aced

Biology 2020 – Assessment Guide

Section A – Multiple-choice Questions

VCAA Key		•	1.1	
Knowledge	Question	Answer guide		
the structure of DNA and the three forms of RNA including similarities and differences in their subunits, and their synthesis by condensation polymerisation	 Question 1 Nitrogen is found in which of the following? A. amino acids and water B. RNA bases but not DNA bases C. DNA bases but not RNA bases D. both DNA and RNA bases 	D	Both DNA and RNA are composed of nitrogenous containing bases – adenine, guanine, cytosine, thymine or uracil. Water does not contain nitrogen.	
the functional importance of the four hierarchal levels of protein structure	Question 2 There are four levels of protein structure. When two or more polypeptides are joined, this refers to A. primary structure.	D	Quaternary structure is when two or more polypeptides join, most often to form a	

functional protein.

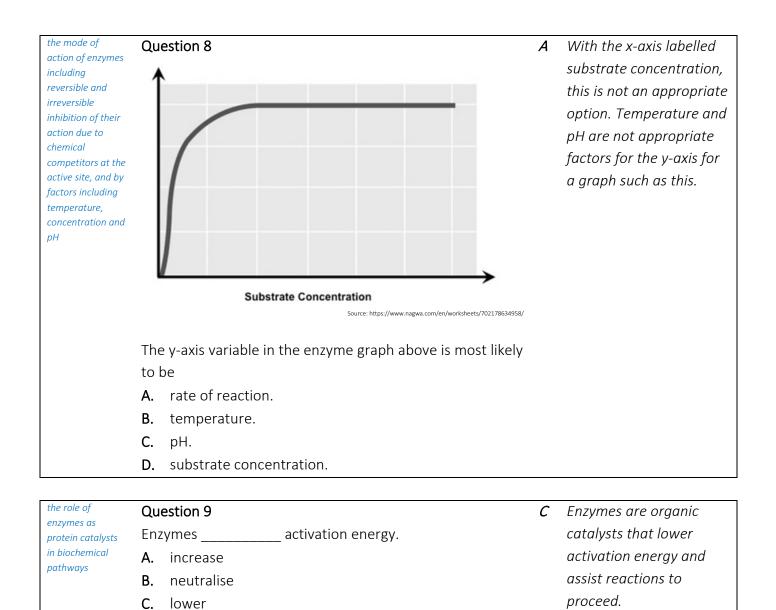
B. secondary structure.

C. tertiary structure.

D. quaternary structure.

Use the following information to answer Questions 3 and 4.

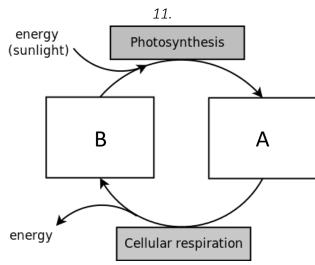
the structure of DNA and the three	Qu	estion 3	С	Prions are made of
forms of RNA	DN	A and/or RNA can be found in		protein and therefore do
including similarities and	Α.	1 only.		not contain DNA and/or
differences in their	В.	1 and 2 only.		RNA. All other options
subunits, and their synthesis by	C.	1, 2 and 4 only.		can contain DNA and/or
condensation	D.	1, 2, 3 and 4.		RNA.
polymerisation				


the synthesis of a polypeptide chain	Qu	estion 4	В	All of the options
from amino acid	Pol	ypeptides could be found in		provided contain
monomers by condensation	Α.	1 only.		polypeptides/proteins.
polymerisation	В.	1, 2, 3 and 4.		
	C.	3 only.		
	D.	1 and 2 only.		

the role of different	Qu	estion 5		Α	Ribosomes synthesise
organelles	١n ı	relation to the production, t	ransport and export of a		proteins, endoplasmic
including ribosomes,	pro	protein from a cell, which of the following organelles			reticula transport and
endoplasmic	cor	correctly matches its function?			modify proteins, and the
reticulum, Golgi apparatus and		Organelle	Function		cell membrane is
associated vesicles in the export of a protein product	A.	golgi body	packages proteins into vesicles		involved in the export of a protein out of the cell.
from the cell	В.	ribosome	modifies proteins		
through exocytosis	C.	endoplasmic reticulum	synthesises proteins		
	D.	cell membrane	transports proteins around the cell		

Use the following information to answer Questions 6 and 7. Thelma and Louise were discussing movement through the plasma membrane of an animal cell. Louise suggested that there are many molecules that can move through the phospholipid bilayer without requiring energy and also do not require the use of protein channels.

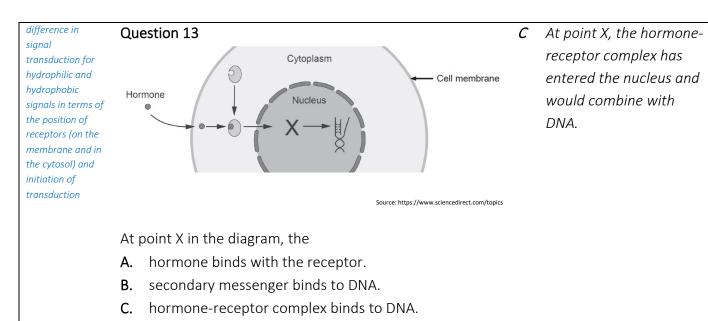
the fluid mosaic model of the structure of the plasma membrane and the movement of hydrophilic and hydrophobic substances across it based on their size and polarity	 Question 6 The correct processes that the molecules Louise was referring to may utilise include A. osmosis, simple diffusion and active transport. B. osmosis and simple diffusion. C. osmosis and exocytosis. D. simple diffusion, exocytosis and endocytosis. 	В	All other options include processes that require energy – active transport, exocytosis and endocytosis.
the fluid mosaic model of the structure of the	Question 7 Examples of molecules that can move through the	С	All three of these molecules can move
plasma	phospholipid bilayer and do not require protein channels		through the phospholipid


structure of the			
plasma membrane and	pho	ospholipid bilayer and do not require protein channels	through the phospholipid
the movement of	inc	lude	bilayer and do not
hydrophilic and hydrophobic	Α.	water only.	require a protein
substances across	В.	water and oxygen only.	channel.
it based on their size and polarity	C.	water, oxygen and carbon dioxide.	
Size and polarity	D.	oxygen and carbon dioxide only.	

