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Question 1 D
D is correct.
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A is incorrect. This option may be reached by calculating E(t) instead of λ and SD(t) instead of E(t).

B is incorrect. This option may be reached by confusing the values of λ and E(t). 

C is incorrect. This option may be reached by calculating SD(t) instead of E(t).

Question 2 C
C is correct.
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A is incorrect. This option may be reached by not swapping R1 and R2.

B is incorrect. This option may be reached by not applying the operations to the second part of the 
augmented matrix.

D is incorrect. This option may be reached by subtracting R1 from R3, rather than subtracting R2 from R3.

Question 3 A
A is correct.

( )( )2 3 5 6 10 3 5

10 3

13

2� � � � � �
� � �
� �

i i i i i

i

i

B is incorrect. This option may be reached by simplifying 3i 2 to 3.

C is incorrect. This option may be reached by ignoring the negative in the second bracket.

D is incorrect. This option may be reached by assuming that i is in the second term of the second bracket.
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Question 4 D
D is correct. Reducing the level of confidence will decrease the interval. Given that x = 14 4. ,  the only 
feasible answer is (14.0, 14.8).

A is incorrect. This option may be reached by increasing the interval.

B is incorrect. This option may be reached by decreasing the interval, but changing the value of x .

C is incorrect. This option may be reached by shifting the interval up and thus changing the value of x .

Question 5 C
C is correct. Using the general form of a sphere, where a = –3, b = 4, c = 0 and r = 3, gives:

( ) ( ) ( )

( ( )) ( ) ( )

( ) (

x a y b z c r

x y z

x y

� � � � � �

� � � � � � �

� � �

2 2 2

2 2 2 2

2

3 4 0 3

3 44 92 2) � �z
 

A is incorrect. This option may be reached by misinterpreting the placement of the centre in terms  
of negatives and positions.

B is incorrect. This option may be reached by misinterpreting the placement of the centre in terms  
of negatives and positions, and finding the cube of the radius.

D is incorrect. This option may be reached by finding the cube of the radius, rather than the square.

Question 6 D
D is correct.

n = 2i + 5j – 3k

a = –i + 3j – 2k

Therefore:
r n a n

i j k i j k i j k i j k

� � �
� � � � � � � � � � � �

� �
( ) ( ) ( ) ( )x y z

x y z

2 5 3 3 2 2 5 3

2 5 3 ��19
 

A is incorrect. This option may be reached by confusing a and n.

B is incorrect. This option may be reached by incorrectly multiplying –2 × –3 = –6.

C is incorrect. This option may be reached by adding the inside terms of 3 and 5, rather than multiplying.

Question 7 B
B is correct. Completing the induction step gives:
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� � � �
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k

k k

kassumption step

A is incorrect. This option could be used as a next step, but it does not lead towards substituting the 
assumption step.

C is incorrect. This option could be used as a next step as it attempts to get factors of 5, but it does not 
bring the problem closer to a solution.

D is incorrect. This option may be reached by incorrectly using indices.
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Question 8 C
C is correct. The shaded area is inside the complex region with modulus 3, but outside the complex region 
with modulus 2.

Therefore, the intersection is z z i� � � � �1 3 2.  

A is incorrect. This option may be reached by assuming the shaded area is inside both complex regions.

B is incorrect. This option may be reached by assuming the shaded area is inside the complex region with 
modulus 2 and outside the complex region with modulus 3.

D is incorrect. This option may be reached by assuming the shaded area is outside both complex regions.

Question 9 B
B is correct. The argument of a complex number is the measurement of the angle of its direction from  
the positive x-axis.

Arg z1
1 2

3
0 588

� � � �
�
�

�
�
�

�

�tan

.

Arg

 (fourth quadrant)

z2
1 1

2
0 4636

0 4636

� � �
�

�
�
�

�
�
�

� �
� �
�

�tan

.

.�
22 6779.  (second quadrant)

 

Therefore, Arg(z1) > Arg(z2).

A is incorrect. z z1 25 13= = and ;  therefore, z z1 2< .

C is incorrect. Im(z1) = 1 and Im(z2) = 2; therefore, Im(z1) < Im(z2). 

D is incorrect. Re(z1) = –2 and Re(z2) = 3; therefore, Re(z1) < Re(z2).

Question 10 B
B is correct. The sample mean is x = 30.

Finding the sample standard deviation gives:

s
n

�

�

�

�

�

�
100

10

As n = 100, normality is assumed.

Note: 99.7% of data is expected to lie within 3 × s.

