

Trial Examination 2022

Question and Response Booklet

QCE Physics Units 3&4

Paper 1

Student's Name:		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (20 marks)

• 20 multiple choice questions

Section 2 (25 marks)

8 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2022 QCE Physics Units 3&4 Written Examination.

SECTION 1

Instructions

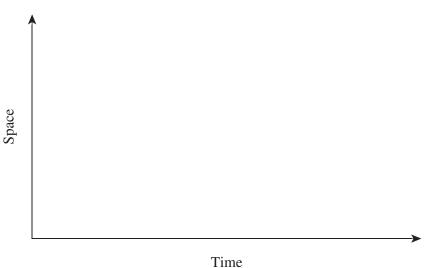
- Choose the best answer for Questions 1–20.
- This section has 20 questions and is worth 20 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	A	В	С	D
Example:				

	A	В	С	D
1.	0	\bigcirc	0	
2.		\bigcirc	\bigcirc	\bigcirc
3.		\bigcirc		\bigcirc
4.		\bigcirc		\bigcirc
5.	000000000000000000000000000000000000000	00000000000000000	C	000000000000000000000000000000000000000
6.		\bigcirc		\bigcirc
7.		\bigcirc	\bigcirc	\bigcirc
8.		\bigcirc		\bigcirc
9.		\bigcirc	\bigcirc	\bigcirc
10.		\bigcirc	\bigcirc	\bigcirc
11.		\bigcirc	\circ	\bigcirc
12.		\bigcirc		\bigcirc
13.		\bigcirc		\bigcirc
14.		\bigcirc	\bigcirc	\bigcirc
15.		\bigcirc	\bigcirc	\bigcirc
16.	0	\bigcirc	\circ	\bigcirc
17.		\bigcirc	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
18.		0 0 0 0		\bigcirc
19.		\bigcirc	\bigcirc	\bigcirc
20.		\bigcirc	\bigcirc	\bigcirc

SECTION 2

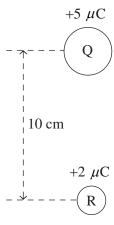
Instructions


- Write using black or blue pen.
- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has eight questions and is worth 25 marks.

QUESTION 21 (1 mark) List the six types of quarks.
1
2
3
4
5.
6
0
QUESTION 22 (2 marks)
An astronaut is in a spacecraft travelling away from the Sun at $0.75c$.
At what speed will the light from the Sun pass the astronaut? Justify your response.

QUESTION 23 (3 marks) Define and explain electromagnetic radiation in terms of electric fields and magnetic fields. You may us a diagram to support your response.	se

QUESTION 24 (3 marks)


Complete the Feynman diagram below to show an annihilation interaction between an electron and a positron and the production of another electron and positron pair after the annihilation interaction. Label each particle.

QUESTION 25	(3 marks)			
is flying past, the s	cientist measures the lea	ngth of the spacecra	emote region of space. A fit to be 26 m using a las f the spacecraft to be 30	er light device.
Determine the spee	ed of the spacecraft relat	ive to the scientist.	Express your answer in	terms of c .
	Speed =		_ c (to 1 decimal place)	

QUESTION 26 (6 marks)

Charge Q is +5 μ C and charge R is +2 μ C. The charges are positioned with their centres 10 cm apart, as shown in the diagram.

Not to scale

		Not to scale			
Calculate the mag Express your answ	nitude and direction of the ver in scientific notation.	electric field stre	ength at the midpoint b	etween charges Q	and R.
N	Iagnitude =		_ N C ⁻¹ (to 2 significa	nt figures)	
	Direction =	:			

	27 (3 marks) e characteristics of a	photon.		
1				
2				
3				

QUESTION 28 (4 marks)
When repairing the International Space Station (ISS), astronauts wear spacesuits to protect them from
the harsh environment of space. The ISS orbits the Earth at an altitude of 4.0×10^2 km above the Earth's
surface. The combined mass of an astronaut and their spacesuit is 100 kg.
Calculate the gravitational force, F_g , acting on the combined mass.
$F_g =$ N (to 2 significant figures)

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES Write the question number you are responding to.			
The the question number yo	a are responding to	•	

ADDITIONAL PAGE FOR STUDENT RESPONSES			
Vrite the question number you are responding to.			

ADDITIONAL PAGE FOR STUDENT RESPONSES Write the question number you are responding to.			
The the question number yo	a are responding to	•	

ADDITIONAL PAGE FOR STUDENT RESPONSES	
Write the question number you are responding to.	

