
Biology 2018 Assessment Guide

Section A

polarity

VCAA Key	Quantian	Δ	
Knowledge	Question	An	swer guide
Independent, dependent and controlled variables	 Question 1 During an experiment, a controlled variable is A. kept constant. B. only altered once. C. also known as the independent variable. D. the one factor that is not the same between the experimental and the control group. 	A	A controlled variable is kept constant in all groups during an experiment.
Methods of organising, analysing and evaluating primary data to identify patterns and relationships including sources of error and limitations of data and methodologies	 Question 2 When graphing results from an experiment A. the existence of a correlation establishes that there is a causal relationship between two variables. B. the independent variable is represented on the vertical axis while the dependent variable is represented on the horizontal axis. C. the independent variable is represented on the horizontal axis while the dependent variable is represented on the horizontal axis. D. all experiments will show a correlation between variables. 	С	As per the VCAA Advice for Teachers page http://www.vcaa.vic.edu.a u/Pages/vce/adviceforteac hers/biology/graphicalrepo fdata.aspx.
The fluid mosaic model of the structure of the plasma membrane and the movement of hydrophilic and hydrophobic substances across it based on their size and	 Question 3 The size of a molecule influences its passage across a plasma membrane, which means that, generally, A. large molecules cannot enter the cell. B. small molecules enter the cell via a carrier protein. C. water is too large to cross the phospholipid bilayer. D. glucose is too large to cross the phospholipid bilayer. 	D	Glucose is a large molecule and requires a channel protein to cross the membrane.

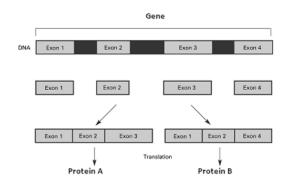
Use the following information to answer Questions 4 and 5.

	Source	: http://kmbiology.weebly.com		
The fluid mosaic	Question 4			The process is active
<i>model of the structure of the</i>	The	e image above represents a process that assists the diamond-		transport where molecules
plasma	shaped molecules to move across the plasma membrane into			are moved across the
membrane and the movement	the	cell. Which of the following is correct regarding the process		plasma membrane against
of hydrophilic	dep	victed?		their concentration
and	Α.	it is passive		gradient.
hydrophobic substances	В.	it is required to move water across the plasma membrane		
across it based	C.	it occurs only in animals and not in plants		
on their size and	D.	it moves molecules against their concentration gradient		
polarity				

The fluid mosaic	Qu	estion 5	В	There is a greater
model of the structure of the	Giv	en the information depicted in the image, it can be assumed		difference in molecule
plasma	tha	t the round-shaped molecules are likely to cross the plasma		concentration on either
membrane and the movement	me	mbrane into the cell		side of the membrane for
of hydrophilic	Α.	at a slower rate than the diamond-shaped molecules.		the round molecules in
and	Β.	at a faster than the diamond-shaped molecules.		comparison to the
hydrophobic substances	C.	and requires energy to do so.		diamond. This would
across it based	D.	by moving between the phospholipid heads.		therefore contribute to a
on their size and				higher rate of movement
polarity				across the membrane of
				the round-shaped
				molecules.

The role of	Qu	estion 6	Α	Carbohydrates are not
different organelles	Wh	nich of the following is not a possible function of the rough or		synthesised at the
including	sm	ooth endoplasmic reticulum?		endoplasmic reticulum.
ribosomes, endoplasmic	Α.	synthesis of carbohydrates		
reticulum, Golgi	В.	synthesis of proteins		
apparatus and	C.	transport of proteins		
associated vesicles in the	D.	synthesis of lipids		
export of a				
protein product				
from the cell				
through				
exocytosis				

Use the following information to answer Questions 7 and 8.


	Source	: http://onwe.bioinnovate.co		
Nucleic acids as	Que	estion 7	D	The image is of an RNA
information molecules that	The	e image above depicts		nucleotide. The base uracil
encode	Α.	a monomer of DNA.		and sugar ribose indicates
instructions for	В.	a nucleic acid.		the monomer is from RNA.
the synthesis of	C.	a monomer of protein.		
proteins in cells	D.	a monomer of RNA.		

Nucleic acids as	Qu	estion 8	С	RNA nucleotides are found
information molecules that	The	The molecule above would be found in the depicted form in the		in the nucleus as they are
encode	Α.	ribosome		required to form mRNA in
instructions for	В.	golgi apparatus		the process of
the synthesis of	C.	nucleus		transcription.
proteins in cells	D.	vesicles		
The genetic	0	estion 9	R	The ribosome reads mRNA

The genetic	Qu	estion 9	В	The ribosome reads mRNA
code as a degenerate	Dui	ring translation		codons in a 5' to 3'
triplet code and	Α.	mRNA is read in a 3' to 5' direction by the ribosome.		direction during
the steps in gene expression	В.	mRNA is read in a 5' to 3' direction by the ribosome.		translation.
including	C.	the tRNA molecule has the codon on one end.		
transcription, RNA	D.	amino acids are joined to one another by polypeptide		
processing in		bonds.		
eukaryotic cells				
and translation				

Protein functional diversity and the nature of the proteome	Wh	estion 10 ich of the following is not a possible example of the ctional diversity of proteins? an enzyme an antibody a neurotransmitter	D	A Units 3&4 Biology student should know that a plasmid is a double stranded DNA molecule and not a protein.
	D.	a plasmid		

Use the following information to answer Questions 11 and 12.

Source: https://study.com/academy/lesson/ Question 11

What process does the above diagram depict?

