

Trial Examination 2023

Question and Response Booklet

QCE Physics Units 3&4

Paper 2

Student's Name: _____

Teacher's Name:				
-----------------	--	--	--	--

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (50 marks)

11 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2023 QCE Physics Units 3&4 Written Examination.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (4 marks)

A transformer's primary coil has 4800 turns and is supplied with a potential of 240 V. The secondary coil has 480 turns and powers a small electric motor that requires a current of 0.5 A.

Determine the current supplied to the primary coil of the transformer.

		-
Cumant	$m\Lambda$ (to one significant figure)	
Current =	 mA (to one significant figure)	
		_

QUESTION 2 (2 marks)

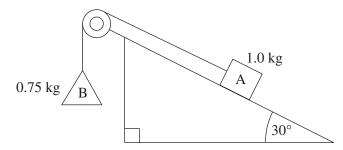
Calculate the wavelength of an electron travelling at 1.0×10^5 m s⁻¹.

Wavelength = _____ m (to two significant figures)

QUESTION 3 (4 marks)

Volcanic lava can often appear to glow different colours, especially red, orange and yellow. The wavelengths of these colours are shown in the table.

Colour	Wavelength (nm)
yellow	570-590
orange	590-620
red	620-750


Rhyolitic lava and basaltic lava have different chemical compositions. Rhyolitic lava has a high silicon content and often glows orange-red. Basaltic lava has a low silicon content and often glows yellow immediately after a volcanic eruption, then glows orange-red after some time has passed.

With reference to black-body radiation, chemical composition and the information in the table, explain why rhyolitic lava and basaltic lava glow differently.

QUESTION 4 (4 marks)

Consider the diagram.

b)

Not to scale

The ramp applies friction to block A. Block B is a hanging mass attached to the other end of the pulley. The pulley is frictionless. The blocks are at rest.

a) Determine the magnitude of the frictional force being experienced by the system. [3 marks]

 Frictional force = ______ N (to two significant figures)

 Identify the direction that block B would move if the ramp were frictionless.

[1 mark]

QUESTION 5 (5 marks)

The average distance between the proton and the electron in a hydrogen atom is 6.0×10^{-11} m.

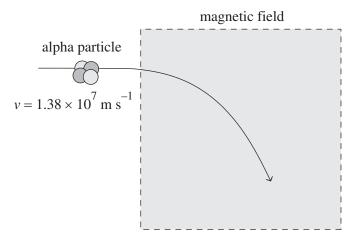
Determine the factor (that is, how many times) by which the electrostatic force is greater than the gravitational force between the proton and the electron in a hydrogen atom.

Factor = _____ (to two significant figures)

QUESTION 6 (3 marks)

Explain how Bohr's model of the atom addressed two limitations of Rutherford's model.

Copyright © 2023 Neap Education Pty Ltd


QUESTION 7 (5 marks)

An energy level diagram for hydrogen is shown.

	$n = \infty$ —		
	<i>n</i> = 5		
	<i>n</i> = 4	—————————————————————————————————————	
	<i>n</i> = 3	-1.51 eV	
	<i>n</i> = 2		
	<i>n</i> = 1		
	Lyman- α emission from a hydrogen atom is a 1.6 nm.	photon with a wavelength	
Deter	mine which energy level transition the Lyma	$n-\alpha$ emission corresponds to.	[3 ma
	Energy level transition =	to	

QUESTION 8 (7 marks)

An alpha particle with a velocity of 1.38×10^7 m s⁻¹ enters a region with a uniform magnetic field, as shown in the diagram.

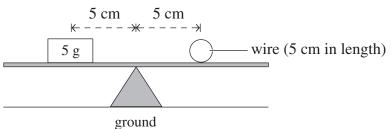
The motion of the alpha particle is perpendicular to the magnetic field until it enters the field, where it is deflected along a circular path with a radius of 78 cm.

Predic	Predict the direction of the magnetic field.		[1 mark]	
Determ	nine the centripetal force acting on the alpha	particle in the magnetic field.	[3 marks]	
	Centripetal force =	N (to three significant figures)		

c) Calculate the strength of the magnetic field. [3 marks]

Strength = _____ T (to three significant figures)

QUESTION 9 (4 marks)


~			· ·			
The	Sun	has	a mass	of 2.0	×	10^{30} kg.

Calculate the average distance between the Sun and Earth.

Distance = _____ m (to two significant figures)

QUESTION 10 (5 marks)

A platform is balanced on a pivot point with a small mass placed on one side and a current-carrying wire placed equidistant from the pivot point on the other side, as shown in the diagram.

