

Trial Examination 2023

Question and Response Booklet

QCE Physics Units 1&2

Paper 2

Student's Name:		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

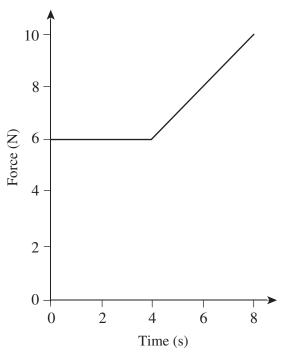
- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (50 marks)

9 short response questions

SECTION 1

Instructions


- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (5 marks)

The graph shows the force that acts on a 7 kg object over a period of 8 seconds.

a) Calculate the impulse on the object.

[2 marks]

b) The object is initially travelling at 6 m s^{-1} in the same direction as the applied force.

Determine the final velocity of the object.

[3 marks]

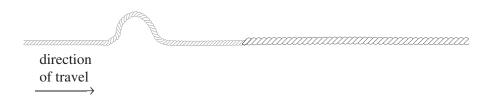
Final velocity = $\underline{\underline{}}$ m s⁻¹ (to two significant figures)

QUESTION	2 ((5 marks)
-----------------	-----	-----------

The diagram illustrates a pipe that is open at both ends and has a length of 60 cm.

On the diagram above, sketch the second harmonic for the pipe. Label all nodes a) and antinodes.

[2 marks]


Calculate the frequency of the harmonic from Question 2a) in air. b)

[3 marks]

Hz (to three significant figures) Frequency =

QUESTION 3 (4 marks)

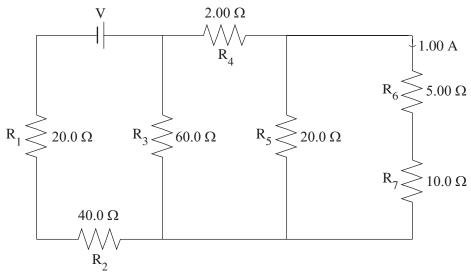
The diagram shows a pulse travelling along a low-mass rope and then encountering a higher-mass rope.

a) On the diagram, use a dashed line to sketch the relative magnitude and relative orientation of the transmitted pulse to the input pulse.

[2 marks]

b) On the diagram, use a dotted line to sketch the relative magnitude and relative orientation of the reflected pulse to the input pulse.

[2 marks]


QUESTION 4 (3 marks)

On a 25°C day, a person observed lightning strike a tree that was only 35 m away from them. A short time later, they heard the thunder produced by the lighting strike and felt significant ear pain because of the thunder. Later, the person learned that if the intensity of the thunder were four times less than what it had been, they would not have experienced any ear pain.

earing the thunder.	between the person seeing the lightning strike the	[1 mark
Time =	s (to two significant figures)	
 1 6 .1		
e how far away the person e experienced any ear pair	would have needed to be from the lightning strike n.	[2 mark
		[2 mark
		[2 mark.
		[2 mark.
		[2 mark
		[2 mark.

QUESTION 5 (6 marks)

Consider the circuit.

Determine the current through R ₃ .		

Current = _____ A (to three significant figures)

QUESTION 6 (5 m	arks)
	same mass and initial temperature of -18° C were added to 1 kg of water with When thermal equilibrium was reached, the final temperature of the water was 10.2° C.
Assuming that no hear	was lost, determine the initial mass of one ice cube.
C	
ı	$Mass = \underline{\qquad} g$ (to the nearest whole number)

OUESTION 7	(4 marks)
OUESTION /	(4 marks

Material A has a refractive index of 1.65, and material B has a refractive index of 1.50. Light passes from material A into material B with an angle of incidence of 49°.

Calculat	te the angle of refraction in material B.		[2 n
	Angle of refraction =	° (to three significant figures)	
Calculat	te the critical angle.		[2 n

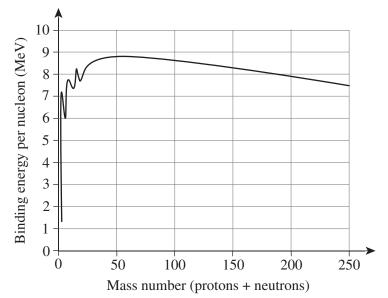
QUESTION 8 (5 marks)

Mass =

A 2000 W kettle heats water at the rate shown in the graph. The water has an initial temperature of 20°C.

