
Algorithmics Trial Exam 2 2022: Page 1 SOLUTIONS

 ALGORITHMICS UNIT 3 & 4 2022

Trial Exam 2: 2022 Solutions
SECTION A - Multiple Choice Solutions

Question 1 B

Question 2 B

Question 3 A

Question 4 A

Question 5 A

Question 6 C

Question 7 D

Question 8 A

Question 9 D

Question 10 A

Question 11 D

Question 12 D

Question 13 A

Question 14 A

Question 15 D

Question 16 A

Question 17 D

Question 18 D

Question 19 A

Question 20 C

SECTION B – Extended Response Questions Answer all questions in the space provided.

Question 1 (8 marks)

a) Prims builds up a solution to an optimization problem one step at a time, looking only at an edge of least

weight among those that connect a new vertex to the MST. It does not care about the long-term

implications of the edge that is selected; it only picks the best edge based on the current step. Greedy

algorithms pick the next most favourable option, often using a priority queue to sort the options. This is

done until some criteria is met.
b) minimum spanning tree for the graph shown above using Prim’s Algorithm. State the cost of the tree.

 cost = 16

c) A simple implementation of Prim's, using an adjacency list graph representation and linearly searching an

array of weights to find the minimum weight edge, to add requires O(|V|2) running time.

d) If each edge has a distinct weight then there will be only one, unique minimum spanning tree. If the edge

weights are not unique, there may be multiple MSTs.

Question 2 (10 marks)
a) The Loop invariant condition in this algorithm is at the end of each loop there is a MST connecting a subset of the

vertices V. Let S be a subset of Vertices of V for which at each iteration of the loop that are connected by a MST.

At the end of each loop the MST will increase by one edge, which will be the

cheapest edge that connects vertices in set S to vertices in set “V-S”.

Hence the loop invariant condition will be maintained until the set “V-S” is

empty and S=V.

b)
function AlterMST(Input graph MST, edge u-v)

TheEdgeweight := w(u-v)
For each edge E adjacent to vertices in list {u,v} ordered by weight do
 If (edge E is not already in MST) and (weight(E) < TheEdgeWeight) then
 CanIncrease:= TheEdgeWeight – weight(E)-1
 End if
End do
Return CanIncrease

End function

https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Big-O_notation

Algorithmics Trial Exam 2 2022: Page 2 SOLUTIONS

Question 3 (12 marks)
a) In your own words describe the characteristics that make a problem tractable or untractable.

Tractable – best algorithm for problem has polynomial time complexity

Intractable – best algorithm for the problem has exponential or worse time complexity

b) What is the difference between problems in the class “P” and the problems in class “NP”? Give an example of a

problem in “P” and “NP”.

P problems have solutions that can be found correctly in polynomial time

NP problems have solutions that cannot be found in polynomial time but correct solutions can be verified in

polynomial time. P problem – ordering a list of numbers; NP problem – Knapsack problem has a solution found in

exponential time

c) What are the characteristics of an NP-complete problem and how does it relate to P, NP and NP-Hard problems?

Give an example of an NP-Complete problem.

NP-Complete problems are considered to be a subset of both NP and NP-Hard problems when P is not equal to NP.

NP-Complete problems have solutions that cannot be found in polynomial time when a solution is found it cannot

always be verified in polynomial time that is why it overlaps with NP-Hard problems cannot be solved or solutions

verified in polynomial time. NP-Complete problems are grouped together since if a solution is found for one of them

that is polynomial moving the problem to “P” class then all of NP-Complete will be “P” since the problems are

similar. An example of an NP-Complete problem is one of {TSP, Knapsack problem, 3 colour map colouring,…..}

d) What strategies can be sued to find an “acceptable” solution for an NP-Complete problem?

Heuristics can be used to find an approximation to the correct solution. Strategies such as optimisation by hill

climbing or other greedy methods may be used. Random exploration of options can also be used, such as combining

hill climbing with random selections and probabilistic methods in the process described as simulated annealing.

e) Describe in detail that characteristics of an undecidable problem in Computer Science.

An undecidable problem is a problem that requires a Boolean (yes or no) answer that is uncomputable.
Uncomputable means that no algorithm (algorithm = a set of instructions that completes in finite time) exists to
solve the problem.
f) Suppose you’re working on a lab for a programming class,, have written your program, and start to run it. After five

minutes, it is still going. Does this mean it’s in an infinite loop, or is it just slow and doing calculations? Explain your
answers.

There is no way of knowing in advance if the program will ever stop. This is an example of an undecidable problem.
Turing showed that it is impossible to determine if a program contains an infinite loop which he called the “Halting
problem”.

