

Trial Examination 2021

Question and response booklet

QCE Specialist Mathematics Units 3&4

Paper 1 – Technology-free

Student's Name: _____

Teacher's Name:

Time allowed

- Perusal time 5 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- Calculators are **not** permitted.
- Formula booklet provided.
- Planning paper will not be marked.

Section 1 (10 marks)

• 10 multiple choice questions

Section 2 (55 marks)

• 8 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2021 QCE Specialist Mathematics Units 3&4 Written Examination.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

- Choose the best answer for Questions 1–10.
- This section has 10 questions and is worth 10 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	А	В	С	D
Example:	\bullet	\bigcirc	\bigcirc	\bigcirc

	А	В	С	D
1.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc

SECTION 2

Instructions

- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has eight questions and is worth 55 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 11 (8 marks)

Consider that ω is a non-real cube root of 1.

Show that $(1 - \omega)(1 - \omega^2)(1 - \omega^2)$
Show that $(1 + \omega)(1 + 2\omega)(1$

QUE	ESTION 12 (8 marks)	
Cons	sider that $U_n = \int_0^1 x^n \sqrt{1-x} dx$.	
a)	Show that $U_n = \frac{2n}{2n+3}U_{n-1}$.	[3 marks]
b)	Use the result from 12a) to prove that $U_n = \frac{n!(n+1)!}{(2n+3)!} 4^{n+1}$.	[5 marks]

QUESTION 13 (6 marks)

A particle moves in a straight line. Its acceleration is given by $x - 4 \text{ m s}^{-2}$. Initially, $v = \sqrt{5} \text{ m s}^{-1}$ at x = 7 m.

a) Determine v in terms of x.

[4 marks]

b) Describe the resultant motion, stating any restrictions on *x*.

[2 marks]

QUESTION 14 (5 marks)

Use mathematical induction to prove that for all odd $n \ge 1$, $3^n + 7^n$ is divisible by 10.

b) The region bounded by the two curves is rotated about the *x*-axis.

By first considering the volume of one slice, show that the volume of the solid that

generated is
$$2\pi \arctan\left(\frac{1}{2\sqrt{2}}\right)$$
 using $\arctan(a) - \arctan(b) = \arctan\left(\frac{(a-b)}{(1+ab)}\right)$. [5 marks]

8

is

QUESTION 17 (7 marks)

In a chemical equation, a subscript indicates how many of each atom are present in the molecule. For example, one molecule of H_3PO_4 has three atoms of H, one atom of P, and four atoms of O. Consider the following chemical equation.

$$P_2I_4 + nP_4 + pH_2O \rightarrow 4PH_4I + qH_3PO_4$$

The coefficients for P_4 , H_2O and H_3PO_4 are denoted by *n*, *p*, and *q* respectively.

a) Derive the equations necessary to solve for *n*, *p*, and *q* by equating the atoms of P, H, and O on both sides of the equation.

[2 marks]

b) Using the result from 17a), use Gaussian elimination to solve for the values of n, p, and q.

[4 marks]

c) Verify that the values found in 17b) result in a balanced chemical equation. [1 mark]

QUESTION 18 (7 marks)

Two planes are defined by the equations x + 2y - z = -3 and 2x - y + z = 10. A third plane is perpendicular to these planes and passes through the point (2, 1, 0).

Determine the Cartesian equation of the third plane.	[3 marks	
Determine the point of intersection of all three planes.	[4 mark	

END OF PAPER

Trial Examination 2021

Formula sheet

QCE Specialist Mathematics Units 3&4

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Mensuration			
circumference of a circle	$C = 2\pi r$	area of a circle	$A = \pi r^2$
area of a parallelogram	A = bh	area of a trapezium	$A = \frac{1}{2}(a+b)h$
area of a triangle	$A = \frac{1}{2}bh$	total surface area of a cone	$S = \pi r s + \pi r^2$
total surface area of a cylinder	$S = 2\pi rh + 2\pi r^2$	surface area of a sphere	$S = 4\pi r^2$
volume of a cone	$V = \frac{1}{3}\pi r^2 h$	volume of a cylinder	$V = \pi r^2 h$
volume of a prism	V = Ah	volume of a pyramid	$V = \frac{1}{3}Ah$
volume of a sphere	$V = \frac{4}{3}\pi r^3$		

Calculus			
$\frac{d}{dx}x^n = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + c$		
$\frac{d}{dx}e^x = e^x$	$\int e^x dx = e^x + c$		
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$		
$\frac{d}{dx}\sin(x) = \cos(x)$	$\int \sin(x) dx = -\cos(x) + c$		
$\frac{d}{dx}\cos(x) = -\sin(x)$	$\int \cos(x) dx = \sin(x) + c$		
$\frac{d}{dx}\tan(x) = \sec^2(x)$	$\int \sec^2(x) dx = \tan(x) + c$		
$\frac{d}{dx}\sin^{-1}\left(\frac{x}{a}\right) = \frac{1}{\sqrt{a^2 - x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$		
$\frac{d}{dx}\cos^{-1}\left(\frac{x}{a}\right) = \frac{-1}{\sqrt{a^2 - x^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c$		
$\frac{d}{dx}\tan^{-1}\left(\frac{x}{a}\right) = \frac{a}{a^2 + x^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$		