D.

remove

Use the following information to answer Questions 10 and



Source: https://www.siyavula.com/read/science/grade-8/photosynthesis-and-respiration/01-photosynthesis-and

inputs and outputs of the	Qu	estion 10		Α	Oxygen and glucose are
light dependent	The molecules that best align with A and B are:				both an output of
and light independent		A	В		photosynthesis and an
(Calvin cycle)	•	Oxygen	Carbon dioxide		input for cellular
stages of photosynthesis in	Α.	Glucose	Water		respiration. Both carbon
C3 plants	В. С.	Carbon dioxide	Oxygen		dioxide and water are an
the main inputs and outputs of the Krebs (citric acid) cycle and electron		Water	Glucose		output of cellular
		Oxygen	Glucose		respiration and an input
		Carbon dioxide	Water		for photosynthesis.
transport chain		ATP	Carbon dioxide		
including ATP yield		Oxygen	ATP		

the purpose of photosynthesis	Question 11		D	Photosynthesis combines
	Photosynthesis is a/n	reaction and cellular		small molecules to create
	respiration is a/n r	reaction.		a larger molecule, which
	A. catabolic; anabolic			is anabolic. Cellular
	B. anabolic; anabolic			respiration breaks a
	C. catabolic; catabolic			large molecule into
	D. anabolic; catabolic			smaller molecules, which
				is catabolic.

the cycling of coenzymes (ATP,	Qu	estion 12	В	Coenzymes are non-
NADH, and	Со	enzymes		protein molecules that
NADPH) as loaded and unloaded	Α.	perform the same function as enzymes in cellular		assist enzymes to
forms to move		respiration.		catalyse reactions. For
energy, protons and electrons	Β.	are not made of protein.		example, ATP and
between reactions	C.	perform no role in photosynthesis.		NADPH are the loaded
in the cell.	D.	that are involved in photosynthesis are only ATP and		coenzymes involved in
		NADH.		photosynthesis.

D. cell response is complete.

the stimulus-
response model
when applied to
the cell in terms of
signal
transduction as a
three-step process
involving
reception,
transduction and
cellular response

Question 14

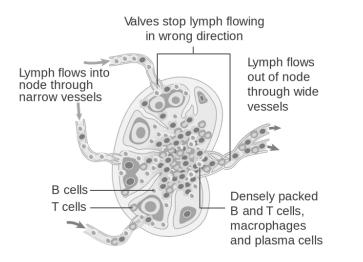
Receptor proteins

- A. always bind with molecules on the surface of a cell to cause changes within that cell.
- **B.** cannot initiate the process that leads to cell death.
- **C.** enable communication between cells to stimulate change in target cells.
- **D.** always bind with molecules inside a cell to cause changes within that cell.
- There are receptors on cells that can initiative apoptosis, so B is incorrect. A and D are incorrect as receptors may be found on the cell membrane or in the cytosol. C is correct as receptors play a role in signal transduction, allowing cells to communicate with one another which can lead to a cellular response.

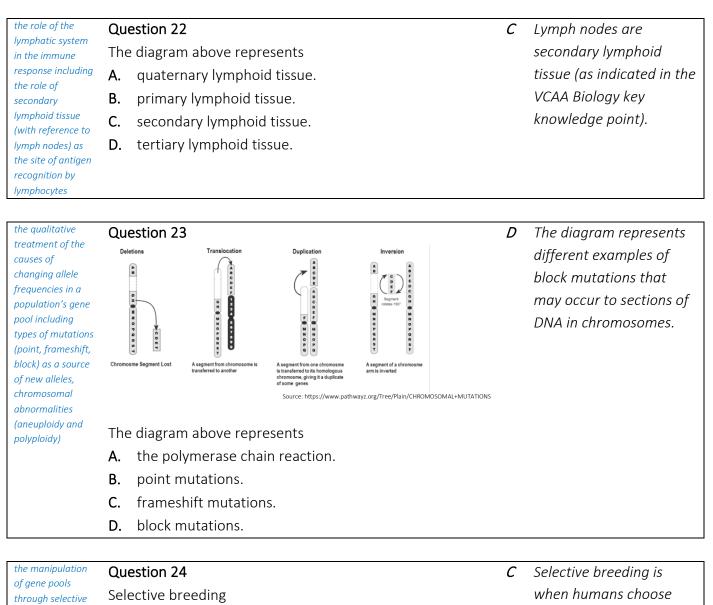
С

the sources and	Qu	estion 15	В	Neurotransmitters move
mode of transmission of	The presence of mitochondria in the axon terminal of a			across the synapse via
various signalling	nei	uron assists with cellular signalling, because the		diffusion which does not
molecules to their target cell,	mit	cochondria can provide energy for		require energy as this is a
including plant	A.	the movement of neurotransmitters across the		passive process.
and animal hormones,		synapse through diffusion.		Neurotransmitters are
neurotransmitters	В.	the release of neurotransmitters from the axon		released from the pre-
, cytokines and pheromones		terminal via exocytosis.		synaptic terminal via
	C.	the movement of neurotransmitters across the		exocytosis, an energy
		synapse through active transport.		requiring process.
	D.	the release of neurotransmitters from the axon		
		terminal via endocytosis.		

the difference	Qu	estion 16		D	Passive immunity
between natural and artificial immunity, and	In r	elation to active and passive	immunity, which of the		involves complement
	foll	owing options correctly mate	ches the type of immunity		proteins and neutrophils,
active and passive strategies for	wit	h its function?			however no antibodies
acquiring		Passive immunity	Active immunity]	are produced, nor is
immunity		can result in a long-lasting	involves complement		there any memory of a
	Α.	memory of pathogens	proteins and neutrophils		pathogen. Active
		involves the production of	involves the production of		immunity initiates a
	В.	antibodies	B memory cells		specific response for
		can result in the	involves the same general		each pathogen, and this
	C.	inflammatory response	response for each		typically results in the
		being activated	pathogen encountered		body remembering this
	-				pathogen and initiating a
	D.	involves complement	can result in a long-lasting		faster response upon
		proteins and neutrophils	memory of pathogens		future reencounter.
vaccination	Qu	estion 17		Α	Both vaccination and
programs and their role in	He	Herd immunity			natural infection can
maintaining herd	A.	can be obtained through bo	oth natural infection and		lead to the production of
immunity for a particular disease		vaccination.			B memory cells. When a
in the human	B.	can be obtained only throug	gh natural infection.		significant number of
population	C.	cannot be obtained through	-		individuals in a
	0.	natural infection.			population possess
	D.	can be obtained only through vaccination.		these, herd immunity	
	υ.				exists.
invading cellular	Qu	estion 18		D	The steps outlined in
and non-cellular pathogens as a	The	The following is a list of the main steps in the life cycle of a virus in no particular order.			option D outline the
source of non-self	viru				typical steps in viral
antigens, and preventative					replication.
strategies	Ste	Step A: Viral proteins and nucleic acids are assembled in			
including physical, chemical and	the host cell.				
microbiological	Step B: The virus binds to the host cell.				
barriers in animals and plants that	Step C: The virus injects its nucleic acid into the host cell.				
keep them out	Ste	Step D: The host cell releases viral particles.			
		Step E: The host cell produces viral nucleic acids and			
	pro	oteins.			
	W۲	nich of the following lists thes	e steps in the order in		
		ich they occur in the life cycle			
		D - A - E - C - B			
		D - A - E - C - B C - A - B - D - E			
	C. B-C-E-D-A				


