calculate the maximum velocity that the car could reach under the engine's impulse. [2 marks]

 $m s^{-1}$ (to the nearest whole number) Velocity = _


QUESTION 9 (5 marks)

a)

b)


c)

The circuit shown in the diagram contains two ammeters, A_1 and A_2 . A_1 displays a current of 2.2 A and A_2 displays a current of 1.0 A.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.


ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

Trial Examination 2022

Formula and Data Booklet

QCE Physics Units 1&2

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data
Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times 100$
Percentage error (%) = $\left \frac{\text{measured value} - \text{true value}}{\text{true value}} \right \times 100$

Heating processes	
$T_{\rm K} = T_{\rm C} + 273$	Q = mL
$Q = mc\Delta T$	$\Delta U = Q + W$
$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1} \%$	

Ionising radiation and nuclear reactions	
$N = N_0 \left(\frac{1}{2}\right)^n$	$\Delta E = \Delta m c^2$

Electrical circuits	
$I = \frac{q}{t}$	$P = I^2 R$
$V = \frac{W}{q}$	$V_t = V_1 + V_2 + \dots V_n$
$P = \frac{W}{t}$	$R_t = R_1 + R_2 + \dots R_n$
$R = \frac{V}{I}$	$I_t = I_1 + I_2 + \dots I_n$
P = VI	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$

Linear motion and force	
v = u + at	$W = \Delta E$
$s = ut + \frac{1}{2}at^2$	W = Fs
$v^2 = u^2 + 2as$	$E_{\rm k} = \frac{1}{2}mv^2$
$a = \frac{F_{\text{net}}}{m}$	$\Delta E_{\rm p} = mg\Delta h$
p = mv	$\sum \frac{1}{2}mv_{\text{before}}^2 = \sum \frac{1}{2}mv_{\text{after}}^2$
$\sum m v_{\text{before}} = \sum m v_{\text{after}}$	

Waves
$$v = f \lambda$$
 $L = (2n-1)\frac{\lambda}{4}$ $f = \frac{1}{T}$ $\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ $L = n\frac{\lambda}{2}$ $I \propto \frac{1}{r^2}$

Gravity and motion	
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$
$s_y = \frac{1}{2}gt^2 + u_y t$	$a_{\rm C} = \frac{v^2}{r}$
$v_y^2 = 2gs_y + u_y^2$	$F_{\rm net} = \frac{mv^2}{r}$
$v_x = u_x$	$F = \frac{GMm}{r^2}$
$s_x = u_x t$	$g = \frac{F}{m} = \frac{GM}{r^2}$
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$

Electromagnetism	
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA \cos \theta$
$V = \frac{\Delta U}{q}$	$\mathrm{emf} = -\frac{n\Delta(BA_{\perp})}{\Delta t}$
$B = \frac{\mu_0 I}{2\pi r}$	$\operatorname{emf} = -n \frac{\Delta \phi}{\Delta t}$
$B = \mu_0 nI$	$I_{\rm p}V_{\rm p} = I_{\rm s}V_{\rm s}$
$F = BIL\sin\theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$

Special relativity	
$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	$p_{v} = \frac{m_{0}v}{\sqrt{\left(1 - \frac{v^{2}}{c^{2}}\right)}}$
$L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	$\Delta E = \Delta m c^2$

Quantum theory	
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$
E = hf	$n\lambda = 2\pi r$
$E_k = hf - W$	$mvr = \frac{nh}{2\pi}$
$\boxed{\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)}$	

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Heating processes	
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 {\rm J \ kg}^{-1}$
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 {\rm J \ kg}^{-1}$
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 {\rm J kg^{-1} K^{-1}}$
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 {\rm J kg^{-1} K^{-1}}$
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 {\rm J kg}^{-1} {\rm K}^{-1}$

Ionising radiation and nuclear reactions	
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \mathrm{kg}$
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \rm kg$
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \rm kg$
Speed of light in a vacuum	$c = 3 \times 10^8 \text{ m s}^{-1}$

Electrical circuits	
Charge on an electron	$e = -1.60 \times 10^{-19} \text{ C}$

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25°C	$v_{\rm s} = 346 {\rm m s}^{-1}$

Gravity and motion	
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Mass of the Earth	$m_{\rm E} = 5.97 \times 10^{24} \rm kg$

П

П

Electromagnetism	
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} T A^{-1} m$

Quantum theory	
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$
Rydberg's constant	$R = 1.097 \times 10^7 \mathrm{m}^{-1}$

SCIENTIFIC NOTATION

Ratio to basic unit	Prefix	Abbreviation
10 ⁻¹⁸	atto	a
10 ⁻¹⁵	femto	f
$ 10^{-12} \\ 10^{-9} $	pico	р
10 ⁻⁹	nano	n
10^{-6}	micro	μ
10 ⁻³	milli	m
10 ⁻²	centi	c
10 ⁻¹	deci	d
10	deca	da
10 ²	hecto	h
10 ³	kilo	k
10 ⁶	mega	М
109	giga	G
10 ¹²	tera	Т