Trial Examination 2022

Formula and Data Booklet

QCE Physics Units 3&4

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data	
Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times$	100
Percentage error (%) = $\frac{\text{measured value} - \text{true value}}{\text{true value}}$	×100

Heating processes	
$T_{\rm K} = T_{\rm C} + 273$	Q = mL
$Q = mc\Delta T$	$\Delta U = Q + W$
$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1} \%$	

Ionising radiation and nuclear reactions	
$N = N_0 \left(\frac{1}{2}\right)^n$	$\Delta E = \Delta m c^2$

Electrical circuits	
$I = \frac{q}{t}$	$P = I^2 R$
$V = \frac{W}{q}$	$V_t = V_1 + V_2 + \dots V_n$
$P = \frac{W}{t}$	$R_t = R_1 + R_2 + \dots R_n$
$R = \frac{V}{I}$	$I_t = I_1 + I_2 + \dots I_n$
P = VI	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$

TEQPhys34_FB_2022

Linear motion and force	
v = u + at	$W = \Delta E$
$s = ut + \frac{1}{2}at^2$	W = Fs
$v^2 = u^2 + 2as$	$E_k = \frac{1}{2}mv^2$
$a = \frac{F_{\text{net}}}{m}$	$\Delta E_{\rm p} = mg\Delta h$
p = mv	$\sum \frac{1}{2} m v_{\text{before}}^2 = \sum \frac{1}{2} m v_{\text{after}}^2$
$\sum mv_{\text{before}} = \sum mv_{\text{after}}$	

Waves	
$v = f \lambda$	$L = (2n-1)\frac{\lambda}{4}$
$f = \frac{1}{T}$	$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$
$L = n\frac{\lambda}{2}$	$I \propto \frac{1}{r^2}$

Gravity and motion	
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$
$s_y = \frac{1}{2}gt^2 + u_y t$	$a_c = \frac{v^2}{r}$
$v_y^2 = 2gs_y + u_y^2$	$F_{\text{net}} = \frac{mv^2}{r}$
$v_x = u_x$	$F = \frac{GMm}{r^2}$
$S_{x} = u_{x}t$	$g = \frac{F}{m} = \frac{GM}{r^2}$
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$

Electromagnetism	
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA \cos \theta$
$V = \frac{\Delta U}{q}$	$emf = -\frac{n\Delta(BA_{\perp})}{\Delta t}$
$B = \frac{\mu_0 I}{2\pi r}$	$emf = -n\frac{\Delta\phi}{\Delta t}$
$B = \mu_0 nI$	$I_{p}V_{p} = I_{s}V_{s}$
$F = BIL \sin \theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$

Special relativity	
$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	$p_{v} = \frac{m_{0}v}{\sqrt{\left(1 - \frac{v^{2}}{c^{2}}\right)}}$
$L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	$\Delta E = \Delta m c^2$

Quantum theory	
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$
E = hf	$n\lambda = 2\pi r$
$E_k = hf - W$	$mvr = \frac{nh}{2\pi}$
$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$	

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Heating processes	
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 \text{J kg}^{-1}$
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 \rm J kg^{-1}$
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 \rm J kg^{-1} K^{-1}$
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 \rm J kg^{-1} K^{-1}$
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 \rm J kg^{-1} K^{-1}$

Ionising radiation and nuclear reactions		
Atomic mass unit	1 amu = 1.66×10^{-27} kg	
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \mathrm{kg}$	
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$	
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \mathrm{kg}$	
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \mathrm{kg}$	
Speed of light in a vacuum	$c = 3 \times 10^8 \mathrm{m s}^{-1}$	

Electrical circuits	
Charge on an electron	$e = -1.60 \times 10^{-19} \mathrm{C}$

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25°C	$v_{\rm s} = 346 \text{ m s}^{-1}$

Gravity and motion		
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
Mass of the Earth	$m_{\rm E} = 5.97 \times 10^{24} \rm kg$	

Electromagnetism		
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$	
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} TA^{-1} m$	

Quantum theory		
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$	
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$	
Rydberg's constant	$R = 1.097 \times 10^7 \mathrm{m}^{-1}$	

SCIENTIFIC NOTATION

Ratio to basic unit	Prefix	Abbreviation
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10 ⁻⁹	nano	n
$ \begin{array}{r} 10^{-6} \\ 10^{-3} \\ 10^{-2} \\ 10^{-1} \end{array} $	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{-1}	deci	d
10	deca	da
10^2	hecto	h
10 ³	kilo	k
10 ⁶	mega	M
109	giga	G
10 ¹²	tera	Т

LIST OF ELEMENTS

Name	Atomic no.	Symbol
Hydrogen	1	Н
Helium	2	Не
Lithium	3	Li
Beryllium	4	Be
Boron	5	В
Carbon	6	С
Nitrogen	7	N
Oxygen	8	О
Fluorine	9	F
Neon	10	Ne
Sodium	11	Na
Magnesium	12	Mg
Aluminium	13	Al
Silicon	14	Si
Phosphorus	15	P
Sulfur	16	S
Chlorine	17	Cl
Argon	18	Ar
Potassium	19	K
Calcium	20	Ca
Scandium	21	Sc
Titanium	22	Ti
Vanadium	23	V
Chromium	24	Cr
Manganese	25	Mn
Iron	26	Fe
Cobalt	27	Со
Nickel	28	Ni
Copper	29	Cu
Zinc	30	Zn
Gallium	31	Ga
Germanium	32	Ge
Arsenic	33	As
Selenium	34	Se
Bromine	35	Br