D. B-C-E-A-D

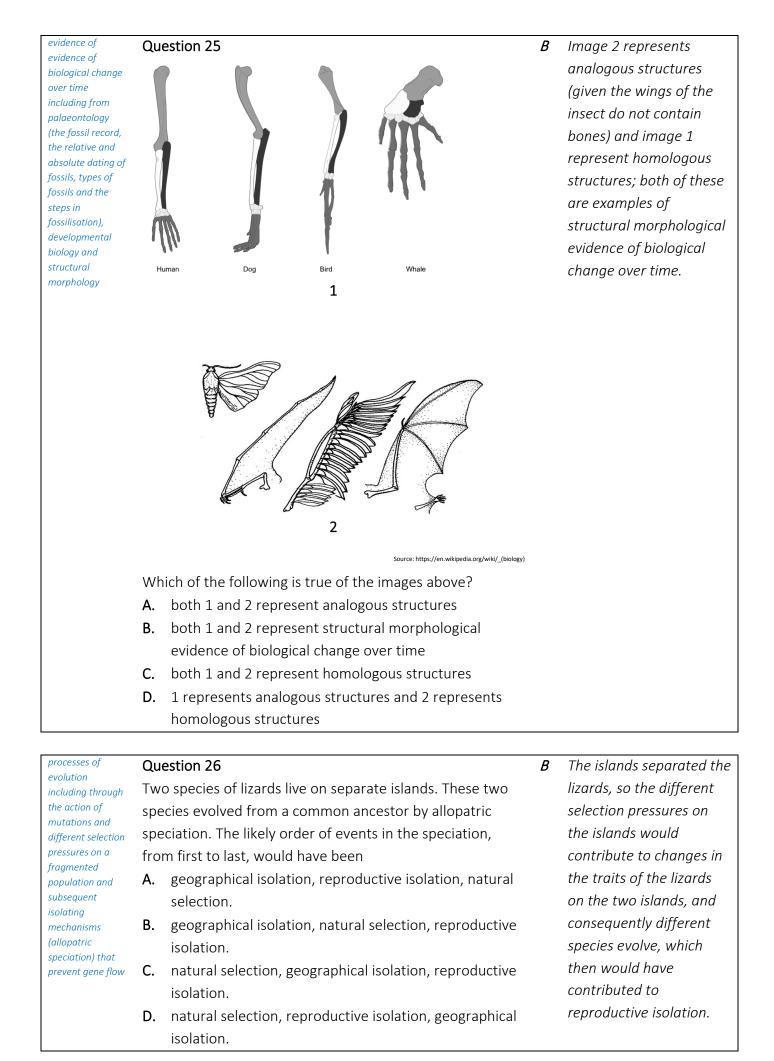
the characteristics and roles of		estion 19 elper cells	В	T helper cells 'help' to regulate the immune
components of the adaptive (specific) immune	A.	directly attack cells infected with viruses.		response by releasing
response	В.	release cytokines which stimulate B cells.		cytokines which
includingthe actions of T helper	C.	produce antibodies.		stimulate B cells.
and T cytotoxic cells in cell- mediated immunity.	D.	interact with antigens presented on cytotoxic T cells.		


the use of monoclonal	Question 20		Monoclonal antibodies
antibodies in	Monoclonal antibodies		can be designed to
treating cancer.	A. directly attack cancer cells.		target cancer cells in
	B. can deliver radiation to cancer cells.		many ways, including all
	C. can deliver chemotherapy to cancer cells.		options listed.
	D. all of the above.		

Use the following information to answer Questions 21 and

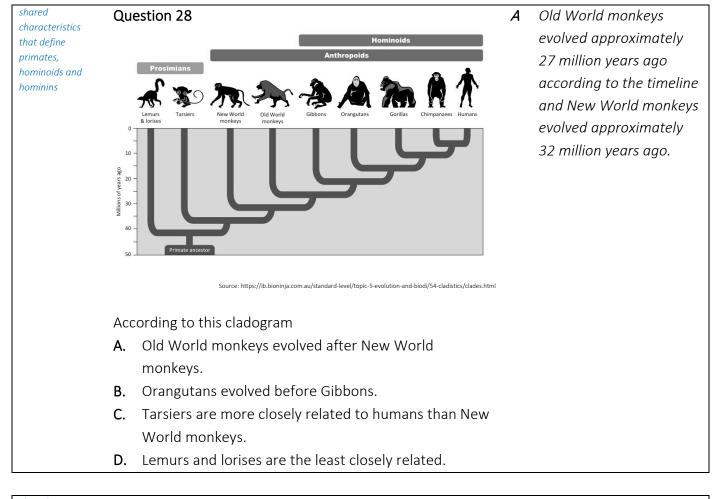
22.

		Source: https://en.wikipedia.org/wiki/Lymph_node#/media/File:Diagram_of_a_lymph_node_CRUK_022.svg		
the role of the	Qu	estion 21	Α	Lymph nodes are where
lymphatic system in the immune	The	e diagram above is where		antigen recognition
response including the role of	Α.	antigen recognition occurs by lymphocytes.		occurs by lymphocytes.
secondary	Β.	pumping occurs to move fluid through vessels.		There is no pump in the
lymphoid tissue (with reference to	C.	fluid drains back into the circulatory system.		lymphatic system.
lymph nodes) as	D.	the allergic response is initiated.		
the site of antigen recognition by				
lymphocytes				



A. will always reduce genetic diversity in a population.

breeding


programs.

- **B.** will always increase genetic diversity in a population.
- **C.** can be used as a method to increase the survival chances of an endangered species.
- **D.** is only used to increase the survival chances of an endangered species.
- Selective breeding is when humans choose which individual organisms mate and pass on their genes to future generations. This approach is often used in captive breeding programs to increase the chances of survival of an endangered species.

Biology – Assessment Guide © ACED 2020. This exam is only licenced to the purchasing school. Page 9 of 30

molecular homology as	Qu	estion 27	Α	High rates of gene flow
evidence of	lf tl	ne rate of gene flow between two populations is high,		between two populations
relatedness	the	n it is likely that		reduces the likelihood
between species including DNA and	Α.	speciation will not occur.		that genetic differences
amino acid sequences,	В.	speciation will occur.		will build between the
mtDNA (the	C.	the selection pressures in the two populations are the		two populations, and this
molecular clock) and the DNA		same.		reduces the likelihood of
hybridisation	D.	there are long distances between the two populations.		speciation.
technique				

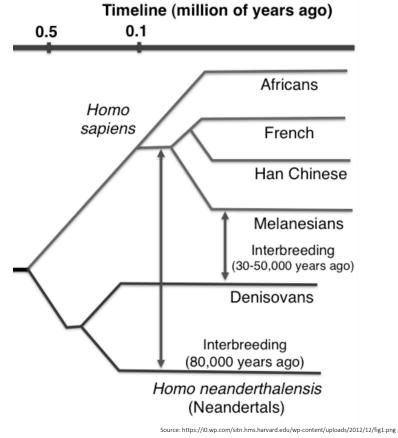
snarea
characteristics
that define
primates,
hominoids and
hominins

Question 29

A. lack opposable thumbs.B. are all bipedal.

Hominoids and hominins

- C. lack tails.
- D. could all use tools to make fire.


C Hominoids and humans do not have tails. They both have opposable thumbs. Hominoids such as the gorilla are not bipedal, and they also do not use tools to make fire.

the human fossil	Question 30	D	If modern day homo
recordincluding whether Homo	What evidence would support the notion that		sapiens possess
sapiens and Homo	interbreeding occurred between Homo neanderthalensis		Neanderthal DNA, this
neanderthalensis interbred and the	and Homo sapiens?		would indicate that
placement of the	A. they were both alive during the same period of time		interbreeding occurred
Denisovans into the Homo	B. they both shared cultural traditions		between Homo
evolutionary tree.	C. they both possess similar structural traits such as a		neanderthalensis and
	large brain case		Homo sapiens as the
	D. modern day <i>homo sapiens</i> possess Neanderthal DNA		DNA would have then
			been passed on through
			the generations from this
			interbreeding.

the human fossil record as an example of a classification scheme that is open to interpretations that are contested, refined or replaced when new evidence challenges them or when a new model has greater explanatory power, including whether Homo sapiens and Homo neanderthalensis interbred and the placement of the Denisovans into the Homo evolutionary tree.