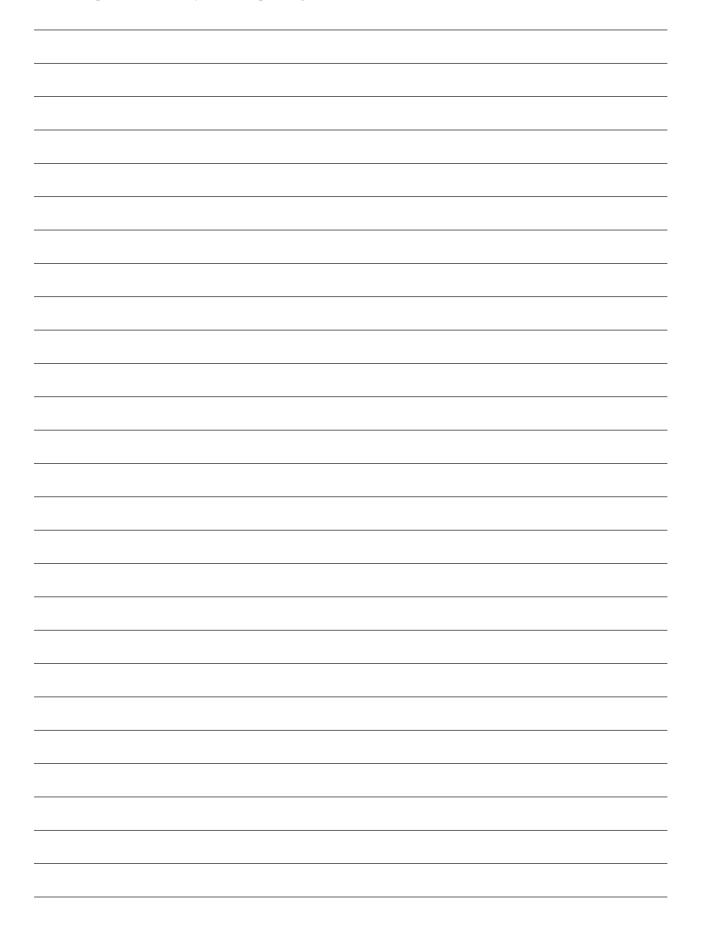
ground

The small mass is 5 g, and the length of the current-carrying wire is 5 cm. The whole system exists in an external magnetic field of 0.7T to the right.

Determine the magnitude and direction of the current in the current-carrying wire.

Magnit	ude of the current =	A (to one decimal pla	ce)
	Direction of the surrant.	=	

QUESTION 11 (7 marks)


A photon with a frequency of 6.60×10^{14} Hz is incident upon a metal with a threshold frequency of 2.50×10^{14} Hz.

Determi	Determine the energy of the photon.		[2 m
Determi	Energy =	J (to three significant figures)metal.	[2 m
[J (to three significant figures)	
Determi		J (to three significant figures)	[3 m
Determin			[3 m
Determin			[3 m
Determin			[3 m
Determit			[3 m

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

Trial Examination 2023

Formula and Data Booklet

QCE Physics Units 3&4

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data
Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times 100$
Percentage error (%) = $\left \frac{\text{measured value} - \text{true value}}{\text{true value}} \right \times 100$

Heating processes		
$T_{\rm K} = T_{\rm C} + 273$	Q = mL	
$Q = mc\Delta T$	$\Delta U = Q + W$	
$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1}\%$		

Ionising radiation and nuclear reactions		
$N = N_0 \left(\frac{1}{2}\right)^n$	$\Delta E = \Delta m c^2$	

Electrical circuits	
$I = \frac{q}{t}$	$P = I^2 R$
$V = \frac{W}{q}$	$V_t = V_1 + V_2 + \dots V_n$
$P = \frac{W}{t}$	$R_t = R_1 + R_2 + \dots R_n$
$R = \frac{V}{I}$	$I_t = I_1 + I_2 + \dots I_n$
P = VI	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$

Linear motion and force	
v = u + at	$W = \Delta E$
$s = ut + \frac{1}{2}at^2$	W = Fs
$v^2 = u^2 + 2as$	$E_k = \frac{1}{2}mv^2$
$a = \frac{F_{\text{net}}}{m}$	$\Delta E_{\rm p} = mg\Delta h$
p = mv	$\sum \frac{1}{2}mv_{\text{before}}^2 = \sum \frac{1}{2}mv_{\text{after}}^2$
$\sum mv_{\text{before}} = \sum mv_{\text{after}}$	