Algorithmics Trial Exam 2 2022: Page 3 SOLUTIONS

Question 4 (10 marks)

a) What properties of problems are best suited for solving using backtracking design patterns? How do

Backtracking algorithms compare with naïve Brute Force algorithms in terms of efficiency? (3 marks)

• Backtracking is an algorithmic design pattern that tries different solutions until finds a solution that

“works”. Problems that are typically solved using the backtracking technique have the following

property in common. These problems can only be solved by trying every possible configuration and

each configuration is tried only once.

• A Naive solution for these problems is to try all configurations and output a configuration that follows

given problem constraints.

• Backtracking works incrementally and is an optimization over the Naive solution where all possible

configurations are generated and tried.

b) Describe how Backtracking algorithms strategies work to solve problems, giving details of the abstract

data types that they commonly use. (3 marks)

• Backtracking works in an incremental way to attack problems. Typically, we start from an empty

solution array (vector) and one by one add items, the meaning of item varies from problem to problem.

• When we add an item, we check if adding the current item violates the problem constraint, if it does

then we remove the item and try other alternatives.

• If none of the alternatives works out then we go to the previous stage and remove the item added in the

previous stage. If we reach the initial stage back then we say that no solution exists. If adding an item

doesn’t violate constraints then we recursively add items one by one. If the solution array (vector)

becomes complete then we print the solution.

The Knight’s Tour problem Given a N*N board with the Knight placed anywhere on an empty board.

Moving according to the rules of chess knight must visit each square exactly once.

Place a knight anywhere on

a 5x5 chess board to start.

X’s indicate possible

moves from start.

25 cell array

A possible solution is

shown.
Another possible

solution .
Constraint: Knights chess pieces move in an “L-shape” that is: two squares in any direction vertically followed by

one square horizontally, or two squares in any direction horizontally followed by one square vertically.

c) Explain the main actions of a Backtracking algorithm using ADTs described in part b) which solves

the Knight’s Tour problem for an N*N chess board, from any starting position. (4 marks)

 If all squares are visited

 return the solution

Else

• Add one of the next moves to solution array (vector) and recursively check if this move leads to

a solution.

• If the move chosen in the above step doesn't lead to a solution then remove this move from the

solution vector and try other alternative moves.

• If none of the alternatives work then return false (Returning false will remove the previously

added item in recursion and if false is returned by the initial call of recursion then "no solution

exists")

Algorithmics Trial Exam 2 2022: Page 4 SOLUTIONS

Question 5 (10 marks)

Problem: Survival

Natural disasters have squashed Coda City and it is now a

wasteland roamed by dangerous rats. You have taken refuge in

the sewers underneath the city. Fortunately you have your solar

powered laptop. Unfortunately, you have no food with you, and

so you must leave the sewer to stock up on supplies.

Coda City consists of streets running north-south and east-west,

forming a grid. Every street intersection has a manhole. The

intersections are given coordinates as shown on the diagram:

Some street intersections contain abandoned shopping trolleys containing food items, cast aside by

panicking civilians during the disaster. Since being outside at all is a massive risk, you decide to visit all the

shopping trolleys in one trip.

Your plan is as follows: You will emerge from any manhole. You will then run along the streets, emptying

trolleys as you go. You can only travel in an easterly direction, do not head west, as sun rays will blind

you. Once you have been to all the trolleys, you will climb down any manhole.

Your task is, given the locations of abandoned trolleys within the city, to determine the smallest possible

distance that you must travel above ground in order to collect food from all the abandoned trolleys.

Survival Input Survival Output

Integer T the number of trolleys

List Tcoords a list of (x,y) coordinates showing the position of the kth

trolley

should be a single integer which is

the shortest distance you must

travel above ground to collect all

the food from all the trolleys.

Remember, you cannot go west .

Sample Input Sample Output

Algorithm Survival(8, {(1,0),(4, 3),(3, 4),(4,4),(1, 2),(3,1),(4,5),(6,1)})

The trolleys in the sample data are shown in the diagram above.

16

Explanation

The thick black line shows one

possible shortest path which visits

all trolleys, starting from the

bottom-left trolley and ending at the

bottom-right trolley.

The length of this path is 16.

Although many other paths are

possible, there are no shorter paths,

therefore the answer is 16.

If a brute force naïve approach is taken to write an algorithm to find the solution, what will be the worst case

time complexity of the naïve approach? Explain your response

a) The naïve brute force approach will create a solution of O(n!) since at every decision point there will be n-1

trolleys to choose from. The naïve approach will make the problem intractable for large n.