Question 31

The diagram below is one depiction of an aspect of the human family tree.

B As indicated by the timeline, Neanderthals and Denisovans diverged approximately 0.3 million years ago.

The family tree indicates that Neanderthals and Denisovans diverged approximately

- A. 0.5 million years ago.
- **B.** 0.3 million years ago.
- C. 0.1 million years ago.
- **D.** 0.6 million years ago.

the use of enzymes including	Question 32	D	DNA polymerase is
endonucleases	DNA polymerase and RNA polymerase		involved in DNA
(restriction enzymes), ligases	A. are both involved in DNA replication.		replication and RNA
and polymerases	B. are both involved in transcription.		polymerase is involved ir
	C. differ as DNA polymerase is involved in DNA		transcription.
	replication and RNA polymerase is involved in		
	translation.		
	D. differ as DNA polymerase is involved in DNA		
	replication and RNA polymerase is involved in		
	transcription.		
the use of	Question 33	В	The diagram indicates
enzymes including endonucleases	The following diagram demonstrates the recognition		that EcoR V and Hae III
(restriction	sequence for four different restriction enzymes.		will produce blunt ends
enzymes), ligases and polymerases			and Pst I and Not I will
	Recognition Sequence Enzyme		produce sticky ends.
	5' · · · · CTGCAG 3' · · · · GACGTC · · · · 5' Pst I		
	$\begin{array}{c} \downarrow \\ s' \cdots \\ s' \cdots \\ c \top A \top A G \end{array} \qquad \qquad$		
	s ^y ····· GGCC y···· s ^y Hae III ↑		
	s'···· GCGGCCGC a'···· CGCCGGCG ···· s' Not I		
	I Source: https://www.chegg.com/homework-help/questions-and-answers/restriction-enzymes-produce-cohesive-sticky-ends-others-produce- blunt-ends-cut-double-stra-q36205359		
	Based on the stimulus material, all cuts will lead to		
	A. only sticky ends being produced.		
	B. two sticky and two blunt ends being produced.		
	C. only blunt ends being produced.		
	D. neither sticky nor blunt ends being produced.		
the use of gel	Question 34	D	DNA is negatively
electrophoresis in sorting DNA	Which of the following is true of gel electrophoresis and		charged and therefore
fragments,	the way in which it sorts DNA fragments?		moves towards the
including interpretation of	A. DNA is positively charged and therefore moves		positive electrode on a
gel runs	towards the positive electrode		gel electrophoresis
	B. DNA is negatively charged and therefore moves		machine.
	towards the negative electrode		
	C. DNA is positively charged and therefore moves		
	towards the negative electrode		

D. DNA is negatively charged and therefore moves towards the positive electrode

Biology – Assessment Guide © ACED 2020. This exam is only licenced to the purchasing school. Page 12 of 30

the use of	Question 35	Α	Recombinant plasmids
recombinant plasmids as	A recombinant plasmid		can act as vectors to
vectors to	A. can act as a vector.		transform bacterial cells
transform bacterial cells.	B. is only found in eukaryotic cells.		Recombinant plasmids
	C. can only contain DNA from the same species.		are typically found in
	D. cannot be used to transform bacterial cells.		prokaryotic cells but car
			be incorporated in
			eukaryotic cells also.
			Recombinant plasmids
			can contain DNA from
			different species.
techniques that	Question 26		lleat check an annuar
apply DNA	Question 36	С	Heat shock encourages
knowledge (specifically gene	In relation to gene cloning, heat-shock may be applied to		bacteria to take up
cloning) including	bacteria in order to		recombinant DNA
social and ethical	A. prevent them from taking up recombinant DNA.		required for gene
implications and issues	B. kill the bacteria.		cloning.
	C. encourage them to take up recombinant DNA.		
	D. encourage the bacteria to replicate.		
strategies that	Question 37	D	Option D describes a
deal with the emergence of new	A pandemic		pandemic. Epidemics ar
diseases in a	A. is easier to contain than an epidemic.		typically localised to a
globally connected world, including	B. typically has a shorter duration than an epidemic.		region/smaller number
the distinction	c, cannot be prevented through herd immunity.		of people within a
between epidemics and pandemics, the use of scientific knowledge to identify the pathogen, and the	D. is the spread of a pathogen and the associated		population and are
	condition that covers several countries or spreads		therefore easier to
	from one continent to another.		contain, than pandemic
	a on one continent to diother.		As pandemics spread
			widely, they typically ar
types of treatments			longer in duration than
			epidemics.
systematically	Question 38	D	Qualitative data is

generate, collect,	Qu	estion 38	D	Qualitative data is
record and	Qu	alitative data		typically based on
summarise both qualitative and	A. is always numerical in nature.			observation or
quantitative data	В.	is often based on an experiment with a measurement		interviews, and therefore
		tool (e.g. a thermometer).		is typically descriptive in
	C.	always involves large sample sizes in studies.		nature or involves words.
	D.	is typically descriptive in nature.		

take a qualitative	Question 39	С	A systematic error is a
approach when dentifying and	Suzie and James were conducting an experiment to		consistent, repeatable
analysing	determine the effects of carbon dioxide concentration on		error that is often
experimental data with reference to accuracy,	the rate of photosynthesis in hydrangeas (a type of plant).		associated with faulty equipment. The
recision, eliability, validity, incertainty and irrors (random and systematic)	They decided to measure the rate of photosynthesis using a newly developed oxygen concentration apparatus. The packet the apparatus came in mentioned that it required calibration before use, to ensure it was making accurate measurements, however, James forgot to calibrate the instrument before he and Suzie started their experiment.		measurement error for each group would have been consistent due to the uncalibrated apparatus.
	Their experiment involved five separate groups of		
	hydrangeas, and all of the measurements taken involved		
	the uncalibrated apparatus.		
	The type of error demonstrated in the scenario is		
	A. a random error.		
	B. a personal error.		
	C. a systematic error.		
	D. a notational error.		
take a qualitative	Question 40	В	Sample size is not directly
approach when identifying and	An increase in the sample size of an experiment will		related to validity; with
analysing experimental data	A. not affect the reliability or validity of the experiment.		greater sample size

B. be more likely to increase the reliability of the experiment than its validity.

experimental data

with reference to accuracy,

reliability, validity, uncertainty and

errors (random

and systematic)

precision,

- **C.** increase the reliability and decrease the accuracy of the experiment.
 - **D.** increase the validity of the experiment but not the reliability.
- related to validity; with greater sample size reliability increases, as there is more data that can be collected and compared to determine if consistent results are demonstrated.