Name	Atomic no.	Symbol
Krypton	36	Kr
Rubidium	37	Rb
Strontium	38	Sr
Yttrium	39	Y
Zirconium	40	Zr
Niobium	41	Nb
Molybdenum	42	Mo
Technetium	43	Тс
Ruthenium	44	Ru
Rhodium	45	Rh
Palladium	46	Pd
Silver	47	Ag
Cadmium	48	Cd
Indium	49	In
Tin	50	Sn
Antimony	51	Sb
Tellurium	52	Те
Iodine	53	I
Xenon	54	Xe
Cesium	55	Cs
Barium	56	Ba
Lanthanum	57	La
Cerium	58	Се
Praseodymium	59	Pr
Neodymium	60	Nd
Promethium	61	Pm
Samarium	62	Sm
Europium	63	Eu
Gadolinium	64	Gd
Terbium	65	Tb
Dysprosium	66	Dy
Holmium	67	Но
Erbium	68	Er
Thulium	69	Tm
Ytterbium	70	Yb

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol
Lutetium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Hg
Thallium	81	Tl
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Po
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Pa
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

Name	Atomic no.	Symbol
Americium	95	Am
Curium	96	Cm
Berkelium	97	Bk
Californium	98	Cf
Einsteinium	99	Es
Fermium	100	Fm
Mendelevium	101	Md
Nobelium	102	No
Lawrencium	103	Lr
Rutherfordium	104	Rf
Dubnium	105	Db
Seaborgium	106	Sg
Bohrium	107	Bh
Hassium	108	Hs
Meitnerium	109	Mt
Darmstadtium	110	Ds
Roentgenium	111	Rg
Copernicium	112	Cn
Nihonium	113	Nh
Flerovium	114	Fl
Moscovium	115	Мс
Livermorium	116	Lv
Tennessine	117	Ts
Oganesson	118	Og

18	2	4.00	10	Ne	20.18	18	Ar	39.95	36	7	83.80	54	Xe	131.29	98	Ru	(222.0)	118	0 g	(294)		Ī	=	r n	174.97		103		(262.1)
		17	6	<u>_</u>	19.00	17	5	35.45	35	Br	79.90	53	_	126.90	82	At	(210.0)	117	Ls	(294)			0/	Λb	173.05		102	N _o	(259.1)
		16	8 0 16.00		16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116		(293)			69	E	168.93		101	PM	(258.1)	
		15	7	2	14.01	15	<u>م</u>	30.97	33	As	74.92	51	Sb	121.76	83	<u>B</u>	208.98	115	Mc	(288)			89	щ П	167.26	ı	100	Fm	(252.1)
		14	9	6 12.01		14	Si	28.09	32	Ge 72.63		20	Sn	118.71	82	Pb	207.2	114	FI (289)		-		/9	H0 164.93	164.93	_	66	Es	(252.1)
		13	ъ	Ω	10.81	13	A	26.98	31	Ga	69.72	49	드	114.82	81	F	204.38	113	Z	(284)		1	99	Ò	162.50		98	Ç	(252.1)
								12	30	Zu	65.38	48	Cd	112.41	80	Hd	200.59	112	Cu	(285)			69	Q L	158.93		97	BK	(249.1)
DEDICH TABLE OF THE ELEMENTS	2							1	29	ŋ	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	(272)			64	Pg	157.25	ı	96	Cm	(244.1)
				*				10	28	Z	58.69	46	Pd	106.42	78	F	195.08	110	Ds	(281)		1	63	ш	151.96	ı	95	Am	(241.1)
			nic number bol relative atomic mass*					6	27	°	58.93	45	Rh	102.91	77	_	192.22	109	Ĭ	(268)			29	Sm	150.36		94	Pu	(239.1)
	JIG I ADE		1 atomic number	symbol	relati			8	26	Fe	55.85	44	Ru	101.07	9/	0s	190.23	108	Hs	(265.1)			61	Pm	(146.9)		93	N	(237.0)
		KEY		I :	1.01			7	25	M	54.94	43	٦ ح	(98.91)	75	Re	186.21	107	Bh	(264.1)			09	P	144.24		92	n	238.0
								9	24	ວັ	52.00	42	Mo	95.95	74	>	183.84	106	Sg	(263.1)			99	Ą	140.91		91	Ра	231.0
								2	23	>	50.94	41	S S	92.91	73	Тa	180.95	105	Op	(262.1)			98	Çe	140.12		90	느	232.0
					4	22	ï	47.87	40	Zr	91.22	72	¥	178.49	104	Rŧ	(261.1)	:	Lanthanoids) q	Гa	138.91	Actinoids	89	Ac	(227.0)			
									21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids	_	- 	- -		↑				1 ا د _ ۔	,
		2	4	Be	9.01	12	Z	24.31	20	Ca	40.08	38	S	87.62	99	Ba	137.33	88	Ra	(226.1)	-	-		-					
_	-	L 1:0	က	=	6.94	11	Sa	22.99	19	¥	39.10	37	Вр	85.47	52	Cs	132.91	87	ቷ	(223.0)									

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.