Name	Atomic no.	Symbol	Name	Atomic no.	Sym
Hydrogen	1	Н	Krypton	36	Kr
Helium	2	Не	Rubidium	37	Rb
Lithium	3	Li	Strontium	38	Sr
Beryllium	4	Be	Yttrium	39	Y
Boron	5	В	Zirconium	40	Zr
Carbon	6	С	Niobium	41	Nb
Nitrogen	7	N	Molybdenum	42	Мо
Oxygen	8	0	Technetium	43	Тс
Fluorine	9	F	Ruthenium	44	Ru
Neon	10	Ne	Rhodium	45	Rh
Sodium	11	Na	Palladium	46	Pd
Magnesium	12	Mg	Silver	47	Ag
Aluminium	13	Al	Cadmium	48	Cd
Silicon	14	Si	Indium	49	In
Phosphorus	15	Р	Tin	50	Sn
Sulfur	16	S	Antimony	51	Sb
Chlorine	17	Cl	Tellerium	52	Те
Argon	18	Ar	Iodine	53	Ι
Potassium	19	K	Xenon	54	Xe
Calcium	20	Са	Cesium	55	Cs
Scandium	21	Sc	Barium	56	Ba
Titanium	22	Ti	Lanthanum	57	La
Vanadium	23	V	Cerium	58	Ce
Chromium	24	Cr	Praseodymium	59	Pr
Manganese	25	Mn	Neodymium	60	Nd
Iron	26	Fe	Promethium	61	Pm
Cobalt	27	Со	Samarium	62	Sm
Nickel	28	Ni	Europium	63	Eu
Copper	29	Cu	Gadolinium	64	Gd
Zinc	30	Zn	Terbium	65	Tb
Gallium	31	Ga	Dysprosium	66	Dy
Germanium	32	Ge	Holmium	67	Но
Arsenic	33	As	Erbium	68	Er
Selenium	34	Se	Thulium	69	Tm
Bromine	35	Br	Ytterbium	70	Yb

LIST OF ELEMENTS

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol
utetium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Hg
Thallium	81	Tl
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Ро
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Ра
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

18 2	He 4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	86	Rn	(222.0)	118	00	(294)	1	71	Lu	1/4.9/		103	Ľ	(262.1)	
	17	6	ш	19.00	17	C	35.45	35	Br	79.90	53	_	126.90	85	At	(210.0)	117	Ts	(294)	1	70	γþ	1/3.05		102	No	(259.1)	
	16	8	0	16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116	۲۷	(293)		69	E I	168.93		101	ΡM	(258.1)	
	15	7	2	14.01	15	٩.	30.97	33	As	74.92	51	4S	121.76	83	:B	208.98	115	Mc	(288)		68	ц,	167.26		100	Fm	(252.1)	
	14	9	ں	12.01	14	Si	28.09	32	Ge	72.63	50	Sn	118.71	82	Pb	207.2	114	Ξ	(289)		67	Ho	164.93		66	Es	(252.1)	
	13	2	8	10.81	13	AI	26.98	31	Ga	69.72	49	h	114.82	81	F	204.38	113	ЧN	(284)		99	Ď	162.50		98	Çf	(252.1)	
							12	30	Zn	65.38	48	ЪЪ	112.41	80	Ha	200.59	112	Cn	(285)		69	d T	158.93		97	Bk	(249.1)	
VTS							11	29	Cu	63.55	47	Δα	107.87	79	Au	196.97	111	Ra	(272)		64	Cd	157.25		96	Cm	(244.1)	
DIC TABLE OF THE ELEMENTS			*				10	28	2	58.69	46	РЧ	106.42	78	Ę	195.08	110	Ds	(281)		63	Eu	151.96		96	Am	(241.1)	
LE OF TH		unnuer		relative atomic mass."			6	27	0 U	58.93	45	Rh	102.91	17	_	192.22	109	Mt	(268)	1	62	Sm	150.36		94	Pu	(239.1)	
DIC TABI			sympol	relative			8	26	Fe	55.85	44	BII	101.07	76	0 s	190.23	108	Hs	(265.1)	1	61	Pm	(146.9)		93	Np	(237.0)	8. alf-life.
PERIO	KEY	:	T	10.1			7	25	Mn	54.94	43	Ľ	(98.91)	75	Re	186.21	107	Bh	(264.1)		60	Zd	144.24		92	D	238.0	onvention 1–18 the longest ha
							9	24	ۍ	52.00	42	Mo	95.95	74	3	183.84	106	Sa	(263.1)		59	Pr	140.91		91	Pa	231.0	ng to IUPAC co le isotope with
							2	23	>	50.94	41	Nh	92.91	73	Ta	180.95	105	Db	(262.1)	1	58	Ce C	140.12		60	Ч	232.0	nbered accordi ckets are for th
							4	22	i	47.87	40	7r	91.22	72	Ħ	178.49	104	Rf	(261.1)	Lanthanoids	57	La	138.91	Actinoids	89	Ac	<u> </u>	Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.
							ę	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids	_	89-103	Actinoids		 - -		↑ + - 				1 		. –
	2	4	Be	9.01	12	Ma	24.31	20	Ca	40.08	38	S.	87.62	56	Ba	137.33	88	Ba	(226.1)									
-	T 1.01	ę	:=	6.94	11	Na	22.99	19	¥	39.10	37	Rh	85.47	55	S	132.91	87	F	(223.0)									

Copyright © 2022 Neap Education Pty Ltd

TEQPhys12_FB_2022

9