Algorithmics Trial Exam 2 2022: Page 5 SOLUTIONS

b) Function Survival(Input T, List TCoords(x,y) locations)
// T is the number of Trolleys, TCoords is a list of Trolleys with their (x,y) location
// Order Trolleys by x coordinate as cannot move west, only can go east, south and north

OrderedTrolleyList := Sort(TCoords by x-coordinate)
FirstTrolley := first item of OrderedTCoords
X0 := FirstTrolley x-coordinate
Y0 := FirstTrolley y-coordinate
// emerge from any eastern most manhole is at (X0,Y0) proceed greedily heuristic
Remove FirstTrolley from OrderedTrolleyList
Add FirstTrolley to CollectedTrolleyList
TotalDistance := 0
While (OrderedTrolleyList is not empty) do
 MinDist := MaxInteger
 MinDistIndex := -1
 For i:=1 to length(OrderedTrolleyList) do
 // Find westernmost trolley with minimum distance to last collected Trolley

 NewX := OrderedTrolleyList[i] x-coordinate
 NewY := OrderedTrolleyList[i] y-coordinate
 Distance[i] := (NewX – X0) + (NewY – Y0)
End do
FindWesternmostNearest(Distance,MinDist,MinDistIndex)

 // Next nearest westernmost trolley is MinDist given by MinDistIndex
 Add OrderedTrolleyList[MinDistIndex] to CollectedTrolleyList
 X0 := OrderedTrolleyList[MinDistIndex] x-coordinate
 Y0 := OrderedTrolleyList[MinDistIndex] y-coordinate
 TotalDistance := TotalDistance + MinDist
 Remove OrderedTrolleyList[MinDistIndex] from OrderedTrolleyList
end do
return TotalDistance

end Function

c) A greedy Nearest Neighbour heuristic approach has been used in the algorithm above. This will give a good
approximate solution in most cases, but may not give the correct solution. This problem is similar to the
Travelling Salesman problem with the added constraint of not being able to travel west, which makes it an NP-
Complete problem requiring a heuristic approach in this case using a Greedy strategy.

Algorithmics Trial Exam 2 2022: Page 6 SOLUTIONS

Question 6 (10 marks)

a. Describe in your own words and in Pseudocode how the Minimax algorithm works on a game tree.

(2 marks)

In English In Pseudocode

• In a two player zero sum game the minimax

algorithm seeks to maximise the score for a player

against his opponent.

• The algorithm assumes the opponent is equally

skilled and will seek to minimise the advantage to

the other player.

• The scores are tabulated on a tree where the leaf

nodes show the advantage to the player.

• The player seeks the maximum score of the child

branches, the opponent seeks the minimum score

of the child branches.

function minimax(node, depth, maximizingPlayer)
 if depth = 0 or node is a terminal node
 return the heuristic value of node
 if maximizingPlayer
 bestValue := -∞
 for each child of node
 val := minimax(child, depth - 1, FALSE)
 bestValue := max(bestValue, val)
 return bestValue
 else
 bestValue := +∞
 for each child of node
 val := minimax(child, depth - 1, TRUE)
 bestValue := min(bestValue, val)
 return bestValue
end function

(* Initial call for maximizing player *)
minimax(origin, depth, TRUE)

b. Label all internal nodes of the following tic-tac-toe game tree with the value that Minimax algorithm

would compute. The leaves have already been labelled. (2 marks)

Original Solution

Algorithmics Trial Exam 2 2022: Page 7 SOLUTIONS

Question 6 - continued

c. Consider the following subset of game tree for the game of checkers below. In case you didn’t know,

Checkers is a zero-sum game played by two players on an 8x8 board. Each player begins with 12

counters and the aim is to capture the opponent’s counters and remove them from the board.

Is it feasible to analyse every possible node in the game tree? Justify your response. (2 marks)

• It is not feasible to analyse every node due to the exponential growth of the game tree.

• As there are from 1-24 counters on the board at any one time that can move to 64 possible

locations.

d. How could a heuristic be applied to the checkers game tree? Describe the mathematical principles that

could be used to determine a “good guess” in terms of what the next best move might be for a player.

(2 marks)

• One strategy could be to only look ahead only a few moves and then apply a heuristic function

to the tree.

• A heuristic function could be created to analyse the optimum move based on a combination of

minimax and backtracking. The function could determine good paths and prune back paths

that are considered not so favourable, this would then reduce the size of the decision tree and

allow a decision to be made in a feasible time.

e. How can you evaluate how good the checkers game heuristic is? Explain your response.

 (2 marks)

• Can it beat a skilled human checkers player?

• A good heuristic could be evaluated by many human opponents who were expert at checkers.