- A. Alternative splicing
- B. Translation

The genetic

degenerate

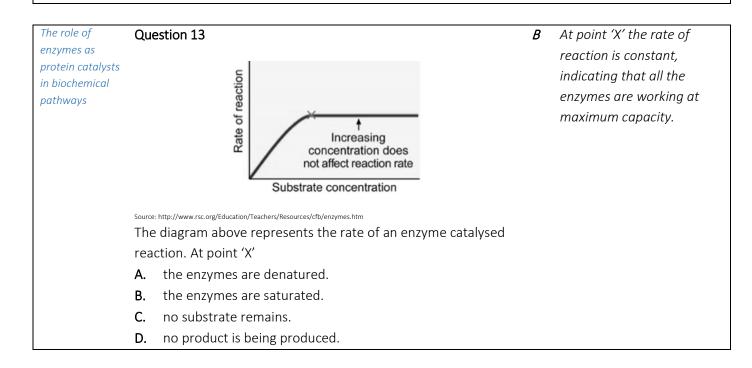
triplet code and the steps in

gene expression

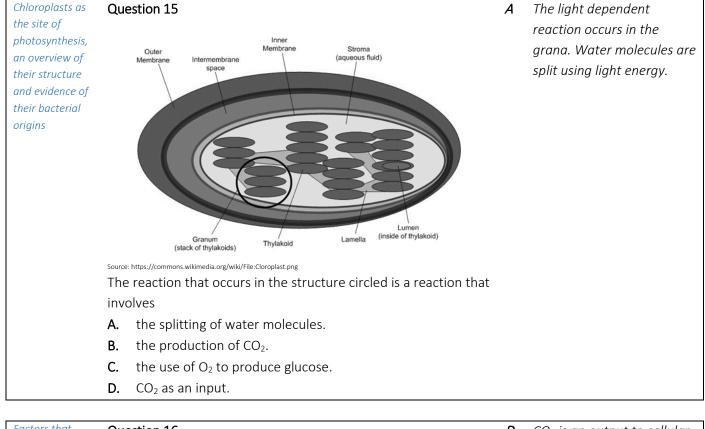
code as a

including transcription,

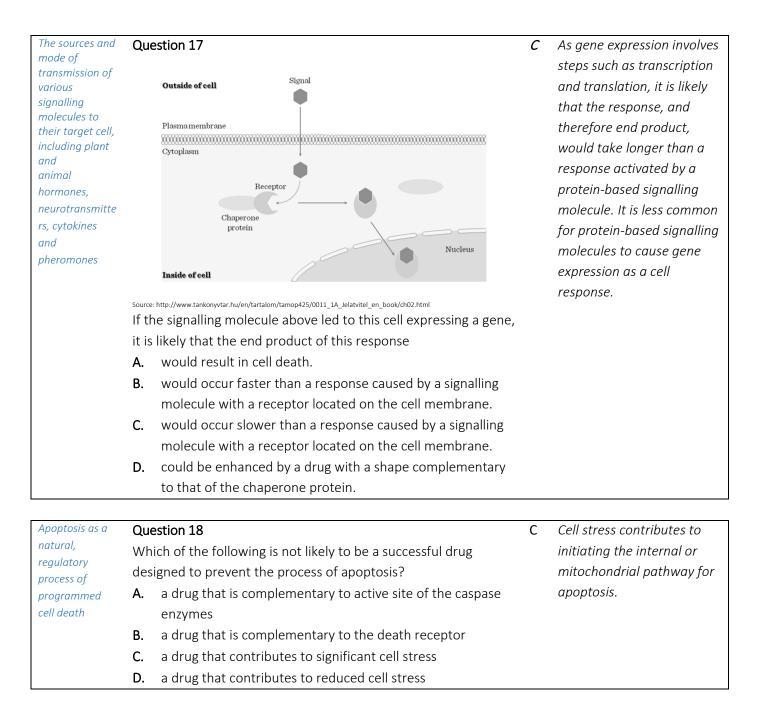
processing in


eukaryotic cells and translation

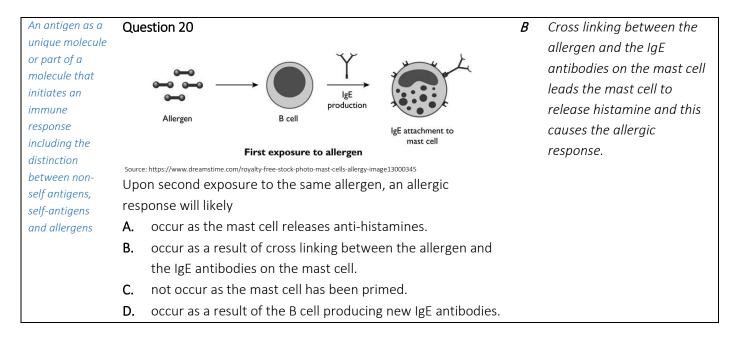
RNA


- C. Transcription
- D. Condensation polymerisation

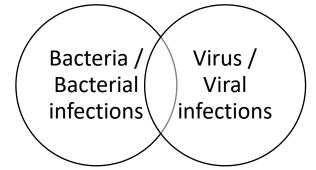
A The image depicts two different proteins resulting from one gene. This occurs via alternative splicing. The 2017 VCAA Exam, Q1c, demonstrates that students should understand this concept.


The genetic code as a	Que	estion 12	С	Alternative splicing leads to
coae as a degenerate	This	s process can explain		variation in the exon order
triplet code and	Α.	how enzyme inhibition occurs.		in mRNA. This contributes
the steps in gene expression	В.	the concept of rational drug design.		to a single gene being able
including	C.	how the expression of a single gene can lead to the		to code for the production
transcription, RNA		production of different proteins.		of different proteins.
processing in	D.	why antigens and antibodies agglutinate and are removed		
eukaryotic cells		from the body.		
and translation				

The mode of Question 14 D Extremes in temperature action of Irreversible denaturation of enzyme action can occur through: and pH can denature an enzymes enzyme. This is irreversible. temperature. including Α. reversible and pH. Β. irreversible C. neither A nor B. inhibition of their action due **D.** both A and B. to chemical competitors at the active site, and by factors including temperature, concentration and pH



Factors that	Qu	estion 16	D	<i>CO</i> ₂ is an output to cellular
affect the rate	In r	reference to cellular respiration, a reduction in glucose		respiration, therefore a
of cellular respiration,	ava	ailability would result in		reduction in glucose
including	Α.	no ATP production.		availability would result in
temperature,	В.	lowered O ₂ production.		a reduction in products –
glucose availability and	C.	no O ₂ production.		such as CO ₂ .
oxygen	D.	lowered CO ₂ production.		
concentration.				


Invading cellular	Question 19	A	The natural microflora, or
and non-cellular	The natural microflora of the body are an example of		bacteria, of the body act as
pathogens as a source of non-	A. the innate immune response.		a barrier to prevent
self antigens,	B. the adaptive immune response.		pathogens from entering
and	C. the third line of defence.		the body.
preventative strategies	D. the second line of defence.		
including			
physical,			
chemical and microbiological			
barriers in			
animals and			
plants that keep			

them out

The role of the	Que	estion 21	С	Fluid moves through the
lymphatic	The	e lymphatic system does not contain		lymphatic system via one
system in the immune	A.	one way valves.		way valves and the
response	B.	nodes that filter lymph tissue.		pressure created by the
including the	C.	a pump similar to the heart.		movement of muscles.
role of secondary	D.	white blood cells.		
lymphoid tissue (with reference				
to lymph nodes) as the site of				
antigen				
recognition by				
lymphocytes,				
and as a transport				
system for				
antigen				
presenting cells				
including dendritic cells				

Use the following information to answer Questions 22 and 23.