Section B – Short Answer Questions

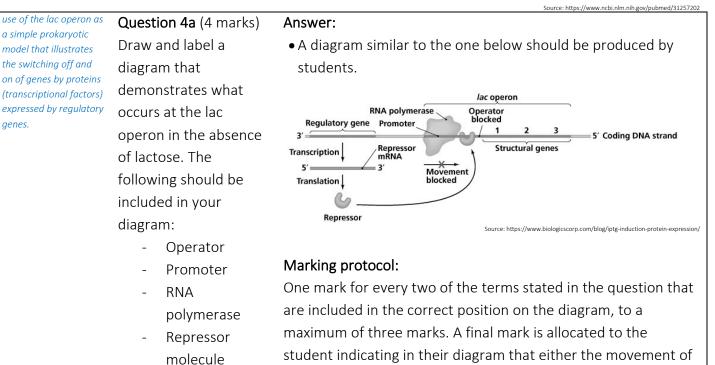
Section D	Short Answer e	
VCAA Key Knowledge	Question	Answer guide
	amino ac	cids growing peptide chain
	ribosome la subunit 3' <u>m_m_m</u> ribosome sr	mmmmmmm 5'
	subunit	Source: https://courses.lumenlearning.com/microbiology/chapter/structure-and-function-of-rna
the genetic code as a degenerate triplet code and the steps in gene expression including	Question 1a (1 mark) The image above depicts what process	Answer:Translation
transcription, RNA processing in eukaryotic cells and translation.	involved in protein synthesis?	Marking protocol: One mark for the above point.
the structure of DNA and the three forms of RNA including similarities and	Question 1b (4 marks) Draw a labelled diagram, in two steps,	Answer: • A diagram with two steps, as outlined below, is required:
differences in their subunits, and their synthesis by condensation polymerisation	that demonstrates the process involved in joining two amino acids. Name the process you have	(Amino acid 1 joins with Amino acid 2.) $H = R_1$ $H = R_1$ $H = R_1$ $H = R_2$ $H = R_2$ H
	drawn.	$ \begin{array}{c} $
		(A dipeptide is formed, and a water molecule is generated.)
		 Condensation polymerisation
		Marking protocol: One mark for two correctly drawn amino acids in step 1. One mark for a correctly drawn dipeptide in step 2, and an additional mark for a water molecule written/drawn in step 2. A final mark for naming the process condensation polymerisation.

the genetic code as a degenerate triplet code	Question 1c (3 marks)	Answer:
and the steps in gene	Draw an arrow on the	 The ribosome will stop when it reaches a stop codon sequence
expression including	diagram above (in the	in the mRNA
transcription, RNA processing in	stimulus material) that	 this does not contribute an amino acid to the polypeptide
eukaryotic cells and	indicates the direction	chain.
translation.	in which the ribosome	
	is moving as it reads	
	the mRNA. Explain how	growing peptide
	the ribosome knows	amino acids — growing peptide chain
	when to stop this	
	movement and the	ribosome large k tRNA
	contribution this	mRNA
	makes to the	
	polypeptide chain.	ribosome small — ()
		subunit
		Marking protocol:
		One mark for an arrow on the diagram that indicates the
		ribosome is moving in the 5' to 3' direction (from right to left).
		One mark for each of the above points.

Cellular respiration is a vital process in humans that facilitates the breakdown of glucose and its conversion into a usable form of cellular energy – ATP. Energy is released from ATP when it is converted to ADP and Pi. Both aerobic and anaerobic respiration are possible in humans, however, the inputs and outputs of these two forms of cellular respiration differ.

the purpose of cellular respiration	Question 2a (2 marks) Describe the structural difference between ATP and ADP and how energy is released during ATP's conversion to ADP.	 Answer: The structural difference is that a molecule of ATP consists of a chain of three phosphates, whereas a molecule of ADP only contains a chain of two phosphates. Due to the high energy in the bonds between each phosphate in a chain, energy is released when the bond holding the third phosphate group in ATP is broken, leaving a chain of two phosphates in ADP.
		Marking protocol: One mark for each of the above points.

the fluid mosaic model of the structure of the plasma membrane and the movement of hydrophilic and hydrophobic substances across it based on their size and polarity	Question 2b (4 marks) Name two processes by which glucose can enter a cell and describe the difference between these two processes.	 Answer: Active transport Facilitated diffusion Active transport is the movement of a substance across a membrane from a region of low concentration to high concentration that requires the input of energy, whereas facilitated diffusion is the movement of a substance through a channel protein from a region of high concentration to low
		concentration that does not require the input of energy. Marking protocol: One mark for each of the above points.
the location of, and the inputs and outputs of, glycolysis including ATP yield	Question 2c (2 marks) Once glucose has entered the cell, what stage of aerobic cellular respiration is it an input for, and where does this stage take place?	 Answer: Stage: Glycolysis Location: The cytosol Marking protocol: One mark for each of the above points.
the location of anaerobic cellular respiration, its inputs and the difference in outputs between animals and yeasts including ATP yield	Question 2d (2 marks) Explain why lactic acid may accumulate in the body of a person who exercises vigorously for a period of time.	 Answer: Vigorous exercise can contribute to a lack of adequate oxygen to be delivered to the cells to meet energy needs via aerobic cellular respiration; therefore, the cells instead carry out anaerobic respiration. An output of anaerobic respiration in animals is lactic acid; therefore, vigorous exercise in humans can lead to the accumulation of lactic acid.
		Marking protocol: One mark for each of the above points.


A microbiologist was testing the effect of antibiotics on several strains of one pathogenic bacterium. She plated out the bacteria on a suitable agar medium and placed small disks soaked in four different antibiotic solutions of equal concentration on the agar. She then incubated the plates under matched conditions and measured the diameter of the zone of inhibition (area of no bacterial growth) surrounding the discs. The following results were obtained.

Antibiotic solution	Diameter of zone of inhibition - mm			
Antibiotic solution	Strain A	Strain B	Strain C	
1	6	8	9	
2	15	15	16	
3	17	22	19	
4	12	14	0	

invading cellular and non-cellular pathogens as a source of non-self antigens, and preventative strategies including physical, chemical and microbiological barriers in animals and plants that keep them out	Question 3a (2 marks) Outline a structural feature that distinguish bacteria from viruses.	 Answer: Bacteria are surrounded by a cell membrane (and most also have a cell wall), whereas viruses do not contain this structure; they have an outer envelope/capsid/protein coat. Bacteria typically have a single, circular DNA chromosome that is their genetic material, whereas a virus may contain DNA or RNA as their genome.
		Marking protocol: Two marks for any of the above points, to a maximum of two. Note, a distinctive feature of both bacteria and viruses should be included in a response to obtain full marks, not simply a statement referring to bacteria being cellular and viruses non- cellular.
identify independent, dependent and controlled variables	Question 3b (3 marks) The microbiologist incubated the plates under 'matched conditions'. Identify what this matched condition is most likely to have been, and explain the importance of this for such an experiment.	 Answer: The matched condition is most likely to be the same temperature for all plates in incubation. It is important to only alter one variable in such an experiment, in this case the type of antibiotic, and keep all other variables constant. The temperature of incubation should be the same for all strains of antibiotic. If this does not occur, it is difficult to determine whether altering the independent variable is the likely cause of any changes in the dependent variable, which reduces the validity of the experiment.
		Marking protocol: One mark for each of the above points.

