

Trial Examination 2022

Question and Response Booklet

QCE Physics Units 3&4

Paper 2

Student's Name: _____

Teacher's Name:				
-----------------	--	--	--	--

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (45 marks)

8 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2022 QCE Physics Units 3&4 Written Examination.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

QUESTION 1 (8 marks)

A student of mass 60 kg slides along the straight, frictionless waterslide shown in the diagram. The waterslide is 20 m in length. The top of the waterslide is 10 m above the surface of the pool. The bottom of the waterslide is 4 m above the surface of the pool.

pool surface

Not to scale

The student begins their slide from rest at the top of the waterslide. Once they leave the bottom of the waterslide, they are in free fall for 0.63 seconds before they hit the pool surface.

a) Determine the angle that the waterslide makes with the pool surface.

[1 mark]

Angle = ______° (to 2 decimal places)

(to 2 decimal places)

d) Determine the horizontal range of the student while they are in free fall, as measured from the bottom of the waterslide. [4 marks]

QUESTION 2 (5 marks)

Hydrogen gas emits light when it is ionised at room temperature and subjected to a large voltage.

The resultant visible light emission spectrum for hydrogen is shown. It is known as the Balmer series and occurs when the final energy state of any electron de-excitation is n = 2.

The energy level diagram for hydrogen is shown below.

a) Explain how light quanta and atomic energy states explain the specific wavelengths in the hydrogen light emission spectrum. You may refer to the diagrams above in your response.

[3 marks]

The Lyman s whose final e	eries of hydrogen emission lines is defined as any electron de-excitation nergy state occurs in the ground state $(n = 1)$.	
Explain whet to the Balmer	her the Lyman series would have longer or shorter wavelengths compare series.	ed [2 1

QUESTION 3 (4 marks)

Describe four characteristics of the photoelectric effect. Refer to photons in your response.

1			
2			
3			
4			

QUESTION 4 (5 marks)

In the early twentieth century, the von Braun wheel was proposed as a means of producing artificial gravity for astronauts when aboard a space station. The proposed station was a 'wheel' design that rotated about its axis with the astronauts inside, resulting in centripetal acceleration as shown in the diagram.

Not to scale

An astronaut aboard a von Braun wheel space station conducted an experiment by changing the station's rotational velocity and measuring the resultant centripetal acceleration. The results are shown in the graph.

Determ	nine the radius of the space station using the equation of t	he trendline.	[2 mai
	Radius = m (to the ne	earest whole number)	
	Radius = m (to the ne	earest whole number)	
Use the acceleration	Radius = m (to the ne e equation of the trendline to calculate the period of rotation is 7.2 m s ^{-2} .	earest whole number)	[3 ma
Use the accelera	Radius = m (to the ne e equation of the trendline to calculate the period of rotation ration is 7.2 m s ⁻² .	earest whole number)	[3 ma
Use the accelera	Radius = m (to the ne e equation of the trendline to calculate the period of rotation ration is 7.2 m s ⁻² .	earest whole number)	[3 ma
Use the accelera	Radius = m (to the negative equation of the trendline to calculate the period of rotation is 7.2 m s ^{-2} .	earest whole number)	[3 ma
Use the accelera	Radius = m (to the negative equation of the trendline to calculate the period of rotation is 7.2 m s ⁻² .	earest whole number)	[3 ma
Use the accelera	Radius = m (to the negative equation of the trendline to calculate the period of rotation is 7.2 m s ⁻² .	earest whole number)	[3 ma
Use the accelera	Radius = m (to the negative equation of the trendline to calculate the period of rotation is 7.2 m s ⁻² .	earest whole number)	[3 ma
Use the accelera	Radius = m (to the neriod of rotation is 7.2 m s ^{-2} .	earest whole number)	[3 ma
Use the accelera	Radius = m (to the neriod of rotation is 7.2 m s ⁻² .	earest whole number)	[3 ma
Use the acceler:	Radius = m (to the ne equation of the trendline to calculate the period of rotation is 7.2 m s ⁻² .	earest whole number)	[3 ma

Period of rotation = ______s (to the nearest whole number)

QUESTION 5 (8 marks)