Calculus			
chain rule	If $h(x) = f(g(x))$ then h'(x) = f'(g(x))g'(x)	If $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	
product rule	If $h(x) = f(x)g(x)$ then h'(x) = f(x)g'(x) + f'(x)g(x)	$\frac{dy}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	
quotient rule	If $h(x) = \frac{f(x)}{g(x)}$ then $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
integration by parts	$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	
volume of a solid	about the <i>x</i> -axis	$V = \pi \int_{a}^{b} \left[f(x) \right]^{2} dx$	
of revolution	about the <i>y</i> -axis	$V = \pi \int_{a}^{b} \left[f(y) \right]^{2} dy$	
Simpson's rule	$\int_{a}^{b} f(x)dx \approx \frac{w}{3} \left[f(x_{0}) + 4 \left[f(x_{1}) + f(x_{3}) + \dots \right] + 2 \left[f(x_{2}) + f(x_{4}) + \dots \right] + f(x_{n}) \right]$		
simple harmonic If $\frac{d^2x}{dt^2} = -\omega^2 x$ then $x = A \sin(\omega t + \alpha)$ or $x = A \cos(\omega t + \beta)$		$=A\cos(\omega t+\beta)$	
motion	$v^2 = \omega^2 \left(A^2 - x^2 \right)$	$T = \frac{2\pi}{\omega} \qquad \qquad f = \frac{1}{T}$	
acceleration	$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$		

Real and complex numbers		
complex number forms	$z = x + yi = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta)$	
modulus	$\left z\right = r = \sqrt{x^2 + y^2}$	
argument	$\arg(z) = \theta, \ \tan(\theta) = \frac{y}{x}, -\pi < \theta \le \pi$	
product	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$	
quotient	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$	
De Moivre's theorem	$z^n = r^n \operatorname{cis}(n\theta)$	

Statistics			
binomial theorem	$(x+y)^n = x^n + {n \choose 1} x^{n-1} y + \dots + {n \choose r} x^{n-r} y^r + \dots + y^n$		
permutation	${}^{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \ldots \times (n-r+1)$		
combination	${}^{n}C_{r} = {\binom{n}{r}} = \frac{n!}{r!(n-r)!}$		
	mean	μ	
sample means	standard deviation	$\frac{\sigma}{\sqrt{n}}$	
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}}\right)$		

Trigonometry	
Pythagorean identities	$\sin^{2}(A) + \cos^{2}(A) = 1$ $\tan^{2}(A) + 1 = \sec^{2}(A)$ $\cot^{2}(A) + 1 = \csc^{2}(A)$
angle sum and difference identities	sin(A + B) = sin(A) cos(B) + cos(A) sin(B) sin(A - B) = sin(A) cos(B) - cos(A) sin(B) cos(A + B) = cos(A) cos(B) - sin(A) sin(B) cos(A - B) = cos(A) cos(B) + sin(A) sin(B)
double-angle identities	sin(2A) = 2 sin(A) cos(A) cos(2A) = cos2(A) - sin2(A) = 1 - 2 sin2(A) = 2 cos2(A) - 1
product identities	$\sin(A)\sin(B) = \frac{1}{2}\left(\cos(A-B) - \cos(A+B)\right)$ $\cos(A)\cos(B) = \frac{1}{2}\left(\cos(A-B) + \cos(A+B)\right)$ $\sin(A)\cos(B) = \frac{1}{2}\left(\sin(A+B) + \sin(A-B)\right)$ $\cos(A)\sin(B) = \frac{1}{2}\left(\sin(A+B) - \sin(A+B)\right)$

Vectors and matrices			
magnitude	$ \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \sqrt{a_1^2 + a_2^2 + a_3^2}$		
	$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a} \boldsymbol{b} \cos(\theta)$		
scalar (dot) product	$\boldsymbol{a} \cdot \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$		
vector equation of a line	r = a + kd		
Cartesian equation of a line	$\frac{x - a_1}{d_1} = \frac{y - a_2}{d_2} = \frac{z - a_3}{d_3}$		
	$\boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{a} \boldsymbol{b} \sin(\theta) \hat{\boldsymbol{n}}$		
vector (cross) product	$\boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$		
vector projection	$\boldsymbol{a} \text{ on } \boldsymbol{b} = \boldsymbol{a} \cos(\theta)\hat{\boldsymbol{b}} = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$		
vector equation of a plane	$r \cdot n = a \cdot n$		
Cartesian equation of a plane	ax + by + cz + d = 0		
determinant	If $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\det(\mathbf{A}) = ad - bc$		
multiplicative inverse matrix	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \ \det(\mathbf{A}) \neq 0$		
	dilation	$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$	
linear transformations	rotation	$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$	
	reflection (in the line $y = x \tan(\theta)$)	$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$	

Physical constant	
magnitude of mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$