take a qualitative approach when identifying and analysing experimental data with reference to accuracy, precision, reliability, validity, uncertainty and errors (random and systematic)	Question 3ci (2 marks) An observer noted that one of the results in the table appeared to be an error. Identify which result is most likely to be an error and justify your response.	 Answer: Strain C, antibiotic 4 result of 0mm area of bacterial growth. This is most likely an error as strain C produced similar results to strain A and B for antibiotics 1-3. Strain A and B had similar results for antibiotic 4, therefore the large difference of 11-12mm for strain C is likely to be an error. Marking protocol: One mark for each of the above points.
take a qualitative approach when identifying and analysing experimental data with reference to accuracy, precision, reliability, validity, uncertainty and errors (random and systematic)	Question 3cii (1 mark) Describe the error that may have led to this result being obtained.	 Answer: The disk placed on strain C may not have been soaked in any of antibiotic 4, therefore, none of the strain C bacteria was killed, leading to a Omm zone of inhibition. The disk placed on strain C may have been contaminated from another source reducing the effectiveness of the antibiotic, therefore, none of the strain C bacteria was killed, leading to a Omm zone of inhibition. Marking protocol:
		One mark for one of the above points.
identify independent, dependent and controlled variables	Question 3d (2 marks) List the independent and dependent variables in this experiment.	 Answer: Independent variable: type of antibiotic (antibiotic solution) Dependent variable: zone of inhibition (area of no bacterial growth)
		Marking protocol: One mark for each of the above points.
take a qualitative approach when identifying and analysing experimental data with reference to accuracy, precision, reliability, validity, uncertainty and errors (random and systematic)	Question 3e (2 marks) Which antibiotic solution produced the most precise results? Justify your response.	 Answer: Antibiotic solution 2. The zone of inhibition varied the least across the three strains of bacteria, from 15-16mm (or only 1mm difference), compared to the other antibiotic solutions, therefore solution 2 produced the most precise results.
		Marking protocol: One mark for each of the above points.

Gene structure and expression regulation mechanisms are the research hotspots and focus of modern life sciences. The lac operon is a cluster of genes through which *Escherichia coli* (a type of bacteria) catabolises lactose. It was first proposed by F. Jacob and J. Monod, who were also awarded the Nobel Prize in Physiology or Medicine in 1965 for their contributions. Thereafter, the lac operon became the classic teaching case of the gene regulation mechanism in microbiology, genetics, and molecular biology.

- Structural genes
- Regulatory gene

student indicating in their diagram that either the movement of RNA Polymerase is blocked or a statement indicating that the structural genes are not expressed.

use of the lac operon as a simple prokaryotic model that illustrates the switching off and on of genes by proteins (transcriptional factors) expressed by regulatory genes.

Question 4b (2 marks) With reference to the lac operon, why is it beneficial for prokaryotic cells to regulate gene expression?

Answer:

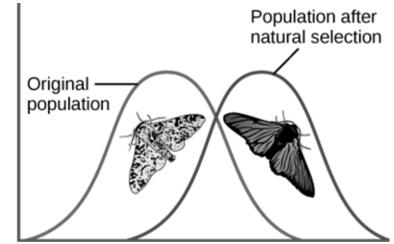
- Gene regulation assists organisms to only express genes when the product of this expression is required; this contributes to reducing unnecessary energy expenditure for organisms such as prokaryotic cells.
- For example, in regard to the lac operon, the enzymes that are required to break down lactose are only expressed when lactose is present.

Marking protocol:

One mark for each of the above points.

use of the lac operon as a simple prokaryotic model that illustrates the switching off and on of genes by proteins (transcriptional factors) expressed by regulatory genes.	Question 4c (2 marks) If a significant mutation was to occur in the regulatory gene associated with the lac operon, how could this be detrimental to the bacteria cell?	 Answer: A significant mutation in the regulatory gene may lead to a repressor molecule being produced that is no longer complementary to the operator on the lac operon. If the repressor molecule can no longer bind to the operator, RNA polymerase will express the structural genes indefinitely, meaning the bacterial cell could be expending energy unnecessarily which could be detrimental to its survival.
		Marking protocol: One mark for each of the above points.

Although scientists have been working on developing a vaccination for HIV for many years, this has not yet been created, unlike a condition such as measles where an effective vaccination exists. People who contract HIV are required to take anti-retroviral medication in an attempt to prevent HIV from developing into AIDS, a form of immunodeficiency disease.


vaccination programs and their role in maintaining herd immunity for a particular disease in the human population	Question 5a (3 marks) Are vaccinations an active or passive strategy for acquiring immunity? Justify your answer.	 Answer: Vaccinations are an active strategy. Vaccinations lead to the activation of an individual's own immune system, (leading to the formation of antibodies and the development of memory cells,) whereas passive strategies involve antibodies being introduced into the body that were created from a source outside an individual's body (and no memory cells are created by the body).
		Marking protocol: One mark for each of the above points.

vaccination programs and their role in maintaining herd immunity for a particular disease in the human population	Question 5b (3 marks) Describe how a vaccination contributes to developing immunity to a health condition such as measles.	 Answer: When a vaccination is given to a person, antigens from the pathogen that causes a particular disease (such as the virus that causes measles) are introduced into a person's body. (This can take various forms, such as an attenuated virus.) The introduction of the antigens triggers an immune response in the body, leading to the production of specific antibodies and memory cells. These memory cells remain in the body, potentially for life, and contributes to a rapid immune response in the case of future rainfaction by the pathogen that causes the disease, which
		reinfection by the pathogen that causes the disease, which stops that health condition from developing. Therefore, a vaccination can lead to a person having immunity from a health condition such as measles.
		Marking protocol: One mark for each of the above points.

the deficiencies and	Question 5c (2 marks)	Answer:
malfunctions of the immune system as a cause of human diseases including autoimmune diseases (illustrated by multiple sclerosis), immune deficiency diseases (illustrated by HIV) and allergic reactions (illustrated by reactions to pollen)	Outline why it may be difficult for scientists to develop an effective vaccination for a virus such as HIV.	 As some viruses replicate, there are mutations in their genome. This can contribute to new antigens forming on the surface of these viruses. A single vaccination may find it difficult to account for such mutations and antigenic variants, therefore making it difficult to account for such mutations and antigenic variants.
		to develop an effective vaccination, as is the case for HIV. Marking protocol: One mark for each of the above points.

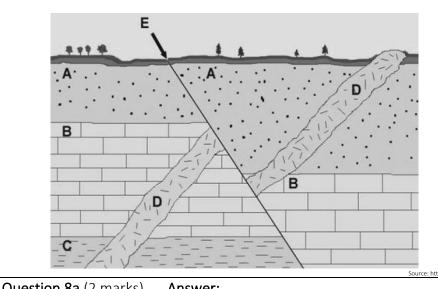
the deficiencies and malfunctions of the	Question 5d (3 marks)	Answer:
immune system as a	How does HIV	 Viruses such as HIV are required to infect a host cell in order to
cause of human diseases including	contribute to a person	undergo viral replication.
autoimmune diseases	developing an immune	• A specific type of Helper T cell is the host cell that HIV infects.
(illustrated by multiple sclerosis), immune	deficiency disease if	As part of the replication process, these Helper T cells are
deficiency diseases	antiretroviral	destroyed.
(illustrated by HIV) and allergic reactions	treatment (ART) is not	 Helper T cells assist the immune system to respond to infection
(illustrated by reactions	available? In your	by activating other immune cells. Therefore, if ART is not
to pollen)	answer, reference the	taken, and they are reduced in numbers due to infection by
	following:	HIV, the body has a weakened immune response at its
	- Helper T cells	disposal.
	- Host cell	
	- Viral replication	Marking protocol.
	- Weakened	Marking protocol:
	immune	One mark for each of the above points. For each term that is not
	response	referenced, a mark is deducted – if only one term is referenced,
		no marks are awarded.