A set of twins aged 30 years old decided to embark on a science experiment. Twin A remained on Earth, while twin B travelled to a star and back with an average speed of 0.866*c*. Twin B had aged 20 years upon their return to Earth.

a) Determine the time elapsed on Earth from twin A's perspective during twin B's journey. [2 marks]

Time elapsed from twin A's perspective = _____ years (to the nearest whole number)

b) Determine the time elapsed on Earth from twin B's perspective during their journey. [2 marks]

Time elapsed from twin B's perspective = _____ years (to the nearest whole number)

Describe the paradoxical situation.	[1 mark]
Suggest a resolution to the paradox.	[1 mark]
As both twins agree on their relative velocity to each other, what other realtivistic effect occurs in this situation to ensure their relative velocities agree? Explain which twin experiences this effect.	t [2 marks]

QUESTION 6 (5 marks)

A single loop of wire is perpendicular to a uniform magnetic field of 7 T, as shown in Figure 1. The loop has its dimensions altered in 0.05 seconds to the position shown in Figure 2.

a) Calculate the magnitude of the induced emf in the loop.

[3 marks]

emf = _____ V (to the nearest whole number)

b) Explain the direction of the **induced** magnetic field inside the loop of wire. [2 marks]

QUESTION 7 (5 marks)

Laser light is shone onto a surface of sodium metal. The wavelength of the laser light is 4.5×10^{-7} m, and the work function of sodium is 2.36 eV.

Calculate the magnitude of the maximum velocity of the resultant photoelectrons. Express your answer in scientific notation.

Maximum velocity = _____ m s⁻¹ (to 2 significant figures)

QUESTION 8 (5 marks)

A 0.1 m long solenoid with 100 turns of wire and a cross-sectional radius of 2.5 cm carries a current of 1 A.

Not to scale

Calculate the magnitude of the magnetic flux inside the solenoid. Express your answer in microwebers.

Magnetic flux = _____ μ Wb (to 1 decimal place)

_____ *µ*... o (to 1 accinim p

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

Trial Examination 2022

Formula and Data Booklet

QCE Physics Units 3&4

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data		
Percentage uncertainty	$(\%) = \frac{\text{absolute uncertainty}}{\text{measurement}} \times 1$	100
Percentage error (%) =	measured value – true value true value	×100

Heating processes		
$T_{\rm K} = T_{\rm C} + 273$	Q = mL	
$Q = mc\Delta T$	$\Delta U = Q + W$	
$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1}\%$		

Ionising radiation and nuclear reactions		
$N = N_0 \left(\frac{1}{2}\right)^n$	$\Delta E = \Delta m c^2$	

Electrical circuits		
$I = \frac{q}{t}$	$P = I^2 R$	
$V = \frac{W}{q}$	$V_t = V_1 + V_2 + \dots V_n$	
$P = \frac{W}{t}$	$R_t = R_1 + R_2 + \dots R_n$	
$R = \frac{V}{I}$	$I_t = I_1 + I_2 + \dots I_n$	
P = VI	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	

Linear motion and force	
v = u + at	$W = \Delta E$
$s = ut + \frac{1}{2}at^2$	W = Fs
$v^2 = u^2 + 2as$	$E_k = \frac{1}{2}mv^2$
$a = \frac{F_{\text{net}}}{m}$	$\Delta E_{\rm p} = mg\Delta h$
p = mv	$\sum \frac{1}{2}mv_{\text{before}}^2 = \sum \frac{1}{2}mv_{\text{after}}^2$
$\sum mv_{\text{before}} = \sum mv_{\text{after}}$	

Waves $v = f \lambda$ $L = (2n-1)\frac{\lambda}{4}$ $f = \frac{1}{T}$ $\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ $L = n\frac{\lambda}{2}$ $I \propto \frac{1}{r^2}$

Gravity and motion		
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$	
$s_y = \frac{1}{2}gt^2 + u_y t$	$a_c = \frac{v^2}{r}$	
$v_y^2 = 2gs_y + u_y^2$	$F_{\rm net} = \frac{mv^2}{r}$	
$v_x = u_x$	$F = \frac{GMm}{r^2}$	
$s_x = u_x t$	$g = \frac{F}{m} = \frac{GM}{r^2}$	
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$	