Algorithmics Trial Exam 2 2022: Page 8 SOLUTIONS

Question 7 (10 marks)

Divide and Conquer – Master Theorem
a) Classify the following Master Theorems in terms of Big-O notation.

o 𝑇(𝑛) = 5𝑇 (
𝑛

8
) + 𝑛 a=5,b=8, k=1 =>

𝑎

𝑏𝑘 =
5

81 < 1 ∴ 𝑂(𝑛)

o 𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛2 a=4, b=2, k=2=>

𝑎

𝑏𝑘 =
4

22 = 1 ∴ w𝑜𝑟𝑘 𝑖𝑠 𝑂(𝑛2 log2 𝑛)

o 𝑇(𝑛) = 3𝑇 (
𝑛

4
) + 𝑓(√𝑛) a=3, b=4, k=0.5 =>

𝑎

𝑏𝑘 =
3

40.5 > 1 𝑂(𝑛log2 3)

b) Consider the pseudocode and show the complexity of MergeSort is O(nlogn)

c) Master theorem 𝑎 = 2, 𝑏 = 2, 𝑘 = 1

𝑎

𝑏𝑘 =
2

21 = 1 => 𝑂(𝑛𝑙𝑜𝑔𝑛)

d) Given an unsorted list of numbers {3,7,9,2} show the detailed steps that mergesort would use to sort

the list.

e) Mergesort is a divide and conquer design pattern and has better time complexity than the Brute Force

method such as BubbleSort.

Algorithmics Trial Exam 2 2022: Page 9 SOLUTIONS

Question 8 (10 marks)

Consider the following Algorithm that converts a Binary Tree into an ordered List.

A binary search tree is a rooted binary tree, whose internal nodes
each store a key (and optionally, an associated value) and each have
two distinguished sub-trees, commonly denoted left and right. The tree
additionally satisfies the binary search tree property, which states that
the key in each node must be greater than all keys stored in the left
sub-tree, and smaller than all keys in right sub-tree.

Procedure Tree2List(input TreeNode, output NodeList)

// TreeNode.right follows the right subtree
// TreeNode.left follows the left subtree
If (TreeNode has children) then

Tree2List(TreeNode.right, NodeList)
Append TreeNode to NodeList
Tree2List(TreeNode.left, NodeList)

Else
Append TreeNode to NodeList

End if
End procedure

O(1) if

T(n/2)

O(1)

T(n/2)

O(1)

O(1)

a. Label the time complexity of each command on the pseudocode above using the table. (2 marks)

b. Determine the recurrence relation for the time complexity of this algorithm, (2 marks)

Since the tree traversal is being split into two sub-problems, left of current node and right of current node,

this is an example of divide and conquer.

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑂(𝑛𝑜)

c. and hence the time complexity of the algorithm above. (1 mark)

𝑈𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑀𝑎𝑠𝑡𝑒𝑟 𝑇ℎ𝑒𝑜𝑟𝑒𝑚

o 𝑎 = 2, 𝑏 = 2, 𝑘 = 0=>
𝑎

𝑏𝑘 =
2

20 > 1 => 𝑂(𝑛log2 2) = 𝑂(𝑛)

https://en.wikipedia.org/wiki/Rooted_tree
https://en.wikipedia.org/wiki/Binary_tree

Algorithmics Trial Exam 2 2022: Page 10 SOLUTIONS

Question 8 (condintued
d. What is the time complexity of searching for a particular value in a binary tree? Explain and justify your

answer. (2 marks)

function Find-recursive(key, node): // call initially with node = root

 if node = Null or node.key = key then

 return node

 else if key < node.key then

 return Find-recursive(key, node.left)

 else

 return Find-recursive(key, node.right)

if we use the recurrence relation for this algorithm is T(n)=T(n/2)+1 this is assuming that splitting of data

will occur, roughly half and half, 𝑈𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑀𝑎𝑠𝑡𝑒𝑟 𝑇ℎ𝑒𝑜𝑟𝑒𝑚

o 𝑎 = 1, 𝑏 = 2, 𝑘 = 0=>
𝑎

𝑏𝑘 =
1

20 = 1 ==> 𝑂(𝑛0 log2 𝑛) = 𝑂(log 𝑛)

e. Consider the following binary trees and explain how their structure may or may not impact on searching for
a particular value. (3 marks)

Case 1 Case 2

In this balanced tree – the value will be found on

average in… 𝑂(log 𝑛)

because on average recurrence relation for this

algorithm is T(n)=T(n/2)+1 this is assuming that

splitting of data will occur, roughly half and half

In this unbalanced tree – the worst case of the time

complexity will occur where every value will be

compared to the particular value.

This will result in “n” comparisons, therefore the

worst case time complexity is shown O(n)

the recurrence relation for this algorithm is

T(n)=T(n-1)+1 this is assuming the split divides

the data into 1 and (n-1)

By telescoping

T(n)-T(n-1)=O(1)

T(n-1)-T(n-2)=O(1)

……………………

T(2)-T(1)=O(1)

T(1)-T(0)=O(1)

===============

T(n)-T(0)=n*O(1) ➔T(n)=O(n)