A is incorrect. This graph may be reached by not dividing the standard deviation by n .

C is incorrect. This graph may be reached by not considering the expected normality of the sample.

D is incorrect. This graph may be reached by dividing the sample mean by n .
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SECTION 2

Question 11 (6 marks)

a) l

l
1

2

4 3 5 10

3 1 2 1 3

� � � � � �

� � � � � � � �

( ) ( )

( ) ( ) ( )

� �
� � �

i j k

i j k

Therefore:
5 1 2

2

� �
�

�
�

Substituting into l2 gives:

l2 3 2 1 2 2 1 3 2

5 5 7

� � � � � � � � � �

� � � �

( ) ( ) ( )i j k

i j k

Therefore:

4 3 5

3

� � �
� �

�
�

l1 4 3 3 5 10 3

5 5 7

� � � � � � � �

� � � �

( ( )) ( ( ))i j k

i j k

Therefore, lines l1 and l2 intersect at the point –5i + 5j – 7k.
[2 marks]

1 mark for determining µ OR λ.
1 mark for providing the correct solution.

b) d d1 3 3 2 3

3 1 1 3

0

�

�

� � � � � �

� � � � � � �

( ) ( )

( ) ( ) ( )

i k i j k

Therefore, l1 and l2 are perpendicular.
[1 mark]

1 mark for showing that the dot product is equal to 0 and therefore the lines  
are perpendicular.

c) 

d d1 3 3 0 1

1 2 3

0 3 1 2 3 3 1 1 3

� � �
� �

� � � � � � � � � � � � �� � � �

i j k

i j( ( ) ( ) ) ( ) ( ) ( ) 22 0 1

2 10 6

� � �� �
� � �

( ) k

i j k
r n a n

x

x y z

� � �

�
� � � � � � � � � � � �( ) ( ) ( ) ( )i j k i j k i j k i j k2 10 6 5 5 7 2 10 6

2 10yy z

x y z

x y z

� � � � �
� � � �
� � � �

6 10 50 42

2 10 6 2

5 3 1

[3 marks]
1 mark for using an appropriate plane formula and substituting the correct values.

1 mark for using an appropriate technique using d1 and d2 to find the perpendicular vector.
1 mark for providing the equation of the plane.

Note: Consequential on answer to Question 11b).
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Question 12 (4 marks)

a) Slope field A represents 
dy

dx
x y= cos( ).

Slope field B represents 
dy

dx
x y� � 2.

In slope field A, each coordinate on the y-axis has a gradient of 0, which matches the differential 

equation 
dy

dx
x y= cos( )  because each point on the y-axis has an x-value of 0.

[2 marks]
1 mark for linking each differential equation with its slope field.

1 mark for explaining reasoning.
Note: Accept any suitable considerations of key differences, such as the negative versus  
positive gradient values in quadrant 1 and 4; a series of individual points (at least two);  

observation of non-zero values on the y-axis of slope field B; or gradients of zero  
at points (–1, 1) and (–1, –1) in slope field B.

b) 

–3 –2 –1 1 2 3

3

2

1

y

x

–1

–2

–3

0

[2 marks]
1 mark for providing gradient marks for all values in each quadrant.

1 mark for sketching all gradient marks suitably to show approximate patterns.
Note: Be considerate of the slope of each mark and accept some error; consider where  

the slopes should be increasing or decreasing, as shown in the diagram.
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Question 13 (5 marks)

a) If p(2) = 0, then (z – 2) is a factor.
[1 mark]

1 mark for stating that (z – 2) is a factor.
Note: Accept (z + 3 –2i) or (z + 3 + 2i) if they are provided.

b) p z z z z

Az B A z C B z C

z Az Bz C

( )

( ) ( )

( )

� � � �

� � � � � �

� � � �� �

3 2

3 2

2

4 26

2 2 2

2
 

Equating cubic terms gives:

A = 1

Equating the constant terms gives:

� � �
�

26 2

13

C

C

Equating the quadratic terms gives:

B A

B

� �
�

2 4

6

Therefore:

p z z z z

z z z

z z

z

( ) ( )

( )

( ) ( )

(

� � � �� �
� � � � �� �
� � � �� �
� �

2 6 13

2 6 9 4

2 3 4

2

2

2

2

)) ( ) ( )

( )( )( )

z i

z z i z i

� �� �
� � � � � �

3 2

2 3 2 3 2

2 2

[4 marks]
1 mark for showing (z – 2) as a factor with a quadratic multiple.