In eighteenth and nineteenth-century England, the peppered moth evolved due to natural selection. Prior to the Industrial Revolution, before factories began polluting the air with dark soot, there were dark and light peppered moths. At this time, the moths were predominately light in colour, similar to the light-coloured trees and lichens in their environment. During the Industrial Revolution, there was a change in the predominant colour of the peppered moth population, as indicated in the diagram below.

Number of moths

Shade of moths before and after the Industrial Revolution (light to dark)

		Source: https://courses.lumenlearning.com/wm-biology2/chapter/adaptive-evolution/
environmental selection pressures on	Question 6a (1 mark)	Answer:
phenotypes as the	Describe natural	• A process where some individuals in a population are better suited
mechanism for natural	selection.	to survive and reproduce, as a result of their phenotypes being
selection		better adapted to existing selection pressures.
		Marking protocol:
		One mark for the above point.


environmental selection pressures on phenotypes as the mechanism for natural selection	Question 6b (3 marks) Outline how natural selection contributed to the changes observed in the graph for the peppered moth population.	 Answer: At the start of the Industrial Revolution, there was variation in the peppered moth phenotypes; there were light and dark peppered moths. However, as indicated in the graph, there was a greater number of light-coloured moths. The Industrial Revolution led to factories polluting the air with dark soot (and as a consequence, trees developed a darker appearance), therefore, the light moths were more likely to be visible to predators and selected against. The dark moths were given a selective advantage, such as camouflage on the darker trees, and were more likely to survive and reproduce. The offspring of the dark moths were likely to inherit the allele for dark pigmentation, and over many generations, the number of moths that were darker in colour increased (and the number of light-coloured moths decreased), as indicated in the graph.
		Marking protocol: One mark for each of the above points.

Martha's Vineyard is an island off the east coast of the United States. It was first settled in the seventeenth century by a group of English immigrants. During the 1700s and 1800s, the island had an extraordinarily large proportion of individuals with genetically inherited deafness. At this time, the US mainland had approximately a 1 in 6000 deaf population, while Martha's Vineyard had approximately a 1 in 155 deaf population.

In the last century, the difference between the proportion of the deaf population in Martha's Vineyard and mainland USA has diminished. Today, Martha's Vineyard does not have a significantly large deaf population. Source: https://www.verywellhealth.com/deaf-history-marthas-vineyard-1046546#ctation-1

environmental selection pressures on	Question 7a (2 marks)	Answer:		
phenotypes as the	Identify and describe	• Founder effect.		
mechanism for natural	the type of genetic	 The reduction in genetic variation that occurs when a new 		
selection, gene flow, and genetic drift	drift that was likely to	population is established by a very small number of individuals		
(bottleneck and	have contributed to	from a larger population.		
founder effects) and the biological	the disproportional			
consequences of such	number of people with			
changes in terms of increased or reduced genetic diversity	deafness on Martha's	Marking protocol:		
	Vineyard in the 1700s	One mark for each of the above points.		
	and 1800s.			

environmental selection pressures on phenotypes as the mechanism for natural selection, gene flow, and genetic drift (bottleneck and founder effects) and the biological consequences of such changes in terms of increased or reduced genetic diversity	Question 7b (3 marks) Explain how your answer to Question 7a would have contributed to the extraordinarily large proportion of individuals with genetically inherited deafness on Martha's Vineyard.	 Answer: Within the English immigrant population who settled Martha's Vineyard, there was likely to have been a high number of individuals with the allele for genetically inherited deafness. Reproduction on the island was likely to have been restricted to individuals who settled there therefore, this would have contributed to an increase in frequency of the allele, and over time, led to the extraordinarily large proportion of individuals with genetically inherited deafness on Martha's Vineyard. 				
		Marking protocol: One mark for each of the above points.				
environmental selection pressures on phenotypes as the mechanism for natural selection, gene flow, and genetic drift (bottleneck and founder effects) and the biological consequences of such changes in terms of increased or reduced genetic diversity	Question 7c (2 marks) Outline what may have contributed to the reduction in the difference in the numbers of people with genetically inherited deafness on Martha's Vineyard and the USA mainland over the last century.	 Answer: Over the last century there is likely to have been increased gene flow from the USA mainland, where fewer people have genetically inherited deafness when compared to Martha's Vineyard. This interbreeding, between the mainland and island population, is likely to have reduced the numbers of people with genetically inherited deafness on Martha's Vineyard, reducing the difference between these populations. 				
	Reference gene flow in your answer.	Marking protocol: One mark for each of the above points.				

evidence of biological change over time including from palaeontology (the fossil record, the relative and absolute dating of fossils, types of fossils and the steps in fossilisation), biogeography, developmental biology and structural morphology	Question 8a (2 marks) What is stratigraphy, and how is this linked to the relative dating of fossils?	 Answer: Stratigraphy is concerned with studying rock layers. This is associated with relative dating of fossils which is also associated with rock layers. This assumes that fossils found in layers of rock deeper underground are older than fossils found in layers of rock closer to the surface. Marking protocol: 				
		One mark for each of the above points.				
evidence of biological	Question 8b (2 marks)	Answer:				
change over time including from	Based on the diagram	• C, B, A, D				
palaeontology (the fossil record, the	above, from oldest to	ullet As D cuts through C, B and A, it is likely to be the youngest				
relative and absolute	youngest, list the order	layer of rock. The principle of superposition, states that the				
dating of fossils, types of fossils and the steps	of the likely age of the	oldest layer of rock, C, is at the bottom.				
in fossilisation), biogeography,	layers of rock A, B, C, and D. Justify your					
developmental biology and structural	response.	Marking protocol:				
morphology		One mark for each of the above points.				
evidence of biological	Question 8c (3 marks)	Answer:				
change over time including from	With reference to E in	• As indicated by E in the stimulus material, faults can form in				
palaeontology (the	the stimulus material,	the earth's crust, moving layers of rocks as a result.				
fossil record, the relative and absolute	describe a limitation of	 Such faults could move rocks to an extent that they are no 				
dating of fossils, types of fossils and the steps	dating fossils using	longer in their correct chronological age from bottom to top,				
in fossilisation),	relative dating. Suggest	thus, relative dating techniques may no longer become				