Invading cellular and non-cellular pathogens as a source of non- self antigens, and preventative strategies including physical, chemical and microbiological barriers in animals and plants that keep them out	 Question 22 When considering the Venn diagram above, which of the following would be likely found in the region of overlap? A. possible to be vaccinated against B. are living cells C. can reproduce independently D. can be treated with antibiotics 	A	Types of both viral and bacterial infections can be prevented through vaccination.
Invading cellular and non-cellular pathogens as a source of non-	Question 23A distinct difference between bacteria and viruses isA. their mode of transmission.	В	Bacteria are generally much larger than viruses.

B. their size.

self antigens,

preventative

strategies including physical, chemical and microbiological barriers in animals and plants that keep them out

and

- C. their ability to cause disease.
- **D.** that one can contain DNA and the other cannot.

The qualitative	Question 24	D	Aneuploidy is a
treatment of the causes of changing allele frequencies in a population's gene pool including types of mutations (point, frameshift, block) as a source of new alleles, chromosomal abnormalities (aneuploidy and polyploidy),			chromosomal abnormality.

The qualitative	Qu	estion 25	Α	There are nine D alleles out	
treatment of the	Wh	at is the allele frequency for D, if the following genotypes		of a total of 20 alleles.	
causes of	exis	sted in population?		Allele frequency is	
changing allele frequencies in a	Dd,	DD, dd, Dd, dd, Dd, DD, DD, dd, dd		expressed as a number	
population's	Α.	0.45		between 0 and 1.	
gene pool	Β.	0.60			
including	C.	45%			
environmental selection	D.	60%			
pressures on					
phenotypes as					
the mechanism					
for natural					

selection

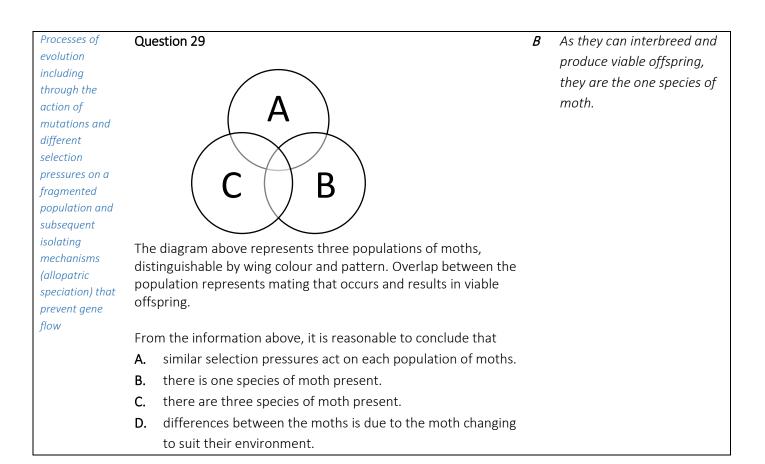
Processes of	Que	estion 26	С	Allopatric speciation
evolution	Allo	ppatric speciation is characterised by		involves some form of
including through the	Α.	the speed of speciation.		geographic isolating
action of	В.	its isolation to bird species.		mechanism, such as a
mutations and	C.	a geographic isolating mechanism preventing gene flow.		mountain range that
different	D.	its occurrence being limited to the Cambrian period.		prevents gene flow
selection		0		between two populations.
pressures on a				
fragmented population and				
subsequent				
isolating				
mechanisms				
(allopatric				
speciation) that				
prevent gene				
flow				

Evidence of biological change over	Question 27 Carbon dating	С	Due to the relatively rapid break down of organic matarial, carbon dating is
time including from palaeontology (the fossil record, the relative and absolute dating of fossils, types of fossils and the steps in fossilisation), biogeography, developmental biology and structural morphology	 A. is used to determine the relative age of fossils. B. is used for determining ages of fossils from the Jurassic period. C. is most useful for organic remains under 50 000 years old. D. is most useful for organic remains over 50 000 years old. 		material, carbon dating is most useful for fossils under the age of 50 000 years old.

Significant changes in life forms in Earth's geological history including the rise of multicellular organisms, animals on land, the first flowering plants and mammals

Question 28

During its dramatic 4.5 billion year history, Earth has gone through a series of major geological and biological changes. The timescale below highlights several notable prehistoric events and the approximate time in which they occurred.


3.8 billion years ago	First life arises
2.1 billion years ago	Eukaryotes evolved
1.1 billion years ago	First sexually reproducing
1.1 billion years ago	organisms
530 million years ago	The first fish
475 million years ago	First land plants
370 million years ago	The first amphibians
320 million years ago	The earliest reptiles
225 million years ago	The dinosaurs evolve
200 million years ago	
150 million years ago	First birds
130 million years ago	
14 million years ago	The first great apes appear
2.5 million years ago	Genus Homo evolves
200 thousand years ago	Our species, Homo sapiens
200 thousand years ago	evolves
10 thousand years ago	End of the last Ice Age

A Students should know this information from the key knowledge point 'significant changes in life forms in Earth's geological history including the rise of multicellular organisms, animals on land, the first flowering plants and mammals'.

Source: http://www.bbc.co.uk/nature/history_of_the_earth#periods

The two blank spaces in the table should be filled by

- A. 200 million years ago mammals evolve
 130 million years ago flowering plants evolve
- **B.** 200 million years ago flowering plants evolve 130 million years ago mammals evolve
- C. 200 million years ago first animals on land
 130 million years ago flowering plants evolved
- D. 200 million years ago multicellular organisms evolve
 130 million years ago mammals evolve

Use the following molecular data to answer Questions 30 and 31.

Amino acid position	Human	Species 1	Species 2	Species 3
10	Phe	Phe	Phe	Phe
11	Glu	Glu	Glu	His
12	Val	Val	lle	Val
13	Cys	lle	Cys	lle
14	Val	Cys	Val	Val

Molecular homology as evidence of relatedness between species including DNA and amino acid sequences, mtDNA (the molecular clock) and the DNA hybridisation technique

Question 30

Based on this information, the species most similar to humans is

A. species 1 and 2. They are equally similar.

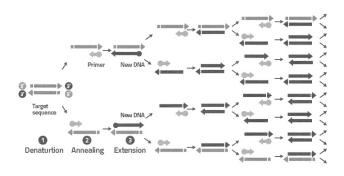
- **B.** species 1.
- C. species 2.
- D. species 3.