Determine the mass of the water in the kettle.	[2 marks

kg (to three significant figures)


10

Determine l	how long it would take for	or the kettle to convert all the water to steam.	[3 marks]
	Time =	s (to three significant figures)	

OUESTION 9	(13	marks)
-------------------	-----	--------

i)	$^{38}_{20}$ Ca, which has too many protons	[2 marks
ii)	³⁵ ₁₅ P, which has too many neutrons	[2 marks
iii)	²⁴¹ ₉₅ Am, which has too many protons and neutrons	[2 marks
The	mass of one atom of the isotope ${}^{12}_{6}$ C is 12 amu.	
Colo	1 1 1 1 1 C	
Calc	ulate the binding energy of ${}^{12}_{6}$ C.	[5 marks]
	urate the binding energy of 6°C.	[5 marks]
	ulate the binding energy of 6°C.	[5 marks]
	ulate the binding energy of 6°C.	[5 marks]
	ulate the binding energy of 6C.	[5 marks]
	ulate the binding energy of 6C.	[5 marks]
	ulate the binding energy of 6C.	[5 marks]
	ulate the binding energy of 6C.	[5 marks]
	ulate the binding energy of 6C.	[5 marks]

c) The graph shows how binding energy per nucleon changes with atomic mass.

With reference to the graph, explain why fusion reactions produce more energy than fission reactions per unit mass.

[2 marks]

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES			
Write the question number you are responding to.			

ADDITIONAL PAGE FOR STUDENT RESPONSES Write the question number you are responding to.				
write the question hun	iber you are respond	ing to.		

ADDITIONAL PAGE FOR STUDENT RESPONSES		
Write the question number you are responding to.		

Trial Examination 2023

Formula and Data Booklet

QCE Physics Units 1&2

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data	
Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times 100$	
Percentage error (%) = $\left \frac{\text{measured value} - \text{true value}}{\text{true value}} \right \times 100$	

Heating processes	
$T_{\rm K} = T_{\rm C} + 273$	Q = mL
$Q = mc\Delta T$	$\Delta U = Q + W$
$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1} \%$	

Ionising radiation and nuclear reactions	
$N = N_0 \left(\frac{1}{2}\right)^n$	$\Delta E = \Delta m c^2$

Electrical circuits		
$I = \frac{q}{t}$	$P = I^2 R$	
$V = \frac{W}{q}$	$V_t = V_1 + V_2 + \dots V_n$	
$P = \frac{W}{t}$	$R_t = R_1 + R_2 + \dots R_n$	
$R = \frac{V}{I}$	$I_t = I_1 + I_2 + \dots I_n$	
P = VI	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	

Linear motion and force		
v = u + at	$W = \Delta E$	
$s = ut + \frac{1}{2}at^2$	W = Fs	
$v^2 = u^2 + 2as$	$E_{\mathbf{k}} = \frac{1}{2} m v^2$	
$a = \frac{F_{\text{net}}}{m}$	$\Delta E_{\rm p} = mg\Delta h$	
p = mv	$\sum \frac{1}{2} m v_{\text{before}}^2 = \sum \frac{1}{2} m v_{\text{after}}^2$	
$\sum mv_{\text{before}} = \sum mv_{\text{after}}$		

Waves	
$v = f \lambda$	$L = (2n-1)\frac{\lambda}{4}$
$f = \frac{1}{T}$	$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$
$L = n\frac{\lambda}{2}$	$I \propto \frac{1}{r^2}$

Gravity and motion	
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$
$s_y = \frac{1}{2}gt^2 + u_y t$	$a_{\rm C} = \frac{v^2}{r}$
$v_y^2 = 2gs_y + u_y^2$	$F_{\text{net}} = \frac{mv^2}{r}$
$v_x = u_x$	$F = \frac{GMm}{r^2}$
$s_x = u_x t$	$g = \frac{F}{m} = \frac{GM}{r^2}$
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$