Waves
$$v = f \lambda$$
 $L = (2n-1)\frac{\lambda}{4}$ $f = \frac{1}{T}$ $\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ $L = n\frac{\lambda}{2}$ $I \propto \frac{1}{r^2}$

Gravity and motion	
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$
$s_y = \frac{1}{2}gt^2 + u_yt$	$a_c = \frac{v^2}{r}$
$v_y^2 = 2gs_y + u_y^2$	$F_{\text{net}} = \frac{mv^2}{r}$
$v_x = u_x$	$F = \frac{GMm}{r^2}$
$s_x = u_x t$	$g = \frac{F}{m} = \frac{GM}{r^2}$
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$

Electromagnetism	
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA \cos \theta$
$V = \frac{\Delta U}{q}$	$\mathrm{emf} = -\frac{n\Delta(BA_{\perp})}{\Delta t}$
$B = \frac{\mu_0 I}{2\pi r}$	$\operatorname{emf} = -n \frac{\Delta \phi}{\Delta t}$
$B = \mu_0 nI$	$I_{\rm p}V_{\rm p} = I_{\rm s}V_{\rm s}$
$F = BIL\sin\theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$

Special relativity	
$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$	$p_v = \frac{m_0 v}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$
$L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$	$\Delta E = \Delta m c^2$

Quantum theory	
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$
E = hf	$n\lambda = 2\pi r$
$E_k = hf - W$	$mvr = \frac{nh}{2\pi}$
$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$	

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Heating processes	
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 {\rm J \ kg}^{-1}$
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 {\rm J \ kg}^{-1}$
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 {\rm J kg^{-1} K^{-1}}$
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 {\rm J kg^{-1} K^{-1}}$
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 {\rm J kg}^{-1} {\rm K}^{-1}$

Ionising radiation and nuclear reactions	
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \mathrm{kg}$
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \rm kg$
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \rm kg$
Speed of light in a vacuum	$c = 3 \times 10^8 \text{ m s}^{-1}$

Electrical circuits	
Charge on an electron	$e = -1.60 \times 10^{-19} \text{ C}$

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25°C	$v_{\rm s} = 346 {\rm m s}^{-1}$

Gravity and motion	
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Mass of Earth	$m_{\rm E} = 5.97 \times 10^{24} \rm kg$

П

П

Electromagnetism	
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} T A^{-1} m$

Quantum theory	
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$
Rydberg's constant	$R = 1.097 \times 10^7 \mathrm{m}^{-1}$

SCIENTIFIC NOTATION

Ratio to basic unit	Prefix	Abbreviation
10^{-18}	atto	a
10 ⁻¹⁵	femto	f
10 ⁻¹²	pico	p
10 ⁻⁹	nano	n
10 ⁻⁶ 10 ⁻³	micro	μ
10 ⁻³	milli	m
10^{-2}	centi	с
10 ⁻¹	deci	d
10	deca	da
10 ²	hecto	h
10 ³	kilo	k
10 ⁶	mega	М
10 ⁹	giga	G
10 ¹²	tera	Т

Name	Atomic no.	Symbol	Name	Atomic no.	Syn
Hydrogen	1	Н	Krypton	36	Kr
Helium	2	Не	Rubidium	37	Rb
Lithium	3	Li	Strontium	38	Sr
Beryllium	4	Be	Yttrium	39	Y
Boron	5	В	Zirconium	40	Zr
Carbon	6	С	Niobium	41	Nb
Nitrogen	7	N	Molybdenum	42	Mo
Oxygen	8	0	Technetium	43	Тс
Fluorine	9	F	Ruthenium	44	Ru
Neon	10	Ne	Rhodium	45	Rh
Sodium	11	Na	Palladium	46	Pd
Magnesium	12	Mg	Silver	47	Ag
Aluminium	13	Al	Cadmium	48	Cd
Silicon	14	Si	Indium	49	In
Phosphorus	15	Р	Tin	50	Sn
Sulfur	16	S	Antimony	51	Sb
Chlorine	17	Cl	Tellurium	52	Те
Argon	18	Ar	Iodine	53	Ι
Potassium	19	K	Xenon	54	Xe
Calcium	20	Ca	Cesium	55	Cs
Scandium	21	Sc	Barium	56	Ba
Titanium	22	Ti	Lanthanum	57	La
Vanadium	23	V	Cerium	58	Ce
Chromium	24	Cr	Praseodymium	59	Pr
Manganese	25	Mn	Neodymium	60	Nd
Iron	26	Fe	Promethium	61	Pm
Cobalt	27	Со	Samarium	62	Sm
Nickel	28	Ni	Europium	63	Eu
Copper	29	Cu	Gadolinium	64	Gd
Zinc	30	Zn	Terbium	65	Tb
Gallium	31	Ga	Dysprosium	66	Dy
Germanium	32	Ge	Holmium	67	Но
Arsenic	33	As	Erbium	68	Er
Selenium	34	Se	Thulium	69	Tm
Bromine	35	Br	Ytterbium	70	Yb