Biology – Assessment Guide © ACED 2018. This exam is only licenced to the purchasing school. Page 11 of 28

С

Species 2 has the most

similar molecular data to


the human. There is only

one amino acid difference

at position 12.

Molecular homology as evidence of relatedness between species including DNA and amino acid sequences, mtDNA (the molecular clock) and the DNA hybridisation technique	 Question 31 The differences in the molecular data are most likely due to A. differences in their environment. B. variation. C. mutations in RNA. D. mutations in DNA. 	D	Mutations in DNA result in different amino acid sequences between the species, as DNA codes for amino acids.
Shared characteristics that define primates, hominoids and hominins	Question 32Hominins and primates both shareA. reduced body hair.B. bipedal gait.C. claws instead of nails.D. opposable thumbs.	D	Hominins and primates both possess opposable thumbs.
Major trends in hominin evolution from the genus Australopithecu s to the genus Homo including structural, functional and cognitive changes and the consequences for cultural evolution	Question 33Which of the following is not an example of a feature of cultural evolution?A. can occur quicklyB. traits cannot be chosenC. can occur within or between generationsD. traits can be transmitted to unrelated people	В	Genetic traits that are inherited are part of biological evolution and cannot be chosen.

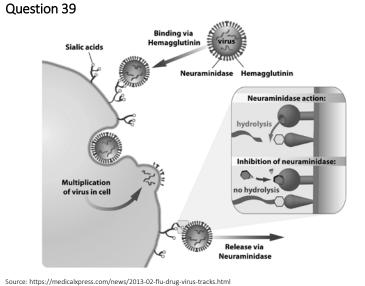
Use the following information to answer Questions 34 and 35.

Amplification of	Question 34	Α	In polymerase chain	
DNA using the polymerase	During the extension stage, the most ideal temperature is typically		reaction, the extension phase is typically carried	
chain reaction	A. 72 degrees		out at 72 degrees.	
	B. 50 degrees			
	C. 82 degrees			
	D. 95 degrees			

Amplification of	Que	estion 35	Α	Primers are required for the
DNA using the	The	e purpose of a primer in this reaction is		enzyme to commence
polymerase chain reaction	A.	to act as a short sequence of nucleotides that provides a starting point for DNA synthesis.		reading the DNA.
	В.	to move along the original DNA strand and add complementary nucleotides.		
	C.	to act as the 'glue' to join complementary nucleotides together.		
	D.	to separate the DNA and prime it, ready for a copy to be made.		

Techniques that	Qu	estion 36	D	This is an economic
apply DNA	Wh	ich of the following is not an ethical implication of genetic		implication not an ethical
knowledge (specifically	scre	eening of a newborn baby?		one.
gene cloning,	A.	the rights of the individual to this information in the future		
genetic	В.	whether there is certainty that this information can be kept		
screening and		secure		
DNA profiling) including social	C.	whether it is right to perform such a test on a baby that		
and ethical		cannot consent		
implications and	D.	the cost of the genetic screening test		
issues				

Strategies that	Qu	estion 37	В	Option C describes a
deal with the emergence of	Wh	ich of the following statements best describes an epidemic?		pandemic.
new diseases in	Α.	a new disease that has not yet had a vaccination developed		
a globally connected		for it		
world, including	В.	a disease affecting a large number of individuals within a		
the distinction between		population, community, or region at the same time		
epidemics and	C.	the spread of a disease between countries and continents		
pandemics, the	D.	the spread of a disease that is limited to one family		
use of scientific knowledge to				
identify the				
pathogen, and the types of				
treatments				


The concept of	Question 38	С	Therapeutic benefit is some
rational drug	Rheumatoid arthritis is an autoimmune disorder that occurs		form of treatment that
design in terms of the	when the immune system mistakenly attacks its own body's		benefits the patient
complementary	tissues. Rheumatoid arthritis affects the lining of the body's		affected by the condition.
nature (shape	joints, causing a painful swelling that can eventually result in		Option A does not refer to
and charge) of	bone erosion and joint deformity. A new drug was designed to		any impact on the
small molecules that are	help people with this condition and is able to provide great		condition; B and D do not
designed to bind	therapeutic benefit. An example of a therapeutic benefit for the		relate to direct benefit to
tightly to target	individual would be that		the patient in regards to
biomolecules	A. patients would only be required to take one pill per day		the condition.
(limited to	instead of two		
enzymes) resulting in the	B. the drug would prevent the condition from being inherited		
enzyme's	by the patient's children		
inhibition and	C. joints would swell less and the individual would experience		
giving rise to a	less pain		
consequential therapeutic	D. the drug would prevent the condition from being		
benefit,	transmitted to other people who had come into contact		
illustrated by	with the affected person		

The concept of rational drug design in terms of the complementary nature (shape and charge) of small molecules that are designed to bind tightly to target biomolecules (limited to enzymes) resulting in the enzyme's inhibition and giving rise to a consequential therapeutic benefit, illustrated by the Australian development of the antiviral drug Relenza as

the Australian development of the antiviral drug Relenza as

neuraminidase inhibitor

а

The inhibition of neuraminidase occurs via the action of:

a drug that is complementary in nature to neuraminidase.

an antiviral drug.

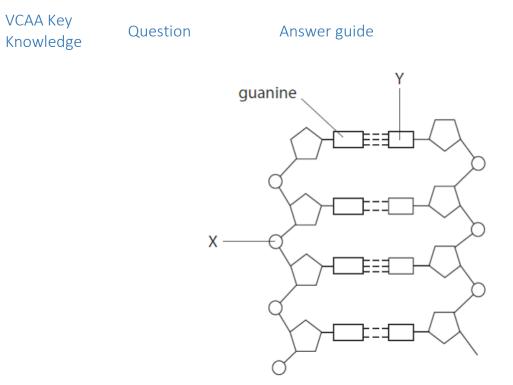
the drug Relenza.

all of the above.

Α.

Β.

C.


D.

All of these options relate D to the action of the antiviral drug Relenza that is an example referred to in the Study Design that students should be aware of.

а neuraminidase inhibitor

The use of chemical agents against pathogens	Wh	estion 40 hich of the following is unlikely to contribute to antibiotic istance?	С	Patients not finishing the entire antibiotic course would likely contribute to
including the distinction between antibiotics and antiviral drugs with reference to their mode of action and biological effectiveness	A. B. C. D.	over-prescription of antibiotics overuse of antibiotics in livestock and fish farming patients finishing the entire antibiotic course absence of new antibiotics being discovered		resistance, whereas option C is the opposite of this.