Electromagnetism		
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$	
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA \cos \theta$	
$V = \frac{\Delta U}{q}$	$emf = -\frac{n\Delta(BA_{\perp})}{\Delta t}$	
$B = \frac{\mu_0 I}{2\pi r}$	$emf = -n\frac{\Delta\phi}{\Delta t}$	
$B = \mu_0 nI$	$I_{p}V_{p} = I_{s}V_{s}$	
$F = BIL \sin \theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$	

Special relativity	
$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	$p_{v} = \frac{m_{0}v}{\sqrt{\left(1 - \frac{v^{2}}{c^{2}}\right)}}$
$L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	$\Delta E = \Delta m c^2$

Quantum theory	
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$
E = hf	$n\lambda = 2\pi r$
$E_k = hf - W$	$mvr = \frac{nh}{2\pi}$
$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$	

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Heating processes		
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 \text{J kg}^{-1}$	
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 \rm J kg^{-1}$	
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 \rm J kg^{-1} K^{-1}$	
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 \rm J kg^{-1} K^{-1}$	
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 \rm J kg^{-1} K^{-1}$	

Ionising radiation and nuclear reactions		
Atomic mass unit	1 amu = 1.66×10^{-27} kg	
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \mathrm{kg}$	
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$	
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \mathrm{kg}$	
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \mathrm{kg}$	
Speed of light in a vacuum	$c = 3 \times 10^8 \mathrm{m s}^{-1}$	

Electrical circuits	
Charge on an electron	$e = -1.60 \times 10^{-19} \mathrm{C}$

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25°C	$v_{\rm s} = 346 \text{ m s}^{-1}$

Gravity and motion		
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
Mass of Earth	$m_{\rm E} = 5.97 \times 10^{24} \rm kg$	

Electromagnetism		
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$	
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} TA^{-1} m$	

Quantum theory		
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$	
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$	
Rydberg's constant	$R = 1.097 \times 10^7 \mathrm{m}^{-1}$	

SCIENTIFIC NOTATION

Ratio to basic unit	Prefix	Abbreviation
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10 ⁻⁹	nano	n
$ \begin{array}{r} 10^{-9} \\ 10^{-6} \\ 10^{-3} \\ 10^{-2} \end{array} $	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{-1}	deci	d
10	deca	da
10 ²	hecto	h
10 ³	kilo	k
10 ⁶	mega	M
109	giga	G
10 ¹²	tera	Т

LIST OF ELEMENTS

Hydrogen Helium	1	11
Helium		H
	2	Не
Lithium	3	Li
Beryllium	4	Be
Boron	5	В
Carbon	6	С
Nitrogen	7	N
Oxygen	8	О
Fluorine	9	F
Neon	10	Ne
Sodium	11	Na
Magnesium	12	Mg
Aluminium	13	Al
Silicon	14	Si
Phosphorus	15	P
Sulfur	16	S
Chlorine	17	Cl
Argon	18	Ar
Potassium	19	K
Calcium	20	Ca
Scandium	21	Sc
Titanium	22	Ti
Vanadium	23	V
Chromium	24	Cr
Manganese	25	Mn
Iron	26	Fe
Cobalt	27	Со
Nickel	28	Ni
Copper	29	Cu
Zinc	30	Zn
Gallium	31	Ga
Germanium	32	Ge
Arsenic	33	As
Selenium	34	Se
Bromine	35	Br

Name	Atomic no.	Symbol
Krypton	36	Kr
Rubidium	37	Rb
Strontium	38	Sr
Yttrium	39	Y
Zirconium	40	Zr
Niobium	41	Nb
Molybdenum	42	Мо
Technetium	43	Тс
Ruthenium	44	Ru
Rhodium	45	Rh
Palladium	46	Pd
Silver	47	Ag
Cadmium	48	Cd
Indium	49	In
Tin	50	Sn
Antimony	51	Sb
Tellerium	52	Те
Iodine	53	I
Xenon	54	Xe
Cesium	55	Cs
Barium	56	Ba
Lanthanum	57	La
Cerium	58	Ce
Praseodymium	59	Pr
Neodymium	60	Nd
Promethium	61	Pm
Samarium	62	Sm
Europium	63	Eu
Gadolinium	64	Gd
Terbium	65	Tb
Dysprosium	66	Dy
Holmium	67	Но
Erbium	68	Er
Thulium	69	Tm
Ytterbium	70	Yb