Electromagnetism		
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$	
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA \cos \theta$	
$V = \frac{\Delta U}{q}$	$\mathrm{emf} = -\frac{n\Delta(BA_{\perp})}{\Delta t}$	
$B = \frac{\mu_0 I}{2\pi r}$	$\operatorname{emf} = -n \frac{\Delta \phi}{\Delta t}$	
$B = \mu_0 nI$	$I_{\rm p}V_{\rm p} = I_{\rm s}V_{\rm s}$	
$F = BIL\sin\theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$	

Special relativity		
$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	$p_{v} = \frac{m_{0}v}{\sqrt{\left(1 - \frac{v^{2}}{c^{2}}\right)}}$	
$L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	$\Delta E = \Delta m c^2$	

Quantum theory		
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$	
E = hf	$n\lambda = 2\pi r$	
$E_k = hf - W$	$mvr = \frac{nh}{2\pi}$	
$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$		

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Heating processes		
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 {\rm J \ kg}^{-1}$	
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 {\rm J \ kg}^{-1}$	
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 {\rm J kg^{-1} K^{-1}}$	
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 {\rm J \ kg}^{-1} {\rm K}^{-1}$	
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 {\rm J kg}^{-1} {\rm K}^{-1}$	

Ionising radiation and nuclear reactions		
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$	
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \mathrm{kg}$	
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$	
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \rm kg$	
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \rm kg$	
Speed of light in a vacuum	$c = 3 \times 10^8 \text{ m s}^{-1}$	

Electrical circuits		
Charge on an electron	$e = -1.60 \times 10^{-19} \text{ C}$	

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25°C	$v_{\rm s} = 346 {\rm m s}^{-1}$

Gravity and motion		
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
Mass of the Earth	$m_{\rm E} = 5.97 \times 10^{24} \rm kg$	

П

п

Electromagnetism	
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} T A^{-1} m$

Quantum theory		
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$	
Planck's constant	$h = 6.626 \times 10^{-34} \mathrm{J s}$	
Rydberg's constant	$R = 1.097 \times 10^7 \mathrm{m}^{-1}$	

SCIENTIFIC NOTATION

Ratio to basic unit	Prefix	Abbreviation
10^{-18}	atto	a
10 ⁻¹⁵	femto	f
10 ⁻¹²	pico	p
10 ⁻⁹	nano	n
10 ⁻⁶	micro	μ
10 ⁻³	milli	m
10 ⁻²	centi	с
10 ⁻¹	deci	d
10	deca	da
10^2	hecto	h
10 ³	kilo	k
10 ⁶	mega	М
10 ⁹	giga	G
10 ¹²	tera	Т

Name	Atomic no.	Symbol		Name	Name Atomic no.
Hydrogen	1	Н		Krypton	Krypton 36
Helium	2	Не	1	Rubidium	Rubidium 37
Lithium	3	Li	Stro	ontium	ontium 38
Beryllium	4	Be	Yttrium		39
Boron	5	В	Zirconium		40
Carbon	6	С	Niobium		41
Nitrogen	7	N	Molybdenum		42
Oxygen	8	0	Technetium		43
Fluorine	9	F	Ruthenium		44
Neon	10	Ne	Rhodium		45
Sodium	11	Na	Palladium		46
Magnesium	12	Mg	Silver		47
Aluminium	13	Al	Cadmium		48
Silicon	14	Si	Indium		49
Phosphorus	15	Р	Tin		50
Sulfur	16	S	Antimony	Î	51
Chlorine	17	Cl	Tellurium	1	52
Argon	18	Ar	Iodine	Î	53
Potassium	19	K	Xenon		54
Calcium	20	Са	Cesium		55
Scandium	21	Sc	Barium		56
Titanium	22	Ti	Lanthanum	Î	57
Vanadium	23	V	Cerium	Î	58
Chromium	24	Cr	Praseodymium	Î	59
Manganese	25	Mn	Neodymium	Î	60
Iron	26	Fe	Promethium	t	61
Cobalt	27	Со	Samarium	t	62
Nickel	28	Ni	Europium	T	63
Copper	29	Cu	Gadolinium	t	64
Zinc	30	Zn	Terbium	t	65
Gallium	31	Ga	Dysprosium	t	66
Germanium	32	Ge	Holmium	t	67
Arsenic	33	As	Erbium	ţ	68
Selenium	34	Se	Thulium	t	69
Durant	25	Br	Vtterbium	t	70