Section B

Source: https://blogs.glowscotland.org.uk/gc/hyndsecbiohunit1

The structure of DNA and the three forms of	Question 1a (1 mark) List the full name of	Answer:	
RNA including similarities and	the molecule in the	• Deoxyribonucleic acid.	
differences in their subunits, and their	diagram above.	Marking protocol:	
synthesis by		One mark the above point.	
condensation polymerisation			
The structure of DNA	Question 1b (2 marks)	Answer:	
and the three forms of RNA including	Identify the labels X	• X: Phosphate group.	
similarities and differences in their	and Y.	• Y: Cytosine.	
subunits, and their synthesis by		Marking protocol:	
condensation polymerisation		One mark for each of the above points.	

The structure of DNA and the three forms of RNA including similarities and differences in their subunits, and their synthesis by condensation polymerisation	Question 1c (2 marks) In reference to this molecule, explain the meaning of the term 'anti-parallel'.	 Answer: The strands of a DNA double helix are said to be 'anti-parallel' because they have the same chemical structure, but run in opposite in directions. One runs in the 3' to 5' direction and the other in the 5' to 3' direction.
		Marking protocol: One mark for each of the above points.
The role of different organelles including ribosomes, endoplasmic reticulum, Golgi apparatus and associated vesicles in the export of a protein product from the cell through exocytosis	Question 1d (3 marks) Identify three places in a plant cell where this molecule can be located.	Answer: • Nucleus. • Chloroplast. • Mitochondria. Marking protocol: One mark for each of the above points.
The genetic code as a degenerate triplet code and the steps in gene expression including transcription, RNA processing in eukaryotic cells and translation.	Question 1e (5 marks) During protein synthesis this molecule is read and another molecule is created. Describe the steps in this process, including the name of the process and of the new molecule produced.	 Answer: Transcription. The DNA molecule is unwound and separated. The RNA polymerase enzyme moves along and reads the template strand of the DNA molecule. As this occurs, complementary RNA bases are added to a new molecule of RNA. The final product is a molecule of pre-mRNA. Marking protocol: One mark for each of the above points.

Amylase is an enzyme that breaks down the polysaccharide starch into the monosaccharide glucose. The following results relate to three different experiments where amylase was tested to determine when its optimal activity was.

In Test 1 and 2, the temperature and pH were the only factors altered in either experiment as indicated in the table; the concentration of amylase and concentration of starch used remained the same. In Test 1, the pH was 7.0 and in Test 2, the temperature was 37.5° C.

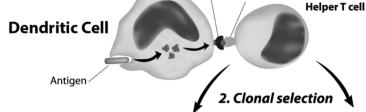
In Test 3, the temperature and pH used were the optimal for the enzyme amylase; the concentration of starch was the same as in Test 1 and 2, but the concentration of amylase was increased as indicated in the table.

				_		
	Arbitrary		Arbitrary			Arbitrary
	unit		unit		Test 3 -	unit
Test 1 –	molecules of		molecules		Concentration	molecules
Temperature	glucose	Test 2 - pH	of glucose		of amylase in	of glucose
(°C)	produced		produced		arbitrary	produced
	after 1		after 1		units	after 1
	minute.		minute.			minute.
33	50	4.5	35		15	80
35	70	5.5	65		20	100
37	80	6.5	85		25	140
39	60	7.5	75]	30	140
41	40	8.5	40	1	35	140

Biology – Assessment Guide © ACED 2018. This exam is only licenced to the purchasing school. Page 16 of 28

Independent,	Question 2a (3 marks)	Answer:		
dependent and controlled variables	State two variables	Examples of variables that would need to be controlled include:		
	that would need to be	• Temperature.		
	controlled in Test 2 to	• Concentration of starch.		
	ensure that valid	• Concentration of amylase.		
	conclusions can be drawn from the results. Outline why	• Method of measurement for arbitrary unit molecules of glucose produced after 1 minute.		
	such variables need to	Method used to time for 1 minute.		
	be controlled,	• Type of equipment used to mix starch and amylase.		
	referencing the	AND		
	dependent variable and independent	 These variables need to be kept constant across the differing pH levels tested, so that the change in arbitrary unit molecules of glucose produced after 1 minute (dependent variable), can be 		
	variable in your response.	attributed to the change in the pH level (independent variable).		
		Marking protocol:		
		One mark for two correct variables that need to be controlled. Two		
		additional marks for outlining the need to control such variables,		
		with one of these being awarded to correctly stating the depender		
		and independent variable in the answer.		
Mathada af	O utputtion $2h$ (2 months)			
Methods of organising, analysing	Question 2b (3 marks)	Answer:		
and evaluating	Graph the results for Test 1.	Arbitrary unit molecules of glucose produced after 1		
primary data to identify patterns and	Test 1.	minute at varying temperatures		
relationships including		90		
sources of error and limitations of data		80 80 70		
and methodologies				
and methodologies		ä 50		
and methodologies				
and methodologies		Signature 50 Diagonal 0 Original 0		
and methodologies		50 50 50 40 50 50 50 50 50 50 50 50 50 5		
and methodologies		50 50 50 40 50 50 50 50 50 50 50 50 50 5		
and methodologies		50 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5		
and methodologies		Sing 50 30 0 30 10 20 <		
and methodologies		50 50 40 30 20 10 10 10 33 35 37 39 41 Temperature		
and methodologies		Sa 50 40 30 20 10 10 20 10 20 10 20 10 20 10 20 10 20 20 10 20 20 10 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20		
and methodologies		50 50 40 30 20 10 10 10 33 35 37 39 41 Temperature		

Methods of	Question 2c (1 mark)	Answer:
organising, analysing and evaluating	Draw a conclusion	 From the results, the optimal temperature for the action of
primary data to	regarding the optimal	amylase appears to be 37°C. This is where the highest arbitrary
identify patterns and relationships including	temperature for the	unit molecules of glucose are produced after 1 minute: 80 units.
sources of error and	action of amylase.	
limitations of data and methodologies	Refer to data in your	Marking protocol:
	answer.	One mark for the above point.