1 mark for determining the quadratic factor in the expression for p(z).
1 mark for using a suitable technique to factorise the quadratic.

1 mark for providing the complete factorisation.
Note: Consequential on answer to Question 13a).
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Question 14 (5 marks)

a) 1 2 1

2 3 3
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�
�
�

[1 mark]
1 mark for providing the correct solution.

b) 1 2 1

2 3 3

0 2 1

3
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0 0 3
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1

6 3

1 2 1

0 1 1

0 0 1
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� � �

� �
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�
� 

Therefore:

z = –2

y z

y

� �
�

1

3

x y z

x

� � � �
�

2 3

5
[4 marks]

1 mark for subtracting 2R1 to simplify row 2.
1 mark for using row-echelon form.

1 mark for finding the value of one variable.
1 mark for finding the values of the two remaining variables.

Note: Allow any suitable Gaussian technique.
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Question 15 (7 marks)

a) tan ( )sec ( )3 2x x dx∫
Letting u = tan(x) gives:

du

dx
x

dx
du

x

=

=

sec ( )

sec ( )

2

2
 

tan ( )sec ( ) sec ( )
sec ( )

tan ( )

3 2

3

4

3 2
2

4

4
1

4

x x dx

u du

u
c

u x
du

x

x

�
�

�

�

� �

� �� c 

[3 marks]
1 mark for choosing the correct substitution.

1 mark for using 
du

dx
 to eliminate sec2(x).

1 mark for providing the correct final integral.
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b) 
ln x

x
dx

22

4

∫
If u x u

x
� � �ln , . 

1

If � � �v x 2:

v x

x

� �

� �

�1

1

ln ln

ln

x

x
dx

x

x x x
dx

x

x
x dx

22

4

2

4

2

4

2

4
2

2

1 1� �� ��
��

�
��
� ��

� ��
��

�
��
� � �

44

2

4

2

4
1

4

4

2

2

1

4

1

�
� ��
��

�
��
� ��
��

�
��

� � � ��
�
�

�
�
�

�
�
�

�
�
� � �

ln

ln ln

x

x x

22

1

4

2

2

2

2

1

4

2

�
�
�

�
�
�

�

� � � �
ln ln

 units

[4 marks]
1 mark for identifying integration by parts and finding the appropriate u and v′ values.

1 mark for substituting into the integration by parts rule.
1 mark for completing the integration up to the substitution of boundaries.

1 mark for providing the correct solution.
Note: Consequential on answer to Question 15a).
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Question 16 (5 marks)
initial statement:

f ( )1 5 4 1 11

25 4 11

32

16 2

1 1� � � �
� � �
�
� �

�

Assumption step:

f(k) = 5k + 1 – 4k + 11 = 16A, A ∈ Z

inductive step:

Required to prove that f(k + 1) = 5(k + 1) + 1 – 4(k + 1) + 11 – 16B, B ∈ Z

LHS � � � �

� � � �

� � � �

� � �

� �

�

�

�

5 4 1 11

5 4 4 11

5 5 4 7

5 5 20

1 1

5 2

1

1

( ) ( )k

k

k

k

k

k

k �� � �

� � � � �

� � �
� � � �

�

55 16 48

5 5 4 11 16 3

16 5 3

5 16 16 3

1

k

k k

A k

A k

k( ) ( )

( )

( )

��16B

� � � � �B A k B Z5 3,  

Conclusion:

It has been shown that if the rule works for n = k, then it must also work for n = k + 1. Thus, since step 1 
proved that it was true for n = 1, it must also be true for n = 2. Additionally, if it is true for n = 2, it must  
be true for n = 3 and so on…

[5 marks]
1 mark for proving the initial statement.

1 mark for stating the assumption step and proof requirements for the inductive step.
1 mark for using the assumption step as part of the proof step.

1 mark for providing the evidence and reasoning used to identify the result as a multiple of 16.
1 mark for communicating the key steps of completing the proof.
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Question 17 (6 marks)

a) Writing 4 4 3− i  in polar form:

R � � � �
� �
�

( )4 4 3

16 48

8

2 2

 

�

�
�

�
��

�
��

�

�
��

� � � �

�tan

,

1 4 3

4

3
2 k k Z

Therefore:

z k

z k

3

1
3

8
3

2

8
3

2

2
9

2

� � ��
�
�

�
�
�

� � ��
�
�

�
�
�

�

�
�

�

�
�

� � �

cis

cis

cis

�
�

�
�

� � kk

3
�
�
�

�
�
�

For k = 0, z � ��
�
�

�
�
�2

9
cis

�

For k = 1, z � �
�
�

�
�
�2

7

9
cis

�

For k = –1, z � �
�
�

�
�
�2

13

9
cis

�

[3 marks]

1 mark for correctly writing z3 in polar form.