LIST OF ELEMENTS

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol		
utetium	71	Lu		
Hafnium	72	Hf		
Tantalum	73	Та		
Tungsten	74	W		
Rhenium	75	Re		
Osmium	76	Os		
Iridium	77	Ir		
Platinum	78	Pt		
Gold	79	Au		
Mercury	80	Hg		
Thallium	81	T1		
Lead	82	Pb		
Bismuth	83	Bi		
Polonium	84	Ро		
Astatine	85	At		
Radon	86	Rn		
Francium	87	Fr		
Radium	88	Ra		
Actinium	89	Ac		
Thorium	90	Th		
Protactinium	91	Pa		
Uranium	92	U		
Neptunium	93	Np		
Plutonium	94	Pu		

18 2	He 4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	86	Rn	(222.0)	118	00	(294)			11	Lu	1/4.9/		103	L	(262.1)	
	17	6	ш.	19.00	17	C	ىي	35	Br	79.90	53		126.90 1	85	At	-	117	Ts				70		1/3.05		102	No		
	16	8	0	16.00	16	S		34	Se		52	Te		84	Po	(210.0) (116	۲۷	(293)			69		168.93		101	Md		
	15	7	Z	14.01	15	4	30.97	33	As	74.92	51	Sh	6	83	Bi Bi	208.98	115	Mc	(288)	I		68		167.26		100	Fm		
	14	9	с С	12.01	14	Si	28.09	32	Ge	72.63	50	Sn	118.71	82	Pb	207.2	114	Ξ	(289)			67	Ho	164.93		66	Es	(252.1)	
	13	2	8	10.81	13	AI	26.98	31	Ga	69.72	49	u	114.82	81	F	204.38	113	ЧN	(284)			99	DV	162.50		98	Cf	(252.1)	
							12	30	Zn	65.38	48	Cd	112.41	80	Ha	200.59	112	Cn	(285)			69	Tb	158.93		97	BK	(249.1)	
TS							11	29	Cu	63.55	47	Au	107.87	79	Au	196.97	111	Ba	(272)	I		64	Cd	157.25		96	Cm	(244.1)	
ELEMEN			*	18S			10	28	Z	58.69	46	Ρd	106.42	78	P t	195.08	110	Ds	(281)	I		63	Eu	151.96		96	Am	(241.1)	
E OF THE	-	umber	in otomio mi	relative atomic mass			6	27	C C	58.93	45	Rh	102.91	17	_	192.22	109	Mt	(268)			62	Sm	150.36		94	Pu	(239.1)	
PERIODIC TABLE OF THE ELEMENTS		1 atomic number	sympol	Leiat			8	26	Fe	55.85	44	Bu	101.07	76	0s	190.23	108	Hs	(265.1)			61	Pm	(146.9)		93	Np	(237.0)	f-life.
PERIOI	KEY	-		I.I.			7	25	Mn	54.94	43	L L	(98.91)	75	Re	186.21	107	Bh	(264.1)			09	Nd	144.24		92	D	238.0	Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.
							9	24	2	52.00	42	Mo	95.95	74	3	183.84	106	Sq	(263.1)			59	Pr	140.91		91	Pa	231.0	ng to IUPAC co e isotope with
							2	23	>	50.94	41	٩N	92.91	73	Ta	180.95	105	Db	(262.1)			58	Ce	140.12		90	Th	232.0	nbered accordir skets are for th
							4	22	Ϊ	47.87	40	Zr	91.22	72	Ħf	178.49	104	Bf	(261.1)	-	Lantnanoids	57	La	138.91	Actinoids	89	Ac	(227.0)	Groups are nun *Values in brac
		_					S	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids			- L 		↑ - ⊢ - - J				1 		
	2	4	Be	9.01	12	Ma	24.31	20	Ca	40.08	38	Sr	87.62	56	Ba	137.33	88	Ba	(226.1)										
-	1.01	3	:=	6.94	11	Na	22.99	19	¥	39.10	37	Bh	85.47	55	Cs	132.91	87	Fr	(223.0)										

Copyright © 2023 Neap Education Pty Ltd

QCE Phys34_FB_2023

9