Models, theories and classification keys, and their use in organising and explaining observed phenomena and biological concepts including their limitations The role of enzymes as protein catalysts in biochemical pathways	Question 2d (2 marks) Given your knowledge of enzyme structure and function, describe the likely reason for the results obtained at 41°C in Test 1.	 Answer: It is likely that the enzyme amylase has begun to denature at this temperature. This means that the active site is likely to have begun to change shape, and therefore, starch is less able to combine easily with the amylase, leading to fewer molecules of glucose (40 arbitrary units) being produced at this temperature. Marking protocol: One mark for each of the above points.
Independent, dependent and controlled variables	Question 2e (2 marks) Given the experimental design of the temperature and pH tests, describe why it is difficult to compare the results between Test 1 and Test 2, and difficult to make a conclusion about the combined optimal temperature and pH for amylase function.	 Answer: In Test 1, the pH was 7.0 and in Test 2, the temperature was 37.5°C. These values are different from the temperatures and pH tested in either Test 1 or Test 2 respectively. Therefore, as none of the conditions were identical across the two tests, it is difficult to make a conclusion about the combined optimal temperature and pH for amylase function. Marking protocol: One mark for each of the above points.
The role of enzymes as protein catalysts in biochemical pathways	Question 2f (2 marks) Explain a likely reason why the arbitrary unit molecules of glucose produced after one minute remained constant at 140 units for amylase concentrations 25-35.	 Answer: It is likely that at amylase concentrations 25-35, all of the starch product had been broken down after one minute. Therefore, an increase in glucose units did not go beyond 140 units at these concentrations. Marking protocol: One mark for each of the above points.
The functional distinction between structural genes and regulatory genes	Question 3a (2 marks) What is the functional difference between a regulatory gene and a structural gene?	 Answer: Structural genes code for proteins required for the body to function, whereas a regulatory gene produces proteins that act to switch on or off structural genes. Marking protocol: One mark for each of the above points.

Use of the lac operon	Question 3b (2 marks)	Answer:
as a simple prokaryotic model that illustrates the switching off and on of genes by proteins	In relation to energy conservation, explain the importance of transcriptional factors	• Transcriptional factors expressed by the regulatory gene, without the presence of lactose, combine with the operator and prevent the enzymes (structural genes) that break down lactose from being produced.
(transcriptional factors) expressed by regulatory genes.	in the lac operon.	 This means that energy is conserved, as these enzymes are not required when no lactose is present, as there is nothing to break down.

Marking protocol:

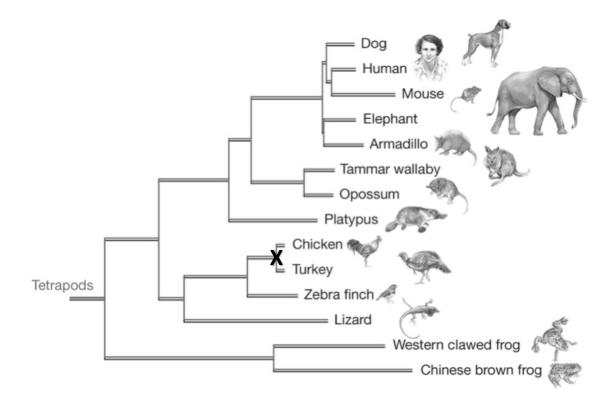
One mark for each of the above points.

Helper T cell Activation and Action

Source: https://immunecells21.com/dendritic-cells/dendritic-cells-immuncells21/

Question 4a (1 mark) Which immune response do dendritic	Answer: • The innate immune response.
cells belong to?	Marking protocol: One mark for the above point.
	Answer:
	• Dendritic cells are antigen presenting cells. They engulf pathogens,
image above, outline	process antigen material, and present it on their cell surface (on
the role of a dendritic	MHC-II markers) to Helper T cells.
cell as messengers	• They act as messengers between the innate and adaptive immune
between the two types	responses.
of immune responses.	
·	Marking protocol:
	One mark for each of the above points.
	one mark for each of the above points.
	Which immune response do dendritic cells belong to? Question 4b (2 marks) With reference to the image above, outline the role of a dendritic cell as messengers between the two types

The characteristics and roles of components of the adaptive (specific) immune response including the actions of B lymphocytes and their antibodies (including antibody structure) in humoral immunity, and the actions of T helper and T cytotoxic cells in cell-mediated	Question 4c (3 marks) Describe clonal selection, expansion and differentiation, including a reference to Helper T cells.	 Answer: Once Helper T cells are activated by an antigen presenting cell, they produce cytokines to stimulate B cells (who have also detected the antigen). B cells then proliferate and differentiate to produce plasma cells, which produce specific antibodies. B cells also differentiate into memory cells, which remain in the body in case of future re-infection. Marking protocol:
immunity.		One mark for each of the above points.
L		
The deficiencies and malfunctions of the immune system as a cause of human diseases including autoimmune diseases (illustrated by multiple sclerosis), immune deficiency diseases (illustrated by HIV) and allergic reactions (illustrated by reactions to pollen)	Question 4d (1 mark) Name the immune deficiency disease that can result when large numbers of Helper T cells are destroyed.	 Answer: Acquired Immune Deficiency Syndrome (AIDS). Marking protocol: One mark for the above point.
The difference	Question 4e (1 mark)	Answer:
between natural and	Is the form of	• Active
artificial immunity, and active and passive	immunity initiated by	 It involves the production of specific antibodies and memory cells
strategies for	Helper T cells active or	by the body.
acquiring immunity	passive? Justify your	· · ·
	response.	Marking protocol:
		One mark for both of the above points.

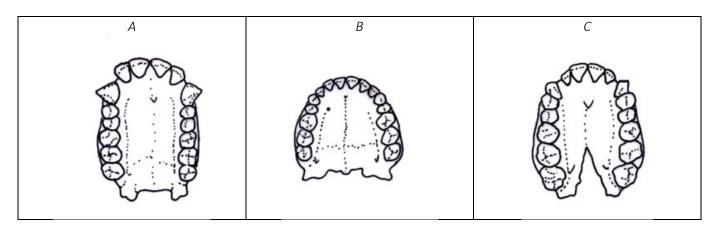

Although the Cretaceous-Tertiary (or K-T) extinction event is the most well-known because it wiped out the dinosaurs, a series of other mass extinction events have occurred throughout the history of the Earth, some even more devastating than K-T. The most severe occurred at the end of the Permian period when 96% of all species perished. This along with K-T are two of the Big Five mass extinctions, each of which wiped out at least half of all species. Many smaller scale mass extinctions have occurred; indeed, the disappearance of many animals and plants at the hands of humans in prehistoric, historic and modern times will eventually be shown in the fossil record as mass extinctions.

Source: http://www.bbc.co.uk/nature/extinction_events

Patterns of biological change over geological time including divergent evolution, convergent evolution and mass extinctions.	Question 5ai (1 mark) What is a mass extinction?	Answer: • Mass extinctions are periods in earth's history when abnormally large numbers of species die out simultaneously or within a limited time frame.
		Marking protocol:
		One mark for the above point.