1 mark for correctly applying De Moivre’s theorem to determine a general solution for z.

1 mark for determining three unique solutions.
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b) cos sin
5

8

5

8

5

8

� �

�

�
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
� �

�
�
�

�
�
�

�

�
�

�

�
� �

i i

i

a

a

cis

ciss
5

8

�a
i

�
�
�

�
�
� �

cis cis
5

8 2
2

4

5

16

5

5

8 2
2

� �
�

� �
�

a
k

a k

a
k

�
�
�

�
�
� � ��

�
�

�
�
�

� �

� �

As the first positive integer value of a occurs at k = 1, a = 4.
[3 marks]

1 mark for using De Moivre’s theorem to bring a into the argument.
1 mark for applying any suitable rule to find a relevant value for a, in terms of k or otherwise.

1 mark for identifying a = 4 as the first positive integer.
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Question 18 (5 marks)

If z w z w� � � :

z z i w w i z z i w w i

z w z w i z w

1 2 1 2 1 2 1 2

1 1 2 2 1 1

�� � � �� � � �� � � �� �
�� � � �� � � �� �� � �� �

� � �

�� � � �� � � �� � � �� �

z w i

z z w w

z w z w z w z w

2 2

1
2

1 1 1
2

1 1
2

2 2 1 1
2

2 2

2 zz z w w z z w w z z w w

z w z w z
2

2
2 2 2

2
1
2

1 1 1
2

2
2

2 2 2
2

1 1 2 2

2 2 2

2 2 2

� � � � � � � �

� � � � 11 1 2 2

1 1 2 2

1 1 2 2

2

4 4

w z w

z w z w

z w z w

�

� �

� �

w

z

w w i

z z i

w z z w i z w i

w w i

z z i

z z i

z z i

�
�
�

�
� �

�
�
�

�
�
�

1 2

1 2

1 1 1 2 2 1

1 2

1 2

1 2

1 2

��

�

�
� � �� �

�

z w i

z z i

w z z w z w z w i

z z

2 2
2

1
2

2
2 2

1 1 2 2 1 2 2 1

1
2

2
2

Using z1w1 = –z2w2 gives:

�
� � � �� �

�

�
�

�
�� �
�

w z z w z w z w i

z z

z w z

z w z w i

z z

2 2 2 2 1 2 2 1

1
2

2
2

1 2

1 2 2 1

1
2

2
2

22 1

1
2

2
2

w

z z
i

�

�

�
�

�

�
� 

Therefore, 
w

z
 is purely imaginary, as required.

[5 marks]
1 mark for converting z w z w� � �  into a statement involving square roots.

1 mark for finding a relevant relationship between z1, z2, w1 and w2 from the statement  

involving square roots.

1 mark for using the complex conjugate to simplify the denominator of 
w

z
 into a real number.

1 mark for using z1w1 = –z2w2 to simplify 
w

z
.

1 mark for providing the final imaginary representation and concluding statement.
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Question 19 (7 marks)

dC

dt
r kC

r kC
dC dt

r kC
dC dt

r kC

k
t c

� �

�
�
�
�

�
�
� �

�
�
�
�

�
�
� �

�

�
� �

� �

1

1

ln 

At t = 0, C = C0.

ln

ln

r kC

k
c

c
k

r kC

�

�
� �

� � �

0

0

0

1 

Therefore:

�
�

� � �

� � � � �

�
�

� �

�

ln
ln

ln ln

ln

r kC

k
t

k
r kC

r kC r kC kt

r kC

r kC
kt

r kC

r

1
0

0

0

��
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To find lim ( ),
t

C
��

the following components of the function must be considered.

• Both r and k are positive.

• r – kC > 0 due to the logarithm; therefore, both C and C
r

k0 < .

(continues on next page)
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(continued)
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[7 marks]
1 mark for rearranging the differential equation into an integral.

1 mark for solving the integral.
1 mark for determining a suitable value for the constant of integration, c.

1 mark for rearranging the equation to reach C = f(t). 
1 mark for applying a limit argument to any suitable function.

1 mark for determining the correct limit for C.
1 mark for communicating key steps and using logical working.
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