LIST OF ELEMENTS

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol	Name	Atomic no.	Symbol
Lutetium	71	Lu	Americium	95	Am
Hafnium	72	Hf	Curium	96	Cm
Tantalum	73	Та	Berkelium	97	Bk
Tungsten	74	W	Californium	98	Cf
Rhenium	75	Re	Einsteinium	99	Es
Osmium	76	Os	Fermium	100	Fm
Iridium	77	Ir	Mendelevium	101	Md
Platinum	78	Pt	Nobelium	102	No
Gold	79	Au	Lawrencium	103	Lr
Mercury	80	Hg	Rutherfordium	104	Rf
Thallium	81	Tl	Dubnium	105	Db
Lead	82	Pb	Seaborgium	106	Sg
Bismuth	83	Bi	Bohrium	107	Bh
Polonium	84	Ро	Hassium	108	Hs
Astatine	85	At	Meitnerium	109	Mt
Radon	86	Rn	Darmstadtium	110	Ds
Francium	87	Fr	Roentgenium	111	Rg
Radium	88	Ra	Copernicium	112	Cn
Actinium	89	Ac	Nihonium	113	Nh
Thorium	90	Th	Flerovium	114	Fl
Protactinium	91	Pa	Moscovium	115	Mc
Uranium	92	U	Livermorium	116	Lv
Neptunium	93	Np	Tennessine	117	Ts
Plutonium	94	Pu	Oganesson	118	Og

														Ηυ
			KEY	1 atomic r	number				13	14 R	15	16 2	17	4.00
			X	symbol		*			° B	ິບ	Z	° O	° ц	Ne
			10.1	Leia	LIVE ALOUTIC III	Idass			10.81	12.01	14.01	16.00	19.00	20.18
								I	13	14	15	16	17	1
									AI	Si	٩	S	IJ	Ar
4	2	9	7	8	6	10	11	12	26.98	28.09	30.97	32.06	35.45	39.95
21	22	23 24	25	26	27	28	29	30	31	32	33	34	35	30
L C	>	S	Mn	Fe	ۍ د	Z	Cu	Zn	Ga	Ge	As	Se	Br	Kr
96 47.8	37 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
39	40	41 42	43	44	45	46	47	48	49	50	51	52	53	5
/ Zr	, Nb	Mo	ЦС	Bu	Rh	Pd	Ag	Cd	h	Sn	Sb	Te	_	Xe
.91 91.2	2 92.91	95.95	(98.91)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
7-71	72	73 74	75	76	77	78	79	80	81	82	83	84	85	8
anoids H1	f Ta	3	Be	0s		Pt	Au	Ha	F	Pb	B	P0	At	Bn
178.4	19 180.9	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(210.0)	(210.0)	(222.0)
-103	104 1	05 106	107	108	109	110	111	112	113	114	115	116	117	11
oids B1	4 D D	Sa	Bh	Hs	Mt	Ds	Ba	Cn	ЧN	Ξ	β	۲ ۷	Ts	09
(261.	.1) (262.1	(263.1)	(264.1)	(265.1)	(268)	(281)	(272)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
lanthan	oide													
			C C	61	C.J	C.J	10	Ü	00	10	00	Ū	0	ŕ
	و م		MA		Cm UZ	3	5 7 5	Thursday) U	°,	E E	۲P N	-
138.6	91 140.12	140.91	144.24	(146.9)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
Actinoid	s													
	68	90 91	92	93	94	96	96	97	98	66	100	101	102	10
AG	, Th	Pa	D	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Ţ
(227.1	0) 232.0	231.0	238.0	(237.0)	(239.1)	(241.1)	(244.1)	(249.1)	(252.1)	(252.1)	(252.1)	(258.1)	(259.1)	(262.1)

Copyright © 2022 Neap Education Pty Ltd

9