Patterns of biological change over geological time including divergent evolution, convergent evolution and mass extinctions.	Question 5aii (1 mark) Describe why, following mass extinctions, there may be significant differences in the fossil record.	 Answer: As a high number of species are wiped out during mass extinctions, other species then proliferate and are therefore present in the fossil record following mass extinctions. Marking protocol: One mark for the above point.
Evidence of biological change over time including from palaeontology (the fossil record, the relative and absolute dating of fossils, types of fossils and the steps in fossilisation), biogeography, developmental biology and structural morphology	Question 5b (2 marks) Identify two types of fossils that may be present in the fossil record of the earth.	 Answer: Mold. Cast. Direct. Indirect. Marking protocol: One mark for any of the above points, to a maximum of two.
Evidence of biological change over time including from palaeontology (the fossil record, the relative and absolute dating of fossils, types of fossils and the steps in fossilisation), biogeography, developmental biology and structural morphology	Question 5c (4 marks) The fossil record is one piece of evidence of biological change over time. Name and describe two others.	 Answer: Biogeography. Where evolution and evolutionary relationships are determined based on the distribution of species across earth over time. Structural morphology. Where evolution and evolutionary relationships are determined based on similarities or differences in structure. Developmental biology. Where evolution and evolutionary relationships are determined based on similarities or differences in embryonic development. Marking protocol: Two marks for any of the above points, to a maximum of four. One mark for the name and one mark for the description.
Evidence of biological change over time including from palaeontology (the fossil record, the relative and absolute dating of fossils, types of fossils and the steps in fossilisation), biogeography, developmental biology and structural morphology	Question 5d (2 marks) Using an example, outline why terrestrial animals are less likely to fossilise when compared to aquatic animals.	 Answer: Terrestrial or land animals live in an environment where the conditions for fossilisation are less favourable than in aquatic environments. For example, it is less likely that a terrestrial animal, such as a fox, will die and be covered by mud or silk before being consumed than it is for an aquatic animal that dies, such as a fish. Marking protocol: One mark for each of the above points.

Scientists can examine a range of evidence to create a phylogenetic tree. One such tree is depicted in the image below.


Source: Adapted from https://whyevolutionistrue.files.wordpress.com/2013/04/coelacanth-genome-tree.jpg

The use of phylogenetic trees to show relatedness between species	Question 6a (1 mark) What is the purpose of a phylogenetic tree such as the one in the	 Answer: Phylogenetic trees demonstrate evolutionary relationships between organisms. 					
	image above?	Marking protocol:					
		One mark for the above point.					
The use of	Question 6b (1 mark)	Answer:					
phylogenetic trees to show relatedness	According to the	• Opossum.					
between species	phylogenetic tree,	• Tammar wallaby.					
	which two species is						
	the platypus most	Marking protocol:					
	closely related to?	One mark for both of the above points.					

The qualitative treatment of the causes of changing allele frequencies in a population's gene pool including types of mutations (point, frameshift, block) as a source of new alleles, chromosomal abnormalities (aneuploidy and polyploidy), environmental selection pressures on phenotypes as the mechanism for natural selection	Question 6c (4 marks) At point X on the diagram, the Chicken and Turkey diverged and eventually became separate species. Outline how this may have occurred using the following terms in your response: • Common ancestor • Geographic isolating mechanism • Generations • Viable offspring	 Answer: The Chicken and Turkey had a common ancestor, and in this species, there must have been phenotypic variation. At point X, there may have been a geographic isolating mechanism, such as a mountain range, that separated the common ancestor. These two new populations are then likely to have been exposed to different selection pressures that selected for different characteristics in each group. Over many generations with no gene flow between the two populations, they are likely to have diverged and become different species. This could be confirmed by their inability to produce viable offspring when brought back together to mate. Marking protocol: One mark for each of the above points or a similar answer that incorporates all terms. 					
Molecular homology as evidence of	Question 6d (2 marks)	Answer:					
relatedness between	A phylogenetic tree	• DNA					
species including DNA and amino acid	can be created by	• Amino acid sequence					
sequences, mtDNA	comparing the similarities and	• mtDNA					
(the molecular clock) and the DNA	differences between						
hybridisation technique		Marking protocol:					
	specific molecular	One mark for any of the above points, to a maximum of two.					
	sequences of different						
	species. Identify two molecules that could						
	be used in this						

The dental arcade is the shape made by the rows of teeth in the upper jaw. This illustration shows the difference between the dental arcade of an ape, Australopithecus africanus and modern human, Homo sapiens.

manner.

Source: https://australianmuseum.net.au/image/dental-arcade

Major trends in hominin evolution from the genus Australopithecus to the genus Homo including structural, functional and cognitive changes and the consequences for cultural evolution	Question 7a (1 mark) Which dental arcade is most likely to be that of Australopithecus africanus?	Answer: • <i>C</i> Marking protocol: One mark for the above point.					
Major trends in hominin evolution from the genus Australopithecus to the genus Homo including structural, functional and cognitive changes and the consequences for cultural evolution	Question 7b (1 mark) Justify your answer to 7a.	 Answer: Given B is the most parabolic jaw and therefore likely belongs to the modern human, and A is the least parabolic and likely belongs to the ape, Australopithecus africanus is likely C. OR The canine teeth in jaw C are less sharp than jaw A, which likely belongs to the ape, and more sharp than jaw B which likely belongs to the modern human, therefore Australopithecus africanus is likely C. 					
		Marking protocol: One mark for either of the above points.					
Major trends in hominin evolution from the genus Australopithecus to the genus Homo including structural, functional and cognitive changes and the consequences for cultural evolution	Question 7c (2 marks) In addition to changes in the dental arcade from the genus Australopithecus to the genus Homo, structural changes in the pelvis occurred. Give an example of such a change and outline how this change was advantageous to members of the genus Homo.	 Answer: The pelvis became broader and more 'bowl-shaped' from Australopithecus to Homo. This supported greater weight distribution which made walking upright easier for members of the genus Homo, therefore making it easier to pick fruits and other food from low-lying tree branches. Marking protocol: One mark for each of the above points. 					
Major trends in hominin evolution from the genus Australopithecus to the genus Homo including structural, functional and cognitive changes and the consequences for cultural evolution	Question 7d (3 marks) Describe cultural evolution and outline how it may have influenced the structures seen in the image.	 Answer: Cultural evolution refers to changes in human societies over time where those changes are socially transmitted, not genetically inherited. The method for the development and use of tools may have been passed on through generations, therefore requiring less use of sharp teeth for fighting. This may have contributed to jaws with less sharp canine teeth as observed from images A to C to B. 					
		Marking protocol: One mark for each of the above points.					