QCE_Phys12_FB_2023

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol
Lutetium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Hg
Thallium	81	Tl
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Po
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Pa
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

Name	Atomic no.	Symbol								
Americium	95	Am								
Curium	96	Cm								
Berkelium	97	Bk								
Californium	98	Cf								
Einsteinium	99	Es								
Fermium	100	Fm								
Mendelevium	101	Md								
Nobelium	102	No								
Lawrencium	103	Lr								
Rutherfordium	104	Rf								
Dubnium	105	Db								
Seaborgium	106	Sg								
Bohrium	107	Bh								
Hassium	108	Hs								
Meitnerium	109	Mt								
Darmstadtium	110	Ds								
Roentgenium	111	Rg								
Copernicium	112	Cn								
Nihonium	113	Nh								
Flerovium	114	Fl								
Moscovium	115	Mc								
Livermorium	116	Lv								
Tennessine	117	Ts								
Oganesson	118	Og								

2		10			18			36			24		6	98		<u> </u>	118				11				103		
18	He		Ne	20.18		Ar	39.95		7	83.80		Xe	131.29		R	(222.0)	_	Og	(294)	ı		_	174.97			ļ	(262.1)
	17	6	ш	19.00	17	5	35.45	35	Br	79.90	53	_	126.90	85	At	(210.0)	117	Ls	(294)		70	Ϋ́	173.05		102	No	(259.1)
	16	8	0	16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116	_	(293)		69	T _m	168.93		101	β	(258.1)
	15	7	2	14.01	15	<u>Д</u>	30.97	33	As	74.92	51	Sb	121.76	83	<u>.</u>	208.98	115	Mc	(288)		89	Ţ.	167.26		100	Fm	(252.1)
	14	9	ပ	12.01	14	Si	28.09	32	Ge	72.63	20	Sn	118.71	82	Pb	207.2	114	ᇤ	(289)		67	9	164.93		66	Es	(252.1)
	13	5	a	10.81	13	A	26.98	31	Ga	69.72	49	므	114.82	81	F	204.38	113	Z	(284)		99	D	162.50		98	Ç	(252.1)
					l		12	30	Zn	65.38	48	Cq	112.41	80	H	200.59	112	ວ	(285)		69	유	158.93		97	æ	(249.1)
IS							11	29	Cn	63.55	47	Aq	107.87	79	Au	196.97	111	Rg	(272)		64	P9	157.25		96	Cm	(244.1)
ELEMEN							10	28	Z	58.69	46	Pd	106.42	78	F	195.08	110	Ds	(281)		63	E	151.96	l	95	Am	(241.1)
E OF THE		nmoer	*	relative atomic mass "			6	27	Ç	58.93	45	R	102.91	77	<u>_</u>	192.22	109	ğ	(268)		62	Sm	150.36		94	Pu	(239.1)
DIC TABLE OF THE ELEMENTS		1 atomic number	symbol	relative			8	26	Fe	55.85	44	Ru	101.07	9/	08	190.23	108	HS	(265.1)	-	61	Pm	(146.9)		93	N	(237.0)
PERIOD	KEY		.	0.			7	25	Ξ	54.94	43	ے ا	(98.91)	75	Re	186.21	107	뮵	(264.1)		09	P	144.24		92	-	238.0
							9	24	ن	52.00	42	Θ	95.95	74	>	183.84	106	Sg	(263.1)		29	Ą	140.91		91	Pa	231.0
							2	23	>	50.94	41	S	92.91	73	Та	180.95	105		(262.1)		28	Ce	140.12		90	Ч	232.0
							4	22	ï	47.87	40	Zr	91.22	72	Ŧ	178.49	104	Rf	(261.1)	Lanthanoids	22	La	138.91	Actinoids	88	Ac	(227.0)
							က	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids	_	 ات 		^ - + -				1 -	
	2	4	Be	9.01	12	Ma	24.31	20	Ca	40.08	38	Sr	87.62	99	Ba	137.33	88	Ra	(226.1)	 							
-	T 1.01	က	=	6.94	11	Z	22.99	19	¥	39.10	37	Rb	85.47	55	Cs	132.91	87	ቷ	(223.0)								

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.