evidence of biological

in fossilisation), biogeography,

and structural morphology

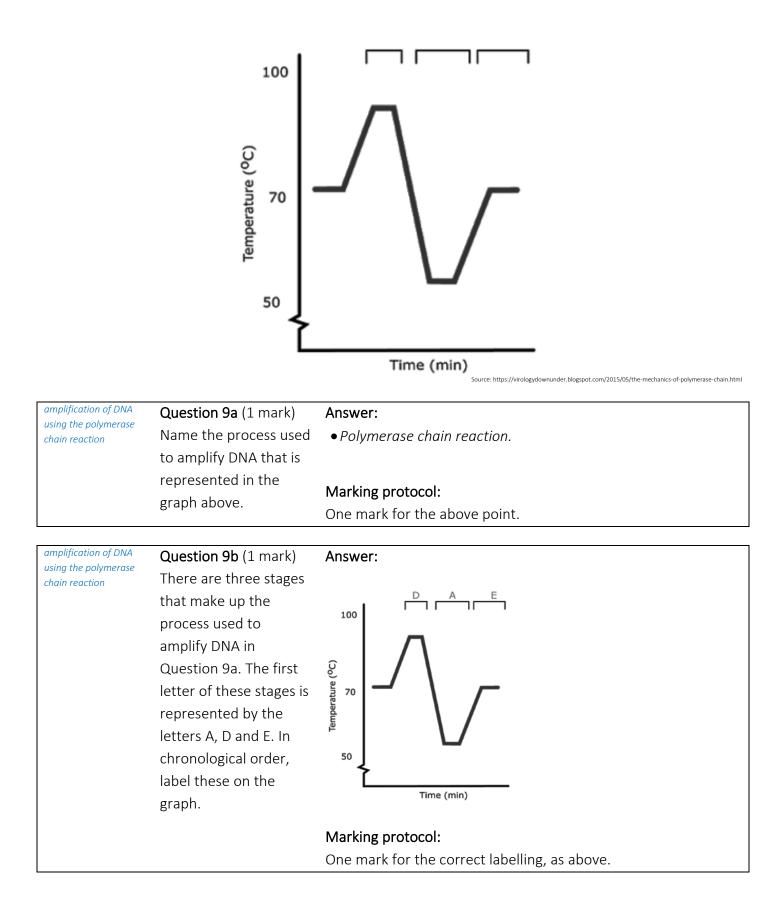
developmental biology

a fossil dating

technique for

limitation.

overcoming this


• To overcome this, absolute dating of a fossil could be used instead, where a more accurate age of a fossil could be determined using radiometric dating.

ads/optional/235

Marking protocol:

reliable.

One mark for each of the above points.

amplification of DNA using the polymerase chain reaction	Question 9c (4 marks) With reference to the graph and your labelling, describe each of the stages in this process.	 Answer: Denaturing (D): The polymerase chain reaction (PCR) mix is exposed to a temperature of approximately 90°C - 100°C (92°C), as demonstrated in the graph, in order to separate (the hydrogen bonds between) the two template strands of DNA. Annealing (A): The PCR mix is cooled to 50°C - 60°C (55°C), as
		 demonstrated in the graph, which enables the primers to bond to the ends of the DNA template. Extension or elongation (E): The PCR mix is heated to 72°C, as demonstrated in the graph. This enables taq polymerase to bind to the primers, read the template strands, and assemble the complementary strands.
		Marking protocol: One mark for the description in each of the above points. A
		fourth mark for correctly linking labels from the graph to each description.
		Note: if a student can describe the process of PCR, but does not make any reference to the graph, or incorrect references, the maximum marks they can achieve is three.

Golden bananas high in pro-vitamin A developed

Ugandan bananas that are high in pro-vitamin A have recently been developed by researchers. The decadelong research, led by Professor James Dale, involved extensive laboratory tests, as well as field trials in north Queensland.

Professor Dale said the genetic modification process had resulted in the identification and selection of banana genes that could be used to enhance pro-vitamin A in banana fruit. The research ultimately aims to improve the nutritional content of bananas in Uganda, where the fruit is a major staple food in their diet. The consequences of vitamin A deficiency are severe, and it has been estimated that approximately 700,000 children world-wide die from pro-vitamin A deficiency each year, with a further several hundred thousand going blind.

"What we've done is take a gene from a banana that originated in Papua New Guinea and is naturally very high in pro-vitamin A but has small bunches, and inserted it into a Ugandan banana," Professor Dale said.

the distinction between	Question 10a (3 marks)	Answer:			
genetically modified and transgenic	Based on the	 Genetically modified organisms 			
organisms, their use in agriculture to increase crop productivity and to provide resistance to insect predation and/or disease, and the biological, social and ethical implications	information provided, identify whether the Ugandan bananas high in pro-vitamin A are best described as	 The Ugandan bananas high in pro-vitamin A have been enhanced through the introduction of a gene from the same species unlike transgenic organisms, where a new gene is introduce into an organism from another species. 			
that are raised by their use	genetically modified				
	organisms or	Marking protocol:			
	transgenic organisms. Justify your response.	One mark for each of the above points.			

Biology – Assessment Guide © ACED 2020. This exam is only licenced to the purchasing school. Page 28 of 30

the distinction between	Question 10b (2 marks)	Answer:
genetically modified and transgenic	Outline a potential	Positive implications:
organisms, their use in agriculture to increase crop productivity and to provide resistance to insect predation and/or disease, and the biological, social and ethical implications that are raised by their use	positive and negative social implication of growing bananas high in pro-vitamin A for distribution in Uganda.	 Bananas contribute to more adults having adequate nutrition to attend work, contributing to an increased standard of living. Bananas improve socioeconomic levels because of a reduction in death and disease. Bananas contribute to more children having adequate nutrition to attend schools, which would improve levels of education.
		Negative implications:
		 Traditional banana growers may lose business, and this may lead to them earning a reduced income and a reduced standard of living.
		 Unintended health consequences may result from the new bananas which may lead to decreased socioeconomic levels due to disease.
		 The growth and consumption of these new bananas may lead to concern and stress in the community regarding the potential job losses/health consequences.
		Marking protocol:
		One mark for each of the above points. One positive and one negative social implication are required for a maximum of two marks.

 There is the potential for these new bananas to require greater amounts of water/soil nutrients that may not be available in Uganda therefore, crops of these bananas may not yield as much fruit as the previous crops, reducing crop productivity.
Marking protocol: One mark for each of the above points.

VCE BIOLOGY Written Examination ANSWER SHEET – 2020

TUDENT
NAME:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

Marks will **NOT** be deducted for incorrect answers.

NO MARK will be given if more than one answer is completed for any question.

If you make a mistake, **ERASE** the incorrect answer – **DO NOT** cross it out.

						-			
1	А	В	С	D	21	А	В	С	D
2	А	В	С	D	22	А	В	С	D
3	Α	В	С	D	23	Α	В	С	D
4	Α	В	С	D	24	А	В	С	D
5	А	В	С	D	25	Α	В	С	D
6	А	В	С	D	26	А	В	С	D
7	А	В	С	D	27	А	В	С	D
8	А	В	С	D	28	А	В	С	D
9	А	В	С	D	29	А	В	С	D
10	А	В	С	D	30	А	В	С	D
11	А	В	С	D	31	Α	В	С	D
12	А	В	С	D	32	А	В	С	D
13	Α	В	С	D	33	Α	В	С	D
14	А	В	С	D	34	А	В	С	D
15	Α	В	С	D	35	А	В	С	D
16	А	В	С	D	36	А	В	С	D
17	А	В	С	D	37	Α	В	С	D
18	А	В	С	D	38	А	В	С	D
19	А	В	С	D	39	Α	В	С	D
20	А	В	С	D	40	А	В	С	D