The use of gel	Question 8a (1 mark)	Answer:						
electrophoresis in	Name the technique	• Gel electrophoresis.						
sorting DNA fragments, including	used to sort DNA							
interpretation of gel	fragments based on	Marking protocol:						
runs	their size.	One mark for the above point.						
The use of gel electrophoresis in sorting DNA fragments, including interpretation of gel runs	Question 8b (4 marks) Describe the steps involved in sorting DNA fragments using the technique named in 8a. Include an explanation of how this technique works to sort such fragments.	 Answer: DNA samples are placed into wells in one end of the slab of gel (the negative electrode end). Electrodes are attached to each end of the gel and an electric current is passed through the gel from the negative end to positive end. DNA is negatively charged, so it moves towards the positive end of the gel. The smaller pieces are lighter so are able to travel further along the 						
		gel than the longer pieces. The size of each piece of DNA gives information about the number of bases present in each strand. Marking protocol: One mark for each of the above points.						
Techniques that apply	Question 8c (4 marks)	Answer:						
DNA knowledge (specifically gene cloning, genetic screening and DNA profiling) including social and ethical implications and issues	Outline how the technique named in 8a could be used by law enforcement officials in a case where there are multiple suspects and a blood sample from the crime scene.	 A blood sample could be taken from the multiple suspects and the DNA isolated from each blood sample. The same specific region of DNA from the suspects' blood samples (the same region as the blood sample from the crime scene) should be amplified via PCR and a restriction enzyme(s) used to digest the DNA into fragments. The fragments should then be run in gel electrophoresis. The DNA from the blood sample from the crime scene should also be run through gel electrophoresis, as outlined above, to determine if there is a match with one of the suspects. 						
		Marking protocol:						

Orb-web spiders produce a variety of silks that have excellent mechanical properties. For example, their dragline silk proteins are among the strongest fibres, approximately five times stronger than steel. It is difficult however to produce an artificial fibre that can be as long and strong.

Transgenic silkworms have been created to produce the dragline silk protein in their cocoon silk. Using these silkworms, significant amounts of the silk can then be produced in a controlled environment.

Source: Adapted from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105325

The distinction between genetically modified and transgenic organisms, their use in agriculture to increase crop productivity and to provide resistance to insect predation and/or disease, and the biological, social and ethical implications that are raised by their use	Question 9a (2 marks) Referencing the information provided, what is a transgenic organism?	 Answer: A transgenic organism contains genes from another species. For example, the transgenic silkworm would possess the dragline silk protein gene from the orb-web spider. Marking protocol: One mark for each of the above points.
raised by their use The distinction between genetically modified and transgenic organisms, their use in agriculture to increase crop productivity and to provide resistance to insect predation and/or disease, and the biological, social and ethical implications that are raised by their use	Question 9b (2 marks) Some scientists are concerned with the potential negative biological implications that could arise from the creation of transgenic organisms such as the transgenic silkworm. In relation to	 Answer: There is the potential for the transgenic silkworm to move from the 'controlled environment' into the natural environment. This could potentially lead to the 'original' non-transgenic species and the transgenic silkworms mating, therefore potentially leading to the loss of the 'original' species over time, reducing genetic variation. Marking protocol: One mark for each of the above points.
	the information provided, outline one biological implication and why it may be of concern.	

The concept of rational drug design in	Question 10a (2 marks)	Answer:						
terms of the	Explain the steps	 Research into a disease/condition shows an enzyme associated 						
complementary	involved in rational	with the disease and a drug is designed to act specifically on this						
nature (shape and charge) of small	drug design. You may	enzyme.The drug binds to the enzyme to prevent the disease/condition from occurring.						
molecules that are	use an illustration to							
designed to bind	support your response.							
tightly to target biomolecules (limited								
to enzymes) resulting		Example of a possible illustration:						
in the enzyme's		Drug						
inhibition		Active site Enzyme Substrate						
		Drug and substrate competing for active site of enzyme Drug blocks the active site of enzyme						
		Source: http://www.learncbse.in						
		Marking protocol:						
		One mark for each of the above points. If a response does not						
		correctly explain the steps but uses an illustration that demonstrates						
		a drug preventing the function on an enzyme, it can be awarded a						
		maximum of one mark.						
The concept of rational drug design in	Question 10b (2 marks)	Answer:						
terms of the	Contrast the two types	 Competitive inhibition is where the active site of an enzyme is 						
complementary	of inhibition of	blocked by the drug preventing the substrate from combining with						
nature (shape and charge) of small	enzymes that may be	it,						
molecules that are	the focus of drugs	ullet whereas non-competitive inhibition is where the drug binds to						
designed to bind tightly to target	developed through	another part of the enzyme (the allosteric site), causing the enzyme						
biomolecules (limited	rational drug design.	to change shape so that the substrate can no longer bind with it.						
to enzymes) resulting								
in the enzyme's inhibition		Marking protocol:						
		One mark for each of the above points. If the response names both						
		competitive and non-competitive inhibition, however incorrectly						

VCE BIOLOGY Written Examination ANSWER SHEET – 2018 **VCE BIOLOGY**

STUDENT
NAME:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

Marks will **NOT** be deducted for incorrect answers.

NO MARK will be given if more than one answer is completed for any question.

If you make a mistake, **ERASE** the incorrect answer – **DO NOT** cross it out.

1	А	В	С	D	18	А	В	С	D	35	А	В	С	D
2	Α	В	С	D	19	А	В	С	D	36	Α	В	С	D
3	А	В	С	D	20	А	В	С	D	37	А	В	С	D
4	А	В	С	D	21	А	В	С	D	38	А	В	С	D
5	А	В	С	D	22	А	В	С	D	39	А	В	С	D
6	А	В	С	D	23	Α	В	С	D	40	Α	В	С	D
7	А	В	С	D	24	Α	В	С	D					
8	Α	В	С	D	25	А	В	С	D					
9	А	В	С	D	26	Α	В	С	D					
10	А	В	С	D	27	Α	В	С	D					
11	А	В	С	D	28	А	В	С	D					
12	А	В	С	D	29	Α	В	С	D					
13	А	В	С	D	30	Α	В	С	D					
14	Α	В	С	D	31	Α	В	С	D					
15	А	В	С	D	32	Α	В	С	D					
16	А	В	С	D	33	Α	В	С	D					
17	А	В	С	D	34	А	В	С	D					